
Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

Dynamic Programming
M269 Tutorial with Commentary 2023

Phil Molyneux

4 August 2023

1/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

Commentary 1
Agenda, Aims and Topics

1 Agenda, Aims and Topics

▶ Overview of aims of tutorial

▶ Note selection of topics

▶ Recursion is used throughout the topics

▶ Points about my own background and preferences

▶ Adobe Connect slides for reference

2/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

M269 Dynamic Programming
Tutorial Agenda & Aims

▶ Welcome and introductions

▶ Dynamic Programming — introduction

▶ Python: List comprehensions, Named Tuples

▶ Implementations in Structured English, Python and
Haskell (Optional)

▶ Note there is more material here than we can cover —
some is for optional interest

▶ Not covered in this session: Adobe Connect notes,
Fibonacci closed form, Fibonacci alternative calculation
Edit Distance — Haskell Implementation, Edit Distance
Diagram Construction

▶ Slides/Notes are at
pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269Tutorial06Prsntn2022JDynamicProgM/

▶ Recording Meeting Record Meeting. . . ✔

3/131

http://pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269Tutorial06Prsntn2022JDynamicProgM/

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

M269 Tutorial
Introductions — Phil

▶ Name Phil Molyneux
▶ Background

▶ Undergraduate: Physics and Maths (Sussex)
▶ Postgraduate: Physics (Sussex), Operational Research

(Brunel), Computer Science (University College, London)
▶ Worked in Operational Research, Business IT, Web

technologies, Functional Programming

▶ First programming languages Fortran, BASIC, Pascal
▶ Favourite Software

▶ Haskell — pure functional programming language
▶ Text editors TextMate, Sublime Text — previously Emacs
▶ Word processing in LATEX — all these slides and notes
▶ Mac OS X

▶ Learning style — I read the manual before using the
software

4/131

https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://www.haskell.org/
https://macromates.com
http://www.sublimetext.com
https://www.emacswiki.org/
https://www.latex-project.org/
https://developer.apple.com/

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

M269 Tutorial
Introductions — You

▶ Name ?

▶ Favourite software/Programming language ?

▶ Favourite text editor or integrated development
environment (IDE)

▶ List of text editors, Comparison of text editors and
Comparison of integrated development environments

▶ Other OU courses ?

▶ Anything else ?

5/131

https://en.wikipedia.org/wiki/Text_editor
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/List_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

Adobe Connect
Interface — Host View

6/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

Adobe Connect
Interface — Participant View

7/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

Adobe Connect
Settings

▶ Everybody Menu bar Meeting Speaker & Microphone Setup

▶ Menu bar Microphone Allow Participants to Use Microphone ✔

▶ Check Participants see the entire slide Workaround
▶ Disable Draw Share pod Menu bar Draw icon

▶ Fit Width Share pod Bottom bar Fit Width icon ✔

▶ Meeting Preferences General Host Cursor Show to all attendees

▶ Menu bar Video Enable Webcam for Participants ✔

▶ Do not Enable single speaker mode

▶ Cancel hand tool

▶ Do not enable green pointer

▶ Recording Meeting Record Session ✔

▶ Documents Upload PDF with drag and drop to share
pod

▶ Delete Meeting Manage Meeting Information Uploaded Content

and check filename click on delete

8/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

Adobe Connect
Access

▶ Tutor Access

TutorHome M269 Website Tutorials

Cluster Tutorials M269 Online tutorial room

Tutor Groups M269 Online tutor group room

Module-wide Tutorials M269 Online module-wide room

▶ Attendance

TutorHome Students View your tutorial timetables

▶ Beamer Slide Scaling 440% (422 x 563 mm)

▶ Clear Everyone’s Status

Attendee Pod Menu Clear Everyone’s Status

▶ Grant Access and send link via email

Meeting Manage Access & Entry Invite Participants. . .

▶ Presenter Only Area

Meeting Enable/Disable Presenter Only Area

9/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

Adobe Connect
Keystroke Shortcuts

▶ Keyboard shortcuts in Adobe Connect

▶ Toggle Mic + M (Mac), Ctrl + M (Win) (On/Disconnect)

▶ Toggle Raise-Hand status + E

▶ Close dialog box (Mac), Esc (Win)

▶ End meeting + \

10/131

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

Adobe Connect Interface
Sharing Screen & Applications

▶ Share My Screen Application tab Terminal for Terminal

▶ Share menu Change View Zoom in for mismatch of screen
size/resolution (Participants)

▶ (Presenter) Change to 75% and back to 100% (solves
participants with smaller screen image overlap)

▶ Leave the application on the original display

▶ Beware blued hatched rectangles — from other (hidden)
windows or contextual menus

▶ Presenter screen pointer affects viewer display —
beware of moving the pointer away from the application

▶ First time: System Preferences Security & Privacy Privacy

Accessibility

11/131

https://en.wikipedia.org/wiki/Terminal_(macOS)

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

Adobe Connect
Ending a Meeting

▶ Notes for the tutor only
▶ Student: Meeting Exit Adobe Connect

▶ Tutor:
▶ Recording Meeting Stop Recording ✔

▶ Remove Participants Meeting End Meeting. . . ✔

▶ Dialog box allows for message with default message:
▶ The host has ended this meeting. Thank you for

attending.

▶ Recording availability In course Web site for joining
the room, click on the eye icon in the list of recordings
under your recording — edit description and name

▶ Meeting Information Meeting Manage Meeting Information —
can access a range of information in Web page.

▶ Delete File Upload Meeting Manage Meeting Information

Uploaded Content tab select file(s) and click Delete

▶ Attendance Report see course Web site for joining
room

12/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

Adobe Connect
Invite Attendees

▶ Provide Meeting URL Menu Meeting Manage Access & Entry

Invite Participants. . .

▶ Allow Access without Dialog Menu Meeting

Manage Meeting Information provides new browser window
with Meeting Information Tab bar Edit Information

▶ Check Anyone who has the URL for the meeting can
enter the room

▶ Default Only registered users and accepted guests may
enter the room

▶ Reverts to default next session but URL is fixed

▶ Guests have blue icon top, registered participants have
yellow icon top — same icon if URL is open

▶ See Start, attend, and manage Adobe Connect meetings
and sessions

13/131

https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html
https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

Adobe Connect
Entering a Room as a Guest (1)

▶ Click on the link sent in email from the Host

▶ Get the following on a Web page

▶ As Guest enter your name and click on Enter Room

14/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

Adobe Connect
Entering a Room as a Guest (2)

▶ See the Waiting for Entry Access for Host to give
permission

15/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

Adobe Connect
Entering a Room as a Guest (3)

▶ Host sees the following dialog in Adobe Connect and
grants access

16/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

Adobe Connect
Layouts

▶ Creating new layouts example Sharing layout

▶ Menu Layouts Create New Layout. . . Create a New Layout dialog

Create a new blank layout and name it PMolyMain

▶ New layout has no Pods but does have Layouts Bar open
(see Layouts menu)

▶ Pods

▶ Menu Pods Share Add New Share and resize/position —
initial name is Share n

▶ Rename Pod Menu Pods Manage Pods. . . Manage Pods

Select Rename or Double-click & rename

▶ Add Video pod and resize/reposition

▶ Add Attendance pod and resize/reposition

▶ Add Chat pod — name it PMolyChat — and
resize/reposition

17/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

Adobe Connect
Layouts

▶ Dimensions of Sharing layout (on 27-inch iMac)
▶ Width of Video, Attendees, Chat column 14 cm
▶ Height of Video pod 9 cm
▶ Height of Attendees pod 12 cm
▶ Height of Chat pod 8 cm

▶ Duplicating Layouts does not give new instances of
the Pods and is probably not a good idea (apart from
local use to avoid delay in reloading Pods)

▶ Auxiliary Layouts name PMolyAux0n
▶ Create new Share pod
▶ Use existing Chat pod
▶ Use same Video and Attendance pods

18/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

Adobe Connect
Chat Pods

▶ Format Chat text

▶ Chat Pod menu icon My Chat Color

▶ Choices: Red, Orange, Green, Brown, Purple, Pink, Blue,
Black

▶ Note: Color reverts to Black if you switch layouts

▶ Chat Pod menu icon Show Timestamps

19/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

Graphics Conversion
PDF to PNG/JPG

▶ Conversion of the screen snaps for the installation of
Anaconda on 1 May 2020

▶ Using GraphicConverter 11

▶ File Convert & Modify Conversion Convert

▶ Select files to convert and destination folder

▶ Click on Start selected Function or +

20/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

Adobe Connect Recordings
Exporting Recordings

▶ Menu bar Meeting Preferences Video

▶ Aspect ratio Standard (4:3) (not Wide screen (16:9) default)

▶ Video quality Full HD (1080p not High default 480p)

▶ Recording Menu bar Meeting Record Session ✔

▶ Export Recording

▶ Menu bar Meeting Manage Meeting Information

▶ New window Recordings check Tutorial Access Type button

▶ check Public check Allow viewers to download

▶ Download Recording

▶ New window Recordings check Tutorial Actions Download File

21/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

Commentary 2
DP Introduction, List Comprehensions

2 DP Introduction, List Comprehensions

▶ Overview of Dynamic Programming

▶ Obtain recursive algorithm for problem but implement
bottom up

▶ Introduction to list comprehensions as a concise way of
iterating over lists (or other iterables)

▶ List comprehension exercises with solutions

22/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

Dynamic Programming
Introduction (1)

▶ Dynamic Programming invented by Richard Bellman in
the 1950s

▶ Programming meant planning the sequence of
decisions

▶ Dynamic suggested evolution of the system over time

▶ Attributes: (1) optimal substructure (2) overlapping
subproblems

▶ Divide and conquer has non-overlapping subproblems
— a tree-structure

▶ DP has an acyclic graph structure

23/131

https://en.wikipedia.org/wiki/Dynamic_programming
https://en.wikipedia.org/wiki/Richard_E._Bellman

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

Dynamic Programming
Introduction (2)

▶ Dynamic Programming process:

▶ Obtain a recursive solution

▶ Two ways to avoid subproblems being calculated more
than once:

