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M269 End of Module Tutorial reFE R

Agenda Phil Molyneux

Tutorial Agenda

» Welcome & Introductions

Commentary 1

» Topics from TMAO3 Adobe Connect
> Abstract Data Types — Bags Complasty ™
> Abstract Data Types — Graphs Commentary 2
> Complexity e
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M269 Tutorial Topies Revue
Introductions — Me Phil Molyneux

Tutorial Agenda

» Name Phil Molyneux

Commentary 1

» Background Physics and Maths, Operational Research, Adobe Connect

Computer Science Computability,
Complexity

> Undergraduate: Physics and Maths (Sussex)
> Postgraduate: Physics (Sussex), Operational Research
(Brunel), Computer Science (University College, London)

Commentary 2
Computability

Commentary 3

> First programming languages Fortran, BASIC, Pascal Complexity
> Favourite Software THA Guestion
> Haskell — pure functional programming language Complexity, Logic
> Text editors TextMate, Sublime Text — previously Emacs Complexity
> Word processing and presentation slides in IATEX Logarithms
» Mac OS X Before Calculators
. . Logic Introduction
» Learning style — | read the manual before using the

References

software (really)
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http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/BASIC
http://en.wikipedia.org/wiki/Pascal_(programming_language)
http://www.haskell.org/haskellwiki/Haskell
https://macromates.com
http://www.sublimetext.com
http://www.emacswiki.org
http://www.latex-project.org
https://developer.apple.com/devcenter/mac/index.action

M269 Tutorial Topics Revue

. Phil Mol
Introductions — You il Molynetix

Tutorial Agenda

?
> Name ' Commentary 1
> Position in M269 ? Which part of which Units and/or Adobe Connect

Reader have you read ? eoeall;
> Particular topics you want to look at? Commentary 2

> Learning Syle ? Computability
Commentary 3
Complexity

Turing Machine
TMA Question

Complexity, Logic
Complexity
Logarithms
Before Calculators
Logic Introduction
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Commentary 1
Agenda, Aims and Topics

1 Agenda, Aims a opics

vV vy v VY

Overview of aims of tutorial

Note selection of topics

Points about my own background and preferences
Adobe Connect slides for reference

Note that the Computability notes are here mainly for
reference since the Complexity notes refer to them

This session is mainly on the Complexity topics

M269 TMAO3
Topics Revue

Phil Molyneux

Tutorial Agenda
Adobe Connect

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity

Turing Machine
TMA Question

Complexity, Logic
Complexity
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Adobe Connect

Interface — Host View

M250 Units 10, 11

Collections, Arrays, Sets, Maps, Lists

Phil Molyneux

18 April 2021

M250 Units 10, 11
Phil Molyneux
M250 Units 10, 11
Tutorial Agenda
Adobe Connect

Classes and
Interfaces.

Sets
Maps
Uists

Collection
Implementations.

TMAO3 Practice
Quiz

Common Mistakes
sshel
What Next ?

References,
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Tutorial Agenda
Commentary 1

Adobe Connect
Interface
Settings
Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity

Turing Machine
TMA Question

Complexity, Logic
Complexity
Logarithms
Before Calculators
Logic Introduction
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Adobe Connect

Interface — Participant View

M250 Units 10, 11 Tutorial
Introductions
> Introductions

» Name Phil Molyneux
Learning Style: Reads the manual

vy

and wrote notes on Recursion Teaching
> You?

Learnt last month Framework for Teaching Recursion

M250 Units 10, 11

Phil Molyneux
M250 Units 10, 11
Tutorial Agenda

Adobe Connect

Classes and
Interfaces

Sets
Maps
Uists

Collection
Implementations.

TMAO3 Practice
Quiz

Common Mistakes
Ishell
What Next ?

References
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Commentary 1
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M269 TMAO3

Adobe Connect Topics Revue

) Phil Mol
Settings 1 Molyneux

Tutorial Agenda

| 4 Everybody [Menu bar>> Meeting>> Speaker & Microphone Setup]

Commentary 1

> [Menu bar>> Microphone>> Allow Participants to Use Microphone] 4 Adobe Connect
Interface
» Check Participants see the entire slide Workaround Settings
Sharing Screen &
» Disable Draw [Share pod>> Menu bar>> Draw icon] Ap;hcgrions
Ending a Meetin
> Fit Width [Share p0d>> Bottom bar>> Fit Width icon] v .nvi,eittendeesg
Layouts
> [Meeting)) Preferences>> General >> Host Cursor>> Show to all attendees Chat Pods
Web Graphics
> [Menu bar>> Video>> Enable Webcam for Participants] v Recordinas
} Computability,
» Do not Enable single speaker mode Complexity
@ tary 2
» Cancel hand tool emmentary
Computability
» Do not enable green pointer Commentary 3
> Recording [Meeting)) Record Session] v Complexity
. Turing Mac‘hine
» Documents Upload PDF with drag and drop to share TMA Question
pod Complexity, Logic
Complexity
» Delete [Meeting>> Manage Meeting Information>> Uploaded Content] ML
and [check ﬁlename>> click on delete] A —

Logic Introduction

References 8/246



Adobe Connect

Access

> Tutor Access
[TutorHome)) M269 Website >> Tutorials]

[Cluster Tutorials>> M269 Online tutorial room]

[Tutor Groups>> M269 Online tutor group room}

[Module—wide Tutorials>> M269 Online module-wide room]
> Attendance

[TutorHome>> Students>> View your tutorial timetables]

Beamer Slide Scaling 440% (422 x 563 mm)
Clear Everyone’s Status

vy

[Attendee Pod >> Menu >> Clear Everyone’s Status]

v

Grant Access and send link via email

[Meeting >> Manage Access & Entry>> Invite Participants. .. }

> Presenter Only Area
[Meeting >> Enable/Disable Presenter Only Area

M269 TMAO3
Topics Revue

Phil Molyneux

Tutorial Agenda
Commentary 1
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Interface
Settings
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Applications
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Layouts

Chat Pods

Web Graphics
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Computability
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M269 TMAO3

Adobe Connect Topics Revue

Keystroke Shortcuts ghillMolyneux

Tutorial Agenda

» Keyboard shortcuts in Adobe Connect .
ommentary 1
> Toggle Mic +@ (Mac), +@ (Win) (On/DisconneCt) Adobe Connect
Interface
> ise- E Setti
Toggle Raise-Hand status [38)+E] S::rlinnzsm“&
. . Applications
> Close dialog box [®] (Mac), (Win) Erding a Mecting
. Invite Attendees
> End meeting [$£])+(\ Lavours
Chat Pods
Wel::Graphics
Recordings

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity

Turing Machine
TMA Question

Complexity, Logic
Complexity
Logarithms
Before Calculators
Logic Introduction
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https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html

M269 TMAO3

Adobe Connect Interface Topics Revue

Sharing Screen & Applications AT

Tutorial Agenda

> [Share My Screen>> Application tab >> Terminal] for Terminal

Commentary 1

> [Share menu >> Change View>> Zoom in] for mismatch of screen Adobe Connect
size/resolution (Participants) i

» (Presenter) Change to 75% and back to 100% (solves Z}:’:v":ts;eetz
participants with smaller screen image overlap) It Arandoes

> Leave the application on the original display Cha o

Web Graphics

> Beware blued hatched rectangles — from other (hidden) Recordings
. Computability,
windows or contextual menus Complexity

Commentary 2

> Presenter screen pointer affects viewer display —
beware of moving the pointer away from the application

Computability
Commentary 3

> First time: [System Preferences )) Security & Privacy )) Privacy ) Complexity

Accessibility Turing Machine

TMA Question

Complexity, Logic
Complexity
Logarithms
Before Calculators
Logic Introduction
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https://en.wikipedia.org/wiki/Terminal_(macOS)

Adobe Connect

Ending a Meeting

>

>
>
>
>

Notes for the tutor only
Student: [Meeting>> Exit Adobe Connect]

Tutor:
Recording [Meeting )) Stop Recording] v/
Remove Participants Meeting )) End Meeting. .. | v
> Dialog box allows for message with default message:
» The host has ended this meeting. Thank you for
attending.
Recording availability In course Web site for joining
the room, click on the eye icon in the list of recordings
under your recording — edit description and name
Meeting Information [Meeting>> Manage Meeting Information] —
can access a range of information in Web page.
Delete File Upload [Meeting>> Manage Meeting Information>
2 Uploaded Content tab] select file(s) and click
Attendance Report see course Web site for joining
room
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Adobe Connect

Invite Attendees

>

Provide Meeting URL [Menu>> Meeting>> Manage Access & Entry>
Y Invite Participants. ... |

Allow Access without Dialog

9 Manage Meeting Information| provides new browser window
with Meeting Information (Tab bar )) Edit Information)

Check Anyone who has the URL for the meeting can
enter the room

Default Only registered users and accepted guests may
enter the room

Reverts to default next session but URL is fixed

Guests have blue icon top, registered participants have
yellow icon top — same icon if URL is open

See Start, attend, and manage Adobe Connect meetings
and sessions

M269 TMAO3
Topics Revue
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Tutorial Agenda
Commentary 1

Adobe Connect
Interface
Settings
Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts
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Web Graphics
Recordings

Computability,
Complexity

Commentary 2
Computability
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https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html
https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html

M269 TMAO3

Adobe Connect Topics Revue

Entering a Room as a Guest (1) ) Rl

Tutorial Agenda

» Click on the link sent in email from the Host

Commentary 1

> Get the following on a Web page Adobe Connect

Interface

> As Guest enter your name and click on Settings

Sharing Screen &
Applications

m Adobe Connect Ending a Meeting
Invite Attendees

Layouts

Chat Pods

Web Graphics

M269-21) Online tutorial room
Recordings

London/SE (1,13) CG [2311] (M269-21))
1) Computability,
Complexity

Commentary 2
Guest Registered User
Computability

Name Commentary 3

Guest Name 5
Complexity

By entering a Name & clicking "Enter Room", you agree that Turing Machine

you have read and accept the Terms of Use & Privacy Policy TMA Question

Complexity, Logic
Complexity
Logarithms
Before Calculators
Logic Introduction
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M269 TMA03

Adobe Connect S

Entering a Room as a Guest (2) BLUkClpeu

Tutorial Agenda

> See the Waiting for Entry Access for Host to give

Commentary 1

permISSIon Adobe Connect
. Interf
kJ Adobe Connect nterface
Settings
Sharing Screen &
Applications

Ending a Meeting

Waiting for Entry Access TErors

This is a private meeting. Your request to enter has Chat Pods

been sent to the host. Please wait for a response. Web Gr.aphlcs
Recordings

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity

Turing Machine
TMA Question

Complexity, Logic
Complexity
Logarithms
Before Calculators
Logic Introduction
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M269 TMA03

Adobe Connect S

Entering a Room as a Guest (3) Phll Molyneux

Tutorial Agenda

> Host sees the following dialog in Adobe Connect and

Commentary 1

grants access Adobe Connect
I Interface
I Guestentry (1] Settings
Sharing Screen &
1 guest would like to enter the room. Do you want Applications
to allow or deny entry to incoming guests? Ending a Meeting
Guest Name (guest D
(guest) 9 0 = Layouts
Chat Pods
Allow everyone Deny everyone Close Web Graphics
Recordings

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity

Turing Machine
TMA Question

Complexity, Logic
Complexity
Logarithms
Before Calculators
Logic Introduction
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Adobe Connect

Layouts

>

v

Creating new layouts example Sharing layout
[Menu>> Layouts>> Create New Layout. .. ] [Create a New Layout dialog>
) Create a new blank layout] and name it PMolyMain

New layout has no Pods but does have Layouts Bar open
(see Layouts menu)

Pods

(Menu ) Pods ) Share )) Add New Share] and resize/position —
initial name is Share n — rename PMolyShare

Rename Pod [Menu>> Pods>> Manage Pods. . . } [Manage Pods>
> Select>> Rename] or [Double-click & rename]

Add Video pod and resize/reposition
Add Attendance pod and resize/reposition

Add Chat pod — rename it PMolyChat — and
resize/reposition

M269 TMAO3
Topics Revue
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Tutorial Agenda
Commentary 1
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Interface
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Sharing Screen &
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Layouts
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Recordings
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Complexity

Commentary 2
Computability
Commentary 3
Complexity
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Adobe Connect

Layouts

» Dimensions of Sharing layout (on 27-inch iMac)
» Width of Video, Attendees, Chat column 14 cm
> Height of Video pod 9 cm
> Height of Attendees pod 12 cm
> Height of Chat pod 8 cm
» Duplicating Layouts does not give new instances of
the Pods and is probably not a good idea (apart from
local use to avoid delay in reloading Pods)

» Auxiliary Layouts name PMolyAux0On

> Create new Share pod
> Use existing Chat pod
> Use same Video and Attendance pods

M269 TMAO3
Topics Revue

Phil Molyneux

Tutorial Agenda
Commentary 1

Adobe Connect
Interface
Settings
Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
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Complexity, Logic
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Logarithms
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M269 TMAO3

Adobe Connect Topics Revue

Chat Pods Phil Molyneux

Tutorial Agenda

> Format Chat text

Commentary 1

> [Chat Pod >> menu icon>> My Chat Color] Adobe Connect
Interface

» Choices: Red, Orange, Green, Brown, Purple, Pink, Blue, Setings

Blac k Appllcg(ions

Ending a Meeting

> Note: Color reverts to Black if you switch layouts Ly

> [Chat Pod>> menu icon>> Show Timestamps] fv::‘;‘:’;‘:m
Recordings

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity

Turing Machine
TMA Question

Complexity, Logic
Complexity
Logarithms
Before Calculators
Logic Introduction
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. . M269 TMAO3
Graphics Conversion Topics Revue
PDF to PNG/JPG Phil Molyneux

Tutorial Agenda

» Conversion of the screen snaps for the installation of —
Anaconda on 1 May 2020 Adobe Connect

> Using GraphicConverter 11 Fori

Sharing Screen &

> > Convert & Modify>> Conversion>> Convert] Applications

Ending a Meeting
> Select files to convert and destination folder e At
> Click on [Start selected Function] or + \(I:V::::::hics

Layouts
Recordings

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity

Turing Machine
TMA Question

Complexity, Logic
Complexity
Logarithms
Before Calculators
Logic Introduction
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M269 TMAO3

Adobe Connect Recordings Topics Revue

Exporting Recordings Phil Molyneux

Tutorial Agenda

> [Menu bar>> Meetmg>> Preferences >> Vldeo] Commentary 1
> [Aspect ratio>> Standard (4:3)] (not Wide screen (16:9) default) Adobe Connect
Interface
» [Video quality )) Full HD] (1080p not High default 480p) senss
aring 3 creen
> Recording (Menu bar)) Meeting )) Record Session| v/ e ing
. Invite Attendees
» Export Recording Layouts
Chat Pods
> [Menu bar>> Meeting>> Manage Meeting Information] Web Graphics
Recordings
| 2 [New window>> Recordings>> check Tutorial>> Access Type button Computability,
Complexity
> [check Public )) check Allow viewers to download] Commentary 2
» Download Recording Computability
> i) di heck ial - load Fil Commentary 3
[New win ow>> Recor |ngs>> check Tutoria >> Actlons>> Download File o

Turing Machine
TMA Question

Complexity, Logic
Complexity
Logarithms
Before Calculators
Logic Introduction
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M269 TMAO3

CO m m e nta ry 2 Topics Revue

Computability Phil Molyneux

ana Tutorial Agenda
2 Computablll y Commentary 1

Adobe Connect

Reductions and non-computability
Turing Machine
Lambda Calculus (optional) TMA Question

Complexity, Logic

> Description of Turing Machine Computability,
~ . . Complexity
Turing Machine examples Commentary 2
> Computability, Decidability and Algorithms Computability
> Non-computability — Halting Problem Commentary3
> Complexity
>
>

Note that the Computability notes are here mainly for

reference since the Complexity notes refer to them Comeliity
Logarithms

> This session is mainly on the Complexity topics
Before Calculators

Logic Introduction

References
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M269 TMAO3

Computab|||ty Topics Revue

i Phil Mol
Ideas of Computation il Molyneux

Tutorial Agenda

» The idea of an algorithm and what is effectively

Commentary 1

compl'ItabIe Adobe Connect
» Church-Turing thesis Every function that would Computabily,
naturally be regarded as computable can be computed R
by a deterministic Turing Machine. (Unit 7 Section 4) Computability
> See Phil Wadler on computability theory performed as E:Z:;}L"i:f::"'"e
) s i b
part of the Bright Club at The Strand in Edinburgh, Compuabiy,
Tuesday 28 April 2015 Algorithms

Lambda Calculus
Commentary 3
Complexity

Turing Machine
TMA Question

Complexity, Logic
Complexity
Logarithms
Before Calculators
Logic Introduction
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http://wadler.blogspot.co.uk/2015/05/bright-club-computability.html

Computability

Models of Computation

>

In automata theory, a problem is the question of
deciding whether a given string is a member of some
particular language

If > is an alphabet, and L is a language over X, that is
L c *, where I* is the set of all strings over the
alphabet 3 then we have a more formal definition of
decision problem

Given a string w € *, decide whether w € L
Example: Testing for a prime number — can be
expressed as the language Ly consisting of all binary
strings whose value as a binary number is a prime
number (only divisible by 1 or itself)

See Hopcroft (2007, section 1.5.4)

M269 TMAO3
Topics Revue

Phil Molyneux

Tutorial Agenda
Commentary 1
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Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity

Turing Machine
TMA Question

Complexity, Logic
Complexity
Logarithms
Before Calculators
Logic Introduction
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M269 TMAO3

Automate Theory Topics Revue

Alphabets, Strings Phil Molyneux

Tutorial Agenda

» An Alphabet, 3, is a finite, non-empty set of symbols.

