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Commentary 1
Agenda, Aims and Topics

1 Agenda, Aims and Topics

▶ Overview of aims of tutorial

▶ Note selection of topics

▶ Points about my own background and preferences

▶ Adobe Connect slides for reference

▶ Note that the Computability notes are here mainly for
reference since the Complexity notes refer to them

▶ This session is mainly on the Complexity topics
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Computability, Complexity Tutorial
Agenda

▶ Welcome & Introductions
▶ Computability topics:

▶ Ideas of Computation and Algorithms
▶ Problem Reduction
▶ Turing Machines
▶ Undecidable, Semi-decidable and decidable problems
▶ Effective Computability: Turing machines, Lambda

Calculus, µ-recursive functions
▶ Optional topic Lambda Calculus introduction

▶ Complexity topics
▶ Complexity classes P and NP
▶ Demonstrating membership of class NP
▶ NP-complete class
▶ Boolean satisfiability — first NP-complete problem

how to overcome them.
▶ Adobe Connect — if you or I get cut off, wait till we

reconnect (or send you an email)
▶ Recording Meeting Record Meeting. . . ✔
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M269 Tutorial
Introductions — Me

▶ Name Phil Molyneux

▶ Background Physics and Maths, Operational Research,
Computer Science

▶ First programming languages Fortran, BASIC, Pascal
▶ Favourite Software

▶ Haskell — pure functional programming language
▶ Text editors TextMate, Sublime Text — previously Emacs
▶ Word processing and presentation slides in LATEX
▶ Mac OS X

▶ Learning style — I read the manual before using the
software (really)
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http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/BASIC
http://en.wikipedia.org/wiki/Pascal_(programming_language)
http://www.haskell.org/haskellwiki/Haskell
https://macromates.com
http://www.sublimetext.com
http://www.emacswiki.org
http://www.latex-project.org
https://developer.apple.com/devcenter/mac/index.action
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M269 Tutorial
Introductions — You

▶ Name ?

▶ Position in M269 ? Which part of which Units and/or
Reader have you read ?

▶ Particular topics you want to look at ?

▶ Learning Syle ?
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Adobe Connect
Interface — Host View
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Adobe Connect
Interface — Participant View
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Adobe Connect
Settings

▶ Everybody Menu bar Meeting Speaker & Microphone Setup

▶ Menu bar Microphone Allow Participants to Use Microphone ✔

▶ Check Participants see the entire slide Workaround
▶ Disable Draw Share pod Menu bar Draw icon

▶ Fit Width Share pod Bottom bar Fit Width icon ✔

▶ Meeting Preferences General Host Cursor Show to all attendees

▶ Menu bar Video Enable Webcam for Participants ✔

▶ Do not Enable single speaker mode

▶ Cancel hand tool

▶ Do not enable green pointer

▶ Recording Meeting Record Session ✔

▶ Documents Upload PDF with drag and drop to share
pod

▶ Delete Meeting Manage Meeting Information Uploaded Content

and check filename click on delete
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Adobe Connect
Access

▶ Tutor Access

TutorHome M269 Website Tutorials

Cluster Tutorials M269 Online tutorial room

Tutor Groups M269 Online tutor group room

Module-wide Tutorials M269 Online module-wide room

▶ Attendance

TutorHome Students View your tutorial timetables

▶ Beamer Slide Scaling 440% (422 x 563 mm)

▶ Clear Everyone’s Status

Attendee Pod Menu Clear Everyone’s Status

▶ Grant Access and send link via email

Meeting Manage Access & Entry Invite Participants. . .

▶ Presenter Only Area

Meeting Enable/Disable Presenter Only Area
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Adobe Connect
Keystroke Shortcuts

▶ Keyboard shortcuts in Adobe Connect

▶ Toggle Mic + M (Mac), Ctrl + M (Win) (On/Disconnect)

▶ Toggle Raise-Hand status + E

▶ Close dialog box (Mac), Esc (Win)

▶ End meeting + \
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https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html
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Adobe Connect Interface
Sharing Screen & Applications

▶ Share My Screen Application tab Terminal for Terminal

▶ Share menu Change View Zoom in for mismatch of screen
size/resolution (Participants)

▶ (Presenter) Change to 75% and back to 100% (solves
participants with smaller screen image overlap)

▶ Leave the application on the original display

▶ Beware blued hatched rectangles — from other (hidden)
windows or contextual menus

▶ Presenter screen pointer affects viewer display —
beware of moving the pointer away from the application

▶ First time: System Preferences Security & Privacy Privacy

Accessibility
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https://en.wikipedia.org/wiki/Terminal_(macOS)
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Adobe Connect
Ending a Meeting

▶ Notes for the tutor only
▶ Student: Meeting Exit Adobe Connect

▶ Tutor:
▶ Recording Meeting Stop Recording ✔

▶ Remove Participants Meeting End Meeting. . . ✔

▶ Dialog box allows for message with default message:
▶ The host has ended this meeting. Thank you for

attending.

▶ Recording availability In course Web site for joining
the room, click on the eye icon in the list of recordings
under your recording — edit description and name

▶ Meeting Information Meeting Manage Meeting Information —
can access a range of information in Web page.

▶ Delete File Upload Meeting Manage Meeting Information

Uploaded Content tab select file(s) and click Delete

▶ Attendance Report see course Web site for joining
room

12/141



Computability,
Complexity

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Commentary 2

Computability

Commentary 3

Complexity

Commentary 4

Future Work

References

Adobe Connect
Invite Attendees

▶ Provide Meeting URL Menu Meeting Manage Access & Entry

Invite Participants. . .

▶ Allow Access without Dialog Menu Meeting

Manage Meeting Information provides new browser window
with Meeting Information Tab bar Edit Information

▶ Check Anyone who has the URL for the meeting can
enter the room

▶ Default Only registered users and accepted guests may
enter the room

▶ Reverts to default next session but URL is fixed

▶ Guests have blue icon top, registered participants have
yellow icon top — same icon if URL is open

▶ See Start, attend, and manage Adobe Connect meetings
and sessions
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https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html
https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html
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Adobe Connect
Entering a Room as a Guest (1)

▶ Click on the link sent in email from the Host

▶ Get the following on a Web page

▶ As Guest enter your name and click on Enter Room
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Adobe Connect
Entering a Room as a Guest (2)

▶ See the Waiting for Entry Access for Host to give
permission
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Adobe Connect
Entering a Room as a Guest (3)

▶ Host sees the following dialog in Adobe Connect and
grants access
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Adobe Connect
Layouts

▶ Creating new layouts example Sharing layout

▶ Menu Layouts Create New Layout. . . Create a New Layout dialog

Create a new blank layout and name it PMolyMain

▶ New layout has no Pods but does have Layouts Bar open
(see Layouts menu)

▶ Pods

▶ Menu Pods Share Add New Share and resize/position —
initial name is Share n

▶ Rename Pod Menu Pods Manage Pods. . . Manage Pods

Select Rename or Double-click & rename

▶ Add Video pod and resize/reposition

▶ Add Attendance pod and resize/reposition

▶ Add Chat pod — name it PMolyChat — and
resize/reposition
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Adobe Connect
Layouts

▶ Dimensions of Sharing layout (on 27-inch iMac)
▶ Width of Video, Attendees, Chat column 14 cm
▶ Height of Video pod 9 cm
▶ Height of Attendees pod 12 cm
▶ Height of Chat pod 8 cm

▶ Duplicating Layouts does not give new instances of
the Pods and is probably not a good idea (apart from
local use to avoid delay in reloading Pods)

▶ Auxiliary Layouts name PMolyAux0n
▶ Create new Share pod
▶ Use existing Chat pod
▶ Use same Video and Attendance pods
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Adobe Connect
Chat Pods

▶ Format Chat text

▶ Chat Pod menu icon My Chat Color

▶ Choices: Red, Orange, Green, Brown, Purple, Pink, Blue,
Black

▶ Note: Color reverts to Black if you switch layouts

▶ Chat Pod menu icon Show Timestamps
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Graphics Conversion
PDF to PNG/JPG

▶ Conversion of the screen snaps for the installation of
Anaconda on 1 May 2020

▶ Using GraphicConverter 11

▶ File Convert & Modify Conversion Convert

▶ Select files to convert and destination folder

▶ Click on Start selected Function or +
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Adobe Connect Recordings
Exporting Recordings

▶ Menu bar Meeting Preferences Video

▶ Aspect ratio Standard (4:3) (not Wide screen (16:9) default)

▶ Video quality Full HD (1080p not High default 480p)

▶ Recording Menu bar Meeting Record Session ✔

▶ Export Recording

▶ Menu bar Meeting Manage Meeting Information

▶ New window Recordings check Tutorial Access Type button

▶ check Public check Allow viewers to download

▶ Download Recording

▶ New window Recordings check Tutorial Actions Download File
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Commentary 2
Computability

