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M269 End of Module Tutorial
Agenda

▶ Welcome & Introductions

▶ Topics from TMA03

▶ Abstract Data Types — Bags

▶ Abstract Data Types — Graphs

▶ Complexity

▶ Computability
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M269 Tutorial
Introductions — Me

▶ Name Phil Molyneux
▶ Background Physics and Maths, Operational Research,

Computer Science
▶ Undergraduate: Physics and Maths (Sussex)
▶ Postgraduate: Physics (Sussex), Operational Research

(Brunel), Computer Science (University College, London)

▶ First programming languages Fortran, BASIC, Pascal
▶ Favourite Software

▶ Haskell — pure functional programming language
▶ Text editors TextMate, Sublime Text — previously Emacs
▶ Word processing and presentation slides in LATEX
▶ Mac OS X

▶ Learning style — I read the manual before using the
software (really)
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M269 Tutorial
Introductions — You

▶ Name ?

▶ Position in M269 ? Which part of which Units and/or
Reader have you read ?

▶ Particular topics you want to look at ?

▶ Learning Syle ?
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Commentary 1
Agenda, Aims and Topics

1 Agenda, Aims and Topics

▶ Overview of aims of tutorial

▶ Note selection of topics

▶ Points about my own background and preferences

▶ Adobe Connect slides for reference

▶ Note that the Computability notes are here mainly for
reference since the Complexity notes refer to them

▶ This session is mainly on the Complexity topics
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Adobe Connect
Interface — Host View
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Adobe Connect
Interface — Participant View
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Adobe Connect
Settings

▶ Everybody Menu bar Meeting Speaker & Microphone Setup

▶ Menu bar Microphone Allow Participants to Use Microphone ✔

▶ Check Participants see the entire slide Workaround
▶ Disable Draw Share pod Menu bar Draw icon

▶ Fit Width Share pod Bottom bar Fit Width icon ✔

▶ Meeting Preferences General Host Cursor Show to all attendees

▶ Menu bar Video Enable Webcam for Participants ✔

▶ Do not Enable single speaker mode

▶ Cancel hand tool

▶ Do not enable green pointer

▶ Recording Meeting Record Session ✔

▶ Documents Upload PDF with drag and drop to share
pod

▶ Delete Meeting Manage Meeting Information Uploaded Content

and check filename click on delete
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Adobe Connect
Access

▶ Tutor Access

TutorHome M269 Website Tutorials

Cluster Tutorials M269 Online tutorial room

Tutor Groups M269 Online tutor group room

Module-wide Tutorials M269 Online module-wide room

▶ Attendance

TutorHome Students View your tutorial timetables

▶ Beamer Slide Scaling 440% (422 x 563 mm)

▶ Clear Everyone’s Status

Attendee Pod Menu Clear Everyone’s Status

▶ Grant Access and send link via email

Meeting Manage Access & Entry Invite Participants. . .

▶ Presenter Only Area

Meeting Enable/Disable Presenter Only Area

9/246



M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Adobe Connect
Keystroke Shortcuts

▶ Keyboard shortcuts in Adobe Connect

▶ Toggle Mic + M (Mac), Ctrl + M (Win) (On/Disconnect)

▶ Toggle Raise-Hand status + E

▶ Close dialog box (Mac), Esc (Win)

▶ End meeting + \
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Adobe Connect Interface
Sharing Screen & Applications

▶ Share My Screen Application tab Terminal for Terminal

▶ Share menu Change View Zoom in for mismatch of screen
size/resolution (Participants)

▶ (Presenter) Change to 75% and back to 100% (solves
participants with smaller screen image overlap)

▶ Leave the application on the original display

▶ Beware blued hatched rectangles — from other (hidden)
windows or contextual menus

▶ Presenter screen pointer affects viewer display —
beware of moving the pointer away from the application

▶ First time: System Preferences Security & Privacy Privacy

Accessibility
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Adobe Connect
Ending a Meeting

▶ Notes for the tutor only
▶ Student: Meeting Exit Adobe Connect

▶ Tutor:
▶ Recording Meeting Stop Recording ✔

▶ Remove Participants Meeting End Meeting. . . ✔

▶ Dialog box allows for message with default message:
▶ The host has ended this meeting. Thank you for

attending.

