
M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

M269 TMA03 Topics Revue
M269 Revue Tutorial

Phil Molyneux

10 September 2025

1/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

M269 End of Module Tutorial
Agenda

▶ Welcome & Introductions

▶ Topics from TMA03

▶ Abstract Data Types — Bags

▶ Abstract Data Types — Graphs

▶ Complexity

▶ Computability

2/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

M269 Tutorial
Introductions — Me

▶ Name Phil Molyneux
▶ Background Physics and Maths, Operational Research,

Computer Science
▶ Undergraduate: Physics and Maths (Sussex)
▶ Postgraduate: Physics (Sussex), Operational Research

(Brunel), Computer Science (University College, London)

▶ First programming languages Fortran, BASIC, Pascal
▶ Favourite Software

▶ Haskell — pure functional programming language
▶ Text editors TextMate, Sublime Text — previously Emacs
▶ Word processing and presentation slides in LATEX
▶ Mac OS X

▶ Learning style — I read the manual before using the
software (really)

3/246

http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/BASIC
http://en.wikipedia.org/wiki/Pascal_(programming_language)
http://www.haskell.org/haskellwiki/Haskell
https://macromates.com
http://www.sublimetext.com
http://www.emacswiki.org
http://www.latex-project.org
https://developer.apple.com/devcenter/mac/index.action

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

M269 Tutorial
Introductions — You

▶ Name ?

▶ Position in M269 ? Which part of which Units and/or
Reader have you read ?

▶ Particular topics you want to look at ?

▶ Learning Syle ?

4/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Commentary 1
Agenda, Aims and Topics

1 Agenda, Aims and Topics

▶ Overview of aims of tutorial

▶ Note selection of topics

▶ Points about my own background and preferences

▶ Adobe Connect slides for reference

▶ Note that the Computability notes are here mainly for
reference since the Complexity notes refer to them

▶ This session is mainly on the Complexity topics

5/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Adobe Connect
Interface — Host View

6/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Adobe Connect
Interface — Participant View

7/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Adobe Connect
Settings

▶ Everybody Menu bar Meeting Speaker & Microphone Setup

▶ Menu bar Microphone Allow Participants to Use Microphone ✔

▶ Check Participants see the entire slide Workaround
▶ Disable Draw Share pod Menu bar Draw icon

▶ Fit Width Share pod Bottom bar Fit Width icon ✔

▶ Meeting Preferences General Host Cursor Show to all attendees

▶ Menu bar Video Enable Webcam for Participants ✔

▶ Do not Enable single speaker mode

▶ Cancel hand tool

▶ Do not enable green pointer

▶ Recording Meeting Record Session ✔

▶ Documents Upload PDF with drag and drop to share
pod

▶ Delete Meeting Manage Meeting Information Uploaded Content

and check filename click on delete

8/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Adobe Connect
Access

▶ Tutor Access

TutorHome M269 Website Tutorials

Cluster Tutorials M269 Online tutorial room

Tutor Groups M269 Online tutor group room

Module-wide Tutorials M269 Online module-wide room

▶ Attendance

TutorHome Students View your tutorial timetables

▶ Beamer Slide Scaling 440% (422 x 563 mm)

▶ Clear Everyone’s Status

Attendee Pod Menu Clear Everyone’s Status

▶ Grant Access and send link via email

Meeting Manage Access & Entry Invite Participants. . .

▶ Presenter Only Area

Meeting Enable/Disable Presenter Only Area

9/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Adobe Connect
Keystroke Shortcuts

▶ Keyboard shortcuts in Adobe Connect

▶ Toggle Mic + M (Mac), Ctrl + M (Win) (On/Disconnect)

▶ Toggle Raise-Hand status + E

▶ Close dialog box (Mac), Esc (Win)

▶ End meeting + \

10/246

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Adobe Connect Interface
Sharing Screen & Applications

▶ Share My Screen Application tab Terminal for Terminal

▶ Share menu Change View Zoom in for mismatch of screen
size/resolution (Participants)

▶ (Presenter) Change to 75% and back to 100% (solves
participants with smaller screen image overlap)

▶ Leave the application on the original display

▶ Beware blued hatched rectangles — from other (hidden)
windows or contextual menus

▶ Presenter screen pointer affects viewer display —
beware of moving the pointer away from the application

▶ First time: System Preferences Security & Privacy Privacy

Accessibility

11/246

https://en.wikipedia.org/wiki/Terminal_(macOS)

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Adobe Connect
Ending a Meeting

▶ Notes for the tutor only
▶ Student: Meeting Exit Adobe Connect

▶ Tutor:
▶ Recording Meeting Stop Recording ✔

▶ Remove Participants Meeting End Meeting. . . ✔

▶ Dialog box allows for message with default message:
▶ The host has ended this meeting. Thank you for

attending.

▶ Recording availability In course Web site for joining
the room, click on the eye icon in the list of recordings
under your recording — edit description and name

▶ Meeting Information Meeting Manage Meeting Information —
can access a range of information in Web page.

▶ Delete File Upload Meeting Manage Meeting Information

Uploaded Content tab select file(s) and click Delete

▶ Attendance Report see course Web site for joining
room

12/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Adobe Connect
Invite Attendees

▶ Provide Meeting URL Menu Meeting Manage Access & Entry

Invite Participants. . .

▶ Allow Access without Dialog Menu Meeting

Manage Meeting Information provides new browser window
with Meeting Information Tab bar Edit Information

▶ Check Anyone who has the URL for the meeting can
enter the room

▶ Default Only registered users and accepted guests may
enter the room

▶ Reverts to default next session but URL is fixed

▶ Guests have blue icon top, registered participants have
yellow icon top — same icon if URL is open

▶ See Start, attend, and manage Adobe Connect meetings
and sessions

13/246

https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html
https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Adobe Connect
Entering a Room as a Guest (1)

▶ Click on the link sent in email from the Host

▶ Get the following on a Web page

▶ As Guest enter your name and click on Enter Room

14/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Adobe Connect
Entering a Room as a Guest (2)

▶ See the Waiting for Entry Access for Host to give
permission

15/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Adobe Connect
Entering a Room as a Guest (3)

▶ Host sees the following dialog in Adobe Connect and
grants access

16/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Adobe Connect
Layouts

▶ Creating new layouts example Sharing layout

▶ Menu Layouts Create New Layout. . . Create a New Layout dialog

Create a new blank layout and name it PMolyMain

▶ New layout has no Pods but does have Layouts Bar open
(see Layouts menu)

▶ Pods

▶ Menu Pods Share Add New Share and resize/position —
initial name is Share n — rename PMolyShare

▶ Rename Pod Menu Pods Manage Pods. . . Manage Pods

Select Rename or Double-click & rename

▶ Add Video pod and resize/reposition

▶ Add Attendance pod and resize/reposition

▶ Add Chat pod — rename it PMolyChat — and
resize/reposition

17/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Adobe Connect
Layouts

▶ Dimensions of Sharing layout (on 27-inch iMac)
▶ Width of Video, Attendees, Chat column 14 cm
▶ Height of Video pod 9 cm
▶ Height of Attendees pod 12 cm
▶ Height of Chat pod 8 cm

▶ Duplicating Layouts does not give new instances of
the Pods and is probably not a good idea (apart from
local use to avoid delay in reloading Pods)

▶ Auxiliary Layouts name PMolyAux0n
▶ Create new Share pod
▶ Use existing Chat pod
▶ Use same Video and Attendance pods

18/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Adobe Connect
Chat Pods

▶ Format Chat text

▶ Chat Pod menu icon My Chat Color

▶ Choices: Red, Orange, Green, Brown, Purple, Pink, Blue,
Black

▶ Note: Color reverts to Black if you switch layouts

▶ Chat Pod menu icon Show Timestamps

19/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Graphics Conversion
PDF to PNG/JPG

▶ Conversion of the screen snaps for the installation of
Anaconda on 1 May 2020

▶ Using GraphicConverter 11

▶ File Convert & Modify Conversion Convert

▶ Select files to convert and destination folder

▶ Click on Start selected Function or +

20/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Adobe Connect Recordings
Exporting Recordings

▶ Menu bar Meeting Preferences Video

▶ Aspect ratio Standard (4:3) (not Wide screen (16:9) default)

▶ Video quality Full HD (1080p not High default 480p)

▶ Recording Menu bar Meeting Record Session ✔

▶ Export Recording

▶ Menu bar Meeting Manage Meeting Information

▶ New window Recordings check Tutorial Access Type button

▶ check Public check Allow viewers to download

▶ Download Recording

▶ New window Recordings check Tutorial Actions Download File

21/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Commentary 2
Computability

2 Computability

▶ Description of Turing Machine

▶ Turing Machine examples

▶ Computability, Decidability and Algorithms

▶ Non-computability — Halting Problem

▶ Reductions and non-computability

▶ Lambda Calculus (optional)

▶ Note that the Computability notes are here mainly for
reference since the Complexity notes refer to them

▶ This session is mainly on the Complexity topics

22/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Computability
Ideas of Computation

▶ The idea of an algorithm and what is effectively
computable

▶ Church-Turing thesis Every function that would
naturally be regarded as computable can be computed
by a deterministic Turing Machine. (Unit 7 Section 4)

▶ See Phil Wadler on computability theory performed as
part of the Bright Club at The Strand in Edinburgh,
Tuesday 28 April 2015

23/246

http://wadler.blogspot.co.uk/2015/05/bright-club-computability.html

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Computability
Models of Computation

▶ In automata theory, a problem is the question of
deciding whether a given string is a member of some
particular language

▶ If Σ is an alphabet, and L is a language over Σ, that is
L ⊆ Σ∗, where Σ∗ is the set of all strings over the
alphabet Σ then we have a more formal definition of
decision problem

▶ Given a string w ∈ Σ∗, decide whether w ∈ L

▶ Example: Testing for a prime number — can be
expressed as the language Lp consisting of all binary
strings whose value as a binary number is a prime
number (only divisible by 1 or itself)

▶ See Hopcroft (2007, section 1.5.4)

24/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Automate Theory
Alphabets, Strings

▶ An Alphabet, Σ, is a finite, non-empty set of symbols.

▶ Binary alphabet Σ = {0, 1}

▶ Lower case letters Σ = {a, b, . . . , z}

▶ A String is a finite sequence of symbols from some
alphabet

▶ 01101 is a string from the Binary alphabet Σ = {0, 1}

▶ The Empty string, ϵ, contains no symbols

▶ Powers: Σk is the set of strings of length k with
symbols from Σ

▶ The set of all strings over an alphabet Σ is denoted Σ∗
▶ Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ . . .
▶ Question Does Σ0 = ∅ ? (∅ is the empty set)

25/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Automata Theory
Languages

▶ An Language, L, is a subset of Σ∗
▶ The set of binary numerals whose value is a prime

{10, 11, 101, 111, 1011, . . . }
▶ The set of binary numerals whose value is a square

{100, 1001, 10000, 11001, . . . }

26/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Computability
Church-Turing Thesis & Quantum Computing

▶ Church-Turing thesis Every function that would
naturally be regarded as computable can be computed
by a deterministic Turing Machine.

▶ physical Church-Turing thesis Any finite physical
system can be simulated (to any degree of
approximation) by a Universal Turing Machine.

▶ strong Church-Turing thesis Any finite physical
system can be simulated (to any degree of
approximation) with polynomial slowdown by a
Universal Turing Machine.

▶ Shor’s algorithm (1994) — quantum algorithm for
factoring integers — an NP problem that is not known
to be P — also not known to be NP-complete and we
have no proof that it is not in P

▶ Reference: Section 4 of Unit 6 & 7 Reader

27/246

http://en.wikipedia.org/wiki/Shor's_algorithm

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Computability
Turing Machine

▶ Finite control which can be in any of a finite number of
states

▶ Tape divided into cells, each of which can hold one of a
finite number of symbols

▶ Initially, the input, which is a finite-length string of
symbols in the input alphabet, is placed on the tape

▶ All other tape cells (extending unbounded left and
right) hold a special symbol called blank

▶ A tape head which initially is over the leftmost input
symbol

▶ A move of the Turing Machine depends on the state
and the tape symbol scanned

▶ A move can change state, write a symbol in the current
cell, move left, right or stay

▶ References: Hopcroft (2007, page 326), Unit 6 & 7
Reader (section 5.3)

28/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine Diagram
Turing Machine Diagram

. . . b b a a a a . . . I/O Tape

q0q1

q2

q3 . . .

qn

Finite Control

q1

Reading and Writing Head
(moves in both directions)

29/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Computability
Turing Machine notation

▶ Q finite set of states of the finite control

▶ Σ finite set of input symbols (M269 S)

▶ Γ complete set of tape symbols Σ ⊂ Γ
▶ δ Transition function (M269 instructions, I)
δ :: Q × Γ → Q × Γ × {L, R, S}
δ(q, X) , (p, Y , D)

▶ δ(q, X) takes a state, q and a tape symbol, X and returns
(p, Y , D) where p is a state, Y is a tape symbol to
overwrite the current cell, D is a direction, Left, Right or
Stay

▶ q0 start state q0 ∈ Q

▶ B blank symbol B ∈ Γ and B ̸∈ Σ
▶ F set of final or accepting states F ⊆ Q

30/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine Examples
Turing Machine Simulators

▶ Morphett’s Turing machine simulator — the examples
below are adapted from here

▶ Ugarte’s Turing machine simulator

▶ XKCD A Bunch of Rocks — XKCD Explanation

Image below (will need expanding to be readable)

▶ The term state is used in two different ways:

The value of the Finite Control

The overall configuration of Finite Control and current
contents of the tape

See Turing Machine: State

will lead to some confusion

31/246

http://morphett.info/turing/turing.html
https://turingmachinesimulator.com/
https://xkcd.com/505/
https://www.explainxkcd.com/wiki/index.php/505:_A_Bunch_of_Rocks
https://en.wikipedia.org/wiki/Turing_machine#The_%22state%22

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine Examples
XKCD A Bunch of Rocks

32/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine Examples
Meta-Exercise

▶ For each of the Turing Machine Examples below,
identify

(Q,Σ, Γ ,δ, q0, B, F)

33/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine Examples
The Successor Function

▶ Input binary representation of numeral n

▶ Output binary representation of n + 1

▶ Example 1010, 1011 and 1011 , 1100

▶ Initial cell: leftmost symbol of n

▶ Strategy

▶ Stage A make the rightmost cell the current cell

▶ Stage B Add 1 to the current cell.

▶ If the current cell is 0 then replace it with 1 and go to
stage C

▶ If the current cell is 1 replace it with 0 and go to stage B
and move Left

▶ If the current cell is blank, replace it by 1 and go to
stage C

▶ Stage C Finish up by making the leftmost cell current

34/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine Examples
The Successor Function (2)

▶ Represent the Turing Machine program as a list of
quintuples (q, X , p, Y , D)

▶ Stage A

(q0, 0, q0, 0, R)

(q0, 1, q0, 1, R)

(q0, B, q1, B, L)

▶ Stage B

(q1, 0, q2, 1, S)

(q1, 1, q1, 0, L)

(q1, B, q2, 1, S)

▶ Stage C

(q2, 0, q2, 0, L)

(q2, 1, q2, 1, L)

(q2, B, qh, B, R)

35/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine Examples
The Successor Function (2a)

▶ Exercise Translate the quintuples (q, X , p, Y , D) into
English and check they are the same as the specification

▶ Stage A make the rightmost cell the current cell

(q0, 0, q0, 0, R)

If state q0 and read symbol 0 then stay in state q0 write 0, move R

(q0, 1, q0, 1, R)

If state q0 and read symbol 1 then stay in state q0 write 1, move R

(q0, B, q1, B, L)

If state q0 and read symbol B then state q1 write B, move L

36/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine Examples
The Successor Function (2b)

▶ Exercise Translate the quintuples (q, X , p, Y , D) into
English

▶ Stage B Add 1 to the current cell.