▶ Memoization uses the top-down recursive structure but
preserves subproblems in a table for subsequent
retrieval

▶ Tabulation works bottom-up which orders the
computations so that simplest results calculated first
and dependent problems follow on in some order

24/131

https://en.wikipedia.org/wiki/Memoization

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions
List Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

List Comprehensions
Python

▶ List Comprehensions provide a concise way of
performing calculations over lists (or other iterables)

▶ Example: Square the even numbers between 0 and 9

Python3>>> [x ** 2 for x in range(10) if x % 2 == 0]
[0, 4, 16, 36, 64]
Python3>>> [(x,y) for x in range(4)
... for y in range(4)
... if x % 2 == 0
... and y % 3 == 0]
[(0, 0), (0, 3), (2, 0), (2, 3)]
Python3>>>

▶ In general

[expr for target1 in iterable1 if cond1
for target2 in iterable2 if cond2 ...
for targetN in iterableN if condN]

▶ Lots example usage in the algorithms below

25/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions
List Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

List Comprehensions
Haskell

▶ List Comprehensions provide a concise way of
performing calculations over lists

▶ Example: Square the even numbers between 0 and 9

GHCi> [x^2 | x <- [0..9], x ‘mod‘ 2 == 0]
[0,4,16,36,64]
GHCi>

▶ In general

[expr | qual1, qual2,..., qualN]

▶ The qualifiers qual can be
▶ Generators pattern <- list
▶ Boolean guards — acting as filters
▶ Local declarations with let decls for use in expr and

later generators and boolean guards

26/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions
List Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

List Comprehension Exercises
Activity 1 (a) Stop Words Filter

▶ Stop words are the most common words that most
search engines avoid: ’a’,’an’,’the’,’that’,...

▶ Using list comprehensions, write a function
filterStopWords that takes a list of words and filters
out the stop words

▶ Here is the initial code

11 sentence \
12 = "the quick brown fox jumps over the lazy dog"

14 words = sentence.split()

16 wordsTest \
17 = (words == [’the’, ’quick’, ’brown’
18 , ’fox’, ’jumps’, ’over’
19 , ’the’, ’lazy’, ’dog’])

21 stopWords \
22 = [’a’,’an’,’the’,’that’]

Go to Answer

27/131

https://en.wikipedia.org/wiki/Stop_words

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions
List Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

List Comprehension Exercises
Activity 1 (a) Stop Words Filter

11 sentence \
12 = "the quick brown fox jumps over the lazy dog"

14 words = sentence.split()

16 wordsTest \
17 = (words == [’the’, ’quick’, ’brown’
18 , ’fox’, ’jumps’, ’over’
19 , ’the’, ’lazy’, ’dog’])

21 stopWords \
22 = [’a’,’an’,’the’,’that’]

▶ Notice the Python Explicit line joining with (\<nl>) and
Python Implicit line joining with ((...))

▶ The backslash (\) must be followed by an end of line
character (<nl>)

▶ The (’ ’) symbol represents a space (see Unicode
U+2423 Open Box)

Go to Answer

28/131

https://docs.python.org/3/reference/lexical_analysis.html#explicit-line-joining
https://docs.python.org/3/reference/lexical_analysis.html#implicit-line-joining
https://en.wikipedia.org/wiki/Backslash
https://en.wikipedia.org/wiki/Newline
https://en.wikipedia.org/wiki/Newline

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions
List Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

List Comprehension Exercises
Activity 1 (b) Transpose Matrix

▶ A matrix can be represented as a list of rows of
numbers

▶ We transpose a matrix by swapping columns and rows

▶ Here is an example

38 matrixA \
39 = [[1, 2, 3, 4]
40 ,[5, 6, 7 ,8]
41 ,[9, 10, 11, 12]]

43 matATr \
44 = [[1, 5, 9]
45 ,[2, 6, 10]
46 ,[3, 7, 11]
47 ,[4, 8, 12]]

▶ Using list comprehensions, write a function transMat,
to transpose a matrix

Go to Answer

29/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions
List Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

List Comprehension Exercises
Activity 1 (c) List Pairs in Fair Order

▶ Write a function which takes a pair of positive integers
and outputs a list of all possible pairs in those ranges

▶ If we do this in the simplest way we get a bias to one
argument

▶ Here is an example of a bias to the second argument

68 yBiasLstTest \
69 = (yBiasListing(5,5)
70 == [(0, 0), (0, 1), (0, 2), (0, 3), (0, 4)
71 , (1, 0), (1, 1), (1, 2), (1, 3), (1, 4)
72 , (2, 0), (2, 1), (2, 2), (2, 3), (2, 4)
73 , (3, 0), (3, 1), (3, 2), (3, 3), (3, 4)
74 , (4, 0), (4, 1), (4, 2), (4, 3), (4, 4)])

Go to Answer

30/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions
List Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

List Comprehension Exercises
Activity 1 (c) List Pairs in Fair Order

▶ Rewrite the function which takes a pair of positive
integers and outputs a list of all possible pairs in those
ranges

▶ The output should treat each argument fairly — any
initial prefix should have roughly the same number of
instances of each argument

▶ Here is an example output

81 fairLstTest \
82 = (fairListing(5,5)
83 == [(0, 0)
84 , (0, 1), (1, 0)
85 , (0, 2), (1, 1), (2, 0)
86 , (0, 3), (1, 2), (2, 1), (3, 0)
87 , (0, 4), (1, 3), (2, 2), (3, 1), (4, 0)])

Go to Answer

31/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions
List Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

List Comprehension Exercises
Activity 1 (c) List Pairs in Fair Order

▶ Rewrite the function which takes a pair of positive
integers and outputs a list of lists of all possible pairs in
those ranges

▶ The output should treat each argument fairly — any
initial prefix should have roughly the same number of
instances of each argument — further, the output
should be segment by each initial prefix (see example
below)

▶ Here is an example output

94 fairLstATest \
95 = (fairListingA(5,5)
96 == [[(0, 0)]
97 , [(0, 1), (1, 0)]
98 , [(0, 2), (1, 1), (2, 0)]
99 , [(0, 3), (1, 2), (2, 1), (3, 0)]

100 , [(0, 4), (1, 3), (2, 2), (3, 1), (4, 0)]])

Go to Answer

32/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions
List Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

List Comprehension Exercises
Answer 1 (a) Stop Words Filter

▶ Answer 1 (a) Stop Words Filter

▶ Write here:
▶ Answer 1 continued on next slide

Go to Activity

33/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions
List Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

List Comprehension Exercises
Answer 1 (a) Stop Words Filter

▶ Answer 1 (a) Stop Words Filter

24 def filterStopWords(words) :
25 nonStopWords \
26 = [word for word in words
27 if word not in stopWords]
28 return nonStopWords

31 filterStopWordsTest \
32 = filterStopWords(words) \
33 == [’quick’, ’brown’, ’fox’
34 , ’jumps’, ’over’, ’lazy’, ’dog’]

Go to Activity

34/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions
List Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

List Comprehension Exercises
Answer 1 (b) Transpose Matrix

▶ Answer 1 (b) Transpose Matrix

▶ Write here:
▶ Answer 1 continued on next slide

Go to Activity

35/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions
List Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

List Comprehension Exercises
Answer 1 (b) Transpose Matrix

▶ Answer 1 (b) Transpose Matrix

49 def transMat(mat) :
50 rowLen = len(mat[0])
51 matTr \
52 = [[row[i] for row in mat] for i in range(rowLen)]
53 return matTr

55 transMatTestA \
56 = (transMat(matrixA)
57 == matATr)

▶ Note that a list comprehension is a valid expression as
a target expression in a list comprehension

▶ The code assumes every row is of the same length

▶ Answer 1 continued on next slide

Go to Activity

36/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions
List Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

List Comprehension Exercises
Answer 1 (b) Transpose Matrix

▶ Note the differences in the list comprehensions below

38 matrixA \
39 = [[1, 2, 3, 4]
40 ,[5, 6, 7 ,8]
41 ,[9, 10, 11, 12]]

Python3>>> [[row[i] for row in matrixA]
... for i in range(4)]
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]
Python3>>> [row[i] for row in matrixA
... for i in range(4)]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
Python3>>> [row[i] for i in range(4)
... for row in matrixA]
[1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8, 12]
Python3>>> [[row[i] for i in range(4)]
... for row in matrixA]
[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]

Go to Activity

37/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions
List Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

List Comprehension Exercises
Answer 1 (b) Transpose Matrix

▶ Answer 1 (b) Transpose Matrix

▶ The Python NumPy package provides functions for
N-dimensional array objects

▶ For transpose see numpy.ndarray.transpose

Python3>>> import numpy as np
Python3>>> ar = np.array([[1,2],[3,4]])
Python3>>> ar
array([[1, 2],

[3, 4]])
Python3>>> arT = ar.transpose()
Python3>>> arT
array([[1, 3],

[2, 4]])
Python3>>> ar
array([[1, 2],

[3, 4]])
Python3>>> ar.shape
(2, 2)

Go to Activity

38/131

https://www.numpy.org/
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.transpose.html

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions
List Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

List Comprehension Exercises
Answer 1 (c) List Pairs in Fair Order

▶ Answer 1 (c) List Pairs in Fair Order — first version

▶ Write here

69 yBiasLstTest \
70 = (yBiasListing(5,5)
71 == [(0, 0), (0, 1), (0, 2), (0, 3), (0, 4)
72 , (1, 0), (1, 1), (1, 2), (1, 3), (1, 4)
73 , (2, 0), (2, 1), (2, 2), (2, 3), (2, 4)
74 , (3, 0), (3, 1), (3, 2), (3, 3), (3, 4)
75 , (4, 0), (4, 1), (4, 2), (4, 3), (4, 4)])

Go to Activity

39/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions
List Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

List Comprehension Exercises
Answer 1 (c) List Pairs in Fair Order

▶ Answer 1 (c) List Pairs in Fair Order

▶ This is the obvious but biased version

63 def yBiasListing(xRng,yRng) :
64 yBiasLst \
65 = [(x,y) for x in range(xRng)
66 for y in range(yRng)]
67 return yBiasLst

