M259 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect
Programming

Python

M259 Python, Logic, ADTs Python Checking
Tools
M269 Python, ADTS Prsntn 2025

Complexity
Logarithms
Before Calculators
Phll MOIyneuX Logic Introduction
ADTs

Future Work

Haskell Example

13 November 2025 References

1/238

M269 Tutorial: Python, Logic, ADTs

Agenda

>

vVVYy VvV Vv VvV VvYy

Introductions

Programming — Paradigms and Step-by-Step Guide
Programming and Python

Complexity and Big-O/Big-Theta Notation

... with a little classical logic

Abstract Data Type examples

Implementing Lists in Lists

A look towards the next topics

> Beware: some topics are are included for interest only
and are not part of M269
> These notes use recursion, explained at the time

Adobe Connect — if you or | get cut off, wait till we
reconnect (or send you an email)

Time: about 1 hour
Do ask questions or raise points.
Slides/Notes M269Tutorial20251123ProgPythonADTPrsntn2025)

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

2/238

http://pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269Tutorial20251123ProgPythonADTPrsntn2025J/

M269 Tutorial oait, MDY

Introductions — Phil Phil Molyneux
. Agenda
» Name Phil Molyneux e Connect
> Backgrou”d Programming
> Undergraduate: Physics and Maths (Sussex) Python
> Postgraduate: Physics (Sussex), Operational Research Python Checking
(Brunel), Computer Science (University College, London) ——
> Worked in Operational Research, Business IT, Web Logarithms

technologies, Functional Programming

Before Calculators

> First programming languages Fortran, BASIC, Pascal Logic Introduction
> Favourite Software AoTE
3 . Future Work

> Haskell — pure functional programming language Haskell Example

> Text editors TextMate, Sublime Text — previously Emacs R

> Word processing in IATEX — all these slides and notes

> Mac OS X
> Learning style — | read the manual before using the

software

3/238

https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://www.haskell.org/
https://macromates.com
http://www.sublimetext.com
https://www.emacswiki.org/
https://www.latex-project.org/
https://developer.apple.com/

M250 Tutorial

Introductions — You

>
>

Name?
Favourite software/Programming language ?

Favourite text editor or integrated development
environment (IDE)

List of text editors, Comparison of text editors and
Comparison of integrated development environments

Other OU courses ?
Anything else?

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

4/238

https://en.wikipedia.org/wiki/Text_editor
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/List_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments

Adobe Connect

Interface — Host View

M250 Units 10, 11

Collections, Arrays, Sets, Maps, Lists

Phil Molyneux

18 April 2021

M250 Units 10, 11
Phil Molyneux
M250 Units 10, 11
Tutorial Agenda
Adobe Connect

Classes and
Interfaces.

Sets
Maps
Uists

Collection
Implementations.

TMAO3 Practice
Quiz

Common Mistakes
sshell
What Next ?

References,

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

5/238

M259 Python,

Adobe Connect Logic, ADTS

Interface — Participant View Phil Molyneux

Agenda

Adobe Connect

M250 Units 10, 11

M250 Units 10, 11 Tutorial

Phil Molyneux Interface
Introductions §
’zsnnz&n Settings
> Introductions e Sharing Screen &
Applications

> Name Phil Molyneux Classes and

> Learning Style: Reads the manual s

> Learnt last month Framework for Teaching Recursion
and wrote notes on Recursion Teaching

> You?

Ending a Meeting
Invite Attendees
Layouts

o Chat Pods

Web Graphics
Recordings

Sets

Maps

Uists

Collection
Implementations.

TMAO3 Practice
Quiz

Common Mistakes
Ishell
What Next ?

Programming

References

Python

Python Checking
Tools

Complexity

Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

6/238

Adobe Connect

Settings

>

v

Everybody [Menu bar>> Meeting>> Speaker & Microphone Setup]

[Menu bar>> Microphone>> Allow Participants to Use Microphone] 4

Check Participants see the entire slide Workaround

» Disable Draw [Share pod>> Menu bar>> Draw icon]
> Fit Width [Share p0d>> Bottom bar>> Fit Width icon] %4

[Meeting)) Preferences>> General >> Host Cursor>> Show to all attendees

[Menu bar>> Video>> Enable Webcam for Participants] 4

Do not Enable single speaker mode
Cancel hand tool
Do not enable green pointer

Recording [Meeting>> Record Session] v

Documents Upload PDF with drag and drop to share
pod

Delete [Meeting>> Manage Meeting Information>> Uploaded Content]
and [check ﬁlename>> click on delete]

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

7/238

Adobe Connect

Access

> Tutor Access
[TutorHome)) M269 Website >> Tutorials]

[Cluster Tutorials>> M269 Online tutorial room]

[Tutor Groups>> M269 Online tutor group room}

[Module—wide Tutorials>> M269 Online module-wide room]
> Attendance
[TutorHome>> Students>> View your tutorial timetables]
Beamer Slide Scaling 440% (422 x 563 mm)
Clear Everyone’s Status
[Attendee Pod >> Menu >> Clear Everyone’s Status]

vy

v

Grant Access and send link via email

[Meeting >> Manage Access & Entry>> Invite Participants. ..]

> Presenter Only Area

[Meeting >> Enable/Disable Presenter Only Area

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

8/238

M259 Python,

Adobe Connect Logic, ADTS
Keystroke Shortcuts Phil Molyneux
. Agenda
» Keyboard shortcuts in Adobe Connect A
obe Connect
> Toggle Mic [3]+[M] (Mao), [Cul]+[M] win) (On/Disconnect) e
» Toggle Raise-Hand status (2] E] Aot
Ending a Meetin
> Close dialog box (5] (Mac), [Esc) Win) Lnavv:imndeef
i Chat Pods
> End meetlng + Wel:Graphics
Recordings

Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

9/238

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html

M259 Python,

Adobe Connect Interface Logic, ADT
Sharing Screen & Applications Phil Molyneux
Agenda

> [Share My Screen>> Application tab >> Terminal] for Terminal

Adobe Connect

Interface

> [Share menu >> Change View>> Zoom in] for mismatch of screen o
size/resolution (Participants) pUsiSELes
Ending a Meetin
> (Presenter) Change to 75% and back to 100% (solves e
participants with smaller screen image overlap) o
. Web Graphics
> Leave the application on the original display e

Programming

> Beware blued hatched rectangles — from other (hidden)

. Pyth:
windows or contextual menus voen

Python Checking

> Presenter screen pointer affects viewer display — fools
beware of moving the pointer away from the application f"m"_'ehx“y
ogarithms
> First time: [System Preferences)) Security & Privacy)) Privacy) before Caleulators
Accessibility Logic Introduction
ADTs

Future Work
Haskell Example

References

10/238

https://en.wikipedia.org/wiki/Terminal_(macOS)

Adobe Connect

Ending a Meeting

>

>
>
>
>

Notes for the tutor only
Student: [Meeting>> Exit Adobe Connect]

Tutor:
Recording [Meeting)) Stop Recording] v/
Remove Participants Meeting)) End Meeting. .. | v
> Dialog box allows for message with default message:
» The host has ended this meeting. Thank you for
attending.
Recording availability In course Web site for joining
the room, click on the eye icon in the list of recordings
under your recording — edit description and name

Meeting Information [Meeting>> Manage Meeting Information] —
can access a range of information in Web page.

Delete File Upload [Meeting>> Manage Meeting Information>
2 Uploaded Content tab] select file(s) and click
Attendance Report see course Web site for joining
room

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

11/238

Adobe Connect

Invite Attendees

>

Provide Meeting URL [Menu>> Meeting>> Manage Access & Entry>
Y Invite Participants. ... |

Allow Access without Dialog

9 Manage Meeting Information| provides new browser window
with Meeting Information (Tab bar)) Edit Information)

Check Anyone who has the URL for the meeting can
enter the room

Default Only registered users and accepted guests may
enter the room

Reverts to default next session but URL is fixed

Guests have blue icon top, registered participants have
yellow icon top — same icon if URL is open

See Start, attend, and manage Adobe Connect meetings
and sessions

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

12/238

https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html
https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html

M259 Python,

Adobe Connect Logic, ADTS

Entering a Room as a Guest (1) Phil Molyneux

. . . . Al d
» Click on the link sent in email from the Host oenes

Adobe Connect
Interface

> Get the following on a Web page ot
> As Guest enter your name and click on Aopications

Ending a Meeting

Invite Attendees
m Adobe Connect By

Chat Pods

Web Graphics

Recordings
M269-21) Online tutorial room

London/SE (1,13) CG [2311] (M269-21)) Programming

1) Python
Python Checking
Tools

Guest Registered User
Complexity

Name Logarithms

Guest Name
Before Calculators

By entering a Name & clicking "Enter Room", you agree that Logic Introduction

you have read and accept the Terms of Use & Privacy Policy

ADTs

Haskell Example

References

13/238

M259 Python,

Adobe Connect Logic, ADTS

Entering a Room as a Guest (2) (] el
i . Agenda
> See the Waiting for Entry Access for Host to give Adobe Connect
permission imertace
k44 Adobe Connect ;Eta:rlli:‘rcugg:s:rr‘:en&

Ending a Meeting

Layouts
Waiting for Entry Access Chat Pods

Web Graphics
This is a private meeting. Your request to enter has Recordings

been sent to the host. Please wait for a response. .
Programming

Python

Python Checking
Tools

Complexity
Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

14/238

M259 Python,

Adobe Connect Logic, ADTS

Entering a Room as a Guest (3) Il e
. . . Agenda
> Host sees the following dialog in Adobe Connect and Adobe Conmect
grants access [e—
Settings
i Sharingg Screen &
Guest entry [i] Applications

1 guest would like to enter the room. Do you want Ending a Meeting

to allow or deny entry to incoming guests?
Layouts

Guest Name (guest) Q9 O = Chat Pods
Web Graphics

Recordings
Allow everyone ~ Deny everyone Close g

Programming
Python

Python Checking
Tools

Complexity
Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

15/238

Adobe Connect

Layouts

>

v

Creating new layouts example Sharing layout

[Menu>> Layouts>> Create New Layout. ..] [Create a New Layout dialog>
) Create a new blank layout] and name it PMolyMain

New layout has no Pods but does have Layouts Bar open
(see Layouts menu)

Pods

(Menu) Pods) Share)) Add New Share] and resize/position —
initial name is Share n — rename PMolyShare

Rename Pod [Menu>> Pods>> Manage Pods. . . } [Manage Pods>
> Select>> Rename] or [Double-click & rename]

Add Video pod and resize/reposition
Add Attendance pod and resize/reposition

Add Chat pod — rename it PMolyChat — and
resize/reposition

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

16/238

Adobe Connect

Layouts

» Dimensions of Sharing layout (on 27-inch iMac)
» Width of Video, Attendees, Chat column 14 cm
> Height of Video pod 9 cm
> Height of Attendees pod 12 cm
> Height of Chat pod 8 cm
» Duplicating Layouts does not give new instances of
the Pods and is probably not a good idea (apart from
local use to avoid delay in reloading Pods)

» Auxiliary Layouts name PMolyAux0On

> Create new Share pod
> Use existing Chat pod
> Use same Video and Attendance pods

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings
Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

17/238

M259 Python,

Adobe Connect Logic, ADTS

Chat Pods Phil Molyneux

enda
» Format Chat text h

[Chat Pod >> menu icon>> My Chat CoIor]

Adobe Connect
Interface
Settings
Sharing Screen &

Choices: Red, Orange, Green, Brown, Purple, Pink, Blue, Applications

Ending a Meeting
B I ac k Invite Attendees

Layouts

Note: Color reverts to Black if you switch layouts Chat Pods

Web Graphics

(Chat Pod)) menu icon)) Show Timestamps| Recordings

Programming
Python

Python Checking
Tools

v

v

v

v

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

18/238

M259 Python,

Graphics Conversion Logic, ADTS

PDF to PNG/JPG Phil Molyneux

A . . Agenda
» Conversion of the screen snaps for the installation of A
obe Connect

Anaconda on 1 May 2020 Interface

Settings

» Using GraphicConverter 11 Sharing Srean &
> > Convert & Modify>> Conversion>> Convert] .E:vilzq;\;ﬁe:;g

Layouts

> Select files to convert and destination folder Chat ods

Web Graphics

> Click on [Start selected Function] or + RECoTdTnas

Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

19/238

Adobe Connect Recordings

Exporting Recordings

v

VYV Vv VvV VvV VvV VvVYVYyy

[Menu bar>> Meeting>> Preferences >> Video]

(Aspect ratio)) Standard (4:3)] (not Wide screen (16:9) default)
(Video quality)) Full HD] (1080p not High default 480p)
Recording [Menu bar)) Meeting)) Record Session | v/

Export Recording

[Menu bar>> Meeting>> Manage Meeting Information]

[New window>> Recordings>> check Tutorial>> Access Type button

(check Public)) check Allow viewers to download|

Download Recording
[New window>> Recordings>> check Tutorial>> Actions>> Download File

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

20/238

Computational Components

Imperative, Procedural Programming

Imperative or procedural programming has statements
which can manipulate global memory, have explicit control
flow and can be organised into procedures (or functions)

> Sequence of statements

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming
Computational
Components
Computation,
Programming,

stmnt ; stmnt

> Iteration to repeat statements

while expr :
suite

for targetList in exprList :
suite

» Selection choosing between statements

if expr : suite
elif expr : suite
else : suite

Languages
Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

21/238

https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Control_flow
https://en.wikipedia.org/wiki/Control_flow
https://en.wikipedia.org/wiki/Structured_programming

Computational Components

Functional Programming

Functional programming treats computation as the
evaluation of expressions and the definition of functions (in
the mathematical sense)

>

Function composition to combine the application of
two or more functions — like sequence but from right
to left (notation accident of history)

f. 9 x=°F@x

Recursion — function definition defined in terms of
calls to itself (with smaller arguments) and base case(s)
which do not call itself.

Conditional expressions choosing between
alternatives expressions

if expr then expr else expr

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming

Computational
Components
Computation,
Programming,
Programming
Languages
Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

22/238

https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Function_composition_(computer_science)
https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://en.wikipedia.org/wiki/Conditional_(computer_programming)

Computation

Programming, Programming Languages

>
>

M269 is not a programming course but ...

The course uses Python to illustrate various algorithms
and data structures

The final unit addresses the question:

What is an algorithm ? What is programming ? What is a
programming language ?

So it is a programming course (sort of)

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming

Computational
Components

Computation,
Programming,
Programming
Languages
Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

23/238

Example Algorithm Design

Searching

» Given an ordered list (xs) and a value (val), return
> Position of val in xs or
> Some indication if val is not present

> Simple strategy: check each value in the list in turn

> Better strategy: use the ordered property of the list to
reduce the range of the list to be searched each turn

> Set a range of the list

> If val equals the mid point of the list, return the mid
point

> Otherwise half the range to search

> If the range becomes negative, report not present
(return some distinguished value)

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming

Computational
Components

Computation,
Programming,
Programming
Languages
Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

24/238

Example Algorithm Design

Binary Search Iterative

1def binarySearchIter(xs,val):
2 lo=0
3 hi = len(xs) -1

5 while 1o <= hi:
6 mid = (lo + hi) // 2

7 guess = xs[mid]

9 if val == guess:
10 return mid

11 elif val < guess:
12 hi = mid - 1

13 else:

14 To =mid + 1

16 return None

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming
Computational
Components
Computation,
Programming,
Programming
Languages

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking
Python

Python Checking
Tools

Complexity
Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

25/238

Example Algorithm Design

Binary Search Recursive

17def binarySearchRec(xs,val,l0o=0,hi=-1):
18 if (hi == -1):

19 hi = Ten(xs) - 1

21 mid = (lo + hi) // 2

23 1if hi < lo:

24 return None

25 else:

26 guess = xs[mid]

27 if val == guess:

28 return mid

29 elif val < guess:

30 return binarySearchRec(xs,val,lo,mid-1)
31 else:

32 return binarySearchRec(xs,val,mid+1,hi)

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming
Computational
Components
Computation,
Programming,
Programming
Languages

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking
Python

Python Checking
Tools

Complexity
Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

26/238

M259 Python,

Example Algorithm Design Logic, ADTS

Binary Search — Exercise Aitl) e

Given the Python definition of binarySearchRec from Agenda
above, trace an evaluation of binarySearchRec(xs, 25) Adobe Connect
where xs is ottt
xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95] Comuraion

Programming,
Programming
Languages

Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

27/238

Example Algorithm Design

Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]

binarySearchRec(xs, 25)

XS = Highlight the mid value and search
binarySearchRec(xs,25,77,??)
XS = Highlight the mid value and search
binarySearchRec(xs,25,77,??)
XS = Highlight the mid value and search
binarySearchRec(xs,25,77,?7?)
XS = Highlight the mid value and search
binarySearchRec(xs,25,77,?7?)
Return value: 7?7

range

range

range

range

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming
Computational
Components
Computation,
Programming,
Programming
Languages
Example Algorithm
Design

Binary Search —
Comparison

Writing Programs &
Thinking
Python

Python Checking
Tools

Complexity
Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

28/238

Example Algorithm Design

Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs, 25)

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,77,??)

XS = Highlight the mid value and search range
binarySearchRec(xs,25,77,??)

XS = Highlight the mid value and search range
binarySearchRec(xs,25,77,?7?)

XS = Highlight the mid value and search range
binarySearchRec(xs,25,77,?7?)

Return value: 7?7

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming
Computational
Components
Computation,
Programming,
Programming
Languages
Example Algorithm
Design

Binary Search —
Comparison

Writing Programs &
Thinking
Python

Python Checking
Tools

Complexity
Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

29/238

Example Algorithm Design

Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs, 25)

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,14) by Tine 31

XS = Highlight the mid value and search range
binarySearchRec(xs,25,77,??)

XS = Highlight the mid value and search range
binarySearchRec(xs,25,77,?7?)

XS = Highlight the mid value and search range
binarySearchRec(xs,25,77,?7?)

Return value: 7?7

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming
Computational
Components
Computation,
Programming,
Programming
Languages
Example Algorithm
Design

Binary Search —
Comparison

Writing Programs &
Thinking
Python

Python Checking
Tools

Complexity
Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

30/238

Example Algorithm Design

Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs, 25)

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,14) by Tine 31

xs = [27,31,37,48,57,87,95]
binarySearchRec(xs,25,77,??)

XS = Highlight the mid value and search range
binarySearchRec(xs,25,77,?7?)

XS = Highlight the mid value and search range
binarySearchRec(xs,25,77,?7?)

Return value: 7?7

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming
Computational
Components
Computation,
Programming,
Programming
Languages
Example Algorithm
Design

Binary Search —
Comparison

Writing Programs &
Thinking
Python

Python Checking
Tools

Complexity
Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

31/238

Example Algorithm Design

Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs, 25)

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,14) by Tine 31

xs = [27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,10) by Tine 31

XS = Highlight the mid value and search range
binarySearchRec(xs,25,77,?7?)

XS = Highlight the mid value and search range
binarySearchRec(xs,25,77,?7?)

Return value: 7?7

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming
Computational
Components
Computation,
Programming,
Programming
Languages
Example Algorithm
Design

Binary Search —
Comparison

Writing Programs &
Thinking
Python

Python Checking
Tools

Complexity
Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

32/238

Example Algorithm Design

Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs, 25)

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,14) by Tine 31

xs = [27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,10) by Tine 31
xs = [27,31,37,]

binarySearchRec(xs,25,77,?7?)