(q1, 0, q2, 1, S)

If state q1 and read symbol 0 then state q2 write 1, stay

(q1, 1, q1, 0, L)

If state q1 and read symbol 1 then state q1 write 0, move L

(q1, B, q2, 1, S)

If state q1 and read symbol B then state q2 write 1, stay

37/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine Examples
The Successor Function (2c)

▶ Exercise Translate the quintuples (q, X , p, Y , D) into
English

▶ Stage C Finish up by making the leftmost cell current

(q2, 0, q2, 0, L)

If state q2 and read symbol 0 then state q2 write 0, move L

(q2, 1, q2, 1, L)

If state q2 and read symbol 1 then state q2 write 0, move L

(q2, B, qh, B, R)

If state q2 and read symbol B then state qh write B, move R HALT

▶ Notice that the Turing Machine feels like a series of if
... then or case statements inside a while loop

38/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine Examples
The Successor Function (2d) — Meta-Exercise

▶ Identify (Q,Σ, Γ ,δ, q0, B, F)

39/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine Examples
The Successor Function (2e) — Meta-Exercise

▶ Identify (Q,Σ, Γ ,δ, q0, B, F)
▶ Q = {q0, q1, q2, qh}
▶ q0 finding the rightmost symbol
▶ q1 add 1 to current cell
▶ q2 move to leftmost cell
▶ qh finish
▶ Σ = {0, 1}
▶ Γ = Σ∪ {B}
▶ δ :: Q × Γ → Q × Γ × {L, R, S}

δ(q, X) , (p, Y , D)

δ is represented as {(q,X,p,Y,D)}

equivalent to {((q, X), (p, Y , D))} set of pairs
▶ q0 start with leftmost symbol under head, state moving

to rightmost symbol
▶ B is a visible space
▶ F = {qh}

40/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine Examples
The Successor Function (3)

▶ Sample Evaluation 11 , 100

▶ Representation · · ·BX1X2 · · ·Xi–1qXiXi+1 · · ·XnB · · ·
q011

1q01

11q0B

1q11

q110

q1B00

q2100

q2B100

qh100

▶ Exercise evaluate 1011 , 1100

41/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine Examples
Instantaneous Description

▶ Representation · · ·BX1X2 · · ·Xi–1qXiXi+1 · · ·XnB · · ·
▶ q is the state of the TM

▶ The head is scanning the symbol Xi

▶ Leading or trailing blanks B are (usually) not shown
unless the head is scanning them

▶ ⊢M denotes one move of the TM M

▶ ⊢∗M denotes zero or more moves

▶ ⊢ will be used if the TM M is understood

▶ If (q, Xi, p, Y , L) denotes a TM move then

X1 · · ·Xi–1qXi · · ·Xn ⊢M X1 · · ·Xi–2pXi–1Y · · ·Xn

42/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine Examples
The Binary Palindrome Function

▶ Input binary string s

▶ Output YES if palindrome, NO otherwise

▶ Example 1010, NO and 1001 , YES

▶ Initial cell: leftmost symbol of s

▶ Strategy

▶ Stage A read the leftmost symbol

▶ If blank then accept it and go to stage D otherwise
erase it

▶ Stage B find the rightmost symbol

▶ If the current cell matches leftmost recently read then
erase it and go to stage C

▶ Otherwise reject it and go to stage E

▶ Stage C return to the leftmost symbol and stage A

▶ Stage D print YES and halt

▶ Stage E erase the remaining string and print NO

43/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine Examples
The Binary Palindrome Function (2)

▶ Represent the Turing Machine program as a list of
quintuples (q, X , p, Y , D)

▶ Stage A read the leftmost symbol

(q0, 0, q1o , B, R)

(q0, 1, q1i , B, R)

(q0, B, q5, B, S)

▶ Stage B find rightmost symbol

(q1o , B, q2o , B, L)

(q1o ,∗, q1o ,∗, R) * is a wild card, matches anything

(q1i , B, q2i , B, L)

(q1i ,∗, q1i ,∗, R)

44/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine Examples
The Binary Palindrome Function (3)

▶ Stage B check

(q2o , 0, q3, B, L)

(q2o , B, q5, B, S)

(q2o ,∗, q6,∗, S)

(q2i , 1, q3, B, L)

(q2i , B, q5, B, S)

(q2i ,∗, q6,∗, S)

▶ Stage C return to the leftmost symbol and stage A

(q3, B, q5, B, S)

(q3,∗, q4,∗, L)

(q4, B, q0, B, R)

(q4,∗, q4,∗, L)

45/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine Examples
The Binary Palindrome Function (4)

▶ Stage D accept and print YES

(q5,∗, q5a , Y , R)

(q5a ,∗, q5b , E, R)

(q5b ,∗, q7, S, S)

▶ Stage E erase the remaining string and print NO

(q6, B, q6a , N, R)

(q6,∗, q6, B, L)

(q6a ,∗, q7, O, S)

▶ Finish

(q7, B, qh, B, R)

(q7,∗, q7,∗, L)

46/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine Examples
The Binary Palindrome Function (3a) — Meta-Exercise

▶ Identify (Q,Σ, Γ ,δ, q0, B, F)

47/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine Examples
The Binary Palindrome Function (3b) — Meta-Exercise

▶ Identify (Q,Σ, Γ ,δ, q0, B, F)
▶ Q = {q0, q1o , q1i , q2o , q2i , q3, q4, q5, q5a , q5b , q6, q6a , q7, qh}

▶ q0 read leftmost symbol
▶ q1o , q1i find rightmost symbol looking for 0 or 1
▶ q2o , q2i check, confirm or reject
▶ q3, q4 check finish or move to start
▶ q5, q6, q7 print YES or NO and finish
▶ qh finish
▶ Σ = {0, 1}
▶ Γ = Σ∪ {B, Y , E, S, N, O}
▶ δ :: Q × Γ → Q × Γ × {L, R, S}
δ(q, X) , (p, Y , D)
δ is represented as {(q,X,p,Y,D)}
equivalent to {((q, X), (p, Y , D))} set of pairs

▶ Start with leftmost symbol under head, state q0
▶ B is a visible space
▶ F = {qh}

48/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine Examples
The Binary Palindrome Function (4)

▶ Sample Evaluation 101 , YES

q0101 ⊢ Bq1i 01 ⊢ B0q1i 1 ⊢ B01q1i B

⊢ B0q2i 1

⊢ Bq30B ⊢ q4B0B

⊢ Bq00B ⊢ BBq1oB

⊢ Bq2oBB

⊢ Bq5BB ⊢ Yq5aB ⊢ YEq5bB ⊢ YEq7S

⊢ Yq7ES ⊢ Bq7YES ⊢ q7BYES ⊢ qhYES

▶ Exercise Evaluate 110 , NO

49/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine Examples
Binary Addition Example

▶ Input two binary numerals separated by a single space
n1 n2

▶ Output binary numeral which is the sum of the inputs

▶ Example 110110 + 101011 , 1100001

▶ Initial cell: leftmost symbol of n1 n2

▶ Insight look at the arithmetic algorithm

1 1 0 1 1 0
1 0 1 0 1 1

1 1 0 0 0 0 1

▶ Discussion how can we overwrite the first number with
the result and remember how far we have gone ?

50/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine Examples
Binary Addition Example — Arithmetic Reinvented

1 1 0 1 1 0
1 0 1 0 1 1

1 1 0 1 1 y
1 0 1 0 1

1 1 1 0 x y
1 0 1 0

1 1 1 x x y
1 0 1

1 0 0 x x x y
1 0

1 0 x x x x y
1

1 y x x x x y

1 1 0 0 0 0 1

51/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine Examples
Binary Addition Example (2)

▶ Input two binary numerals separated by a single space
n1 n2

▶ Output binary numeral which is the sum of the inputs

▶ Example 110110 + 101011 , 1100001

▶ Initial cell: leftmost symbol of n1 n2

▶ Strategy

▶ Stage A find the rightmost symbol

If the symbol is 0 erase and go to stage Bx

If the symbol is 1 erase go to stage By

If the symbol is blank go to stage F

dealing with each digit in n2

if no further digits in n2 go to final stage

▶ Stage Bx Move left to a blank go to stage Cx

▶ Stage By Move left to a blank go to stage Cy

moving to n1

52/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine Examples
Binary Addition Example (3)

▶ Stage Cx Move left to find first 0, 1 or B

Turn 0 or B to X, turn 1 to Y and go to stage A

adding 0 to a digit finalises the result (no carry one)

▶ Stage Cy Move left to find first 0, 1 or B

Turn 0 or B to 1 and go to stage D

Turn 1 to 0, move left and go to stage Cy

dealing with the carry one in school arithmetic

▶ Stage D move right to X, Y or B and go to stage E

▶ Stage E replace 0 by X, 1 by Y, move right and go to
Stage A

finalising the value of a digit resulting from a carry

▶ Stage F move left and replace X by 0, Y by 1 and at B
halt

53/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine Examples
Binary Addition Example (4)

▶ Represent the Turing Machine program as a list of
quintuples (q, X , p, Y , D)

▶ Stage A find the rightmost symbol

(q0, B, q1, B, R)

(q0,∗, q0,∗, R) * is a wild card, matches anything

(q1, B, q2, B, L)

(q1,∗, q1,∗, R)

(q2, 0, q3x , B, L)

(q2, 1, q3y , B, L)

(q2, B, q7, B, L)

54/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine Examples
Binary Addition Example (5)

▶ Stage Bx move left to blank

(q3x , B, q4x , B, L)

(q3x ,∗, q3x ,∗, L)

▶ Stage By move left to blank

(q3y , B, q4y , B, L)

(q3y ,∗, q3y ,∗, L)

▶ Stage Cx move left to 0, 1, or blank

(q4x , 0, q0, x, R)

(q4x , 1, q0, y, R)

(q4x , B, q0, x, R)

(q4x ,∗, q4x ,∗, L)

55/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine Examples
Binary Addition Example (6)

▶ Stage Cy move left to 0, 1, or blank

(q4y , 0, q5, 1, S)

(q4y , 1, q4y , 0, L)

(q4y , B, q5, 1, S)

(q4y ,∗, q4y ,∗, L)

▶ Stage D move right to x, y or B

(q5, x, q6, x, L)

(q5, y, q6, y, L)

(q5, B, q6, B, L)

(q5,∗, q5,∗, R)

▶ Stage E replace 0 by x, 1 by y

(q6, 0, q0, x, R)

(q6, 1, q0, y, R)

56/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine Examples
Binary Addition Example (7)

▶ Stage F replace x by 0, y by 1

(q7, x, q7, 0, L)

(q7, y, q7, 1, L)

(q7, B, qh, B, R)

(q7,∗, q7,∗, L)

▶ Exercise Evaluate 11 + 10 , 101

57/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine Examples
The Binary Addition Function (7a) — Meta-Exercise

▶ Identify (Q,Σ, Γ ,δ, q0, B, F)

58/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine Examples
The Binary Addition Function (7b) — Meta-Exercise

▶ Identify (Q,Σ, Γ ,δ, q0, B, F)
▶ Q = {q0, q1, q2, q3x , q3y , q4x , q4y , q5, q6, q7, qh}

▶ q0, q1, q2 find rightmost symbol of second number
▶ q3x , q3y move left to inter-number blank
▶ q4x , q4y move left to 0, 1 or blank
▶ q5 move right to x, y or B
▶ q6 replace 0 by x, 1 by y and move right
▶ q7 replace x by 0, y by 1 and move left
▶ qh finish
▶ Σ = {0, 1}
▶ Γ = Σ∪ {B, x, y}
▶ δ :: Q × Γ → Q × Γ × {L, R, S}
δ(q, X) , (p, Y , D)
δ is represented as {(q, X , p, Y , D)}
equivalent to {((q, X), (p, Y , D))} set of pairs

▶ Start with leftmost symbol under head, state q0
▶ B is a visible space
▶ F = {qh}

59/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine Examples
Binary Addition Example (8a)

▶ Exercise Evaluate 11 + 10 , 101
▶ Stage A find the rightmost symbol

BBq011B10B Note space symbols B at start and end

⊢ BB1q01B10B

⊢ BB11q0B10B

⊢ BB11Bq110B

⊢ BB11B1q10B

⊢ BB11B10q1B

⊢ BB11B1q20B

⊢ BB11Bq3x 1BB
▶ Stage Bx move left to blank

⊢ B11q3x B1BB
▶ Stage Cx move left to 0, 1, or blank

⊢ BB1q4x 1B1BB

⊢ BB1Yq0B1BB
60/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine Examples
Binary Addition Example (8b)

▶ Exercise Evaluate 11 + 10 , 101 (contd)
▶ Stage A find the rightmost symbol
⊢ BB1BYBq11BB
⊢ BB1YB1q1BB
⊢ BB1YBq21BB
⊢ BB1Yq3y BBBB
▶ Stage Cy move left to 0, 1, or blank
⊢ BB1q4y YBBBB
⊢ BBq4y 1YBBBB
⊢ Bq4y B0YBBBB
⊢ Bq510YBBBB
▶ Stage D move right to x, y or B
⊢ Bq50YBBBB
⊢ B0q5YBBBB
⊢ Bq60YBBBB
▶ Stage E replace 0 by x, 1 by y
⊢ B1Xq0YBBBB

61/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine Examples
Binary Addition Example (8c)

▶ Exercise Evaluate 11 + 10 , 101 (contd)

▶ Stage A find the rightmost symbol

⊢ B1XYq0BBBB

⊢ B1XYBq1BBB

⊢ B1XYq2BBBB

⊢ B1Xq7YBBBB

▶ Stage F replace x by 0, y by 1

⊢ B1q7X1BBBB

⊢ Bq7101BBBB

⊢ Bq7B101BBBB

⊢ Bqh101BBBB

▶ This is mimicking what you learnt to do on paper as a
child! Real step-by-step instructions

▶ See Morphett’s Turing machine simulator for more
examples (takes too long by hand!)

62/246

http://morphett.info/turing/turing.html

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Computability
Universal Turing Machine

▶ Universal Turing Machine, U, is a Turing Machine that
can simulate any arbitrary Turing machine, M

▶ Achieves this by encoding the transition function of M
in some standard way

▶ The input to U is the encoding for M followed by the
data for M

▶ See Turing machine examples

63/246

https://en.wikipedia.org/wiki/Universal_Turing_machine
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Turing_machine_examples

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Computability
Decidability

▶ Decidable — there is a TM that will halt with yes/no for
a decision problem — that is, given a string w over the
alphabet of P the TM with halt and return yes.no the
string is in the language P (same as recursive in
Recursion theory — old use of the word)

▶ Semi-decidable — there is a TM will halt with yes if
some string is in P but may loop forever on some inputs
(same as recursively enumerable) — Halting Problem

▶ Highly-undecidable — no outcome for any input —
Totality, Equivalence Problems

64/246

http://en.wikipedia.org/wiki/Recursion_theory

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Computability
Undecidable Problems

▶ Halting problem — the problem of deciding, given a
program and an input, whether the program will
eventually halt with that input, or will run forever —
term first used by Martin Davis 1952

▶ Entscheidungsproblem — the problem of deciding
whether a given statement is provable from the axioms
using the rules of logic — shown to be undecidable by
Turing (1936) by reduction from the Halting problem to
it

▶ Type inference and type checking in the second-order
lambda calculus (important for functional
programmers, Haskell, GHC implementation)

▶ Undecidable problem — see link to list

65/246

http://en.wikipedia.org/wiki/Halting_problem
http://en.wikipedia.org/wiki/Entscheidungsproblem
http://en.wikipedia.org/wiki/System_F
http://en.wikipedia.org/wiki/Undecidable_problem

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Computability
Halting Problem — Sketch Proof (1)

▶ Halting problem — is there a program that can
determine if any arbitrary program will halt or continue
forever ?

▶ Assume we have such a program (Turing Machine)
h(f,x) that takes a program f and input x and
determines if it halts or not

h(f ,x)
= i f f (x) runs forever

return True
else

return False

▶ We shall prove this cannot exist by contradiction

66/246

https://simple.wikipedia.org/wiki/Halting_problem

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Computability
Halting Problem — Sketch Proof (2)

▶ Now invent two further programs:
▶ q(f) that takes a program f and runs h with the input

to f being a copy of f
▶ r(f) that runs q(f) and halts if q(f) returns True,

otherwise it loops

q(f)
= h(f , f)

r (f)
= i f q(f)

return
else

while True : continue

▶ What happens if we run r(r) ?
▶ If it loops, q(r) returns True and it does not loop —

contradiction.
▶ Scooping theLoop Snooper: A proof that the Halting

Problem is undecidable Geoffrey K Pullum (21 May
2024)

67/246

http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html
http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Computability
Why undecidable problems must exist

▶ A problem is really membership of a string in some
language

▶ The number of different languages over any alphabet of
more than one symbol is uncountable

▶ Programs are finite strings over a finite alphabet (ASCII
or Unicode) and hence countable.

▶ There must be an infinity (big) of problems more than
programs.

▶ Computational problem — defined by a function

▶ Computational problem is computable if there is a
Turing machine that will calculate the function.

68/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Computability
Computability and Terminology (1)

▶ The idea of an algorithm dates back 3000 years to
Euclid, Babylonians. . .

▶ In the 1930s the idea was made more formal: which
functions are computable?

▶ A function is a set of pairs
f = {(x, f (x)) : x ∈ X ∧ f (x) ∈ Y } with the function
property

▶ Function property: (a, b) ∈ f ∧ (a, c) ∈ f ⇒ b == c

▶ Function property: Same input implies same output

▶ Note that maths notation is deeply inconsistent here —
see Function and History of the function concept

▶ What do we mean by computing a function — an
algorithm ?