2 Computability

▶ Description of Turing Machine

▶ Turing Machine examples

▶ Computability, Decidability and Algorithms

▶ Non-computability — Halting Problem

▶ Reductions and non-computability

▶ Lambda Calculus (optional)

▶ Note that the Computability notes are here mainly for
reference since the Complexity notes refer to them

▶ This session is mainly on the Complexity topics
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Computability
Ideas of Computation

▶ The idea of an algorithm and what is effectively
computable

▶ Church-Turing thesis Every function that would
naturally be regarded as computable can be computed
by a deterministic Turing Machine. (Unit 7 Section 4)

▶ See Phil Wadler on computability theory performed as
part of the Bright Club at The Strand in Edinburgh,
Tuesday 28 April 2015

23/141

http://wadler.blogspot.co.uk/2015/05/bright-club-computability.html
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Computability
Models of Computation

▶ In automata theory, a problem is the question of
deciding whether a given string is a member of some
particular language

▶ If Σ is an alphabet, and L is a language over Σ, that is
L ⊆ Σ∗, where Σ∗ is the set of all strings over the
alphabet Σ then we have a more formal definition of
decision problem

▶ Given a string w ∈ Σ∗, decide whether w ∈ L

▶ Example: Testing for a prime number — can be
expressed as the language Lp consisting of all binary
strings whose value as a binary number is a prime
number (only divisible by 1 or itself)

▶ See Hopcroft (2007, section 1.5.4)
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Automate Theory
Alphabets, Strings

▶ An Alphabet, Σ, is a finite, non-empty set of symbols.

▶ Binary alphabet Σ = {0, 1}

▶ Lower case letters Σ = {a, b, . . . , z}

▶ A String is a finite sequence of symbols from some
alphabet

▶ 01101 is a string from the Binary alphabet Σ = {0, 1}

▶ The Empty string, ϵ, contains no symbols

▶ Powers: Σk is the set of strings of length k with
symbols from Σ

▶ The set of all strings over an alphabet Σ is denoted Σ∗
▶ Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ . . .
▶ Question Does Σ0 = ∅ ? (∅ is the empty set)
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Automata Theory
Languages

▶ An Language, L, is a subset of Σ∗
▶ The set of binary numerals whose value is a prime

{10, 11, 101, 111, 1011, . . . }
▶ The set of binary numerals whose value is a square

{100, 1001, 10000, 11001, . . . }
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Computability
Church-Turing Thesis & Quantum Computing

▶ Church-Turing thesis Every function that would
naturally be regarded as computable can be computed
by a deterministic Turing Machine.

▶ physical Church-Turing thesis Any finite physical
system can be simulated (to any degree of
approximation) by a Universal Turing Machine.

▶ strong Church-Turing thesis Any finite physical
system can be simulated (to any degree of
approximation) with polynomial slowdown by a
Universal Turing Machine.

▶ Shor’s algorithm (1994) — quantum algorithm for
factoring integers — an NP problem that is not known
to be P — also not known to be NP-complete and we
have no proof that it is not in P

▶ Reference: Section 4 of Unit 6 & 7 Reader
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Computability
Turing Machine

▶ Finite control which can be in any of a finite number of
states

▶ Tape divided into cells, each of which can hold one of a
finite number of symbols

▶ Initially, the input, which is a finite-length string of
symbols in the input alphabet, is placed on the tape

▶ All other tape cells (extending unbounded left and
right) hold a special symbol called blank

▶ A tape head which initially is over the leftmost input
symbol

▶ A move of the Turing Machine depends on the state
and the tape symbol scanned

▶ A move can change state, write a symbol in the current
cell, move left, right or stay

▶ References: Hopcroft (2007, page 326), Unit 6 & 7
Reader (section 5.3)
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Turing Machine Diagram
Turing Machine Diagram

. . . b b a a a a . . . I/O Tape

q0q1

q2

q3 . . .

qn

Finite Control

q1

Reading and Writing Head
(moves in both directions)
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Computability
Turing Machine notation

▶ Q finite set of states of the finite control

▶ Σ finite set of input symbols (M269 S)

▶ Γ complete set of tape symbols Σ ⊂ Γ
▶ δ Transition function (M269 instructions, I)
δ :: Q× Γ → Q× Γ × {L, R, S}
δ(q, X), (p, Y, D)

▶ δ(q, X) takes a state, q and a tape symbol, X and returns
(p, Y, D) where p is a state, Y is a tape symbol to
overwrite the current cell, D is a direction, Left, Right or
Stay

▶ q0 start state q0 ∈ Q

▶ B blank symbol B ∈ Γ and B ̸∈ Σ
▶ F set of final or accepting states F ⊆ Q
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Turing Machine Examples
Turing Machine Simulators

▶ Morphett’s Turing machine simulator — the examples
below are adapted from here

▶ Ugarte’s Turing machine simulator

▶ XKCD A Bunch of Rocks — XKCD Explanation

Image below (will need expanding to be readable)

▶ The term state is used in two different ways:

The value of the Finite Control

The overall configuration of Finite Control and current
contents of the tape

See Turing Machine: State

will lead to some confusion
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http://morphett.info/turing/turing.html
https://turingmachinesimulator.com/
https://xkcd.com/505/
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https://en.wikipedia.org/wiki/Turing_machine#The_%22state%22
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Turing Machine Examples
XKCD A Bunch of Rocks
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Turing Machine Examples
Meta-Exercise

▶ For each of the Turing Machine Examples below,
identify

(Q,Σ, Γ ,δ, q0, B, F)

33/141



Computability,
Complexity

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Commentary 4

Future Work

References

Turing Machine Examples
The Successor Function

▶ Input binary representation of numeral n

▶ Output binary representation of n + 1

▶ Example 1010, 1011 and 1011 , 1100

▶ Initial cell: leftmost symbol of n

▶ Strategy

▶ Stage A make the rightmost cell the current cell

▶ Stage B Add 1 to the current cell.

▶ If the current cell is 0 then replace it with 1 and go to
stage C

▶ If the current cell is 1 replace it with 0 and go to stage B
and move Left

▶ If the current cell is blank, replace it by 1 and go to
stage C

▶ Stage C Finish up by making the leftmost cell current
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Turing Machine Examples
The Successor Function (2)

▶ Represent the Turing Machine program as a list of
quintuples (q, X, p, Y, D)

▶ Stage A

(q0, 0, q0, 0, R)

(q0, 1, q0, 1, R)

(q0, B, q1, B, L)

▶ Stage B

(q1, 0, q2, 1, S)

(q1, 1, q1, 0, L)

(q1, B, q2, 1, S)

▶ Stage C

(q2, 0, q2, 0, L)

(q2, 1, q2, 1, L)

(q2, B, qh, B, R)
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Turing Machine Examples
The Successor Function (2a)

▶ Exercise Translate the quintuples (q, X, p, Y, D) into
English and check they are the same as the specification

▶ Stage A make the rightmost cell the current cell

(q0, 0, q0, 0, R)

If state q0 and read symbol 0 then stay in state q0 write 0, move R

(q0, 1, q0, 1, R)

If state q0 and read symbol 1 then stay in state q0 write 1, move R

(q0, B, q1, B, L)

If state q0 and read symbol B then state q1 write B, move L
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Turing Machine Examples
The Successor Function (2b)

▶ Exercise Translate the quintuples (q, X, p, Y, D) into
English

▶ Stage B Add 1 to the current cell.

(q1, 0, q2, 1, S)

If state q1 and read symbol 0 then state q2 write 1, stay

(q1, 1, q1, 0, L)

If state q1 and read symbol 1 then state q1 write 0, move L

(q1, B, q2, 1, S)

If state q1 and read symbol B then state q2 write 1, stay
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Turing Machine Examples
The Successor Function (2c)

▶ Exercise Translate the quintuples (q, X, p, Y, D) into
English

▶ Stage C Finish up by making the leftmost cell current

(q2, 0, q2, 0, L)

If state q2 and read symbol 0 then state q2 write 0, move L

(q2, 1, q2, 1, L)

If state q2 and read symbol 1 then state q2 write 0, move L

(q2, B, qh, B, R)

If state q2 and read symbol B then state qh write B, move R HALT

▶ Notice that the Turing Machine feels like a series of if
... then or case statements inside a while loop
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Turing Machine Examples
The Successor Function (2d) — Meta-Exercise

▶ Identify (Q,Σ, Γ ,δ, q0, B, F)
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Turing Machine Examples
The Successor Function (2e) — Meta-Exercise

▶ Identify (Q,Σ, Γ ,δ, q0, B, F)
▶ Q = {q0, q1, q2, qh}
▶ q0 finding the rightmost symbol
▶ q1 add 1 to current cell
▶ q2 move to leftmost cell
▶ qh finish
▶ Σ = {0, 1}
▶ Γ = Σ∪ {B}
▶ δ :: Q× Γ → Q× Γ × {L, R, S}