Commentary 1

» Binary alphabet X ={0, 1} Adobe Connect
> Lower case letters X ={a, b,..., 2} Rl
» A String is a finite sequence of symbols from some T 2
alphabet e Turna vacnne
» 01101 is a string from the Binary alphabet = ={0, 1} Eanpes
Corr_\puxabilixy,
> The Empty string, €, contains no symbols Rigorthme "™
Lambda Calculus
> Powers: 3K is the set of strings of length k with S
symbols from X e
> The set of all strings over an alphabet X is denoted >* s
> 3*¥=30yuslyuslu... Complexity, Logic
» Question Does 20 = @ ? (@ is the empty set) Complextcy
Logarithms

Before Calculators
Logic Introduction

References
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Automata Theory
Languages
> An Language, L, is a subset of *
> The set of binary numerals whose value is a prime
{10,11,101,111,1011,...}
» The set of binary numerals whose value is a square
{100,1001,10000,11001,...}

M269 TMAO3
Topics Revue

Phil Molyneux

Tutorial Agenda
Commentary 1
Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity

Turing Machine
TMA Question

Complexity, Logic
Complexity
Logarithms
Before Calculators
Logic Introduction
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Computability

Church-Turing Thesis & Quantum Computing

>

Church-Turing thesis Every function that would
naturally be regarded as computable can be computed
by a deterministic Turing Machine.

physical Church-Turing thesis Any finite physical
system can be simulated (to any degree of
approximation) by a Universal Turing Machine.

strong Church-Turing thesis Any finite physical
system can be simulated (to any degree of
approximation) with polynomial slowdown by a
Universal Turing Machine.

Shor’s algorithm (1994) — quantum algorithm for
factoring integers — an NP problem that is not known
to be P — also not known to be NP-complete and we
have no proof that it is notin P

Reference: Section 4 of Unit 6 & 7 Reader

M269 TMAO3
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Adobe Connect

Computability,
Complexity

Commentary 2

Computability
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Examples
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Complexity
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TMA Question
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http://en.wikipedia.org/wiki/Shor's_algorithm

Computability

Turing Machine

>

Finite control which can be in any of a finite number of
states

Tape divided into cells, each of which can hold one of a
finite number of symbols

Initially, the input, which is a finite-length string of
symbols in the input alphabet, is placed on the tape

All other tape cells (extending unbounded left and
right) hold a special symbol called blank

A tape head which initially is over the leftmost input
symbol

A move of the Turing Machine depends on the state
and the tape symbol scanned

A move can change state, write a symbol in the current
cell, move left, right or stay

References: Hopcroft (2007, page 326), Unit6 & 7
Reader (section 5.3)
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Turing Machine Diagram

Turing Machine Diagram

blblalalal]a .-+ 1/0O Tape

Reading and Writing Head

moves in both directions)

q a0

Finite Control
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Computability

Turing Machine notation

>
>
>
>

Q finite set of states of the finite control
3. finite set of input symbols (M269 S)
I' complete set of tape symbols 3. C T

6 Transition function (M269 instructions, /)

0::QxT - QxTIx{L,R,S}

6(q,X) = (p, Y, D)

0(q, X) takes a state, g and a tape symbol, X and returns
(p, Y, D) where p is a state, Y is a tape symbol to
overwrite the current cell, D is a direction, Left, Right or
Stay

qo Start state qgp € Q

B blank symbol BT and B ¢ X

F set of final or accepting states F = Q

M269 TMAO3
Topics Revue
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Tutorial Agenda
Commentary 1
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Computability,
Complexity

Commentary 2
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Examples
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Turing Machine Examples

Turing Machine Simulators

>

>
>

Morphett’s Turing machine simulator — the examples
below are adapted from here

Ugarte’s Turing machine simulator

XKCD A Bunch of Rocks — XKCD Explanation
Image below (will need expanding to be readable)
The term state is used in two different ways:

The value of the Finite Control

The overall configuration of Finite Control and current
contents of the tape

See Turing Machine: State
will lead to some confusion

M269 TMAO3
Topics Revue

Phil Molyneux

Tutorial Agenda
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Examples
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Function
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Example

Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
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http://morphett.info/turing/turing.html
https://turingmachinesimulator.com/
https://xkcd.com/505/
https://www.explainxkcd.com/wiki/index.php/505:_A_Bunch_of_Rocks
https://en.wikipedia.org/wiki/Turing_machine#The_%22state%22

Turing Machine Examples
XKCD A Bunch of Rocks
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Turing Machine Examples

The Successor Function

>

vV VvVVvyVvVyVvyVvyy

Input binary representation of numeral n
Output binary representation of n+ 1

Example 1010 — 1011 and 1011 ~ 1100

Initial cell: leftmost symbol of n

Strategy

Stage A make the rightmost cell the current cell
Stage B Add 1 to the current cell.

If the current cell is O then replace it with 1 and go to
stage C

If the current cell is 1 replace it with 0 and go to stage B
and move Left

If the current cell is blank, replace it by 1 and go to
stage C

Stage C Finish up by making the leftmost cell current
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Turing Machine Examples

The Successor Function (2)

> Represent the Turing Machine program as a list of
quintuples (g, X, p, Y, D)

>

Stage A

(40,0, 90,0, R
(90,1,490,1,R)
(90,8, 4a1,B,1)
Stage B

(@1,0,92,1,5)
(@1,1,41,0,0)
(q1,B,42,1,5)
Stage C

(42,0,492,0,0)
(g2,1,92,1,0
(g2, B, qn, B, R)
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Turing Machine Examples

The Successor Function (2a)

>

>

Exercise Translate the quintuples (g, X, p, Y, D) into
English and check they are the same as the specification

Stage A make the rightmost cell the current cell
(40,0, 40,0, R)

If state go and read symbol O then stay in state gg write 0, move R
(40,1,490,1,R)

If state go and read symbol 1 then stay in state gg write 1, move R
(90, B, 1, B,1)

If state go and read symbol B then state g; write B, move L
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Turing Machine Examples

The Successor Function (2b)

>

>

Exercise Translate the quintuples (g, X, p, Y, D) into
English

Stage B Add 1 to the current cell.

(41,0,92,1,5)

If state g1 and read symbol O then state g, write 1, stay
(@1,1,91,0,0)

If state g7 and read symbol 1 then state g7 write O, move L
(a1,B,92,1,5)

If state g1 and read symbol B then state g, write 1, stay
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Turing Machine Examples

The Successor Function (2¢)

» Exercise Translate the quintuples (g, X, p, Y, D) into
English

> Stage C Finish up by making the leftmost cell current
(42,0,492,0,0)
If state g and read symbol 0O then state g, write 0, move L
(@2,1,42,1,0
If state g and read symbol 1 then state g, write 0, move L
(42, B,49n, B,R)
If state g and read symbol B then state gj write B, move R HALT

> Notice that the Turing Machine feels like a series of if
then or case statements inside a while loop
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Turing Machine Examples

The Successor Function (2d) — Meta-Exercise

> |dentify (Q,%,T, 6, q0, B, F)
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Turing Machine Examples

The Successor Function (2e) — Meta-Exercise

v

VVVvyVvVYVYyVvVYyYyYy

Identify (Q, 2, T, 6, q0, B, F)
Q=1{dq0, a1, g2, an}

qo finding the rightmost symbol
g1 add 1 to current cell

q> move to leftmost cell

qp finish
>={0,1}
Ir=3u{B}

0::QxT - QxTIXx{L,R,S}
6(q,X) = (p, Y, D)
o is represented as {(q,X,p,Y,D)}

equivalent to {((g, X), (p, Y, D))} set of pairs
qo start with leftmost symbol under head, state moving

to rightmost symbol
Bis _ avisible space
F={qn}
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Turing Machine Examples

The Successor Function (3)

» Sample Evaluation 11 —~ 100

> Representation - - - BX1 X3 - - - Xj-1gXiXiy1 - -

qoll

1g01

11g0B

1911

710

q1B00

q2100

q2B100
qn100

> Exercise evaluate 1011 —~ 1100

“XpB- - -
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Turing Machine Examples

Instantaneous Description

>

v yYyy

vV YvyVvyy

Representation - - - BX1 X2 - - - Xj-1gXiXj+1 - - - XpB - - -

q is the state of the TM
The head is scanning the symbol X;

Leading or trailing blanks B are (usually) not shown
unless the head is scanning them

+um denotes one move of the TM M

+p denotes zero or more moves

+ will be used if the TM M is understood

If (g, Xi, p, Y, L) denotes a TM move then

X1 Xie1gXi- - - XnEm X1 - - XiapXic1Y - - - Xp
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Turing Machine Examples

The Binary Palindrome Function

>

vV VvVyVvyVvVVyvyyy

vy

vV vyVvVvyy

Input binary string s

Output YES if palindrome, NO otherwise
Example 1010 — NO and 1001 — YES
Initial cell: leftmost symbol of s
Strategy

Stage A read the leftmost symbol

If blank then accept it and go to stage D otherwise
erase it

Stage B find the rightmost symbol

If the current cell matches leftmost recently read then
erase it and go to stage C

Otherwise reject it and go to stage E

Stage C return to the leftmost symbol and stage A
Stage D print YES and halt

Stage E erase the remaining string and print NO
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Turing Machine Examples

The Binary Palindrome Function (2)

>

>

Represent the Turing Machine program as a list of
quintuples (g, X, p, Y, D)

Stage A read the leftmost symbol

(90,0, 491,,B,R)

(40,1, 91;,B,R)

(90, B, s, B, 5)

Stage B find rightmost symbol
(@1,,B,492,,B, 1)

(61] oy X5 q1,, %, R) *is a wild card, matches anything
(q1,,B,92;,B,01)

(g1, %, q1;, %, R
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Turing Machine Examples
The Binary Palindrome Function (3)
> Stage B check
(42,,0,43,B,1)
(42,,B,49s5,B,5)
(42,, *, g6, %, S)
(@2;,1,43,B, L)
(42, B, g5, B,5)
(@2;, *, g6, *, S)
» Stage C return to the leftmost symbol and stage A
(93,8, 95,B,5)
(g3, %, g4, *, L)
(94, B, 90, B, R)
(qa, *,qa, *, L)
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Turing Machine Examples
The Binary Palindrome Function (4)
> Stage D accept and print YES
(gs,%*,95,,Y, R
(g5,, *,45,,E,R)
(g5,, *,497, S, S)
> Stage E erase the remaining string and print NO
(96, B, g6,, N, R)
(g6, *, g6, B, L)
(g6,, *,97,0,5)
» Finish
(97, B, an, B,R)
(g7, *,97,*,L)
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Turing Machine Examples Topis Revue

The Binary Palindrome Function (3a) — Meta-Exercise Phil Molynex
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Turing Machine Examples

The Binary Palindrome Function (3b) — Meta-Exercise

v

VVVVYVYVYVYYVYYVYY

v

Identify (Q,>,T, 9, g0, B, F)

Q=1{q0, %0, 41}, 920, 42;, 93, 94, 45, 454, 95, 96, 64, 97, Gh}

qo read leftmost symbol

a1, 91, find rightmost symbol looking for 0 or 1
d2,, 42; check, confirm or reject

q3, g4 check finish or move to start

gs, de, g7 print YES or NO and finish

qp finish

>={0,1}

Ir=u{B,Y,E,S,N, O}

0.:QxT - QxTIx{L,R,S}

6(q,X) = (p, Y, D)

0 is represented as {(q,X,p,Y,D)}

equivalent to {((g, X), (p, Y, D))} set of pairs
Start with leftmost symbol under head, state gg
Bis _ avisible space

F ={qn}
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Turing Machine Examples

The Binary Palindrome Function (4)

» Sample Evaluation 101 — YES
qo101 + Bq1,01 + BOg1;1 + BO1g1;B
F BOgp;1
+ Bg30B + gq4BOB
+ BgoOB + BBq1,B
+ Bqa,BB
+ BgsBB+ Yqs,B + YEqs,B+ YEq7S
~ Yq7ES + Bq7YES + q7BYES + q,YES
> Exercise Evaluate 110 —~ NO
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Turing Machine Examples
Binary Addition Example

>

vV vyVvVvyy

Input two binary numerals separated by a single space
nl n2

Output binary numeral which is the sum of the inputs
Example 110110+ 101011 —~ 1100001

Initial cell: leftmost symbol of nl n2

Insight look at the arithmetic algorithm

1 1 0 1T 1T O

L 1.0 1 0 1 1

T 1.0 0 0 0 1

Discussion how can we overwrite the first number with
the result and remember how far we have gone ?

—
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Turing Machine Examples

Binary Addition Example — Arithmetic Reinvented

o1 1 0o 1 1 0
o1 0o 1 0o 1 1
o1 1 0o 1 1 y
o1 0 1 0 1 o
o1 1 0 x vy
-~ 1.0 o . .
. 1 1 X X y
. o 1 . . o
1 0 0 x x x vy
T
1 0 x x X X Yy
T
1 y X X X X Yy
1 1 o 0 o0 o0 1
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Turing Machine Examples
Binary Addition Example (2)

>

vV vVvyyvyy

Input two binary numerals separated by a single space
nl n2

Output binary numeral which is the sum of the inputs
Example 110110+ 101011 —~ 1100001
Initial cell: leftmost symbol of nl n2
Strategy

Stage A find the rightmost symbol

If the symbol is 0 erase and go to stage Bx
If the symbol is 1 erase go to stage By

If the symbol is blank go to stage F

dealing with each digit in n2

if no further digits in n2 go to final stage

Stage Bx Move left to a blank go to stage Cx
Stage By Move left to a blank go to stage Cy

moving to nl
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Turing Machine Examples
Binary Addition Example (3)

>

Stage Cx Move left to find first 0, 1 or B

Turn 0 or Bto X, turn 1 to Y and go to stage A
adding 0 to a digit finalises the result (no carry one)

Stage Cy Move left to find first 0, 1 or B

Turn 0 or Bto 1 and go to stage D

Turn 1 to 0, move left and go to stage Cy

dealing with the carry one in school arithmetic

Stage D move right to X, Y or B and go to stage E

Stage E replace 0 by X, 1 by Y, move right and go to
Stage A

finalising the value of a digit resulting from a carry

Stage F move left and replace X by 0, Y by 1 and at B
halt
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Turing Machine Examples
Binary Addition Example (4)

>

>

Represent the Turing Machine program as a list of
quintuples (g, X, p, Y, D)

Stage A find the rightmost symbol

(40, B, 91, B, R)

(qo, *, q0, *, R) * is a wild card, matches anything
(¢1,B,92,B,1)

(@, *,q1,%,R)

(42,0, 43,,B,1)

(g2,1,493,,8B,01)

(92, 8B,497,B,1)
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Turing Machine Examples
Binary Addition Example (5)
> Stage Bx move left to blank
(g3, B, q4,, B, 1)
(@3> %, g3, %, L)
> Stage By move left to blank
(43,,B,494,,B,1)
(@3,, %,43,, %, L)
» Stage Cx move left to 0, 1, or blank
(94,0, 90, X, R)
(945, 1,490, Y, R)
(94, B, g0, x, R)
G4y, *, Q4y, *, L)
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Turing Machine Examples
Binary Addition Example (6)

» Stage Cy move left to 0, 1, or blank

(94,,0,495,1,5)

(94, 1,44,,0,0)
(94,,8B,495,1,5)
(94, %, q4,, *, L)

Stage D move right to x, y or B
(4gs, X, g6, X, L)

@s,y,46,Y, D

(g5, B, g6, B, L)

(g5, *, g5, %, R)

Stage E replace O by x, 1 by y
(96,0, 90, X, R)

(g6,1,40,Y,R)
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Turing Machine Examples
Binary Addition Example (7)
> Stage F replace x by 0, y by 1
(g7, x,497,0,L)
(@7,y,a7,1,1
(97, B, an, B, R)
(g7, *,q97,*,L)
> Exercise Evaluate 11+ 10 ~ 101
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Turing Machine Examples

The Binary Addition Function (7a) — Meta-Exercise

> |dentify (Q,%,T, 6, q0, B, F)
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Turing Machine Examples
The Binary Addition Function (7b) — Meta-Exercise

v

VVVYVVVVYVYVYVYYY

Identify (Q, %, T, 6, g0, B, F)