69/246

http://en.wikipedia.org/wiki/Computable_function
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/History_of_the_function_concept

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Functions
Relation and Rule

▶ The idea of function as a set of pairs (Binary relation)
with the function property (each element of the domain
has at most one element in the co-domain) is fairly
recent — see History of the function concept

▶ School maths presents us with function as rule to get
from the input to the output

▶ Example: the square function: square x = x × x

▶ But lots of rules (or algorithms) can implement the
same function

▶ square1 x = x^2

▶ square2 x =

x times︷ ︸︸ ︷
x + · · · + x if x is integer

70/246

https://en.wikipedia.org/wiki/Binary_relation
https://en.wikipedia.org/wiki/History_of_the_function_concept

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Computability
Computability and Terminology (2)

▶ In the 1930s three definitions:

▶ λ-Calculus, simple semantics for computation — Alonzo
Church

▶ General recursive functions — Kurt Gödel

▶ Universal (Turing) machine — Alan Turing
▶ Terminology:

▶ Recursive, recursively enumerable — Church, Kleene
▶ Computable, computably enumerable — Gödel, Turing
▶ Decidable, semi-decidable, highly undecidable
▶ In the 1930s, computers were human
▶ Unfortunate choice of terminology

▶ Turing and Church showed that the above three were
equivalent

▶ Church-Turing thesis — function is intuitively
computable if and only if Turing machine computable

71/246

http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Alonzo_Church
http://en.wikipedia.org/wiki/Alonzo_Church
https://en.wikipedia.org/wiki/%CE%9C-recursive_function
https://en.wikipedia.org/wiki/Kurt_G%C3%B6del
http://en.wikipedia.org/wiki/Universal_Turing_machine
http://en.wikipedia.org/wiki/Alan_Turing
http://en.wikipedia.org/wiki/Stephen_Cole_Kleene
https://en.wikipedia.org/wiki/Church%E2%80%93Turing_thesis

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Computability
Reducing one problem to another

▶ To reduce problem P1 to P2, invent a construction that
converts instances of P1 to P2 that have the same
answer. That is:
▶ any string in the language P1 is converted to some string

in the language P2
▶ any string over the alphabet of P1 that is not in the

language of P1 is converted to a string that is not in the
language P2

▶ With this construction we can solve P1
▶ Given an instance of P1, that is, given a string w that

may be in the language P1, apply the construction
algorithm to produce a string x

▶ Test whether x is in P2 and give the same answer for w
in P1

72/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Computability
Problem Reduction

▶ Problem Reduction — Ordinary Example

▶ Want to phone Alice but don’t have her number

▶ You know that Bill has her number

▶ So reduce the problem of finding Alice’s number to the
problem of getting hold of Bill

73/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Computability
Direction of Reduction

▶ The direction of reduction is important

▶ If we can reduce P1 to P2 then (in some sense) P2 is at
least as hard as P1 (since a solution to P2 will give us a
solution to P1)

▶ So, if P2 is decidable then P1 is decidable

▶ To show a problem is undecidable we have to reduce
from an known undecidable problem to it

▶ ∀x(dpP1 (x) = dpP2
(reduce(x)))

▶ Since, if P1 is undecidable then P2 is undecidable

74/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Reductions & Non-Computable
Reductions

A1

input outputf A2
f (input)

▶ A reduction of problem P1 to problem P2
▶ transforms inputs to P1 into inputs to P2
▶ runs algorithm A2 (which solves P2) and
▶ interprets the outputs from A2 as answers to P1

▶ More formally: A problem P1 is reducible to a problem
P2 if there is a function f that takes any input x to P1
and transforms it to an input f (x) of P2

such that the solution of P2 on f (x) is the solution of P1
on x

75/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Reductions & Non-Computible
Example: Squaring a Matrix

A1

M M2f A2
(M, M)

▶ Given an algorithm (A2) for matrix multiplication (P2)
▶ Input: pair of matrices, (M1, M2)
▶ Output: matrix result of multiplying M1 and M2

▶ P1 is the problem of squaring a matrix
▶ Input: matrix M
▶ Output: matrix M2

▶ Algorithm A1 has

f (M) = (M, M)

uses A2 to calculate M ×M = M2

76/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Reductions & Non-Computable
Non-Computable Problems

A1

input outputf A2
f (input)

▶ If P2 is computable (A2 exists) then P1 is computable (f
being simple or polynomial)

▶ Equivalently If P1 is non-computable then P2 is
non-computable

▶ Exercise: show B → A ≡ ¬A → ¬B

77/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Reductions & Non-Computable
Contrapositive

▶ Proof by Contrapositive

▶ B → A ≡ ¬B ∨ A by truth table or equivalences

≡ ¬(¬A)∨¬B commutativity and negation laws

≡ ¬A → ¬B equivalences

▶ Common error: switching the order round

78/246

https://en.wikipedia.org/wiki/Proof_by_contrapositive

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Reductions & Non-Computable
Totality Problem

HP

(P, x) YES/NOf TP
Q

▶ Totality Problem
▶ Input: program Q
▶ Output: YES if Q terminates for all inputs else NO

▶ Assume we have algorithm TP to solve the Totality
Problem

▶ Now reduce the Halting Problem to the Totality Problem

79/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Reductions & Non-Computable
Totality Problem

HP

(P, x) YES/NOf TP
Q

▶ Define f to transform inputs to HP to TP pseudo-Python

def f(P,x) :
def Q(y):
ignore y
P(x)

return Q

▶ Run TP on Q
▶ If TP returns YES then P halts on x
▶ If TP returns NO then P does not halt on x

▶ We have solved the Halting Problem — contradiction

80/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Reductions & Non-Computable
Negative Value Problem

HP

(P, x) YES/NOf NVP
(Q, v)

▶ Negative Value Problem
▶ Input: program Q which has no input and variable v

used in Q
▶ Output: YES if v ever gets assigned a negative value else

NO

▶ Assume we have algorithm NVP to solve the Negative
Value Problem

▶ Now reduce the Halting Problem to the Negative Value
Problem

81/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Reductions & Non-Computable
Negative Value Problem

HP

(P, x) YES/NOf NVP
(Q, v)

▶ Define f to transform inputs to HP to NVP pseudo-Python

def f(P,x) :
def Q(y):
ignore y
P(x)
v = -1

return (Q,var(v))

▶ Run NVP on (Q, var(v)) var(v) gets the variable name

▶ If NVP returns YES then P halts on x
▶ If NVP returns NO then P does not halt on x

▶ We have solved the Halting Problem — contradiction

82/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Reductions & Non-Computable
Squaring Function Problem

HP

(P, x) YES/NOf SFP
Q

▶ Squaring Function Problem
▶ Input: program Q which takes an integer, y
▶ Output: YES if Q always returns the square of y else NO

▶ Assume we have algorithm SFP to solve the Squaring
Function Problem

▶ Now reduce the Halting Problem to the Squaring
Function Problem

83/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Reductions & Non-Computable
Squaring Function Problem

HP

(P, x) YES/NOf SFP
Q

▶ Define f to transform inputs to HP to SFP pseudo-Python

def f(P,x) :
def Q(y):
P(x)
return y * y

return Q

▶ Run SFP on Q
▶ If SFP returns YES then P halts on x
▶ If SFP returns NO then P does not halt on x

▶ We have solved the Halting Problem — contradiction

84/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Reductions & Non-Computable
Equivalence Problem

TP

P YES/NOf EP
(P1, P2)

▶ Equivalence Problem
▶ Input: two programs P1 and P2
▶ Output: YES if P1 and P2 solve the same problem (same

output for same input) else NO

▶ Assume we have algorithm EP to solve the Equivalence
Problem

▶ Now reduce the Totality Problem to the Equivalence
Problem

85/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Reductions & Non-Computable
Equivalence Problem

TP

P YES/NOf EP
(P1, P2)

▶ Define f to transform inputs to TP to EP pseudo-Python

def f(P) :
def P1(x):
P(x)
return "Same string"

def P2(x)
return "Same string"

return (P1,P2)

▶ Run EP on (P1, P2)
▶ If EP returns YES then P halts on all inputs
▶ If EP returns NO then P does not halt on all inputs

▶ We have solved the Totality Problem — contradiction

86/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Reductions & Non-Computable
Rice’s Theorem

A1

input outputf A2
f (input)

▶ Rice’s Theorem all non-trivial, semantic properties of
programs are undecidable. H G Rice 1951 PhD Thesis

▶ Equivalently: For any non-trivial property of partial
functions, no general and effective method can decide
whether an algorithm computes a partial function with
that property.

▶ A property of partial functions is called trivial if it holds
for all partial computable functions or for none.

87/246

https://en.wikipedia.org/wiki/Rice%27s_theorem

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Reductions & Non-Computable
Rice’s Theorem

▶ Rice’s Theorem and computability theory
▶ Let S be a set of languages that is nontrivial, meaning

▶ there exists a Turing machine that recognizes a
language in S

▶ there exists a Turing machine that recognizes a
language not in S

▶ Then, it is undecidable to determine whether the
language recognized by an arbitrary Turing machine
lies in S.

▶ This has implications for compilers and virus checkers

▶ Note that Rice’s theorem does not say anything about
those properties of machines or programs that are not
also properties of functions and languages.

▶ For example, whether a machine runs for more than
100 steps on some input is a decidable property, even
though it is non-trivial.

88/246

https://en.wikipedia.org/wiki/Rice%27s_theorem

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Motivation

Lambda Terms

Substitution

Lambda Calculus
Encodings

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Lambda Calculus
Motivation

▶ Lambda Calculus is a formal system in mathematical
logic for expressing computation based on function
abstraction and application using variable binding and
substitution

▶ Lambda calculus is Turing complete — it can simulate
any Turing machine

▶ Introduced by Alonzo Church in 1930s

▶ Basis of functional programming languages — Lisp,
Scheme, ISWIM, ML, SASL, KRC, Miranda, Haskell, Scala,
F#. . .

▶ Note this is not part of M269 but may help understand
ideas of computability

89/246

https://en.wikipedia.org/wiki/Lambda_calculus
https://en.wikipedia.org/wiki/Formal_system
https://en.wikipedia.org/wiki/Mathematical_logic
https://en.wikipedia.org/wiki/Mathematical_logic
https://en.wikipedia.org/wiki/Computability
https://en.wikipedia.org/wiki/Name_binding
https://en.wikipedia.org/wiki/Substitution_(algebra)
https://en.wikipedia.org/wiki/Turing_completeness
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Scheme_(programming_language)
https://en.wikipedia.org/wiki/ISWIM
https://en.wikipedia.org/wiki/ML_(programming_language)
https://en.wikipedia.org/wiki/SASL_(programming_language)
https://en.wikipedia.org/wiki/Kent_Recursive_Calculator
https://en.wikipedia.org/wiki/Miranda_(programming_language)
https://en.wikipedia.org/wiki/Haskell_(programming_language)
https://en.wikipedia.org/wiki/Scala_(programming_language)
https://en.wikipedia.org/wiki/F_Sharp_(programming_language)

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Motivation

Lambda Terms

Substitution

Lambda Calculus
Encodings

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Functions
Binding and Substitution

▶ School maths introduces functions as

f (x) = 3x2 + 4x + 5

▶ Substitution: f (2) = 3× 22 + 4× 2 + 5 = 25

▶ Generalise: f (x) = ax2 + bx + c

▶ What is wrong with the following:

▶ f (a) = a× a2 + b × a + c

▶ The ideas of free and bound variables and substitution

90/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Motivation

Lambda Terms

Substitution

Lambda Calculus
Encodings

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Expressions
Evaluation Strategies (a)

▶ In evaluating an expression we have choices about the
order in which we evaluate subterms

▶ Some choices may involve more work than others but
the Church-Rosser theorem ensures that if the
evaluation terminates then all choices get to the same
answer

▶ The second edition of a famous book on Functional
programming — Bird (1998, Ex 1.2.2, page 6)
Introduction to Functional Programming using Haskell
— had the following exercise:

▶ How many ways can you evaluate (3 + 7)2

List the evaluations and assumptions

▶ The first edition — Bird and Wadler (1988, Ex 1.2.1,
page 6) Introduction to Functional Programming — had
the exercise:

▶ How many ways can you evaluate
(
(3 + 7)2

)2

91/246

https://en.wikipedia.org/wiki/Church%E2%80%93Rosser_theorem
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Functional_programming

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Motivation

Lambda Terms

Substitution

Lambda Calculus
Encodings

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Expressions
Evaluation Strategies (b)

▶ How many ways can you evaluate (3 + 7)2

List the evaluations and assumptions

▶ Answer 3 ways

▶ Reducible expressions (redexes)

x2 → x × x where x is a term

a + b where a and b are numbers

x × y where x and y are numbers

1 [sqr (3+7),((3+7)*(3+7)),((3+7)*10),(10*10),100]
2 [sqr (3+7),((3+7)*(3+7)),(10*(3+7)),(10*10),100]
3 [sqr (3+7),sqr 10,(10*10),100]

▶ The assumed redexes do not include distributive laws

(a + b)× (x + y) → a× x + a× y + b × x + b × y

▶ This would increase the number of different evaluations

92/246

https://en.wikipedia.org/wiki/Distributive_property

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Motivation

Lambda Terms

Substitution

Lambda Calculus
Encodings

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Expressions
Evaluation Strategies (c)

▶ How many ways can you evaluate
(
(3 + 7)2

)2

▶ Answer 547 ways

1[sqr sqr (3+7),(sqr (3+7)*sqr (3+7)),(sqr (3+7)*((3+7)*(3+7))), (sqr (3+7)*((3+7)*10)),(sqr (3+7)*(10*10)), (sqr (3+7)*100),(((3+7)*(3+7))*100),(((3+7)*10)*100), ((10*10)*100),(100*100),10000]
2[sqr sqr (3+7),(sqr (3+7)*sqr (3+7)),(sqr(3+7)*((3+7)*(3+7))), (sqr (3+7)*((3+7)*10)),(sqr (3+7)*(10*10)), (sqr (3+7)*100),(((3+7)*(3+7))*100),((10*(3+7))*100), ((10*10)*100),(100*100),10000]

546[sqr sqr (3+7),sqr sqr 10,sqr (10*10), ((10*10)*(10*10)),(100*(10*10)),(100*100),10000]
547[sqr sqr (3+7),sqr sqr 10,sqr (10*10),sqr 100,(100*100),10000]

▶ Enumerating all 547 ways may have taken some
concentration

93/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Motivation

Lambda Terms

Substitution

Lambda Calculus
Encodings

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Expressions
Evaluation Strategies (d)

▶ The actual Evaluation strategy used by a particular
programming language implementation may have
optimisations which make an evaluation which looks
costly to be somewhat cheaper

▶ For example, the Haskell implementation GHC
optimises the evaluation of common subexpressions so
that (3+7) will be evaluated only once

1[sqr sqr (3+7),(sqr (3+7)*sqr (3+7)),(sqr (3+7)*((3+7)*(3+7))), (sqr (3+7)*((3+7)*10)),(sqr (3+7)*(10*10)), (sqr (3+7)*100),(((3+7)*(3+7))*100),(((3+7)*10)*100), ((10*10)*100),(100*100),10000]
2[sqr sqr (3+7),(sqr (3+7)*sqr (3+7)),(sqr(3+7)*((3+7)*(3+7))), (sqr (3+7)*((3+7)*10)),(sqr (3+7)*(10*10)), (sqr (3+7)*100),(((3+7)*(3+7))*100),((10*(3+7))*100), ((10*10)*100),(100*100),10000]

94/246

https://en.wikipedia.org/wiki/Evaluation_strategy
https://www.haskell.org/
https://www.haskell.org/ghc/
https://wiki.haskell.org/Performance/Strictness

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Motivation

Lambda Terms

Substitution

Lambda Calculus
Encodings

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Lambda Calculus
Optional Topic

▶ M269 Unit 6/7 Reader Logic and the Limits of
Computation alludes to other formalisations with equal
power to a Turing Machine (pages 81 and 87)

▶ The Reader mentions Alonzo Church and his 1930s
formalism (page 87, but does not give any detail)

▶ The notes in this section are optional and for
comparison with the Turing Machine material

▶ Turing machine: explicit memory, state and implicit
loop and case/if statement

▶ Lambda Calculus: function definition and application,
explicit rules for evaluation (and transformation) of
expressions, explicit rules for substitution (for function
application)

▶ Lambda calculus reduction workbench

▶ Lambda Calculus Calculator

95/246

http://www.itu.dk/people/sestoft/lamreduce/
https://lambdacalc.io/

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Motivation

Lambda Terms

Substitution

Lambda Calculus
Encodings

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Lambda Calculus
Lambda Terms

▶ A variable, x, is a lambda term

▶ If M is a lambda term and x is a variable, then (λx.M) is
a lambda term — a lambda abstraction or function
definition

▶ If M and N are lambda terms, the (M N) is lambda term
— an application

▶ Nothing else is a lambda term

96/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Motivation

Lambda Terms

Substitution

Lambda Calculus
Encodings

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Lambda Calculus
Lambda Terms — Notational Conveniences

▶ Outermost parentheses are omitted (M N) ≡ M N

▶ Application is left associative ((M N) P) ≡ M N P

▶ The body of an abstraction extends as far right as
possible, subject to scope limited by parentheses

▶ λx.M N ≡ λx.(M N) and not (λx.M) N

▶ λx.λy.λz.M ≡ λx y z.M

97/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Motivation

Lambda Terms

Substitution

Lambda Calculus
Encodings

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Lambda Calculus
Lambda Calculus Semantics

▶ What do we mean by evaluating an expression ?

▶ To evaluate (λx.M)N

▶ Evaluate M with x replaced by N

▶ This rule is called β-reduction

▶ (λx.M)N →
β

M[x := N]

▶ M[x := N] is M with occurrences of x replaced by N

▶ This operation is called substitution — see rules below

98/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Motivation

Lambda Terms

Substitution

Lambda Calculus
Encodings

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Lambda Calculus
β-Reduction Examples

▶ (λx.x)z → z

▶ (λx.y)z → y

▶ (λx.x y)z → z y

a function that applies its argument to y

▶ (λx.x y)(λz.z) → (λz.z)y → y

▶ (λx.λy.x y)z → λy.z y

A curried function of two arguments — applies first
argument to second

▶ currying replaces f (x, y) with (f x)y — nice notational
convenience — gives partial application for free

99/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Motivation

Lambda Terms

Substitution

Lambda Calculus
Encodings

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Lambda Calculus
Substitution

▶ To define substitution use recursion on the structure of
terms

▶ x[x := N] ≡ N

▶ y[x := N] ≡ y

▶ (P Q)[x := N] ≡ (P[x := N]) (Q[x := N])

▶ (λx.M)[x := N] = λx.M

In (λx.M), the x is a formal parameter and thus a local
variable, different to any other

▶ (λy.M)[x := N] = what?