δ(q, X), (p, Y, D)

δ is represented as {(q,X,p,Y,D)}

equivalent to {((q, X), (p, Y, D))} set of pairs
▶ q0 start with leftmost symbol under head, state moving

to rightmost symbol
▶ B is a visible space
▶ F = {qh}
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Turing Machine Examples
The Successor Function (3)

▶ Sample Evaluation 11 , 100

▶ Representation · · ·BX1X2 · · ·Xi–1qXiXi+1 · · ·XnB · · ·
q011

1q01

11q0B

1q11

q110

q1B00

q2100

q2B100

qh100

▶ Exercise evaluate 1011 , 1100
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Turing Machine Examples
Instantaneous Description

▶ Representation · · ·BX1X2 · · ·Xi–1qXiXi+1 · · ·XnB · · ·
▶ q is the state of the TM

▶ The head is scanning the symbol Xi

▶ Leading or trailing blanks B are (usually) not shown
unless the head is scanning them

▶ ⊢M denotes one move of the TM M

▶ ⊢∗M denotes zero or more moves

▶ ⊢ will be used if the TM M is understood

▶ If (q, Xi, p, Y, L) denotes a TM move then

X1 · · ·Xi–1qXi · · ·Xn ⊢M X1 · · ·Xi–2pXi–1Y · · ·Xn
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Turing Machine Examples
The Binary Palindrome Function

▶ Input binary string s

▶ Output YES if palindrome, NO otherwise

▶ Example 1010, NO and 1001 , YES

▶ Initial cell: leftmost symbol of s

▶ Strategy

▶ Stage A read the leftmost symbol

▶ If blank then accept it and go to stage D otherwise
erase it

▶ Stage B find the rightmost symbol

▶ If the current cell matches leftmost recently read then
erase it and go to stage C

▶ Otherwise reject it and go to stage E

▶ Stage C return to the leftmost symbol and stage A

▶ Stage D print YES and halt

▶ Stage E erase the remaining string and print NO
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Turing Machine Examples
The Binary Palindrome Function (2)

▶ Represent the Turing Machine program as a list of
quintuples (q, X, p, Y, D)

▶ Stage A read the leftmost symbol

(q0, 0, q1o , B, R)

(q0, 1, q1i , B, R)

(q0, B, q5, B, S)

▶ Stage B find rightmost symbol

(q1o , B, q2o , B, L)

(q1o ,∗, q1o ,∗, R) * is a wild card, matches anything

(q1i , B, q2i , B, L)

(q1i ,∗, q1i ,∗, R)

44/141



Computability,
Complexity

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Commentary 4

Future Work

References

Turing Machine Examples
The Binary Palindrome Function (3)

▶ Stage B check

(q2o , 0, q3, B, L)

(q2o , B, q5, B, S)

(q2o ,∗, q6,∗, S)

(q2i , 1, q3, B, L)

(q2i , B, q5, B, S)

(q2i ,∗, q6,∗, S)

▶ Stage C return to the leftmost symbol and stage A

(q3, B, q5, B, S)

(q3,∗, q4,∗, L)

(q4, B, q0, B, R)

(q4,∗, q4,∗, L)
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Turing Machine Examples
The Binary Palindrome Function (4)

▶ Stage D accept and print YES

(q5,∗, q5a , Y, R)

(q5a ,∗, q5b
, E, R)

(q5b
,∗, q7, S, S)

▶ Stage E erase the remaining string and print NO

(q6, B, q6a , N, R)

(q6,∗, q6, B, L)

(q6a ,∗, q7, O, S)

▶ Finish

(q7, B, qh, B, R)

(q7,∗, q7,∗, L)
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Turing Machine Examples
The Binary Palindrome Function (3a) — Meta-Exercise

▶ Identify (Q,Σ, Γ ,δ, q0, B, F)
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Turing Machine Examples
The Binary Palindrome Function (3b) — Meta-Exercise

▶ Identify (Q,Σ, Γ ,δ, q0, B, F)
▶ Q = {q0, q1o , q1i

, q2o , q2i
, q3, q4, q5, q5a , q5b

, q6, q6a , q7, qh}

▶ q0 read leftmost symbol
▶ q1o , q1i find rightmost symbol looking for 0 or 1
▶ q2o , q2i check, confirm or reject
▶ q3, q4 check finish or move to start
▶ q5, q6, q7 print YES or NO and finish
▶ qh finish
▶ Σ = {0, 1}
▶ Γ = Σ∪ {B, Y, E, S, N, O}
▶ δ :: Q× Γ → Q× Γ × {L, R, S}
δ(q, X), (p, Y, D)
δ is represented as {(q,X,p,Y,D)}
equivalent to {((q, X), (p, Y, D))} set of pairs

▶ Start with leftmost symbol under head, state q0
▶ B is a visible space
▶ F = {qh}
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Turing Machine Examples
The Binary Palindrome Function (4)

▶ Sample Evaluation 101 , YES

q0101 ⊢ Bq1i01 ⊢ B0q1i1 ⊢ B01q1iB

⊢ B0q2i1

⊢ Bq30B ⊢ q4B0B

⊢ Bq00B ⊢ BBq1oB

⊢ Bq2oBB

⊢ Bq5BB ⊢ Yq5aB ⊢ YEq5b
B ⊢ YEq7S

⊢ Yq7ES ⊢ Bq7YES ⊢ q7BYES ⊢ qhYES

▶ Exercise Evaluate 110 , NO

49/141



Computability,
Complexity

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Commentary 4

Future Work

References

Turing Machine Examples
Binary Addition Example

▶ Input two binary numerals separated by a single space
n1 n2

▶ Output binary numeral which is the sum of the inputs

▶ Example 110110 + 101011 , 1100001

▶ Initial cell: leftmost symbol of n1 n2

▶ Insight look at the arithmetic algorithm

1 1 0 1 1 0
1 0 1 0 1 1

1 1 0 0 0 0 1

▶ Discussion how can we overwrite the first number with
the result and remember how far we have gone ?

50/141



Computability,
Complexity

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Commentary 4

Future Work

References

Turing Machine Examples
Binary Addition Example — Arithmetic Reinvented

1 1 0 1 1 0
1 0 1 0 1 1

1 1 0 1 1 y
1 0 1 0 1

1 1 1 0 x y
1 0 1 0

1 1 1 x x y
1 0 1

1 0 0 x x x y
1 0

1 0 x x x x y
1

1 y x x x x y

1 1 0 0 0 0 1
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Turing Machine Examples
Binary Addition Example (2)

▶ Input two binary numerals separated by a single space
n1 n2

▶ Output binary numeral which is the sum of the inputs

▶ Example 110110 + 101011 , 1100001

▶ Initial cell: leftmost symbol of n1 n2

▶ Strategy

▶ Stage A find the rightmost symbol

If the symbol is 0 erase and go to stage Bx

If the symbol is 1 erase go to stage By

If the symbol is blank go to stage F

dealing with each digit in n2

if no further digits in n2 go to final stage

▶ Stage Bx Move left to a blank go to stage Cx

▶ Stage By Move left to a blank go to stage Cy

moving to n1
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Turing Machine Examples
Binary Addition Example (3)

▶ Stage Cx Move left to find first 0, 1 or B

Turn 0 or B to X, turn 1 to Y and go to stage A

adding 0 to a digit finalises the result (no carry one)

▶ Stage Cy Move left to find first 0, 1 or B

Turn 0 or B to 1 and go to stage D

Turn 1 to 0, move left and go to stage Cy

dealing with the carry one in school arithmetic

▶ Stage D move right to X, Y or B and go to stage E

▶ Stage E replace 0 by X, 1 by Y, move right and go to
Stage A

finalising the value of a digit resulting from a carry

▶ Stage F move left and replace X by 0, Y by 1 and at B
halt
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Turing Machine Examples
Binary Addition Example (4)

▶ Represent the Turing Machine program as a list of
quintuples (q, X, p, Y, D)

▶ Stage A find the rightmost symbol

(q0, B, q1, B, R)

(q0,∗, q0,∗, R) * is a wild card, matches anything

(q1, B, q2, B, L)

(q1,∗, q1,∗, R)

(q2, 0, q3x , B, L)

(q2, 1, q3y , B, L)

(q2, B, q7, B, L)
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Turing Machine Examples
Binary Addition Example (5)

▶ Stage Bx move left to blank

(q3x , B, q4x , B, L)

(q3x ,∗, q3x ,∗, L)

▶ Stage By move left to blank

(q3y , B, q4y , B, L)

(q3y ,∗, q3y ,∗, L)

▶ Stage Cx move left to 0, 1, or blank

(q4x , 0, q0, x, R)