Q=1{do, N, a2, 3, 43y, Gax d4y, 95, 6, 47, dn}

q0, 91, q2 find rightmost symbol of second number
a3, 93, move left to inter-number blank

d4,, g4, move left to 0, 1 or blank

gs move rightto x, y or B

ge replace 0 by x, 1 by y and move right

q7 replace x by 0, y by 1 and move left

qp finish
>={0,1}
Ir=>u{B, x,y}

0.:QxT - QxTIx{L,R,S}

6(q,X) = (p, Y, D)

o is represented as {(g, X, p, Y, D)}

equivalent to {((gq, X), (p, Y, D))} set of pairs
Start with leftmost symbol under head, state gg
Bis _, avisible space

F={qn}
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Turing Machine Examples
Binary Addition Example (8a)

>
>

T T YT vT7T T T T T T T

Exercise Evaluate 11 +10 — 101
Stage A find the rightmost symbol
BBqp11B10B Note space symbols B at start and end
BB1gp1B10B

BB11goB10B

BB11Bg110B

BB11B1g10B

BB11B10g1 B

BB11B1g,0B

BB11Bgs3, 1BB

Stage Bx move left to blank
B11g3,B1BB

Stage Cx move left to 0, 1, or blank
BB1g4,1B1BB

BB1YqyB1BB
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Turing Machine Examples
Binary Addition Example (8b)

v

T Y7T T T YT TTTUWYTTTTV

Exercise Evaluate 11 +10 — 101 (contd)
Stage A find the rightmost symbol
BB1BYBqg11BB

BB1YB1q BB

BB1YBg,1BB

BB1Yq3, BBBB

Stage Cy move left to 0, 1, or blank
BB1qg4,YBBBB

BBq4y1 YBBBB

Bq4,BOYBBBB

Bgs10YBBBB

Stage D move rightto x, y or B
Bgs0YBBBB

BOgs YBBBB

Bgs0YBBBB

Stage E replace O by x, 1 by y
B1Xqo YBBBB
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Turing Machine Examples
Binary Addition Example (8c)

vy T T T T YT TTT VY

v

Exercise Evaluate 11 +10 — 101 (contd)
Stage A find the rightmost symbol
B1XYqoBBBB

B1XYBqgy BBB

B1XYq, BBBB

B1Xq7YBBBB

Stage F replace x by 0, y by 1
B1g7X1BBBB

Bg7101BBBB

Bq7B101BBBB

Bg,101BBBB

This is mimicking what you learnt to do on paper as a
child! Real step-by-step instructions

See Morphett’s Turing machine simulator for more
examples (takes too long by hand!)
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Computability
Universal Turing Machine
» Universal Turing Machine, U, is a Turing Machine that
can simulate any arbitrary Turing machine, M

> Achieves this by encoding the transition function of M
in some standard way

> The input to U is the encoding for M followed by the
data for M

» See Turing machine examples
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Computability

Decidability

» Decidable — there is a TM that will halt with yes/no for
a decision problem — that is, given a string w over the
alphabet of P the TM with halt and return yes.no the
string is in the language P (same as recursive in
Recursion theory — old use of the word)

> Semi-decidable — there is a TM will halt with yes if
some string is in P but may loop forever on some inputs
(same as recursively enumerable) — Halting Problem

> Highly-undecidable — no outcome for any input —
Totality, Equivalence Problems
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Computability

Undecidable Problems

» Halting problem — the problem of deciding, given a

program and an input, whether the program will
eventually halt with that input, or will run forever —
term first used by Martin Davis 1952

Entscheidungsproblem — the problem of deciding
whether a given statement is provable from the axioms
using the rules of logic — shown to be undecidable by
Turing (1936) by reduction from the Halting problem to
it

Type inference and type checking in the second-order
lambda calculus (important for functional
programmers, Haskell, GHC implementation)

» Undecidable problem — see link to list
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Computability

Halting Problem — Sketch Proof (1)

» Halting problem — is there a program that can
determine if any arbitrary program will halt or continue
forever?

» Assume we have such a program (Turing Machine)
h(f,x) that takes a program f and input x and
determines if it halts or not

h(f,x)
= if f(x) runs forever
return True
else
return False

» We shall prove this cannot exist by contradiction
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Computability

Halting Problem — Sketch Proof (2)

> Now invent two further programs:
» q(f) that takes a program f and runs h with the input
to f being a copy of f

» r(f) that runs q(f) and halts if q(f) returns True,
otherwise it loops

q(f)
= h(f,f)

r(f)
= if q(f)
return
else
while True: continue

» What happens if we run r(r) ?

> If it loops, q(r) returns True and it does not loop —
contradiction.

> Scooping theLoop Snooper: A proof that the Halting
Problem is undecidable Geoffrey K Pullum (21 May
2024)
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Computability

Why undecidable problems must exist

>

>

A problem is really membership of a string in some
language

The number of different languages over any alphabet of
more than one symbol is uncountable

Programs are finite strings over a finite alphabet (ASCII
or Unicode) and hence countable.

There must be an infinity (big) of problems more than
programs.

Computational problem — defined by a function

Computational problem is computable if there is a
Turing machine that will calculate the function.
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Computability

Computability and Terminology (1)

>

The idea of an algorithm dates back 3000 years to
Euclid, Babylonians...

In the 1930s the idea was made more formal: which
functions are computable?

A function is a set of pairs
f={x,f(x): x € XA f(x) € Y}with the function
property

Function property: (a,b) € f A(a,c) € f => b==
Function property: Same input implies same output

Note that maths notation is deeply inconsistent here —
see Function and History of the function concept

What do we mean by computing a function — an
algorithm ?
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Functions

Relation and Rule

>

The idea of function as a set of pairs (Binary relation)
with the function property (each element of the domain
has at most one element in the co-domain) is fairly
recent — see History of the function concept

School maths presents us with function as rule to get
from the input to the output

Example: the square function: square x=x X x
But lots of rules (or algorithms) can implement the

same function

squarel x

square2 x

XA2

X times

x+---+xif x is integer
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Computability

Computability and Terminology (2)

>
>

In the 1930s three definitions:

A-Calculus, simple semantics for computation — Alonzo
Church

General recursive functions — Kurt Godel
Universal (Turing) machine — Alan Turing

Terminology:

> Recursive, recursively enumerable — Church, Kleene
Computable, computably enumerable — Gédel, Turing
Decidable, semi-decidable, highly undecidable

In the 1930s, computers were human

Unfortunate choice of terminology

Turing and Church showed that the above three were
equivalent

vVvyyvyy

Church-Turing thesis — function is intuitively
computable if and only if Turing machine computable
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Computability

Reducing one problem to another

» To reduce problem P; to P, invent a construction that
converts instances of P; to P, that have the same
answer. That is:

> any string in the language P; is converted to some string
in the language P>

> any string over the alphabet of Py that is not in the
language of Py is converted to a string that is not in the
language P>

» With this construction we can solve P;

» Given an instance of Py, that is, given a string w that
may be in the language P71, apply the construction
algorithm to produce a string x

» Test whether x is in P, and give the same answer for w
in P
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Computability

Problem Reduction
» Problem Reduction — Ordinary Example
» Want to phone Alice but don’t have her number
» You know that Bill has her number

» So reduce the problem of finding Alice’s number to the
problem of getting hold of Bill

M269 TMAO3
Topics Revue

Phil Molyneux

Tutorial Agenda
Commentary 1
Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability
Lambda Calculus
Commentary 3
Complexity

Turing Machine
TMA Question

Complexity, Logic
Complexity
Logarithms
Before Calculators
Logic Introduction

References  73/246



Computability

Direction of Reduction

>
>

The direction of reduction is important

If we can reduce P; to P, then (in some sense) P is at
least as hard as Py (since a solution to P, will give us a
solution to Py)

So, if P, is decidable then Py is decidable

To show a problem is undecidable we have to reduce
from an known undecidable problem to it

V x(dpp, (x) = dpp, (reduce(x)))
Since, if Py is undecidable then P, is undecidable
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Reductions & Non-Computable

Reductions

|
|
. f(input) !
input ———p| f » A2 ——>» output

» A reduction of problem P; to problem P,
» transforms inputs to Py into inputs to P>
» runs algorithm A2 (which solves P,) and
> interprets the outputs from A2 as answers to P,
» More formally: A problem Py is reducible to a problem
P, if there is a function f that takes any input x to P,
and transforms it to an input f(x) of P

such that the solution of P, on f(x) is the solution of P;
on x
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Reductions & Non-Computible

Example: Squaring a Matrix

» Given an algorithm (A2) for matrix multiplication (Py)
» |nput: pair of matrices, (M, M>)
> Qutput: matrix result of multiplying My and M,

> Pj is the problem of squaring a matrix

> Input: matrix M
> Output: matrix M2

> Algorithm Al has
f(M) = (M, M)
uses A2 to calculate M x M = M?
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Reductions & Non-Computable

Non-Computable Problems

l
|
input ———p| f » A2 ——>» output

» If P, is computable (A2 exists) then Py is computable (f
being simple or polynomial)

» Equivalently If P; is non-computable then P; is
non-computable

> Exercise: show B— A= —-A— —-B
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Reductions & Non-Computable

Contrapositive

» Proof by Contrapositive
» B — A= =BV A by truth table or equivalences

—(—A) V =B commutativity and negation laws
= A — B equivalences

» Common error: switching the order round
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Reductions & Non-Computable

Totality Problem

Px) —» f 2 » TP |—— YES/NO

» Totality Problem
> Input: program Q
> OQutput: YES if Q terminates for all inputs else NO

»> Assume we have algorithm TP to solve the Totality
Problem

» Now reduce the Halting Problem to the Totality Problem
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Reductions & Non-Computable

Totality Problem

| |
| |
| Q |
; - » YES/NO

» Define f to transform inputs to HP to TP pseudo-Python

def f(P,x)
def Q(y):
# ignore y
PO

return Q

> Run TP on Q

> If TP returns YES then P halts on x
» |If TP returns NO then P does not halt on x

> We have solved the Halting Problem — contradiction
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Reductions & Non-Computable

Negative Value Problem

| Qv }
: > L » YES/NO

» Define f to transform inputs to HP to NVP pseudo-Python

def f(P,x)
def Q(y):
# ignore y
PO
v =-1
return (Q,var(v))

» Run NVP on (Q, var(v)) var(v) gets the variable name

> If NVP returns YES then P halts on x
> If NVP returns NO then P does not halt on x

> We have solved the Halting Problem — contradiction
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Reductions & Non-Computable

Squaring Function Problem

Px) —»{ f @ > SFP |——» YES/NO

» Squaring Function Problem
> |Input: program Q which takes an integer, y
> OQutput: YES if Q always returns the square of y else NO
» Assume we have algorithm SFP to solve the Squaring
Function Problem

» Now reduce the Halting Problem to the Squaring
Function Problem
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Reductions & Non-Computable

Squaring Function Problem

|

|

Q l
- YES/NO

» Define f to transform inputs to HP to SFP pseudo-Python

def f(P,x)
def Q(y):
P(x)
return y = y
return Q

> Run SFP on Q

» |f SFP returns YES then P halts on x
» |If SFP returns NO then P does not halt on x

» We have solved the Halting Problem — contradiction
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Reductions & Non-Computable

Equivalence Problem

P —— f » EP ——» YES/NO

» Equivalence Problem
> |nput: two programs P1 and P2
> Qutput: YES if P1 and P2 solve the same problem (same
output for same input) else NO

» Assume we have algorithm EP to solve the Equivalence
Problem

» Now reduce the Totality Problem to the Equivalence
Problem
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Reductions & Non-Computable

Equivalence Problem

| |
| |
; (P1,P2) ;
‘ > - » YES/NO

» Define f to transform inputs to TP to EP pseudo-Python

def f(P)
def P1(x):
P(x)
return "Same_string"
def P2(x)
return "Same_string"
return (P1,P2)

» Run EP on (P1, P2)

» If EP returns YES then P halts on all inputs
> If EP returns NO then P does not halt on all inputs

» We have solved the Totality Problem — contradiction
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Reductions & Non-Computable Topies Revue

.y Phil Mol
Rice’s Theorem il Molyneux

Tutorial Agenda

I
I
| Commentary 1
input ———»| f > A2 :H output Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

» Rice’s Theorem all non-trivial, semantic properties of Turing Machine

Examples

programs are undecidable. H G Rice 1951 PhD Thesis Computbiy,
eci a ility an
» Equivalently: For any non-trivial property of partial e bty
. . . alting Problem
functions, no general and effective method can decide ——
Non-Computability

whether an algorithm computes a partial function with Lambda Calculus
that property. Commentary 3

Complexity

> A property of partial functions is called trivial if it holds _ _
for all partial computable functions or for none. TMA uestion”
Complexity, Logic
Complexity
Logarithms
Before Calculators
Logic Introduction
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Reductions & Non-Computable

Rice’s Theorem

vy

Rice’s Theorem and computability theory

Let S be a set of languages that is nontrivial, meaning
> there exists a Turing machine that recognizes a
language in S
> there exists a Turing machine that recognizes a
language not in S

Then, it is undecidable to determine whether the
language recognized by an arbitrary Turing machine
lies in S.

This has implications for compilers and virus checkers

Note that Rice’s theorem does not say anything about
those properties of machines or programs that are not
also properties of functions and languages.

For example, whether a machine runs for more than
100 steps on some input is a decidable property, even
though it is non-trivial.
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Lambda Calculus M269 TMAD3

Topics Revue

. . Phil Mol
Motivation il Molyneux

. . . Tutorial Agenda
» Lambda Calculus is a formal system in mathematical Commentary 1
logic for expressing computation based on function
abstraction and application using variable binding and

Adobe Connect

Computability,

substitution E°”‘"'ex“y i
ommentary
» Lambda calculus is Turing complete — it can simulate Computability
any Turing machine s actine
. Examples
» Introduced by Alonzo Church in 1930s Computaiy,
eci a ility an
» Basis of functional programming languages — Lisp, e alus
Scheme, ISWIM, ML, SASL, KRC, Miranda, Haskell, Scala, T
F#' .. Substitution
Lambda Calculus
. . Encodings
> Note this is not part of M269 but may help understand c°mme:tary3
ideas of computability Complexity

Turing Machine
TMA Question

Complexity, Logic
Complexity
Logarithms

Before Calculators
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. M269 TMAO3
Functions

Topics Revue

Binding and Substitution Phil Molyneux

. . Tutorial Agenda
» School maths introduces functions as Commentany 1
f(x)=3x%+4x+5

Adobe Connect

> Substitution: f(2) =3 x22+4x2+5=25 Complesity

> Generalise: f(x) = ax% + bx+ ¢ Commentary 2
. . . Computabilit

» What is wrong with the following: f

The Turing Machine

Turing Machine
> fla)=axa’+bxa+c

Examples
Computability,

ecidability and
» The ideas of free and bound variables and substitution 3 !

Algorithms
Lambda Calculus
Motivation
Lambda Terms
Substitution
Lambda Calculus
Encodings
Commentary 3
Complexity

Turing Machine
TMA Question

Complexity, Logic
Complexity
Logarithms

Before Calculators

Logic Introducé‘t?/b46



Expressions

Evaluation Strategies (a)

>

>

In evaluating an expression we have choices about the
order in which we evaluate subterms

Some choices may involve more work than others but
the Church-Rosser theorem ensures that if the
evaluation terminates then all choices get to the same
answer

The second edition of a famous book on Functional
programming — Bird (1998, Ex 1.2.2, page 6)
Introduction to Functional Programming using Haskell
— had the following exercise:

How many ways can you evaluate (3 + 7)2

List the evaluations and assumptions

The first edition — Bird and Wadler (1988, Ex 1.2.1,

page 6) Introduction to Functional Programming — had
the exercise:

2
How many ways can you evaluate ((3 + 7)2)
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. M269 TMAO3
Expressions Topics Revue
Evaluation Strategies (b) Phil Molyneux

Tutorial Agenda
» How many ways can you evaluate (3 + 7)?