▶ Recording availability In course Web site for joining
the room, click on the eye icon in the list of recordings
under your recording — edit description and name

▶ Meeting Information Meeting Manage Meeting Information —
can access a range of information in Web page.

▶ Delete File Upload Meeting Manage Meeting Information

Uploaded Content tab select file(s) and click Delete

▶ Attendance Report see course Web site for joining
room
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Adobe Connect
Invite Attendees

▶ Provide Meeting URL Menu Meeting Manage Access & Entry

Invite Participants. . .

▶ Allow Access without Dialog Menu Meeting

Manage Meeting Information provides new browser window
with Meeting Information Tab bar Edit Information

▶ Check Anyone who has the URL for the meeting can
enter the room

▶ Default Only registered users and accepted guests may
enter the room

▶ Reverts to default next session but URL is fixed

▶ Guests have blue icon top, registered participants have
yellow icon top — same icon if URL is open

▶ See Start, attend, and manage Adobe Connect meetings
and sessions
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Adobe Connect
Entering a Room as a Guest (1)

▶ Click on the link sent in email from the Host

▶ Get the following on a Web page

▶ As Guest enter your name and click on Enter Room
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Adobe Connect
Entering a Room as a Guest (2)

▶ See the Waiting for Entry Access for Host to give
permission
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Adobe Connect
Entering a Room as a Guest (3)

▶ Host sees the following dialog in Adobe Connect and
grants access

16/246



M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Adobe Connect
Layouts

▶ Creating new layouts example Sharing layout

▶ Menu Layouts Create New Layout. . . Create a New Layout dialog

Create a new blank layout and name it PMolyMain

▶ New layout has no Pods but does have Layouts Bar open
(see Layouts menu)

▶ Pods

▶ Menu Pods Share Add New Share and resize/position —
initial name is Share n — rename PMolyShare

▶ Rename Pod Menu Pods Manage Pods. . . Manage Pods

Select Rename or Double-click & rename

▶ Add Video pod and resize/reposition

▶ Add Attendance pod and resize/reposition

▶ Add Chat pod — rename it PMolyChat — and
resize/reposition
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Adobe Connect
Layouts

▶ Dimensions of Sharing layout (on 27-inch iMac)
▶ Width of Video, Attendees, Chat column 14 cm
▶ Height of Video pod 9 cm
▶ Height of Attendees pod 12 cm
▶ Height of Chat pod 8 cm

▶ Duplicating Layouts does not give new instances of
the Pods and is probably not a good idea (apart from
local use to avoid delay in reloading Pods)

▶ Auxiliary Layouts name PMolyAux0n
▶ Create new Share pod
▶ Use existing Chat pod
▶ Use same Video and Attendance pods
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Adobe Connect
Chat Pods

▶ Format Chat text

▶ Chat Pod menu icon My Chat Color

▶ Choices: Red, Orange, Green, Brown, Purple, Pink, Blue,
Black

▶ Note: Color reverts to Black if you switch layouts

▶ Chat Pod menu icon Show Timestamps
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Graphics Conversion
PDF to PNG/JPG

▶ Conversion of the screen snaps for the installation of
Anaconda on 1 May 2020

▶ Using GraphicConverter 11

▶ File Convert & Modify Conversion Convert

▶ Select files to convert and destination folder

▶ Click on Start selected Function or +
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Adobe Connect Recordings
Exporting Recordings

▶ Menu bar Meeting Preferences Video

▶ Aspect ratio Standard (4:3) (not Wide screen (16:9) default)

▶ Video quality Full HD (1080p not High default 480p)

▶ Recording Menu bar Meeting Record Session ✔

▶ Export Recording

▶ Menu bar Meeting Manage Meeting Information

▶ New window Recordings check Tutorial Access Type button

▶ check Public check Allow viewers to download

▶ Download Recording

▶ New window Recordings check Tutorial Actions Download File
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Commentary 2
Computability