(q4x , 1, q0, y, R)

(q4x , B, q0, x, R)

(q4x ,∗, q4x ,∗, L)
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Turing Machine Examples
Binary Addition Example (6)

▶ Stage Cy move left to 0, 1, or blank

(q4y , 0, q5, 1, S)

(q4y , 1, q4y , 0, L)

(q4y , B, q5, 1, S)

(q4y ,∗, q4y ,∗, L)

▶ Stage D move right to x, y or B

(q5, x, q6, x, L)

(q5, y, q6, y, L)

(q5, B, q6, B, L)

(q5,∗, q5,∗, R)

▶ Stage E replace 0 by x, 1 by y

(q6, 0, q0, x, R)

(q6, 1, q0, y, R)
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Turing Machine Examples
Binary Addition Example (7)

▶ Stage F replace x by 0, y by 1

(q7, x, q7, 0, L)

(q7, y, q7, 1, L)

(q7, B, qh, B, R)

(q7,∗, q7,∗, L)

▶ Exercise Evaluate 11 + 10 , 101
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Turing Machine Examples
The Binary Addition Function (7a) — Meta-Exercise

▶ Identify (Q,Σ, Γ ,δ, q0, B, F)
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Turing Machine Examples
The Binary Addition Function (7b) — Meta-Exercise

▶ Identify (Q,Σ, Γ ,δ, q0, B, F)
▶ Q = {q0, q1, q2, q3x , q3y , q4x , q4y , q5, q6, q7, qh}

▶ q0, q1, q2 find rightmost symbol of second number
▶ q3x , q3y move left to inter-number blank
▶ q4x , q4y move left to 0, 1 or blank
▶ q5 move right to x, y or B
▶ q6 replace 0 by x, 1 by y and move right
▶ q7 replace x by 0, y by 1 and move left
▶ qh finish
▶ Σ = {0, 1}
▶ Γ = Σ∪ {B, x, y}
▶ δ :: Q× Γ → Q× Γ × {L, R, S}
δ(q, X), (p, Y, D)
δ is represented as {(q, X, p, Y, D)}
equivalent to {((q, X), (p, Y, D))} set of pairs

▶ Start with leftmost symbol under head, state q0
▶ B is a visible space
▶ F = {qh}
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Turing Machine Examples
Binary Addition Example (8a)

▶ Exercise Evaluate 11 + 10 , 101
▶ Stage A find the rightmost symbol

BBq011B10B Note space symbols B at start and end

⊢ BB1q01B10B

⊢ BB11q0B10B

⊢ BB11Bq110B

⊢ BB11B1q10B

⊢ BB11B10q1B

⊢ BB11B1q20B

⊢ BB11Bq3x1BB
▶ Stage Bx move left to blank

⊢ B11q3xB1BB
▶ Stage Cx move left to 0, 1, or blank

⊢ BB1q4x1B1BB

⊢ BB1Yq0B1BB
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Turing Machine Examples
Binary Addition Example (8b)

▶ Exercise Evaluate 11 + 10 , 101 (contd)
▶ Stage A find the rightmost symbol
⊢ BB1BYBq11BB
⊢ BB1YB1q1BB
⊢ BB1YBq21BB
⊢ BB1Yq3yBBBB
▶ Stage Cy move left to 0, 1, or blank
⊢ BB1q4yYBBBB
⊢ BBq4y1YBBBB
⊢ Bq4yB0YBBBB
⊢ Bq510YBBBB
▶ Stage D move right to x, y or B
⊢ Bq50YBBBB
⊢ B0q5YBBBB
⊢ Bq60YBBBB
▶ Stage E replace 0 by x, 1 by y
⊢ B1Xq0YBBBB
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Turing Machine Examples
Binary Addition Example (8c)

▶ Exercise Evaluate 11 + 10 , 101 (contd)

▶ Stage A find the rightmost symbol

⊢ B1XYq0BBBB

⊢ B1XYBq1BBB

⊢ B1XYq2BBBB

⊢ B1Xq7YBBBB

▶ Stage F replace x by 0, y by 1

⊢ B1q7X1BBBB

⊢ Bq7101BBBB

⊢ Bq7B101BBBB

⊢ Bqh101BBBB

▶ This is mimicking what you learnt to do on paper as a
child! Real step-by-step instructions

▶ See Morphett’s Turing machine simulator for more
examples (takes too long by hand!)
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Computability
Universal Turing Machine

▶ Universal Turing Machine, U, is a Turing Machine that
can simulate any arbitrary Turing machine, M

▶ Achieves this by encoding the transition function of M
in some standard way

▶ The input to U is the encoding for M followed by the
data for M

▶ See Turing machine examples
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Computability
Decidability

▶ Decidable — there is a TM that will halt with yes/no for
a decision problem — that is, given a string w over the
alphabet of P the TM with halt and return yes.no the
string is in the language P (same as recursive in
Recursion theory — old use of the word)

▶ Semi-decidable — there is a TM will halt with yes if
some string is in P but may loop forever on some inputs
(same as recursively enumerable) — Halting Problem

▶ Highly-undecidable — no outcome for any input —
Totality, Equivalence Problems
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Computability
Undecidable Problems

▶ Halting problem — the problem of deciding, given a
program and an input, whether the program will
eventually halt with that input, or will run forever —
term first used by Martin Davis 1952

▶ Entscheidungsproblem — the problem of deciding
whether a given statement is provable from the axioms
using the rules of logic — shown to be undecidable by
Turing (1936) by reduction from the Halting problem to
it

▶ Type inference and type checking in the second-order
lambda calculus (important for functional
programmers, Haskell, GHC implementation)

▶ Undecidable problem — see link to list
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Computability
Halting Problem — Sketch Proof (1)

▶ Halting problem — is there a program that can
determine if any arbitrary program will halt or continue
forever ?

▶ Assume we have such a program (Turing Machine)
h(f,x) that takes a program f and input x and
determines if it halts or not

h( f ,x )
= i f f (x ) runs forever

return True
else

return False

▶ We shall prove this cannot exist by contradiction
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Computability
Halting Problem — Sketch Proof (2)

▶ Now invent two further programs:

▶ q(f) that takes a program f and runs h with the input
to f being a copy of f

▶ r(f) that runs q(f) and halts if q(f) returns True,
otherwise it loops

q( f )
= h( f , f )

r ( f )
= i f q( f )

return
else

while True : continue

▶ What happens if we run r(r) ?

▶ If it loops, q(r) returns True and it does not loop —
contradiction.
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Computability
Why undecidable problems must exist

▶ A problem is really membership of a string in some
language

▶ The number of different languages over any alphabet of
more than one symbol is uncountable

▶ Programs are finite strings over a finite alphabet (ASCII
or Unicode) and hence countable.

▶ There must be an infinity (big) of problems more than
programs.

▶ Computational problem — defined by a function

▶ Computational problem is computable if there is a
Turing machine that will calculate the function.
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Computability
Computability and Terminology (1)

▶ The idea of an algorithm dates back 3000 years to
Euclid, Babylonians. . .

▶ In the 1930s the idea was made more formal: which
functions are computable?

▶ A function is a set of pairs f = {(x, f(x)) : x ∈ X∧ f(x) ∈ Y}
with the function property

▶ Function property: (a, b) ∈ f∧ (a, c) ∈ f ⇒ b == c

▶ Function property: Same input implies same output

▶ Note that maths notation is deeply inconsistent here —
see Function and History of the function concept

▶ What do we mean by computing a function — an
algorithm ?
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Functions
Relation and Rule

▶ The idea of function as a set of pairs (Binary relation)
with the function property (each element of the domain
has at most one element in the co-domain) is fairly
recent — see History of the function concept

▶ School maths presents us with function as rule to get
from the input to the output

▶ Example: the square function: square x = x× x

▶ But lots of rules (or algorithms) can implement the
same function

▶ square1 x = x^2

▶ square2 x =

x times︷ ︸︸ ︷
x + · · · + x if x is integer
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Computability
Computability and Terminology (2)

▶ In the 1930s three definitions:

▶ λ-Calculus, simple semantics for computation — Alonzo
Church

▶ General recursive functions — Kurt Gödel

▶ Universal (Turing) machine — Alan Turing
▶ Terminology:

▶ Recursive, recursively enumerable — Church, Kleene
▶ Computable, computably enumerable — Gödel, Turing
▶ Decidable, semi-decidable, highly undecidable
▶ In the 1930s, computers were human
▶ Unfortunate choice of terminology

▶ Turing and Church showed that the above three were
equivalent

▶ Church-Turing thesis — function is intuitively
computable if and only if Turing machine computable
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Computability
Reducing one problem to another