XS = Highlight the mid value and search range
binarySearchRec(xs,25,77,?7?)
Return value: 7?7

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming
Computational
Components
Computation,
Programming,
Programming
Languages
Example Algorithm
Design

Binary Search —
Comparison

Writing Programs &
Thinking
Python

Python Checking
Tools

Complexity
Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

33/238

Example Algorithm Design

Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs, 25)

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,14) by Tine 31

xs = [27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,10) by Tine 31
xs = [27,31,37,]

binarySearchRec(xs,25,8,8) by 7ine 29
XS = Highlight the mid value and search range
binarySearchRec(xs,25,77,?7?)
Return value: 7?7

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming
Computational
Components
Computation,
Programming,
Programming
Languages
Example Algorithm
Design

Binary Search —
Comparison

Writing Programs &
Thinking
Python

Python Checking
Tools

Complexity
Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

34/238

Example Algorithm Design

Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]

binarySearchRec(xs, 25)

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,14) by Tine 31
27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,10) by Tine 31

xs = [

xs = [

27,31,37,

binarySearchRec(xs,25,8,8) by 7ine 29

Xs = [

27,

binarySearchRec(xs,25,77,?7?)

Return value: ?7?

]
]

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming
Computational
Components
Computation,
Programming,
Programming
Languages
Example Algorithm
Design

Binary Search —
Comparison

Writing Programs &
Thinking
Python

Python Checking
Tools

Complexity
Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

35/238

Example Algorithm Design

Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]

binarySearchRec(xs, 25)

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,14) by Tine 31
27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,10) by Tine 31

xs = [

xs = [

27,31,37,

binarySearchRec(xs,25,8,8) by 7ine 29

Xs = [

27,

binarySearchRec(xs,25,8,7) by Tine 29

Return value: ?7?

]
]

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming
Computational
Components
Computation,
Programming,
Programming
Languages
Example Algorithm
Design

Binary Search —
Comparison

Writing Programs &
Thinking
Python

Python Checking
Tools

Complexity
Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

36/238

Example Algorithm Design

Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs, 25)

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,14) by Tine 31

xs = [27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,10) by Tine 31
xs = [27,31,37,]
binarySearchRec(xs,25,8,8) by 7ine 29
Xs = [27,]

binarySearchRec(xs,25,8,7) by Tine 29
Return value: None by Tine 23

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming
Computational
Components
Computation,
Programming,
Programming
Languages
Example Algorithm
Design

Binary Search —
Comparison

Writing Programs &
Thinking
Python

Python Checking
Tools

Complexity
Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

37/238

Example Algorithm Design

Binary Search — Comparison

>

Both forms compare the given value (val) to the
mid-point value of the range of the list (xs[mid])

If not found, the range is adjusted via assignment in a
while loop (iterative) or function call (recursive)

The recursive version has default parameter values to
initialise the function call (evil, should be a helper
function)

There are two base cases:

> The value is found (val == guess)
» The range becomes negative (hi < 10)

The return value is either mid or None
What is the type of the binary search function ?

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming

Computational
Components

Computation,

Programming,
Programming

Languages

Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

38/238

. . M259 Python,
Example Algorithm Design Logic, ADTS
Binary Search — Performance Fal) el v

. . Agend
> Linear search — number of comparisons genes

» Best case 1 (first item in the list) SN
> Worst case n (last item) Computational

Components

> Average case 3 n Computation,

Programm!ng,

» Binary search — number of comparisons e
Example Algorithm

> Best case 1 (middle item in the list) Design

Binary Search —

> Worst case log, n (steps to see all) Exercise
> Average case log, n-1 (steps to see half) b

Writing Programs &
Thinking

Adobe Connect

Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

39/238

Writing Programs & Thinking

The Steps

1. Invent a name for the program (or function)

2. What is the type of the function ? What sort of input
does it take and what sort of output does it produce ? In
Python a type is implicit; in other languages such as
Haskell a type signature can be explicit.

3. Invent names for the input(s) to the function (formal
parameters) — this can involve thinking about possible
patterns or data structures

4. What restrictions are there on the input — state the
preconditions.

5. What must be true of the output — state the
postconditions.

6. Think of the definition of the function body.

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming

Computational
Components
Computation,
Programming,
Programming
Languages
Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

40/238

Writing Programs & Thinking

The Think Step

» How to Think

1.
2.
3. Deal with simple cases.
4.

Think of an example or two — what should the
program/function do ?
Break the inputs into separate cases.

Think about the result — try your examples again.

» Thinking Strategies

1.

Don’t think too much at one go — break the problem
down. Top down design, step-wise refinement.

. What are the inputs — describe all the cases.
. Investigate choices. What data structures ? What

algorithms ?
Use common tools — bottom up synthesis.

. Spot common function application patterns — generalise

& then specialise.

. Look for good glue — to combine functions together.

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming

Computational
Components

Computation,

Programming,
Programming

Languages

Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

41/238

Python

Learning Python

» Python 3 Documentation

vV VvV Vv VvV VvyVvyy

Python Tutorial

Python Language Reference

Python Library Reference

Hitchhiker’s Guide to Python
Stackoverflow on Python

Martelli et al (2023) Python in a Nutshell
Lutz (2025) Learning Python

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect
Programming

Python
Learning Python
Basic Python
Python Workflows

Python Checking
Tools

Complexity
Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

42/238

https://docs.python.org/3/
https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/reference/index.html
https://docs.python.org/3/library/index.html
http://docs.python-guide.org/en/latest/index.html
http://stackoverflow.com/tags/python/info

Basic Python

Python Usage — Questions

» How do you enter an interactive Python shell ?

» How do you exit Python in Terminal (Mac) or Command
prompt (Windows) ?

» How do you get help in a shell ?
» How do you exit the interactive help utility ?

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect
Programming

Python

Learning Python
Basic Python
Python Workflows

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

43/238

Basic Python

Python Usage — Answers

» How do you enter an interactive Python shell ?

» How do you exit Python in Terminal (Mac) or Command
prompt (Windows) ?

» How do you get help in a shell ?

» How do you exit the interactive help utility ?

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect
Programming

Python
Learning Python
Basic Python
Python Workflows

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

44/238

Basic Python

Python Usage — Answers

>

How do you enter an interactive Python shell ?
Windows PythonWin Shell from Toolbox; Mac python3 in Terminal

How do you exit Python in Terminal (Mac) or Command
prompt (Windows) ?

How do you get help in a shell ?

How do you exit the interactive help utility ?

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect
Programming

Python

Learning Python
Basic Python
Python Workflows

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

45/238

Basic Python

Python Usage — Answers

>

How do you enter an interactive Python shell ?
Windows PythonWin Shell from Toolbox; Mac python3 in Terminal

How do you exit Python in Terminal (Mac) or Command
prompt (Windows) ?

quit(Q
How do you get help in a shell ?

How do you exit the interactive help utility ?

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect
Programming

Python

Learning Python
Basic Python
Python Workflows

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

46/238

Basic Python

Python Usage — Answers

» How do you enter an interactive Python shell ?
Windows PythonWin Shell from Toolbox; Mac python3 in Terminal

» How do you exit Python in Terminal (Mac) or Command
prompt (Windows) ?

quitQ
» How do you get help in a shell ?
help(O
» How do you exit the interactive help utility ?

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect
Programming

Python
Learning Python
Basic Python
Python Workflows

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

47/238

Basic Python
Python Usage — Answers
» How do you enter an interactive Python shell ?
Windows PythonWin Shell from Toolbox; Mac python3 in Terminal

» How do you exit Python in Terminal (Mac) or Command
prompt (Windows) ?

quitQ

» How do you get help in a shell ?
help(O

» How do you exit the interactive help utility ?
quit

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect
Programming

Python

Learning Python
Basic Python
Python Workflows

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

48/238

Basic Python

Sequences Indexing, Slices

>

vV vyVvVvyy

xs[i:j:k] is defined to be the sequence of items from
index i to (j-1) with step k.

If k is omitted or None, it is treated as 1.

If i or j are negative then they are relative to the end.
If i is omitted or None use 0.

If j is omitted or None use Ten(xs)

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect
Programming

Python
Learning Python
Basic Python
Python Workflows

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

49/238

Basic Python

Python Quiz — Lists
Given the following definitions

Xs
ys

[10.9,25,"Phil1",3.14,42,1985]
(0511 = 3

Evaluate

xs[1]

xs[0]

xs[5]

ys

xs[1:3]

xs[::2]
xs[1l:-1]

xs[-3]

xs[:]

ys[0] .append(4)

O WO NV A WN =

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect
Programming

Python
Learning Python
Basic Python
Python Workflows

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

50/238

M259 Python,

Basic Python Logic, ADTs
Python Quiz — Lists — Answers A RS e
Given the following definitions A
Adobe Connect
xs = [10.9,25,"Phil",3.14,42,1985] Programming
ys = [[5]1] = 3 e
Learning Python
Evaluate Basic Python
Python Workflows
1xs[1] == 25 Python Checking
2xs[0] == 10.9 Tools
3xs[5] == 1985 Complexity
ays —= [[51,051,[51] ogaritme
Ziz %1;% zz Eigyg,Pb;;;% ' 42] Before Calculators
7xs[1:-1] == [25, ’Phil’, 3.14, 42] Logic Introduction
8xs[-3] == 3.14 ADTs
axs[:] == [10.9, 25, ’'Phil’, 3.14, 42, 1985] —
10ys[0].append(4) == [[5, 41, [5, 41, [5, 411 uture Worl

Haskell Example

References

51/238

M259 Python,

Python Workflows Logic, ADTs

Komodo Python Workflow Phil Molyneux
Agenda

1. Create someProgram.py with assignment statements
defining variables and other data along with function s
definitions. Python

Adobe Connect

Learning Python

2. There may be auxiliary files with other definitions (for Basic Python
example, Python Activity 2.2 has Stack.py with the P::onthzﬂc:ng
Stack class definition) — this uses the import statement Tools

in someProgram. py Complexity

Logarithms

from someOtherDefinitions import someldentifier Refter E itk

Logic Introduction

3. Load someProgram.py into Komodo Edit and use the ADTs
Run Python File macro from the Toolbox Future Work

4. For further results, edit the file in Komodo Edit and and Haskell Bxample
use the Save and Run macro from the Toolbox

References

52/238

M259 Python,

Python Workflows Logic, ADT

Standalone Python Workflow Phil Molyneux
Agenda

1. Create someDefinitions.py with assignment
statements defining variables and function definitions.

Adobe Connect

Programming

2. In Terminal (Mac) or Command Prompt (Windows), Python
navigate to someDefinitions.py and invoke the o
Python 3 interpreter rron orflous

Python Checking

3. Load someDefinitions.py into Python 3 with one of Tools

Complexity
from someDefinitions import = Logarithms

Before Calculators
import someDefinitions as sdf Logic Introduction

ADTs

The as sdf gives a shorter qualifier for the namespace Future Work
— names in the file are now sdf.x Haskell Example
Note that the commands are executed — any print e
statement will execute

4. At the Python 3 interpreter prompt, evaluate
expressions (may have side effects and alter definitions)

53/238

M259 Python,

Python Workflows Logic, ADT

Standalone Python Workflow 2 Phil Molyneux
Agenda

1. For further results, edit the file in Your Favourite Editor
and use one of the following commands:

Adobe Connect

Programming

reload(sdf) Python

Learning Python

. . Basic Python
import 1mp Python Workflows

imp.reload(sdf) Python Checking

Tools
Note the use of the name sdf as opposed to the Complexity
original name. Logarithms
Read the following references about the dangers of Before Calculators
reloading as compared to re-cycling Python 3 Logic Introduction
> How to re import an updated package while in Python /:LizsreWork
Interpreter?

Haskell Example

» How do | unload (reload) a Python module?

> Reloading Python modules

> How to dynamically import and reimport a file containing
definition of a global variable which may change anytime

References

54/238

https://stackoverflow.com/questions/684171/how-to-re-import-an-updated-package-while-in-python-interpreter
https://stackoverflow.com/questions/684171/how-to-re-import-an-updated-package-while-in-python-interpreter
https://stackoverflow.com/questions/437589/how-do-i-unload-reload-a-python-module
http://pyunit.sourceforge.net/notes/reloading.html
https://stackoverflow.com/questions/12400467/how-to-dynamically-import-and-reimport-a-file-containing-definition-of-a-global
https://stackoverflow.com/questions/12400467/how-to-dynamically-import-and-reimport-a-file-containing-definition-of-a-global

Python Checking Tools

Purpose & Installation

>

M269 provides some Python checking tools: ruff and
allowed — a description is in the M269 Book section
5.3.2 (these notes are based on Jason Clarke’s notes)
M269 software installation is documented at
dsa-ou.github.io/m269-installer/

allowed is documented at dsa-ou.github.io/allowed/ —
it checks for permitted code

ruff Web site is docs.astral.sh/ruff/ —- Ruff is an
extremely fast Python linter and code formatter, written
in Rust

Both allowed and ruff are installed in the standard
M269 24J software install — they are in the venvs
folder, wherever that was installed (in my case in my
home folder)

The intention is that allowed checks you are only using
Python contained in the M269 Book and ruff
comments on Python style issues such as the extent to
which your code complies with PEP 8 — Style Guide for
Python Code

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

allowed Code Checker
Allowed Methods

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

55/238

https://dsa-ou.github.io/m269-installer/
https://dsa-ou.github.io/allowed/
https://docs.astral.sh/ruff/
https://peps.python.org/pep-0008/
https://peps.python.org/pep-0008/

Python Code Checker b2
allowed Code Checker Phil Molyneux

> allowed uses a data file m269-247 . json to determine hoends

if the code has allowed features only

Adobe Connect

Programming

> JSON (JavaScript Object Notation) is a lightweight Python
data-exchange format — effectively it is one up from BythonlChecking
CSV (Comma Separated Values) sllowed Code Checer

> JSON has a Web site json.org/json-en.html which Complexity
contains the definitive standard — JSON is not part of Logarithms
M269 and you do not need to read the documentation B Gtk

for the course but since JSON is so widely used you may ~ “o9/c!nroducton
be interested AT

Future Work
> An appendix to Douglas Crockford’s book has more on Haskell Example
JSON (Crockford was one of the original movers behind References

JSON) — see Crockford (2008, Appendix E) JavaScript:
The Good Parts

56/238

https://en.wikipedia.org/wiki/JSON
https://www.json.org/json-en.html

Python Code Checker

Using allowed

>

Activate alTowed (and ruff) by running the cell that
appears early on in your Jupyter Notebook which
contains some IPython Magic Commands (see examples
below)

When you run any Python cells, you will see any output
from allowedand ruff as well as your own output

If all your usage is allowed you will see no output from
allowed

If you have used something outside the permitted code
you may see a message from allowed

Note that the allowed tool is not perfect and there are
some differences between Windows, macOS and Linux
users (see examples below)

All the allowed code is described or listed in the
Summary sections at the end of each chapter in the
M269 Book (or you could read the m269-247. json file
if you are very relaxed)

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

allowed Code Checker
Allowed Methods

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

57/238

https://ipython.readthedocs.io/en/stable/interactive/magics.html

thon,
Python Code Checker *Logic, ADTS
Activating allowed and ruff Phil Molyneux

» The TMA Jupyter Notebooks seem to have several hoends

versions of the software that activates allowed and

Adobe Connect

Programming

ruff so this section of these notes may be subject to Python
change Python Checking
» From Section 5.3.2 of the M269 Book there are cells allowed Code Checker

Allowed Methods

that has the following code

Complexity

_ Logarithms
%load_ext algoesup.magics ; el
%ruff on Before Calculators

Logic Introduction

: ADTs
import platform # allowed I—
if platform.system() in (’Linux’, ’Darwin’): Haskell Example
%allowed on --config m269-24j --unit 5 --method
else:
%allowed on --config m269-24j --unit 5

References

58/238

Python Code Checker

Activating allowed and ruff

» TMAO1 has the following

%load_ext algoesup.magics
%allowed on

%ruff on

%run -i m269_test

» The first version activates allowed for code in the first
5 chapters and methods are checked in Linux and
macOS

» The second activates for code in all chapters

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

allowed Code Checker
Allowed Methods

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

59/238

Python Code Checker b2
Allowed Methods Phil Molyneux

> Allowed Methods a method is of the form Agenda

Adobe Connect

objectName.methodName(args) Programming
> Examples Python
Python Checking
Tools
Python3>>> myList = [1,2,3] allowed Code Checker
Python3>>> mylList.append(5) # using list append method Allowed Methods
Python3>>> print(myList) Complexity
[1, 2, 3, 5] i
Python3>>> myText = "abc" Logarithms
Python3>>> myText.upper() # using string upper method Before Calculators
’ABC’ Logic Introduction
Zg‘éhonb» print(myText) TS

Future Work

Haskell Example

» Some methods return values, others have side effects
> Read the Python documentation for the details

References

60/238

Python Code Checker

Allowed Methods

>

>
>
>
>

From m269-257j.json we have the following allowed
methods

List insert, append, pop, sort

Dict items, pop

Set add, discard, union, intersection, difference, pop
Note that no string methods are allowed

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

allowed Code Checker
Allowed Methods

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

61/238

allowed Methods

Example Messages from Non-Allowed Methods

List

myList = [1,2,3]

print(myList.count(2))
myList.extend([3,4])
myList.remove(2)
print(myList.index(1))
myList.reverse()
myList.clear()

1
0

allowed found issues

6: list

9: list

vV VvvyVvyVyvyywy

5:Tist.

count()

.extend()
7: list.
8: Tist.

remove ()
index()

.reverse()
10: Tist.clear()

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

allowed Code Checker
Allowed Methods

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

62/238

allowed Methods 259 pytron,

Example Messages from Non-Allowed Methods Phil Molyneux

Agenda

Anything on strings. .. Adobe Connect

myText = "Hello" Programming
print(myTextexF.upeeE()) Python

Print (nyText. endawi th("0")) i
print(myText.isdigit()) allowed Code Checker
sep = "," Allowed Methods
print(sep.join(["A","B","C"])) Complexity
HELLO Logarithms

1 Before Calculators
True Logic Introduction
False aoTs

Future Work

Haskell Example

allowed found issues
4: str.upper()
cstr.findQ
:str.endswith()
cstr.isdigit(Q)
:str.join()

References

vVvyVvyVvyy
O N O wvn

63/238

M259 Python,
allowed Methods Logic, ADTS
Non-Allowed Methods which Pass Al DEtie

» The above examples may not produce error messages A

Adobe Connect

on Windows platforms
> Expressions with literal object or literal arguments may

Programming

thon
be not-allowed but may not generate error messages :ﬂwn Checking
> Missing type hints for function definitions may result in T code Checker
non-allowed being missed lowed Methods
» The foollowing are non-allowed but produce no f:g'::':::
messages Before Calculators
print([1,2,3].index(1)) # method on a literal Logic Introduction

ADT:
print("abc".upper()) # method on a literal :

print(",".join(["A","B","C"])) # literal argument R
Haskell Example
def test(txt):

3 - . . . ; References
return txt.isdigit() # Missing type hint cso missed

def anotherTest(txt : str):
print(txt[0] .upper()) # type hint - argument is an expression

64/238

allowed Methods
User Defined Methods
» User Defined Methods
» allowed will not generate error messages to these

> So you can write methods (or functions) to replace the
the functionality of some other methods

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

allowed Code Checker
Allowed Methods

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

65/238

Program Complexity
Big O Notation

» Measuring program complexity introduced in section 4
of M269 Unit 2

> See also Miller and Ranum chapter 2 Big-O Notation

> See also Wikipedia: Big O notation

» See also Big-O Cheat Sheet

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions
Master Theorem for

Divide-and-Conquer
Recurrences
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

66/238

http://interactivepython.org/courselib/static/pythonds/AlgorithmAnalysis/BigONotation.html
https://en.wikipedia.org/wiki/Big_O_notation
http://bigocheatsheet.com/

Program Complexity
Big O Notation (2)

>

Complexity of algorithm measured by using some
surrogate to get rough idea

In M269 mainly using assignment statements

For exact measure we would have to have cost of each
operation, knowledge of the implementation of the
programming language and the operating system it
runs under.