Commentary 1

List the evaluations and assumptions Adobe Connect
bility,
> Answer 3 ways Complextty
» Reducible expressions (redexes) oy 3
2 . Computability

X% — X X X where x is a term The Turing Machine

Turing Machine

a+ b where a and b are numbers SIS

Computability,

Decidability and
x X y where x and y are numbers A
1 [sar (3+7), ((3+7)*(3+7)), ((3+7)*10), (10%10),100] Lambida Terms
2 [sqr (3+7),((3+7)*(3+7)),(10%(3+7)), (10%10),100] i“bz;‘“‘:’l‘ |
3 [sqr (3+7),sqr 10, (10%10),100] ErEy
Commentary 3
» The assumed redexes do not include distributive laws Complexity
Turi Machi
@+b)x(x+y) —axx+axy+bxx+bxy TMA Question
» This would increase the number of different evaluations Complexity, Logic
Complexity
Logarithms

Before Calculators

Logic Introducss‘wb46


https://en.wikipedia.org/wiki/Distributive_property

. M269 TMAO3
Expressions

Topics Revue
. . Phil Mol
Evaluation Strategies (c)  Holyneux

2 Tutorial Agenda
» How many ways can you evaluate ((3 + 7)2) oy |
> Answer 547 ways

Adobe Connect

Computa_bility,
1[sqr sqr (3+7),(sqr (3+7)*sqr (3+7)),(sqr (3+7)=((3+7)*(3+7))), (sqr (35%?2%??+7)*10
2[sqr sqr (3+7),(sqr (3+7)+sqr (3+7)),(sqr(3+7)*((3+7)*(3+7))), (sqr (3+7YRCE3I7¥=10)

Computability
The Turing Machine

546 [sqr sqr (3+7),sqr sqr 10,sqr (10%10), ((10*10)*(10*10)),(100*(10*10)),leﬁ%Iﬂvﬁ,loo

547 [sqr sqr (3+7),sqr sqr 10,sqr (10%10),sqr 100, (100+100),10000]

Computability,
Decidability and
Algorithms

. Lambda Calculus
» Enumerating all 547 ways may have taken some Waiiaton
concentration e e

Lambda Calculus
Encodings

Commentary 3
Complexity

Turing Machine
TMA Question

Complexity, Logic
Complexity
Logarithms

Before Calculators

Logic Introducéi_?&‘m



Expressions

Evaluation Strategies (d)

» The actual Evaluation strategy used by a particular
programming language implementation may have
optimisations which make an evaluation which looks
costly to be somewhat cheaper

» For example, the Haskell implementation GHC
optimises the evaluation of common subexpressions so
that (3+7) will be evaluated only once
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Topics Revue

Phil Molyneux

Tutorial Agenda
Commentary 1
Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine
Turing Machine
Examples
Computability,
Decidability and
Algorithms

1[sqr sqr (3+7),(sqr (3+7)*sqr (3+7)),(sqr (3+7)=((3+7)*(3+7))), (sqr (3+ZpsuddaBani)*10
2[sqr sqr (3+7),(sqr (3+7)=sqr (3+7)),(sqr(3+7)=((3+7)*(3+7))), (sqr (3+7Yei(@ig+7)*10)
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Substitution
Lambda Calculus
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Commentary 3
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Lambda Calculus o

Optional Topic Phil Molyneux

> M269 Unit 6/7 Reader Logic and the Limits of Z::::Z:?a
Computation alludes to other formalisations with equal
power to a Turing Machine (pages 81 and 87)

» The Reader mentions Alonzo Church and his 1930s
formalism (page 87, but does not give any detail)

» The notes in this section are optional and for

Adobe Connect

Computability,
Complexity

Commentary 2
Computability

The Turing Machine
Turing Machine

R ) ) . ) Examples
comparison with the Turing Machine material Computbiy,
eci a ility an
» Turing machine: explicit memory, state and implicit R
loop and case/if statement e
» Lambda Calculus: function definition and application, s oo
P . . Encodings
explicit rules for evaluation (and transformation) of c°mme:tary3
expressions, explicit rules for substitution (for function N
appllcat|0n) Turing Machine
3 TMA Question
» Lambda calculus reduction workbench Commlexity. Loai
plexity, Logic
» Lambda Calculus Calculator Complexity

Logarithms

Before Calculators

Logic Introduc&:’o&46
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https://lambdacalc.io/

Lambda Calculus

Lambda Terms

> A variable, x, is a lambda term

> If Mis alambda term and x is a variable, then (Ax.M) is
a lambda term — a lambda abstraction or function
definition

» If M and N are lambda terms, the (M N) is lambda term
— an application

» Nothing else is a lambda term

M269 TMAO3
Topics Revue
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Tutorial Agenda
Commentary 1
Adobe Connect

Computability,
Complexity

Commentary 2

Computability
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Lambda Calculus M269 TMAD3

Topics Revue
Lambda Terms — Notational Conveniences

Phil Molyneux
. Tutorial Agenda
» OQOutermost parentheses are omitted (M N) = M N Commentary 1
> Application is left associative (M N) P) = M N P Adobe Connect
> The body of an abstraction extends as far right as Complesity
possible, subject to scope limited by parentheses Commentary 2
— omputabili
» Ax.M N = Ax.(M N) and not (Ax.M) N o
> AX.AYy.AzZ.M = Axy z.M B

Computability,
Decidability and
Algorithms

Lambda Calculus
Motivation
Lambda Terms
Substitution
Lambda Calculus
Encodings
Commentary 3
Complexity

Turing Machine
TMA Question

Complexity, Logic
Complexity
Logarithms

Before Calculators
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Lambda Calculus M269 TMAD3

Topics Revue
) Phil Mol
Lambda Calculus Semantics IR

. . Tutorial Agenda
» What do we mean by evaluating an expression? .
ommentary 1
» To evaluate (AXM)N Adobe Connect
» Evaluate M with x replaced by N el

Complexity
» This rule is called B-reduction Gy, 2

Computability
> (AX. M) N - M[X = N] The Turing Machine
B Turing Machine
Examples

> M[x := N] is M with occurrences of x replaced by N Decabiiny and
Algorithms

» This operation is called substitution — see rules below Lambda Calculus

Motivation
Lambda Terms
Substitution
Lambda Calculus
Encodings
Commentary 3
Complexity

Turing Machine
TMA Question

Complexity, Logic
Complexity
Logarithms

Before Calculators
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Lambda Calculus M269 TMAD3

Topics Revue

B-Reduction Examples Ful) (el meree
Tutorial Agenda
> (AX'X)Z -7z Commentary 1
> ()\Xy)z -y Adobe Connect
> Ax.xy)z—zy Complexiy "
a function that applies its argument to y COmnaiEyy 2
Computability
> (Ax.xy)(Az.2) - (Az.2)y - y The Turing Machine
Turing Machine
> (AX.Ay.xy)z — Ay.zy P
. . . . Decidability and
A curried function of two arguments — applies first i
argument to second ey
Lambda Terms
> currying replaces f(x, y) with (f x)y — nice notational Subsition
convenience — gives partial application for free BBl

Commentary 3
Complexity

Turing Machine
TMA Question

Complexity, Logic
Complexity
Logarithms

Before Calculators
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Lambda Calculus M269 TMAD3

Topics Revue
Substitution Phil Molyneux

. . . . Tutorial Agenda
» To define substitution use recursion on the structure of Commentary 1
terms

Adobe Connect
» x[x =N]=N

> yIx =N=y

Computability,
Complexity

Commentary 2

. _ . . Ci tabilit
> (P Q)[X = N] = (P[X = N]) (Q[X = N]) Tir:ﬁll:inagr:n;cline
urin achine
> Ax.M)[x = N]=Ax.M e
Corr_\putabilixy,
In (Ax.M), the x is a formal parameter and thus a local e
variable, different to any other tambda Calculus
Lambda Terms
> (Ay.M)[x = N] = what? Substitution
Lambda Calculus
» Look back at the school maths example above — a B
subtle point S
Complexity

Turing Machine
TMA Question

Complexity, Logic
Complexity
Logarithms

Before Calculators
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Lambda Calculus M269 TMAD3

Topics Revue
Substitution (2)

Phil Molyneux
. . . . Tutorial Agenda
» Renaming bound variables consistently is allowed .
ommentary 1
> AX.X = Ayy =Az.z Adobe Connect
> Ay.AX.y = Az.AX.z Computabliity,

Complexity

» This is called x-conversion

Commentary 2

| 2 (AXA)/X y) y — (AX.AZ.X Z) y — AZ.yZ Computability

The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus
Motivation
Lambda Terms
Substitution
Lambda Calculus
Encodings

Commentary 3
Complexity

Turing Machine
TMA Question

Complexity, Logic
Complexity
Logarithms

Before Calculators
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Lambda Calculus

Substitution (3)

>
>

vV VvV VvV Vvy Vv VvyyYy

Bound and Free Variables

BV(x)=0

BV(Ax.M) = BV(M) U {x}

BV(M N) = BV(M) U BV(N)

FV(x) = {x}

FV(Ax.M) = FV(M) - {x}

FV(MN) = FV(M) u FV(N)

The above is a formalisation of school maths

A Lambda term with no free variables is said to be
closed — such terms are also called combinators — see
Combinator and Combinatory logic (Hankin, 2004,
page 10)

x-conversion
Ax.M = Ay.M[x =ylify ¢ FVY(M)

M269 TMAO3
Topics Revue
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Tutorial Agenda
Commentary 1
Adobe Connect
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Complexity
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Computability
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Turing Machine
Examples
Computability,
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Encodings
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Complexity
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TMA Question
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Complexity
Logarithms
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https://en.wikipedia.org/wiki/Combinatory_logic

Lambda Calculus

Substitution (4)

» B-reduction final rule
> (Ay.M)[x = N]=Ay.Mif x ¢ FV(M)
> (Ay.M)[x = N]=Ay.M[x = N]
if x e FV(M) and y ¢ FV(N)
> (Ay.M)[x = N] =Az.M[y = z][x := N]
if x € FV(M) and y € FV(N)
z is chosen to be first variable z ¢ FV(N M)
» This is why you cannot go f(a) when given
> f(x)=ax?+bx+c
» School maths — but made formal
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Lambda Calculus M269 TMAD3

Topics Revue
i Phil Mol
Rules Summary — Conversion il Molyneux

. . . Tutorial Agenda
> -conversion renaming bound variables Commentary
> Ax.M = Ay.M[x =ylif y ¢ FV(M)

. . . . Computability,
» B-conversion function application

Complexity

» (AXM)N E M[X = N] Commentary 2

Computability

Adobe Connect

The Turing Machine
> n-conversion extensionality Turing Machine

Examples

» AX.Fx 7], Fifx¢ FV(F) Computability,

Decidability and
Algorithms
Lambda Calculus
Motivation
Lambda Terms
Substitution
Lambda Calculus

Encodings
Commentary 3
Complexity

Turing Machine
TMA Question

Complexity, Logic
Complexity
Logarithms

Before Calculators
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Lambda Calculus

Rules Summary — Substitution

1. xIx=N]=N
2. y[x=N]=y
3. (PQIx = NI = (P[x = ND(Q[x = NI])
4.
5
6

(Ax.M)[x = N] = Ax.M

. Ay.M)[x = N]=Ay.Mif x ¢ FV(M)
. Ay.M)[x = N] =Ay.M[x = N]

if x € FV(M) and y ¢ FV(N)
(Ay.M)[x = N]=AzMly = z][x = N]
if x € FV(M) and y € FV(N)
z is chosen to be first variable z ¢ FV(N M)
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Lambda Calculus

Lambda Calculus Encodings

>
>

vV vyVYyy

So what does this formalism get us ?
The Lambda Calculus is Turing complete

We can encode any computation (if we are clever
enough)

Booleans and propositional logic
Pairs

Natural numbers and arithmetic
Looping and recursion
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Lambda Calculus Encodings
Booleans and Propositional Logic
> True =AXx.Ay.x
> False =Ax.Ay.y
» IFaTHEN bELSEc =abc
» |F True THEN b ELSE ¢ — (Ax.Ay.xX) bc
» S QAy.byc—b
> |IF False THEN b ELSE ¢ — (Ax.Ay.y)bc
> —-Q@yyc—c
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Lambda Calculus Encodings

Booleans and Propositional Logic (2)

v

vV Vv VvVVvYy VvV VvVVvYYy

Not = Ax.((xFalse)True)

Not x = IF x THEN False ELSE True
Exercise: evaluate Not True

And = Ax.Ay.((x y) False)

And x y = IF x THEN y ELSE False
Exercise: evaluate And True False
Or = Ax.Ay.((x True)y)

Or x y =IF x THEN True ELSE y
Exercise: evaluate Or False True
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Topics Revue
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Lambda Calculus Encodings

Booleans and Propositional Logic (2) — Exercises

>
>
>
>

vV VY VYV VvV VvV VY VY

Exercise: evaluate Not True
— (Ax.((x False) True)) True
— (True False) True

Could go straight to False from here, but we shall fill in
the detail

- (Ax.Ay.x) (AX.Ay.y)) (Ax.Ay.x)

- Ay.Ax.Ay.y)) (Ax.Ay.x)

— (Ax.Ay.y) = False

Exercise: evaluate And True False

—(IF x THEN y ELSE False) True False
—(IF True THEN False ELSE False) —False
Exercise: evaluate Or False True

—(IF x THEN True ELSE y) False True
—(IF False THEN True ELSE True) —True

M269 TMAO3
Topics Revue

Phil Molyneux

Tutorial Agenda
Commentary 1
Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus
Motivation
Lambda Terms
Substitution
Lambda Calculus
Encodings

Commentary 3
Complexity

Turing Machine
TMA Question

Complexity, Logic
Complexity
Logarithms

Before Calculators

Logic 'mmd“ﬁ%’/ﬁ%



Lambda Calculus Encodings

Natural Numbers — Church Numerals

v

VYV Vv VVvVy VvV VvVYVYyy

Encoding of natural numbers
0=Af.Ay.y

1=Af.Ay.fy

2=Af.Ay.f(fy)

3=AfAy.f(f(fy)

Successor Succ = Az.Af.Ay.f(zfy)
Succ 0 = Az Af.Ay.f(zf y)(Af.Ay.y)
= AfAYf(Af.Ay.y)fy)

= AfAy.f(Ay.y)y)

- AfAy.fy=1
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Lambda Calculus Encodings P e

Topics Revue
i Phil Mol
Natural Numbers — Operations il Molyneux

. Tutorial Agenda
> isZero = Az.z(Ay. False) True Commentary 1
> Exercise: evaluate isZero 0

Adobe Connect

> If M and N are numerals (as A expressions) Complasty ™
> Add MN=Ax.Ay.(Mx) (N x)y) Commentary 2
> Mult MN = Ax.(M(N x)) et
> Exercise: show 1 +1 =2 Dampes

Computability,
Decidability and
Algorithms

Lambda Calculus
Motivation
Lambda Terms
Substitution
Lambda Calculus

Encodings
Commentary 3
Complexity

Turing Machine
TMA Question

Complexity, Logic
Complexity
Logarithms

Before Calculators

Logic Introdulclti]o&46



Lambda Calculus Encodings P e

Topics Revue

Pairs Phil Molyneux

» Encoding of a pair a, b Z:::‘e'n’:jfy”:‘a
> (a, b) = Ax. IF x THEN a ELSE b Adobe Connect
> FST = Af.f True Complexiy "
» SND = Af.f False

. Computability
» Exercise: evaluate FST (a, b)
>

The Turing Machine

Turing Machine
Exercise: evaluate SND (a, b)

Commentary 2

Examples
Computability,
Decidability and
Algorithms
Lambda Calculus
Motivation
Lambda Terms
Substitution
Lambda Calculus

Encodings
Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic
Complexity
Logarithms

Before Calculators

Logic Introdulclt‘g)&‘m



Lambda Calculus Encodings

The Fixpoint Combinator

v

vVvyVvyVvVvyy

Y = Af.(Ax.f (x X)) (Ax.f (x X))
YF=Af.(Ax.f (xx)) (Ax.f (xx)) F

= (AX.F (X X))(AX.F (x x))

F((Ax.F(xx)) (Ax.F(xx)))=F(YF)

(Y F) is a fixed point of F

We can use Y to achieve recursion for F

M269 TMAO03
Topics Revue

Phil Molyneux

Tutorial Agenda
Commentary 1
Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
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Lambda Calculus
Motivation
Lambda Terms
Substitution

Commentary 3
Complexity

Turing Machine
TMA Question

Complexity, Logic
Complexity
Logarithms
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https://en.wikipedia.org/wiki/Fixed_point_(mathematics)

Lambda Calculus Encodings

The Fixpoint Combinator — Recursion

v

VYV VvV VvV VvV VvV VvVYVYyy

Recursion implementation — Factorial

Fact = Af.An.IF n=0THEN 1 ELSE n * (f (n- 1))
(Y Fact)1 = (Fact (Y Fact))1

— IF1=0THEN 1 ELSE 1 % ((Y Fact) 0)

— 1 % ((Y Fact) 0)

— 1 % (Fact (Y Fact) 0)

— 1% IFO=0THEN 1 ELSE O % ((Y Fact) (0-1))
- 1%x1-=1

Factorial n = (Y Fact) n

Recursion implemented with a non-recursive function Y

M269 TMAO3
Topics Revue

Phil Molyneux

Tutorial Agenda
Commentary 1
Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus
Motivation
Lambda Terms
Substitution
Lambda Calculus

Encodings
Commentary 3
Complexity

Turing Machine
TMA Question

Complexity, Logic
Complexity
Logarithms

Before Calculators
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Computability

Turing Machines, Lambda Calculus and Programming Languages

>

v

vV vyYyyswy

Anything computable can be represented as TM or
Lambda Calculus

But programs would be slow, large and hard to read

In practice use the ideas to create more expressive
languages which include built-in primitives

Also leads to ideas on data types
Polymorphic data types
Algebraic data types

Also leads on to ideas on higher order functions —
functions that take functions as arguments or returns
functions as results.