▶ To reduce problem P1 to P2, invent a construction that
converts instances of P1 to P2 that have the same
answer. That is:
▶ any string in the language P1 is converted to some string

in the language P2
▶ any string over the alphabet of P1 that is not in the

language of P1 is converted to a string that is not in the
language P2

▶ With this construction we can solve P1
▶ Given an instance of P1, that is, given a string w that

may be in the language P1, apply the construction
algorithm to produce a string x

▶ Test whether x is in P2 and give the same answer for w
in P1
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Computability
Problem Reduction

▶ Problem Reduction — Ordinary Example

▶ Want to phone Alice but don’t have her number

▶ You know that Bill has her number

▶ So reduce the problem of finding Alice’s number to the
problem of getting hold of Bill
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Computability
Direction of Reduction

▶ The direction of reduction is important

▶ If we can reduce P1 to P2 then (in some sense) P2 is at
least as hard as P1 (since a solution to P2 will give us a
solution to P1)

▶ So, if P2 is decidable then P1 is decidable

▶ To show a problem is undecidable we have to reduce
from an known undecidable problem to it

▶ ∀x(dpP1 (x) = dpP2
(reduce(x)))

▶ Since, if P1 is undecidable then P2 is undecidable
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Reductions & Non-Computable
Reductions

A1

input outputf A2
f(input)

▶ A reduction of problem P1 to problem P2
▶ transforms inputs to P1 into inputs to P2
▶ runs algorithm A2 (which solves P2) and
▶ interprets the outputs from A2 as answers to P1

▶ More formally: A problem P1 is reducible to a problem
P2 if there is a function f that takes any input x to P1
and transforms it to an input f(x) of P2

such that the solution of P2 on f(x) is the solution of P1
on x

75/141



Computability,
Complexity

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Lambda Calculus

Commentary 3

Complexity

Commentary 4

Future Work

References

Reductions & Non-Computible
Example: Squaring a Matrix

A1

M M2f A2
(M, M)

▶ Given an algorithm (A2) for matrix multiplication (P2)
▶ Input: pair of matrices, (M1, M2)
▶ Output: matrix result of multiplying M1 and M2

▶ P1 is the problem of squaring a matrix
▶ Input: matrix M
▶ Output: matrix M2

▶ Algorithm A1 has

f(M) = (M, M)

uses A2 to calculate M×M = M2
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Reductions & Non-Computable
Non-Computable Problems

A1

input outputf A2
f(input)

▶ If P2 is computable (A2 exists) then P1 is computable (f
being simple or polynomial)

▶ Equivalently If P1 is non-computable then P2 is
non-computable

▶ Exercise: show B → A ≡ ¬A→ ¬B
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Reductions & Non-Computable
Contrapositive

▶ Proof by Contrapositive

▶ B → A ≡ ¬B∨ A by truth table or equivalences

≡ ¬(¬A)∨¬B commutativity and negation laws

≡ ¬A → ¬B equivalences

▶ Common error: switching the order round
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Reductions & Non-Computable
Totality Problem

HP

(P, x) YES/NOf TP
Q

▶ Totality Problem
▶ Input: program Q
▶ Output: YES if Q terminates for all inputs else NO

▶ Assume we have algorithm TP to solve the Totality
Problem

▶ Now reduce the Halting Problem to the Totality Problem
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Reductions & Non-Computable
Totality Problem

HP

(P, x) YES/NOf TP
Q

▶ Define f to transform inputs to HP to TP pseudo-Python

def f(P,x) :
def Q(y):
# ignore y
P(x)

return Q

▶ Run TP on Q
▶ If TP returns YES then P halts on x
▶ If TP returns NO then P does not halt on x

▶ We have solved the Halting Problem — contradiction
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Reductions & Non-Computable
Negative Value Problem

HP

(P, x) YES/NOf NVP
(Q, v)

▶ Negative Value Problem
▶ Input: program Q which has no input and variable v used

in Q
▶ Output: YES if v ever gets assigned a negative value else

NO

▶ Assume we have algorithm NVP to solve the Negative
Value Problem

▶ Now reduce the Halting Problem to the Negative Value
Problem
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Reductions & Non-Computable
Negative Value Problem

HP

(P, x) YES/NOf NVP
(Q, v)

▶ Define f to transform inputs to HP to NVP pseudo-Python

def f(P,x) :
def Q(y):
# ignore y
P(x)
v = -1

return (Q,var(v))

▶ Run NVP on (Q, var(v)) var(v) gets the variable name

▶ If NVP returns YES then P halts on x
▶ If NVP returns NO then P does not halt on x

▶ We have solved the Halting Problem — contradiction
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Reductions & Non-Computable
Squaring Function Problem

HP

(P, x) YES/NOf SFP
Q

▶ Squaring Function Problem
▶ Input: program Q which takes an integer, y
▶ Output: YES if Q always returns the square of y else NO

▶ Assume we have algorithm SFP to solve the Squaring
Function Problem

▶ Now reduce the Halting Problem to the Squaring
Function Problem
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Reductions & Non-Computable
Squaring Function Problem

HP

(P, x) YES/NOf SFP
Q

▶ Define f to transform inputs to HP to SFP pseudo-Python

def f(P,x) :
def Q(y):
P(x)
return y * y

return Q

▶ Run SFP on Q
▶ If SFP returns YES then P halts on x
▶ If SFP returns NO then P does not halt on x

▶ We have solved the Halting Problem — contradiction
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Reductions & Non-Computable
Equivalence Problem

HP

P YES/NOf EP
(P1, P2)

▶ Equivalence Problem
▶ Input: two programs P1 and P2
▶ Output: YES if P1 and P2 solve the ame problem (same

output for same input) else NO

▶ Assume we have algorithm EP to solve the Equivalence
Problem

▶ Now reduce the Totality Problem to the Equivalence
Problem
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Reductions & Non-Computable
Equivalence Problem

TP

P YES/NOf EP
(P1, P2)

▶ Define f to transform inputs to TP to EP pseudo-Python

def f(P) :
def P1(x):
P(x)
return "Same string"

def P2(x)
return "Same string"

return (P1,P2)

▶ Run EP on (P1, P2)
▶ If EP returns YES then P halts on all inputs
▶ If EP returns NO then P does not halt on all inputs

▶ We have solved the Totality Problem — contradiction
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Reductions & Non-Computable
Rice’s Theorem

A1

input outputf A2
f(input)

▶ Rice’s Theorem all non-trivial, semantic properties of
programs are undecidable. H G Rice 1951 PhD Thesis

▶ Equivalently: For any non-trivial property of partial
functions, no general and effective method can decide
whether an algorithm computes a partial function with
that property.

▶ A property of partial functions is called trivial if it holds
for all partial computable functions or for none.
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Reductions & Non-Computable
Rice’s Theorem

▶ Rice’s Theorem and computability theory
▶ Let S be a set of languages that is nontrivial, meaning

▶ there exists a Turing machine that recognizes a
language in S

▶ there exists a Turing machine that recognizes a
language not in S

▶ Then, it is undecidable to determine whether the
language recognized by an arbitrary Turing machine
lies in S.

▶ This has implications for compilers and virus checkers

▶ Note that Rice’s theorem does not say anything about
those properties of machines or programs that are not
also properties of functions and languages.

▶ For example, whether a machine runs for more than
100 steps on some input is a decidable property, even
though it is non-trivial.
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Lambda Calculus
Motivation

▶ Lambda Calculus is a formal system in mathematical
logic for expressing computation based on function
abstraction and application using variable binding and
substitution

▶ Lambda calculus is Turing complete — it can simulate
any Turing machine

▶ Introduced by Alonzo Church in 1930s

▶ Basis of functional programming languages — Lisp,
Scheme, ISWIM, ML, SASL, KRC, Miranda, Haskell, Scala,
F#. . .