▶ Look back at the school maths example above — a
subtle point

100/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Motivation

Lambda Terms

Substitution

Lambda Calculus
Encodings

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Lambda Calculus
Substitution (2)

▶ Renaming bound variables consistently is allowed

▶ λx.x ≡ λy.y ≡ λz.z

▶ λy.λx.y ≡ λz.λx.z

▶ This is called α-conversion

▶ (λx.λy.x y) y → (λx.λz.x z) y → λz.y z

101/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Motivation

Lambda Terms

Substitution

Lambda Calculus
Encodings

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Lambda Calculus
Substitution (3)

▶ Bound and Free Variables

▶ BV (x) = �
▶ BV (λx.M) = BV (M)∪ {x}

▶ BV (M N) = BV (M)∪ BV (N)

▶ FV (x) = {x}

▶ FV (λx.M) = FV (M) – {x}

▶ FV (M N) = FV (M)∪ FV (N)

▶ The above is a formalisation of school maths

▶ A Lambda term with no free variables is said to be
closed — such terms are also called combinators — see
Combinator and Combinatory logic (Hankin, 2004,
page 10)

▶ α-conversion

▶ λx.M →
α
λy.M[x := y] if y ∉ FV (M)

102/246

https://wiki.haskell.org/Combinator
https://en.wikipedia.org/wiki/Combinatory_logic

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Motivation

Lambda Terms

Substitution

Lambda Calculus
Encodings

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Lambda Calculus
Substitution (4)

▶ β-reduction final rule

▶ (λy.M)[x := N] = λy.M if x ∉ FV (M)

▶ (λy.M)[x := N] = λy.M[x := N]

if x ∈ FV (M) and y ∉ FV (N)

▶ (λy.M)[x := N] = λz.M[y := z][x := N]

if x ∈ FV (M) and y ∈ FV (N)

z is chosen to be first variable z ∉ FV (N M)

▶ This is why you cannot go f (a) when given

▶ f (x) = ax2 + bx + c

▶ School maths — but made formal

103/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Motivation

Lambda Terms

Substitution

Lambda Calculus
Encodings

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Lambda Calculus
Rules Summary — Conversion

▶ α-conversion renaming bound variables

▶ λx.M →
α
λy.M[x := y] if y ∉ FV (M)

▶ β-conversion function application

▶ (λx.M)N →
β

M[x := N]

▶ η-conversion extensionality

▶ λx.F x →
η

F if x ∉ FV (F)

104/246

https://en.wikipedia.org/wiki/Extensionality

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Motivation

Lambda Terms

Substitution

Lambda Calculus
Encodings

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Lambda Calculus
Rules Summary — Substitution

1. x[x := N] ≡ N

2. y[x := N] ≡ y

3. (P Q)[x := N] ≡ (P[x := N]) (Q[x := N])

4. (λx.M)[x := N] = λx.M

5. (λy.M)[x := N] = λy.M if x ∉ FV (M)

6. (λy.M)[x := N] = λy.M[x := N]

if x ∈ FV (M) and y ∉ FV (N)

7. (λy.M)[x := N] = λz.M[y := z][x := N]

if x ∈ FV (M) and y ∈ FV (N)

z is chosen to be first variable z ∉ FV (N M)

105/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Motivation

Lambda Terms

Substitution

Lambda Calculus
Encodings

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Lambda Calculus
Lambda Calculus Encodings

▶ So what does this formalism get us ?

▶ The Lambda Calculus is Turing complete

▶ We can encode any computation (if we are clever
enough)

▶ Booleans and propositional logic

▶ Pairs

▶ Natural numbers and arithmetic

▶ Looping and recursion

106/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Motivation

Lambda Terms

Substitution

Lambda Calculus
Encodings

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Lambda Calculus Encodings
Booleans and Propositional Logic

▶ True = λx.λy.x

▶ False = λx.λy.y

▶ IF a THEN b ELSE c ≡ a b c

▶ IF True THEN b ELSE c → (λx.λy.x) b c

▶ → (λy.b) c → b

▶ IF False THEN b ELSE c → (λx.λy.y) b c

▶ → (λy.y) c → c

107/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Motivation

Lambda Terms

Substitution

Lambda Calculus
Encodings

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Lambda Calculus Encodings
Booleans and Propositional Logic (2)

▶ Not = λx.((x False)True)

▶ Not x = IF x THEN False ELSE True

▶ Exercise: evaluate Not True

▶ And = λx.λy.((x y) False)

▶ And x y = IF x THEN y ELSE False

▶ Exercise: evaluate And True False

▶ Or = λx.λy.((x True) y)

▶ Or x y = IF x THEN True ELSE y

▶ Exercise: evaluate Or False True

108/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Motivation

Lambda Terms

Substitution

Lambda Calculus
Encodings

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Lambda Calculus Encodings
Booleans and Propositional Logic (2) — Exercises

▶ Exercise: evaluate Not True

▶ → (λx.((x False) True)) True

▶ → (True False) True

▶ Could go straight to False from here, but we shall fill in
the detail

▶ → ((λx.λy.x) (λx.λy.y)) (λx.λy.x)

▶ → (λy.(λx.λy.y)) (λx.λy.x)

▶ → (λx.λy.y) ≡ False

▶ Exercise: evaluate And True False

▶ →(IF x THEN y ELSE False) True False

▶ →(IF True THEN False ELSE False) →False

▶ Exercise: evaluate Or False True

▶ →(IF x THEN True ELSE y) False True

▶ →(IF False THEN True ELSE True) →True

109/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Motivation

Lambda Terms

Substitution

Lambda Calculus
Encodings

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Lambda Calculus Encodings
Natural Numbers — Church Numerals

▶ Encoding of natural numbers

▶ 0 = λf .λy.y

▶ 1 = λf .λy.f y

▶ 2 = λf .λy.f (f y)

▶ 3 = λf .λy.f (f (f y))

▶ Successor Succ = λz.λf .λy.f (z f y)

▶ Succ 0 = (λz.λf .λy.f (z f y))(λf .λy.y)

▶ → λf .λy.f ((λf .λy.y) f y)

▶ → λf .λy.f ((λy.y) y)

▶ → λf .λy.f y = 1

110/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Motivation

Lambda Terms

Substitution

Lambda Calculus
Encodings

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Lambda Calculus Encodings
Natural Numbers — Operations

▶ isZero = λz.z(λy. False) True

▶ Exercise: evaluate isZero 0

▶ If M and N are numerals (as λ expressions)

▶ Add M N = λx.λy.(M x) ((N x) y)

▶ Mult M N = λx.(M (N x))

▶ Exercise: show 1 + 1 = 2

111/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Motivation

Lambda Terms

Substitution

Lambda Calculus
Encodings

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Lambda Calculus Encodings
Pairs

▶ Encoding of a pair a, b

▶ (a, b) = λx. IF x THEN a ELSE b

▶ FST = λf .f True

▶ SND = λf .f False

▶ Exercise: evaluate FST (a, b)

▶ Exercise: evaluate SND (a, b)

112/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Motivation

Lambda Terms

Substitution

Lambda Calculus
Encodings

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Lambda Calculus Encodings
The Fixpoint Combinator

▶ Y = λf .(λx.f (x x)) (λx.f (x x))

▶ Y F = λf .(λx.f (x x)) (λx.f (x x)) F

▶ → (λx.F (x x))(λx.F (x x))

▶ F ((λx.F (x x)) (λx.F (x x))) = F (Y F)

▶ (Y F) is a fixed point of F

▶ We can use Y to achieve recursion for F

113/246

https://en.wikipedia.org/wiki/Fixed_point_(mathematics)

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Motivation

Lambda Terms

Substitution

Lambda Calculus
Encodings

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Lambda Calculus Encodings
The Fixpoint Combinator — Recursion

▶ Recursion implementation — Factorial

▶ Fact = λf .λn. IF n = 0 THEN 1 ELSE n∗ (f (n – 1))

▶ (Y Fact)1 = (Fact (Y Fact))1

▶ → IF 1 = 0 THEN 1 ELSE 1∗ ((Y Fact) 0)

▶ → 1∗ ((Y Fact) 0)

▶ → 1∗ (Fact (Y Fact) 0)

▶ → 1∗ IF 0 = 0 THEN 1 ELSE 0∗ ((Y Fact) (0 – 1))

▶ → 1∗ 1 → 1

▶ Factorial n = (Y Fact) n

▶ Recursion implemented with a non-recursive function Y

114/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Motivation

Lambda Terms

Substitution

Lambda Calculus
Encodings

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Computability
Turing Machines, Lambda Calculus and Programming Languages

▶ Anything computable can be represented as TM or
Lambda Calculus

▶ But programs would be slow, large and hard to read

▶ In practice use the ideas to create more expressive
languages which include built-in primitives

▶ Also leads to ideas on data types

▶ Polymorphic data types

▶ Algebraic data types

▶ Also leads on to ideas on higher order functions —
functions that take functions as arguments or returns
functions as results.

115/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Commentary 3
Complexity

3 Complexity

▶ Complexity Classes P and NP

▶ Class NP

▶ NP-completeness

▶ NP-completeness and Boolean Satisfiability

116/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity
P and NP

Class NP

NP-completeness

Boolean Satisfiability

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Complexity
P and NP

▶ P, the set of all decision problems that can be solved in
polynomial time on a deterministic Turing machine

▶ NP, the set of all decision problems whose solutions can
be verified (certificate) in polynomial time

▶ Equivalently, NP, the set of all decision problems that
can be solved in polynomial time on a non-deterministic
Turing machine

▶ A decision problem, dp is NP-complete if
1. dp is in NP and
2. Every problem in NP is reducible to dp in polynomial time

▶ NP-hard — a problem satisfying the second condition,
whether or not it satisfies the first condition. Class of
problems which are at least as hard as the hardest
problems in NP. NP-hard problems do not have to be in
NP and may not be decision problems

117/246

http://en.wikipedia.org/wiki/P_(complexity)
http://en.wikipedia.org/wiki/NP_(complexity)
http://en.wikipedia.org/wiki/NP-complete
https://en.wikipedia.org/wiki/NP-hardness

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity
P and NP

Class NP

NP-completeness

Boolean Satisfiability

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Complexity
P and NP — Diagram

Euler diagram for P, NP, NP-complete and NP-hard set of
problems

Source: Wikipedia NP-complete entry

118/246

http://en.wikipedia.org/wiki/Euler_diagram
http://en.wikipedia.org/wiki/NP-complete

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity
P and NP

Class NP

NP-completeness

Boolean Satisfiability

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Class NP
Certificate and Verifier

▶ To formalise the definition of the class NP, we need to
formalise the idea of checking a candidate solution

▶ Define a certificate for each problem input that would
return Yes

▶ Describe the verifier algorithm

▶ Demonstrate the verifier algorithm has polynomial
complexity

▶ The terms certificate and verifier have technical
definitions in terms of languages and Turing Machines
but can be thought of as candidate solution and checker
algorithm

119/246

https://en.wikipedia.org/wiki/NP_(complexity)

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity
P and NP

Class NP

NP-completeness

Boolean Satisfiability

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Class NP
Example Decision Problems (1)

▶ Composite Numbers Given a number N decide if N is a
composite (i.e. non-prime) number
Certificate factorization of N

▶ Connectivity Given a graph G and two vertices s, t in G,
decide if s is connected to t in G.
Certificate path from s to t

▶ Linear Programming Given a list of m linear
inequalities with rational coefficients over n variables
u1, . . . , un (a linear inequality has the form
a1u1 + a2u2 · · · + anun à b for some coefficients
a1, . . . , anb), decide if there is an assignment of rational
numbers to the variables u1, . . . , un which satisfies all
the inequalities
Certificate is the assignment

120/246

https://en.wikipedia.org/wiki/Composite_number
https://en.wikipedia.org/wiki/Connectivity_(graph_theory)
https://en.wikipedia.org/wiki/Linear_programming

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity
P and NP

Class NP

NP-completeness

Boolean Satisfiability

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Class NP
Example Decision Problems (2)

▶ The above are in P

▶ Composite Numbers, Connectivity and Linear
programming are in P

▶ Composite Numbers follows from Integer factorization
and the AKS primality test from 2004

▶ Connectivity follows from the breadth-first search
algorithm

▶ Linear programming shown to be in P by the Ellipsoid
method

121/246

https://en.wikipedia.org/wiki/Integer_factorization
https://en.wikipedia.org/wiki/AKS_primality_test
https://en.wikipedia.org/wiki/Ellipsoid_method
https://en.wikipedia.org/wiki/Ellipsoid_method

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity
P and NP

Class NP

NP-completeness

Boolean Satisfiability

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Class NP
Example Decision Problems (3)

▶ Integer Programming some or all variables are
restricted to be integers

▶ Travelling Salesperson Given a set of nodes and
distances between all pairs of nodes and a number k,
decide if there is a closed circuit that visits every node
exactly once and has total length at most k
Certificate sequence of nodesin such a tour

▶ Subset sum Given a list of numbers and a number T ,
decide if there is a subset that adds up to T
Certificate list of members of such a subset

▶ Independent set (graph theory) A subgraph of G with
of at least k vertices which have no edges between them
Certificate the list of k vertices

▶ Clique problem Given a graph and a number k, decide
if there is a complete subgraph (clique) of size k
Certificate list pf nodes. For explanation see Prove
Clique is NP

122/246

https://en.wikipedia.org/wiki/Integer_programming
https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Subset_sum_problem
https://en.wikipedia.org/wiki/Independent_set_(graph_theory)
https://en.wikipedia.org/wiki/Clique_problem
https://cs.stackexchange.com/questions/74988/prove-clique-is-np
https://cs.stackexchange.com/questions/74988/prove-clique-is-np

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity
P and NP

Class NP

NP-completeness

Boolean Satisfiability

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Class NP
Example Decision Problems (4)

▶ The above are NP-complete — see List of NP-complete
problems

▶ The following two are not known to be P nor
NP-complete

▶ Graph Isomorphism Given two n× n adjacency
matrices M1,M2, decide if M1 and M2 define the same
graph (up to renaming of the vertices)
Certificate the permutation π : [n] → [n] such that M2 is
equal to M1 after reordering the indices of M1 according
to π

▶ Integer factorization Given three numbers N, L, U
decide if N has a prime factor p in the interval [L, U]
Certificate is the factorization of N
Source Arora and Barak (2009, page 49) Computational Complexity:
A Modern Approach and contained links

123/246

https://en.wikipedia.org/wiki/NP-completeness
https://en.wikipedia.org/wiki/List_of_NP-complete_problems
https://en.wikipedia.org/wiki/List_of_NP-complete_problems
https://en.wikipedia.org/wiki/Graph_isomorphism
https://en.wikipedia.org/wiki/Integer_factorization

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity
P and NP

Class NP

NP-completeness

Boolean Satisfiability

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Complexity
NP-complete problems

▶ Boolean satisfiability (SAT) Cook-Levin theorem

▶ Conjunctive Normal Form 3SAT

▶ Hamiltonian path problem

▶ Travelling salesman problem

▶ NP-complete — see list of problems

124/246

http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Cook-Levin_theorem
http://en.wikipedia.org/wiki/3-satisfiability
http://en.wikipedia.org/wiki/Hamiltonian_path_problem
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/NP-complete

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity
P and NP

Class NP

NP-completeness

Boolean Satisfiability

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Complexity
Knapsack Problem

Source & Explanation: XKCD 287

125/246

http://www.explainxkcd.com/wiki/index.php/287:_NP-Complete

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity
P and NP

Class NP

NP-completeness

Boolean Satisfiability

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

NP-Completeness and Boolean Satisfiability
Points on Notes

▶ The Boolean satisfiability problem (SAT) was the first
decision problem shown to be NP-Complete

▶ This section gives a sketch of an explanation

▶ Health Warning different texts have different notations
and there will be some inconsistency in these notes

▶ Health warning these notes use some formal notation
to make the ideas more precise — computation requires
precise notation and is about manipulating strings
according to precise rules.

126/246

http://en.wikipedia.org/wiki/Boolean_satisfiability_problem

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity
P and NP

Class NP

NP-completeness

Boolean Satisfiability

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

NP-Completeness and Boolean Satisfiability
Alphabets, Strings and Languages

▶ Notation:

▶ Σ is a set of symbols — the alphabet

▶ Σk is the set of all string of length k, which each symbol
from Σ

▶ Example: if Σ = {0, 1}
▶ Σ1 = {0, 1}
▶ Σ2 = {00, 01, 10, 11}

▶ Σ0 = {ϵ} where ϵ is the empty string

▶ Σ∗ is the set of all possible strings over Σ
▶ Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ . . .
▶ A Language, L, over Σ is a subset of Σ∗
▶ L ⊆ Σ∗

127/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity
P and NP

Class NP

NP-completeness

Boolean Satisfiability

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

NP-Completeness and Boolean Satisfiability
Language Accepted by a Turing Machine

▶ Language accepted by Turing Machine, M denoted by
L(M)

▶ L(M) is the set of strings w ∈ Σ∗ accepted by M

▶ For Final States F = {Y , N}, a string w ∈ Σ∗ is accepted
by M a (if and only if) M starting in q0 with w on the
tape halts in state Y

▶ Calculating a function (function problem) can be turned
into a decision problem by asking whether f (x) = y

128/246

http://en.wikipedia.org/wiki/Function_problem
http://en.wikipedia.org/wiki/Decision_problem

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity
P and NP

Class NP

NP-completeness

Boolean Satisfiability

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

NP-Completeness and Boolean Satisfiability
The NP-Complete Class

▶ If we do not know if P ≠ NP, what can we say ?