2 Computability

▶ Description of Turing Machine

▶ Turing Machine examples

▶ Computability, Decidability and Algorithms

▶ Non-computability — Halting Problem

▶ Reductions and non-computability

▶ Lambda Calculus (optional)

▶ Note that the Computability notes are here mainly for
reference since the Complexity notes refer to them

▶ This session is mainly on the Complexity topics
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Computability
Ideas of Computation

▶ The idea of an algorithm and what is effectively
computable

▶ Church-Turing thesis Every function that would
naturally be regarded as computable can be computed
by a deterministic Turing Machine. (Unit 7 Section 4)

▶ See Phil Wadler on computability theory performed as
part of the Bright Club at The Strand in Edinburgh,
Tuesday 28 April 2015
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Computability
Models of Computation

▶ In automata theory, a problem is the question of
deciding whether a given string is a member of some
particular language

▶ If Σ is an alphabet, and L is a language over Σ, that is
L ⊆ Σ∗, where Σ∗ is the set of all strings over the
alphabet Σ then we have a more formal definition of
decision problem

▶ Given a string w ∈ Σ∗, decide whether w ∈ L

▶ Example: Testing for a prime number — can be
expressed as the language Lp consisting of all binary
strings whose value as a binary number is a prime
number (only divisible by 1 or itself)

▶ See Hopcroft (2007, section 1.5.4)
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Automate Theory
Alphabets, Strings

▶ An Alphabet, Σ, is a finite, non-empty set of symbols.

▶ Binary alphabet Σ = {0, 1}

▶ Lower case letters Σ = {a, b, . . . , z}

▶ A String is a finite sequence of symbols from some
alphabet

▶ 01101 is a string from the Binary alphabet Σ = {0, 1}

▶ The Empty string, ϵ, contains no symbols

▶ Powers: Σk is the set of strings of length k with
symbols from Σ

▶ The set of all strings over an alphabet Σ is denoted Σ∗
▶ Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ . . .
▶ Question Does Σ0 = ∅ ? (∅ is the empty set)
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Automata Theory
Languages

▶ An Language, L, is a subset of Σ∗
▶ The set of binary numerals whose value is a prime

{10, 11, 101, 111, 1011, . . . }
▶ The set of binary numerals whose value is a square

{100, 1001, 10000, 11001, . . . }
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Computability
Church-Turing Thesis & Quantum Computing

▶ Church-Turing thesis Every function that would
naturally be regarded as computable can be computed
by a deterministic Turing Machine.

▶ physical Church-Turing thesis Any finite physical
system can be simulated (to any degree of
approximation) by a Universal Turing Machine.

▶ strong Church-Turing thesis Any finite physical
system can be simulated (to any degree of
approximation) with polynomial slowdown by a
Universal Turing Machine.

▶ Shor’s algorithm (1994) — quantum algorithm for
factoring integers — an NP problem that is not known
to be P — also not known to be NP-complete and we
have no proof that it is not in P

▶ Reference: Section 4 of Unit 6 & 7 Reader
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Computability
Turing Machine

▶ Finite control which can be in any of a finite number of
states

▶ Tape divided into cells, each of which can hold one of a
finite number of symbols

▶ Initially, the input, which is a finite-length string of
symbols in the input alphabet, is placed on the tape

▶ All other tape cells (extending unbounded left and
right) hold a special symbol called blank

▶ A tape head which initially is over the leftmost input
symbol

▶ A move of the Turing Machine depends on the state
and the tape symbol scanned

▶ A move can change state, write a symbol in the current
cell, move left, right or stay

▶ References: Hopcroft (2007, page 326), Unit 6 & 7
Reader (section 5.3)
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Turing Machine Diagram
Turing Machine Diagram

. . . b b a a a a . . . I/O Tape

q0q1

q2

q3 . . .

qn

Finite Control

q1

Reading and Writing Head
(moves in both directions)
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Computability
Turing Machine notation

▶ Q finite set of states of the finite control

▶ Σ finite set of input symbols (M269 S)