▶ Note this is not part of M269 but may help understand
ideas of computability
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Functions
Binding and Substitution

▶ School maths introduces functions as

f(x) = 3x2 + 4x + 5

▶ Substitution: f(2) = 3× 22 + 4× 2 + 5 = 25

▶ Generalise: f(x) = ax2 + bx + c

▶ What is wrong with the following:

▶ f(a) = a× a2 + b× a + c

▶ The ideas of free and bound variables and substitution
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Expressions
Evaluation Strategies (a)

▶ In evaluating an expression we have choices about the
order in which we evaluate subterms

▶ Some choices may involve more work than others but
the Church-Rosser theorem ensures that if the
evaluation terminates then all choices get to the same
answer

▶ The second edition of a famous book on Functional
programming — Bird (1998, Ex 1.2.2, page 6)
Introduction to Functional Programming using Haskell
— had the following exercise:

▶ How many ways can you evaluate (3 + 7)2

List the evaluations and assumptions

▶ The first edition — Bird and Wadler (1988, Ex 1.2.1,
page 6) Introduction to Functional Programming — had
the exercise:

▶ How many ways can you evaluate
(
(3 + 7)2

)2
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Expressions
Evaluation Strategies (b)

▶ How many ways can you evaluate (3 + 7)2

List the evaluations and assumptions

▶ Answer 3 ways

▶ Reducible expressions (redexes)

x2 → x× x where x is a term

a + b where a and b are numbers

x× y where x and y are numbers

1 [sqr (3+7),((3+7)*(3+7)),((3+7)*10),(10*10),100]
2 [sqr (3+7),((3+7)*(3+7)),(10*(3+7)),(10*10),100]
3 [sqr (3+7),sqr 10,(10*10),100]

▶ The assumed redexes do not include distributive laws

(a + b)× (x + y) → a× x + a× y + b× x + b× y

▶ This would increase the number of different evaluations
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Expressions
Evaluation Strategies (c)

▶ How many ways can you evaluate
(
(3 + 7)2

)2

▶ Answer 547 ways

1[sqr sqr (3+7),(sqr (3+7)*sqr (3+7)),(sqr (3+7)*((3+7)*(3+7))), (sqr (3+7)*((3+7)*10)),(sqr (3+7)*(10*10)), (sqr (3+7)*100),(((3+7)*(3+7))*100),(((3+7)*10)*100), ((10*10)*100),(100*100),10000]
2[sqr sqr (3+7),(sqr (3+7)*sqr (3+7)),(sqr(3+7)*((3+7)*(3+7))), (sqr (3+7)*((3+7)*10)),(sqr (3+7)*(10*10)), (sqr (3+7)*100),(((3+7)*(3+7))*100),((10*(3+7))*100), ((10*10)*100),(100*100),10000]

546[sqr sqr (3+7),sqr sqr 10,sqr (10*10), ((10*10)*(10*10)),(100*(10*10)),(100*100),10000]
547[sqr sqr (3+7),sqr sqr 10,sqr (10*10),sqr 100,(100*100),10000]

▶ Enumerating all 547 ways may have taken some
concentration
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Expressions
Evaluation Strategies (d)

▶ The actual Evaluation strategy used by a particular
programming language implementation may have
optimisations which make an evaluation which looks
costly to be somewhat cheaper

▶ For example, the Haskell implementation GHC
optimises the evaluation of common subexpressions so
that (3+7) will be evaluated only once

1[sqr sqr (3+7),(sqr (3+7)*sqr (3+7)),(sqr (3+7)*((3+7)*(3+7))), (sqr (3+7)*((3+7)*10)),(sqr (3+7)*(10*10)), (sqr (3+7)*100),(((3+7)*(3+7))*100),(((3+7)*10)*100), ((10*10)*100),(100*100),10000]
2[sqr sqr (3+7),(sqr (3+7)*sqr (3+7)),(sqr(3+7)*((3+7)*(3+7))), (sqr (3+7)*((3+7)*10)),(sqr (3+7)*(10*10)), (sqr (3+7)*100),(((3+7)*(3+7))*100),((10*(3+7))*100), ((10*10)*100),(100*100),10000]
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Lambda Calculus
Optional Topic

▶ M269 Unit 6/7 Reader Logic and the Limits of
Computation alludes to other formalisations with equal
power to a Turing Machine (pages 81 and 87)

▶ The Reader mentions Alonzo Church and his 1930s
formalism (page 87, but does not give any detail)

▶ The notes in this section are optional and for
comparison with the Turing Machine material

▶ Turing machine: explicit memory, state and implicit
loop and case/if statement

▶ Lambda Calculus: function definition and application,
explicit rules for evaluation (and transformation) of
expressions, explicit rules for substitution (for function
application)

▶ Lambda calculus reduction workbench

▶ Lambda Calculus Calculator
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Lambda Calculus
Lambda Terms

▶ A variable, x, is a lambda term

▶ If M is a lambda term and x is a variable, then (λx.M) is
a lambda term — a lambda abstraction or function
definition

▶ If M and N are lambda terms, the (M N) is lambda term
— an application

▶ Nothing else is a lambda term
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Lambda Calculus
Lambda Terms — Notational Conveniences

▶ Outermost parentheses are omitted (M N) ≡ M N

▶ Application is left associative ((M N) P) ≡ M N P

▶ The body of an abstraction extends as far right as
possible, subject to scope limited by parentheses

▶ λx.M N ≡ λx.(M N) and not (λx.M) N

▶ λx.λy.λz.M ≡ λx y z.M
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Lambda Calculus
Lambda Calculus Semantics

▶ What do we mean by evaluating an expression ?

▶ To evaluate (λx.M)N

▶ Evaluate M with x replaced by N

▶ This rule is called β-reduction

▶ (λx.M)N →
β

M[x := N]

▶ M[x := N] is M with occurrences of x replaced by N

▶ This operation is called substitution — see rules below
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Lambda Calculus
β-Reduction Examples

▶ (λx.x)z → z

▶ (λx.y)z → y

▶ (λx.x y)z→ z y

a function that applies its argument to y

▶ (λx.x y)(λz.z) → (λz.z)y→ y

▶ (λx.λy.x y)z→ λy.z y

A curried function of two arguments — applies first
argument to second

▶ currying replaces f(x, y) with (f x)y — nice notational
convenience — gives partial application for free
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Lambda Calculus
Substitution

▶ To define substitution use recursion on the structure of
terms

▶ x[x := N] ≡ N

▶ y[x := N] ≡ y

▶ (P Q)[x := N] ≡ (P[x := N]) (Q[x := N])

▶ (λx.M)[x := N] = λx.M

In (λx.M), the x is a formal parameter and thus a local
variable, different to any other

▶ (λy.M)[x := N] = what?

▶ Look back at the school maths example above — a
subtle point
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Lambda Calculus
Substitution (2)

▶ Renaming bound variables consistently is allowed

▶ λx.x ≡ λy.y ≡ λz.z

▶ λy.λx.y ≡ λz.λx.z

▶ This is called α-conversion

▶ (λx.λy.x y) y → (λx.λz.x z) y → λz.y z
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Lambda Calculus
Substitution (3)

▶ Bound and Free Variables

▶ BV(x) = �
▶ BV(λx.M) = BV(M)∪ {x}

▶ BV(M N) = BV(M)∪ BV(N)

▶ FV(x) = {x}

▶ FV(λx.M) = FV(M) – {x}

▶ FV(M N) = FV(M)∪ FV(N)

▶ The above is a formalisation of school maths

▶ A Lambda term with no free variables is said to be
closed — such terms are also called combinators — see
Combinator and Combinatory logic (Hankin, 2004,
page 10)

▶ α-conversion

▶ λx.M →
α
λy.M[x := y] if y ∉ FV(M)

102/141

https://wiki.haskell.org/Combinator
https://en.wikipedia.org/wiki/Combinatory_logic


Computability,
Complexity

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Motivation

Lambda Terms

Substitution

Lambda Calculus
Encodings

Commentary 3

Complexity

Commentary 4

Future Work

References

Lambda Calculus
Substitution (4)

▶ β-reduction final rule

▶ (λy.M)[x := N] = λy.M if x ∉ FV(M)

▶ (λy.M)[x := N] = λy.M[x := N]

if x ∈ FV(M) and y ∉ FV(N)

▶ (λy.M)[x := N] = λz.M[y := z][x := N]

if x ∈ FV(M) and y ∈ FV(N)

z is chosen to be first variable z ∉ FV(N M)

▶ This is why you cannot go f(a) when given

▶ f(x) = ax2 + bx + c

▶ School maths — but made formal
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Lambda Calculus
Rules Summary — Conversion

▶ α-conversion renaming bound variables

▶ λx.M →
α
λy.M[x := y] if y ∉ FV(M)

▶ β-conversion function application

▶ (λx.M)N →
β

M[x := N]

▶ η-conversion extensionality

▶ λx.F x→
η

F if x ∉ FV(F)
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Lambda Calculus
Rules Summary — Substitution

1. x[x := N] ≡ N

2. y[x := N] ≡ y

3. (P Q)[x := N] ≡ (P[x := N]) (Q[x := N])

4. (λx.M)[x := N] = λx.M

5. (λy.M)[x := N] = λy.M if x ∉ FV(M)

6. (λy.M)[x := N] = λy.M[x := N]

if x ∈ FV(M) and y ∉ FV(N)

7. (λy.M)[x := N] = λz.M[y := z][x := N]

if x ∈ FV(M) and y ∈ FV(N)

z is chosen to be first variable z ∉ FV(N M)
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Lambda Calculus
Lambda Calculus Encodings

▶ So what does this formalism get us ?