But mainly interested in the following questions:

(1) Is algorithm A more efficient than algorithm B for
large inputs ?

(2) Is there a lower bound on any possible algorithm for
calculating this particular function ?

(3) Is it always possible to find a polynomial time (nk)
algorithm for any function that is computable

— the later questions are addressed in Unit 7

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions
Master Theorem for

Divide-and-Conquer
Recurrences
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

67/238

Program Complexity

Orders of Common Functions

>
>

O(1) constant — look-up table

O(log n) logarithmic — binary search of sorted array,
binary search tree, binomial heap operations

O(n) linear — searching an unsorted list

O(nlog n) loglinear — heapsort, quicksort (best and
average), merge sort

O(n?) quadratic — bubble sort (worst case or naive
implementation), Shell sort, quicksort (worst case),
selection sort, insertion sort

O(n°) polynomial

O(c") exponential — travelling salesman problem via
dynamic programming, determining if two logical
statements are equivalent by brute force

O(n') factorial — TSP via brute force.

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions
Master Theorem for

Divide-and-Conquer
Recurrences
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

68/238

https://en.wikipedia.org/wiki/Lookup_table
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Merge_sort
https://en.wikipedia.org/wiki/Bubble_sort
https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Selection_sort
https://en.wikipedia.org/wiki/Insertion_sort
https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Dynamic_programming

Program Complexity
Tyranny of Asymptotics
> Table from Bentley (1984, page 868)
» Cubic algorithm on Cray-1 3.0n3 nanoseconds
> Linear algorithm on TRS-80 19.5n x 10° nanoseconds

N Cray-1 TRS-80

10 3.0 microsecs 200 millisecs
100 3.0 millisecs 2.0 secs
1000 3.0 secs 20 secs
10000 49 mins 3.2 mins
100000 35 days 32 mins
1000000 95 yrs 5.4 hrs

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example
Complexity & Python
Data Types
Definitions and Rules
for Complexity

List Comprehensions
Master Theorem for

Divide-and-Conquer
Recurrences
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

69/238

Program Complexity
Big O Complexity Chart

O(n)
400

300

200 |

100 1

T

T

oem

Big O Complexity Chart

/ _—

/ O(nln n)

O(n)

//

—

O(ln n)

20 40 60

80 100 120 140"

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity Example
Complexity & Python
Data Types
Definitions and Rules
for Complexity

List Comprehensions
Master Theorem for

Divide-and-Conquer
Recurrences
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

70/238

Program Complexity
Big O Notation

>
>

Abuse of notation — we write f(x) = O(g(x))

but O(g(x)) is the class of all functions h(x) such that
|h(x)| < Clg(x)| for some constant C

So we should write f(x) € O(g(x)) (but we don’t)

We ought to use a notation that says that (informally)
the function f is bounded both above and below by g
asymptotically

This would mean that for big enough x we have
k1g9(x) < f(x) < kpg(x) for some ky, k;
This is Big Theta, f(x) = O(g(x))

But we use Big O to indicate an asymptotically tight
bound where Big Theta might be more appropriate

See Wikipedia: Big O Notation
This could be Maths phobia generated confusion

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions
Master Theorem for

Divide-and-Conquer
Recurrences
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

71/238

https://en.wikipedia.org/wiki/Big_O_notation

Program Complexity

Example

sdef someFunction(aList) :
6 n = len(aList)

7 best =0

g8 for i 1in range(n)

9 for j in range(i + 1, n + 1) :
10 s = sum(aList[i:j]1)

1 best = max(best, s)

12 return best

Example from M269 Unit 2 page 46
Code in file M269TutorialProgPythonADT.py
What does the code do ?

(It was a famous problem from the late 1970s/early
1980s)

> Can we construct a more efficient algorithm for the
same computational problem ?

vV vyVvyy

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example
Complexity & Python
Data Types
Definitions and Rules
for Complexity

List Comprehensions
Master Theorem for

Divide-and-Conquer
Recurrences
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

72/238

http://www.pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269TutorialProgPythonADT/M269TutorialProgPythonADT.py

Program Complexity
Example (2)

>
>

The code calculates the maximum subsegment of a list
Described in Bentley (1984), (1988, column 7), (2000,
column 7) Also in Gries (1989)

These are all in a procedural programming style (as in
C, Java, Python)

Problem arose from medical image processing.

A functional approach using Haskell is in Bird (1998,
page 134), (2014, page 127, 133) — a variant on this
called the Not the maximum segment sum is given in
Bird (2010, Page 73) — both of these derive a linear
time program from the (n3) initial specification

See Wikipedia: Maximum subarray problem

See Rosetta Code: Greatest subsequential sum

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking

Tools

Complexity
Complexity Example
Complexity & Python
Data Types
Definitions and Rules
for Complexity

List Comprehensions
Master Theorem for

Divide-and-Conquer
Recurrences
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

73/238

https://en.wikipedia.org/wiki/Maximum_subarray_problem
http://rosettacode.org/wiki/Greatest_subsequential_sum

Program Complexity
Example (3)

> Here is the same program but modified to allow lists
that may only have negative numbers

» The complexity T(n) function will be slightly different

> but the Big O complexity will be the same

14def maxSubSeg01(xs)
15 n = len(xs)

16 maxSoFar = xs[0]

17 for i 1in range(l1,n)

18 for j in range(i + 1, n + 1)
19 s = sum(xs[i:31)
20 maxSoFar = max(maxSoFar, s)

21 return maxSoFar

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions
Master Theorem for

Divide-and-Conquer
Recurrences
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

74/238

Program Complexity

Example (4)
» Complexity function T(n) for maxSubSeg01()
» Two initial assignments
» The outer loop will be executed (n-1) times,
» Hence the inner loop is executed
m-1H+mn-2)+...42+1= (n;]) X n
» Assume sum() takes n assignments
» Hence T(n)=2+(n+2) X (Q X n)
2
nc n
=2)X |5 -3
+(n+2) (> 2)
=2+3m-In2sn?-n
=Sm+sn2-n+2
» Hence O(n3)

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example
Complexity & Python
Data Types
Definitions and Rules
for Complexity

List Comprehensions
Master Theorem for

Divide-and-Conquer
Recurrences
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

75/238

Program Complexity
Example (5)

>
>

Developing a better algorithm

Assume we know the solution (naxSoFar) for xs[0. . (i
- D]

We extend the solution to xs[0..1] as follows:

The maximum segment will be either maxSoFar

or the sum of a sublist ending at i (naxToHere) if it is
bigger

This reasoning is similar to divide and conquer in binary
search or Dynamic programming (see Unit 5)

Keep track of both maxSoFar and maxToHere — the
Eureka step

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking

Tools

Complexity
Complexity Example
Complexity & Python
Data Types
Definitions and Rules
for Complexity

List Comprehensions
Master Theorem for

Divide-and-Conquer
Recurrences
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

76/238

https://en.wikipedia.org/wiki/Dynamic_programming

Program Complexity
Example (6)

> Developing a better algorithm maxSubSeg02 ()

27def maxSubSeg02(xs)

28
29
30
31
32
33
34

maxToHere = xs[0]

maxSoFar = xs[0]

for x in xs[1:]
Invariant: maxToHere, maxSoFar OK for xs[0..(i-1)]
maxToHere = max(x, maxToHere + X)
maxSoFar = max(maxSoFar, maxToHere)

return maxSoFar

» Complexity function T(n) =2+ 2n
» Hence O(n)

» What if we want more information ?

» Return the (or a) segment with max sum and position in

list

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example
Complexity & Python
Data Types
Definitions and Rules
for Complexity

List Comprehensions
Master Theorem for

Divide-and-Conquer
Recurrences
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

77/238

Program Complexity
Example (7)

3gdef maxSubSeg03(xs)

39 maxSoFar = maxToHere = xs[0]

40 startIdx, endIdx, startMaxToHere = 0, 0, O
41 for i, x 1in enumerate(xs)

42 if maxToHere + x < x :

43 maxToHere = x

44 startMaxToHere = i

45 else :

46 maxToHere = maxToHere + x

48 if maxSoFar < maxToHere :

49 maxSoFar = maxToHere

50 startIdx, endIdx = startMaxToHere, i

52 return (maxSoFar,xs[startIdx:endIdx+1],startIdx,endIdx)

Developing a better algorithm maxSubSeg03()
Complexity function worst case T(n)=2+3+ (2 +3)n
Hence still O(n)

>
>
>
> Note Python assignments, enumerate() and tuple

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example
Complexity & Python
Data Types
Definitions and Rules
for Complexity

List Comprehensions
Master Theorem for

Divide-and-Conquer
Recurrences
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

78/238

https://docs.python.org/3/reference/simple_stmts.html#assignment-statements
https://docs.python.org/3/library/functions.html#enumerate
https://docs.python.org/3/library/stdtypes.html#tuple

M259 Python,

Program Complexity Logic, ADTs
Example (8) Phil Molyneux
Agenda

» Sample data and output

Adobe Connect

seeglist = [-2,1,-3,4,-1,2,1,-5,4] Programming

Python
sgeglListO0l = [-1,-1,-1] Python Checking
Tools

[1, 2 ’ 3] Complexity
Complexity Example

62assert maxSubSeg03(egList) == (6, [4, -1, 2, 1], 3, 6) Complexity & Python

Data Types

Definitions and Rules
64assert maxSubSeg03(egList0l) == (-1, [-1], 0, 0) for Complextty

List Comprehensions
s6assert maxSubSeg03(eglList02) == (7, [1, 2, 3], 0, 2) oy

Recurrences

60eglList02

Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

79/238

Program Complexity
Python Data Types — Lists

Operation Notation Average Amortized Worst
Get item x = xs[i] o) o)
Set item xs[i] = x o(1) o(1)
Append XS = yS + zs o) oQ)
Copy xs = ys[:] O(n) O(n)
Pop last xs.pop(Q) oQ) o)
Pop other xs.pop(i) O(k) O(k)
Insert(i,x) xs[i:i1] = [x] O(n) O(n)
Delete item del xs[i:i+1] O(n) O(n)
Get slice xs = ys[i:j] O(k) O(k)
Set slice xs[i:j] = ys O(k + n) O(k + n)
Delete slice xs[i:j] = [1 O(n) o(n)
Member X in xs O(n)

Get length n = len(xs) oQ) o)
Count(x) n = xs.count(x) O(n) O(n)

> Source https://wiki.python.org/moin/TimeComplexity
> See https://docs.python.org/3/1library/stdtypes.html#

sequence-types-Tist-tuple-range

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example
Complexity & Python
Data Types
Definitions and Rules
for Complexity

List Comprehensions
Master Theorem for

Divide-and-Conquer
Recurrences
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

80/238

https://wiki.python.org/moin/TimeComplexity
https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range
https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range

Program Complexity
User Defined Type — Bags

sclass Bag:

7 def __init__(self):

8 self.list = []

10 def add(self, item):

11 self.list.append(item)
13 def remove(self, item):

14 self.list.remove(item)
16 def contains(self, item):
17 return item in self.Tlist
19 def count(self, item):

20 return self.list.count(item)
22 def size(self):

23 return len(self.list)

25 def __str__(self):

26 return str(self.list)

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example
Complexity & Python
Data Types
Definitions and Rules
for Complexity

List Comprehensions
Master Theorem for

Divide-and-Conquer
Recurrences
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

81/238

M259 Python,

Using a Data Type Logic, ADTS
Information Retrieval Functions Al DEtie
» T F .F k . d B Agenda
erm Frequency, tf, takes a string, term, and a Bag, Adobe Comnect
document Programming
returns occurrences of term divided by total strings in Python
hon Checki
document sk @iy
> Inverse Document Frequency, idf, takes a string, Complexky
. Complexity Example
term, and a list of Bags, documents Complexty & yhon
ata Types
returns log(total/(1 + containing)) — total is total Deiniions and s
number of Bags, containing is the number of Bags Lst Comprehensions
containing term s
> tf-idf, tf_idf, takes a string, term, and a list of Bags, feoaiithns
document S Before Calculators
Logic Introduction
returns a sequence [rp, r1,..., ¥p-1] such that TS
ri = tf(term, d;) x idf(term, documents) Future Work

Haskell Example

References

82/238

Complexity

Big-O and Big-Theta Definitions (a)

>

We compare the functions implementing algorithms by
looking at the asymptotic behaviour of the functions for
large inputs.

If f and g are functions taking taking natural numbers
as input (the problem size) and returning nonnegative
results (the effort required in the calculations.)

f is of order g and write f = ©(g), if there are positive
constants ki1 and k> and a natural number ng such that

ki1g(n) < f(n) < kpg(n) for all n> ng
This means that some multipliers times g(n) provide
upper and lower bounds to f(n)
If we only wanted an upper bound on the values of a
function, then you can use Big-O notation.

We say f is of order at most g and write f = O(g), if
there is a positive constant k and a natural number ng
such that

f(n) < kg(n) for all n> ng

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity
Big-O and Big-Theta
Definitions
Big-O and Big-Theta
Rules

Big-Theta Rules —
Example

List Comprehensions
Master Theorem for
Divide-and-Conquer
Recurrences
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References
83/238

H M259 Python,

Com pleXIty Logic, ADTs

Big-O and Big-Theta Definitions (b) Phil Molyneux
Agenda

» Note that the notation is heavily abused:

Adobe Connect

Many authors use Big-O notation when they really mean Programming

Big-® notation Python
. . Python Checki
We really should define the ® notation to say that ©(g) Tools
denotes the set of all functions f with the stated Complexky
. Complexity Example
property and write f € O(g) — however the use of Complxiy & python
.) ata Types
f = @(g) is traditional ?eﬁcnitionls a_r‘\d Rules
or Complexity
» The next section gives some rules for manipulating the O e
notation to calculate overall complexities of functions Ry o1 BTt
from their component parts — this also abuses the =
notation for equality st Theerem for

Divide-and-Conquer

Based on Bird and Gibbons (2020, page 25) Algorithm B
Design with Haskell and Graham, Knuth and Patashnik i
(1994, page 450) Concrete Mathematics: A Foundation gefore Calculators
for Computer Science

Logic Introduction
ADTs

Future Work
Haskell Example

References
84/238

Complexity

Big-O and Big-Theta Rules

>

VYV Vv VvV VvyVvyy

nP = O(n9) where p < g

This has some surprising consequences — n= O(n) and
n= 0(n?) — remember Big-O just gives upper bounds.

O(f(n)) + O(g(n)) = O(f ()| + |g(n)))
O(nP) + O(n9) = O(n9) where p < g
f(n) = 6(f(n)

c - O(f(n) = B(f(m) if c is constant
O(O(f(n)) = 6(f(n)

O(f(n)B(g(n) = B(f(nNg(n)
O(f(ng(n)) = f(NB(g(n)

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example
Complexity & Python
Data Types
Definitions and Rules
for Complexity

Big-O and Big-Theta
Definitions

Big-O and Big-Theta
Rules

Big-Theta Rules —
Example

List Comprehensions
Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References
85/238

Complexity

Big-Theta Rules — Example

10
11
12

def numVowels(txt : str) -> int ;
"""Find the number of vowels in text

i

vowelCount = 0
vowels = "aeiouAEIOU"

for ch in txt
if ch in vowels
vowelCount = vowelCount + 1
return vowelCount

> The rules give
0(1)+06(1)+06(n x O(vowels|) x O(1)
where n = [txt|
> Since |vowels| = 10 the overall complexity is ©(n)

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

Big-O and Big-Theta
Definitions

Big-O and Big-Theta
Rules

Big-Theta Rules —
Example

List Comprehensions
Master Theorem for

Divide-and-Conquer
Recurrences
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References
86/238

List Comprehensions
Python

> List Comprehensions (tutorial), List Comprehensions
(reference) provide a concise way of performing
calculations over lists (or other iterables)

» Example: Square the even numbers between 0 and 9

Python3>>> [x #* 2 for x in range(10) if x % 2 == 0]
[0, 4, 16, 36, 64]

> Example: List all pairs of integers (x, y) such that x < 4,
y <4 and x is divisible by 2 and y is divisible by 3

Python3>>> [(x,y) for x 1in range(4)
for y in range(4)
if x % 2 =

ce and y % 3 == 0]

[0, 0O, (O, 3), (2, 0), (2, 3)]

Python3>>>

> In general

[expr for targetl in iterablel if condl
for target2 in iterable2 if cond2 ...
for targetN in iterableN if condN]

> Lots example usage in the algorithms below

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example
Complexity & Python
Data Types
Definitions and Rules
for Complexity

List Comprehensions

Complexity of List
Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

87/238

https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/reference/expressions.html#displays-for-lists-sets-and-dictionaries

M259 Python,

List Comprehensions Loic, ADTS
Haskell Phil Molyneux

. - . . Agenda
> List Comprehensions provide a concise way of

performing calculations over lists

Adobe Connect

Programming

> Example: Square the even numbers between 0 and 9 Python
Python Checking
GHCi> [xA2 | x <- [0..9], x ‘mod‘ 2 == 0] Tools
[0,4,16,36,64] Complexity
GHC1 > Complexity Example
C ity & Python
Data Types
> In general for Complenty
List C i
[expr | quall, qual2,..., qualN] (@enm il Gl

Comprehensions

Master Theorem for
Divide-and-Conquer

> The qualifiers qual can be Recurrences

> Generators pattern <- list tosarithms

> Boolean guards — acting as filters

» Local declarations with Tet decls for use in expr and
later generators and boolean guards

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

88/238

List Comprehension Exercises
Activity 1 (a) Stop Words Filter

» Stop words are the most common words that most
search engines avoid: 'a’,’an’,’the’,’that’,...

» Using list comprehensions, write a function
filterStopWords that takes a list of words and filters
out the stop words

» Here is the initial code

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example

Complexity & Python
Data Types

11 sentence \
12 = "the_quick_brown_fox_jumps_over_the_lazy dog"

14 words = sentence.split()

16 wordsTest \

17 = (words == [’the’, ’quick’, ’brown’
18 , “fox’, ’jumps’, ’over’
19 , 'the’, ’lazy’, ’dog’])

21 stopWords \
22 = [’a’,’an’, the’,’ ’that’]

Definiti and Rules
for Complexity

List Comprehensions

Complexity of List
Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences
Logarithms
Before Calculators
Logic Introduction
ADTs
Future Work
Haskell Example

References

89/238

https://en.wikipedia.org/wiki/Stop_words

List Comprehension Exercises
Activity 1 (a) Stop Words Filter

11 sentence \
12 = "the_quick_brown_fox_jumps_over_the_lazy dog"

14 words = sentence.split()

16 wordsTest \

17 = (words == [’the’, ’'quick’, ’brown’
18 , 'fox’, ’jumps’, ’over’
19 , 'the’, ’lazy’, ’dog’])

21 stopWords \
22 = [’a’,’an’,’ the’,’ that’]

» Notice the Python Explicit line joining with (\<n1>) and
Python Implicit line joining with ((...))