▶ A language L is NP-Complete if:
▶ L ∈ NP and
▶ for all other L′ ∈ NP there is a polynomial time

transformation (Karp reducible, reduction) from L′ to L

▶ Problem P1 polynomially reduces (Karp reduces,
transforms) to P2, written P1 ∝ P2 or P1 ≤p P2, iff
∃f : dpP1 → dpP2

such that
▶ ∀I ∈ dpP1

[I ∈ YP1 a f (I) ∈ YP2]
▶ f can be computed in polynomial time

129/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity
P and NP

Class NP

NP-completeness

Boolean Satisfiability

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

NP-Completeness and Boolean Satisfiability
The NP-Complete Class (2)

▶ More formally, L1 ⊆ Σ∗1 polynomially transforms to
L2 ⊆ Σ∗2 , written L1 ∝ L2 or L1 ≤p L2, iff ∃f : Σ∗1 → Σ∗2
such that
▶ ∀x ∈ Σ∗1 [x ∈ L1 a f (x) ∈ L2]
▶ There is a polynomial time TM that computes f

▶ Transitivity If L1 ∝ L2 and L2 ∝ L3 then L1 ∝ L3

▶ If L is NP-Hard and L ∈ P then P = NP

▶ If L is NP-Complete, then L ∈ P if and only if P = NP

▶ If L0 is NP-Complete and L ∈ NP and L0 ∝ L then L is
NP-Complete

▶ Hence if we find one NP-Complete problem, it may
become easier to find more

▶ In 1971/1973 Cook-Levin showed that the Boolean
satisfiability problem (SAT) is NP-Complete

130/246

http://en.wikipedia.org/wiki/Cook\T1\textendash Levin_theorem
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity
P and NP

Class NP

NP-completeness

Boolean Satisfiability

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

NP-Completeness and Boolean Satisfiability
The Boolean Satisfiability Problem

▶ A propositional logic formula or Boolean expression is
built from variables, operators: AND (conjunction, ∧),
OR (disjunction, ∨), NOT (negation, ¬)

▶ A formula is said to be satisfiable if it can be made True
by some assignment to its variables.

▶ The Boolean Satisfiability Problem is, given a formula,
check if it is satisfiable.
▶ Instance: a finite set U of Boolean variables and a finite

set C of clauses over U
▶ Question: Is there a satisfying truth assignment for C ?

▶ A clause is is a disjunction of variables or negations of
variables

▶ Conjunctive normal form (CNF) is a conjunction of
clauses

▶ Any Boolean expression can be transformed to CNF

131/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity
P and NP

Class NP

NP-completeness

Boolean Satisfiability

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

NP-Completeness and Boolean Satisfiability
The Boolean Satisfiability Problem (2)

▶ Given a set of Boolean variable U = {u1, u2, . . . , un}

▶ A literal from U is either any ui or the negation of some
ui (written ui) usual notation ¬ui

▶ A clause is denoted as a subset of literals from U —
{u2, u4, u5} usual notation u2 ∨¬u4 ∨ u5

▶ A clause is satisfied by an assignment to the variables if
at least one of the literals evaluates to True (just like
disjunction of the literals)

▶ Let C be a set of clauses over U — C is satisfiable iff
there is some assignment of truth values to the
variables so that every clause is satisfied (just like CNF)

▶ C = {{u1, u2, u3}, {u2, u3}, {u2, u3}} is satisfiable

usual notation (u1 ∨ u2 ∨ u3)∧ (¬u2 ∨¬u3)∧ (u2 ∨¬u3)

assign (u1, u2, u3) = (T , F , F), (T , T , F), (F , T , F)

▶ C = {{u1, u2}, {u1, u2}, {u1}} is not satisfiable

usual notation (u1 ∨ u2)∧ (u1 ∨¬u2)∧ (¬u1)

132/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity
P and NP

Class NP

NP-completeness

Boolean Satisfiability

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

NP-Completeness and Boolean Satisfiability
The Boolean Satisfiability Problem (3)

▶ Proof that SAT is NP-Complete looks at the structure of
NDTMs and shows you can transform any NDTM to SAT
in polynomial time (in fact logarithmic space suffices)

▶ SAT is in NP since you can check a solution in
polynomial time

▶ To show that ∀L ∈ NP : L ∝ SAT invent a polynomial
time algorithm for each polynomial time NDTM, M,
which takes as input a string x and produces a Boolean
formula Ex which is satisfiable iff M accepts x

▶ See Cook-Levin theorem

133/246

http://en.wikipedia.org/wiki/Cook-Levin_theorem

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity
P and NP

Class NP

NP-completeness

Boolean Satisfiability

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

NP-Completeness and Boolean Satisfiability
Coping with NP-Completeness

▶ What does it mean if a problem is NP-Complete ?
▶ There is a P time verification algorithm.
▶ There is a P time algorithm to solve it iff P = NP (?)
▶ No one has yet found a P time algorithm to solve any

NP-Complete problem
▶ So what do we do ?

▶ Improved exhaustive search — Dynamic Programming;
Branch and Bound

▶ Heuristic methods — acceptable solutions in acceptable
time — compromise on optimality

▶ Average time analysis — look for an algorithm with
good average time — compromise on generality (see
Big-O Algorithm Complexity Cheatsheet)

▶ Probabilistic or Randomized algorithms — compromise
on correctness

134/246

http://bigocheatsheet.com

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine
TMA Question (a)

▶ The transition function is represented as a Python
dictionary mapping stete, symbol to symbol, move,
state

▶ States are represented as strings — we may define
Python constants to make life easier (see below)

▶ What are the states ?
▶ Tape represented by a list; moves by 1, –1, 0

Moves
RIGHT = 1
LEFT = -1
STAY = 0

States
Start = "start"
FindA = "FindA"
Find0 = "Find0"
FindNum = "FindNum"
FinishOK = "FinishOK"
FinishNotOK = "FinishNotOK"
Stop = "stop"

▶ Note that the identifiers must be valid Python
▶ Python has conventions about constantss

135/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine
TMA Question (b)

▶ Describe the actions for each state — possibly using
Python dictionary notation (to make shorter work)

(Start, "a"): ("a", RIGHT,FindA),
(Start, "0"): ("0", RIGHT,Find0),
(Start, "#"): ("#", RIGHT,FindNum),
(Start, None): (None,STAY, Stop), # Is empty input allowed ?

(FindA, "a"): ("a", RIGHT,FinishOK),
(FindA, "0"): ("0", RIGHT,FindA),
(FindA, "#"): ("#", RIGHT,FindA),
(FindA, None): (False,STAY, Stop),

(Find0, "a"): ("a", RIGHT,Find0),
(Find0, "0"): ("0", RIGHT,FinishOK),
(Find0, "#"): ("#", RIGHT,Find0),
(Find0, None): (False,STAY, Stop),

(FindNum, "a"): ("a", RIGHT,FindNum),
(FindNum, "0"): ("0", RIGHT,FindNum),
(FindNum, "#"): ("#", RIGHT,FinishOK),
(FindNum, None): (False,STAY, Stop),

136/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine
TMA Question (c)

▶ FinishOK and FinishNotOK should tidy up the output
and move the read/write head to an approriate position

(FinishOK, "a"): ("a",RIGHT,FinishOK),
(FinishOK, "0"): ("0",RIGHT,FinishOK),
(FinishOK, "#"): ("#",RIGHT,FinishOK),
(FinishOK, None): (True,STAY,Stop),

▶ What if we wanted to erase everything else and only
have False/True as output ?

137/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

Program Complexity
Big O Notation

▶ Measuring program complexity introduced in section 4
of M269 Unit 2

▶ See also Miller and Ranum chapter 2 Big-O Notation

▶ See also Wikipedia: Big O notation

▶ See also Big-O Cheat Sheet

138/246

http://interactivepython.org/courselib/static/pythonds/AlgorithmAnalysis/BigONotation.html
https://en.wikipedia.org/wiki/Big_O_notation
http://bigocheatsheet.com/

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

Program Complexity
Big O Notation (2)

▶ Complexity of algorithm measured by using some
surrogate to get rough idea

▶ In M269 mainly using assignment statements

▶ For exact measure we would have to have cost of each
operation, knowledge of the implementation of the
programming language and the operating system it
runs under.

▶ But mainly interested in the following questions:

▶ (1) Is algorithm A more efficient than algorithm B for
large inputs ?

▶ (2) Is there a lower bound on any possible algorithm for
calculating this particular function ?

▶ (3) Is it always possible to find a polynomial time (nk)
algorithm for any function that is computable

▶ — the later questions are addressed in Unit 7

139/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

Program Complexity
Orders of Common Functions

▶ O(1) constant — look-up table

▶ O(log n) logarithmic — binary search of sorted array,
binary search tree, binomial heap operations

▶ O(n) linear — searching an unsorted list

▶ O(n log n) loglinear — heapsort, quicksort (best and
average), merge sort

▶ O(n2) quadratic — bubble sort (worst case or naive
implementation), Shell sort, quicksort (worst case),
selection sort, insertion sort

▶ O(nc) polynomial

▶ O(cn) exponential — travelling salesman problem via
dynamic programming, determining if two logical
statements are equivalent by brute force

▶ O(n!) factorial — TSP via brute force.

140/246

https://en.wikipedia.org/wiki/Lookup_table
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Merge_sort
https://en.wikipedia.org/wiki/Bubble_sort
https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Selection_sort
https://en.wikipedia.org/wiki/Insertion_sort
https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Dynamic_programming

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

Program Complexity
Tyranny of Asymptotics

▶ Table from Bentley (1984, page 868)

▶ Cubic algorithm on Cray-1 3.0n3 nanoseconds

▶ Linear algorithm on TRS-80 19.5n× 106 nanoseconds

N Cray-1 TRS-80

10 3.0 microsecs 200 millisecs
100 3.0 millisecs 2.0 secs

1000 3.0 secs 20 secs
10000 49 mins 3.2 mins

100000 35 days 32 mins
1000000 95 yrs 5.4 hrs

141/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

Program Complexity
Big O Complexity Chart

O(ln n)

O(n)

O(n ln n)

O(n2)O(2n)

20 40 60 80 100 120 140

100

200

300

400

n

O(n)

Big O Complexity Chart

142/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

Program Complexity
Big O Notation

▶ Abuse of notation — we write f (x) = O(g(x))

▶ but O(g(x)) is the class of all functions h(x) such that
|h(x)| à C |g(x)| for some constant C

▶ So we should write f (x) ∈ O(g(x)) (but we don’t)

▶ We ought to use a notation that says that (informally)
the function f is bounded both above and below by g
asymptotically

▶ This would mean that for big enough x we have

k1g(x) à f (x) à k2g(x) for some k1, k2

▶ This is Big Theta, f (x) = Θ(g(x))

▶ But we use Big O to indicate an asymptotically tight
bound where Big Theta might be more appropriate

▶ See Wikipedia: Big O Notation

▶ This could be Maths phobia generated confusion

143/246

https://en.wikipedia.org/wiki/Big_O_notation

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

Program Complexity
Example

5def someFunction(aList) :
6 n = len(aList)
7 best = 0
8 for i in range(n) :
9 for j in range(i + 1, n + 1) :

10 s = sum(aList[i:j])
11 best = max(best, s)
12 return best

▶ Example from M269 Unit 2 page 46

▶ Code in file M269TutorialProgPythonADT.py

▶ What does the code do ?

▶ (It was a famous problem from the late 1970s/early
1980s)

▶ Can we construct a more efficient algorithm for the
same computational problem ?

144/246

http://www.pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269TutorialProgPythonADT/M269TutorialProgPythonADT.py

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

Program Complexity
Example (2)

▶ The code calculates the maximum subsegment of a list

▶ Described in Bentley (1984), (1988, column 7), (2000,
column 7) Also in Gries (1989)

▶ These are all in a procedural programming style (as in
C, Java, Python)

▶ Problem arose from medical image processing.

▶ A functional approach using Haskell is in Bird (1998,
page 134), (2014, page 127, 133) — a variant on this
called the Not the maximum segment sum is given in
Bird (2010, Page 73) — both of these derive a linear
time program from the (n3) initial specification

▶ See Wikipedia: Maximum subarray problem

▶ See Rosetta Code: Greatest subsequential sum

145/246

https://en.wikipedia.org/wiki/Maximum_subarray_problem
http://rosettacode.org/wiki/Greatest_subsequential_sum

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

Program Complexity
Example (3)

▶ Here is the same program but modified to allow lists
that may only have negative numbers

▶ The complexity T (n) function will be slightly different

▶ but the Big O complexity will be the same

14def maxSubSeg01(xs) :
15 n = len(xs)
16 maxSoFar = xs[0]
17 for i in range(1,n) :
18 for j in range(i + 1, n + 1) :
19 s = sum(xs[i:j])
20 maxSoFar = max(maxSoFar, s)
21 return maxSoFar

146/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

Program Complexity
Example (4)

▶ Complexity function T (n) for maxSubSeg01()

▶ Two initial assignments

▶ The outer loop will be executed (n – 1) times,

▶ Hence the inner loop is executed

(n – 1) + (n – 2) + . . . + 2 + 1 =
(n – 1)

2
× n

▶ Assume sum() takes n assignments

▶ Hence T (n) = 2 + (n + 2)×
(

(n – 1)
2

× n
)

= 2 + (n + 2)×
(

n2

2
–

n
2

)
= 2 + 1

2n3 – 1
2n2 + n2 – n

= 1
2n3 + 1

2n2 – n + 2

▶ Hence O(n3)

147/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

Program Complexity
Example (5)

▶ Developing a better algorithm

▶ Assume we know the solution (maxSoFar) for xs[0..(i
- 1)]

▶ We extend the solution to xs[0..i] as follows:

▶ The maximum segment will be either maxSoFar

▶ or the sum of a sublist ending at i (maxToHere) if it is
bigger

▶ This reasoning is similar to divide and conquer in binary
search or Dynamic programming (see Unit 5)

▶ Keep track of both maxSoFar and maxToHere — the
Eureka step

148/246

https://en.wikipedia.org/wiki/Dynamic_programming

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

Program Complexity
Example (6)

▶ Developing a better algorithm maxSubSeg02()

27def maxSubSeg02(xs) :
28 maxToHere = xs[0]
29 maxSoFar = xs[0]
30 for x in xs[1:] :
31 # Invariant: maxToHere, maxSoFar OK for xs[0..(i-1)]
32 maxToHere = max(x, maxToHere + x)
33 maxSoFar = max(maxSoFar, maxToHere)
34 return maxSoFar

▶ Complexity function T (n) = 2 + 2n

▶ Hence O(n)

▶ What if we want more information ?

▶ Return the (or a) segment with max sum and position in
list

149/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

Program Complexity
Example (7)

38def maxSubSeg03(xs) :
39 maxSoFar = maxToHere = xs[0]
40 startIdx, endIdx, startMaxToHere = 0, 0, 0
41 for i, x in enumerate(xs) :
42 if maxToHere + x < x :
43 maxToHere = x
44 startMaxToHere = i
45 else :
46 maxToHere = maxToHere + x

48 if maxSoFar < maxToHere :
49 maxSoFar = maxToHere
50 startIdx, endIdx = startMaxToHere, i

52 return (maxSoFar,xs[startIdx:endIdx+1],startIdx,endIdx)

▶ Developing a better algorithm maxSubSeg03()

▶ Complexity function worst case T (n) = 2 + 3 + (2 + 3)n

▶ Hence still O(n)

▶ Note Python assignments, enumerate() and tuple

150/246

https://docs.python.org/3/reference/simple_stmts.html#assignment-statements
https://docs.python.org/3/library/functions.html#enumerate
https://docs.python.org/3/library/stdtypes.html#tuple

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

Program Complexity
Example (8)

▶ Sample data and output

56egList = [-2,1,-3,4,-1,2,1,-5,4]

58egList01 = [-1,-1,-1]

60egList02 = [1,2,3]

62assert maxSubSeg03(egList) == (6, [4, -1, 2, 1], 3, 6)

64assert maxSubSeg03(egList01) == (-1, [-1], 0, 0)

66assert maxSubSeg03(egList02) == (7, [1, 2, 3], 0, 2)

151/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

Program Complexity
Python Data Types — Lists

Operation Notation Average Amortized Worst

Get item x = xs[i] O(1) O(1)
Set item xs[i] = x O(1) O(1)
Append xs = ys + zs O(1) O(1)
Copy xs = ys[:] O(n) O(n)
Pop last xs.pop() O(1) O(1)
Pop other xs.pop(i) O(k) O(k)
Insert(i,x) xs[i:i] = [x] O(n) O(n)
Delete item del xs[i:i+1] O(n) O(n)
Get slice xs = ys[i:j] O(k) O(k)
Set slice xs[i:j] = ys O(k + n) O(k + n)
Delete slice xs[i:j] = [] O(n) O(n)
Member x in xs O(n)
Get length n = len(xs) O(1) O(1)
Count(x) n = xs.count(x) O(n) O(n)

▶ Source https://wiki.python.org/moin/TimeComplexity
▶ See https://docs.python.org/3/library/stdtypes.html#

sequence-types-list-tuple-range

152/246

https://wiki.python.org/moin/TimeComplexity
https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range
https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

Program Complexity
User Defined Type — Bags

5class Bag:

7 def __init__(self):
8 self.list = []

10 def add(self, item):
11 self.list.append(item)

13 def remove(self, item):
14 self.list.remove(item)

16 def contains(self, item):
17 return item in self.list

19 def count(self, item):
20 return self.list.count(item)

22 def size(self):
23 return len(self.list)

25 def __str__(self):
26 return str(self.list)

153/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

Using a Data Type
Information Retrieval Functions

▶ Term Frequency, tf, takes a string, term, and a Bag,
document

returns occurrences of term divided by total strings in
document

▶ Inverse Document Frequency, idf, takes a string,
term, and a list of Bags, documents

returns log(total/(1 + containing)) — total is total
number of Bags, containing is the number of Bags
containing term

▶ tf-idf, tf_idf, takes a string, term, and a list of Bags,
documents

returns a sequence [r0, r1, . . . , rn–1] such that
ri = tf(term, di)× idf(term,documents)

154/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

Big-O and Big-Theta
Definitions

Big-O and Big-Theta
Rules

Big-Theta Rules —
Example

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

Complexity
Big-O and Big-Theta Definitions (a)

▶ We compare the functions implementing algorithms by
looking at the asymptotic behaviour of the functions for
large inputs.