▶ The Lambda Calculus is Turing complete

▶ We can encode any computation (if we are clever
enough)

▶ Booleans and propositional logic

▶ Pairs

▶ Natural numbers and arithmetic

▶ Looping and recursion
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Lambda Calculus Encodings
Booleans and Propositional Logic

▶ True = λx.λy.x

▶ False = λx.λy.y

▶ IF a THEN b ELSE c ≡ a b c

▶ IF True THEN b ELSE c → (λx.λy.x) b c

▶ → (λy.b) c→ b

▶ IF False THEN b ELSE c → (λx.λy.y) b c

▶ → (λy.y) c→ c
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Lambda Calculus Encodings
Booleans and Propositional Logic (2)

▶ Not = λx.((x False)True)

▶ Not x = IF x THEN False ELSE True

▶ Exercise: evaluate Not True

▶ And = λx.λy.((x y) False)

▶ And x y = IF x THEN y ELSE False

▶ Exercise: evaluate And True False

▶ Or = λx.λy.((x True ) y)

▶ Or x y = IF x THEN True ELSE y

▶ Exercise: evaluate Or False True
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Lambda Calculus Encodings
Booleans and Propositional Logic (2) — Exercises

▶ Exercise: evaluate Not True

▶ → (λx.((x False) True)) True

▶ → (True False) True

▶ Could go straight to False from here, but we shall fill in
the detail

▶ → ((λx.λy.x) (λx.λy.y)) (λx.λy.x)

▶ → (λy.(λx.λy.y)) (λx.λy.x)

▶ → (λx.λy.y) ≡ False

▶ Exercise: evaluate And True False

▶ →(IF x THEN y ELSE False) True False

▶ →(IF True THEN False ELSE False) →False

▶ Exercise: evaluate Or False True

▶ →(IF x THEN True ELSE y) False True

▶ →(IF False THEN True ELSE True) →True
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Lambda Calculus Encodings
Natural Numbers — Church Numerals

▶ Encoding of natural numbers

▶ 0 = λf.λy.y

▶ 1 = λf.λy.f y

▶ 2 = λf.λy.f (f y)

▶ 3 = λf.λy.f (f (f y))

▶ Successor Succ = λz.λf.λy.f(z f y)

▶ Succ 0 = (λz.λf.λy.f(z f y))(λf.λy.y)

▶ → λf.λy.f ((λf.λy.y) f y)

▶ → λf.λy.f ((λy.y) y)

▶ → λf.λy.f y = 1
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Lambda Calculus Encodings
Natural Numbers — Operations

▶ isZero = λz.z(λy. False ) True

▶ Exercise: evaluate isZero 0

▶ If M and N are numerals (as λ expressions)

▶ Add M N = λx.λy.(M x) ((N x) y)

▶ Mult M N = λx.(M (N x))

▶ Exercise: show 1 + 1 = 2
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Lambda Calculus Encodings
Pairs

▶ Encoding of a pair a, b

▶ (a, b) = λx. IF x THEN a ELSE b

▶ FST = λf.f True

▶ SND = λf.f False

▶ Exercise: evaluate FST (a, b)

▶ Exercise: evaluate SND (a, b)
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Lambda Calculus Encodings
The Fixpoint Combinator

▶ Y = λf.(λx.f (x x)) (λx.f (x x))

▶ Y F = λf.(λx.f (x x)) (λx.f (x x)) F

▶ → (λx.F (x x))(λx.F (x x))

▶ F((λx.F (x x)) (λx.F (x x))) = F (Y F)

▶ (Y F) is a fixed point of F

▶ We can use Y to achieve recursion for F
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Lambda Calculus Encodings
The Fixpoint Combinator — Recursion

▶ Recursion implementation — Factorial

▶ Fact = λf.λn. IF n = 0 THEN 1 ELSE n∗ (f (n – 1))

▶ (Y Fact)1 = (Fact (Y Fact))1

▶ → IF 1 = 0 THEN 1 ELSE 1∗ ((Y Fact) 0)

▶ → 1∗ ((Y Fact) 0)

▶ → 1∗ (Fact (Y Fact) 0)

▶ → 1∗ IF 0 = 0 THEN 1 ELSE 0∗ ((Y Fact) (0 – 1))

▶ → 1∗ 1 → 1

▶ Factorial n = (Y Fact) n

▶ Recursion implemented with a non-recursive function Y
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Computability
Turing Machines, Lambda Calculus and Programming Languages

▶ Anything computable can be represented as TM or
Lambda Calculus

▶ But programs would be slow, large and hard to read

▶ In practice use the ideas to create more expressive
languages which include built-in primitives

▶ Also leads to ideas on data types

▶ Polymorphic data types

▶ Algebraic data types

▶ Also leads on to ideas on higher order functions —
functions that take functions as arguments or returns
functions as results.
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Commentary 3
Complexity

3 Complexity

▶ Complexity Classes P and NP

▶ Class NP

▶ NP-completeness

▶ NP-completeness and Boolean Satisfiability
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Complexity
P and NP

▶ P, the set of all decision problems that can be solved in
polynomial time on a deterministic Turing machine

▶ NP, the set of all decision problems whose solutions can
be verified (certificate) in polynomial time

▶ Equivalently, NP, the set of all decision problems that
can be solved in polynomial time on a non-deterministic
Turing machine

▶ A decision problem, dp is NP-complete if
1. dp is in NP and
2. Every problem in NP is reducible to dp in polynomial time

▶ NP-hard — a problem satisfying the second condition,
whether or not it satisfies the first condition. Class of
problems which are at least as hard as the hardest
problems in NP. NP-hard problems do not have to be in
NP and may not be decision problems
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Complexity
P and NP — Diagram

Euler diagram for P, NP, NP-complete and NP-hard set of
problems

Source: Wikipedia NP-complete entry
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Class NP
Certificate and Verifier

▶ To formalise the definition of the class NP, we need to
formalise the idea of checking a candidate solution

▶ Define a certificate for each problem input that would
return Yes

▶ Describe the verifier algorithm

▶ Demonstrate the verifier algorithm has polynomial
complexity

▶ The terms certificate and verifier have technical
definitions in terms of languages and Turing Machines
but can be thought of as candidate solution and checker
algorithm
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Class NP
Example Decision Problems (1)

▶ Composite Numbers Given a number N decide if N is a
composite (i.e. non-prime) number
Certificate factorization of N

▶ Connectivity Given a graph G and two vertices s, t in G,
decide if s is connected to t in G.
Certificate path from s to t

▶ Linear Programming Given a list of m linear
inequalities with rational coefficients over n variables
u1, . . . , un (a linear inequality has the form
a1u1 + a2u2 · · · + anun à b for some coefficients
a1, . . . , anb), decide if there is an assignment of rational
numbers to the variables u1, . . . , un which satisfies all
the inequalities
Certificate is the assignment
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Class NP
Example Decision Problems (2)

▶ The above are in P

▶ Composite Numbers, Connectivity and Linear
programming are in P

▶ Composite Numbers follows from Integer factorization
and the AKS primality test from 2004

▶ Connectivity follows from the breadth-first search
algorithm

▶ Linear programming shown to be in P by the Ellipsoid
method
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Class NP
Example Decision Problems (3)

▶ Integer Programming some or all variables are
restricted to be integers

▶ Travelling Salesperson Given a set of nodes and
distances between all pairs of nodes and a number k,
decide if there is a closed circuit that visits every node
exactly once and has total length at most k
Certificate sequence of nodesin such a tour

▶ Subset sum Given a list of numbers and a number T,
decide if there is a subset that adds up to T
Certificate list of members of such a subset

▶ Independent set (graph theory) A subgraph of G with
of at least k vertices which have no edges between them
Certificate the list of k vertices

▶ Clique problem Given a graph and a number k, decide
if there is a complete subgraph (clique) of size k
Certificate list pf nodes. For explanation see Prove
Clique is NP
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Class NP
Example Decision Problems (4)

▶ The above are NP-complete — see List of NP-complete
problems

▶ The following two are not known to be P nor
NP-complete

▶ Graph Isomorphism Given two n× n adjacency
matrices M1,M2, decide if M1 and M2 define the same
graph (up to renaming of the vertices)
Certificate the permutation π : [n]→ [n] such that M2 is
equal to M1 after reordering the indices of M1
according to π

▶ Integer factorization Given three numbers N, L, U
decide if N has a prime factor p in the interval [L, U]
Certificate is the factorization of N
Source Arora and Barak (2009, page 49) Computational Complexity:
A Modern Approach and contained links
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Complexity
NP-complete problems

▶ Boolean satisfiability (SAT) Cook-Levin theorem

▶ Conjunctive Normal Form 3SAT

▶ Hamiltonian path problem

▶ Travelling salesman problem

▶ NP-complete — see list of problems
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Complexity
Knapsack Problem

Source & Explanation: XKCD 287
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NP-Completeness and Boolean Satisfiability
Points on Notes

▶ The Boolean satisfiability problem (SAT) was the first
decision problem shown to be NP-Complete

▶ This section gives a sketch of an explanation

▶ Health Warning different texts have different notations
and there will be some inconsistency in these notes