» The backslash (\) must be followed by an end of line
character (<n1>)

» The (') symbol represents a space (see Unicode
U+2423 Open Box)

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example
Complexity & Python
Data Types
Definitions and Rules
for Complexity

List Comprehensions

Complexity of List
Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences
Logarithms
Before Calculators
Logic Introduction
ADTs
Future Work
Haskell Example

References

90/238

https://docs.python.org/3/reference/lexical_analysis.html#explicit-line-joining
https://docs.python.org/3/reference/lexical_analysis.html#implicit-line-joining
https://en.wikipedia.org/wiki/Backslash
https://en.wikipedia.org/wiki/Newline
https://en.wikipedia.org/wiki/Newline

List Comprehension Exercises
Activity 1 (b) Transpose Matrix

» A matrix can be represented as a list of rows of
numbers

> We transpose a matrix by swapping columns and rows

» Here is an example

38 matrixA \

39 = [[1, 2, 3, 4]

40 ,[5, 6, 7 ,8]

41 ,[9, 10, 11, 12]]
43 matATr \

44 = [[1, 5, 9]

45 ,[2, 6, 10]

46 ,[3, 7, 11]

47 ,[4, 8, 12]1]

» Using list comprehensions, write a function transMat,
to transpose a matrix

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example
Complexity & Python
Data Types
Definitions and Rules
for Complexity

List Comprehensions

Complexity of List
Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences
Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

91/238

M259 Python,

List Comprehension Exercises Logic, ADTS
Activity 1 (c) List Pairs in Fair Order Phil Molyneux

. . . . o Agend
> Write a function which takes a pair of positive integers oenee

and outputs a list of all possible pairs in those ranges

Adobe Connect

Programming

> If we do this in the simplest way we get a bias to one Python

argume nt _l?;l;(;n Checking
> Here is an example of a bias to the second argument Complexky
Complexity Example
C ity & Python

68 YyBiasLstTest \ Data Types
69 = (yBiasListing(5,5) ?uerﬁcﬂll)trfglse:ir‘\g Rules
70 == [(0, 0), (0, 1), (0, 2), (0, 3), (0, 4 List Comprehensions
7 ’ (17 0)7 (17 1), (1, 2), (1, 3), (1, 4) Comple:‘ityquist
72 , 2, 00, 2, 1, @, 2), @, 3), 2,4 comprefiensions
73 , 3, 00, 3, 1, (3, 2), 3, 3, 3,4 Divide-and-Conguer

74 , (4, 0), (4, D, 4, 2, 4, 3, 4, HD Recurrences

Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

92/238

List Comprehension Exercises
Activity 1 (c) List Pairs in Fair Order

» Rewrite the function which takes a pair of positive
integers and outputs a list of all possible pairs in those
ranges

» The output should treat each argument fairly — any
initial prefix should have roughly the same number of
instances of each argument

» Here is an example output

81 fairLstTest \

82 = (fairListing(5,5)
83 == [(0, 0)
84 ©, O, @@, 0

8 . (0,2, a1, D, @, 0
86 . (0, 3, 4,2, @, 1), G, 0
87 . (0, &), 3, @ 2, G D, & 0D

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example
Complexity & Python
Data Types
Definitions and Rules
for Complexity

List Comprehensions

Complexity of List
Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

93/238

List Comprehension Exercises
Activity 1 (c) List Pairs in Fair Order

» Rewrite the function which takes a pair of positive
integers and outputs a list of lists of all possible pairs in

those ranges

» The output should treat each argument fairly — any
initial prefix should have roughly the same number of
instances of each argument — further, the output
should be segment by each initial prefix (see example

below)
» Here is an example output

94 fairLstATest \

95 = (fairListingA(5,5)

96 == [[(0, 0]

97 , [0, 1), (1, 0)]

98 , [0, 2), (1, D, 2, 0]

99 , [0, 3), (1, 2), (2,), (3, 0)]
100 , [0, o, @, 3, 2, 2, G, D,

4, 001D

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Complexity of List
Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

94/238

Compexity

List Comprehensions

> Note that list comprehensions are not in M269
> See Complexity of a List Comprehension

[f(e) for e in row for row in mat]

> Suppose f = O(g) with n elements in a row and m rows

» Then complexity is
0(g(e)) x B(n) x B(m) = B(m x n x g(e))

[[ex«2 for e 1in row] for row in mat]

> O(ex x2)=0(1)
> Suppose nis maximum length of a row and m rows
» Then complexity is©(1) X O(n) x O(m) = O(n x m)

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example
Complexity & Python
Data Types
Definitions and Rules
for Complexity

List Comprehensions
Complexity of List

Comprehensions
Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

95/238

https://yardsale8.github.io/stat489_book/TheExpressionOrientedSequenceTransformation/TheComplexityOfListComprehensions.html

List Comprehension Exercises
Answer 1 (a) Stop Words Filter

> Answer 1 (a) Stop Words Filter

> Write here:

P Answer 1 continued on next slide

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example
Complexity & Python
Data Types
Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for

Divide-and-Conquer

Recurrences
Logarithms
Before Calculators
Logic Introduction
ADTs
Future Work
Haskell Example

References

96/238

List Comprehension Exercises
Answer 1 (a) Stop Words Filter

> Answer 1 (a) Stop Words Filter

24 def filterStopWords(words)

25 nonStopWords \

26 = [word for word 1in words

27 if word not in stopWords]
28 return nonStopWords

31 filterStopWordsTest \

32 = filterStopWords(words) \
33 == ['quick’, ’brown’, ’fox’
34 , 'jumps’, ’over’, ’lazy’, ’dog’]

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for

Divide-and-Conquer

Recurrences
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

97/238

List Comprehension Exercises

Answer 1 (b) Transpose Matrix

» Answer 1 (b) Transpose Matrix
> Write here:

P Answer 1 continued on next slide

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example
Complexity & Python
Data Types
Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for

Divide-and-Conquer

Recurrences
Logarithms
Before Calculators
Logic Introduction
ADTs
Future Work
Haskell Example

References

98/238

List Comprehension Exercises

Answer 1 (b) Transpose Matrix

» Answer 1 (b) Transpose Matrix

49 def transMat(mat)

50 rowLen = lTen(mat[0])

51 matTr \

52 = [[row[i] for row in mat] for i in range(rowLen)]
53 return matTr

55 transMatTestA \
56 = (transMat(matrixA)
57 == matATr)

» Note that a list comprehension is a valid expression as
a target expression in a list comprehension

» The code assumes every row is of the same length

P Answer 1 continued on next slide

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example
Complexity & Python
Data Types
Definitions and Rules
for Complexity

List Comprehensions
Complexity of List

Comprehensions
Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

99/238

List Comprehension Exercises

Answer 1 (b) Transpose Matrix

> Note the differences in the list comprehensions below

38 matrixA \

39 = [[1, 2, 3, 4]
40 ,[5, 6, 7 ,8]
41 ,[9, 10, 11, 12]]

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
C ity Example

Python3>>> [[row[i] for row in matrixA]

C for i 1in range(4)]

[r, 5, 91, 2, 6, 101, 3, 7, 111, [4, 8, 12]1]
Python3>>> [row[i] for row in matrixA

Ce for i in range(4)]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
Python3>>> [row[i] for i in range(4)

Ce for row in matrixA]

1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8, 12]
Python3>>> [[row[i] for i 1in range(4)]

Ce for row in matrixA]

[ri, 2, 3, 41, I[5, 6, 7, 81, [9, 10, 11, 12]]

Complexity & Python
Data Types
Definitions and Rules
for Complexity

List Comprehensions
Complexity of List

Comprehensions
Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

100/238

List Comprehension Exercises

Answer 1 (b) Transpose Matrix

» Answer 1 (b) Transpose Matrix

» The Python NumPy package provides functions for
N-dimensional array objects

> For transpose see numpy.ndarray.transpose

Python3>>>
Python3>>>
Python3>>>
array([[1,

[3,
Python3>>>
Python3>>>
array([[1,

(2,
Python3>>>
array([[1,

(3,
Python3>>>
@, 2)

import numpy as np
ar = np.array([[1,2],[3,411
ar

2],

41D

arT = ar.transpose()
arT

3],

41D

ar

2 g

41D

ar.shape

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example
Complexity & Python
Data Types
Definitions and Rules
for Complexity

List Comprehensions
Complexity of List

Comprehensions
Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

101/238

https://www.numpy.org/
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.transpose.html

List Comprehension Exercises

Answer 1 (c) List Pairs in Fair Order

» Answer 1 (c) List Pairs in Fair Order — first version
» Write here

69 yBiasLstTest \

70 = (yBiasListing(5,5)

71 == [(0, 0), (O, L), (0, 2), (0, 3), (0, ¥

72 , (1, 00, (1, 1, A, 2, 4, 3), 4, B
73 , 2, 00, 2, D, @2, 2), @, 3, @2, D
74 , (3, 00, 3,), (3, 2, 3, 3, 3, »
75 , (4, 00, (4, D, (4, 2), (4, 3), (4, HD

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example
Complexity & Python
Data Types
Definitions and Rules
for Complexity

List Comprehensions
Complexity of List

Comprehensions
Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

102/238

List Comprehension Exercises

Answer 1 (c) List Pairs in Fair Order

» Answer 1 (c) List Pairs in Fair Order
» This is the obvious but biased version

63 def yBiasListing(xRng,yRng)
64 yBiasLst \

65 = [(x,y) for x in range(xRng)
66 for y in range(yRng)]
67 return yBiaslLst

69 yBiasLstTest \

70 = (yBiasListing(5,5)

71 == [(0, 0), (0, 1), (0, 2), (0O, 3), (0, 4

72 , (1, 0, (1, », @, 2, a, 3, a, »
73 , 2, 00, 2, 1, 2, 2, @, 3, @, D
74 , 3, 00, 3, 1, G, 2), @3, 3, G, D
75 , (4, 0, 4, D, (4,2, (4, 3), (4, HD

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example
Complexity & Python
Data Types
Definitions and Rules
for Complexity

List Comprehensions
Complexity of List

Comprehensions
Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

103/238

List Comprehension Exercises

Answer 1 (c) List Pairs in Fair Order

83
84
85

87
88
89

» Answer 1 (c) List Pairs in Fair Order — second version

> Write here

fairLstTest \

= (fairListing(5,5)

== [(0, 0)

, (0, 1),
, (0, 2),
, (0, 3),
, (0, 4),

1,
(1,
(1,
a,

0)

D,
2),
3,

2, 0
@, D,
@, 2,

@3, 0
3, D,

4, 0D

» Go to Activity

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example
Complexity & Python
Data Types
Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

104/238

M259 Python,

List Comprehension Exercises Logic, ADTS
Answer 1 (c) List Pairs in Fair Order Phil Molyneux
Agenda

» Answer 1 (c) List Pairs in Fair Order — second version

Adobe Connect

» This works by making the sum of the coordinates the Programming
same for each prefix Python
Python Checking
77 def fairListing(xRng,yRng) : oot
78 fairLst \ Complexity
79 = [(x,d-x) for d in range(yRng) Complexity Example
80 for x in range(d+1)] By BRI
81 return fairlLst Definitions and Rules

for Complexity
List Comprehensions

83 fairLstTest \

Complexity of List
84 = (fairListi ng (5 9 5) Comprehensions
% L O Dkans Coraue
86 , (0, 1), @, 0) =
87 , (0, 2), (1, 1, 2, 0 Logarithms
88 , (0, 3), (14, 2), (2, D, G, 0O
89 , (0, 4, 4, 3, 2,2, G, D, ¢4, 0] efore Calculators

Logic Introduction
ADTs

Future Work
Haskell Example

References

105/238

List Comprehension Exercises

Answer 1 (c) List Pairs in Fair Order

» Answer 1 (c) List Pairs in Fair Order — third version
» Write here

fairLstATest \

= (fairListingA(5,5)
[[¢o, 0]

[co,
[(o,
Lo,
[co,

D,
2),
3),
4,

1, 0]

1, 1), (2, 0]

@, 2, (2, 1, G, 0]
@@, 3, 2, 2, G, 1,

4, 01D

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example
Complexity & Python
Data Types
Definitions and Rules
for Complexity

List Comprehensions
Complexity of List

Comprehensions
Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

106/238

List Comprehension Exercises

Answer 1 (c) List Pairs in Fair Order

» Answer 1 (c) List Pairs in Fair Order — third version
» The inner loop is placed into its own list comprehension

91 def fairListingA(xRng,yRng)
92 fairLstA \

93 = [[(x,d-x) for x in range(d+1)]
94 for d in range(yRng)]
95 return fairLstA

97 fairLstATest \

98 = (fairListingA(5,5)

99 == [[(0, 0)]

100 , [0, D, (1, 0]

101 , [0, 2, (1, 1), (2, 0)]

102 , [0, 3), (1, 2), (2,), (3, 0]

103 , [0, o, @, 3, 2, 2, G, D, (4, OID

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example
Complexity & Python
Data Types
Definitions and Rules
for Complexity

List Comprehensions
Complexity of List

Comprehensions
Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

107/238

Complexity

Master Theorem for Divide-and-Conquer Recurrences

>

vV VvVyVvyVvyVyywy

The Divide-and-Conquer Method

Many useful algorithms are recursive in structure and
often follow a divide-and-conquer method

They break the problem into several subproblems
similar to the original problem

The time analysis is represented by a recurrence system
References

Big O notation

Master theorem

Cormen et al (2022, chp 4) Algorithms

These notes are partly based on M261 Mathematics in
Computing and M263 Building Blocks of Software and
are not part of M269 Algorithms, Data Structures and
Computability

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example
Complexity & Python
Data Types
Definitions and Rules
for Complexity
List Comprehensions
Master Theorem for
Divide-and-Conquer
Recurrences

Master Theorem
Example Usage

Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

108/238

https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

M259 Python,
Master Theorem Logic, ADT
Recurrence System (a) Phil Molyneux

Agenda
> Recurrence System

Adobe Connect
Programming
Python

b (]) Python Checking
Tools

bnﬁ+cr(g) {n=d*>1} (2) [Comvlexty

Complexity & Python
Data Types
Definitions and Rules

» Typical Expansion Gl

List Comprehensions

Master Theorem for
Divide-and-Conquer

T(1)
T(n)

n T(n) Recurrences
Master Theorem
do b Example Usage

d-l an + Cb Logarithms

ﬁ Before Calculators
n Logic Introduction
a2 bnP+cb (E +c%b .
s
Future Work
Haskell Example

References

109/238

Master Theorem

Recurrence System (b)

» General Expansion

T(n)

B ﬁ)
bn +CT<d

B
= an+cb(g) +c2T(n)

T(n) (3)

I
S
3

=
M

—/

Sk

SN——

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions
Master Theorem for

Divide-and-Conquer
Recurrences
Master Theorem
Example Usage
Logarithms
Before Calculators
Logic Introduction
ADTs
Future Work
Haskell Example

References

110/238

Master Theorem

Recurrence System (c)

» Proof of Closed Form Equation (3)
> For n=1 equation (3) gives

0 .
TN =b1B> (d—cﬁ)l = b which is correct (same as (1))
i=0

» Assume equation (3) holds for n = d*. Then for n = d%*!
T (do‘”) = cT (d%) + bnP by equation (2)

«)
= chd*P Y (d%)l + bd(@+1B by assumption
i=0

= (< bd((xHB < i+bd((x+13
(i) (i)

d

It

- bd@+DB (s (%)’ + 1) by rearrangement

= bd(«+DB i_ZO (d—cﬁ)l by rearrangement

» Hence equation (3) holds for all n=d* where x € N

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Master Theorem

Example Usage
Logarithms
Before Calculators
Logic Introduction
ADTs
Future Work
Haskell Example

References

111/238

thon,
Master Theorem *oaic, ADTS
Cases Phil Molyneux

Agenda

1. If ¢ < dP then the sum converges and T(n) is ©(nP)

Adobe Connect
2. If ¢ = dP then each term in the sum is 1 and Programming
T(n) is © (nﬂ logy n) AL

Python Checking
p p+'| Tools
i oxPTh -1 .
3. If c> d‘B then use Z XI = — Comple?(lty
X - 'I Complexity Example
i=0 Complexity & Python
Data Types

log, n+1 Definitions and Rules
C gd for Complexity
-y - List Comprehensions
Master Theorem for

Divide-and-Conquer
1 Recurrences
B - Master Theorem
d Example Usage
Logarithms
B (¢ logyn 9
= @ n ﬁ Before Calculators
Logic Introduction
=0 (C|°9d ”) ADTs

Future Work

(nlogd C) since aIOQbX = XIOgba Haskell Example

References

112/238

Master Theorem Example Usage (1)
Binary Search
> Algorithm

» Find mid point and check
if not equal to target, recurse on half the data

> Timing equations
T() <1
T(m=T(5)+1
» Hencec=1,d=2,8=0 — case (2)
T(n) = 0(log; n)

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example
Complexity & Python
Data Types
Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Master Theorem

Example Usage
Logarithms
Before Calculators
Logic Introduction
ADTs
Future Work
Haskell Example

References

113/238

Master Theorem Example Usage (2)

Quicksort
> Algorithm
> Best case: splitting on median of data
> Recursively sort each half
> Timing equations

T() <k

T(n) =2T (§) +kn

Hence c=2,d=2, =1 — case (2)
T(n) = O(nlogy n)

See Averages/Median

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions
Master Theorem for

Divide-and-Conquer
Recurrences
Master Theorem
Example Usage
Logarithms
Before Calculators
Logic Introduction
ADTs
Future Work
Haskell Example

References

114/238

https://en.wikipedia.org/wiki/Median
https://rosettacode.org/wiki/Averages/Median

Master Theorem Example Usage (3)

Matrix Multiplication — Strassen’s Algorithm (a)

>
>
>

Matrix Multiplication
Let A, B be two square matrices over a ring, R

Informally, a ring is a set with two binary operations
which look similar to addition and multiplication of
integers

The problem is to implement matrix multiplication to
find the matrix product C = AB

Without loss of generality, we may assume that A, and B
have sizes which are powers of 2 — if A, and B were not
of this size, they could be padded with rows or columns
of zeroes

The Strassen algorithm partitions A, B and C into
equally sized blocks

Al Ar Bi1 B2 a1 G2
A= B= C=
(A21 A22 B21 Bz2 Q1 G2

with Ajj, Bjj, Cjj € Matyn-142n1(R)

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example
Complexity & Python
Data Types
Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Master Theorem

Example Usage
Logarithms
Before Calculators
Logic Introduction
ADTs
Future Work
Haskell Example

References

115/238

https://en.wikipedia.org/wiki/Ring_(mathematics)
https://rosettacode.org/wiki/Matrix_multiplication