▶ If f and g are functions taking taking natural numbers
as input (the problem size) and returning nonnegative
results (the effort required in the calculations.)

▶ f is of order g and write f = Θ(g), if there are positive
constants k1 and k2 and a natural number n0 such that

k1g(n) à f (n) à k2g(n) for all n > n0

This means that some multipliers times g(n) provide
upper and lower bounds to f (n)

▶ If we only wanted an upper bound on the values of a
function, then you can use Big-O notation.

▶ We say f is of order at most g and write f = O(g), if
there is a positive constant k and a natural number n0
such that

f (n) à kg(n) for all n > n0
155/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

Big-O and Big-Theta
Definitions

Big-O and Big-Theta
Rules

Big-Theta Rules —
Example

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

Complexity
Big-O and Big-Theta Definitions (b)

▶ Note that the notation is heavily abused:

Many authors use Big-O notation when they really mean
Big-Θ notation

We really should define the Θ notation to say that Θ(g)
denotes the set of all functions f with the stated
property and write f ∈ Θ(g) — however the use of
f = Θ(g) is traditional

▶ The next section gives some rules for manipulating the
notation to calculate overall complexities of functions
from their component parts — this also abuses the
notation for equality

Based on Bird and Gibbons (2020, page 25) Algorithm
Design with Haskell and Graham, Knuth and Patashnik
(1994, page 450) Concrete Mathematics: A Foundation
for Computer Science

156/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

Big-O and Big-Theta
Definitions

Big-O and Big-Theta
Rules

Big-Theta Rules —
Example

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

Complexity
Big-O and Big-Theta Rules

▶ np = O(nq) where p à q

This has some surprising consequences — n = O(n) and
n = O(n2) — remember Big-O just gives upper bounds.

▶ O(f (n)) + O(g(n)) = O(|f (n)| + |g(n)|)

▶ Θ(np) +Θ(nq) = Θ(nq) where p à q

▶ f (n) = Θ(f (n))

▶ c ·Θ(f (n)) = Θ(f (n)) if c is constant

▶ Θ(Θ(f (n))) = Θ(f (n))

▶ Θ(f (n))Θ(g(n)) = Θ(f (n)g(n))

▶ Θ(f (n)g(n)) = f (n)Θ(g(n))

157/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

Big-O and Big-Theta
Definitions

Big-O and Big-Theta
Rules

Big-Theta Rules —
Example

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

Complexity
Big-Theta Rules — Example

1 def numVowels(txt : str) -> int ;
2 """Find the number of vowels in text

4 """

6 vowelCount = 0
7 vowels = "aeiouAEIOU"

9 for ch in txt :
10 if ch in vowels :
11 vowelCount = vowelCount + 1
12 return vowelCount

▶ The rules giveΘ(1) +Θ(1) +Θ(n)×Θ(|vowels|)×Θ(1)

where n = |txt|

▶ Since |vowels| = 10 the overall complexity is Θ(n)

158/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Complexity of List
Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

List Comprehensions
Python

▶ List Comprehensions (tutorial), List Comprehensions
(reference) provide a concise way of performing
calculations over lists (or other iterables)

▶ Example: Square the even numbers between 0 and 9

Python3>>> [x ** 2 for x in range(10) if x % 2 == 0]
[0, 4, 16, 36, 64]

▶ Example: List all pairs of integers (x, y) such that x < 4,
y < 4 and x is divisible by 2 and y is divisible by 3

Python3>>> [(x,y) for x in range(4)
... for y in range(4)
... if x % 2 == 0
... and y % 3 == 0]
[(0, 0), (0, 3), (2, 0), (2, 3)]
Python3>>>

▶ In general

[expr for target1 in iterable1 if cond1
for target2 in iterable2 if cond2 ...
for targetN in iterableN if condN]

▶ Lots example usage in the algorithms below
159/246

https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/reference/expressions.html#displays-for-lists-sets-and-dictionaries

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Complexity of List
Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

List Comprehensions
Haskell

▶ List Comprehensions provide a concise way of
performing calculations over lists

▶ Example: Square the even numbers between 0 and 9

GHCi> [x^2 | x <- [0..9], x ‘mod‘ 2 == 0]
[0,4,16,36,64]
GHCi>

▶ In general

[expr | qual1, qual2,..., qualN]

▶ The qualifiers qual can be
▶ Generators pattern <- list
▶ Boolean guards — acting as filters
▶ Local declarations with let decls for use in expr and

later generators and boolean guards

160/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Complexity of List
Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

List Comprehension Exercises
Activity 1 (a) Stop Words Filter

▶ Stop words are the most common words that most
search engines avoid: ’a’,’an’,’the’,’that’,...

▶ Using list comprehensions, write a function
filterStopWords that takes a list of words and filters
out the stop words

▶ Here is the initial code

11 sentence \
12 = "the quick brown fox jumps over the lazy dog"

14 words = sentence.split()

16 wordsTest \
17 = (words == [’the’, ’quick’, ’brown’
18 , ’fox’, ’jumps’, ’over’
19 , ’the’, ’lazy’, ’dog’])

21 stopWords \
22 = [’a’,’an’,’the’,’that’]

Go to Answer

161/246

https://en.wikipedia.org/wiki/Stop_words

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Complexity of List
Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

List Comprehension Exercises
Activity 1 (a) Stop Words Filter

11 sentence \
12 = "the quick brown fox jumps over the lazy dog"

14 words = sentence.split()

16 wordsTest \
17 = (words == [’the’, ’quick’, ’brown’
18 , ’fox’, ’jumps’, ’over’
19 , ’the’, ’lazy’, ’dog’])

21 stopWords \
22 = [’a’,’an’,’the’,’that’]

▶ Notice the Python Explicit line joining with (\<nl>) and
Python Implicit line joining with ((...))

▶ The backslash (\) must be followed by an end of line
character (<nl>)

▶ The (’ ’) symbol represents a space (see Unicode
U+2423 Open Box)

Go to Answer

162/246

https://docs.python.org/3/reference/lexical_analysis.html#explicit-line-joining
https://docs.python.org/3/reference/lexical_analysis.html#implicit-line-joining
https://en.wikipedia.org/wiki/Backslash
https://en.wikipedia.org/wiki/Newline
https://en.wikipedia.org/wiki/Newline

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Complexity of List
Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

List Comprehension Exercises
Activity 1 (b) Transpose Matrix

▶ A matrix can be represented as a list of rows of
numbers

▶ We transpose a matrix by swapping columns and rows

▶ Here is an example

38 matrixA \
39 = [[1, 2, 3, 4]
40 ,[5, 6, 7 ,8]
41 ,[9, 10, 11, 12]]

43 matATr \
44 = [[1, 5, 9]
45 ,[2, 6, 10]
46 ,[3, 7, 11]
47 ,[4, 8, 12]]

▶ Using list comprehensions, write a function transMat,
to transpose a matrix

Go to Answer

163/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Complexity of List
Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

List Comprehension Exercises
Activity 1 (c) List Pairs in Fair Order

▶ Write a function which takes a pair of positive integers
and outputs a list of all possible pairs in those ranges

▶ If we do this in the simplest way we get a bias to one
argument

▶ Here is an example of a bias to the second argument

68 yBiasLstTest \
69 = (yBiasListing(5,5)
70 == [(0, 0), (0, 1), (0, 2), (0, 3), (0, 4)
71 , (1, 0), (1, 1), (1, 2), (1, 3), (1, 4)
72 , (2, 0), (2, 1), (2, 2), (2, 3), (2, 4)
73 , (3, 0), (3, 1), (3, 2), (3, 3), (3, 4)
74 , (4, 0), (4, 1), (4, 2), (4, 3), (4, 4)])

Go to Answer

164/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Complexity of List
Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

List Comprehension Exercises
Activity 1 (c) List Pairs in Fair Order

▶ Rewrite the function which takes a pair of positive
integers and outputs a list of all possible pairs in those
ranges

▶ The output should treat each argument fairly — any
initial prefix should have roughly the same number of
instances of each argument

▶ Here is an example output

81 fairLstTest \
82 = (fairListing(5,5)
83 == [(0, 0)
84 , (0, 1), (1, 0)
85 , (0, 2), (1, 1), (2, 0)
86 , (0, 3), (1, 2), (2, 1), (3, 0)
87 , (0, 4), (1, 3), (2, 2), (3, 1), (4, 0)])

Go to Answer

165/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Complexity of List
Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

List Comprehension Exercises
Activity 1 (c) List Pairs in Fair Order

▶ Rewrite the function which takes a pair of positive
integers and outputs a list of lists of all possible pairs in
those ranges

▶ The output should treat each argument fairly — any
initial prefix should have roughly the same number of
instances of each argument — further, the output
should be segment by each initial prefix (see example
below)

▶ Here is an example output

94 fairLstATest \
95 = (fairListingA(5,5)
96 == [[(0, 0)]
97 , [(0, 1), (1, 0)]
98 , [(0, 2), (1, 1), (2, 0)]
99 , [(0, 3), (1, 2), (2, 1), (3, 0)]

100 , [(0, 4), (1, 3), (2, 2), (3, 1), (4, 0)]])

Go to Answer

166/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Complexity of List
Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

Compexity
List Comprehensions

▶ Note that list comprehensions are not in M269

▶ See Complexity of a List Comprehension

[f(e) for e in row for row in mat]

▶ Suppose f = Θ(g) with n elements in a row and m rows

▶ Then complexity isΘ(g(e))×Θ(n)×Θ(m) = Θ(m× n× g(e))

[[e**2 for e in row] for row in mat]

▶ Θ(e∗∗2) = Θ(1)

▶ Suppose n is maximum length of a row and m rows

▶ Then complexity isΘ(1)×Θ(n)×Θ(m) = Θ(n×m)

167/246

https://yardsale8.github.io/stat489_book/TheExpressionOrientedSequenceTransformation/TheComplexityOfListComprehensions.html

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Complexity of List
Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

List Comprehension Exercises
Answer 1 (a) Stop Words Filter

▶ Answer 1 (a) Stop Words Filter

▶ Write here:
▶ Answer 1 continued on next slide

Go to Activity

168/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Complexity of List
Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

List Comprehension Exercises
Answer 1 (a) Stop Words Filter

▶ Answer 1 (a) Stop Words Filter

24 def filterStopWords(words) :
25 nonStopWords \
26 = [word for word in words
27 if word not in stopWords]
28 return nonStopWords

31 filterStopWordsTest \
32 = filterStopWords(words) \
33 == [’quick’, ’brown’, ’fox’
34 , ’jumps’, ’over’, ’lazy’, ’dog’]

Go to Activity

169/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Complexity of List
Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

List Comprehension Exercises
Answer 1 (b) Transpose Matrix

▶ Answer 1 (b) Transpose Matrix

▶ Write here:
▶ Answer 1 continued on next slide

Go to Activity

170/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Complexity of List
Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

List Comprehension Exercises
Answer 1 (b) Transpose Matrix

▶ Answer 1 (b) Transpose Matrix

49 def transMat(mat) :
50 rowLen = len(mat[0])
51 matTr \
52 = [[row[i] for row in mat] for i in range(rowLen)]
53 return matTr

55 transMatTestA \
56 = (transMat(matrixA)
57 == matATr)

▶ Note that a list comprehension is a valid expression as
a target expression in a list comprehension

▶ The code assumes every row is of the same length

▶ Answer 1 continued on next slide

Go to Activity

171/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Complexity of List
Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

List Comprehension Exercises
Answer 1 (b) Transpose Matrix

▶ Note the differences in the list comprehensions below

38 matrixA \
39 = [[1, 2, 3, 4]
40 ,[5, 6, 7 ,8]
41 ,[9, 10, 11, 12]]

Python3>>> [[row[i] for row in matrixA]
... for i in range(4)]
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]
Python3>>> [row[i] for row in matrixA
... for i in range(4)]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
Python3>>> [row[i] for i in range(4)
... for row in matrixA]
[1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8, 12]
Python3>>> [[row[i] for i in range(4)]
... for row in matrixA]
[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]

Go to Activity

172/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Complexity of List
Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

List Comprehension Exercises
Answer 1 (b) Transpose Matrix

▶ Answer 1 (b) Transpose Matrix

▶ The Python NumPy package provides functions for
N-dimensional array objects

▶ For transpose see numpy.ndarray.transpose

Python3>>> import numpy as np
Python3>>> ar = np.array([[1,2],[3,4]])
Python3>>> ar
array([[1, 2],

[3, 4]])
Python3>>> arT = ar.transpose()
Python3>>> arT
array([[1, 3],

[2, 4]])
Python3>>> ar
array([[1, 2],

[3, 4]])
Python3>>> ar.shape
(2, 2)

Go to Activity

173/246

https://www.numpy.org/
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.transpose.html

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Complexity of List
Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

List Comprehension Exercises
Answer 1 (c) List Pairs in Fair Order

▶ Answer 1 (c) List Pairs in Fair Order — first version

▶ Write here

69 yBiasLstTest \
70 = (yBiasListing(5,5)
71 == [(0, 0), (0, 1), (0, 2), (0, 3), (0, 4)
72 , (1, 0), (1, 1), (1, 2), (1, 3), (1, 4)
73 , (2, 0), (2, 1), (2, 2), (2, 3), (2, 4)
74 , (3, 0), (3, 1), (3, 2), (3, 3), (3, 4)
75 , (4, 0), (4, 1), (4, 2), (4, 3), (4, 4)])

Go to Activity

174/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Complexity of List
Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

List Comprehension Exercises
Answer 1 (c) List Pairs in Fair Order

▶ Answer 1 (c) List Pairs in Fair Order

▶ This is the obvious but biased version

63 def yBiasListing(xRng,yRng) :
64 yBiasLst \
65 = [(x,y) for x in range(xRng)
66 for y in range(yRng)]
67 return yBiasLst

69 yBiasLstTest \
70 = (yBiasListing(5,5)
71 == [(0, 0), (0, 1), (0, 2), (0, 3), (0, 4)
72 , (1, 0), (1, 1), (1, 2), (1, 3), (1, 4)
73 , (2, 0), (2, 1), (2, 2), (2, 3), (2, 4)
74 , (3, 0), (3, 1), (3, 2), (3, 3), (3, 4)
75 , (4, 0), (4, 1), (4, 2), (4, 3), (4, 4)])

Go to Activity

175/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Complexity of List
Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

List Comprehension Exercises
Answer 1 (c) List Pairs in Fair Order

▶ Answer 1 (c) List Pairs in Fair Order — second version

▶ Write here

83 fairLstTest \
84 = (fairListing(5,5)
85 == [(0, 0)
86 , (0, 1), (1, 0)
87 , (0, 2), (1, 1), (2, 0)
88 , (0, 3), (1, 2), (2, 1), (3, 0)
89 , (0, 4), (1, 3), (2, 2), (3, 1), (4, 0)])

Go to Activity

176/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Complexity of List
Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

List Comprehension Exercises
Answer 1 (c) List Pairs in Fair Order

▶ Answer 1 (c) List Pairs in Fair Order — second version

▶ This works by making the sum of the coordinates the
same for each prefix

77 def fairListing(xRng,yRng) :
78 fairLst \
79 = [(x,d-x) for d in range(yRng)
80 for x in range(d+1)]
81 return fairLst

83 fairLstTest \
84 = (fairListing(5,5)
85 == [(0, 0)
86 , (0, 1), (1, 0)
87 , (0, 2), (1, 1), (2, 0)
88 , (0, 3), (1, 2), (2, 1), (3, 0)
89 , (0, 4), (1, 3), (2, 2), (3, 1), (4, 0)]

Go to Activity

177/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Complexity of List
Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

List Comprehension Exercises
Answer 1 (c) List Pairs in Fair Order

▶ Answer 1 (c) List Pairs in Fair Order — third version

▶ Write here

97 fairLstATest \
98 = (fairListingA(5,5)
99 == [[(0, 0)]

100 , [(0, 1), (1, 0)]
101 , [(0, 2), (1, 1), (2, 0)]
102 , [(0, 3), (1, 2), (2, 1), (3, 0)]
103 , [(0, 4), (1, 3), (2, 2), (3, 1), (4, 0)]])

Go to Activity

178/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Complexity of List
Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Logarithms

Before Calculators

Logic Introduction

References

List Comprehension Exercises
Answer 1 (c) List Pairs in Fair Order

▶ Answer 1 (c) List Pairs in Fair Order — third version

▶ The inner loop is placed into its own list comprehension

91 def fairListingA(xRng,yRng) :
92 fairLstA \
93 = [[(x,d-x) for x in range(d+1)]
94 for d in range(yRng)]
95 return fairLstA

97 fairLstATest \
98 = (fairListingA(5,5)
99 == [[(0, 0)]

100 , [(0, 1), (1, 0)]
101 , [(0, 2), (1, 1), (2, 0)]
102 , [(0, 3), (1, 2), (2, 1), (3, 0)]
103 , [(0, 4), (1, 3), (2, 2), (3, 1), (4, 0)]])

Go to Activity

179/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Master Theorem
Example Usage

Logarithms

Before Calculators

Logic Introduction

References

Complexity
Master Theorem for Divide-and-Conquer Recurrences

▶ The Divide-and-Conquer Method

Many useful algorithms are recursive in structure and
often follow a divide-and-conquer method

They break the problem into several subproblems
similar to the original problem

▶ The time analysis is represented by a recurrence system

▶ References

▶ Big O notation

▶ Master theorem

▶ Cormen et al (2022, chp 4) Algorithms

▶ These notes are partly based on M261 Mathematics in
Computing and M263 Building Blocks of Software and
are not part of M269 Algorithms, Data Structures and
Computability

180/246

https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Master Theorem
Example Usage

Logarithms

Before Calculators

Logic Introduction

References

Master Theorem
Recurrence System (a)