▶ Health warning these notes use some formal notation
to make the ideas more precise — computation requires
precise notation and is about manipulating strings
according to precise rules.
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NP-Completeness and Boolean Satisfiability
Alphabets, Strings and Languages

▶ Notation:

▶ Σ is a set of symbols — the alphabet

▶ Σk is the set of all string of length k, which each symbol
from Σ

▶ Example: if Σ = {0, 1}
▶ Σ1 = {0, 1}
▶ Σ2 = {00, 01, 10, 11}

▶ Σ0 = {ϵ} where ϵ is the empty string

▶ Σ∗ is the set of all possible strings over Σ
▶ Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ . . .
▶ A Language, L, over Σ is a subset of Σ∗
▶ L ⊆ Σ∗
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NP-Completeness and Boolean Satisfiability
Language Accepted by a Turing Machine

▶ Language accepted by Turing Machine, M denoted by
L(M)

▶ L(M) is the set of strings w ∈ Σ∗ accepted by M

▶ For Final States F = {Y, N}, a string w ∈ Σ∗ is accepted
by M a (if and only if) M starting in q0 with w on the
tape halts in state Y

▶ Calculating a function (function problem) can be turned
into a decision problem by asking whether f(x) = y
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NP-Completeness and Boolean Satisfiability
The NP-Complete Class

▶ If we do not know if P ≠ NP, what can we say ?

▶ A language L is NP-Complete if:
▶ L ∈ NP and
▶ for all other L′ ∈ NP there is a polynomial time

transformation (Karp reducible, reduction) from L′ to L

▶ Problem P1 polynomially reduces (Karp reduces,
transforms) to P2, written P1 ∝ P2 or P1 ≤p P2, iff
∃f : dpP1 → dpP2

such that
▶ ∀I ∈ dpP1

[I ∈ YP1 a f(I) ∈ YP2 ]
▶ f can be computed in polynomial time
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NP-Completeness and Boolean Satisfiability
The NP-Complete Class (2)

▶ More formally, L1 ⊆ Σ∗1 polynomially transforms to
L2 ⊆ Σ∗2 , written L1 ∝ L2 or L1 ≤p L2, iff ∃f : Σ∗1 → Σ∗2
such that
▶ ∀x ∈ Σ∗1 [x ∈ L1 a f(x) ∈ L2]
▶ There is a polynomial time TM that computes f

▶ Transitivity If L1 ∝ L2 and L2 ∝ L3 then L1 ∝ L3

▶ If L is NP-Hard and L ∈ P then P = NP

▶ If L is NP-Complete, then L ∈ P if and only if P = NP

▶ If L0 is NP-Complete and L ∈ NP and L0 ∝ L then L is
NP-Complete

▶ Hence if we find one NP-Complete problem, it may
become easier to find more

▶ In 1971/1973 Cook-Levin showed that the Boolean
satisfiability problem (SAT) is NP-Complete
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NP-Completeness and Boolean Satisfiability
The Boolean Satisfiability Problem

▶ A propositional logic formula or Boolean expression is
built from variables, operators: AND (conjunction, ∧),
OR (disjunction, ∨), NOT (negation, ¬)

▶ A formula is said to be satisfiable if it can be made True
by some assignment to its variables.

▶ The Boolean Satisfiability Problem is, given a formula,
check if it is satisfiable.
▶ Instance: a finite set U of Boolean variables and a finite

set C of clauses over U
▶ Question: Is there a satisfying truth assignment for C ?

▶ A clause is is a disjunction of variables or negations of
variables

▶ Conjunctive normal form (CNF) is a conjunction of
clauses

▶ Any Boolean expression can be transformed to CNF

131/141



Computability,
Complexity

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Computability

Commentary 3

Complexity
P and NP

Class NP

NP-completeness

Boolean Satisfiability

Commentary 4

Future Work

References

NP-Completeness and Boolean Satisfiability
The Boolean Satisfiability Problem (2)

▶ Given a set of Boolean variable U = {u1, u2, . . . , un}

▶ A literal from U is either any ui or the negation of some
ui (written ui)

▶ A clause is denoted as a subset of literals from U —
{u2, u4, u5}

▶ A clause is satisfied by an assignment to the variables if
at least one of the literals evaluates to True (just like
disjunction of the literals)

▶ Let C be a set of clauses over U — C is satisfiable iff
there is some assignment of truth values to the
variables so that every clause is satisfied (just like CNF)

▶ C = {{u1, u2, u3}, {u2, u3}, {u2, u3}} is satisfiable

▶ C = {{u1, u2}, {u1, u2}, {u1}} is not satisfiable
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NP-Completeness and Boolean Satisfiability
The Boolean Satisfiability Problem (3)

▶ Proof that SAT is NP-Complete looks at the structure of
NDTMs and shows you can transform any NDTM to SAT
in polynomial time (in fact logarithmic space suffices)

▶ SAT is in NP since you can check a solution in
polynomial time

▶ To show that ∀L ∈ NP : L∝ SAT invent a polynomial
time algorithm for each polynomial time NDTM, M,
which takes as input a string x and produces a Boolean
formula Ex which is satisfiable iff M accepts x

▶ See Cook-Levin theorem
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NP-Completeness and Boolean Satisfiability
Coping with NP-Completeness

▶ What does it mean if a problem is NP-Complete ?
▶ There is a P time verification algorithm.
▶ There is a P time algorithm to solve it iff P = NP (?)
▶ No one has yet found a P time algorithm to solve any

NP-Complete problem
▶ So what do we do ?

▶ Improved exhaustive search — Dynamic Programming;
Branch and Bound

▶ Heuristic methods — acceptable solutions in acceptable
time — compromise on optimality

▶ Average time analysis — look for an algorithm with
good average time — compromise on generality (see
Big-O Algorithm Complexity Cheatsheet)

▶ Probabilistic or Randomized algorithms — compromise
on correctness
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Commentary 4
Future Work, Other Examples, References

4 Future Work, Other Examples, References

▶ Future work — Tutorials and TMAs

▶ Other examples

▶ References and other sources

▶ Colophon

▶ LaTeX with Beamer, Listings and other packages

▶ Index of Python code and diagrams

▶ PGF/TikZ for the diagrams

▶ External copies of the diagrams as PDF with tight bounding
boxes are available
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What Next ?
Programming, Debugging, Psychology

Although programming techniques have improved
immensely since the early days, the process of finding and
correcting errors in programming — known graphically if
inelegantly as debugging — still remains a most difficult,
confused and unsatisfactory operation. The chief impact of
this state of affairs is psychological. Although we are happy
to pay lip-service to the adage that to err is human, most of
us like to make a small private reservation about our own
performance on special occasions when we really try. It is
somewhat deflating to be shown publicly and
incontrovertibly by a machine that even when we do try, we
in fact make just as many mistakes as other people. If your
pride cannot recover from this blow, you will never make a
programmer.
Christopher Strachey, Scientific American 1966 vol 215 (3) September

pp112–124
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What Next ?
To err is human ?

▶ To err is human, to really foul things up requires a
computer.

▶ Attributed to Paul R. Ehrlich in 101 Great Programming
Quotes

▶ Attributed to Bill Vaughn in Quote Investigator

▶ Derived from Alexander Pope (1711, An Essay on
Criticism)

▶ To Err is Humane; to Forgive, Divine
▶ This also contains

A little learning is a dangerous thing;
Drink deep, or taste not the Pierian Spring

▶ In programming, this means you have to read the
fabulous manual (RTFM)
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Future Work
TMA03 Topics

▶ Abstract Data Types

▶ Queues, Bags, Binary Trees

▶ Logic and SQL

▶ Computability, Complexity
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Future Work
Dates

▶ Sunday, 7 May 2023 online tutorial TMA03 topics

▶ Thursday, 18 May 2023 TMA03 due

▶ Please email me with any requests for particular topics
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Web Sites

Web Sites
Computability

▶ Logic
▶ WFF, WFF’N Proof online

▶ Computability
▶ Computability
▶ Computable function
▶ Decidability (logic)
▶ Turing Machines
▶ Universal Turing Machine
▶ Turing machine simulator
▶ Lambda Calculus
▶ Von Neumann Architecture
▶ Turing Machine XKCD 205 Candy Button Paper
▶ Turing Machine XKCD 505 A Bunch of Rocks
▶ RIP John Conway Why can Conway’s Game of Life be

classified as a universal machine?
▶ Phil Wadler Bright Club on Computability
▶ Bridges: Theory of Computation: Halting Problem
▶ Bridges: Theory of Computation: Other Non-computable

Problems
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Web Sites
Complexity

▶ Complexity
▶ Complexity class
▶ NP complexity
▶ NP complete
▶ Reduction (complexity)
▶ P versus NP problem
▶ Graph of NP-Complete Problems
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