M259 Python,

Master Theorem Example Usage (3) Logic, ADTS
Matrix Multiplication — Strassen’s Algorithm (b) A RS e
» The usual (naive, standard) algorithm gives -
a1 Go Programming
(CZI sz) Python
_ (A1 X B11+A12 X B Al X Bio + A1 X By Python Checking
T VAo X B11 +Ax2 X By1 Aoy X Byp 4+ Ao X By Complexity
» This as 8 multiplications and if we assume E;ET:VF::E&PVT:I
multiplication is more expensive than addition then the BTy e o
time complexity is ©(n3) e

Master Theorem for
Divide-and-Conquer
Recurrences

Master Theorem

Example Usage
Logarithms
Before Calculators
Logic Introduction
ADTs
Future Work
Haskell Example

References

116/238

Master Theorem Example Usage (3)

Matrix Multiplication — Strassen’s Algorithm (c)

> The Strassen algorithm rearranges the calculation
My = (A11 + A22) X (B11 + B22)
My = (A1 + A22) X By
M3 = A11 X (B12 - B22)
M4 = Azz X (B21 - B11)
Ms = (A7 + A12) X By
Me = (A21 - A11) X (B11 + B12)
M7 = (A12 - A22) X (B21 + B22)
> We now express the Cj; in terms of the M
(Cn Clz)
1 G
=(M1+M4—M5+M7 M3 + Ms)
M + My My - My + M3 + Mg

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions
Master Theorem for

Divide-and-Conquer
Recurrences
Master Theorem
Example Usage
Logarithms
Before Calculators
Logic Introduction
ADTs
Future Work
Haskell Example

References

117/238

Master Theorem Example Usage (3)
Matrix Multiplication — Strassen’s Algorithm (d)
» Strassen Matrix Multiplication Timing Equations
T(m =7T(§) + 3n?
T <18

» This is derived from the 7 multiplications and 18
additions or subtractions

» c=7,d=2,B=2 — case (3)
T(n) =0 <H|°92 7> =0 <H2'8)

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Complexity Example
Complexity & Python
Data Types
Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Master Theorem

Example Usage
Logarithms
Before Calculators
Logic Introduction
ADTs
Future Work
Haskell Example

References

118/238

Exponentials and Logarithms

Definitions

>

vVvyVvYyVvVvyTyyey

v

Exponential function y = a* or f(x) = a*
a"=axax---xa(naterms)

Logarithm reverses the operation of exponentiation
log, ¥y =x means a* =y

log,1=0

logga=1

Method of logarithms propounded by John Napier from
1614

Log Tables from 1617 by Henry Briggs

Slide Rule from about 1620-1630 by William Oughtred
of Cambridge

Logarithm from Greek logos ratio, and arithmos
number Chambers Dictionary (13th Edition, 2014)

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity

Logarithms

Exponentials and
Logarithms —
Definitions

Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs

Laws of Logarithms
Arithmetic and Inverses
Change of Base

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

119/238

https://en.wikipedia.org/wiki/Exponential_function
https://en.wikipedia.org/wiki/Logarithm
https://en.wikipedia.org/wiki/Mathematical_table#Tables_of_logarithms
https://en.wikipedia.org/wiki/Slide_rule

Exponentiation
Rules of Indices
1. a"x ag" = agm"
2. a"+ag"=ag"m"
1
om_ 1
3.a"= prT
1
4. am = "/a
5. (am)n = amn
6. am = "/an
7. a°=1wherea+0
> Exercise Justify the above rules
» What should 0° evaluate to ?
» See Wikipedia: Exponentiation
>

The justification above probably only worked for whole
or rational numbers — see later for exponents with real
numbers (and the value of logarithms, calculus. . .)

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity

Logarithms
Exponentials and
Logarithms —
Definitions
Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs

Laws of Logarithms
Arithmetic and Inverses
Change of Base

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

120/238

http://en.wikipedia.org/wiki/Exponentiation

Logarithms

Motivation

>

v

Make arithmetic easier — turns multiplication and
division into addition and subtraction (see later)

Complete the range of elementary functions for
differentiation and integration

An elementary function is a function of one variable
which is the composition of a finite number of
arithmetic operations ((+), (), (X), (<)), exponentials,
logarithms, constants, and solutions of algebraic
equations (a generalization of nth roots).

The elementary functions include the trigonometric and
hyperbolic functions and their inverses, as they are
expressible with complex exponentials and logarithms.

See A Level FP2 for Euler’s relation e/® = cos 0 +isin 0
1
In A Level C3, C4 we get J; =loge IX| + C

e is Euler’s number 2.71828...

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity

Logarithms

Exponentials and
Logarithms —
Definitions

Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs

Laws of Logarithms
Arithmetic and Inverses
Change of Base

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

121/238

https://en.wikipedia.org/wiki/Elementary_function
https://en.wikipedia.org/wiki/Elementary_function
https://en.wikipedia.org/wiki/E_(mathematical_constant)

M259 Python,

Exponentials and Logarithms Logic, ADTS

Graphs Phil Molyneux

> See GeoGebra file expLog.ggb Agenda

Adobe Connect
Programming
6 Python

Python Checking
5 Tools

Complexity

4 Logarithms
Exponentials and
Logarithms —

3 Definitions

Rules of Indices
Logarithms —
Motivation

Laws of Logarithms
Arithmetic and Inverses
Change of Base

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

h(z) = g(f(x))

References

122/238

expLog.ggb

Exponentials and Logarithms

Laws of Logarithms
» Multiplication law log, xy = log, x + log, y
Division law log, (%) =log, x-log,y

>
» Power law log, x = klog, x
> Proof of Multiplication Law

x = g'99a X
y = al°9ay by definition of log
Xy = alogax % alogay
= gl9ax+logzy by laws of indices
Hence log, xy = log, x +log, y by definition of log

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity

Logarithms
Exponentials and
Logarithms —
Definitions
Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs

Laws of Logarithms
Arithmetic and Inverses
Change of Base

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

123/238

Arithmetic Operations

Inverse Operations

>

vV VvVvyyvyy

vVvyVvyYyeyswy

Notation helps or maybe not ?
Addition add(b,x) =x+ b

Subtraction sub(b,x) = x-b

Inverse sub(b, add(b, x)) = (x+ b) - b= x
Multiplication mul(b,x) =x X b
Division div(b,x) = x + b= % = x/b

Inverse div(b, mul(b, x)) = (x X b) =~ b= ‘XZ”’ =X

Exponentiation exp(b, x) = bX
Logarithm log(b, x) = logy, x
Inverse log(b, exp(b, x)) = log,(b*) = x

What properties do the operations have that work (or
not) with the notation ?

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity

Logarithms
Exponentials and
Logarithms —
Definitions
Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs
Laws of Logarithms
Arithmetic and Inverses
Change of Base

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

124/238

https://en.wikipedia.org/wiki/Addition
https://en.wikipedia.org/wiki/Subtraction
https://en.wikipedia.org/wiki/Multiplication
https://en.wikipedia.org/wiki/Division_(mathematics)
https://en.wikipedia.org/wiki/Exponentiation
https://en.wikipedia.org/wiki/Logarithm

Arithmetic Operations

Commutativity and Associativity

>
>
>

vV vyVvyy

vV vyYyywy

Commutativity x® y =y ® x
Associativity x@ y)®ez=x® (y ® 2)

(+) and (x) are semantically commutative and
associative — so we can leave the brackets out

(-) and (=) are not
Evaluate 3-(2-1))and (3-2)-1)
Evaluate (3/(2/2)) and ((3/2)/2)

We have the syntactic ideas of left (and right)
associativity

We choose (-) and (<) to be left associative
3-2-1Tmeans (3-2)-1)
3/2/2 means ((3/2)/2)

Operator precedence is also a choice (remember

BIDMAS or BODMAS ?)
If in doubt, put the brackets in

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity

Logarithms
Exponentials and
Logarithms —
Definitions
Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs

Laws of Logarithms
Arithmetic and Inverses
Change of Base

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

125/238

https://en.wikipedia.org/wiki/Commutative_property
https://en.wikipedia.org/wiki/Associative_property
https://en.wikipedia.org/wiki/Order_of_operations

Exponentials and Logarithms

Associativity

>

vV VvVvyyvyy

What should 23* mean ?

Let bA x = b

Evaluate 2A3)A4 and 2A(3A4)

Evaluate ¢ = logy(log,((b A b) A X))

Evaluate d = log,(logy(b A (b A X))

Beware spreadsheets Excel and LibreOffice here

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity

Logarithms
Exponentials and
Logarithms —
Definitions
Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs

Laws of Logarithms
Arithmetic and Inverses
Change of Base

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

126/238

Exponentials and Logarithms

Associativity

>
>
>

VVvVVvy VvVVvVvyVvyVvyy

(23)4 — 212 and 234 — 281
Exponentiation is not semantically associative

We choose the syntactic left or right associativity to
make the syntax nicer.

Evaluate ¢ = logy(log,((b A b) A X))

¢ = log(xlog,(b?)) = log,(x - (blogy, b)) = logp(x - b 1)
Hence c =logy, x +log, b =log, x + 1

Not symmetrical (unless b and x are both 2)

Evaluate d = log,(logy,(b A (b A X))

d = log,((b A x)(logy, b)) = log,((b A x) X T)

Hence d =log,(b A x) = x(logy, b) = x

Which is what we want — so exponentiation is chosen to
be right associative

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity

Logarithms
Exponentials and
Logarithms —
Definitions
Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs

Laws of Logarithms
Arithmetic and Inverses
Change of Base

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

127/238

Exponentials and Logarithms

Change of Base

» Change of base

logy, x

logy; x=——

9a logy, a

Proof: Let y = log, x
a’ =x

logy, a¥ =logy, x
ylogy, a =logy x
_logy, x
" logya

> Given x, logy x, find the base b

1
> h= xlogpx
1

> |Ogab=@

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity

Logarithms
Exponentials and
Logarithms —
Definitions
Rules of Indices
Logarithms —
Motivation

Exponentials and
Logarithms — Graphs
Laws of Logarithms
Arithmetic and Inverses
Change of Base

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

128/238

Before Calculators and Computers

» We had computers before 1950 — they were humans
with pencil, paper and some further aids:

» Slide rule invented by William Oughtred in the 1620s —
major calculating tool until pocket calculators in 1970s

> Log tables in use from early 1600s — method of
logarithms propounded by John Napier

» Logarithm from Greek logos ratio, and arithmos
number

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms

Before Calculators
Log Tables

Slide Rules
Calculators

Example Calculation

Logic Introduction
ADTs

Future Work
Haskell Example

References

129/238

https://en.wikipedia.org/wiki/Slide_rule
https://en.wikipedia.org/wiki/William_Oughtred
https://en.wikipedia.org/wiki/Calculator
https://en.wikipedia.org/wiki/Mathematical_table
https://en.wikipedia.org/wiki/John_Napier
https://en.wikipedia.org/wiki/Logarithm

Log Tables

Knott’s Four-Figure Mathematical Tables

KNOTT’S
FOUR-FIGURE
MATHEMATICAL

W. & R. CHAMBERS, LTD.
LONDON AND EDINBURC

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms

Before Calculators

Slide Rules
Calculators
Example Calculation

Logic Introduction
ADTs

Future Work
Haskell Example

References

130/238

Log Tables

Logarithms of Numbers

LOGARITHMS OF

NUMBERS

I
ale s o1

10[0000/0043 o0ss
11 -os14 osss osse
12 o702 oaze ones
131301173 1206
14 | 140 1402 1522
s [-1761 1700 1010
i

7| Zs0s 2330
it
o
2

3010|3032 3064
22

s211
5328 5340

5453 54
sore

04 5705
5809 5821
8922 5033

542 6551
6637 6640
73

812 as21 6630
6911 6920

5 54785490 5502

0128[0170 0212
o
0531 05

o6
0899|0934 0969
69 1004 {1038
1239|1271 130
1303 1335 1367
15531584 1614 164416

1847|1875 1903 1931|1950
2 2201|2227
0 2455 2480
2695 2718
29232045

30753006 3118 3130(3160
324 3345 3
34833502 3622

3674|3692 3711
38563874 3802

4065
prergrid
4303 ad
pirtd
3 4698

02530204

0645 0682

4829 4843
369 4983
5119

7 8250
§523 5486 278

8599/

571757
5832/

8944

3
6464 6474 6484
680
o675
6758 6767
39 6848 6
69286957 6946

871
e
5159 5172

m
0334 0374 [40)
o719 o7ss [37]
1072 1106 [34]

3
1399 1430 [32|

73 1703 1732 | 30|

1987 2014 |28
2253 2279 [26]
2504 2529 (25,

2742
2967 2080 22|
3
31t 20|
3679 m- o)

220 a1

4116 133 [17]
4281 4208
s aise 10
504 4600 [15|
a7az ast

4900 |14}
4 Soss

5269 5302 13|
s416 saze

sos0 s301

8107 6117
6212 6222
6514 6325
6415 6425 | 10|
8513 6522

S o ESE

131418

121815
111314
1

USEFUL CONSTANTS WITH THEIR LOGARITHMS

314189 odort

ostes Tsoz
98606 09943
Ve 17s ovss

- atem o2t

No.

[eroass

e
2

Log.
17581

LOGARITHMS OF NUMBERS

8585 891
0 8645 8651
04 8

0 0694
o741

8 7007 7016

7093 7101
777 7188
7250 7267
7340 7348

7410 7427

7723 7781
7808
7875
H
B0t
8082
8142 8149
8215

82t 8280
8331 8338 8344
7

8401 3407

8463 8470
8525 8531

it}

w762 a768
s s

o786 o701

9832 9830
72 881

5 9969

7024 7033 7042 7050 7059 7067
7H10 7118 71ae | 7198 T14s 7132
7193 7202 7210 | 7218 7226 7235
7275 7oa4 7203 | 7300 7308 7316
7386 7364 7372 | 7380 7388 7396

7435 7443 7451 | 7459 7466 7474
7613 7620 7528 | 7636 7543 7681
7589 7697 7604 [7612 7619 7627
7664 7672 7679 | 7686 7694 7701
7738 7745 7752 | 7760 7767 7770

7810 7846
7 0 7917

2 7 7987
s021 8055

8085
8156
8222 B

8122

82 8180
8254
a7 2 8319
8351 8357 8363 | 8370 8376 8382
8414 8420 8426 | 8432 8439 8445

8476 8482 8488 | 8404 3500 8506
8537 8643 8549 8567
8597 8603 8609

8657 8663 8069
a71s 8722 8727

i 8686
8745

a7e
31 8837

9083
9108
o189
o212
9263

9274 | 9270

9315 9320 0325 | 9330
65 9570 9375 | 9380
0 9425 | 9430
9474 | 0479
9523 | 9528

9571 | 0576 9581 9586

9619 | 0624 9628 0633

66 | 9671 80

o713 | o717 27

9759 | 0763 9768 0773

o1

863

9908

0082

9996

o 27188 04ty
M osus Tewrs
1

% 2a0 o

7
fogex = . loguux
Togiux =M. logex

Only che decimal portion (mentssc) of esch logarithm is shown in ths table.
The integral portion (choracteristic) must be

determined. independently.

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms

Before Calculators

Slide Rules
Calculators
Example Calculation

Logic Introduction
ADTs

Future Work
Haskell Example

References

131/238

Log Tables

Antilogarithms

2480
2618 251

01 2607

02 1104
1130

1208
1230 1233 1236 1230

1259 [1262 1265 1268
a8 | 1261

Bt
a1 | 12 1294 1297
12 | 1318 | 1321 1324 1327
q 1362 1355 1368
14 | 1380 | 1384 1387 1350
415 | 1413 | 1416 1419 1422

1448 [1. 2 1485

79 | 1483 1.
1614|1517 1821 1524
1649 [1552 1856 1560
1589 1502 1506
1626 1620 1633

1663 166
1702 1706 1710
1742 1746 1750
179
1832

53
2208
2254

2406 2472

23 2621
2576 2582 2088
2636

3704 2710
2761 2767 2173

2031 2838

2904
a8 207

2
3041
3007 3108 8112

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms

Before Calculators

Slide Rules
Calculators
Example Calculation

Logic Introduction
ADTs

Future Work
Haskell Example

References

132/238

. M259 Python,
Sllde RUIGS Logic,AD‘?g
Pickett N 3-ES from 1967 Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Python Checking
Tools

Complexity
Logarithms

Before Calculators
Log Tables

Slide Rules
Calculators

Example Calculation

Logic Introduction

ADTs

Future Work

> See Oughtred Society :z::i:::mple
» UKSRC

» Rod Lovett’s Slide Rules

» Slide Rule Museum

133/238

http://www.oughtred.org
http://www.uksrc.org.uk
http://sliderules.lovett.com
http://sliderulemuseum.com

Slide Rules

Pickett loglog Slide Rules Manual 1953

by MAURICE L. HARTUNG
Asociate Professor of the
Teoching of Mothematics
THE UNIVERSITY OF CHICAGO

Price 50 Conts

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms

Before Calculators
Log Tables

Slide Rules
Calculators

Example Calculation

Logic Introduction
ADTs

Future Work
Haskell Example

References

134/238

M259 Python,

Calculators Logic, ADT
HP HP-21 Calculator from 1975 £69 Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Log Tables
Slide Rules
Example Calculation
Logic Introduction
ADTs
Future Work
Haskell Example

References

135/238

M259 Python,

Calculators Logic, ADT
Casio fx-85GT PLUS Calculator from 2013 £10 goiltelyneLxe

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms

Before Calculators
Log Tables

Slide Rules
Calculators

Example Calculation

Logic Introduction
ADTs

Future Work
Haskell Example

References

136/238

Calculators

Calculator Links

>
>

HP Calculator Museum http://www.hpmuseum.org

HP Calculator Emulators
http://nonpareil.brouhaha.com

HP Calculator Emulators for OS X
http://www.bartosiak.org/nonpareil/

Vintage Calculators Web Museum
http://www.vintagecalculators.com

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms

Before Calculators
Log Tables

Slide Rules
Calculators

Example Calculation

Logic Introduction
ADTs

Future Work
Haskell Example

References

137/238

http://www.hpmuseum.org
http://nonpareil.brouhaha.com
http://www.bartosiak.org/nonpareil/
http://www.vintagecalculators.com

M259 Python,

Example Calculation Lo, ADTs
Log Tables, Slide Rule and Calculator A RS e
> Evaluate 89.7 x 597 N
> Knott’s Tab|eS Programming
> logy89.7 =1.9528 and log; 597 = 2.7760 x:""Ch .
on Checking
» Shows mantissa (decimal) & characteristic (integral) UEEE
Complexi
> Add 4.7288, take antilog to get 5346 +10=5.356x 104 """
» HP-21 Calculator — set display to 4 decimal places Before Calculators
> 89.7 [log) = 1.9528 and 597 log] = 2.7760 S ules
> [+ displays 4.7288 Lo oucton
> 10 [ENTER), and [y*] displays 53550.9000 A0

Future Work

> Casio fx-85GT PLUS Haskell Example
> 89.7 (1)) =1.952792443 597 ()] =2.775974331 =) References
> 4.728766774 [Ans]+[10¥] gives 53550.9

138/238

Boolean Expressions
Traffic Lights Example (1)

>

>
>

Consider traffic light at the intersection of roads AC and
BD with the following rules for the AC controller

Vehicles should not wait on red on BD for too long.