▶ Recurrence System

T (1) = b (1)

T (n) = bnβ + cT
(

n
d

)
{n = dα > 1} (2)

▶ Typical Expansion

n T(n)
d0 b
d1 bnβ + cb

d2 bnβ + cb
(

n
d

)β
+ c2b

181/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Master Theorem
Example Usage

Logarithms

Before Calculators

Logic Introduction

References

Master Theorem
Recurrence System (b)

▶ General Expansion

T (n) = bnβ + cT
(

n
d

)
= bnβ + cb

(
n
d

)β
+ c2T

(
n

d2

)
= bnβ

(
1 +

c

dβ
+
(

c

dβ

)2
+ · · · +

(
c

dβ

)α)

T (n) = bnβ
logd n∑

i=0

(
c

dβ

)i
(3)

182/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Master Theorem
Example Usage

Logarithms

Before Calculators

Logic Introduction

References

Master Theorem
Recurrence System (c)

▶ Proof of Closed Form Equation (3)
▶ For n = 1 equation (3) gives

T (1) = b1β
0∑

i=0

(
c

dβ

)i
= b which is correct (same as (1))

▶ Assume equation (3) holds for n = dα. Then for n = dα+1

T
(
dα+1

)
= cT (dα) + bnβ by equation (2)

= cbdαβ
α∑

i=0

(
c

dβ

)i
+ bd(α+1)β by assumption

=
(

c
dβ

)
bd(α+1)β

α∑
i=0

(
c

dβ

)i
+ bd(α+1)β

= bd(α+1)β
(
α+1∑
i=1

(
c

dβ

)i
+ 1

)
by rearrangement

= bd(α+1)β
α+1∑
i=0

(
c

dβ

)i
by rearrangement

▶ Hence equation (3) holds for all n = dα where α ∈ N
183/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Master Theorem
Example Usage

Logarithms

Before Calculators

Logic Introduction

References

Master Theorem
Cases

1. If c < dβ then the sum converges and T(n) is Θ(nβ)

2. If c = dβ then each term in the sum is 1 and
T(n) is Θ(nβ logd n

)
3. If c > dβ then use

p∑
i=0

x i =
xp+1 – 1

x – 1

T (n) = bnβ


(

c

dβ

)logd n+1
– 1(

c

dβ

)
– 1


= Θ(nβ

(
c

dβ

)logd n
)

= Θ(clogd n
)

= Θ(nlogd c
)

since alogb x = x logb a

184/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Master Theorem
Example Usage

Logarithms

Before Calculators

Logic Introduction

References

Master Theorem Example Usage (1)
Binary Search

▶ Algorithm

▶ Find mid point and check
if not equal to target, recurse on half the data

▶ Timing equations

T (1) à 1

T (n) = T
(

n
2

)
+ 1

▶ Hence c = 1, d = 2, β = 0 → case (2)

T (n) = Θ(log2 n)

185/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Master Theorem
Example Usage

Logarithms

Before Calculators

Logic Introduction

References

Master Theorem Example Usage (2)
Quicksort

▶ Algorithm

▶ Best case: splitting on median of data

▶ Recursively sort each half

▶ Timing equations

T (1) à k

T (n) = 2T
(

n
2

)
+ kn

▶ Hence c = 2, d = 2, β = 1 → case (2)

T (n) = Θ(n log2 n)

▶ See Averages/Median

186/246

https://en.wikipedia.org/wiki/Median
https://rosettacode.org/wiki/Averages/Median

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Master Theorem
Example Usage

Logarithms

Before Calculators

Logic Introduction

References

Master Theorem Example Usage (3)
Matrix Multiplication — Strassen’s Algorithm (a)

▶ Matrix Multiplication

▶ Let A, B be two square matrices over a ring, R
▶ Informally, a ring is a set with two binary operations

which look similar to addition and multiplication of
integers

▶ The problem is to implement matrix multiplication to
find the matrix product C = AB

▶ Without loss of generality, we may assume that A, and B
have sizes which are powers of 2 — if A, and B were not
of this size, they could be padded with rows or columns
of zeroes

▶ The Strassen algorithm partitions A, B and C into
equally sized blocks

A =

(
A11 A12
A21 A22

)
B =

(
B11 B12
B21 B22

)
C =

(
C11 C12
C21 C22

)
with Aij, Bij, Cij ∈ Mat2n–1×2n–1 (R)

187/246

https://en.wikipedia.org/wiki/Ring_(mathematics)
https://rosettacode.org/wiki/Matrix_multiplication

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Master Theorem
Example Usage

Logarithms

Before Calculators

Logic Introduction

References

Master Theorem Example Usage (3)
Matrix Multiplication — Strassen’s Algorithm (b)

▶ The usual (naive, standard) algorithm gives(
C11 C12
C21 C22

)

=

(
A11 × B11 + A12 × B21 A11 × B12 + A12 × B22
A21 × B11 + A22 × B21 A21 × B12 + A22 × B22

)
▶ This as 8 multiplications and if we assume

multiplication is more expensive than addition then the
time complexity is Θ(n3)

188/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Master Theorem
Example Usage

Logarithms

Before Calculators

Logic Introduction

References

Master Theorem Example Usage (3)
Matrix Multiplication — Strassen’s Algorithm (c)

▶ The Strassen algorithm rearranges the calculation

M1 = (A11 + A22)× (B11 + B22)

M2 = (A21 + A22)× B11

M3 = A11 × (B12 – B22)

M4 = A22 × (B21 – B11)

M5 = (A11 + A12)× B22

M6 = (A21 – A11)× (B11 + B12)

M7 = (A12 – A22)× (B21 + B22)

▶ We now express the Cij in terms of the Mk(
C11 C12
C21 C22

)

=

(
M1 + M4 – M5 + M7 M3 + M5

M2 + M4 M1 – M2 + M3 + M6

)

189/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Master Theorem
Example Usage

Logarithms

Before Calculators

Logic Introduction

References

Master Theorem Example Usage (3)
Matrix Multiplication — Strassen’s Algorithm (d)

▶ Strassen Matrix Multiplication Timing Equations

T (n) = 7T
(

n
2

)
+ 18

4 n2

T (1) à 18
4

▶ This is derived from the 7 multiplications and 18
additions or subtractions

▶ c = 7, d = 2, β = 2 → case (3)

T (n) = Θ(nlog2 7
)

= Θ(n2.8
)

190/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms
Exponentials and
Logarithms —
Definitions

Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs

Laws of Logarithms

Arithmetic and Inverses

Change of Base

Before Calculators

Logic Introduction

References

Exponentials and Logarithms
Definitions

▶ Exponential function y = ax or f (x) = ax

▶ an = a× a× · · · × a (n a terms)

▶ Logarithm reverses the operation of exponentiation

▶ loga y = x means ax = y

▶ loga 1 = 0

▶ loga a = 1

▶ Method of logarithms propounded by John Napier from
1614

▶ Log Tables from 1617 by Henry Briggs

▶ Slide Rule from about 1620–1630 by William Oughtred
of Cambridge

▶ Logarithm from Greek logos ratio, and arithmos
number Chambers Dictionary (13th Edition, 2014)

191/246

https://en.wikipedia.org/wiki/Exponential_function
https://en.wikipedia.org/wiki/Logarithm
https://en.wikipedia.org/wiki/Mathematical_table#Tables_of_logarithms
https://en.wikipedia.org/wiki/Slide_rule

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms
Exponentials and
Logarithms —
Definitions

Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs

Laws of Logarithms

Arithmetic and Inverses

Change of Base

Before Calculators

Logic Introduction

References

Exponentiation
Rules of Indices

1. am × an = am+n

2. am ÷ an = am–n

3. a–m =
1

am

4. a
1
m = m√a

5. (am)n = amn

6. a
n
m =

m
√

an

7. a0 = 1 where a ≠ 0

▶ Exercise Justify the above rules

▶ What should 00 evaluate to ?

▶ See Wikipedia: Exponentiation

▶ The justification above probably only worked for whole
or rational numbers — see later for exponents with real
numbers (and the value of logarithms, calculus. . .)

192/246

http://en.wikipedia.org/wiki/Exponentiation

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms
Exponentials and
Logarithms —
Definitions

Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs

Laws of Logarithms

Arithmetic and Inverses

Change of Base

Before Calculators

Logic Introduction

References

Logarithms
Motivation

▶ Make arithmetic easier — turns multiplication and
division into addition and subtraction (see later)

▶ Complete the range of elementary functions for
differentiation and integration

▶ An elementary function is a function of one variable
which is the composition of a finite number of
arithmetic operations ((+), (–), (×), (÷)), exponentials,
logarithms, constants, and solutions of algebraic
equations (a generalization of nth roots).

▶ The elementary functions include the trigonometric and
hyperbolic functions and their inverses, as they are
expressible with complex exponentials and logarithms.

▶ See A Level FP2 for Euler’s relation eiθ = cosθ + i sinθ

▶ In A Level C3, C4 we get
∫

1
x

= loge |x| + C

▶ e is Euler’s number 2.71828. . .

193/246

https://en.wikipedia.org/wiki/Elementary_function
https://en.wikipedia.org/wiki/Elementary_function
https://en.wikipedia.org/wiki/E_(mathematical_constant)

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms
Exponentials and
Logarithms —
Definitions

Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs

Laws of Logarithms

Arithmetic and Inverses

Change of Base

Before Calculators

Logic Introduction

References

Exponentials and Logarithms
Graphs

▶ See GeoGebra file expLog.ggb

194/246

expLog.ggb

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms
Exponentials and
Logarithms —
Definitions

Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs

Laws of Logarithms

Arithmetic and Inverses

Change of Base

Before Calculators

Logic Introduction

References

Exponentials and Logarithms
Laws of Logarithms

▶ Multiplication law loga xy = loga x + loga y

▶ Division law loga

(
x
y

)
= loga x – loga y

▶ Power law loga xk = k loga x

▶ Proof of Multiplication Law

x = aloga x

y = aloga y by definition of log

xy = aloga x × aloga y

= aloga x+loga y by laws of indices

Hence loga xy = loga x + loga y by definition of log

195/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms
Exponentials and
Logarithms —
Definitions

Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs

Laws of Logarithms

Arithmetic and Inverses

Change of Base

Before Calculators

Logic Introduction

References

Arithmetic Operations
Inverse Operations

▶ Notation helps or maybe not ?

▶ Addition add(b, x) = x + b

▶ Subtraction sub(b, x) = x – b

▶ Inverse sub(b, add(b, x)) = (x + b) – b = x

▶ Multiplication mul(b, x) = x × b

▶ Division div(b, x) = x ÷ b = x
b = x/b

▶ Inverse div(b, mul(b, x)) = (x × b)÷ b = (x×b)
b = x

▶ Exponentiation exp(b, x) = bx

▶ Logarithm log(b, x) = logb x

▶ Inverse log(b, exp(b, x)) = logb(bx) = x

▶ What properties do the operations have that work (or
not) with the notation ?

196/246

https://en.wikipedia.org/wiki/Addition
https://en.wikipedia.org/wiki/Subtraction
https://en.wikipedia.org/wiki/Multiplication
https://en.wikipedia.org/wiki/Division_(mathematics)
https://en.wikipedia.org/wiki/Exponentiation
https://en.wikipedia.org/wiki/Logarithm

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms
Exponentials and
Logarithms —
Definitions

Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs

Laws of Logarithms

Arithmetic and Inverses

Change of Base

Before Calculators

Logic Introduction

References

Arithmetic Operations
Commutativity and Associativity

▶ Commutativity x ⊛ y = y ⊛ x

▶ Associativity (x ⊛ y)⊛ z = x ⊛ (y ⊛ z)

▶ (+) and (×) are semantically commutative and
associative — so we can leave the brackets out

▶ (–) and (÷) are not

▶ Evaluate (3 – (2 – 1)) and ((3 – 2) – 1)

▶ Evaluate (3/(2/2)) and ((3/2)/2)

▶ We have the syntactic ideas of left (and right)
associativity

▶ We choose (–) and (÷) to be left associative

▶ 3 – 2 – 1 means ((3 – 2) – 1)

▶ 3/2/2 means ((3/2)/2)

▶ Operator precedence is also a choice (remember
BIDMAS or BODMAS ?)

▶ If in doubt, put the brackets in

197/246

https://en.wikipedia.org/wiki/Commutative_property
https://en.wikipedia.org/wiki/Associative_property
https://en.wikipedia.org/wiki/Order_of_operations

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms
Exponentials and
Logarithms —
Definitions

Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs

Laws of Logarithms

Arithmetic and Inverses

Change of Base

Before Calculators

Logic Introduction

References

Exponentials and Logarithms
Associativity

▶ What should 234
mean ?

▶ Let b ^ x ≡ bx

▶ Evaluate (2 ^ 3) ^ 4 and 2 ^ (3 ^ 4)

▶ Evaluate c = logb(logb((b ^ b) ^ x))

▶ Evaluate d = logb(logb(b ^ (b ^ x)))

▶ Beware spreadsheets Excel and LibreOffice here

198/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms
Exponentials and
Logarithms —
Definitions

Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs

Laws of Logarithms

Arithmetic and Inverses

Change of Base

Before Calculators

Logic Introduction

References

Exponentials and Logarithms
Associativity

▶ (23)4 = 212 and 234
= 281

▶ Exponentiation is not semantically associative

▶ We choose the syntactic left or right associativity to
make the syntax nicer.

▶ Evaluate c = logb(logb((b ^ b) ^ x))

▶ c = logb(x logb(bb)) = logb(x · (b logb b)) = logb(x · b · 1)

▶ Hence c = logb x + logb b = logb x + 1

▶ Not symmetrical (unless b and x are both 2)

▶ Evaluate d = logb(logb(b ^ (b ^ x)))

▶ d = logb((b ^ x)(logb b)) = logb((b ^ x)× 1)

▶ Hence d = logb(b ^ x) = x(logb b) = x

▶ Which is what we want — so exponentiation is chosen to
be right associative

199/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms
Exponentials and
Logarithms —
Definitions

Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs

Laws of Logarithms

Arithmetic and Inverses

Change of Base

Before Calculators

Logic Introduction

References

Exponentials and Logarithms
Change of Base

▶ Change of base

loga x =
logb x

logb a

Proof: Let y = loga x

ay = x

logb ay = logb x

y logb a = logb x

y =
logb x

logb a

▶ Given x, logb x, find the base b

▶ b = x
1

logb x

▶ loga b =
1

logb a

200/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators
Log Tables

Slide Rules

Calculators

Example Calculation

Logic Introduction

References

Before Calculators and Computers

▶ We had computers before 1950 — they were humans
with pencil, paper and some further aids:

▶ Slide rule invented by William Oughtred in the 1620s —
major calculating tool until pocket calculators in 1970s

▶ Log tables in use from early 1600s — method of
logarithms propounded by John Napier

▶ Logarithm from Greek logos ratio, and arithmos
number

201/246

https://en.wikipedia.org/wiki/Slide_rule
https://en.wikipedia.org/wiki/William_Oughtred
https://en.wikipedia.org/wiki/Calculator
https://en.wikipedia.org/wiki/Mathematical_table
https://en.wikipedia.org/wiki/John_Napier
https://en.wikipedia.org/wiki/Logarithm

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators
Log Tables

Slide Rules

Calculators

Example Calculation

Logic Introduction

References

Log Tables
Knott’s Four-Figure Mathematical Tables

202/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators
Log Tables

Slide Rules

Calculators

Example Calculation

Logic Introduction

References

Log Tables
Logarithms of Numbers

203/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators
Log Tables

Slide Rules

Calculators

Example Calculation

Logic Introduction

References

Log Tables
Antilogarithms

204/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators
Log Tables

Slide Rules

Calculators

Example Calculation

Logic Introduction

References

Slide Rules
Pickett N 3-ES from 1967

▶ See Oughtred Society

▶ UKSRC

▶ Rod Lovett’s Slide Rules

▶ Slide Rule Museum

205/246

http://www.oughtred.org
http://www.uksrc.org.uk
http://sliderules.lovett.com
http://sliderulemuseum.com

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators
Log Tables

Slide Rules

Calculators

Example Calculation

Logic Introduction

References

Slide Rules
Pickett log log Slide Rules Manual 1953

206/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators
Log Tables

Slide Rules

Calculators

Example Calculation

Logic Introduction

References

Calculators
HP HP-21 Calculator from 1975 £69

207/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators
Log Tables

Slide Rules

Calculators

Example Calculation

Logic Introduction

References

Calculators
Casio fx-85GT PLUS Calculator from 2013 £10

208/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators
Log Tables

Slide Rules

Calculators

Example Calculation

Logic Introduction

References

Calculators
Calculator Links

▶ HP Calculator Museum http://www.hpmuseum.org

▶ HP Calculator Emulators
http://nonpareil.brouhaha.com

▶ HP Calculator Emulators for OS X
http://www.bartosiak.org/nonpareil/

▶ Vintage Calculators Web Museum
http://www.vintagecalculators.com

209/246

http://www.hpmuseum.org
http://nonpareil.brouhaha.com
http://www.bartosiak.org/nonpareil/
http://www.vintagecalculators.com

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators
Log Tables

Slide Rules

Calculators

Example Calculation

Logic Introduction

References

Example Calculation
Log Tables, Slide Rule and Calculator

▶ Evaluate 89.7× 597

▶ Knott’s Tables

▶ log10 89.7 = 1.9528 and log10 597 = 2.7760

▶ Shows mantissa (decimal) & characteristic (integral)

▶ Add 4.7288, take antilog to get 5346 + 10 = 5.356×104

▶ HP-21 Calculator — set display to 4 decimal places

▶ 89.7 log = 1.9528 and 597 log = 2.7760

▶ + displays 4.7288

▶ 10 ENTER , x ⇄ y and yx displays 53550.9000

▶ Casio fx-85GT PLUS

▶ log 89.7) = 1.952792443 + log 597) = 2.775974331 =

▶ 4.728766774 Ans + 10x gives 53550.9

210/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

References

Boolean Expressions
Traffic Lights Example (1)

▶ Consider traffic light at the intersection of roads AC and
BD with the following rules for the AC controller

▶ Vehicles should not wait on red on BD for too long.