▶ Γ complete set of tape symbols Σ ⊂ Γ
▶ δ Transition function (M269 instructions, I)
δ :: Q × Γ → Q × Γ × {L, R, S}
δ(q, X ) , (p, Y , D)

▶ δ(q, X ) takes a state, q and a tape symbol, X and returns
(p, Y , D) where p is a state, Y is a tape symbol to
overwrite the current cell, D is a direction, Left, Right or
Stay

▶ q0 start state q0 ∈ Q

▶ B blank symbol B ∈ Γ and B ̸∈ Σ
▶ F set of final or accepting states F ⊆ Q
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Turing Machine Examples
Turing Machine Simulators

▶ Morphett’s Turing machine simulator — the examples
below are adapted from here

▶ Ugarte’s Turing machine simulator

▶ XKCD A Bunch of Rocks — XKCD Explanation

Image below (will need expanding to be readable)

▶ The term state is used in two different ways:

The value of the Finite Control

The overall configuration of Finite Control and current
contents of the tape

See Turing Machine: State

will lead to some confusion
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Turing Machine Examples
Meta-Exercise

▶ For each of the Turing Machine Examples below,
identify

(Q,Σ, Γ ,δ, q0, B, F )
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Turing Machine Examples
The Successor Function

▶ Input binary representation of numeral n

▶ Output binary representation of n + 1

▶ Example 1010, 1011 and 1011 , 1100

▶ Initial cell: leftmost symbol of n

▶ Strategy

▶ Stage A make the rightmost cell the current cell

▶ Stage B Add 1 to the current cell.

▶ If the current cell is 0 then replace it with 1 and go to
stage C

▶ If the current cell is 1 replace it with 0 and go to stage B
and move Left

▶ If the current cell is blank, replace it by 1 and go to
stage C

▶ Stage C Finish up by making the leftmost cell current
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Turing Machine Examples
The Successor Function (2)

▶ Represent the Turing Machine program as a list of
quintuples (q, X , p, Y , D)

▶ Stage A

(q0, 0, q0, 0, R)

(q0, 1, q0, 1, R)

(q0, B, q1, B, L)

▶ Stage B

(q1, 0, q2, 1, S)

(q1, 1, q1, 0, L)

(q1, B, q2, 1, S)

▶ Stage C

(q2, 0, q2, 0, L)

(q2, 1, q2, 1, L)

(q2, B, qh, B, R)
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Turing Machine Examples
The Successor Function (2a)

▶ Exercise Translate the quintuples (q, X , p, Y , D) into
English and check they are the same as the specification

▶ Stage A make the rightmost cell the current cell

(q0, 0, q0, 0, R)

If state q0 and read symbol 0 then stay in state q0 write 0, move R

(q0, 1, q0, 1, R)

If state q0 and read symbol 1 then stay in state q0 write 1, move R

(q0, B, q1, B, L)

If state q0 and read symbol B then state q1 write B, move L
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Turing Machine Examples
The Successor Function (2b)

▶ Exercise Translate the quintuples (q, X , p, Y , D) into
English

▶ Stage B Add 1 to the current cell.

(q1, 0, q2, 1, S)

If state q1 and read symbol 0 then state q2 write 1, stay

(q1, 1, q1, 0, L)

If state q1 and read symbol 1 then state q1 write 0, move L

(q1, B, q2, 1, S)

If state q1 and read symbol B then state q2 write 1, stay
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Turing Machine Examples
The Successor Function (2c)

▶ Exercise Translate the quintuples (q, X , p, Y , D) into
English

▶ Stage C Finish up by making the leftmost cell current

(q2, 0, q2, 0, L)

If state q2 and read symbol 0 then state q2 write 0, move L

(q2, 1, q2, 1, L)

If state q2 and read symbol 1 then state q2 write 0, move L

(q2, B, qh, B, R)

If state q2 and read symbol B then state qh write B, move R HALT

▶ Notice that the Turing Machine feels like a series of if
... then or case statements inside a while loop
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Turing Machine Examples
The Successor Function (2d) — Meta-Exercise