If there is a long queue on AC then BD is only given a
green for a short interval.
If both queues are long the usual flow times are used.
We use the following propositions:
> w Vehicles have been waiting on red on BD for too long
> g Queue on AC is too long
> r Queue on BD is too long
Given the following events:
> ToBD Change flow to BD
> ToBDShort Change flow to BD for short time
» NoChange No Change to lights

Express above as truth table, outcome tree, boolean
expression

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators

Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

139/238

Boolean Expressions

Traffic Lights Example (2)

» Traffic Lights outcome table

S

N}

Event

mm M- -

i B B B B B e B |

e B B B B B B B

ToBD
ToBDShort
ToBD
ToBD
NoChange
NoChange
NoChange
NoChange

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

140/238

Boolean Expressions
Traffic Lights Example (3)

> Traffic lights outcome tree

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators

Logic Introduction

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

141/238

Boolean Expressions
Traffic Lights Example (4)

> Traffic lights outcome tree simplified

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators

Logic Introduction

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

142/238

Boolean Expressions

Traffic Lights Example (5)

> Traffic Lights code 01
» See M269TutorialProgPythonADTO1.py

3def trafficLights01l(w,q,r)

® N o UV

©

11
12
13
14
15
16
17
18

oo

Input 3 Booleans

Return Even
if w
if g
if r
evnt
else :
evnt
else
evnt =
else :
evnt = "N
return evnt

t string

= "ToBD"

"ToBDShort"

"ToBD"

oChange"

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators

Logic Introduction

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

143/238

http://www.pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269TutorialProgPythonADT/M269TutorialProgPythonADT01.py

Boolean Expressions
Traffic Lights Example (6)

> Traffic Lights test code 01

22trafficLightsOlEvnts = [((w,q,r), trafficLights0l(w,q,r))

23 for w in [True,False]
24 for q in [True,False]
25 for r 1in [True,False]]

27assert trafficLightsO0lEvnts \

28 == [((True, True, True), ’ToBD’)

29 , ((True, True, False), ’ToBDShort’)
30 ,((True, False, True), ’ToBD’)

31 ,((True, False, False), ’ToBD’)

32 , ((False, True, True), ’'NoChange’)

33 , ((False, True, False), ’NoChange’)
34 , ((False, False, True), ’NoChange’)
35 , ((False, False, False), ’NoChange’)]

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions.
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

144/238

Boolean Expressions
Traffic Lights Example (7)

> Traffic Lights code 02 compound Boolean conditions

37def trafficlLights02(w,q,r)

38
39
40
41
42
43
44
45
46
47
48

Input 3 Booleans

Return Event string

if ((w and g and r) or (w and not q))
evnt = "ToBD"

elif (w and g and not r)
evnt = "ToBDShort"

else :
evnt = "NoChange"

return evnt

> What objectives do we have for our code ?

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions.
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

145/238

Boolean Expressions
Traffic Lights Example (8)

> Traffic Lights test code 02

s2trafficLights02Evnts = [((w,q,r), trafficLights02(w,q,r))

53 for w in [True,False]
54 for q in [True,False]
55 for r 1in [True,False]]

s7assert trafficLights02Evnts == trafficLightsOlEvnts

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators

Logic Introduction

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

146/238

Boolean Expressions
Traffic Lights Example (9)

» Traffic Lights Venn diagram

P OK using a fill colour would look better but didn’t have the time to hack the
package

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators

Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

147/238

Boolean Expressions

Validity

» Validity of Boolean expressions

» Complete every outcome returns an event (or error
message, raises an exception)

» Consistent — we do not want two nested if
statements or expressions resulting in different events

» We check this by ensuring that the events form a
disjoint partition of the set of outcomes — see the Venn
diagram

>

We would quite like the programming language
processor to warn us otherwise — not always possible

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

148/238

Booleans Expressions

Rail Ticket Exercise (1)

» Rail ticket discounts for:

> ¢ Rail card

> g Off-peak time

> s Special offer
> 4 fares: Standard, Reduced, Special, Super Special
» Rules:

1. Reduced fare if rail card or at off-peak time

2. Without rail card no reduction for both special offer and
off-peak.

3. Rail card always has reduced fare but cannot get
off-peak discount as well.

4. Rail card gets super special discount for journey with
special offer

» Draw up truth table, outcome tree, Venn diagram and
conditional statement (or expression) for this

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators

Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

149/238

Booleans Expressions

Rail Ticket Exercise (2)

> Rail ticket outcome table

ENY

Event

B e o W s B B TR R T o

mmH AT o A

S
T
F
T
F
T
F
T
F

Super Special
Reduced
Super Special
Reduced
Special
Reduced
Special
Standard

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators

Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

150/238

Booleans Expressions

Rail Ticket Exercise (3)

> Rail ticket outcome table

» Note that it may be more convenient to change columns

» Real fares are a little more complex — see brfares.com

q Event

bra B e o M s I B B B T oY

MM mTm——|u

T Super Special
F Super Special
T Reduced
F Reduced
T Special
F Special
T Reduced
F Standard

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

151/238

http://www.brfares.com

Boolean Expressions
Rail Ticket Exercise (4)

» Rail Ticket outcome tree

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

152/238

Boolean Expressions
Rail Ticket Exercise (5)

> Rail Ticket outcome tree simplified

Super Special

) I

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

153/238

Boolean Expressions
Rail Ticket Example (6)

> Rail Ticket Venn diagram

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

154/238

Boolean Expressions
Rail Ticket Example (7)

» Rail Ticket code 01

61def railTicket01l(c,s,q)

62
63
64
65
66
67
68
69
70
71

72
73
74
75
76
77
78
79

Input 3 Booleans
Return Event string
if ¢
if s
evnt = "SSP"
else
evnt = "RD"
else
if s
evnt
else
if q
evnt = "RD"
else
evnt = "STD"
return evnt

ngpr

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

155/238

Boolean Expressions
Rail Ticket Example (8)

> Rail Ticket test code 01

83railTicketOlEvnts = [((c,s,q), railTicket0l(c,s,q))

84 for c 1in [True,False]
85 for s 1in [True,False]
86 for q in [True,False]]
ggassert railTicketOlEvnts \

89 == [((True, True, True), ’SSP’)

90 ,((True, True, False), ’SSP’)

91 ,((True, False, True), ’RD’)

92 ,((True, False, False), ’'RD’)

93 ,((False, True, True), ’SP’)

94 ,((False, True, False), ’SP’)

95 ,((False, False, True), ’RD’)

96 ,((False, False, False), ’'STD’)]

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions.
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

156/238

Boolean Expressions
Rail Ticket Example (9)

> Rail Ticket code 02 compound Boolean expressions

ogdef railTicket02(c,s,q)

929
100
101
102
103
104
105
106
107
108
109
110
111

Input 3 Booleans
Return Event string

min

if (c and s)
evnt = "SSP"

elif ((c and not s) or (not c and not s and q))
evnt = "RD"

elif (not c and s)

evnt = "SP"
else :
evnt = "STD"

return evnt

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

157/238

Boolean Expressions
Rail Ticket Example (10)

> Rail Ticket test code 02

115railTicket02Evnts = [((c,s,q), railTicket02(c,s,q))

116 for c 1in [True,False]
117 for s 1in [True,False]
118 for q in [True,False]]
120assert railTicketO2Evnts == railTicketOlEvnts

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

158/238

Propositional Calculus

Introduction

>

>

Unit 2 section 3.2 A taste of formal logic introduces
Propositional calculus

A language for calculating about Booleans — truth
values

Gives operators (connectives) conjunction (A) AND,
disjunction (v) OR, negation (=) NOT, implication (=) IF
There are 16 possible functions (B, B) — B — see below
— defined by their truth tables

Discussion Did you find the truth table for implication
weird or surprising ?

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators

Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

159/238

https://en.wikipedia.org/wiki/Propositional_calculus
https://en.wikipedia.org/wiki/Logical_conjunction
https://en.wikipedia.org/wiki/Logical_disjunction
https://en.wikipedia.org/wiki/Negation
https://en.wikipedia.org/wiki/Material_conditional

Propositional Calculus

Implication
> Implication has a negative definition — we accept its
truth unless we have contrary evidence
» T=>T==Tand T = F==
> Hence 4 possibilities for truth table

mTTmHAH|S
M7 |8
4474 P=>q9
Amm4H|pP=q
M| pPAqG

m4m4|q

» (=) must have the entry shown — the others are taken
» Do not think of p causing q

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators

Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

160/238

Propositional Calculus

Functional Completeness, Boolean Programming
» Functionally complete set of connectives is one which
can be used to express all possible connectives
> p=>qg=-pV qsowe could just use {—, A, vV}
» Boolean programming — we have to have a

functionally complete set but choose more to make the
programming easier

> Expressiveness is an issue in programming language
design

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

161/238

https://en.wikipedia.org/wiki/Functional_completeness

Propositional Calculus

NAND, NOR

>

>

>

>
4
>
|
4
>
>

>

NAND pAgq, p t q, Sheffer stroke

NOR pVgq, p | q, Pierce’s arrow

See truth tables below — both {t},{!} are functionally
complete

Exercise verify

p=pltp
prg=—(ptg=ptgtp!qg
pvag=(ptpt@q!qg
p=Eplp
prg=(plipl@lqg
pvag=-pla=plglplqg

Not a novelty — the Apollo Guidance Computer was
implemented in NOR gates alone.

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

162/238

https://en.wikipedia.org/wiki/Sheffer_stroke
https://en.wikipedia.org/wiki/Logical_NOR
https://en.wikipedia.org/wiki/Apollo_Guidance_Computer

Truth Function

Truth Function References

» The following appendix notes illustrate the 16 binary
functions of two Boolean variables

» See Truth function

» See Functional completeness
> See Sheffer stroke

> See Logical NOR

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators

Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

163/238

https://en.wikipedia.org/wiki/Truth_function
https://en.wikipedia.org/wiki/Functional_completeness
https://en.wikipedia.org/wiki/Sheffer_stroke
https://en.wikipedia.org/wiki/Logical_NOR

Truth Function 259 pytron,

Table of Binary Truth Functions Phil Molyneu
5 Agenda
S 3 : @ S Adobe CorTnect
p q T S S S S s & QU Programming
Python
TTTTTTTTTT Python Checking
T F T TTTF F F F o
mplexity
F T T T F F T T F F logarithms
F F T F T F T F T F Before Calculators
- - = Logic Introduction
[\ Boolean Expressions
‘ g “U" Q "ﬂ [\l ﬁ' I< Zrc‘;;;-i::;d:a-:-ag::essions
and Validit
p q L 2 2 T a8 7 8 18
Exercise
T TFF FFFFFF pormsios o
T F F F F F T T T T ADTs
F T F F T T F F T T Future Work
F F F T F T F T F T Haskell Example

References

164/238

Truth Function

Tautology/Contradiction

» Tautology True, T, Top

» Contradiction False, L, Bottom

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
ADTs
Future Work
Haskell Example

References

165/238

. M259 Python,
Truth Function Logic, ADTS
Disjunction/Joint Denial Phil Molyneux

» Disjunction OR, pV g Agenda

Adobe Connect

Programming
Python

Python Checking
Tools

Complexity

Logarithms

u

Before Calculators

Logic Introduction

- - — . Boolean Expressions
> Joint Denial NOR, pVgq, p | q, Pierce’s arrow o T Tabes
and Validity

Boolean Expressions
Exercise

Propositional Calculus
ADTs
Future Work

Haskell Example

References

166/238

https://en.wikipedia.org/wiki/Logical_NOR

Truth Function

Converse Implication/Converse Nonimplication

» Converse Implication p < g

> Converse Nonimplication p < g

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
ADTs
Future Work
Haskell Example

References

167/238

Truth Function
Proposition p/Negation of p

> Proposition p

u

> Negation of p

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
ADTs
Future Work
Haskell Example

References

168/238

Truth Function

Material Implication/Material Nonimplication

» Material Implication p = g

» Material Nonimplication p » g

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
ADTs
Future Work
Haskell Example

References

169/238

Truth Function
Proposition g/Negation of g

> Proposition g g

u

> Negation of g —¢q

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
ADTs
Future Work
Haskell Example

References

170/238

. M259 Python,
Truth Function Logic, ADTs
Biconditional/Exclusive disjunction (] Coli7raes

> Biconditional If and only if, IFF, p & g hatis

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms

Before Calculators

Logic Introduction

- - = . Boolean Expressions
> Exclusive disjunction XOR, p ¢ g e Tl
and Validity

Boolean Expressions
Exercise

Propositional Calculus

ADTs
Future Work

Haskell Example

References

171/238

Truth Function

Conjunction/Alternative denial

» Conjunction AND, p A g

u

> Alternative denial NAND, p % g, p 1 q, Sheffer stroke

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
ADTs
Future Work
Haskell Example

References

172/238

https://en.wikipedia.org/wiki/Sheffer_stroke

Abstract Data Types 259 pytron,
Overview Phil Molyneux
Agenda

» Abstract data type is a type with associated operations,
but whose representation is hidden (or not accessible)

Adobe Connect

Programming

» Common examples in most programming languages Python
are Integer and Characters and other built in types such ~ Python Checking
as tuples and lists Complexity

> Abstract data types are modeled on Algebraic Logarithms
structures Before Calculators

Logic Introduction

> A set of values

i i ADT
> Collection of operations on the values T —
> Axioms for the operations may be specified as equations e

Haskell Code —

or pre and post conditions Afj‘::::f";gwpk
> Health Warning different languages provide different .
ways of doing data abstraction with similar names that Future Work
may mean subtly different things Iesiiell et

References

173/238

https://en.wikipedia.org/wiki/Abstract_data_type
https://wiki.haskell.org/Abstract_data_type
https://en.wikipedia.org/wiki/Algebraic_structure
https://en.wikipedia.org/wiki/Algebraic_structure

Abstract Data Types

Overview (2)

>

Abstract Data Types and Object-Oriented
Programming

Example: Shape with Circles, Squares, ...and
operations draw, moveTo, ...

ADT approach centres on the data type — that tells you
what shapes exist

For each operation on shapes, you describe what they
do for different shapes.

00 you declare that to be a shape, you have to have
some operations (draw, moveTo)

For each kind of shape you provide an implementation
of the operations

00 easier to answer What is a circle? and add new
shapes

ADT easier to answer How do you draw a shape? and
add new operations

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview
Haskell Code —
Commentary
Abstract Data Type —

Queue

ADT Lists in Lists
Future Work
Haskell Example

References

174/238

M259 Python,

Abstract Data Types Looie, ADTS
Overview (3) Phil Molyneux
Agenda

> Health Warning and Optional Material Discussions
about the merits of Functional programming and

Adobe Connect

Programming

Object-oriented programming tend to look like the R

disputes between Lilliput and Blefuscu Python Checking
» Abstract data type article contrasts ADT and OO as Complexity

algebra compared to co-algebra Logarithms

Before Calculators

» What does coalgebra mean in the context of
programming? is a fairly technical but accessible article.

Logic Introduction

ADTs

» What does the forall keyword in Haskell do? — is an oSt Saallvos
accessible article on Existential Quantification ety
Abstract Data Type —
> Bart Jacobs Coalgebra Queve
ADT Lists in Lists
» nlLab Coalgebra Future Work

> Beware the distinction between concepts and features in ~ Heskell Bxamele
. . References
programming languages — see OOP Disaster

> Not for this session — this slide is here just in case

175/238

https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Lilliput_and_Blefuscu
https://wiki.haskell.org/Abstract_data_type
http://stackoverflow.com/questions/16015020/what-does-coalgebra-mean-in-the-context-of-programming
http://stackoverflow.com/questions/16015020/what-does-coalgebra-mean-in-the-context-of-programming
http://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do
http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf
https://ncatlab.org/nlab/show/coalgebra
http://www.smashcompany.com/technology/object-oriented-programming-is-an-expensive-disaster-which-must-end

Abstract Data Types

Overview (4) — Shapes ADT Style

1 data Shape

2 = Circle

3 | Square

5 draw :: Shape ->

6 draw (Circle p r) = pr

7 draw (Square p s) = pss
9 moveTo -> Shape -> Shape
10 moveTo p2 (Circle pl r) = Circle p2 r
11 moveTo p2 (Square pl s) = Square p2 s

13 shapes :: [Shape]
14 shapes = [Circle (0,0) 1, Square (1,1) 2]

16 shapes0l :: [Shape]
17 shapes0l = map (moveTo (2,2)) shapes

» Example based on Lennart Augustsson email of 23 June
2005 on Haskell list

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Haskell Code —
Commentary

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

176/238

Abstract Data Types

Overview (5) — Shapes OO Style

12
13
14

17
18

20
21
22
23

class IsShape shape where
draw :: shape ->
moveTo :: -> shape -> shape

data Shape = forall a7Var . (IsShape alVar) => Shape alVar

data Circle = Circle

instance IsShape Circle where
draw (Circle p r) = pr
moveTo p2 (Circle pl r) = Circle p2 r

data Square = Square

instance IsShape Square where
draw (Square p s) = pss
moveTo p2 (Square pl s) = Square p2 s

shapes :: [Shape]
shapes = [Shape (Circle (0,0) 10), Shape (Square (1,1) 2)]

shapes01 :: [Shape]
shapes01 = map (moveShapeTo (2,2)) shapes
where
moveShapeTo p (Shape s) = Shape (moveTo p s)

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Haskell Code —
Commentary

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

177/238

Haskell Code i

Commentary (1) Phil Molyneux
. . . Agenda
» The following is a very brief commentary on the Haskell Adobe Comnect
COde Programming
Python
: data S'hape Python Checking
2 = Circle Pytho
’ | Sauare Complexity
Logarithms

» data defines an algebraic datatype with two
constructors (Circle, Square) which each take two Logic Introduction
arguments of types assumed to be defined elsewhere ADTs

Abstract Data Types —
() ’) Overview

Before Calculators

Haskell Code —
Commentary
Abstract Data Type —

Queue

ADT Lists in Lists
Future Work
Haskell Example

References

178/238

https://en.wikipedia.org/wiki/Algebraic_data_type

Haskell Code

Commentary (2)

draw :: Shape ->

draw (Circle p r) = pr
draw (Square p s) = pss
moveTo :: -> Shape -> Shape
moveTo p2 (Circle pl r) = Circle p2 r
moveTo p2 (Square pl s) = Square p2 s

>

The lines starting draw :: and moveTo :: are type
signatures which specify types for the functions draw
and moveTo

In each case the next couple of lines define the function
Note that function and constructor application is
denoted by juxtaposition, is left associative and is more
binding than (almost) anything else

(f x y) means ((f x) vy)

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Haskell Code —
Commentary
Abstract Data Type —

Queue

ADT Lists in Lists
Future Work
Haskell Example

References

179/238

Haskell Code

Commentary (3)

1 class IsShape where
2 draw :: ->
3 moveTo :: -> ->

» The above declares the type class IsShape which
includes the type signatures of the functions which
must be defined in any instance declaration

8 1dnstance IsShape Circle where
9 draw (Circle p r) = pr
10 moveTo p2 (Circle pl r) = Circle p2 r

» The above is an instance declaration for the type
Circle to be a member of the type class IsShape

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Haskell Code —
Commentary

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

180/238

Haskell Code
Commentary (3)
5 data Shape = forall . (IsShape) => Shape
» The above declares Shape to have the constructor

Shape which takes a type variable which is a
member of the type class IsShape

See What does the forall keyword do ?