69 yBiasLstTest \
70 = (yBiasListing(5,5)
71 == [(0, 0), (0, 1), (0, 2), (0, 3), (0, 4)
72 , (1, 0), (1, 1), (1, 2), (1, 3), (1, 4)
73 , (2, 0), (2, 1), (2, 2), (2, 3), (2, 4)
74 , (3, 0), (3, 1), (3, 2), (3, 3), (3, 4)
75 , (4, 0), (4, 1), (4, 2), (4, 3), (4, 4)])

Go to Activity

40/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions
List Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

List Comprehension Exercises
Answer 1 (c) List Pairs in Fair Order

▶ Answer 1 (c) List Pairs in Fair Order — second version

▶ Write here

83 fairLstTest \
84 = (fairListing(5,5)
85 == [(0, 0)
86 , (0, 1), (1, 0)
87 , (0, 2), (1, 1), (2, 0)
88 , (0, 3), (1, 2), (2, 1), (3, 0)
89 , (0, 4), (1, 3), (2, 2), (3, 1), (4, 0)])

Go to Activity

41/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions
List Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

List Comprehension Exercises
Answer 1 (c) List Pairs in Fair Order

▶ Answer 1 (c) List Pairs in Fair Order — second version

▶ This works by making the sum of the coordinates the
same for each prefix

77 def fairListing(xRng,yRng) :
78 fairLst \
79 = [(x,d-x) for d in range(yRng)
80 for x in range(d+1)]
81 return fairLst

83 fairLstTest \
84 = (fairListing(5,5)
85 == [(0, 0)
86 , (0, 1), (1, 0)
87 , (0, 2), (1, 1), (2, 0)
88 , (0, 3), (1, 2), (2, 1), (3, 0)
89 , (0, 4), (1, 3), (2, 2), (3, 1), (4, 0)]

Go to Activity

42/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions
List Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

List Comprehension Exercises
Answer 1 (c) List Pairs in Fair Order

▶ Answer 1 (c) List Pairs in Fair Order — third version

▶ Write here

97 fairLstATest \
98 = (fairListingA(5,5)
99 == [[(0, 0)]

100 , [(0, 1), (1, 0)]
101 , [(0, 2), (1, 1), (2, 0)]
102 , [(0, 3), (1, 2), (2, 1), (3, 0)]
103 , [(0, 4), (1, 3), (2, 2), (3, 1), (4, 0)]])

Go to Activity

43/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions
List Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

List Comprehension Exercises
Answer 1 (c) List Pairs in Fair Order

▶ Answer 1 (c) List Pairs in Fair Order — third version

▶ The inner loop is placed into its own list comprehension

91 def fairListingA(xRng,yRng) :
92 fairLstA \
93 = [[(x,d-x) for x in range(d+1)]
94 for d in range(yRng)]
95 return fairLstA

97 fairLstATest \
98 = (fairListingA(5,5)
99 == [[(0, 0)]

100 , [(0, 1), (1, 0)]
101 , [(0, 2), (1, 1), (2, 0)]
102 , [(0, 3), (1, 2), (2, 1), (3, 0)]
103 , [(0, 4), (1, 3), (2, 2), (3, 1), (4, 0)]])

Go to Activity

44/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions
List Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

Algorithm Descriptions & Implementations
Python & Haskell Tutorials

▶ Python tutorials:
▶ Beginner’s Python Tutorial
▶ Python Programming
▶ Non-Programmer’s Tutorial for Python 3
▶ Non-Programmer’s Tutorial for Python 2.6

▶ Haskell Tutorials:
▶ Haskell Wikibook
▶ What I Wish I Knew When Learning Haskell
▶ Haskell Meta-tutorial
▶ Learn You a Haskell for Great Good
▶ Real World Haskell

45/131

https://en.wikibooks.org/wiki/A_Beginner%27s_Python_Tutorial
https://en.wikibooks.org/wiki/Python_Programming
https://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_3
https://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_2.6
https://en.wikibooks.org/wiki/Haskell
http://dev.stephendiehl.com/hask/
https://wiki.haskell.org/Meta-tutorial
http://learnyouahaskell.com
http://book.realworldhaskell.org

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

Commentary 3
DP, Fibonacci Sequence, Edit Distance example

3 DP Introduction, List Comprehensions

▶ Fibonacci sequence

▶ Recursive definition and simple recursive program

▶ Recursive but more efficient program

▶ Original implementation in Haskell (optional)

▶ Implementation in Python

▶ Edit Distance examples

▶ Edit Distance diagram construction — generating the LATEX
for the diagrams (optional)

46/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

Fibonacci Closed Form

Fibonacci Alternative
Calculation

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Dynamic Programming
Fibonacci Sequence

▶ The Fibonacci Numbers or Sequence invented by
Leonardo Fibonacci Pisano, who also popularized the
Hindu-Arabic numeral system via his 1202 book Liber
Abaci (Book of Calculations)

▶ Defined by the recurrence relation

▶ Fn = Fn–1 + Fn–2

▶ F0 = 0, F1 = 1 (or originally, F1 = 1, F2 = 1)

▶ The Fibonacci numbers have lots of interesting
properties

▶ In programming, often used to illustrate ideas about
recurrence relations and recursion

47/131

https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Fibonacci
http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fib.html
http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fib.html

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

Fibonacci Closed Form

Fibonacci Alternative
Calculation

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Fibonacci Sequence
Python Recursive (1)

▶ Recursive definitions are recursive algorithms

1def fibs1(n):
2 return fibs1indent(n,0)

4def fibs1indent(n,indent):
5 indentStr = ’ ’*indent
6 print(indentStr + ’fibs(’ + str(n) + ’)’)

8 if n == 0 :
9 return 0

10 elif n == 1 :
11 return 1
12 else:
13 return (fibs1indent(n - 2, indent + 2)
14 + fibs1indent(n - 1, indent + 2))

48/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

Fibonacci Closed Form

Fibonacci Alternative
Calculation

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Fibonacci Sequence
Python Recursive (2)

1Python3>>> fibs1(5)
2fibs(5)
3 fibs(3)
4 fibs(1)
5 fibs(2)
6 fibs(0)
7 fibs(1)
8 fibs(4)
9 fibs(2)

10 fibs(0)
11 fibs(1)
12 fibs(3)
13 fibs(1)
14 fibs(2)
15 fibs(0)
16 fibs(1)
175
18Python3>>>

▶ This take 15 calls to fibs1(), 5 calls to fibs(1), 3
calls to fibs(0)

49/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

Fibonacci Closed Form

Fibonacci Alternative
Calculation

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Fibonacci Sequence
Python Recursive (2)

▶ Recursion but remembering enough to avoid most

1def fibs2(n):
2 return fibs2indent(n,0)

4def fibs2indent(n,indent,first=0,second=1):
5 indentStr = ’ ’*indent
6 print(indentStr + ’fibs(’ + str(n) + ’)’)

8 if n == 0 :
9 return [first]

10 else:
11 return ([first]
12 + fibs2indent(n - 1, indent + 2
13 , second, first + second))

50/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

Fibonacci Closed Form

Fibonacci Alternative
Calculation

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Fibonacci Sequence
Python Recursive (2)

1Python3>>> fibs2(5)
2fibs(5)
3 fibs(4)
4 fibs(3)
5 fibs(2)
6 fibs(1)
7 fibs(0)
8[0, 1, 1, 2, 3, 5]
9Python3>>>

▶ This takes 6 calls to fibs2()

▶ fibs2() T(n) = T(n – 1) + 1 = n + 1

▶ fibs1() T(n) = T(n – 1) + T(n – 2) + 1 = 2Fn+1 – 1

▶ fibs1(1) gets called Fn times

▶ fibs1(0) gets called Fn–1 times

▶ So the recursion tree has Fn + Fn–1 = Fn+1 leaves

▶ Since the tree is full it must have 2Fn+1 – 1 nodes

▶ (it is the sum of a geometric series)

51/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

Fibonacci Closed Form

Fibonacci Alternative
Calculation

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Fibonacci Sequence
Closed-form Solution

▶ Fn =
φn – (1 –φ)n√

5
▶ Euler-Binet Formula

▶ A formula for Fib(n)

▶ φ is the Golden mean

▶ φ =
1

φ – 1
=

1 +
√

5
2

▶ Also known as the Golden ratio

▶ φ def
=

a
b

=
a + b

a

52/131

https://proofwiki.org/wiki/Euler-Binet_Formula
http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibFormula.html
https://proofwiki.org/wiki/Definition:Golden_Mean
https://en.wikipedia.org/wiki/Golden_ratio

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

Fibonacci Closed Form

Fibonacci Alternative
Calculation

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Fibonacci Sequence
Proofs of Euler-Binet Formula (1)

▶ ProofWiki: Euler-Binet Formula gives 4 proofs:

(1) Proof by induction — straightforward but doesn’t really
tell you how to get the formula in the first place

(2) Proof by matrix algebra — find the eigenvalues and
eigenvectors of a matrix that generates the Fibnacci
sequence

(3) Proof from the ProofWiki: Binet Form

Un = mUn–1 + Un–2 where U0 = 0 and U1 = 1

(4) Proof from the ProofWiki: Generating Function for
Fibonacci Numbers

G(z) =
z

1 – z – z2

53/131

https://proofwiki.org/wiki/Euler-Binet_Formula
https://proofwiki.org/wiki/Binet_Form
https://proofwiki.org/wiki/Generating_Function_for_Fibonacci_Numbers
https://proofwiki.org/wiki/Generating_Function_for_Fibonacci_Numbers

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

Fibonacci Closed Form

Fibonacci Alternative
Calculation

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Fibonacci Sequence
Matrix Algebra Proof of Euler-Binet Formula (2)

▶ Let A =

(
1 1
1 0

)

▶ Then An =

(
Fn+1 Fn
Fn Fn–1

)
▶ Proof by induction

▶ A1 =

(
1 1
1 0

)
=

(
F2 F1
F1 F0

)

▶ Assume Ak =

(
Fk+1 Fk
Fk Fk–1

)