▶ Identify (Q,Σ, Γ ,δ, q0, B, F )
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Turing Machine Examples
The Successor Function (2e) — Meta-Exercise

▶ Identify (Q,Σ, Γ ,δ, q0, B, F )
▶ Q = {q0, q1, q2, qh}
▶ q0 finding the rightmost symbol
▶ q1 add 1 to current cell
▶ q2 move to leftmost cell
▶ qh finish
▶ Σ = {0, 1}
▶ Γ = Σ∪ {B}
▶ δ :: Q × Γ → Q × Γ × {L, R, S}

δ(q, X ) , (p, Y , D)

δ is represented as {(q,X,p,Y,D)}

equivalent to {((q, X ), (p, Y , D))} set of pairs
▶ q0 start with leftmost symbol under head, state moving

to rightmost symbol
▶ B is a visible space
▶ F = {qh}
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Turing Machine Examples
The Successor Function (3)

▶ Sample Evaluation 11 , 100

▶ Representation · · ·BX1X2 · · ·Xi–1qXiXi+1 · · ·XnB · · ·
q011

1q01

11q0B

1q11

q110

q1B00

q2100

q2B100

qh100

▶ Exercise evaluate 1011 , 1100
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Turing Machine Examples
Instantaneous Description

▶ Representation · · ·BX1X2 · · ·Xi–1qXiXi+1 · · ·XnB · · ·
▶ q is the state of the TM

▶ The head is scanning the symbol Xi

▶ Leading or trailing blanks B are (usually) not shown
unless the head is scanning them

▶ ⊢M denotes one move of the TM M

▶ ⊢∗M denotes zero or more moves

▶ ⊢ will be used if the TM M is understood

▶ If (q, Xi, p, Y , L) denotes a TM move then

X1 · · ·Xi–1qXi · · ·Xn ⊢M X1 · · ·Xi–2pXi–1Y · · ·Xn
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Turing Machine Examples
The Binary Palindrome Function

▶ Input binary string s

▶ Output YES if palindrome, NO otherwise

▶ Example 1010, NO and 1001 , YES

▶ Initial cell: leftmost symbol of s

▶ Strategy

▶ Stage A read the leftmost symbol

▶ If blank then accept it and go to stage D otherwise
erase it

▶ Stage B find the rightmost symbol

▶ If the current cell matches leftmost recently read then
erase it and go to stage C

▶ Otherwise reject it and go to stage E

▶ Stage C return to the leftmost symbol and stage A

▶ Stage D print YES and halt

▶ Stage E erase the remaining string and print NO
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Turing Machine Examples
The Binary Palindrome Function (2)

▶ Represent the Turing Machine program as a list of
quintuples (q, X , p, Y , D)

▶ Stage A read the leftmost symbol

(q0, 0, q1o , B, R)

(q0, 1, q1i , B, R)

(q0, B, q5, B, S)

▶ Stage B find rightmost symbol

(q1o , B, q2o , B, L)

(q1o ,∗, q1o ,∗, R) * is a wild card, matches anything

(q1i , B, q2i , B, L)

(q1i ,∗, q1i ,∗, R)
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Turing Machine Examples
The Binary Palindrome Function (3)

▶ Stage B check

(q2o , 0, q3, B, L)

(q2o , B, q5, B, S)

(q2o ,∗, q6,∗, S)

(q2i , 1, q3, B, L)

(q2i , B, q5, B, S)

(q2i ,∗, q6,∗, S)

▶ Stage C return to the leftmost symbol and stage A

(q3, B, q5, B, S)

(q3,∗, q4,∗, L)

(q4, B, q0, B, R)

(q4,∗, q4,∗, L)
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Turing Machine Examples
The Binary Palindrome Function (4)

▶ Stage D accept and print YES

(q5,∗, q5a , Y , R)

(q5a ,∗, q5b , E, R)

(q5b ,∗, q7, S, S)

▶ Stage E erase the remaining string and print NO

(q6, B, q6a , N, R)

(q6,∗, q6, B, L)