Understanding forall requires some knowledge of
first-order logic so initially may appear a bit subtle.

Norman Ramsey in the above StackOverflow article
recommends John Launchbury and Simon Peyton Jones
(1994) Lazy Functional State Threads

Also see HaskellWiki: Existential type

Note that in Haskell reserved words and variable names
(including functions) and type variables start with a
lower case letter while names for particular values or
types start with an upper case letter (with a few
exceptions)

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Haskell Code —
Commentary
Abstract Data Type —

Queue

ADT Lists in Lists
Future Work
Haskell Example

References

181/238

https://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do/3071365
https://en.wikipedia.org/wiki/First-order_logic
https://wiki.haskell.org/Existential_type

Abstract Data Types

ADT/OO Colour Codes

>

Default: Language Main Constructs
data map class where forall instance (Haskell)
Language Builtin other
upper find count (Python)
User Defined
Shape Circle Square IsShape draw moveTo (Haskell)
Meta
decls, decll, decl2, declK, expr, alts
Special
GHCi> (Haskell GHCi)
Meta Builtin
type variables (Haskell)
Meta User Defined
Haskell

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Haskell Code —
Commentary
Abstract Data Type —

Queue

ADT Lists in Lists
Future Work
Haskell Example

References

182/238

Abstract Data Types

Overview (6) — The Expression Problem

>

vVvyvVvyVvyy

The Expression Problem describes a dual problem that
neither Object Oriented Programming nor Functional
Programming fully addresses.

If you want to add a new thing, Object Oriented
Programming makes it easy (since you can simply
create a new class) but Functional Programming makes
it harder (since you have to edit every function that
accepts a thing of that type)

If you want to add a new function, Functional
Programming makes it easy (simply add a new function)
while Object Oriented Programming makes it harder
(since you have to edit every class to add the function)
Wikipedia: Expression problem

Bendersky: The Expression Problem and More thoughts
C2 Wiki: Expression Problem

What is the ’expression problem’?

Philip Wadler: The Expression Problem

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Haskell Code —
Commentary
Abstract Data Type —

Queue

ADT Lists in Lists
Future Work
Haskell Example

References

183/238

https://en.wikipedia.org/wiki/Expression_problem
https://eli.thegreenplace.net/2016/the-expression-problem-and-its-solutions/
https://eli.thegreenplace.net/2018/more-thoughts-on-the-expression-problem-in-haskell/
https://wiki.c2.com/?ExpressionProblem
https://stackoverflow.com/questions/3596366/what-is-the-expression-problem
https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

Abstract Data Type

Queue

>

vV YvyVvVvyy vyYyy

v

Queue Abstract Data Type — operations
makeEmptyQ returns empty queue
isEmptyQ takes queue, returns Boolean

addToQ takes queue, item, returns queue with item
added at back

headOfQ takes queue, returns item at front
tail0fQ takes queue, returns queue without front item
Other operations

removeFrontQ takes queue, returns pair of item on the
front and queue with item removed

sizeQ to save calculating it
isFul11Q for a bounded queue

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

184/238

https://en.wikipedia.org/wiki/Queue_(abstract_data_type)

Abstract Data Type

Queue (2)

> Pre, Post Conditions, Axioms should be complete

> They define all permissable inputs to the functions (or
methods)

» They define the outcome of all applications of the
functions

» Composition of the functions constructs all possible
members of the ADT set

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

185/238

Abstract Data Type

Queue (3) — Pre-conditions, Post-conditions, Axioms

v

vV VvV vV V VY VVYVY VY

Pre-conditions, Post-conditions, Axioms
makeEmptyQ()

Pre True

Post Return value q is an empty queue

Axiom makeEmptyQ() == EmptyQ
isEmptyQQ)

Pre True

Post Returns True if q is empty, otherwise False
Axiom isEmptyQ(makeEmptyQ()) == True
isEmptyQ(addToQ(qg,x)) == False

Exercise complete this for the other operations

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

186/238

Abstract Data Type

Queue (4) — Pre-conditions, Post-conditions, Axioms

>

>
>
>

v

Pre-conditions, Post-conditions, Axioms
addToQQO)
Pre True

Post Returns queue with x at back, front part is input
queue

headOfQ()
Pre Argument q is non-empty

Post Return value is item at the front (queue is
unchanged)

Axioms head0fQ(makeEmptyQ()) == error
head0fQ(addToQ(makeEmptyQ() ,x)) == X
head0fQ(addToQ(q,x)) == headO0fQ(q)

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

187/238

Abstract Data Type

Queue (5) — Pre-conditions, Post-conditions, Axioms

>

vVvyVvYyVvVvyTyyey

Pre-conditions, Post-conditions, Axioms

tailofQQ)

Pre True

Post Returns queue without first item

Axioms tail0fQ(makeEmptyQ()) == error
tail0fQ(addToQ(makeEmptyQ(),x)) == EmptyQ
tai10fQ(addToQ(qg,x)) == addToQ(tail0fQ(q),x)

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

188/238

M259 Python,

Abstract Data Type Looie, ADTS

Queue Implementation (1) Phil Molyneux

. Agenda
» Queue Implementation

Adobe Connect
» Using Lists as Queues section 5.1.2 of the Tutorial Programming
Python

» Quote: Itis also possible to use a list as a queue, where the first element
Python Checking

added is the first element retrieved (first-in, first-out); however, lists are not Tools
efficient for this purpose. While appends and pops from the end of list are Complexity
fast, doing inserts or pops from the beginning of a list is slow (because all of RO0LITE

) Before Calcul
the other elements have to be shifted by one). efore Caleulators

Logic Introduction

» Could use collections.deque but we will use a pair of .
lists — See Okasaki (1998, page 42) Absaclei et

Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

189/238

https://docs.python.org/3/tutorial/datastructures.html#using-lists-as-queues
https://docs.python.org/3/library/collections.html#collections.deque

Abstract Data Type
Queue Implementation (2)
» Queue Implementation 1
» Using a namedtuple()

> A factory function for creating tuple subclasses with
named fields

sfrom collections import namedtuple

7Qpl = namedtuple(’Qpl’,[’frs’, ’rbks’])

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

190/238

Abstract Data Type

Queue Implementation (3)

» Queue Implementation 1 main operations

odef makeEmptyQpl(Q):
10 return Qpl([],[1)

12def isEmptyQpl(q):
13 return q.frs == []

1sdef addToQpl(q,x):
16 return checkQpl(q.frs, [x] + q.rbks[:1)

18def head0fQpl(q):
19 if q.frs == []

20 Runt1meError(head0fQpl _applied_to_empty, queue™)
21 else:
22 return q.frs[0]

24def tailOfQpl(q):

25 if q.frs == [] :

26 RuntimeError("tailOfQpl_applied_to_empty_cqueue™)
27 else:

28 return checkQpl(q.frs[1:], q.rbks[:])

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

191/238

Abstract Data Type

Queue Implementation (4)

» Queue Implementation 1 checkOpl1()

30def checkal(frs, rbks):

31
32
33
34
35
36

if frs == []
bks = rbks[]
bks.reverse()
return Qpl(bks, [1)
else :
return Qpl(frs, rbks)

> Note copying of arguments — see below for reason

» Note also in stringQplItems below at line 47 on slide
194

» implicit line joining using (()) (why is this needed 7?)
> Note use of recursion

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

192/238

https://docs.python.org/3/reference/lexical_analysis.html#implicit-line-joining

Abstract Data Type

Python Argument Passing

>

vV vV VY

Functions, Immutable and Mutable Arguments
Immutable arguments are passed by value

Mutable arguments are passed by reference
Immutable: numbers, strings, tuples

Mutable: Lists, dictionaries, sets, and most objects in

user classes

>>>
>>>
>>>
>>>
a,

def changer (a,b)

a=2

b[0] = ’spam’

n 1

XS [1,2]
changer(n, xs)
(n,xs)
[’spam’, 21)

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

193/238

Abstract Data Type

Queue Implementation (5)

» Queue Implementation 1 conversion operations

3gdef stringQpl(q)

39 return ("<" + stringQplItems(q) + ">")

41def stringQplItems(q)

42 if isEmptyQpl(q)

43 return ""

44 elif isEmptyQpl(tailofQpl(q))
45 return str(head0fQpl(q))

46 else :
47 return (str(head0fQpl(q))
48 + ",." + stringQplItems(tailOfQpl(q)))

sodef buildQpl(xs,q)
51 if xs == [] :

52 return g

53 else :

54 return buildQpl(xs[1:],addToQpl(qg,xs[01))

sedef 1istToQpl(xs)
57 return buildQpl(xs, makeEmptyQpl())

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

194/238

Abstract Data Type

Queue Implementation (6)

» Queue Implementation 1 test code

611l = listToQpl([1,2,3,1])

63912 = tail0fQpl(qll)

6sassert qll == Qpl(frs=[1], rbks=[1, 3, 2])

26 Bpels>”

67assert stringQpl(qll) == <1

69assert ql2 == Qpl(frs=[2, 3, 1], rbks=[])

71assert stringQpl(ql2) == ’<2,_ 3, 1>’

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

ADT Lists in Lists
Future Work
Haskell Example

References

195/238

Abstract Data Type

Queue Implementation (7)

» Queue Implementation 2
» Modify to add size
» Store in tuple to save calculating each time

75Qp2 = namedtuple(’Qp2’,[’frs’,’rbks’,’sz’])

> Exercise Add size() operation and other modifications

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

196/238

Abstract Data Type

Queue Implementation (8)

> Queue Implementation 2 main operations

77def makeEmptyQp2(Q):
78 return Qp2([]1,[]1, 0)

sodef isEmptyQp2(q):
81 return q.frs == []

g3def addToQp2(q,x):
84 return checkQp2(q.frs, [x] + q.rbks[:], q.sz + 1)

gedef headOfQp2(q):
87 if gq.frs == []

88 Runt1meError(head0fQp2_applied_to_empty, queue™)
89 else:
90 return q.frs[0]

92def tailOfQp2(q):

93 if gq.frs == [] :

94 RuntimeError("tail0fQp2_applied_to_empty_queue™)
95 else:

96 return checkQp2(q.frs[1:], q.rbks[:], q.sz - 1)

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

197/238

Abstract Data Type

Queue Implementation (9)

» Queue Implementation 2 sizeQp2(), checkOpl()

ogdef sizeOfQp2(q) :
99 return g.sz

101 def checkaZ(frs, rbks, sz):
102 if frs == []
103 bks = rbks[]

104 bks.reverse()

105 return Qp2(bks, [, sz)
106 else :

107 return Qp2(frs, rbks, sz)

> Note also in stringQp2Items below at line 118 on
slide 199

» implicit line joining using (()) (why is this needed ??)
> Note use of recursion

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

198/238

https://docs.python.org/3/reference/lexical_analysis.html#implicit-line-joining

Abstract Data Type

Queue Implementation (10)

» Queue Implementation 2 conversion operations

109def stringQp2(q)

110 return ("<" + stringQp2Items(q) + ">")

112def stringQp2Items(q) :

113 if isEmptyQp2(q)

114 return ""

115 elif isEmptyQp2(tailofQp2(q))
116 return str(head0fQp2(q))

117 else :

118 return (str(head0fQp2(q))

119 + ",." + stringQp2Items(tailOfQp2(q)))
121def buildQp2(xs,q)

122 if xs == [] :

123 return g

124 else :

125 return buildQp2(xs[1:],addToQp2(q,xs[0]1))

127def TistToQp2(xs) :
128 return buildQp2(xs, makeEmptyQp2())

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

199/238

Abstract Data Type

Queue Implementation (11)

» Queue Implementation 2 test code

132921 = 1istToQp2([1,2,3,1])

134922 = tail0fQp2(q21)

136assert q21 == Qp2(frs=[1], rbks=[1, 3, 2], sz=4)

138assert stringQp2(q2l) == '<1,_2,. 3, 1>’

140assert 22 == Qp2(frs=[2, 3, 1], rbks=[], sz=3)

142assert stringQp2(q22) == ’'<2,_3,_ 1>’

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

ADT Lists in Lists
Future Work
Haskell Example

References

200/238

Abstract Data Types

Lists Implemented in Lists (1)

>

Lists implemented naively as linked lists have some
operations that take constant time and some that are
linear in the length of the list

Adding an element to the front of a list takes constant
time while adding an element to the rear takes linear
time

This section reimplements lists using a pair of lists that
overcomes this asymmetry in efficiency giving constant
time for all operations.

The basic idea is quite simple: break the list in two and
reverse the second half

This means that the last element is the first element of
the second list

A problem arises when one attempts to remove an
element — in some cases the list has to be reorganised
into two halves

The criteria for reorganising gives the clue in how to
write the code

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

201/238

Abstract Data Types

Lists Implemented in Lists (2)

» This implementation is based on Bird and Gibbons
(2020, chp 3) Algorithm Design with Haskell

> The idea is attributed to Gries (1981, page 250) The
Science of Programming and Hood and Melville (1980)
Real time queue operations in pure Lisp

> See also Hoogerwoord (1992) Functional Pearls A
symmetric set of efficient list operations

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

202/238

Abstract Data Types

Lists Implemented in Lists (3)

» We give the code in Python from SymmetriclLists.py
with Haskell type specifications and declarations given
as comments

> Here is the type alias declaration as a comment along
with fromSL which converts back from symmetric lists
to standard lists — this is known as the abstraction
function

12# type SymList a = ([a],[a])
14# Abstraction function

16# fromSL :: SymList a -> [a]
18def fromSL (pr)

19 xs = pr[0]

20 ys = pr[1]

21 return xs + reverseF (ys)

23def reverseF (xs) :
24 ys = xs[:]

25 ys.reverse()

26 return ys

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

203/238

Abstract Data Types

Lists Implemented in Lists (4)

» The abstraction function captures the relationship
between the implementation of an operation on the
representing type and its abstract type with an equation

» The Eureka bit of the implementation is spotting the

representation invariant that our definitions both
exploit and maintain

28# repInvSL :: SymList a -> Bool

3odef repInvSL (pr) :

31
32
33
34
35
36
37

xs = pr[0]
ys = pr[1]
xsTest = ((not isEmpty (xs))

or (isEmpty (ys) or singleton (ys)))
ysTest = ((not isEmpty (ys))

or (isEmpty (xs) or singleton (xs)))
return (xsTest and ysTest)

» This says if one list is empty then the other must be
either empty or a singleton

» This tells us when we need to reorganise the lists

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

204/238

Abstract Data Types

Lists Implemented in Lists (5)

> Here are the service operations for empty lists and
singletons

39# isEmpty :: [a] -> Bool

41def isEmpty (xs)
42 return (xs == [])

44# isEmptySL :: SymlList a -> Bool

s6def isEmptySL (pr)

47 xs = pr[0]

48 ys = pr[1]

49 return (isEmpty (xs) and isEmpty (ys))

51 def makeEmptySL(Q)
52 return ([]1,[]1)

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

Future Work
Haskell Example

References

205/238

Abstract Data Types

Lists Implemented in Lists (6)

sa# singleton :: [a] -> Bool

sedef singleton (xs)
57 return (len(xs) == 1)

s9# singletonSL :: SymList a -> Bool

61def singletonSL (pr)

62 xs = pr[0]

63 ys = pr[l]

64 return ((isEmpty (xs) and singleton (ys))

65 or (isEmpty (ys) and singleton (xs)))

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

Future Work
Haskell Example

References

206/238

Abstract Data Types

Lists Implemented in Lists (7)

» Constructor operations
» Both of these definitions make use of the
representation invariant

67# Constructor functions
69# consSL :: a -> SymList a -> SymList a

71def consSL (x, pr)
72 xs = pr[0]
73 ys = pr[1]
74 if isEmpty (ys)

75 return ([x],xs)

76 else :

77 return ([x] + xs, ys)

79# snocSL :: a -> SymList a -> SymList a

g1def snocSL (x, pr)
82 xs = pr[0]
83 ys = pr[1]
84 if isEmpty (xs)

85 return (ys,[x])
86 else :
87 return (xs, [x] + ys)

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

207/238

Abstract Data Types

Lists Implemented in Lists (8)

> Inspectors

91# headSL :: SymList a -> a

93def headSL (pr)

94
95
96
97
98
99
100
101
102

xs = pr[0]
ys = pr[1]
if isEmpty (xs)
if isEmpty (ys) :
raise RuntimeError("headSL_([]1,[1)")
else :
return ys[0]
else :
return xs[0]

104# TlastSL :: SymList a -> a

106def TastSL (pr)

107
108
109
110
111
112
113
114
115

xs = pr[0]
ys = pr[1]
if isEmpty (ys)
if isEmpty (xs)
raise RuntimeError("tailSL_C[],[1)"™)
else :
return xs[0]
else :
return ys[0]

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

Future Work
Haskell Example

References

208/238

Abstract Data Types

Lists Implemented in Lists (9)

> tailSL
> Notice how the representation invariant is maintained

118# tailSL :: SymList a -> SymList a

120def tailSL (pr)

121
122
123
124
125
126
127
128
129
130
131
132
133

xs = pr[0]
ys = pr[1]
if isEmpty (xs)
if disEmpty (ys):
raise RuntimeError("tailSL_([]1,[1D)")
else:
return ([1,[D
elif singleton (xs) :
splitPt = len(ys) // 2
(us,vs) = (ys[:splitPt],ys[splitPt:])
return (reverseF (vs), us)
else :
return (xs[1:],ys)

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

209/238

Abstract Data Types

Lists Implemented in Lists (10)

> initSL

135# initSL :: SymlList a -> SymList a

137def initSL (pr)

138
139
140
141
142
143
144
145
146
147
148
149
150

xs = pr[0]
ys = pr[1]
if isEmpty (ys)
if isEmpty (xs):
raise RuntimeError("initSL_C[]1,[1D)")
else:
return ([1,[DD
elif singleton (ys) :
splitPt = len(xs) // 2
(us,vs) = (xs[:splitPt],xs[splitPt:])
return (us, reverseF (vs))
else :
return (xs,ys[1:])

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

Future Work
Haskell Example

References

210/238

Abstract Data Types

Lists Implemented in Lists (11)

» The implementations are designed to satisfy the six
equations:

» The equations are expressed here in Haskell notation

-- The implementation satisfies the following

-- (cons x . fromSL) ps == (fromSL . consSL x) ps
-- (snoc x . fromSL) ps == (fromSL . snocSL x) ps

O N OV A WN —
SO W W W R R W
1
1

(tail . fromSL) ps == (fromSL . tailSL) ps
-- (init . fromSL) ps == (fromSL . initSL) ps
-- (head . fromSL) ps == headSL ps
-- (last . fromSL) ps == JastSL ps

v

Each of the operations apart from tailSL and initSL
take constant time

» tailSL and initSL can take linear time in the worst
case but they take amortised constant time — see the
references for derivation

» Note that Haskell Data.Sequence uses 2-3 Finger Trees
for better performance

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

211/238

Abstract Data Types

Lists Implemented in Lists (12)
» Ex (1) Write down all the ways "abcd" can be
represented as a symmetric list.

Give examples to show how each of these
representations can be generated.

> Ex (2) Define TengthSL
»> Ex (3) Implement dropWhiTeSL so that

dropWhile . fromSL = fromSL . dropWhileSL

> Ex (4) Define initsSL with the type

initsSL :: SymList a -> SymList (SymList a)

Write down the equation which expresses the

relationship between fromSL, initsSL, and inits.