▶ Then A× Ak =

(
1 1
1 0

)(
Fk+1 Fk
Fk Fk–1

)

=

(
Fk+1 + Fk Fk + Fk–1

Fk+1 Fk

)
=

(
Fk+2 Fk+1
Fk+1 Fk

)

54/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

Fibonacci Closed Form

Fibonacci Alternative
Calculation

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Fibonacci Sequence
Matrix Algebra Proof of Euler-Binet Formula (3)

▶ Demonstrate the eigenvalues of A are φ and φ̂ = 1 –φ
▶ Solve det(λI – A) = 0

▶ det

(
λ
(

1 0
0 1

)
–

(
1 1
1 0

))
= 0

▶ det

(
λ – 1 –1
–1 λ

)
= 0

▶ λ2 – λ – 1 = 0

▶ ax2 + bx + c = 0 has roots = –b±
√

b2–4ac
2a

▶ Hence φ = 1+
√

5
2 and φ̂ = 1 –φ = 1–

√
5

2

▶ and A

(
φ
1

)
=

(
φ + 1
φ

)
= φ

(
φ
1

)
as φ2 –φ – 1 = 0

▶ and A

(
φ̂
1

)
=

(
φ̂ + 1
φ̂

)
= φ̂

(
φ̂
1

)
as φ̂2 – φ̂ – 1 = 0

55/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

Fibonacci Closed Form

Fibonacci Alternative
Calculation

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Fibonacci Sequence
Matrix Algebra Proof of Euler-Binet Formula (4)

▶ Hence

(
φ
1

)
is an eigenvector of A with eigenvalue φ

▶ and

(
φ̂
1

)
is an eigenvector of A with eigenvalue φ̂

▶ We have to have det(λI – A) = 0 nonninvertible, singular

▶ Proof: assume X ≠ 0, AX = λX and (λI – A) is invertible

▶ Then X = IX =
(
(λI – A)–1(λI – A)

)
X

= (λI – A)–1 ((λI – A)X)

= (λI – A)–10

= 0 contradiction

56/131

https://proofwiki.org/wiki/Definition:Eigenvector
https://proofwiki.org/wiki/Definition:Eigenvalue
https://proofwiki.org/wiki/Definition:Eigenvector
https://proofwiki.org/wiki/Definition:Eigenvalue
https://en.wikipedia.org/wiki/Invertible_matrix

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

Fibonacci Closed Form

Fibonacci Alternative
Calculation

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Fibonacci Sequence
Matrix Algebra Proof of Euler-Binet Formula (5)

▶ Hence An

 φ√
5

1√
5

 = φn

 φ√
5

1√
5


▶ and An

 φ̂√
5

1√
5

 = φ̂n

 φ̂√
5

1√
5


▶ Also An

(
1
0

)
=

(
Fn+1 Fn
Fn Fn–1

)(
1
0

)
=

(
Fn+1
Fn

)

▶ Also

(
1
0

)
=

 φ√
5

1√
5

 –

 φ̂√
5

1√
5


▶ Hence

(
Fn+1
Fn

)
= An

 φ√
5

1√
5

 –

 φ̂√
5

1√
5


= φn

 φ√
5

1√
5

 – φ̂n

 φ̂√
5

1√
5


57/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

Fibonacci Closed Form

Fibonacci Alternative
Calculation

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Fibonacci Sequence
Matrix Algebra Proof of Euler-Binet Formula (5)

▶ Hence An

 φ√
5

1√
5

 = φn

 φ√
5

1√
5


▶ and An

 φ̂√
5

1√
5

 = φ̂n

 φ̂√
5

1√
5


▶ Also An

(
1
0

)
=

(
Fn+1 Fn
Fn Fn–1

)(
1
0

)
=

(
Fn+1
Fn

)

▶ Also

(
1
0

)
=

 φ√
5

1√
5

 –

 φ̂√
5

1√
5



58/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

Fibonacci Closed Form

Fibonacci Alternative
Calculation

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Fibonacci Sequence
Matrix Algebra Proof of Euler-Binet Formula (6)

▶ Hence

(
Fn+1
Fn

)
= An

 φ√
5

1√
5

 –

 φ̂√
5

1√
5


= φn

 φ√
5

1√
5

 – φ̂n

 φ̂√
5

1√
5


= 1√

5

(
φn ·φ – φ̂n · φ̂

φn – φ̂n

)

= 1√
5

(
φn+1 – φ̂n+1

φn – φ̂n

)
▶ Hence Fn = 1√

5

(
φn – φ̂n

)

59/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

Fibonacci Closed Form

Fibonacci Alternative
Calculation

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Fibonacci Sequence
Calculation (1)

▶ From How to Compute Fibonacci Numbers? and
Fibonacci Formulae

fib (n + k) = fib (n-1) * fib k + fib n * fib (k+1)

▶ Proof by induction

fib (n + 2 + k)
= fib (n+k) + fib (n+k+1) -- by fib
= fib (n-1) * fib k + fib n * fib (k+1)
+ fib n * fib k + fib (n+1) * fib (k+1) -- by hyp

= fib (n+1) * fib k + fib (n+2) * fib (k+1) -- by fib

60/131

https://scm.iis.sinica.edu.tw/home/2019/how-to-compute-fibonacci-numbers/
http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibFormulae.html

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

Fibonacci Closed Form

Fibonacci Alternative
Calculation

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Fibonacci Sequence
Calculation (2)

▶ We now derive a method to compute fib in O(log n)

fib (2n+1) = (fib n)^2 + (fib (n+1))^2 -- (1)
fib (2n+2) = fib n * fib (n+1) + fib (n+1) * fib (n+2)
= fib n * fib (n+1) + fib (n+1) * (fib n + fib (n+1))
= 2 * fib n * fib (n+1) + (fib (n+1))^2 -- (2)

fib 2n = 2 * fib n * fib (n+1) - (fib n)^2 -- (3)
-- (3) = (2) - (1)

fib2v :: Int -> (Int,Int)
fib2v 0 = (0,1)
fib2v n
| n ‘mod‘ 2 == 0 = (c,d)
| otherwise = (d,c+d)
where
(a,b) = fib2v (n ‘div‘ 2)
c = 2 * a * b - a * a
d = a * a + b * b

61/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Dynamic Programming
DP Formulation

▶ Write a recursive algorithm for the problem
▶ Build solutions to the recurrence from the bottom up

▶ Identify subproblems
▶ Choose a data structure to memoize intermediate results
▶ Identify dependencies between subproblems
▶ Find an evaluation order so that each subproblem comes

after the subproblems it depends on.
▶ Implement the algorithm for the evaluation order

62/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Definitions

▶ Edit Distance or Levenshtein Distance is the minimum
number of letter insertions, deletions and substitutions
required to transform one word into another.

▶ Example FOOD → MOOD → MOND → MONED → MONEY

▶ A better way of displaying the transformation is in the
next diagram

F O O D

M O N E Y

▶ Exercise find two more 4 step transformations. Are
there more ?

63/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Example 1

▶ Two further transformations of 4 step transformations
of FOOD into MONEY are

F O O D

M O N E Y

F O O D

M O N E Y

▶ How do we find such transformations in general ?

64/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Recursive Algorithm

▶ Notation

▶ s and t are names for the start and target strings

▶ Let s(i), t(j) denote the prefixes of s and t of lengths i
and j

▶ Let s[i], t[j] denote the letters at index i and j of s and t
— remember that Python and Haskell index from 0 not
1

▶ Let e(i, j) denote the edit distance between prefixes s(i)
and t(j)

▶ We now describe recursively how to transform s(i) to t(j)

65/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Table Dependencies

e(i – 1, j – 1) e(i, j – 1)

e(i – 1, j) e(i, j)

Match

Replace

In
sert

Delete

▶ Deletion — transform s(i – 1) to t(j) and delete the last
character of s(i) which is s[i – 1]

▶ Insertion — transform s(i) to t(j – 1) and insert the next
character required for t(j) which is t[j – 1]

▶ Match/Replace — transform s(i – 1) to t(j – 1) and match
or replace the last character of s(i) with the last
character of t(j) that is, s[i – 1] with t[j – 1]

▶ The edit distance will be the minimum of the three
possibilities

▶ This also determines the predecessor nodes (1 to 3)

66/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Base Cases & Table Display

▶ The shortest way to convert s(i) to an empty string ϵ is
by i deletions

▶ The shortest way to convert an empty string ϵ to t(j) is
by j insertions

▶ Table Display — note that in the Haskell (but not the
Python), the edit distance table is calculated with (i, j)
indexing rows and columns but table is displayed with
(j, i) indexing rows and columns

▶ That means that in the table, the row characters are the
source and the column characters are the target, while
in the display the column characters are the source.

▶ This seems to be the convention is most texts but may lead to some tricky
thinking when formatting the diagrams

▶ Note The next version will change this design decision.

67/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Recursive Definition

e(i, j) =



i if j = 0
j if i = 0

min


e(i – 1, j) + 1
e(i, j – 1) + 1
e(i – 1, j – 1) +

if s[i – 1] ≠ t[j – 1] then 1 else 0

otherwise

▶ For simplicity we have assumed the cost of deletion,
insertion, or replacement is 1 and the cost of a match is
0 (made more general in the implementation below)

▶ the running time of the algorithm is exponential in the
length of s and t — but we do not care since are going
to implement it bottom up.

▶ The implementation below also provides the graph of
the transformations by calculating the predecessors to
each node in the table.