(q6a ,∗, q7, O, S)

▶ Finish

(q7, B, qh, B, R)

(q7,∗, q7,∗, L)
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Turing Machine Examples
The Binary Palindrome Function (3a) — Meta-Exercise

▶ Identify (Q,Σ, Γ ,δ, q0, B, F )
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Turing Machine Examples
The Binary Palindrome Function (3b) — Meta-Exercise

▶ Identify (Q,Σ, Γ ,δ, q0, B, F )
▶ Q = {q0, q1o , q1i , q2o , q2i , q3, q4, q5, q5a , q5b , q6, q6a , q7, qh}

▶ q0 read leftmost symbol
▶ q1o , q1i find rightmost symbol looking for 0 or 1
▶ q2o , q2i check, confirm or reject
▶ q3, q4 check finish or move to start
▶ q5, q6, q7 print YES or NO and finish
▶ qh finish
▶ Σ = {0, 1}
▶ Γ = Σ∪ {B, Y , E, S, N, O}
▶ δ :: Q × Γ → Q × Γ × {L, R, S}
δ(q, X ) , (p, Y , D)
δ is represented as {(q,X,p,Y,D)}
equivalent to {((q, X ), (p, Y , D))} set of pairs

▶ Start with leftmost symbol under head, state q0
▶ B is a visible space
▶ F = {qh}
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Turing Machine Examples
The Binary Palindrome Function (4)

▶ Sample Evaluation 101 , YES

q0101 ⊢ Bq1i 01 ⊢ B0q1i 1 ⊢ B01q1i B

⊢ B0q2i 1

⊢ Bq30B ⊢ q4B0B

⊢ Bq00B ⊢ BBq1oB

⊢ Bq2oBB

⊢ Bq5BB ⊢ Yq5aB ⊢ YEq5bB ⊢ YEq7S

⊢ Yq7ES ⊢ Bq7YES ⊢ q7BYES ⊢ qhYES

▶ Exercise Evaluate 110 , NO
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Turing Machine Examples
Binary Addition Example

▶ Input two binary numerals separated by a single space
n1 n2

▶ Output binary numeral which is the sum of the inputs

▶ Example 110110 + 101011 , 1100001

▶ Initial cell: leftmost symbol of n1 n2

▶ Insight look at the arithmetic algorithm

1 1 0 1 1 0
1 0 1 0 1 1

1 1 0 0 0 0 1

▶ Discussion how can we overwrite the first number with
the result and remember how far we have gone ?
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Turing Machine Examples
Binary Addition Example — Arithmetic Reinvented

1 1 0 1 1 0
1 0 1 0 1 1

1 1 0 1 1 y
1 0 1 0 1

1 1 1 0 x y
1 0 1 0

1 1 1 x x y
1 0 1

1 0 0 x x x y
1 0

1 0 x x x x y
1

1 y x x x x y

1 1 0 0 0 0 1
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Turing Machine Examples
Binary Addition Example (2)

▶ Input two binary numerals separated by a single space
n1 n2

▶ Output binary numeral which is the sum of the inputs

▶ Example 110110 + 101011 , 1100001

▶ Initial cell: leftmost symbol of n1 n2

▶ Strategy

▶ Stage A find the rightmost symbol

If the symbol is 0 erase and go to stage Bx

If the symbol is 1 erase go to stage By

If the symbol is blank go to stage F

dealing with each digit in n2

if no further digits in n2 go to final stage

▶ Stage Bx Move left to a blank go to stage Cx

▶ Stage By Move left to a blank go to stage Cy

moving to n1
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Turing Machine Examples
Binary Addition Example (3)

▶ Stage Cx Move left to find first 0, 1 or B

Turn 0 or B to X, turn 1 to Y and go to stage A

adding 0 to a digit finalises the result (no carry one)

▶ Stage Cy Move left to find first 0, 1 or B

Turn 0 or B to 1 and go to stage D

Turn 1 to 0, move left and go to stage Cy

dealing with the carry one in school arithmetic

▶ Stage D move right to X, Y or B and go to stage E

▶ Stage E replace 0 by X, 1 by Y, move right and go to
Stage A

finalising the value of a digit resulting from a carry

▶ Stage F move left and replace X by 0, Y by 1 and at B
halt
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Turing Machine Examples
Binary Addition Example (4)