M269 TMAO3
Topics Revue

Phil Molyneux

Tutorial Agenda
Commentary 1
Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus
Motivation
Lambda Terms
Substitution
Lambda Calculus

Encodings
Commentary 3
Complexity

Turing Machine
TMA Question

Complexity, Logic
Complexity
Logarithms
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M269 TMAO3
CO m m e n ta ry 3 Topics Revue
Complexity Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

> Complexity Classes P and NP Computability,
Complexity

L Class NP Commentary 2

> NP-completeness Computability

> NP-completeness and Boolean Satisfiability [ Commentary3s
Complexity

Turing Machine
TMA Question

Complexity, Logic
Complexity
Logarithms
Before Calculators
Logic Introduction

References
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Complexity

P and NP

>

P, the set of all decision problems that can be solved in
polynomial time on a deterministic Turing machine

NP, the set of all decision problems whose solutions can
be verified (certificate) in polynomial time

Equivalently, NP, the set of all decision problems that
can be solved in polynomial time on a non-deterministic
Turing machine

A decision problem, dp is NP-complete if

1. dpis in NP and
2. Every problem in NP is reducible to dp in polynomial time

NP-hard — a problem satisfying the second condition,
whether or not it satisfies the first condition. Class of
problems which are at least as hard as the hardest
problems in NP. NP-hard problems do not have to be in
NP and may not be decision problems

M269 TMAO3
Topics Revue
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Commentary 1
Adobe Connect

Computability,
Complexity

Commentary 2
Computability
Commentary 3

Complexity
P and NP
Class NP
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Turing Machine
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http://en.wikipedia.org/wiki/P_(complexity)
http://en.wikipedia.org/wiki/NP_(complexity)
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Complexity

P and NP — Diagram

Euler diagram for P, NP, NP-complete and NP-hard set of

problems

NP-Hard

NP-Complete

P = NP

Complexity

NP-Hard

P=NP=
NP-Complete

Source: Wikipedia NP-complete entry

M269 TMAO3
Topics Revue

Phil Molyneux

Tutorial Agenda
Commentary 1
Adobe Connect

Computability,
Complexity

Commentary 2
Computability
Commentary 3

Complexity
Pand NP
Class NP
NP-completeness
Boolean Satisfiability

Turing Machine
TMA Question
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Logarithms
Before Calculators
Logic Introduction

References

118/246


http://en.wikipedia.org/wiki/Euler_diagram
http://en.wikipedia.org/wiki/NP-complete

M269 TMAO3
C I as S N P Topics Revue
Certificate and Verifier Phil Molyneux

Tutorial Agenda

» To formalise the definition of the class NP, we need to
formalise the idea of checking a candidate solution P

> Define a certificate for each problem input that would Computabily,
return Yes

Commentary 1

Commentary 2

> Describe the verifier algorithm Computability

Commentary 3

» Demonstrate the verifier algorithm has polynomial

. Complexity
complexity P and NP
Class NP
> The terms certificate and verifier have technical NP-completeness

Boolean Satisfiability

definitions in terms of languages and Turing Machines I
but can be thought of as candidate solution and checker = ™A Question

algorithm Complexity, Logic
Complexity

Logarithms
Before Calculators
Logic Introduction

References
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https://en.wikipedia.org/wiki/NP_(complexity)

M269 TMAO3
C I aS S N P Topics Revue
Example Decision Problems (1) Bhil Molyneux

Tutorial Agenda

» Composite Numbers Given a number N decide if Nis a
composite (i.e. non-prime) number P
Certificate factorization of N Computability,

.. ) ) . Complexity
» Connectivity Given a graph G and two vertices s, tin G,
decide if sis connected to t in G.

Commentary 1

Commentary 2

Computability

Certificate path from sto t Commentary 3
» Linear Programming Given a list of m linear Complextty
inequalities with rational coefficients over n variables o
ui, ..., Uy (alinear inequality has the form Boolean Satisfiability
aruy +axuy - - -+ dnpp < b for some coefficients g e
ai,...,anb), decide if there is an assignment of rational Complexity, Logic
numbers to the variables u1,..., uy which satisfies all Complexity
the inequalities Logarithms
Certificate is the assignment Beffo Calmkims

Logic Introduction

References
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https://en.wikipedia.org/wiki/Composite_number
https://en.wikipedia.org/wiki/Connectivity_(graph_theory)
https://en.wikipedia.org/wiki/Linear_programming

Class NP

Example Decision Problems (2)

>
>

The above are in P

Composite Numbers, Connectivity and Linear
programming are in P

Composite Numbers follows from Integer factorization
and the AKS primality test from 2004

Connectivity follows from the breadth-first search
algorithm

Linear programming shown to be in P by the Ellipsoid
method

M269 TMAO3
Topics Revue

Phil Molyneux

Tutorial Agenda
Commentary 1
Adobe Connect

Computability,
Complexity

Commentary 2
Computability
Commentary 3

Complexity

P and NP

Class NP
NP-completeness
Boolean Satisfiability

Turing Machine
TMA Question

Complexity, Logic
Complexity
Logarithms
Before Calculators
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https://en.wikipedia.org/wiki/Integer_factorization
https://en.wikipedia.org/wiki/AKS_primality_test
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https://en.wikipedia.org/wiki/Ellipsoid_method

Class NP

Example Decision Problems (3)

>

Integer Programming some or all variables are
restricted to be integers

Travelling Salesperson Given a set of nodes and
distances between all pairs of nodes and a number k,
decide if there is a closed circuit that visits every node
exactly once and has total length at most k
Certificate sequence of nodesin such a tour

Subset sum Given a list of numbers and a number T,
decide if there is a subset that adds upto T
Certificate list of members of such a subset

Independent set (graph theory) A subgraph of G with
of at least k vertices which have no edges between them
Certificate the list of k vertices

Clique problem Given a graph and a number k, decide
if there is a complete subgraph (clique) of size k
Certificate list pf nodes. For explanation see Prove
Clique is NP

M269 TMAO3
Topics Revue

Phil Molyneux

Tutorial Agenda
Commentary 1
Adobe Connect

Computability,
Complexity

Commentary 2
Computability
Commentary 3

Complexity
P and NP
Class NP
NP-completeness
Boolean Satisfiability

Turing Machine
TMA Question
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Logarithms
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https://en.wikipedia.org/wiki/Integer_programming
https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Subset_sum_problem
https://en.wikipedia.org/wiki/Independent_set_(graph_theory)
https://en.wikipedia.org/wiki/Clique_problem
https://cs.stackexchange.com/questions/74988/prove-clique-is-np
https://cs.stackexchange.com/questions/74988/prove-clique-is-np

Class NP

Example Decision Problems (4)

>

>

The above are NP-complete — see List of NP-complete
problems

The following two are not known to be P nor
NP-complete

Graph Isomorphism Given two n X n adjacency
matrices My,M>, decide if M7 and M, define the same
graph (up to renaming of the vertices)

Certificate the permutation 11 : [n] — [n] such that My is
equal to My after reordering the indices of My according
to T

Integer factorization Given three numbers N, L, U
decide if N has a prime factor p in the interval [L, U]
Certificate is the factorization of N

Source Arora and Barak (2009, page 49) Computational Complexity:
A Modern Approach and contained links
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M269 TMAO3

CO m p I e X i ty Topics Revue

Phil Mol
NP-complete problems il Molyneux

Tutorial Agenda

» Boolean satisfiability (SAT) Cook-Levin theorem

Commentary 1
Conjunctive Normal Form 3SAT Adobe Connect

Computability,

>

» Hamiltonian path problem Complexity
> Travelling salesman problem Semmentalvie
>

) Computability
NP-complete — see list of problems

Commentary 3

Complexity
P and NP
Class NP

Boolean Satisfiability

Turing Machine
TMA Question

Complexity, Logic
Complexity
Logarithms
Before Calculators
Logic Introduction

References
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http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Cook-Levin_theorem
http://en.wikipedia.org/wiki/3-satisfiability
http://en.wikipedia.org/wiki/Hamiltonian_path_problem
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/NP-complete

Complexity

Knapsack Problem

MY HOBBY:
EMBEDDING NP-(OMPLETE PROBLEMS IN RESTAURANT ORDERS

{ CHOTCHRIES RESTAURANT

— APPENZERS —

MIXED FRUIT 2.15
FRENCH FRIES 275
SIDE 5ALAD 335
HoT WINGS 3.55

MOZZAREUA STICKS  H.20
SAMPLER PLATE 5.80

LE&PBW‘( e £ BT

WED LIKE EXACTLY $15.05
WORTH OF APPETIZERS, PLEASE.

1 o EXACTLY? UMK ..

HERE, THESE PAPERS ON THE KNAPSACK
PROBLEM MIGHT HELP YOU OUT.
LISTEN, I HAVE SIx OTHER
TABLES T0 GET TO =

~AG FAST AS POSSIBLE, (F (OURSE. WANT
SOMETHING ON TRAVELING SALESHAN? /

\
LR

Source & Explanation: XKCD 287
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NP-Completeness and Boolean Satisfiability

Points on Notes

» The Boolean satisfiability problem (SAT) was the first
decision problem shown to be NP-Complete

> This section gives a sketch of an explanation

> Health Warning different texts have different notations
and there will be some inconsistency in these notes

> Health warning these notes use some formal notation
to make the ideas more precise — computation requires
precise notation and is about manipulating strings
according to precise rules.
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NP-Completeness and Boolean Satisfiability
Alphabets, Strings and Languages

>
>
>

vVvyVvYyYVvyy

Notation:
3 is a set of symbols — the alphabet

>k is the set of all string of length k, which each symbol
from >

Example: if X ={0, 1}
> 3! ={0, 1}
> 2 ={00,01,10,11}

30 = {€} where € is the empty string

* is the set of all possible strings over =
s* =350yuslus?u..,

A Language, L, over X is a subset of 3*
Lc=*
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NP-Completeness and Boolean Satisfiability
Language Accepted by a Turing Machine

» Language accepted by Turing Machine, M denoted by
L(M)
> [(M) is the set of strings w € X* accepted by M

> For Final States F ={Y, N}, a string w € 3* is accepted
by M < (if and only if) M starting in gg with w on the
tape halts in state Y

» Calculating a function (function problem) can be turned
into a decision problem by asking whether f(x) =y
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NP-Completeness and Boolean Satisfiability
The NP-Complete Class

» |If we do not know if P = NP, what can we say ?

> A language L is NP-Complete if:
» [ € NPand
> for all other L’ € NP there is a polynomial time
transformation (Karp reducible, reduction) from L' to L
» Problem Py polynomially reduces (Karp reduces,
transforms) to P, written Py oc P, or Py <p Py, iff
3f : dpp, — dpp, such that
> Viedppll€Yp < f() € Yp]
> f can be computed in polynomial time
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NP-Completeness and Boolean Satisfiability

The NP-Complete Class (2)

>

vV VvYyywy

More formally, L1 < ZT polynomially transforms to
L c Z?, written Ly oc Ly or Ly <p Ly, iff 3f : ZT - Zik
such that

> VxeIZf[x el o f(x) € L]

» There is a polynomial time TM that computes f
Transitivity If Ly oc Ly and L) oc L3 then Ly oc L3
If Lis NP-Hard and L € P then P = NP
If Lis NP-Complete, then L € P if and only if P = NP
If Ly is NP-Complete and L € NP and Lg oc L then Lis
NP-Complete

Hence if we find one NP-Complete problem, it may
become easier to find more

In 1971/1973 Cook-Levin showed that the Boolean
satisfiability problem (SAT) is NP-Complete
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NP-Completeness and Boolean Satisfiability Topes Reve

The Boolean Satisfiability Problem il CIEf e

Tutorial Agenda

> A propositional logic formula or Boolean expression is
built from variables, operators: AND (conjunction, A),

Commentary 1

Adobe Connect

OR (disjunction, V), NOT (negation, —) Computability,
) ) Lo . Complexity
> A formulais said to be satisfiable if it can be made True . -
by some assignment to its variables. Computability
» The Boolean Satisfiability Problem is, given a formula, Commentary 3
check if it is satisfiable. Comlexity
> Instance: a finite set U of Boolean variables and a finite Casehe
set C of clauses over U TR
> Question: Is there a satisfying truth assignment for C ? Turing Machine
L. L . . . TMA Question
> A clause is is a disjunction of variables or negations of Complexity, Logic
variables Complexity
> Conjunctive normal form (CNF) is a conjunction of eI
Clau ses Before Calculators

Logic Introduction

> Any Boolean expression can be transformed to CNF References
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NP-Completeness and Boolean Satisfiability
The Boolean Satisfiability Problem (2)

>
>

Given a set of Boolean variable U ={uy, uy,..., un}

A literal from U is either any u; or the negation of some
uj (written uj) usual notation —u;

A clause is denoted as a subset of literals from U —
{uz, Ug, us} usual notation vy v ~us v us

A clause is satisfied by an assignment to the variables if
at least one of the literals evaluates to True (just like
disjunction of the literals)

Let C be a set of clauses over U — C is satisfiable iff
there is some assignment of truth values to the
variables so that every clause is satisfied (just like CNF)

C ={u, up, us},{uy, uz},{up, us}} is satisfiable
usual notation (uy Vv uz vV u3) A (mu2 vV =u3) A (U V —u3)
assign (uy, u2,u3) =(T,F,F),(T, T,F),(F, T,F)

C ={{u1, up},{u1,uz},{ur}} is not satisfiable

usual notation (u; Vv uz) A (U1 vV —u2) A (—uy)
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NP-Completeness and Boolean Satisfiability
The Boolean Satisfiability Problem (3)

» Proof that SAT is NP-Complete looks at the structure of
NDTMs and shows you can transform any NDTM to SAT
in polynomial time (in fact logarithmic space suffices)

» SAT is in NP since you can check a solution in
polynomial time

» To show that VL € NP : L o< SAT invent a polynomial
time algorithm for each polynomial time NDTM, M,
which takes as input a string x and produces a Boolean
formula Ex which is satisfiable iff M accepts x

» See Cook-Levin theorem
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M269 TMAO3

NP-Completeness and Boolean Satisfiability Topics Revue

Coping with NP-Completeness ghillMolyneux

Tutorial Agenda

» What does it mean if a problem is NP-Complete ?

» There is a P time verification algorithm.
> There is a P time algorithm to solve it iff P = NP (?)

Commentary 1
Adobe Connect

Computability,

> No one has yet found a P time algorithm to solve any Gemeiy
NP-Complete problem Commentary 2
> So what do we do ? Computability

Commentary 3

» Improved exhaustive search — Dynamic Programming; —
Branch and Bound P and NP

Class NP

» Heuristic methods — acceptable solutions in acceptable AP

Boolean Satisfiability

time — compromise on optimality Turing Machine
i i ) ) TMA Question
> Average time analysis — look for an algorithm with Complexity) Logie
good average time — compromise on generality (see Complexity
Big-O Algorithm Complexity Cheatsheet) Logarithms
> Probabilistic or Randomized algorithms — compromise gefore Calculators

Logic Introduction
on correctness

References
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http://bigocheatsheet.com

M269 TMAO3

TU ring Machine Topics Revue
TMA Question (a) ghillMolyneux
> The transition function is represented as a Python il AEEE

. . . Commentary 1
dictionary mapping stete, symbol to symbol, move, Adobe Commect
state . . Computa_bility,

> States are represented as strings — we may define Complexity

Python constants to make life easier (see below) Connsiak

Computability

» What are the states ?
» Tape represented by a list; moves by 1, -1, 0

Commentary 3

Complexity
# Moves Turing Machine
RIGHT = TMA Question
LEFT = -1 Complexity, Logic
STAY =0 @ i

omplexity

# States Logarithms
Start = "start" Before Calculators
F‘! ndA =" F-E ndA" Logic Introduction
Find0 = "Find0"
FindNum = "FindNum" References
FinishOK = "FinishOK"
FinishNotOK = "FinishNotOK"
Stop = "stop"

> Note that the identifiers must be valid Python

» Python has conventions about constantss
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M269 TMA03

TU ring Machine Topics Revue
TMA Question (b) Phil Molyneux

Tutorial Agenda

» Describe the actions for each state — possibly using
Python dictionary notation (to make shorter work)

Commentary 1

Adobe Connect

- Computability,
"a", RIGHT,FindA), Complexity

a,
"0", RIGHT,Find0),

"#", RIGHT,FindNum), "
None,STAY, Stop), # Is empty input allowed ? Computability
Commentary 3

(Start, "a"):
(Start, "0

(Start, "#"):
(Start, None):

Commentary 2

(

(

(

(
(FindA, "a"):  ("a", RIGHT,FinishOK), —
(FindA, "0"):  ("0", RICHT,FindA),
(FindA, "#"):  ("#", RIGHT,FindA), _
(FindA, None): (False,STAY, Stop),

Complexity, Logic

(Find0o, "a"):  ("a", RIGHT,Find0), Complexity
(Find0, "0"):  ("0", RIGHT,Finish0K), _
(Findo, "#"):  ("#", RIGHT,Find0), Logarithms
(Find0, None): (False,STAY, Stop), Before Calculators

Logic Introduction
(FindNum, "a"):  ("a", RIGHT,FindNum), et
(FindNum, "0"): (0", RIGHT,FindNum), eferences
#")
e

(FindNum, "#"):  ("#", RIGHT,FinishOK),
(FindNum, None): (False,STAY, Stop),
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TU ring Machine Topics Revue
TMA Question (c) Phil Molyneux

Tutorial Agenda

» FinishOK and FinishNotOK should tidy up the output
and move the read/write head to an approriate position

Commentary 1

Adobe Connect

_— .. Computability,
(FinishoK, "a" ("a",RIGHT,Finish0oK), Complexity

a"):
(FinishOK, "0"): ("0",RIGHT,Finish0K),
(FinishOK, "#"): ("#",RIGHT,FinishOK), -
(FinishOK, None): (True,STAY,Stop), Computability

Commentary 3

Commentary 2

Complexity

» What if we wanted to erase everything else and only
Turing Machine
have False/True as output ? TMA Question

Complexity, Logic
Complexity
Logarithms
Before Calculators
Logic Introduction

References
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Program Complexity
Big O Notation

» Measuring program complexity introduced in section 4
of M269 Unit 2

> See also Miller and Ranum chapter 2 Big-O Notation

> See also Wikipedia: Big O notation

» See also Big-O Cheat Sheet
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Program Complexity
Big O Notation (2)

>

Complexity of algorithm measured by using some
surrogate to get rough idea

In M269 mainly using assignment statements

For exact measure we would have to have cost of each
operation, knowledge of the implementation of the
programming language and the operating system it
runs under.