68/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Memoization Table for editDistance "FOOD" "MONEY"

edDistTblFoodMoney

ϵ F O O D

ϵ 0 1 2 3 4

M 1 1 2 3 4

O 2 2 1 2 3

N 3 3 2 2 3

E 4 4 3 3 3

Y 5 5 4 4 4

69/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Dynamic Programming Implementation

▶ If we calculate the edit distance table in the standard
row-major order — row by row, each row from left to
right

▶ then when we reach an entry, the entries it depends on
are already available

▶ We develop the algorithm below in both Haskell and
Python

▶ We have used list comprehensions in both for iterations
— so they should look fairly similar

▶ Note both implementations could be optimised further

▶ Health Warning you are not expected to write the code
for this problem — see the comments on
Python_activity_5.11.py — this is more of a
reading/comprehension exercise

70/131

Python_activity_5.11.py

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Haskell Implementation
Haskell

1module M269TutorialDynamicProgCmntry2023 where
2 import Data.List
3 import Data.Maybe

1. A Haskell script starts with a module header which
starts with the reserved identifier, module followed by
the module name,
M269TutorialDynamicProgCmntry2023

2. The module name must start with an upper case letter
and is the same as the file name (without its extension
of .lhs)

3. Haskell uses layout (or the off-side rule) to determine
scope of definitions, similar to Python

4. The body of the module follows the reserved identifier
where and starts with two import declarations

5. These import the built-in libraries Data.List and
Data.Maybe

6. We use the sort function from Data.List.
7. The Maybe datatype from Data.Maybe will be used at

the end of this script to implement the graphs with
data.

71/131

https://en.wikipedia.org/wiki/Off-side_rule

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Haskell Implementation (1)

5 type Dist = Int
6 type Pred = (Int,Int)
7 type EditDistCell = (Dist, [Pred])
8 type EditDistTable = [[EditDistCell]]

▶ The reserved identifier type introduces type synonym
declarations to improve readability

▶ The finite-precision integer type Int covers the range
[–263 = –9223372036854775808, 263 – 1 =
9223372036854775807] (machine dependent)

▶ (t1,t2) is the type of a pair of t1 and t2

▶ [t3] is the type of a list of elements all of type t3

▶ [[t3]] type of a list of lists of elements of type t3

72/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Haskell Implementation — Service Functions (1)

10 edCellDist :: EditDistCell -> Dist
11 edCellDist (x, ps) = x

13 edCellPreds :: EditDistCell -> [Pred]
14 edCellPreds (x, ps) = ps

▶ edCellDist and edCellPreds take apart an
EditDistCell

f :: t1 -> t2

▶ The above is a type signature for the variable f

▶ This specifies f has a function type which takes an
element of type t1 and returns an element of type t2

▶ The definition of f may be given without a type
signature, in which case the system will infer the most
general type

▶ Note that every function takes exactly one input and
returns one output

73/131

https://www.haskell.org/onlinereport/haskell2010/haskellch4.html#x10-800004.4

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Haskell Implementation — Service Functions (2)

16 getEdCell :: EditDistTable -> (Int,Int) -> EditDistCell
17 getEdCell edTbl (i,j) = edTbl!!i!!j

19 getEdDist :: EditDistTable -> (Int,Int) -> Dist
20 getEdDist edTbl (i,j)
21 = edCellDist (getEdCell edTbl (i,j))

23 getEdPreds :: EditDistTable -> (Int,Int) -> [Pred]
24 getEdPreds edTbl (i,j)
25 = edCellPreds (getEdCell edTbl (i,j))

74/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Haskel points

▶ Function application is denoted by juxtaposition, is left
associative and is more tightly binding than (almost)
anything else
▶ write f x and not f (x)
▶ say f x as f applied to x
▶ f x y means (f x) y

This notational convention has huge advantages —
discuss and also see Currying and Functional
Programming in 5 Minutes

▶ To be consistent, the function type arrow (->) is right
associative
▶ f :: a -> b -> c means f :: a -> (b -> c)

▶ Lists are denoted [1,2,3], the empty list []

▶ (:) prefixes an element to a list, 1:[2,3] == [1,2,3]

▶ Parentheses over-ride precedence
▶ (!!) is the list indexing operator, 0-origin

▶ [1,2,3]!!1 == 2

75/131

https://en.wikipedia.org/wiki/Currying
https://slides.com/gsklee/functional-programming-in-5-minutes
https://slides.com/gsklee/functional-programming-in-5-minutes

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Haskell Implementation — Costs

27 -- Cost of deletion, insertion, substitution
28 delC, insC, subC :: Dist
29 delC = 1
30 insC = 1
31 subC = 1

▶ The cost of deletion, insertion and replacement are
defined here

▶ The cost of a match is assumed to be 0

76/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Haskell Implementation — Algorithm

33 editDistTblDP :: String -> String -> EditDistTable
34 editDistTblDP s t
35 = edTbl
36 where
37 edTbl = [[edTblCell (i,j) | j <- [0..length t]]
38 | i <- [0..length s]]
39 edTblCell (0,0) = (0,[])
40 edTblCell (i,0) = (i * delC, [(i-1,0)])
41 edTblCell (0,j) = (j * insC, [(0,j-1)])
42 edTblCell (i,j)
43 = (minD, preds)
44 where
45 possPreds = [(delD, (i-1,j))
46 ,(insD, (i,j-1))
47 ,(subD, (i-1,j-1))
48]
49 delD = getEdDist edTbl (i-1,j) + delC
50 insD = getEdDist edTbl (i,j-1) + insC
51 subD = getEdDist edTbl (i-1,j-1)
52 + (if s!!(i-1) == t!!(j-1) then 0 else subC)
53 minD = minimum [delD, insD, subD]
54 preds = [(i,j) | (x,(i,j)) <- possPreds, x == minD]

77/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Haskell Implementation — Examples

56 edTblTF = editDistTblDP "TREES" "FOREST"
57 edTblTrTF
58 = transpose (editDistTblDP "TREES" "FOREST")

60 edTblAA = editDistTblDP "ALGORITHM" "ALTRUISTIC"
61 edTblTrAA
62 = transpose (editDistTblDP "ALGORITHM" "ALTRUISTIC")

64 edTblFM = editDistTblDP "FOOD" "MONEY"
65 edTblTrFM
66 = transpose (editDistTblDP "FOOD" "MONEY")

▶ We use transpose since the edit distance table is
displayed with the characters of the start string in
columns and the target string in the rows with i
indexing the columns and j the rows

▶ This may lead to some tricky thinking when formatting
the diagram but it seems to be the convention.

78/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Haskell Implementation (2a)

67 editDistTblDP01 :: String -> String -> EditDistTable
68 editDistTblDP01 s t
69 = edTbl
70 where
71 edTbl = [[setEdTblCell (edTbl,s,t) (i,j)
72 | j <- [0..length t]]
73 | i <- [0..length s]]

▶ Defining a subsidiary function setEdTblCell avoids
having nested where clauses

▶ setEdTblCell takes the edit distance table edTbl, the
start and target strings, and a pair of table indices and
returns the table cell.

▶ The list comprehension definition here is recursive and
works because the entries are calculated in row-major
order.

79/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Haskell Implementation (2b)

75 setEdTblCell :: (EditDistTable, String, String)
76 -> (Int, Int) -> EditDistCell
77 setEdTblCell (edTbl,s,t) (0,0) = (0,[])
78 setEdTblCell (edTbl,s,t) (i,0) = (i * delC, [(i-1,0)])
79 setEdTblCell (edTbl,s,t) (0,j) = (j * insC, [(0,j-1)])
80 setEdTblCell (edTbl,s,t) (i,j)
81 = (minD, preds)
82 where
83 possPreds = [(delD, (i-1,j))
84 ,(insD, (i,j-1))
85 ,(subD, (i-1,j-1))
86]
87 delD = getEdDist edTbl (i-1,j) + delC
88 insD = getEdDist edTbl (i,j-1) + insC
89 subD = getEdDist edTbl (i-1,j-1)
90 + (if s!!(i-1) == t!!(j-1) then 0 else subC)
91 minD = minimum [delD, insD, subD]
92 preds = [(i,j) | (x,(i,j)) <- possPreds, x == minD]

80/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Haskell Implementation (2c)

94 edTblTF01 = editDistTblDP01 "TREES" "FOREST"
95 edTblTrTF01
96 = transpose (editDistTblDP01 "TREES" "FOREST")

98 edTblAA01 = editDistTblDP "ALGORITHM" "ALTRUISTIC"
99 edTblTrAA01

100 = transpose (editDistTblDP01 "ALGORITHM" "ALTRUISTIC")

102 edTblFM01 = editDistTblDP "FOOD" "MONEY"
103 edTblTrFM01
104 = transpose (editDistTblDP01 "FOOD" "MONEY")

▶ transpose is used to switch the rows and columns for
display

▶ This may lead to some tricky thinking about formatting
the diagram

81/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Python Implementation (1)

▶ The Python file Python_activity_5.11.py for Python
activity 5.11 contains the code for the Dynamic
Programming solution for the Levenshtein Edit Distance
problem.

▶ It uses a double for loop to do the equivalent
calculations of the edit distance table

▶ TODO rewrite using Python list comprehensions and
compare with the Haskell version

▶ Note that the bulk of the code in 5.11 is to format the
output and display one path.

▶ The Haskell to generate the edit table diagrams in these
notes is available but not given here since it generates
LaTeX TikZ/PGF which is not part of this course.