» Note Exs (3) and (4) use Python beyond M269

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

212/238

Abstract Data Types

Lists Implemented in Lists (12a)

> Ans (1) There are three ways:

("a","dcb"), ("ab","dc"), ("abc","d")

Python3>>> prsl = consSL(C’a’, ([1,[1))
Python3>>> prsl

([’a’1, O

Python3>>> prs2 = snocSL(’b’,prsl)
Python3>>> prs2

([’a’1, ['b’D

Python3>>> prs3 = snocSL(’c’,prs2)
Python3>>> prs3

([’a’]l, [’c’, ’b’D)

Python3>>> prs4 = snocSL(C’d’,prs3)
Python3>>> prs4

([’a’l, [’d’, ’c’, ’b’D

Python3>>> prsla = snocSL(’a’, ([1,[1))

Python3>>> prsla
(1, ’a’D
Python3>>> prs2a
Python3>>> prs2a
(C’a’1, I'b’D

snocSL(’b’,prsla)

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

Future Work
Haskell Example

References

213/238

Abstract Data Types

Lists Implemented in Lists (12b)

» Ans (1) There are three ways:

("a","dcb"), ("ab","dc"), ("abc","d")

Python3>>> prsl = consSL(C’d’, ([1,[1))
Python3>>> prsl
(rd’1, O
Python3>>> prs2
Python3>>> prs2
([’c’], [’d’D
Python3>>> prs3 = consSL(’b’,prs2)
Python3>>> prs3

(b, ’c’1, [’d’D)

Python3>>> prs4 = consSL(’a’,prs3)
Python3>>> prs4

(rra’, ’v’, ’c’1, [’d’D

consSL(C’c’,prsl)

> Functional programmers will spot that the first is an
instance of a foldT while the third is an instance of a
foldr

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

214/238

Abstract Data Types

Lists Implemented in Lists (12c¢)

> Ans (2) Define TengthSL

lengthSL :: SymList -> Int

def TengthSL (pr)

xs = pr[0]

ys = pr[1]

return Ten(xs) + Tlen(ys)

> Note that we have made TengthSL a function in the
SymmetricList ADT that has access to the underlying
implementation

» We could have done that without giving it access but
that would have a cost

» Since TengthSL is used a lot we give it access

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

215/238

Abstract Data Types

Lists Implemented in Lists (12d)

» Ans (3) Implement dropWhileSL

def dropWhileSL(pred, xs)
if isEmptySL(xs) :
return makeEmptySL
elif pred(headSL(xs)) :
return dropWhileSL(pred, (tailSL(xs)))
else :
return xs

> Note pred is a function object, defining a function that
takes one argument and returns a Boolean
> dropWhileSL is an example of a higher order function

— a function that can take or receive a function as an
argument

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

216/238

M259 Python,

Abstract Data Types Looie, ADTS

Lists Implemented in Lists (12d) goiltelyneLxe

» Ans (3) Test code

Agenda

Adobe Connect

Programming

def greaterThan5 (x)

return x > 5 Python
Python Checking
testList3 = [25, 35, 4, 45] Tools
testList3SL = toSL(testList3) Complexity
test3A = (testList3SL == ([25, 351, [45, 41)) Legrriine
test3B = (fromSL(dropWhileSL(greaterThan5,testList3SL)) == [4, 45]) Before Calculators

Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

217/238

Abstract Data Types

Lists Implemented in Lists (12e)

> Ans (4) Implement initsSL(xs)

def initsSL(xs)
if isEmptySL(xs)
return (snocSL(xs, makeEmptySL()))
else :
return (snocSL(xs, (initsSL(initSL(xs)))))

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

Future Work
Haskell Example

References

218/238

Abstract Data Types

Lists Implemented in Lists (12f)

> Ans (4) Test code

test4inits = initsSL(testList3SL)
test4initsFromSL = fromSL (test4inits)

def fromSLs(prs)

if prs == []
return []
else :

return [fromSL(prs[0])] + fromSLs(prs[1:])

def displayInitsSL(xs) :
return fromSLs(fromSL(initsSL(xs)))

test4Display = displayInitsSL(testList3SL)

Python3>>> testList3
[25, 35, 4, 45]
Python3>>> testList3SL
([25, 351, [45, 4D
Python3>>> test4Display

[01, [25], [25, 351, [25, 35, 4], [25, 35, 4, 45]]

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

219/238

M259 Python,

Abstract Data Types Looie, ADTS
Lists Implemented in Lists (12g) Phil Molyneux
Agenda

» Ans (4) Relationship between fromSL, initsSL, and

Adobe Connect

inits. Programming
» |In Haskell first, followed by Python Python
. . Python Checking
» Why that way round ? Haskell makes it more obvious Tools
what is going on Complexity
Logarithms
(inits . fromSL) prs = (map fromSL . fromSL . initsSL) prs Before Calculators
Logic Introduction
» (.) is the Haskell function composition operator ADTs
Abstract Data Types —
Overview
inits(fromSL(prs)) = map(fromSL, fromSL(initsSL(prs))) gﬁz‘chtDa‘aTYPe*
ADT Lists in Lists.
» map in Python does (roughly) the same as Haskell map et

Haskell Example

» However, in Python map returns an iterator, which
represents a stream of data

References

» This means we need some extra code to print the result
— maybe using the type constructor list(iterable)

or the alternative fromSLs and displayInitsSL

220/238

https://docs.python.org/3/library/functions.html#map
https://www.haskell.org/onlinereport/haskell2010/haskellch9.html#x16-1720009.1
https://docs.python.org/3/glossary.html#term-iterator

Abstract Data Types

Lists Implemented in Lists (12h)

> Ans (4) Using a list comprehension instead of an
explicit map

def displayInitsSLO1(symList)
return [fromSL(pr) for pr in fromSL(initsSL(symList))]

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

221/238

What Next ? e
Programming, Debugging, Psychology Phil Molyneux
Although programming techniques have improved Agenda
immensely since the early days, the process of finding and Adobe Connect
correcting errors in programming — known graphically if
inelegantly as debugging — still remains a most difficult, A
confused and unsatisfactory operation. The chief impact of UL
this state of affairs is psychological. Although we are happy complexity
to pay lip-service to the adage that to err is human, most of "™
us like to make a small private reservation about our own

Programming

Python

Before Calculators

Logic Introduction

performance on special occasions when we really try. It is O
somewhat deflating to be shown publicly and Future Work
incontrovertibly by a machine that even when we do try, we Haskell Example
in fact make just as many mistakes as other people. If your References

pride cannot recover from this blow, you will never make a
programmer.

Christopher Strachey, Scientific American 1966 vol 215 (3) September
ppl12-124

222/238

https://en.wikipedia.org/wiki/Christopher_Strachey

M259 Python,
What NeXt 7 Logic, ADTs
To err is human ? Phil Molyneux

Agenda

> To err is human, to really foul things up requires a

Adobe Connect

compl'Iter' Programming
> Attributed to Paul R. Ehrlich in 101 Great Programming Python
QU otes _l?;l;(;n Checking
> Attributed to Bill Vaughn in Quote Investigator Complexity
> Derived from Alexander Pope (1711, An Essay on rogrhms
P Before Calculators
CrItICIsm) Logic Introduction
> To Err is Humane; to Forgive, Divine ADTs
» This also contains RuturelWorld

Haskell Example

A little learning is a dangerous thing;
Drink deep, or taste not the Pierian Spring

> In programming, this means you have to read the
fabulous manual (RTFM)

References

223/238

https://en.wikipedia.org/wiki/Paul_R._Ehrlich
http://www.devtopics.com/101-great-computer-programming-quotes/
http://www.devtopics.com/101-great-computer-programming-quotes/
https://en.wikipedia.org/wiki/William_E._Vaughan
http://quoteinvestigator.com/2010/12/07/foul-computer/
https://en.wikipedia.org/wiki/Alexander_Pope
https://en.wikipedia.org/wiki/An_Essay_on_Criticism
https://en.wikipedia.org/wiki/An_Essay_on_Criticism
https://en.wikipedia.org/wiki/Pierian_Spring
https://lmgtfy.com/?q=rtfm

Future Work

Sorting, Searching

>
>

Recursive function definitions
Inductive data type definitions

> A list is either an empty list or a first item followed by
the rest of the list

> A binary tree is either an empty tree or a node with an
item and two sub-trees

Recursive definitions often easier to find than iterative

Sorting
Searching

Both use binary tree structure

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

224/238

Future Work

Dates

>

vV VvV vy VvYyy

TMAOT Tuesday 16 December 2025 TMAOT

Sunday 4 January 2026 Tutorial Online Sorting
Sunday 11 January 2026 Tutorial Online Binary Trees
Sunday 8 February 2026 Tutorial Online Binary Trees
Sunday 8 March 2026 Tutorial Online Graphs, Greed
TMAO2 Tuesday 10 March 2026 TMAOQ?2

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

225/238

Example Algorithm Design — Haskell

Binary Search — Haskell

>

The notes following give two implementations of Binary
Search in Haskell

Note: these are not part of M269 and are purely for
comparison for those interested

The first is a direct translation of the recursive Python
version

The second is derived from
http://rosettacode.org/wiki/Binary_search and
is more idiomatic Haskell

The code for both implementations is in the file
M269BinarySearch.hs (which should be near the file
of these slides)

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

Binary Search — Haskell
— version 1

Binary Search — Haskell
— version 2

Binary Search — Haskell
— Comparison

References

226/238

http://haskell.org
http://rosettacode.org/wiki/Binary_search

Example Algorithm Design — Haskell

Binary Search — Haskell — 1 (a)

1module M269BinarySearch where

3 import Data.Array
4 import Data.List

» A Haskell script starts with a module header which
starts with the reserved identifier, module followed by
the module name, M269BinarySearch

» The module name must start with an upper case letter
and is the same as the file name (without its extension
of .hs or .lhs)

» Haskell uses layout (or the off-side rule) to determine
scope of definitions, similar to Python

» The body of the module follows the reserved identifier
where and starts with import declarations

» This imports the libraries Data.List, Data.Array

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work

Haskell Example

Binary Search — Haskell
— version 1

Binary Search — Haskell
— version 2

Binary Search — Haskell
— Comparison

References

227/238

Example Algorithm Design — Haskell

Binary Search — Haskell — 1 (b)

6

8
9
10
11
12

binarySearch :: Ord a => [a] -> a -> Maybe Int

binarySearch xs val
= binarySearch01l xs val (lo,hi)
where
To =0
hi = Tength xs - 1

> Line 8 is the definition of binarySearch
» The preceding line, 6, is the type signature
> binarySearch takes a list and a value of type a (in the

class Ord for ordering) and returns a Maybe Int — ais
a type variable

» The Maybe a type is an algebraic data type which is the

union of the data constructors Nothing and Just a

data Maybe a = Nothing | Just a

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

Binary Search — Haskell
— version 1

Binary Search — Haskell
— version 2

Binary Search — Haskell
— Comparison

References

228/238

Example Algorithm Design — Haskell

Code Description 1

>

>

f :: tis a type signature for variable f that reads fis
of type t
f :: tl -> t2 means that f has the type of a function
that takes elements of type t1 and returns elements of
type t2
The function type arrow -> associates to the right

» f :: tl -> t2 -> t3 means

» f o tl > (2 -> t3)
f x — function application is denoted by juxtaposition
and is more binding than (almost) any other operation.
Function application is left associative

» f x y means
> (fFx)y

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

Binary Search — Haskell
— version 1

Binary Search — Haskell
— version 2

Binary Search — Haskell
— Comparison

References

229/238

Example Algorithm Design — Haskell

Binary Search — Haskell — 1 (¢)

14 binarySearch0l :: Ord a

15 => [a] -> a -> (Int, Int) -> Maybe Int

17 binarySearch0l xs val (lo,hi)

18 = if hi < 1o then Nothing

19 else

20 let mid = (To + hi) ‘div‘ 2

21 guess = xs !! mid

22 in

23 if val == guess

24 then Just mid

25 else if val < guess

26 then binarySearch0l xs val (lo,mid-1)
27 else binarySearch0l xs val (mid + 1, hi)

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work

Haskell Example

Binary Search — Haskell
— version 2

Binary Search — Haskell
— Comparison

References

230/238

Example Algorithm Design — Haskell

Code Description 2

>

v

A Tet expression has the form

let decls in expr

decls is a number of declarations

expr is an expression (which is the scope of the
declarations)

div is the integer division function

In “div’, the grave accents () make a function into an
infix operator (OK, that is syntactic sugar | need not
have introduced — and my formatting program has

coerced the grave accent to a left single quotation mark
Unicode U+2018, not the grave accent U+0060)

(!'1) is the list index operator — first item has index 0

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

Binary Search — Haskell
— version 1

Binary Search — Haskell
— version 2

Binary Search — Haskell
— Comparison

References

231/238

Example Algorithm Design — Haskell

Binary Search — Haskell — 2 (a)

29 binarySearchGen :: Integral a

30 => (a -> Ordering) -> (a, a) -> Maybe a

31 binarySearchGen p (lo,hi)

32 | hi < 1o = Nothing

33 | otherwise =

34 Tet mid = (To + hi) ‘div‘ 2 1in

35 case p mid of

36 LT -> binarySearchGen p (lo, mid - 1)
37 GT -> binarySearchGen p (mid + 1, hi)
38 EQ -> Just mid

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

Binary Search — Haskell
— version 1

Binary Search — Haskell
— Comparison

References

232/238

Example Algorithm Design — Haskell

Code Description 3

> A case expression has the form

case expr of alts

expr is evaluated and whichever alternative of alts
matches is the result

> The lines starting with (|) are guarded definitions — if
the boolean expression to the right is True then the
following expression is used

» otherwise is a synonym for True
> A conditional expression has the form

if expr then expr else expr

The first expr must be of type Bool

» Guards and conditionals are alternative styles in
programming

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

Binary Search — Haskell
— version 1

Binary Search — Haskell
— version 2

Binary Search — Haskell
— Comparison

References

233/238

Example Algorithm Design — Haskell

Binary Search — Haskell — 2 (b)

40
41
42
43
44
45

47
48
49
50
51
52

binarySearchArray :: (Ix i, Integral i, Ord a)
=> Array i a -> a -> Maybe i
binarySearchArray ary x
= binarySearchGen p (bounds ary)
where
p m=x ‘compare‘ (ary ! m)

binarySearchList :: Ord a
=> [a] -> a -> Maybe Int
binarySearchList xs val
= binarySearchGen p (0, length xs - 1)
where
p m = val ‘compare‘ (xs !! m)

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

Binary Search — Haskell
— version 1

Binary Search — Haskell
— Comparison

References

234/238

Example Algorithm Design — Haskell

Code Description 4

» compare is a method of the Ord class, for ordering,
defined in the standard Prelude

class (Eq a) => Ord a where

compare i1 a -> a -> Ordering
(<),(<=),(>=),(>) :: a -> a -> Bool
max, min rra->a->a

compare X y

| x ==y = EQ
| X <=y = LT
| otherwise = GT

data Ordering = LT | EQ | GT
deriving (Eq,Ord,Enum,Read, Show, Bounded)

» Minimal type-specific definitions required are compare
or (==) and (<=)

» ! and !! are the array and list indexing operators

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

Binary Search — Haskell
— version 1

Binary Search — Haskell
— version 2

Binary Search — Haskell
— Comparison

References

235/238

Example Algorithm Design

Binary Search — Haskell — Comparison

>

The first version with binarySearch and
binarySearchO1 is very similar to the Python recursive
version binarySearchRec

In the Haskell case an explicit helper function is used

The second version is more general: binarySearchGen
can be used with any type that is indexed by a data type
in the Integral class

binarySearchArray and binarySearchList
specialise the function to arrays or lists.

For the Haskell Array data type see the Haskell Report

Idiomatic Haskell tends to be more general and make
use of higher order functions, type classes and
advanced features.

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

Binary Search — Haskell
— version 1

Binary Search — Haskell
— version 2

Binary Search — Haskell
— Comparison

References

236/238

http://www.haskell.org/haskellwiki/Language_and_library_specification

Web Links & References

Python IDEs

» Python Online IDEs

> Repl.it https://repl.it/languages/python3
(Read-eval-print loop)

> TutorialsPoint CodingGround Python 3 https://www.
tutorialspoint.com/execute_python3_online.php

> TutorialsPoint CodingGround Haskell ghci
https://www.tutorialspoint.com/compile_
haskell_online.php

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

237/238

https://repl.it/languages/python3
https://www.tutorialspoint.com/execute_python3_online.php
https://www.tutorialspoint.com/execute_python3_online.php
https://www.tutorialspoint.com/compile_haskell_online.php
https://www.tutorialspoint.com/compile_haskell_online.php

Web Links & References

References

» The offside rule (using layout to determine the start and
end of code blocks) comes originally from Landin
(1966) — see Off-side rule for other programming
languages that use this.

> The step-by-step approach to writing programs is
described in Glaser (2000)

» The difficulty in learning programs is described in many
articles — see, for example, Dehnadi (2006)

» Inductive data type

> Algebraic data type composite type — possibly recursive
sum type of product types — common in modern

functional languages.
» Recursive data type from Type theory

M259 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Python Checking
Tools

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

238/238

https://en.wikipedia.org/wiki/Off-side_rule
https://en.wikipedia.org/wiki/Algebraic_data_type
https://en.wikipedia.org/wiki/Tagged_union
https://en.wikipedia.org/wiki/Product_type
https://en.wikipedia.org/wiki/Recursive_data_type
https://en.wikipedia.org/wiki/Type_theory

	Agenda
	Adobe Connect Interface and Settings
	Adobe Connect Interface
	Adobe Connect Settings
	Adobe Connect — Sharing Screen & Applications
	Adobe Connect — Ending a Meeting
	Adobe Connect — Invite Attendees
	Layouts
	Chat Pods
	Graphics Conversion for Web
	Adobe Connect Recordings

	Programming — Computational Components
	Computational Components
	Computation, Programming, Programming Languages
	Example Algorithm Design
	Binary Search — Exercise
	Binary Search — Comparison
	Writing Programs & Thinking

	Python
	Learning Python
	Basic Python
	Python Workflows

	Python Checking Tools
	allowed Code Checker
	Allowed Methods

	Complexity and Big O Notation
	Complexity Example
	Complexity & Python Data Types
	Definitions and Rules for Complexity
	List Comprehensions
	Master Theorem for Divide-and-Conquer Recurrences

	Exponentials and Logarithms
	Exponentials and Logarithms — Definitions
	Rules of Indices
	Logarithms — Motivation
	Exponentials and Logarithms — Graphs
	Laws of Logarithms
	Arithmetic and Inverses
	Change of Base

	Before Calculators and Computers
	Log Tables
	Slide Rules
	Calculators
	Example Calculation

	Logic and Truth Tables
	Boolean Expressions and Truth Tables
	Conditional Expressions and Validity
	Boolean Expressions Exercise
	Propositional Calculus
	Truth Function

	Abstract Data Types
	Abstract Data Types — Overview
	Abstract Data Type — Queue
	ADT Lists in Lists

	Future Work
	Example Algorithm Design — Haskell
	Binary Search — Haskell — version 1
	Binary Search — Haskell — version 2
	Binary Search — Haskell — Comparison

	Web Links & References