But mainly interested in the following questions:

(1) Is algorithm A more efficient than algorithm B for
large inputs ?

(2) Is there a lower bound on any possible algorithm for
calculating this particular function ?

(3) Is it always possible to find a polynomial time (nk)
algorithm for any function that is computable

— the later questions are addressed in Unit 7
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Program Complexity

Orders of Common Functions

>
>

O(1) constant — look-up table

O(log n) logarithmic — binary search of sorted array,
binary search tree, binomial heap operations

O(n) linear — searching an unsorted list

O(nlog n) loglinear — heapsort, quicksort (best and
average), merge sort

O(n?) quadratic — bubble sort (worst case or naive
implementation), Shell sort, quicksort (worst case),
selection sort, insertion sort

O(n°) polynomial

O(c") exponential — travelling salesman problem via
dynamic programming, determining if two logical
statements are equivalent by brute force

O(n') factorial — TSP via brute force.
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https://en.wikipedia.org/wiki/Lookup_table
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Merge_sort
https://en.wikipedia.org/wiki/Bubble_sort
https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Selection_sort
https://en.wikipedia.org/wiki/Insertion_sort
https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Dynamic_programming

Program Complexity
Tyranny of Asymptotics
> Table from Bentley (1984, page 868)
» Cubic algorithm on Cray-1 3.0n3 nanoseconds
> Linear algorithm on TRS-80 19.5n x 10° nanoseconds

N Cray-1 TRS-80

10 3.0 microsecs 200 millisecs
100 3.0 millisecs 2.0 secs
1000 3.0 secs 20 secs
10000 49 mins 3.2 mins
100000 35 days 32 mins
1000000 95 yrs 5.4 hrs
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Program Complexity
Big O Complexity Chart
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Program Complexity
Big O Notation

>
>

Abuse of notation — we write f(x) = O(g(x))

but O(g(x)) is the class of all functions h(x) such that
|h(x)| < Clg(x)| for some constant C

So we should write f(x) € O(g(x)) (but we don’t)

We ought to use a notation that says that (informally)
the function f is bounded both above and below by g
asymptotically

This would mean that for big enough x we have
k1g9(x) < f(x) < kpg(x) for some ky, k;
This is Big Theta, f(x) = O(g(x))

But we use Big O to indicate an asymptotically tight
bound where Big Theta might be more appropriate

See Wikipedia: Big O Notation
This could be Maths phobia generated confusion
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Program Complexity

Example

sdef someFunction(aList)

6
7
8
9

n = len(alist)
best = 0
for i 1in range(n)
for j in range(i + 1, n + 1) :
s = sum(aList[i:j]1)
best = max(best, s)
return best

Example from M269 Unit 2 page 46
Code in file M269TutorialProgPythonADT.py
What does the code do ?

(It was a famous problem from the late 1970s/early
1980s)

> Can we construct a more efficient algorithm for the
same computational problem ?

vV vyVvyy
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http://www.pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269TutorialProgPythonADT/M269TutorialProgPythonADT.py

Program Complexity
Example (2)

>
>

The code calculates the maximum subsegment of a list
Described in Bentley (1984), (1988, column 7), (2000,
column 7) Also in Gries (1989)

These are all in a procedural programming style (as in
C, Java, Python)

Problem arose from medical image processing.

A functional approach using Haskell is in Bird (1998,
page 134), (2014, page 127, 133) — a variant on this
called the Not the maximum segment sum is given in
Bird (2010, Page 73) — both of these derive a linear
time program from the (n3) initial specification

See Wikipedia: Maximum subarray problem

See Rosetta Code: Greatest subsequential sum
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Program Complexity
Example (3)

> Here is the same program but modified to allow lists
that may only have negative numbers

» The complexity T(n) function will be slightly different

> but the Big O complexity will be the same

14def maxSubSeg01(xs)
15 n = len(xs)

16 maxSoFar = xs[0]

17 for i 1in range(l1,n)

18 for j in range(i + 1, n + 1)
19 s = sum(xs[i:31)
20 maxSoFar = max(maxSoFar, s)

21 return maxSoFar
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Program Complexity

Example (4)
» Complexity function T(n) for maxSubSeg01()
» Two initial assignments
» The outer loop will be executed (n-1) times,
» Hence the inner loop is executed
m-1H+mn-2)+...42+1= (n2 )
» Assume sum() takes n assignments
» Hence T(n)=2+(n+2)x (Q X n)
2
nc n
=2 )X |5 -3
+(n+2) ( > 2)
=2+3m-In2sn?-n
=Sm+sn2-n+2
» Hence O(n3)
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. M269 TMAO3
Program Complexity Topics Revue

Example (5) Phil Molyneux

Tutorial Agenda

> Developing a better algorithm

Commentary 1

> Assume we know the solution (maxSoFar) for xs[0.. (i Adobe Connect

- C bility,
D]
» We extend the solution to xs[0..1i] as follows: Commentary 2

» The maximum segment will be either maxSoFar UG

Commentary 3

» or the sum of a sublist ending at i (maxToHere) if it is Complexity
blgger Turing Machine

TMA Question

> This reasoning is similar to divide and conquer in binary  compiexity, togic

search or Dynamic programming (see Unit 5) Complexity
Complexity Example
> Keep track of both maxSoFar and maxToHere — the Compexiy & Pyhon
Eureka step Bl s e s

for Complexity
List Comprehensions
Master Theorem for

Divide-and-Conquer
Recurrences
Logarithms
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Program Complexity
Example (6)

> Developing a better algorithm maxSubSeg02 ()

27def maxSubSeg02(xs)

28
29
30
31
32
33
34

maxToHere = xs[0]

maxSoFar = xs[0]

for x in xs[1:]
# Invariant: maxToHere, maxSoFar OK for xs[0..(i-1)]
maxToHere = max(x, maxToHere + Xx)
maxSoFar = max(maxSoFar, maxToHere)

return maxSoFar

» Complexity function T(n) =2+ 2n
» Hence O(n)
» What if we want more information ?

» Return the (or a) segment with max sum and position in
list
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Program Complexity
Example (7)

3gdef maxSubSeg03(xs)

maxSoFar = maxToHere = xs[0]

startIdx, endIdx, startMaxToHere = 0, 0, O
for i, x 1in enumerate(xs)

39
40
41
42
43
44
45
46

if maxToHere + x < x :
maxToHere = x
startMaxToHere = i

else :
maxToHere = maxToHere + x

if maxSoFar < maxToHere :
maxSoFar = maxToHere
startIdx, endIdx = startMaxToHere, i

return (maxSoFar,xs[startIdx:endIdx+1],startIdx,endIdx)
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Complexity
C Example

>
>
>
>

Developing a better algorithm maxSubSeg03()
Complexity function worst case T(n)=2+3+ (2 +3)n
Hence still O(n)

Note Python assignments, enumerate() and tuple
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M269 TMAO3

Program Complexity Topics Revue

Example (8) Phil Molyneux

Tutorial Agenda

» Sample data and output

Commentary 1

i dob
seeglist = [-2,1,-3,4,-1,2,1,-5,4] Adobe Connect
Computability,
Complexity

sgeglListO0l = [-1,-1,-1]

Commentary 2
[1, 2y 3] Computability

Commentary 3

60eglList02

62assert maxSubSeg03(egList) == (6, [4, -1, 2, 1], 3, 6)

Complexity
64assert maxSubSeg03(egList0l) == (-1, [-1], 0, 0) Turing Machine

TMA Question
66assert maxSubSeg03(eglList02) == (7, [1, 2, 3], 0, 2) Complexity, Logic

Complexity

Complexity Example
Complexity & Python
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for Complexity
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M269 TMAO3

Program Complexity Topics Revue
Python Data Types — Lists Phil Molyneux
Operation Notation Average  Amortized Worst Tutorial Agenda
C 1
Get item x = xs[i] oq) o(1) ommentary
Set item xs[i] = x oq) o(1) Adobe Connect
Append XS = yS + zs o) oQ) Computability,
Copy xs = ys[:] o(n) o(n) Complexity
Pop last xs.pop(Q) o) o) Commentary 2
Pop other xs.pop(i) O(k) o(k) il
Insert(i,x) xs[i:1] = [x] o(n) o(n) Computability
Delete item  del xs[i:i+1] O(n) o(n) Commentary 3
Get slice xs = ys[i:j] O(k) O(k) Complexity
Set slice xs[i:j] = ys O(k + n) O(k + n) Turing Machine
Delete slice  xs[i:j] = [] o(n) o(n) TMA Question
Member X in xs O(n) Complexity, Logic
Get length n = Ten(xs) o) o) o
Count(x) n = xs.count(x) O(n) o(n) Complexity
Complexity Example
> Source https://wiki.python.org/moin/TimeComplexity g‘;gvT';;ig& Python
> See https://docs.python.org/3/1library/stdtypes.html# ?5“2&‘!:’;.22?;’ Rules
sequence-types-Tist-tuple-range List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences
Logarithms
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Program Complexity
User Defined Type — Bags

sclass Bag:

10
11

13
14

16
17

19
20

22
23

25
26

def __init__(self):
self.list = []

def add(self, item):
self.list.append(item)

def remove(self, item):
self.list.remove(item)

def contains(self, item):
return item in self.Tlist

def count(self, item):
return self.list.count(item)

def size(self):
return len(self.list)

def _str__(self):
return str(self.list)
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Using a Data Type Topics Revie

s ) . Phil Mol
Information Retrieval Functions LS

Tutorial Agenda

» Term Frequency, tf, takes a string, term, and a Bag,

Commentary 1

document Adobe Connect
returns occurrences of term divided by total strings in Computabily,
document Commentary 2
> Inverse Document Frequency, idf, takes a string, Computability
term, and a list of Bags, documents GommeiERy; 3
. . . Complexity
returns log(total/(1 + containi ng)) — total is total Turing Machine
number of Bags, containing is the number of Bags A Qs
containing term e, Ly e
. ) . i Complexity
> tf-idf, tf_idf, takes a string, term, and a list of Bags, iy Sl
omplexity on
documents Data Types
T
returns a sequence [rp, r1,..., ¥p-1] such that e
ri = tf(term, d;) x idf(term, documents) Dide-and- conquer

Recurrences
Logarithms
Before Calculators
Logic Introduction

References
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Complexity

Big-O and Big-Theta Definitions (a)

>

We compare the functions implementing algorithms by

looking at the asymptotic behaviour of the functions for

large inputs.

If f and g are functions taking taking natural numbers

as input (the problem size) and returning nonnegative

results (the effort required in the calculations.)

f is of order g and write f = ©(g), if there are positive

constants ki1 and k> and a natural number ng such that
ki1g(n) < f(n) < kpg(n) for all n> ng

This means that some multipliers times g(n) provide

upper and lower bounds to f(n)

If we only wanted an upper bound on the values of a

function, then you can use Big-O notation.

We say f is of order at most g and write f = O(g), if

there is a positive constant k and a natural number ng

such that

f(n) < kg(n) for all n> ng
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M269 TMAO3

C O m p I e X ity Topics Revue
Big-O and Big-Theta Definitions (b) Bhil Molyneux
Tutorial Agenda

» Note that the notation is heavily abused:

Commentary 1

Many authors use Big-O notation when they really mean Adobe Connect

Big-® notation Egmgltle't:il:vity,
We really should define the ® notation to say that ©(g) Commentary 2
denotes the set of all functions f with the stated Computability
property and write f € O(g) — however the use of Commentary 3
f = ©(g) is traditional Complexity

Turing Machine

> The next section gives some rules for manipulating the TR @St
notation to calculate overall complexities of functions e, Ly e
from their component parts — this also abuses the e txample
notation for equality Compexiy & hon

Definitions and Rules

Based on Bird and Gibbons (2020, page 25) Algorithm )

Big-O and Big-Theta

Design with Haskell and Graham, Knuth and Patashnik P
(1994, page 450) Concrete Mathematics: A Foundation e e
[ Example

for Computer SCIence List Copmpl'ehensions
Master Theorem for
Divide-and-Conquer
Recurrences
Logarithms
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Complexity

Big-O and Big-Theta Rules

>

VYV Vv VvV VvyVvyy

n?P = O(n9) where p < g

This has some surprising consequences — n= 0O(n) and
n= 0(n?) — remember Big-O just gives upper bounds.

O(f(m) + O(g(n) = O(f (NI + g(n)
O(nP) + O(n9) = ©(n9) where p < g
f(n) = 6(f(n)

¢ - O(f(n) = B(f(n)) if c is constant
O(0(f(n))) = O(f(n)

O(f(n)B(g(n) = B(f(nNg(n)
O(f(mg(n) = f(NB(g(n)
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Complexity

Big-Theta Rules — Example

10
11
12

def numVowels(txt : str) -> int ;
"""Find the number of vowels in text

i

vowelCount = 0
vowels = "aeiouAEIOU"

for ch in txt
if ch in vowels
vowelCount = vowelCount + 1
return vowelCount

> The rules give
0(1)+06(1)+06(n x O(vowels|) x O(1)
where n = [txt|
> Since |vowels| = 10 the overall complexity is ©(n)
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List Comprehensions
Python

> List Comprehensions (tutorial), List Comprehensions
(reference) provide a concise way of performing
calculations over lists (or other iterables)

» Example: Square the even numbers between 0 and 9

Python3>>> [x #* 2 for x in range(10) if x % 2 == 0]
[0, 4, 16, 36, 64]

> Example: List all pairs of integers (x, y) such that x < 4,
y <4 and x is divisible by 2 and y is divisible by 3

Python3>>> [(x,y) for x 1in range(4)
for y in range(4)
if x % 2 =

ce and y % 3 == 0]

[0, 0O, (O, 3), (2, 0), (2, 3)]

Python3>>>

> In general

[expr for targetl in iterablel if condl
for target2 in iterable2 if cond2 ...
for targetN in iterableN if condN ]

> Lots example usage in the algorithms below

M269 TMAO3
Topics Revue

Phil Molyneux

Tutorial Agenda
Commentary 1
Adobe Connect

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example
Complexity & Python
Data Types
Definitions and Rules
for Complexity

List Comprehensions

Complexity of List
Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences
Logarithms
Before Calculators
Logic Introduction

References 159/246


https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/reference/expressions.html#displays-for-lists-sets-and-dictionaries

List Comprehensions
Haskell

> List Comprehensions provide a concise way of
performing calculations over lists

> Example: Square the even numbers between 0 and 9

GHCi> [xA2 | x <- [0..9], x ‘mod‘ 2 == 0]
[0,4,16,36,64]
GHCi>

> In general

[expr | quall, qual2,..., qualN]

» The qualifiers qual can be
» Generators pattern <- list
> Boolean guards — acting as filters
» Local declarations with Tet decls for use in expr and
later generators and boolean guards
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List Comprehension Exercises
Activity 1 (a) Stop Words Filter

» Stop words are the most common words that most
search engines avoid: 'a’,’an’,’the’,’that’,...

» Using list comprehensions, write a function
filterStopWords that takes a list of words and filters
out the stop words

» Here is the initial code

11 sentence \
12 = "the_quick_brown_fox_jumps_over_the_lazy dog"

14 words = sentence.split()

16 wordsTest \

17 = (words == [’the’, ’quick’, ’brown’
18 , “fox’, ’jumps’, ’over’
19 , 'the’, ’lazy’, ’dog’])

21 stopWords \
22 = [’a’,’an’, the’,’ ’that’]
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https://en.wikipedia.org/wiki/Stop_words

List Comprehension Exercises
Activity 1 (a) Stop Words Filter

11 sentence \
12 = "the_quick_brown_fox_jumps_over_the_lazy dog"

14 words = sentence.split()

16  wordsTest \

17 = (words == [’the’, ’'quick’, ’brown’
18 , 'fox’, ’jumps’, ’over’
19 , 'the’, ’lazy’, ’dog’])

21 stopWords \
22 = [’a’,’an’,’ the’,’ that’]

» Notice the Python Explicit line joining with (\<n1>) and
Python Implicit line joining with ((...))