82/131

Python_activity_5.11.py

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Python Implementation (2)

▶ The Python code below is based on the Haskell code
(elsewhere in this document)

▶ Health Warning the code here should be regarded as
near pseudo-code since a few of the Haskell features do
not translate directly

▶ In particular, the Haskell code depended to some extent
on the default lazy evaluation strategy which is a
particular way of implementing non-strict evaluation

▶ Strict evaluation evaluates arguments of functions
(except in special cases or by special constructs)

▶ Non-strict evaluation evaluates argument to functions at
most once and if possible not at all — it evaluates on
need

▶ Python does struct evaluation unless you use yield or
other generators

▶ Haskell is non-strict unless you use strictness
annotations

▶ This means the Python code below may need modifying
83/131

https://en.wikipedia.org/wiki/Evaluation_strategy

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Python Implementation (3)

▶ Service functions

▶ Edit Distance Table is an array of cells

▶ Edit Distance cell is a pair of distance and a list of
predecessors

21 def edCellDist(cell) :
22 return cell[0]

24 def edCellPreds(cell) :
25 return cell[1]

84/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Python Implementation (4)

▶ functions to get specific cells

▶ edTbl is a list of list of cells

30 def getEdCell(edTbl, i, j) :
31 return edTbl[i][j]

33 def getEdDist(edTbl, i, j) :
34 return edCellDist(edTbl, i, j)

36 def getEdPreds(edTbl, i, j) :
37 return edCellPreds(edTbl, i, j)

85/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Python Implementation (5)

▶ Cost of deletion, insertion, substitution

41 delC = 1
42 insC = 1
43 subC = 1

86/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Python Implementation (6)

▶ Calculating the Edit Distance Table

▶ Calculate the entry in each cell

▶ setEdTblCell takes the from string, s, the to string, t,
the cell indices,i, j, and returns a cell

52 def setEdTblCell(edTbl, s, t, i, j) :
53 if i == 0 and j == 0 :
54 return (0,[])
55 elif j == 0 :
56 return (i * delC, [(i-1,0)])
57 elif i == 0 :
58 return (j * insC, [(0,j-1)])
59 else :
60 possPreds = [(delD, (i-1,j))
61 ,(insD, (i,j-1))
62 ,(subD, (i-1,j-1))
63]
64 delD = getEdDist(edTbl, i-1,j) + delC
65 insD = getEdDist(edTbl, i, j-1) + insC
66 subD = (getEdDist(edTbl, i-1,j-1)
67 + (0 if s[i-1] == t[j-1] else subC))
68 minD = min([delD, insD, subD])
69 preds = [(i,j) for (x,(i,j)) in possPreds if x == minD]

87/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Python Implementation (5)

▶ Calculate the Edit Distance Table in row-major order

73def editDistTblDP (s, t) :
74 edTbl = [[setEdTblCell (edTbl, s, t, i, j)
75 for j from range(len(t) + 1)]
76 for i from range(len(s) + 1)]

78 return edTbl

88/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Examples

▶ For editDistance "ALGORITHM" "ALTRUISTIC"
▶ What is the edit distance ?
▶ How many different routes are there ?
▶ Give two examples laid out as in the editDistance

"FOOD" "MONEY" example

▶ repeat the above with editDistance "TREES"
"FOREST" (harder!)

89/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Memoization Table for editDistance "ALGORITHM" "ALTRUISTIC"

edDistTblAlgorithmAltruistic

ϵ A L G O R I T H M

ϵ 0 1 2 3 4 5 6 7 8 9

A 1 0 1 2 3 4 5 6 7 8

L 2 1 0 1 2 3 4 5 6 7

T 3 2 1 1 2 3 4 4 5 6

R 4 3 2 2 2 2 3 4 5 6

U 5 4 3 3 3 3 3 4 5 6

I 6 5 4 4 4 4 3 4 5 6

S 7 6 5 5 5 5 4 4 5 6

T 8 7 6 6 6 6 5 4 5 6

I 9 8 7 7 7 7 6 5 5 6

C 10 9 8 8 8 8 7 6 6 6

90/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Memoization Table for editDistance "TREES" "FOREST"

edDistTblTreesForest

ϵ T R E E S

ϵ 0 1 2 3 4 5

F 1 1 2 3 4 5

O 2 2 2 3 4 5

R 3 3 2 3 4 5

E 4 4 3 2 3 4

S 5 5 4 3 3 3

T 6 5 5 4 4 4

91/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Transformation Operations for editDistance "TREES" "FOREST"

▶ Alternative ways of representing the collection of
transformation operations were given on slide 63

▶ Here is a representation of the edit distance graph with
match, delete/insert, and replace color arrows

T R E E S

F O R E S T

T R E E S

F O R E S T

T R E E S

F O R E S T

T R E E S

F O R E S T

T R E E S

F O R E S T

T R E E S

F O R E S T

T R E E S

F O R E S T

92/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Sample Transformations for editDistance "TREES" "FOREST"

▶ The transformations can also be represented as a
sequence of operations

▶ Note that the collection of operations could be used in
any order — the end result is the same

TREES

FTREES

FOREES

FORES

FOREST

insert

replace

delete

insert

TREES

TRES

ORES

FORES

FOREST

delete

replace

insert

insert

93/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Diagram Construction

▶ editDistTblDP takes two strings and returns an
EditDistTable

▶ The diagrams illustrate EditDistTable with the cells
laid out in a table with arrows

▶ The diagrams use the markup language LaTeX with the
PGF/TikZ package

▶ Note: the Haskell to LaTeX and TikZ/PGF diagram code
is not part of M269 and is only here for interest

▶ Here are several small examples

94/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Memoization Table for editDistTblDP "ON" "NO"

edDistTblOnNo

ϵ O N

ϵ 0 1 2

N 1 1 1

O 2 1 2

95/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Memoization Table for editDistTblDP "OH" "NO"

edDistTblOhNo

ϵ O H

ϵ 0 1 2

N 1 1 2

O 2 1 2

96/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Memoization Table for editDistTblDP "IN" "OUT"

edDistTblInOut

ϵ I N

ϵ 0 1 2

O 1 1 2

U 2 2 2

T 3 3 3

97/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
LaTeX Code for editDistTblDP "OH" "NO"

▶ The LaTeX code is in a tikzpicture environment

▶ LaTeX TikZ style definitions

▶ Styles for nodes and arrows

▶ Edit path nodes and arrows are red and thick

▶ Free substitutions (matches) have bold nodes and ultra
thick arrows

2 [ePath/.style={red,thick}
3 ,frSub/.style={font=\bfseries}
4 ,efrSb/.style={ePath,frSub}
5 ,orArr/.style={-Latex}
6 ,frArr/.style={orArr,ultra thick}
7 ,eoArr/.style={ePath,orArr}
8 ,efArr/.style={ePath,frArr}
9]

98/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
LaTeX Code for editDistTblDP "OH" "NO"

▶ TikZ Matrix code

▶ The double rows/columns is a hack to ease the frame
placement

▶ See discussion at end
11 % TikZ Matrix code
12 \matrix (edMat) [matrix of nodes
13 ,nodes in empty cells
14 ,ampersand replacement=\&
15 ,nodes={minimum size=\STtextNodeWidth}]
16 {
17 \& \& \& \& \& \& \& \& \\
18 \& \& \& ϵ \& \& O \& \& H \& \\
19 \& \& \& \& \& \& \& \& \\
20 \& ϵ \& \& 0 \& \& 1 \& \& 2 \& \\
21 \& \& \& \& \& \& \& \& \\
22 \& N \& \& 1 \& \& 1 \& \& 2 \& \\
23 \& \& \& \& \& \& \& \& \\
24 \& O \& \& 2 \& \& 1 \& \& 2 \& \\
25 \& \& \& \& \& \& \& \& \\
26 };

99/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
LaTeX Code for editDistTblDP "OH" "NO"

▶ LaTeX TikZ Arrows code

▶ All arrows are given the orArr style

▶ TODO: modify the data structure and code to add the
edit paths and free substitutions

29 % TikZ Arrows code
30 \draw[orArr] (edMat-4-4) -- (edMat-4-6);
31 \draw[orArr] (edMat-4-6) -- (edMat-4-8);

33 \draw[orArr] (edMat-4-4) -- (edMat-6-4);
34 \draw[orArr] (edMat-4-4) -- (edMat-6-6);
35 \draw[orArr] (edMat-6-6) -- (edMat-6-8);
36 \draw[orArr] (edMat-4-6) -- (edMat-6-8);

38 \draw[orArr] (edMat-6-4) -- (edMat-8-4);
39 \draw[orArr] (edMat-6-4) -- (edMat-8-6);
40 \draw[orArr] (edMat-8-6) -- (edMat-8-8);
41 \draw[orArr] (edMat-6-6) -- (edMat-8-8);

100/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
LaTeX Code for editDistTblDP "OH" "NO"

▶ LaTeX TikZ Frame code

45 % TikZ frame code
46 \draw (edMat-1-1.center) -- (edMat-1-9.center)
47 -- (edMat-9-9.center) -- (edMat-9-1.center)
48 -- cycle;
49 \draw (edMat-3-1.center) -- (edMat-3-9.center);
50 \draw (edMat-1-3.center) -- (edMat-9-3.center);

101/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Generating PGF/TikZ from the Edit Table

▶ We generate the PGF/TikZ from editDistTblDP

▶ By convention we display the transpose of the table

▶ Remember that the transpose edit cells have lists of
predecessors indexed in the original table

▶ This makes the computation more awkward but it
appears to be the convention

▶ This computation does not include the edit paths nor
the free substitutions

▶ That would be better included in the edit table
computation

▶ TODO: Include edit paths and free substitutions in the
edit table computation

102/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Generating PGF/TikZ from the Edit Table
Offsets, Scales and Constants

106 iOffset = 4 -- offset for original string
107 jOffset = 4 -- offset for target string
108 iScale = 2 -- scale for original string
109 jScale = 2 -- scale for target string

111 spc = ’ ’ -- space char
112 nl = ’\n’ -- new line char

103/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Generating PGF/TikZ from the Edit Table
TikZ Arrow Code (1a)

▶ The code for drawing arrows between nodes is built on
the code for one arrow.