▶ Represent the Turing Machine program as a list of
quintuples (q, X , p, Y , D)

▶ Stage A find the rightmost symbol

(q0, B, q1, B, R)

(q0,∗, q0,∗, R) * is a wild card, matches anything

(q1, B, q2, B, L)

(q1,∗, q1,∗, R)

(q2, 0, q3x , B, L)

(q2, 1, q3y , B, L)

(q2, B, q7, B, L)
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Turing Machine Examples
Binary Addition Example (5)

▶ Stage Bx move left to blank

(q3x , B, q4x , B, L)

(q3x ,∗, q3x ,∗, L)

▶ Stage By move left to blank

(q3y , B, q4y , B, L)

(q3y ,∗, q3y ,∗, L)

▶ Stage Cx move left to 0, 1, or blank

(q4x , 0, q0, x, R)

(q4x , 1, q0, y, R)

(q4x , B, q0, x, R)

(q4x ,∗, q4x ,∗, L)
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Turing Machine Examples
Binary Addition Example (6)

▶ Stage Cy move left to 0, 1, or blank

(q4y , 0, q5, 1, S)

(q4y , 1, q4y , 0, L)

(q4y , B, q5, 1, S)

(q4y ,∗, q4y ,∗, L)

▶ Stage D move right to x, y or B

(q5, x, q6, x, L)

(q5, y, q6, y, L)

(q5, B, q6, B, L)

(q5,∗, q5,∗, R)

▶ Stage E replace 0 by x, 1 by y

(q6, 0, q0, x, R)

(q6, 1, q0, y, R)
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Binary Addition Example (7)

▶ Stage F replace x by 0, y by 1

(q7, x, q7, 0, L)

(q7, y, q7, 1, L)

(q7, B, qh, B, R)

(q7,∗, q7,∗, L)

▶ Exercise Evaluate 11 + 10 , 101
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Turing Machine Examples
The Binary Addition Function (7a) — Meta-Exercise

▶ Identify (Q,Σ, Γ ,δ, q0, B, F )

58/246



M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Turing Machine Examples
The Binary Addition Function (7b) — Meta-Exercise

▶ Identify (Q,Σ, Γ ,δ, q0, B, F )
▶ Q = {q0, q1, q2, q3x , q3y , q4x , q4y , q5, q6, q7, qh}

▶ q0, q1, q2 find rightmost symbol of second number
▶ q3x , q3y move left to inter-number blank
▶ q4x , q4y move left to 0, 1 or blank
▶ q5 move right to x, y or B
▶ q6 replace 0 by x, 1 by y and move right
▶ q7 replace x by 0, y by 1 and move left
▶ qh finish
▶ Σ = {0, 1}
▶ Γ = Σ∪ {B, x, y}
▶ δ :: Q × Γ → Q × Γ × {L, R, S}
δ(q, X ) , (p, Y , D)
δ is represented as {(q, X , p, Y , D)}
equivalent to {((q, X ), (p, Y , D))} set of pairs

▶ Start with leftmost symbol under head, state q0
▶ B is a visible space
▶ F = {qh}
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Turing Machine Examples
Binary Addition Example (8a)

▶ Exercise Evaluate 11 + 10 , 101
▶ Stage A find the rightmost symbol

BBq011B10B Note space symbols B at start and end

⊢ BB1q01B10B

⊢ BB11q0B10B

⊢ BB11Bq110B

⊢ BB11B1q10B

⊢ BB11B10q1B

⊢ BB11B1q20B

⊢ BB11Bq3x 1BB
▶ Stage Bx move left to blank

⊢ B11q3x B1BB
▶ Stage Cx move left to 0, 1, or blank

⊢ BB1q4x 1B1BB

⊢ BB1Yq0B1BB
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Turing Machine Examples
Binary Addition Example (8b)