» The backslash (\) must be followed by an end of line
character (<n1>)

» The (') symbol represents a space (see Unicode
U+2423 Open Box)
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List Comprehension Exercises
Activity 1 (b) Transpose Matrix

» A matrix can be represented as a list of rows of
numbers

> We transpose a matrix by swapping columns and rows

» Here is an example

38 matrixA \

39 = [[1, 2, 3, 4]

40 ,[5, 6, 7 ,8]

41 ,[9, 10, 11, 12]]
43 matATr \

44 = [[1, 5, 9]

45 ,[2, 6, 10]

46 ,[3, 7, 11]

47 ,[4, 8, 12]1]

» Using list comprehensions, write a function transMat,
to transpose a matrix
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List Comprehension Exercises
Activity 1 (c) List Pairs in Fair Order

68
69
70
71
72

74

> Write a function which takes a pair of positive integers
and outputs a list of all possible pairs in those ranges

> If we do this in the simplest way we get a bias to one
argument

> Here is an example of a bias to the second argument

yBiasLstTest \
= (yBiasListing(5,5)
== [(0, 0), (O, L), (0, 2), (0, 3), (0, ¥

a, 0, a, 1, @, 2, a,
@2, 0, 2, 1, @, 2), (@,
3,0, 3, D, G, 2, (G,
4, 00, (4, D, 4, 2, 4,

3, @Q, 9
3, @, 9
3), 3, 4
3, (4, HD
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List Comprehension Exercises
Activity 1 (c) List Pairs in Fair Order

» Rewrite the function which takes a pair of positive
integers and outputs a list of all possible pairs in those
ranges

» The output should treat each argument fairly — any
initial prefix should have roughly the same number of
instances of each argument

» Here is an example output

81 fairLstTest \

82 = (fairListing(5,5)
83 == [(0, 0)
84 ©, O, @@, 0

8 . (0,2, a1, D, @, 0
86 . (0, 3, 4,2, @, 1), G, 0
87 . (0, &), 3, @ 2, G D, & 0D
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M269 TMAO3

List Comprehension Exercises Topics Revue
Activity 1 () List Pairs in Fair Order Phil Molyneux

Tutorial Agenda

» Rewrite the function which takes a pair of positive Commentary 1
integers and outputs a list of lists of all possible pairs in i1 connect

those ranges Computability,
) Complexity
» The output should treat each argument fairly — any e
initial prefix should have roughly the same number of Computability
instances of each argument — further, the output Commentary 3
should be segment by each initial prefix (see example Complexity
Turi Machi
below) TMA Question
» Here is an example output Complexity, Logic
Complexity
94 fairlLstATest \ complexty Brample
95 = (fairListingA(5,5) DaaTypes "
96 == [[(0, 0)] Definitions and Rules
o7 . [0, 1), , 0] o e
%8 . [0, 2, @, 1, @, 0] Complexiy of Lt
99 , [C0, 3), (1, 2), (2, 1), @3, 0)] OIS BT
100 , [0, 4, (@, 3), 2, 2, 3, D, 4, OID s hsoremitoy
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> Note that list comprehensions are not in M269 o Aaenes
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[f(e) for e in row for row in mat]

Commentary 2

> Suppose f = O(g) with n elements in a row and m rows Computabiliy

Commentary 3

» Then complexity is Complexity
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List Comprehension Exercises
Answer 1 (a) Stop Words Filter

> Answer 1 (a) Stop Words Filter

> Write here:

P Answer 1 continued on next slide
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List Comprehension Exercises
Answer 1 (a) Stop Words Filter

> Answer 1 (a) Stop Words Filter

24 def filterStopWords(words)

25 nonStopWords \

26 = [word for word 1in words

27 if word not in stopWords]
28 return nonStopWords

31 filterStopWordsTest \

32 = filterStopWords(words) \
33 == ['quick’, ’brown’, ’fox’
34 , 'jumps’, ’over’, ’lazy’, ’dog’]
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List Comprehension Exercises

Answer 1 (b) Transpose Matrix

» Answer 1 (b) Transpose Matrix
> Write here:

P Answer 1 continued on next slide
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List Comprehension Exercises

Answer 1 (b) Transpose Matrix

» Answer 1 (b) Transpose Matrix

49 def transMat(mat)

50 rowLen = lTen(mat[0])

51 matTr \

52 = [[row[i] for row in mat] for i in range(rowLen)]
53 return matTr

55 transMatTestA \
56 = (transMat(matrixA)
57 == matATr)

» Note that a list comprehension is a valid expression as
a target expression in a list comprehension

» The code assumes every row is of the same length

P Answer 1 continued on next slide
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List Comprehension Exercises

Answer 1 (b) Transpose Matrix

> Note the differences in the list comprehensions below

38 matrixA \

39 = [[1, 2, 3, 4]
40 ,[5, 6, 7 ,8]
41 ,[9, 10, 11, 12]]

Python3>>> [[row[i] for row in matrixA]

C for i 1in range(4)]

[r, 5, 91, 2, 6, 101, 3, 7, 111, [4, 8, 12]1]
Python3>>> [row[i] for row in matrixA

Ce for i in range(4)]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
Python3>>> [row[i] for i in range(4)

Ce for row in matrixA]

1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8, 12]
Python3>>> [[row[i] for i 1in range(4)]

Ce for row in matrixA]

[ri, 2, 3, 41, I[5, 6, 7, 81, [9, 10, 11, 12]]
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List Comprehension Exercises

Answer 1 (b) Transpose Matrix

» Answer 1 (b) Transpose Matrix

» The Python NumPy package provides functions for
N-dimensional array objects

> For transpose see numpy.ndarray.transpose

Python3>>>
Python3>>>
Python3>>>
array([[1,

[3,
Python3>>>
Python3>>>
array([[1,

(2,
Python3>>>
array([[1,

(3,
Python3>>>
@, 2)

import numpy as np
ar = np.array([[1,2],[3,41D)
ar

2],

41D

arT = ar.transpose()
arT

3],

41D

ar

2 g

41D

ar.shape
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https://www.numpy.org/
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List Comprehension Exercises

Answer 1 (c) List Pairs in Fair Order

» Answer 1 (c) List Pairs in Fair Order — first version
» Write here

69 yBiasLstTest \

70 = (yBiasListing(5,5)

71 == [(0, 0), (O, L), (0, 2), (0, 3), (0, ¥
72 , (1, 00, (1, 1, A, 2, 4, 3), 4, B
73 2, 0, 2, 1, @, 2), @2, 3), @2, D

74 LG, 0, G, D, G2, G, G
75 L (4, 0), (4, D, (4, 2), (4, 3), (4, DD
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List Comprehension Exercises

Answer 1 (c) List Pairs in Fair Order

» Answer 1 (c) List Pairs in Fair Order
» This is the obvious but biased version

63 def yBiasListing(xRng,yRng)
64 yBiasLst \

65 = [(x,y) for x in range(xRng)
66 for y in range(yRng)]
67 return yBiaslLst

69 yBiasLstTest \

70 = (yBiasListing(5,5)

71 == [(0, 0), (0, 1), (0, 2), (0O, 3), (0, 4

72 , (1, 0, (1, », @, 2, a, 3, a, »
73 , 2, 00, 2, 1, 2, 2, @, 3, @, D
74 , 3, 00, 3, 1, G, 2), @3, 3, G, D
75 , (4, 0, 4, D, (4,2, (4, 3), (4, HD
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List Comprehension Exercises

Answer 1 (c) List Pairs in Fair Order

» Answer 1 (c) List Pairs in Fair Order — second version
> Write here

83 fairLstTest \

84 = (fairListing(5,5)

85 == [(0, 0)

86 , (0, 1), (1, 0)

87 , (0, 2), (1, D, 2, 0)

88 , (0, 3), (1, 2, 2, D, 3, 0O

89 , (0, 4, @1, 3, 2, 2, G, D, (4, 0D

» Go to Activity
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List Comprehension Exercises
Answer 1 (c) List Pairs in Fair Order
» Answer 1 (c) List Pairs in Fair Order — second version

> This works by making the sum of the coordinates the
same for each prefix

77 def fairListing(xRng,yRng)

78 fairLst \

79 = [(x,d-x) for d in range(yRng)
80 for x in range(d+1)]
81 return fairlLst

83 fairLstTest \

84 = (fairListing(5,5)

85 == [(0, 0)

86 , (0, 1, (@1, 0)

87 , (0, 2), (1, D, @, 0

88 , (0, 3), (1, 2, 2, D, 3, 0O

89 , (0, 4, @, 3, @2, 2, 3, D, 4, 0)]
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List Comprehension Exercises

Answer 1 (c) List Pairs in Fair Order

» Answer 1 (c) List Pairs in Fair Order — third version

> Write here

fairLstATest \

= (fairListingA(5,5)
== [[(0, 0)]

, [0,
, [0,
, LCO,
,» [C0,

D,
2),
3),
4,

1, 0]

1, 1), (2, 0]

@1, 2y, 2, 1), @3, 0)]
@@, 3, 2, 2, G, 1,

4, 01D

» Go to Activity
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List Comprehension Exercises

Answer 1 (c) List Pairs in Fair Order

» Answer 1 (c) List Pairs in Fair Order — third version
» The inner loop is placed into its own list comprehension

91 def fairListingA(xRng,yRng)
92 fairLstA \

93 = [[(x,d-x) for x in range(d+1)]
94 for d in range(yRng)]
95 return fairLstA

97 fairLstATest \

98 = (fairListingA(5,5)

99 == [[(0, 0)]

100 , [0, D, (1, 0]

101 , [0, 2, (1, 1), (2, 0)]

102 , [0, 3), (1, 2), (2, ), (3, 0]

103 , [0, o, @, 3, 2, 2, G, D, (4, OID

M269 TMAO3
Topics Revue

Phil Molyneux

Tutorial Agenda
Commentary 1
Adobe Connect

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types
Definiti and Rules

for Complexity

List Comprehensions
Complexity of List
Comprehensions
Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References 179/246



Complexity

Master Theorem for Divide-and-Conquer Recurrences

>

vV VvVyVvyVvyVyvyyy

The Divide-and-Conquer Method

Many useful algorithms are recursive in structure and
often follow a divide-and-conquer method

They break the problem into several subproblems
similar to the original problem

The time analysis is represented by a recurrence system
References

Big O notation

Master theorem

Cormen et al (2022, chp 4) Algorithms

These notes are partly based on M261 Mathematics in
Computing and M263 Building Blocks of Software and
are not part of M269 Algorithms, Data Structures and
Computability
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Master Theorem

Recurrence System (a)

> Recurrence System

T(1)
T(n)

b (1)
bnP + cT (3) {n=d%>1} (2)

> Typical Expansion

n T(n)
d b
dl bnB + cb

B
a2 bnb+ch (g) +c2b
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Master Theorem

Recurrence System (b)

» General Expansion

T(n)

T(n)

B n
bn +cT<d)

B
n
an+cb(2) +cC T(dz)

B
bnP (1 T

logy n

bnP Z

+ Sy

(@

()

c
ab

)2+...+(

C

dab

X

(3)
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Master Theorem

Recurrence System (c)
» Proof of Closed Form Equation (3)
> For n=1 equation (3) gives

0 .
TN =b1B> (d—cﬁ)l = b which is correct (same as (1))
i=0

» Assume equation (3) holds for n = d*. Then for n = d%*!
T (d"‘” ) = cT (d%) + bnP by equation (2)

N .
= cbd*P > (d—cﬂ)l + bd@+DB by assumption
i=0

= (< bd((xHB < i+bd((x+13
(i) (i)

d

It

- bd@+DB ( s (%)’ + 1) by rearrangement

= bd(«+DB i_ZO (d—cﬁ)l by rearrangement

» Hence equation (3) holds for all n=d* where x € N
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Master Theorem
Cases
1. If ¢ < dP then the sum converges and T(n) is ©(nP)
2. If ¢ = dP then each term in the sum is 1 and
T(n) is © (nﬂ logy n)

P b+l
3. If ¢ > dP then use Zx’=u

i=0

( c >Iogdn+]
T(n) = bnP db c

x-1

M269 TMAO3
Topics Revue

Phil Molyneux

Tutorial Agenda
Commentary 1
Adobe Connect

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions
Master Theorem for
Divide-and-Conquer
Recurrences
Master Theorem
Example Usage

Logarithms
Before Calculators
Logic Introduction

References 184/246



Master Theorem Example Usage (1)
Binary Search
> Algorithm

» Find mid point and check
if not equal to target, recurse on half the data

> Timing equations
T() <1
T(m=T(5)+1
» Hencec=1,d=2,8=0 — case (2)
T(n) = 0(log; n)
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Master Theorem Example Usage (2)

Quicksort
> Algorithm
> Best case: splitting on median of data
> Recursively sort each half
> Timing equations

T() <k

T(n) =2T (§) +kn

Hence c=2,d=2, =1 — case (2)
T(n) = O(nlogy n)

See Averages/Median
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Master Theorem Example Usage (3)

Matrix Multiplication — Strassen’s Algorithm (a)

>
>
>

Matrix Multiplication

Let A, B be two square matrices over a ring, R
Informally, a ring is a set with two binary operations
which look similar to addition and multiplication of
integers

The problem is to implement matrix multiplication to
find the matrix product C = AB

Without loss of generality, we may assume that A, and B
have sizes which are powers of 2 — if A, and B were not
of this size, they could be padded with rows or columns
of zeroes

The Strassen algorithm partitions A, B and C into
equally sized blocks

Al Ar Bi1 B2 a1 G2
A= B= C=
(A21 A22 B21  Bz2 Q1 G2

with Ajj, Bjj, Cjj € Matyn-142n1(R)
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Master Theorem Example Usage (3)

Matrix Multiplication — Strassen’s Algorithm (b)

» The usual (naive, standard) algorithm gives
(Cn C12)
Q1 2
_ (An X Bri+A12 X B21 A X Bz +Ajz X 322)
A21 X B11 + A2 X Ba1 A1 X B12+A22 X B2
» This as 8 multiplications and if we assume

multiplication is more expensive than addition then the
time complexity is ©(n3)
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Master Theorem Example Usage (3)

Matrix Multiplication — Strassen’s Algorithm (c)

> The Strassen algorithm rearranges the calculation
My = (A11 + A22) X (B11 + B22)
My = (A1 + A22) X By
M3 = A11 X (B12 - B22)
M4 = Azz X (B21 - B11)
Ms = (A7 + A12) X By
Me = (A21 - A11) X (B11 + B12)
M7 = (A12 - A22) X (B21 + B22)
> We now express the Cj; in terms of the M
(Cn Clz)
1 G
=(M1+M4—M5+M7 M3 + Ms )
M + My My - My + M3 + Mg
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Master Theorem Example Usage (3)
Matrix Multiplication — Strassen’s Algorithm (d)
» Strassen Matrix Multiplication Timing Equations
T(m =7T(§) + 3n?
T <18

» This is derived from the 7 multiplications and 18
additions or subtractions

» c=7,d=2,B=2 — case (3)
T(n) =0 <H|°92 7) =0 <H2'8)
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Exponentials and Logarithms

Definitions

» Exponential function y = a¥ or f(x) = a¥

> g"=axax---xa(naterms)

» Logarithm reverses the operation of exponentiation

> log,y = x means a* =y

> log,1=0

> logza=1

» Method of logarithms propounded by John Napier from
1614

» Log Tables from 1617 by Henry Briggs

» Slide Rule from about 1620-1630 by William Oughtred
of Cambridge

» Logarithm from Greek logos ratio, and arithmos

number Chambers Dictionary (13th Edition, 2014)
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Exponentiation
Rules of Indices
1. amx ag" = agm"
2. a"+ag"=ag"m"
1
om_ 1
3.a"= prT
1
4. am = "/a
5. (am)n = amn
6. am = "/an
7. a°=1wherea+0
> Exercise Justify the above rules
» What should 0° evaluate to ?
» See Wikipedia: Exponentiation
>

The justification above probably only worked for whole
or rational numbers — see later for exponents with real
numbers (and the value of logarithms, calculus. . .)
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Logarithms

Motivation

>

v

Make arithmetic easier — turns multiplication and
division into addition and subtraction (see later)

Complete the range of elementary functions for
differentiation and integration

An elementary function is a function of one variable
which is the composition of a finite number of
arithmetic operations ((+), (), (X), (<)), exponentials,
logarithms, constants, and solutions of algebraic
equations (a generalization of nth roots).

The elementary functions include the trigonometric and
hyperbolic functions and their inverses, as they are
expressible with complex exponentials and logarithms.