▶ edCellTrPredToArrow takes a pair of style name and
matrix name,

▶ a pair of offset and scale data for original and target
string,

▶ the coordinates of the destination node and a
predecessor

▶ and returns the TikZ code for the arrow

104/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Generating PGF/TikZ from the Edit Table
TikZ Arrow Code (1b)

114 edCellTrPredToArrow (styleName,matName)
115 ((iOff,iScl),(jOff,jScl)) (j,i) (a,b)
116 = "\\draw" ++ "[" ++ styleName ++ "]" ++ [spc]
117 ++ "(" ++ matName ++ "-"
118 ++ show (jOff + jScl*b)
119 ++ "-" ++ show (iOff + iScl*a) ++ ")"
120 ++ " -- "
121 ++ "(" ++ matName ++ "-"
122 ++ show (jOff + jScl*j)
123 ++ "-" ++ show (iOff + iScl*i) ++ ");"
124 ++ "\n"

105/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Generating PGF/TikZ from the Edit Table
TikZ Arrow Code (2a)

▶ We use edCellTrPredToArrow to build a function to
take a transposed edit table and return all the arrows as
a TikZ string

▶ edCellTrPredToArrow01 is a helper function to avoid
repeat typing

▶ edCellTrPredsToArrows01 takes the list of
predecessors in a cell and returns the arrows (as a
string)

▶ edCellTrToArrows01 takes a cell and returns the
arrows

▶ edRowTrToArrows01 takes a row and returns the
arrows

▶ edTblTrToArrows01 takes the complete table and
returns the arrows

106/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Generating PGF/TikZ from the Edit Table
TikZ Arrow Code (2b)

126 edCellTrPredToArrow01
127 = edCellTrPredToArrow
128 ("orArr","edMat")
129 ((iOffset,iScale),(jOffset,jScale))

131 edCellTrPredsToArrows01 (j,i) ps
132 = concat (map (edCellTrPredToArrow01 (j,i)) ps)

134 edCellTrToArrows01 (j,i) (d,ps)
135 = edCellTrPredsToArrows01 (j,i) ps

137 edRowTrToArrows01 j cs
138 = concat [edCellTrToArrows01 (j,i) c
139 | (i,c) <- zip [0..length cs - 1] cs]
140 ++ "\n"

142 edTblTrToArrows01 edTblTr
143 = concat [edRowTrToArrows01 j cs
144 | (j,cs) <- zip [0..length edTblTr - 1]
145 edTblTr]

107/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Generating PGF/TikZ from the Edit Table
TikZ Arrow Code (2c)

147 -- Test Edit Table to Arrows
148 edTblTrToArrows01TF
149 = putStr (edTblTrToArrows01 edTblTrTF)

151 edTblTrToArrows01AA
152 = putStr (edTblTrToArrows01 edTblTrAA)

154 edTblTrToArrows01FM
155 = putStr (edTblTrToArrows01 edTblTrFM)

108/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Generating PGF/TikZ from the Edit Table
TikZ Matrix Code (1)

▶ edCellTrDistToNode takes a distance and returns a
node string

▶ strToNode takes a string and returns a node string

▶ Health Warning the code below needs rewriting to
make it easier to read

109/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Generating PGF/TikZ from the Edit Table
TikZ Matrix Code (1a)

157 ndWidth = 13 -- string width of a node
158 -- nWidth = (length zStr + 1) + 2
159 -- spc = ’ ’ -- spc is defined above

161 ampRepStr = "\\&"

163 zStr = "$\\epsilon$"

165 matrixPreamble nm ampRepStr
166 = "\\matrix (" ++ nm ++ ") " ++ "[matrix of nodes"
167 ++ "\n" ++ nSpcs
168 ++ ",nodes in empty cells"
169 ++ "\n" ++ nSpcs
170 ++ ",ampersand replacement=" ++ ampRepStr
171 ++ "\n" ++ nSpcs
172 ++ ",nodes={minimum size=\\STtextNodeWidth}]"
173 ++ "\n"
174 where
175 nSpcs = replicate (11 + length nm) spc

110/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Generating PGF/TikZ from the Edit Table
TikZ Matrix Code (1b)

177 -- PGF/TikZ Matrix functions

179 edCellTrDistToNode :: Int -> String
180 edCellTrDistToNode d
181 = replicate n spc ++ dStr ++ [spc]
182 where
183 dStr = show d
184 n = ndWidth - 1 - length dStr

186 strToNode str
187 = replicate n spc ++ str ++ [spc]
188 where
189 n = ndWidth - 1 - length str

111/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Generating PGF/TikZ from the Edit Table
TikZ Matrix Code (2a)

191 strToPrefixRow str
192 = " " ++ ampRepStr
193 ++ replicate ndWidth spc ++ ampRepStr
194 ++ " " ++ ampRepStr
195 ++ replicate ndWidth spc ++ ampRepStr
196 ++ concat [" " ++ ampRepStr
197 ++ replicate ndWidth spc ++ ampRepStr
198 | c <- str]
199 ++ " \\\\\n"
200 ++ " " ++ ampRepStr
201 ++ replicate ndWidth spc ++ ampRepStr
202 ++ " " ++ ampRepStr
203 ++ replicate (ndWidth - 11) spc
204 ++ "$\\epsilon$ "++ ampRepStr
205 ++ concat [" " ++ ampRepStr
206 ++ replicate (ndWidth - 2) spc
207 ++ [c] ++ [spc] ++ ampRepStr
208 | c <- str]
209 ++ " \\\\\n"

112/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Generating PGF/TikZ from the Edit Table
TikZ Matrix Code (2b)

211 strToSuffixRow str
212 = " " ++ ampRepStr
213 ++ replicate ndWidth spc ++ ampRepStr
214 ++ " " ++ ampRepStr
215 ++ replicate ndWidth spc ++ ampRepStr
216 ++ concat [" " ++ ampRepStr
217 ++ replicate ndWidth spc ++ ampRepStr
218 | c <- str]
219 ++ " \\\\\n"

221 colNoTrToPrefixCol zStr str j
222 = " " ++ ampRepStr ++
223 (if j == 0
224 then replicate (ndWidth - 1 - length zStr) spc
225 ++ zStr ++ [spc]
226 else replicate (ndWidth - 2) spc
227 ++ [str!!(j - 1)] ++ [spc])
228 ++ ampRepStr

113/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Generating PGF/TikZ from the Edit Table
TikZ Matrix Code (2c)

230 edCellTrToNodes (d,ps)
231 = " " ++ ampRepStr
232 ++ edCellTrDistToNode d ++ ampRepStr

234 edRowTrToNodes zStr str j cs
235 = " " ++ ampRepStr
236 ++ replicate ndWidth spc ++ ampRepStr
237 ++ concat [" " ++ ampRepStr
238 ++ replicate ndWidth spc ++ ampRepStr
239 | c <- cs]
240 ++ " \\\\\n"
241 ++ colNoTrToPrefixCol zStr str j
242 ++ concat [edCellTrToNodes c | c <- cs]
243 ++ " \\\\\n"

245 edTblTrToNodes zStr str edTblTr
246 = concat [edRowTrToNodes zStr str j cs
247 | (j,cs) <- zip [0..length edTblTr - 1]
248 edTblTr]

114/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Generating PGF/TikZ from the Edit Table
TikZ Matrix Code (2cd)

250 -- Test usage
251 edTblTrToNodesTF
252 = putStr (edTblTrToNodes zStr "FOREST" edTblTrTF)

115/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Generating PGF/TikZ from the Edit Table
TikZ Matrix Code (3a)

254 edTblTrToMatrix nm zStr s t
255 = matrixPreamble nm ampRepStr
256 ++ "{\n"
257 ++ strToPrefixRow s
258 ++ edTblTrToNodes zStr t edTblTr
259 ++ strToSuffixRow s
260 ++ "};\n"
261 where
262 edTblTr = transpose (editDistTblDP s t)

116/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Generating PGF/TikZ from the Edit Table
TikZ Matrix Code (3b)

264 -- Test code for entire matrix
265 edTblTrToMatrixTF
266 = putStr (edTblTrToMatrix "edMat" zStr "TREES" "FOREST")

268 edTblTrToMatrixAA
269 = putStr (edTblTrToMatrix "edMat" zStr "ALGORITHM" "ALTRUISTIC")

271 edTblTrToMatrixFM
272 = putStr (edTblTrToMatrix "edMat" zStr "FOOD" "MONEY")

117/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Generating PGF/TikZ from the Edit Table
TikZ Picture Code (1)

274 -- Construction of tikzpicture

276 tikzPreamble
277 = "\\begin{tikzpicture}" ++ [nl]
278 ++ " [ePath/.style={red,thick}" ++ [nl]
279 ++ " ,frSub/.style={font=\\bfseries}" ++ [nl]
280 ++ " ,efrSb/.style={ePath,frSub}" ++ [nl]
281 ++ " ,orArr/.style={-Latex}" ++ [nl]
282 ++ " ,frArr/.style={orArr,ultra thick}" ++ [nl]
283 ++ " ,eoArr/.style={ePath,orArr}" ++ [nl]
284 ++ " ,efArr/.style={ePath,frArr}" ++ [nl]
285 ++ "]"

287 tikzEnd
288 = "\\end{tikzpicture}" ++ [nl]

118/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Generating PGF/TikZ from the Edit Table
TikZ Picture Code (2)

290 tikzFrmCoord nm loc i j
291 = "(" ++ nm ++ "-" ++ show j ++ "-"
292 ++ show i ++ "." ++ loc ++ ")"

294 tikzFrame nm loc s t
295 = "\\draw " ++ (tikzFrmCoord nm loc 1 1) ++ " -- "
296 ++ (tikzFrmCoord nm loc xMax 1)
297 ++ [nl] ++ dSpcs ++ " -- "
298 ++ (tikzFrmCoord nm loc xMax yMax) ++ " -- "
299 ++ (tikzFrmCoord nm loc 1 yMax)
300 ++ [nl] ++ dSpcs ++ " -- cycle;" ++ [nl]
301 ++ "\\draw " ++ (tikzFrmCoord nm loc 1 (jScale + 1))
302 ++ " -- " ++ (tikzFrmCoord nm loc xMax (jScale + 1))
303 ++ ";" ++ [nl]
304 ++ "\\draw " ++ (tikzFrmCoord nm loc (iScale + 1) 1)
305 ++ " -- " ++ (tikzFrmCoord nm loc (iScale + 1) yMax)
306 ++ ";" ++ [nl]
307 where
308 xMax = iOffset + 1 + iScale * (length s)
309 yMax = jOffset + 1 + jScale * (length t)
310 dSpcs = replicate 6 spc

119/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Generating PGF/TikZ from the Edit Table
TikZ Picture Code (3)

312 edTblTrToTikz nm loc zStr s t
313 = tikzPreamble ++ [nl]
314 ++ [nl] ++ "% TikZ Matrix code" ++ [nl]
315 ++ edTblTrToMatrix nm zStr s t ++ [nl]
316 ++ [nl] ++ "% TikZ Arrows code" ++ [nl]
317 ++ edTblTrToArrows01 edTblTr ++ [nl]
318 ++ [nl] ++ "% TikZ frame code" ++ [nl]
319 ++ tikzFrame nm loc s t ++ [nl]
320 ++ tikzEnd
321 where
322 edTblTr = transpose (editDistTblDP s t)