▶ If there is a long queue on AC then BD is only given a
green for a short interval.

▶ If both queues are long the usual flow times are used.
▶ We use the following propositions:

▶ w Vehicles have been waiting on red on BD for too long
▶ q Queue on AC is too long
▶ r Queue on BD is too long

▶ Given the following events:
▶ ToBD Change flow to BD
▶ ToBDShort Change flow to BD for short time
▶ NoChange No Change to lights

▶ Express above as truth table, outcome tree, boolean
expression

211/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

References

Boolean Expressions
Traffic Lights Example (2)

▶ Traffic Lights outcome table

w q r Event

T T T ToBD
T T F ToBDShort
T F T ToBD
T F F ToBD
F T T NoChange
F T F NoChange
F F T NoChange
F F F NoChange

212/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

References

Boolean Expressions
Traffic Lights Example (3)

▶ Traffic lights outcome tree

NoChange¬r

NoChanger¬q

NoChange¬r

NoChanger

q
¬w

ToBD¬r

ToBDr¬q

ToBDShort¬r

ToBDr

q

w

213/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

References

Boolean Expressions
Traffic Lights Example (4)

▶ Traffic lights outcome tree simplified

NoChange

¬w

ToBD
¬q

ToBDShort¬r

ToBDr

q

w

214/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

References

Boolean Expressions
Traffic Lights Example (5)

▶ Traffic Lights code 01

▶ See M269TutorialProgPythonADT01.py

3def trafficLights01(w,q,r) :
4 """
5 Input 3 Booleans
6 Return Event string
7 """
8 if w :
9 if q :

10 if r :
11 evnt = "ToBD"
12 else :
13 evnt = "ToBDShort"
14 else :
15 evnt = "ToBD"
16 else :
17 evnt = "NoChange"
18 return evnt

215/246

http://www.pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269TutorialProgPythonADT/M269TutorialProgPythonADT01.py

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

References

Boolean Expressions
Traffic Lights Example (6)

▶ Traffic Lights test code 01

22trafficLights01Evnts = [((w,q,r), trafficLights01(w,q,r))
23 for w in [True,False]
24 for q in [True,False]
25 for r in [True,False]]

27assert trafficLights01Evnts \
28 == [((True, True, True), ’ToBD’)
29 ,((True, True, False), ’ToBDShort’)
30 ,((True, False, True), ’ToBD’)
31 ,((True, False, False), ’ToBD’)
32 ,((False, True, True), ’NoChange’)
33 ,((False, True, False), ’NoChange’)
34 ,((False, False, True), ’NoChange’)
35 ,((False, False, False), ’NoChange’)]

216/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

References

Boolean Expressions
Traffic Lights Example (7)

▶ Traffic Lights code 02 compound Boolean conditions

37def trafficLights02(w,q,r) :
38 """
39 Input 3 Booleans
40 Return Event string
41 """
42 if ((w and q and r) or (w and not q)) :
43 evnt = "ToBD"
44 elif (w and q and not r) :
45 evnt = "ToBDShort"
46 else :
47 evnt = "NoChange"
48 return evnt

▶ What objectives do we have for our code ?

217/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

References

Boolean Expressions
Traffic Lights Example (8)

▶ Traffic Lights test code 02

52trafficLights02Evnts = [((w,q,r), trafficLights02(w,q,r))
53 for w in [True,False]
54 for q in [True,False]
55 for r in [True,False]]

57assert trafficLights02Evnts == trafficLights01Evnts

218/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

References

Boolean Expressions
Traffic Lights Example (9)

w q

r

BD

BD

BD

BDS

NoC

NoC

NoC

NoC

▶ Traffic Lights Venn diagram

▶ OK using a fill colour would look better but didn’t have the time to hack the

package

219/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

References

Boolean Expressions
Validity

▶ Validity of Boolean expressions

▶ Complete every outcome returns an event (or error
message, raises an exception)

▶ Consistent — we do not want two nested if
statements or expressions resulting in different events

▶ We check this by ensuring that the events form a
disjoint partition of the set of outcomes — see the Venn
diagram

▶ We would quite like the programming language
processor to warn us otherwise — not always possible

220/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

References

Booleans Expressions
Rail Ticket Exercise (1)

▶ Rail ticket discounts for:
▶ c Rail card
▶ q Off-peak time
▶ s Special offer

▶ 4 fares: Standard, Reduced, Special, Super Special
▶ Rules:

1. Reduced fare if rail card or at off-peak time
2. Without rail card no reduction for both special offer and

off-peak.
3. Rail card always has reduced fare but cannot get

off-peak discount as well.
4. Rail card gets super special discount for journey with

special offer

▶ Draw up truth table, outcome tree, Venn diagram and
conditional statement (or expression) for this

221/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

References

Booleans Expressions
Rail Ticket Exercise (2)

▶ Rail ticket outcome table

c q s Event

T T T Super Special
T T F Reduced
T F T Super Special
T F F Reduced
F T T Special
F T F Reduced
F F T Special
F F F Standard

222/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

References

Booleans Expressions
Rail Ticket Exercise (3)

▶ Rail ticket outcome table

▶ Note that it may be more convenient to change columns

c s q Event

T T T Super Special
T T F Super Special
T F T Reduced
T F F Reduced
F T T Special
F T F Special
F F T Reduced
F F F Standard

▶ Real fares are a little more complex — see brfares.com

223/246

http://www.brfares.com

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

References

Boolean Expressions
Rail Ticket Exercise (4)

▶ Rail Ticket outcome tree

Standard¬q

Reducedq
¬s

Special¬q

Specialq

s¬c

Reduced¬q

Reducedq
¬s

Super Special¬q

Super Specialq

s

c

224/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

References

Boolean Expressions
Rail Ticket Exercise (5)

▶ Rail Ticket outcome tree simplified

Standard¬q

Reducedq
¬s

Special
s¬c

Reduced
¬s

Super Special
s

c

225/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

References

Boolean Expressions
Rail Ticket Example (6)

c s

q

SSP

RD

RD

SSP

STD

SP

RD

SP

▶ Rail Ticket Venn diagram

226/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

References

Boolean Expressions
Rail Ticket Example (7)

▶ Rail Ticket code 01

61def railTicket01(c,s,q) :
62 """
63 Input 3 Booleans
64 Return Event string
65 """
66 if c :
67 if s :
68 evnt = "SSP"
69 else :
70 evnt = "RD"
71 else :
72 if s :
73 evnt = "SP"
74 else :
75 if q :
76 evnt = "RD"
77 else :
78 evnt = "STD"
79 return evnt

227/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

References

Boolean Expressions
Rail Ticket Example (8)

▶ Rail Ticket test code 01

83railTicket01Evnts = [((c,s,q), railTicket01(c,s,q))
84 for c in [True,False]
85 for s in [True,False]
86 for q in [True,False]]

88assert railTicket01Evnts \
89 == [((True, True, True), ’SSP’)
90 ,((True, True, False), ’SSP’)
91 ,((True, False, True), ’RD’)
92 ,((True, False, False), ’RD’)
93 ,((False, True, True), ’SP’)
94 ,((False, True, False), ’SP’)
95 ,((False, False, True), ’RD’)
96 ,((False, False, False), ’STD’)]

228/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

References

Boolean Expressions
Rail Ticket Example (9)

▶ Rail Ticket code 02 compound Boolean expressions

98def railTicket02(c,s,q) :
99 """

100 Input 3 Booleans
101 Return Event string
102 """
103 if (c and s) :
104 evnt = "SSP"
105 elif ((c and not s) or (not c and not s and q)) :
106 evnt = "RD"
107 elif (not c and s) :
108 evnt = "SP"
109 else :
110 evnt = "STD"
111 return evnt

229/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

References

Boolean Expressions
Rail Ticket Example (10)

▶ Rail Ticket test code 02

115railTicket02Evnts = [((c,s,q), railTicket02(c,s,q))
116 for c in [True,False]
117 for s in [True,False]
118 for q in [True,False]]

120assert railTicket02Evnts == railTicket01Evnts

230/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

References

Propositional Calculus
Introduction

▶ Unit 2 section 3.2 A taste of formal logic introduces
Propositional calculus

▶ A language for calculating about Booleans — truth
values

▶ Gives operators (connectives) conjunction (∧) AND,
disjunction (∨) OR, negation (¬) NOT, implication (⇒) IF

▶ There are 16 possible functions (B,B) → B — see below
— defined by their truth tables

▶ Discussion Did you find the truth table for implication
weird or surprising ?

231/246

https://en.wikipedia.org/wiki/Propositional_calculus
https://en.wikipedia.org/wiki/Logical_conjunction
https://en.wikipedia.org/wiki/Logical_disjunction
https://en.wikipedia.org/wiki/Negation
https://en.wikipedia.org/wiki/Material_conditional

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

References

Propositional Calculus
Implication

▶ Implication has a negative definition — we accept its
truth unless we have contrary evidence

▶ T ⇒ T == T and T ⇒ F == F

▶ Hence 4 possibilities for truth table

p q p
⇒

q

q p
a

q

p
∧

q
T T T T T T
T F F F F F
F T T T F F
F F T F T F

▶ (⇒) must have the entry shown — the others are taken

▶ Do not think of p causing q

232/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

References

Propositional Calculus
Functional Completeness, Boolean Programming

▶ Functionally complete set of connectives is one which
can be used to express all possible connectives

▶ p ⇒ q ≡ ¬p ∨ q so we could just use {¬,∧,∨}

▶ Boolean programming — we have to have a
functionally complete set but choose more to make the
programming easier

▶ Expressiveness is an issue in programming language
design

233/246

https://en.wikipedia.org/wiki/Functional_completeness

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

References

Propositional Calculus
NAND, NOR

▶ NAND p∧q, p ↑ q, Sheffer stroke

▶ NOR p∨q, p ↓ q, Pierce’s arrow

▶ See truth tables below — both {↑}, {↓} are functionally
complete

▶ Exercise verify
▶ ¬p ≡ p ↑ p
▶ p ∧ q ≡ ¬(p ↑ q) = (p ↑ q) ↑ (p ↑ q)
▶ p ∨ q ≡ (p ↑ p) ↑ (q ↑ q)
▶ ¬p ≡ p ↓ p
▶ p ∧ q ≡ (p ↓ p) ↓ (q ↓ q)
▶ p ∨ q ≡ ¬(p ↓ q) = (p ↓ q) ↓ (p ↓ q)

▶ Not a novelty — the Apollo Guidance Computer was
implemented in NOR gates alone.

234/246

https://en.wikipedia.org/wiki/Sheffer_stroke
https://en.wikipedia.org/wiki/Logical_NOR
https://en.wikipedia.org/wiki/Apollo_Guidance_Computer

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

References

Truth Function
Truth Function References

▶ The following appendix notes illustrate the 16 binary
functions of two Boolean variables

▶ See Truth function

▶ See Functional completeness

▶ See Sheffer stroke

▶ See Logical NOR

235/246

https://en.wikipedia.org/wiki/Truth_function
https://en.wikipedia.org/wiki/Functional_completeness
https://en.wikipedia.org/wiki/Sheffer_stroke
https://en.wikipedia.org/wiki/Logical_NOR

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

References

Truth Function
Table of Binary Truth Functions

p q ⊤ p
∨

q

p
⇐

q

p p
⇒

q

q p
a

q

p
∧

q

T T T T T T T T T T
T F T T T T F F F F
F T T T F F T T F F
F F T F T F T F T F

p q ⊥ p
∨

q

p
f

q

¬
p

p
h

q

¬
q

p
g

q

p
⊼

q

T T F F F F F F F F
T F F F F F T T T T
F T F F T T F F T T
F F F T F T F T F T

236/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

References

Truth Function
Tautology/Contradiction

▶ Tautology True, ⊤, Top

U

p q

▶ Contradiction False, ⊥, Bottom

U

p q

237/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

References

Truth Function
Disjunction/Joint Denial

▶ Disjunction OR, p ∨ q

U

p q

▶ Joint Denial NOR, p∨q, p ↓ q, Pierce’s arrow

U

p q

238/246

https://en.wikipedia.org/wiki/Logical_NOR

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

References

Truth Function
Converse Implication/Converse Nonimplication

▶ Converse Implication p ⇐ q

U

p q

▶ Converse Nonimplication p f q

U

p q

239/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

References

Truth Function
Proposition p/Negation of p

▶ Proposition p

U

p q

▶ Negation of p

U

p q

240/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

References

Truth Function
Material Implication/Material Nonimplication

▶ Material Implication p ⇒ q

U

p q

▶ Material Nonimplication p h q

U

p q

241/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

References

Truth Function
Proposition q/Negation of q

▶ Proposition q q

U

p q

▶ Negation of q ¬q

U

p q

242/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

References

Truth Function
Biconditional/Exclusive disjunction

▶ Biconditional If and only if, IFF, p a q

U

p q

▶ Exclusive disjunction XOR, p g q

U

p q

243/246

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

References

Truth Function
Conjunction/Alternative denial

▶ Conjunction AND, p ∧ q

U

p q

▶ Alternative denial NAND, p ⊼ q, p ↑ q, Sheffer stroke

U

p q

244/246

https://en.wikipedia.org/wiki/Sheffer_stroke

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References
Web Sites

Web Sites
Computability

▶ Logic
▶ WFF, WFF’N Proof online

▶ Computability
▶ Computability
▶ Computable function
▶ Decidability (logic)
▶ Turing Machines
▶ Universal Turing Machine
▶ Turing machine simulator
▶ Lambda Calculus
▶ Von Neumann Architecture
▶ Turing Machine XKCD 205 Candy Button Paper
▶ Turing Machine XKCD 505 A Bunch of Rocks
▶ RIP John Conway Why can Conway’s Game of Life be

classified as a universal machine?
▶ Phil Wadler Bright Club on Computability
▶ Bridges: Theory of Computation: Halting Problem
▶ Bridges: Theory of Computation: Other Non-computable

Problems

245/246

http://en.wikipedia.org/wiki/Well-formed_formula
http://www.oercommons.org/authoring/1364-basic-wff-n-proof-a-teaching-guide/view
http://en.wikipedia.org/wiki/Computability
http://en.wikipedia.org/wiki/Computable_function
http://en.wikipedia.org/wiki/Decidability_(logic)
http://en.wikipedia.org/wiki/Turing_machine
http://en.wikipedia.org/wiki/Universal_Turing_machine
http://morphett.info/turing/turing.html
http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Von_Neumann_architecture
http://www.explainxkcd.com/wiki/index.php/205:_Candy_Button_Paper
http://www.explainxkcd.com/wiki/index.php/505:_A_Bunch_of_Rocks
https://xkcd.com/2293/
https://stackoverflow.com/questions/394957/why-can-conway-s-game-of-life-be-classified-as-a-universal-machine
https://stackoverflow.com/questions/394957/why-can-conway-s-game-of-life-be-classified-as-a-universal-machine
http://wadler.blogspot.co.uk/2015/05/bright-club-computability.html
http://www.cs.ucc.ie/~dgb/courses/toc/handout35.pdf
http://www.cs.ucc.ie/~dgb/courses/toc/handout36.pdf
http://www.cs.ucc.ie/~dgb/courses/toc/handout36.pdf

M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References
Web Sites

Web Sites
Complexity

▶ Complexity
▶ Complexity class
▶ NP complexity
▶ NP complete
▶ Reduction (complexity)
▶ P versus NP problem
▶ Graph of NP-Complete Problems

246/246

http://en.wikipedia.org/wiki/Complexity_class
http://en.wikipedia.org/wiki/NP_(complexity)
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/Reduction_(complexity)
http://en.wikipedia.org/wiki/P_%3D_NP_problem
http://adriann.github.io/npc/npc.html

	M269 End of Module Tutorial: Agenda
	Commentary 1
	Adobe Connect Interface and Settings
	Adobe Connect Interface
	Adobe Connect Settings
	Adobe Connect — Sharing Screen & Applications
	Adobe Connect — Ending a Meeting
	Adobe Connect — Invite Attendees
	Layouts
	Chat Pods
	Graphics Conversion for Web
	Adobe Connect Recordings

	Computability, Complexity
	Commentary 2
	Computability
	The Turing Machine
	Turing Machine Examples
	Computability, Decidability and Algorithms
	Lambda Calculus

	Commentary 3
	Complexity
	Complexity Classes P and NP
	Class NP
	NP-completeness
	NP-Completeness and Boolean Satisfiability

	Turing Machine TMA Question
	Complexity, Logic
	Complexity and Big O Notation
	Complexity Example
	Complexity & Python Data Types
	Definitions and Rules for Complexity
	List Comprehensions
	Master Theorem for Divide-and-Conquer Recurrences

	Exponentials and Logarithms
	Exponentials and Logarithms — Definitions
	Rules of Indices
	Logarithms — Motivation
	Exponentials and Logarithms — Graphs
	Laws of Logarithms
	Arithmetic and Inverses
	Change of Base

	Before Calculators and Computers
	Log Tables
	Slide Rules
	Calculators
	Example Calculation

	Logic and Truth Tables
	Boolean Expressions and Truth Tables
	Conditional Expressions and Validity
	Boolean Expressions Exercise
	Propositional Calculus
	Truth Function

	Web Sites & References
	Web Sites