See A Level FP2 for Euler’s relation e/? = cos 0 +isin 0
1
In A Level C3, C4 we get J; =loge IX| + C

e is Euler’s number 2.71828...
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Exponentials and Logarithms

Graphs

> See GeoGebra file explLog.ggb

h(z) = g(f(x))
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expLog.ggb

Exponentials and Logarithms

Laws of Logarithms
» Multiplication law log, xy = log, x + log, y
Division law log, (%) =log, x-log,y

>
» Power law log, x = klog, x
> Proof of Multiplication Law

x = g'99a X
y = al°9ay by definition of log
Xy = alogax % alogay
= gl9ax+logzy by laws of indices
Hence log, xy = log, x +log, y by definition of log
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Arithmetic Operations

Inverse Operations

>

vV VvVvyyvyy

vVvyVvyYyeyswy

Notation helps or maybe not ?
Addition add(b,x) =x+ b

Subtraction sub(b,x) = x-b

Inverse sub(b, add(b, x)) = (x+ b) - b= x
Multiplication mul(b,x)=x X b
Division div(b,x) = x + b= % = x/b

Inverse div(b, mul(b, x)) = (x X b) =~ b= ‘XZ”’ =X

Exponentiation exp(b, x) = bX
Logarithm log(b, x) = logy, x
Inverse log(b, exp(b, x)) = log,(b*) = x

What properties do the operations have that work (or
not) with the notation ?
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Arithmetic Operations

Commutativity and Associativity

>
>
>

vV vyVvyy

vV vyYyywy

Commutativity x® y =y ® x
Associativity x®@ y)®ez=x® (y ® 2)

(+) and (x) are semantically commutative and
associative — so we can leave the brackets out

(-) and (=) are not
Evaluate 3-(2-1))and (3-2)-1)
Evaluate (3/(2/2)) and ((3/2)/2)

We have the syntactic ideas of left (and right)
associativity

We choose (-) and (<) to be left associative
3-2-1Tmeans (3-2)-1)
3/2/2 means ((3/2)/2)

Operator precedence is also a choice (remember
BIDMAS or BODMAS ?)

If in doubt, put the brackets in
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Exponentials and Logarithms

Associativity

v

vV vVvyyvyy

What should 23* mean ?

Let bA x = bX

Evaluate 2A3)A4 and 2A(3A4)
Evaluate ¢ = logy(log,((b A b) A X))
Evaluate d = log,(logy,(b A (b A X))
Beware spreadsheets Excel and LibreOffice here
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Exponentials and Logarithms

Associativity

>
>
>

VVvVVvYy VvVVvVvyVvyVvyy

(23)4 — 212 and 234 — 281
Exponentiation is not semantically associative

We choose the syntactic left or right associativity to
make the syntax nicer.

Evaluate ¢ = logy(log,((b A b) A X))

¢ = log(xlog,(b?)) = log,(x - (blogy, b)) = logp(x - b 1)
Hence c =logy, x +logy, b =logy, x + 1

Not symmetrical (unless b and x are both 2)

Evaluate d = log,(logy(b A (b A X))

d = log,((b A x)(logy, b)) = log,((b A x) X T)

Hence d =log,(b A x) = x(logy, b) = x

Which is what we want — so exponentiation is chosen to
be right associative
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Exponentials and Logarithms

Change of Base

» Change of base

logy, x
log, x = W
Proof: Let y = log, x
a’ =x
logy, a¥ =logy, x
ylogy, a =logy x
logy x
~log,a
> Given x, logy x, find the base b

1
> h= xlogpx
1

> |Ogab=m
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Before Calculators and Computers

» We had computers before 1950 — they were humans
with pencil, paper and some further aids:

» Slide rule invented by William Oughtred in the 1620s —
major calculating tool until pocket calculators in 1970s

> Log tables in use from early 1600s — method of
logarithms propounded by John Napier

» Logarithm from Greek logos ratio, and arithmos
number
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Log Tables

Knott’s Four-Figure Mathematical Tables

KNOTT’S
FOUR-FIGURE
MATHEMATICAL

R. CHAMBERS, LTD.
LONDON AND EDINBURC
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Logarithms of Numbers
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Slide Rules
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» See Oughtred Society

» UKSRC

» Rod Lovett’s Slide Rules
» Slide Rule Museum
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Slide Rules

Pickett loglog Slide Rules Manual 1953

by MAURICE L. HARTUNG
Asociate Professor of the
Teoching of Mothematics
THE UNIVERSITY OF CHICAGO
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M269 TMA03

Cal C U IatO rS Topics Revue
HP HP-21 Calculator from 1975 £69 Bhillktolnetic
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M269 TMAO3

Cal C U IatO rS Topics Revue
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Calculators

Calculator Links

>
>

HP Calculator Museum http://www.hpmuseum.org

HP Calculator Emulators
http://nonpareil.brouhaha.com

HP Calculator Emulators for OS X
http://www.bartosiak.org/nonpareil/

Vintage Calculators Web Museum
http://www.vintagecalculators.com
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Example Calculation Topies Revue

Log Tables, Slide Rule and Calculator Bhil Molyneux

Tutorial Agenda

> Evaluate 89.7 x 597 Commentary
» Knott’s Tables Adobe Connect
> 10g7089.7 = 1.9528 and log;( 597 = 2.7760 Complesity
» Shows mantissa (decimal) & characteristic (integral) GEIICIER A
> Add 4.7288, take antilog to get 5346+10 = 5.356 X 10% (oo
» HP-21 Calculator — set display to 4 decimal places Complexity

> 89.7[log) = 1.9528 and 597 [log] = 2.7760 TA Quesion”
> displays 4.7288 EZ:Z::I: o
> 10 [ENTER), and [y*] displays 53550.9000 o
> Casio fx-85GT PLUS Lo s

> 89.7 (1)) =1.952792443 597 ()] =2.775974331 =) L
> 4.728766774 [Ans]+[10*] gives 53550.9 Logic Introduction
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Boolean Expressions
Traffic Lights Example (1)

>

>
>

Consider traffic light at the intersection of roads AC and
BD with the following rules for the AC controller

Vehicles should not wait on red on BD for too long.

If there is a long queue on AC then BD is only given a
green for a short interval.

If both queues are long the usual flow times are used.

We use the following propositions:
> w Vehicles have been waiting on red on BD for too long
> g Queue on AC is too long
> r Queue on BD is too long
Given the following events:
> ToBD Change flow to BD
> ToBDShort Change flow to BD for short time
» NoChange No Change to lights

Express above as truth table, outcome tree, boolean
expression
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Boolean Expressions

Traffic Lights Example (2)

» Traffic Lights outcome table

S

N}

Event

mm M- -

i B B B B B e B |

e B B B B B B B

ToBD
ToBDShort
ToBD
ToBD
NoChange
NoChange
NoChange
NoChange
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M269 TMA03

Boolean Expressions Topics Revue
Traffic Lights Example (3) Phil Molyneux
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Boolean Expressions
Traffic Lights Example (4)

» Traffic lights outcome tree s

implified

M269 TMAO03
Topics Revue

Phil Molyneux

Tutorial Agenda
Commentary 1
Adobe Connect

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity

Turing Machine
TMA Question

Complexity, Logic
Complexity
Logarithms
Before Calculators

Logic Introduction

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

References

214/246



Boolean Expressions

Traffic Lights Example (5)

> Traffic Lights code 01
» See M269TutorialProgPythonADTO1.py

3def trafficLights01l(w,q,r)

® N o UV

©

11
12
13
14
15
16
17
18

win

Input 3 Booleans

Return Even
if w
if g
if r
evnt
else
evnt
else
evnt =
else
evnt = "N
return evnt

t string

= "ToBD"

"ToBDShort"

"ToBD"

oChange"
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Boolean Expressions
Traffic Lights Example (6)

> Traffic Lights test code 01

22trafficLightsOlEvnts = [((w,q,r), trafficLights01l(w,q,r))

23 for w in [True,False]
24 for q in [True,False]
25 for r 1in [True,False]]

27assert trafficLightsOlEvnts \

28 == [((True, True, True), ’ToBD’)

29 , ((True, True, False), ’ToBDShort’)
30 ,((True, False, True), ’ToBD’)

31 ,((True, False, False), ’ToBD’)

32 , ((False, True, True), ’'NoChange’)

33 , ((False, True, False), ’NoChange’)
34 , ((False, False, True), ’NoChange’)
35 , ((False, False, False), ’NoChange’)]
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Boolean Expressions
Traffic Lights Example (7)

> Traffic Lights code 02 compound Boolean conditions

37def trafficLights02(w,q,r)

38
39
40
41

42
43
44
45
46
47
48

Input 3 Booleans

Return Event string

if ((w and g and r) or (w and not q))
evnt = "ToBD"

elif (w and g and not r)
evnt = "ToBDShort"

else :
evnt = "NoChange"

return evnt

> What objectives do we have for our code ?
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Boolean Expressions
Traffic Lights Example (8)

> Traffic Lights test code 02

s2trafficLights02Evnts = [((w,q,r), trafficLights02(w,q,r))

53 for w in [True,False]
54 for q in [True,False]
55 for r 1in [True,False]]

s7assert trafficLights02Evnts == trafficLightsOlEvnts

M269 TMAO3
Topics Revue

Phil Molyneux

Tutorial Agenda
Commentary 1
Adobe Connect

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity

Turing Machine
TMA Question

Complexity, Logic
Complexity
Logarithms
Before Calculators

Logic Introduction

Boolean Expressions.
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

References

218/246



M269 TMAO3

Boolean Expressions Topics Revue
Traffic Lights Example (9) Phil Molyneux
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P OK using a fill colour would look better but didn’t have the time to hack the
package
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Boolean Expressions

Validity

» Validity of Boolean expressions

» Complete every outcome returns an event (or error
message, raises an exception)

» Consistent — we do not want two nested if
statements or expressions resulting in different events

» We check this by ensuring that the events form a
disjoint partition of the set of outcomes — see the Venn
diagram

>

We would quite like the programming language
processor to warn us otherwise — not always possible

M269 TMAO3
Topics Revue

Phil Molyneux

Tutorial Agenda
Commentary 1
Adobe Connect

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity

Turing Machine
TMA Question

Complexity, Logic
Complexity
Logarithms
Before Calculators

Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

References

220/246



Booleans Expressions

Rail Ticket Exercise (1)

» Rail ticket discounts for:
> ¢ Rail card
> g Off-peak time
> s Special offer

> 4 fares: Standard, Reduced, Special, Super Special
> Rules:
1. Reduced fare if rail card or at off-peak time
2. Without rail card no reduction for both special offer and
off-peak.
3. Rail card always has reduced fare but cannot get
off-peak discount as well.
4. Rail card gets super special discount for journey with
special offer

» Draw up truth table, outcome tree, Venn diagram and
conditional statement (or expression) for this
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M269 TMAO3

Booleans Expressions Topics Revue
Rail Ticket Exercise (2) Phil Molyneux
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> Rail ticket outcome table
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M269 TMAO3

Booleans Expressions Topics Revue
Rail Ticket Exercise (3) Phil Molyneux
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Boolean Expressions
Rail Ticket Exercise (4)

» Rail Ticket outcome tree

Super Special

Super Special
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Boolean Expressions
Rail Ticket Exercise (5)

> Rail Ticket outcome tree simplified

Super Special

-q
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Boolean Expressions
Rail Ticket Example (6)

> Rail Ticket Venn diagram
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Boolean Expressions
Rail Ticket Example (7)

» Rail Ticket code 01

61def railTicket01l(c,s,q) :
62

63 Input 3 Booleans

64 Return Event string

min

65

66 if c :

67 if s ¢

68 evnt = "SSP"
69 else

70 evnt = "RD"
71  else :

72 if s ¢

73 evnt = "SP"
74 else :

75 if g :

76 evnt = "RD"
77 else :

78 evnt = "STD"

79 return evnt
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Boolean Expressions
Rail Ticket Example (8)

> Rail Ticket test code 01

83railTicketOlEvnts = [((c,s,q), railTicket0l(c,s,q))

84 for c 1in [True,False]
85 for s 1in [True,False]
86 for q in [True,False]]
ggassert railTicketOlEvnts \

89 == [((True, True, True), ’SSP’)

90 ,((True, True, False), ’SSP’)

91 ,((True, False, True), ’RD’)

92 ,((True, False, False), ’'RD’)

93 ,((False, True, True), ’SP’)

94 ,((False, True, False), ’SP’)

95 ,((False, False, True), ’RD’)

96 ,((False, False, False), ’'STD’)]
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Boolean Expressions
Rail Ticket Example (9)

> Rail Ticket code 02 compound Boolean expressions

ogdef railTicket02(c,s,q)

929
100
101
102
103
104
105
106
107
108
109
110
111

Input 3 Booleans
Return Event string

min

if (c and s)
evnt = "SSP"

elif ((c and not s) or (not c and not s and q))
evnt = "RD"

elif (not c and s)

evnt = "SP"
else :
evnt = "STD"

return evnt
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Boolean Expressions
Rail Ticket Example (10)

» Rail Ticket test code 02

115railTicket02Evnts = [((c,s,q), railTicket02(c,s,q))

116 for c 1in [True,False]
117 for s 1in [True,False]
118 for q in [True,False]]
120assert railTicketO02Evnts == railTicketOlEvnts
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Propositional Calculus

Introduction

>

Unit 2 section 3.2 A taste of formal logic introduces
Propositional calculus

A language for calculating about Booleans — truth
values

Gives operators (connectives) conjunction (A) AND,
disjunction (v) OR, negation (=) NOT, implication (=) IF
There are 16 possible functions (B, B) — B — see below
— defined by their truth tables

Discussion Did you find the truth table for implication
weird or surprising ?
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Conditional Expressions
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Propositional Calculus

Functional Completeness, Boolean Programming
» Functionally complete set of connectives is one which
can be used to express all possible connectives
> p=>qg=-pV qsowe could just use {—, A, vV}

» Boolean programming — we have to have a
functionally complete set but choose more to make the
programming easier

> Expressiveness is an issue in programming language
design
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https://en.wikipedia.org/wiki/Functional_completeness

Propositional Calculus

NAND, NOR

>
>
>

NAND pAgq, p t q, Sheffer stroke
NOR pVgq, p | q, Pierce’s arrow

See truth tables below — both {t},{!} are functionally
complete

Exercise verify

>

vvyyvyy

v

p=pltp
prg=—(ptg=ptgtp!qg
pvag=(ptpt@q!qg
p=Eplp
prg=(plipl@lqg
pvag=-pla=plglplqg

Not a novelty — the Apollo Guidance Computer was
implemented in NOR gates alone.

M269 TMAO3
Topics Revue

Phil Molyneux

Tutorial Agenda
Commentary 1
Adobe Connect

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity

Turing Machine
TMA Question

Complexity, Logic
Complexity
Logarithms
Before Calculators

Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

References

234/246


https://en.wikipedia.org/wiki/Sheffer_stroke
https://en.wikipedia.org/wiki/Logical_NOR
https://en.wikipedia.org/wiki/Apollo_Guidance_Computer

M269 TMAO3

Truth Function Topics Revue

) Phil Mol
Truth Function References A

Tutorial Agenda

» The following appendix notes illustrate the 16 binary
functions of two Boolean variables

Commentary 1

Adobe Connect

> See Truth function Computability,
Complexity

» See Functional completeness Commentary 2

> See Sheffer stroke CompEHlEy

Commentary 3

> See Logical NOR

Complexity

Turing Machine
TMA Question

Complexity, Logic
Complexity
Logarithms
Before Calculators

Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

References

235/246


https://en.wikipedia.org/wiki/Truth_function
https://en.wikipedia.org/wiki/Functional_completeness
https://en.wikipedia.org/wiki/Sheffer_stroke
https://en.wikipedia.org/wiki/Logical_NOR

M269 TMAO3

Truth Function Topics Revue

Table of Binary Truth Functions Fil DS e
[\ Tutorial Agenda
N 3 : @ s Commentary 1
p q T ; Y a Y = aQ ; Adobe Connect
R
TrITiiiiid
Computability
F T T T F F T T F F Commentary 3
F F T F T F T F T F Complexity
Turing Mac_hine
1\ 1\ T & TMA Question
‘g ¥ Q g [\ 4 < Complexity, Logic
p q 1 Q r Q r Q Complexity
T T F F F F F F F F Logarithms
Before Calculators
T F F F F F T T T T Logic Introduction
FTF F TTFFTT o
F FF T FTFTFT anavatay
By e

Propositional Calculus
Truth Function

References

236/246



Truth Function

Tautology/Contradiction

» Tautology True, T, Top

» Contradiction False, L, Bottom

M269 TMAO03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,

Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions

and Validity

Boolean Expressions

Exercise

Propositional Calculus

References

237/246



M269 TMA03

Truth FU nction Topics Revue

Disjunction/Joint Denial i) et

- . utorial Agenda
> Disjunction OR, pV g fuer A9

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2
Computability

Commentary 3

u

Complexity

Turing Machine
TMA Question

> Joint Denial NOR, pVgq, p | q, Pierce’s arrow Complexity, Logic
Complexity
Logarithms
Before Calculators

Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

References

238/246


https://en.wikipedia.org/wiki/Logical_NOR

Truth Function

Converse Implication/Converse Nonimplication

» Converse Implication p < g

> Converse Nonimplication p < g
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Truth Function
Proposition p/Negation of p

> Proposition p

u

> Negation of p
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Truth Function
Proposition g/Negation of g

> Proposition g g

u

> Negation of g —¢q
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Web Sites

Complexity

» Complexity

>

vVvyvVvyvyy

Complexity class

NP complexity

NP complete

Reduction (complexity)

P versus NP problem

Graph of NP-Complete Problems
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