120/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Generating PGF/TikZ from the Edit Table
Test Code Matrix Frame

324 -- Test code for matrix frame lines

326 tikzFrameFM
327 = putStr (tikzFrame "edMat" "center"
328 "FOOD" "MONEY")

330 tikzFrameAA
331 = putStr (tikzFrame "edMat" "center"
332 "ALGORITHM" "ALTRUISTIC")

334 tikzFrameTF
335 = putStr (tikzFrame "edMat" "center"
336 "TREES" "FOREST")

121/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Generating PGF/TikZ from the Edit Table
Test Code TikZ Picture

338 -- Text code for tikzpicture

340 edTblTrToTikzFM
341 = putStr (edTblTrToTikz "edMat" "center" zStr
342 "FOOD" "MONEY")

344 edTblTrToTikzAA
345 = putStr (edTblTrToTikz "edMat" "center" zStr
346 "ALGORITHM" "ALTRUISTIC")

348 edTblTrToTikzTF
349 = putStr (edTblTrToTikz "edMat" "center" zStr
350 "TREES" "FOREST")

352 edTblTrToTikzKK
353 = putStr (edTblTrToTikz "edMat" "center" zStr
354 "KITTEN" "KNITTING")

356 edTblTrToTikzSE
357 = putStr (edTblTrToTikz "edMat" "center" zStr
358 "SIX" "ELEVEN")

122/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Memoization Table for editDistance "KITTEN" "KNITTING"

edDistTblKittenKnitting

ϵ K I T T E N

ϵ 0 1 2 3 4 5 6

K 1 0 1 2 3 4 5

N 2 1 1 2 3 4 4

I 3 2 1 2 3 4 5

T 4 3 2 1 2 3 4

T 5 4 3 2 1 2 3

I 6 5 4 3 2 2 3

N 7 6 5 4 3 3 2

G 8 7 6 5 4 4 3

123/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming
Fibonacci Sequence

DP Formulation

Edit Distance

Edit Distance Definitions

Edit Distance: Recursive

Edit Distance —
Implementation

Edit Distance: Haskell

Edit Distance: Python

Edit Distance Examples

Edit Distance Diagram
Construction

Commentary 4

Future Work

Web Sites &
References

Edit Distance
Memoization Table for editDistance "SIX" "ELEVEN"

edDistTblSixEleven

ϵ S I X

ϵ 0 1 2 3

E 1 1 2 3

L 2 2 2 3

E 3 3 3 3

V 4 4 4 4

E 5 5 5 5

N 6 6 6 6

124/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

Commentary 4
Future Work, Other Examples, References

4 Future Work, Other Examples, References

▶ Future work — Tutorials and TMAs

▶ Other examples

▶ References and other sources

▶ Colophon

▶ LaTeX with Beamer, Listings and other packages

▶ Index of Python code and diagrams

▶ PGF/TikZ for the diagrams

▶ External copies of the diagrams as PDF with tight bounding
boxes are available

125/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References

Future Work
Topics & Events

▶ Future tutorial and TMA dates

▶ Other DP examples

▶ Longest common subsequence

▶ Knapsack

▶ TSP

126/131

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References
Edit Distance Sources

Algorithm Texts & Web
Sites

Analysis of Algorithms

Graph Algorithms

Shortest Paths

Edit Distance
Sources

▶ Jeff Erickson Algorithms — basis of these notes

▶ Wikibooks Levenshtein

▶ Wikipedia: Levenshtein

▶ Linux Magazine March 2016 Issue 184 Better Finds —
article on egrep which uses the Levenshtein algorithm

▶ Rosetta Code: Levenshtein Distance

▶ Peter Norvig How to Write a Spelling Corrector

▶ Stack Overflow: Edit Distance in Haskell

▶ Levenshtein Algorithm www.levenshtein.net

▶ Levenshtein Demo let.rug.nl/~kleiweg/lev/

▶ Edit distance (Levenshtein-Distance) algorithm
explanation

▶ Wikipedia: Damerau-Levenshtein distance allows for
transposition of two adjacent characters

127/131

http://jeffe.cs.illinois.edu/teaching/algorithms/
https://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Levenshtein_distance
https://en.wikipedia.org/wiki/Levenshtein_distance
http://www.linux-magazine.com/Issues/2016/184/agrep
http://rosettacode.org/wiki/Levenshtein_distance
http://norvig.com/spell-correct.html
http://stackoverflow.com/questions/5515025/edit-distance-algorithm-in-haskell-performance-tuning
http://www.levenshtein.net
http://www.let.rug.nl/~kleiweg/lev/
https://cs.stackexchange.com/questions/28734/edit-distance-levenshtein-distance-algorithm-explanation
https://cs.stackexchange.com/questions/28734/edit-distance-levenshtein-distance-algorithm-explanation
https://en.wikipedia.org/wiki/Damerau-Levenshtein_distance

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References
Edit Distance Sources

Algorithm Texts & Web
Sites

Analysis of Algorithms

Graph Algorithms

Shortest Paths

Algorithms
Texts & Web Sites

▶ Jeff Erickson Algorithms

▶ Cormen et al (2022) Introduction to Algorithms

▶ Sedgewick (2011) Algorithms see Algorithms, 4th
edition

▶ Bird, Gibbons (2020) Algorithm Design with Haskell

128/131

http://jeffe.cs.illinois.edu/teaching/algorithms/
https://algs4.cs.princeton.edu/home/
https://algs4.cs.princeton.edu/home/

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References
Edit Distance Sources

Algorithm Texts & Web
Sites

Analysis of Algorithms

Graph Algorithms

Shortest Paths

Analysis of Algorithms
Big-O

▶ Big O notation

▶ The Algebra of Big-O

▶ Python Time Complexity — also summarised in
Software Summaries

▶ Computational Complexity of a List Comprehension —
as it says: The structure of a list comprehension makes
it easy to determine computational complexity.
This is from An Introduction to Functional
Programming, Lazy Evaluation, and Streams in Python
(10 August 2023)

▶ Big-O Cheat Sheet

129/131

https://en.wikipedia.org/wiki/Big_O_notation
https://www.cs.odu.edu/~zeil/cs361/latest/Public/algebra/index.html
https://wiki.python.org/moin/TimeComplexity
https://pmolyneux.co.uk/OU/M269FolderSync/SoftwareSummaries/SoftwareInstallSummaries.pdf
https://yardsale8.github.io/stat489_book/TheExpressionOrientedSequenceTransformation/TheComplexityOfListComprehensions.html
https://yardsale8.github.io/stat489_book/index.html
https://yardsale8.github.io/stat489_book/index.html
https://www.bigocheatsheet.com/

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References
Edit Distance Sources

Algorithm Texts & Web
Sites

Analysis of Algorithms

Graph Algorithms

Shortest Paths

Graph Algorithms
References

▶ Graph Theory: Trees

▶ Graph Theory

▶ Dekai Wu Algorithms course

▶ http://jeffe.cs.illinois.edu/teaching/
algorithms/Jeff Erickson Algorithms

130/131

http://en.wikipedia.org/wiki/Tree_(graph_theory)
http://en.wikipedia.org/wiki/Graph_theory
https://www.cse.ust.hk/~dekai/271/
http://jeffe.cs.illinois.edu/teaching/algorithms/
http://jeffe.cs.illinois.edu/teaching/algorithms/

Dynamic
Programming

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

DP Introduction

List
Comprehensions

Commentary 3

Dynamic
Programming

Commentary 4

Future Work

Web Sites &
References
Edit Distance Sources

Algorithm Texts & Web
Sites

Analysis of Algorithms

Graph Algorithms

Shortest Paths

Shortest Paths
References

▶ Dijkstra’s Algorithm
▶ Dijkstra’s shortest path algorithm

▶ Bellman-Ford
▶ Bellman–Ford Algorithm
▶ Bellman Ford Algorithm (Simple Implementation)
▶ Haskell Hackage Data.BellmanFord
▶ Data.IGraph

from igraph
▶ igraph Reference Manual Chapter 13 Structural

Properties of Graphs
▶ R igraph manual pages: Shortest (directed or undirected)

paths between vertices
▶ IGraph/M: a Mathematica interface for igraph

131/131

https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/
https://www.geeksforgeeks.org/bellman-ford-algorithm-dp-23/
https://www.geeksforgeeks.org/bellman-ford-algorithm-simple-implementation/
https://hackage.haskell.org/package/ConcurrentUtils-0.4.5.0/docs/Data-BellmanFord.html
http://giorgidze.github.io/igraph/Data-IGraph.html
https://igraph.org/
https://igraph.org/c/doc/igraph-Structural.html
https://igraph.org/c/doc/igraph-Structural.html
https://igraph.org/r/doc/distances.html
https://igraph.org/r/doc/distances.html
http://szhorvat.net/pelican/igraphm-a-mathematica-interface-for-igraph.html

	Commentary 1
	Agenda
	Adobe Connect Interface and Settings
	Adobe Connect Interface
	Adobe Connect Settings
	Adobe Connect — Sharing Screen & Applications
	Adobe Connect — Ending a Meeting
	Adobe Connect — Invite Attendees
	Layouts
	Chat Pods
	Graphics Conversion for Web
	Adobe Connect Recordings

	Commentary 2
	Dynamic Programming — Introduction
	List Comprehensions
	List Comprehensions

	Commentary 3
	Dynamic Programming
	Fibonacci Sequence
	DP Formulation
	Edit Distance
	Edit Distance Definitions
	Edit Distance — Recursive Algorithm
	Edit Distance — Implementation
	Edit Distance — Haskell Implementation
	Edit Distance — Python Implementation
	Edit Distance Examples
	Edit Distance Diagram Construction

	Commentary 4
	Future Work
	Web Sites & References
	Edit Distance Sources
	Algorithm Texts & Web Sites
	Analysis of Algorithms
	Graph Algorithms
	Shortest Paths