▶ Exercise Evaluate 11 + 10 , 101 (contd)
▶ Stage A find the rightmost symbol
⊢ BB1BYBq11BB
⊢ BB1YB1q1BB
⊢ BB1YBq21BB
⊢ BB1Yq3y BBBB
▶ Stage Cy move left to 0, 1, or blank
⊢ BB1q4y YBBBB
⊢ BBq4y 1YBBBB
⊢ Bq4y B0YBBBB
⊢ Bq510YBBBB
▶ Stage D move right to x, y or B
⊢ Bq50YBBBB
⊢ B0q5YBBBB
⊢ Bq60YBBBB
▶ Stage E replace 0 by x, 1 by y
⊢ B1Xq0YBBBB
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Turing Machine Examples
Binary Addition Example (8c)

▶ Exercise Evaluate 11 + 10 , 101 (contd)

▶ Stage A find the rightmost symbol

⊢ B1XYq0BBBB

⊢ B1XYBq1BBB

⊢ B1XYq2BBBB

⊢ B1Xq7YBBBB

▶ Stage F replace x by 0, y by 1

⊢ B1q7X1BBBB

⊢ Bq7101BBBB

⊢ Bq7B101BBBB

⊢ Bqh101BBBB

▶ This is mimicking what you learnt to do on paper as a
child! Real step-by-step instructions

▶ See Morphett’s Turing machine simulator for more
examples (takes too long by hand!)
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Computability
Universal Turing Machine

▶ Universal Turing Machine, U, is a Turing Machine that
can simulate any arbitrary Turing machine, M

▶ Achieves this by encoding the transition function of M
in some standard way

▶ The input to U is the encoding for M followed by the
data for M

▶ See Turing machine examples
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Computability
Decidability

▶ Decidable — there is a TM that will halt with yes/no for
a decision problem — that is, given a string w over the
alphabet of P the TM with halt and return yes.no the
string is in the language P (same as recursive in
Recursion theory — old use of the word)

▶ Semi-decidable — there is a TM will halt with yes if
some string is in P but may loop forever on some inputs
(same as recursively enumerable) — Halting Problem

▶ Highly-undecidable — no outcome for any input —
Totality, Equivalence Problems
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Computability
Undecidable Problems

▶ Halting problem — the problem of deciding, given a
program and an input, whether the program will
eventually halt with that input, or will run forever —
term first used by Martin Davis 1952

▶ Entscheidungsproblem — the problem of deciding
whether a given statement is provable from the axioms
using the rules of logic — shown to be undecidable by
Turing (1936) by reduction from the Halting problem to
it

▶ Type inference and type checking in the second-order
lambda calculus (important for functional
programmers, Haskell, GHC implementation)

▶ Undecidable problem — see link to list

65/246

http://en.wikipedia.org/wiki/Halting_problem
http://en.wikipedia.org/wiki/Entscheidungsproblem
http://en.wikipedia.org/wiki/System_F
http://en.wikipedia.org/wiki/Undecidable_problem


M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Computability
Halting Problem — Sketch Proof (1)

▶ Halting problem — is there a program that can
determine if any arbitrary program will halt or continue
forever ?

▶ Assume we have such a program (Turing Machine)
h(f,x) that takes a program f and input x and
determines if it halts or not

h( f ,x )
= i f f (x ) runs forever

return True
else

return False

▶ We shall prove this cannot exist by contradiction
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Computability
Halting Problem — Sketch Proof (2)

▶ Now invent two further programs:
▶ q(f) that takes a program f and runs h with the input

to f being a copy of f
▶ r(f) that runs q(f) and halts if q(f) returns True,

otherwise it loops

q( f )
= h( f , f )

r ( f )
= i f q( f )

return
else

while True : continue

▶ What happens if we run r(r) ?
▶ If it loops, q(r) returns True and it does not loop —

contradiction.
▶ Scooping theLoop Snooper: A proof that the Halting

Problem is undecidable Geoffrey K Pullum (21 May
2024)
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Computability
Why undecidable problems must exist

▶ A problem is really membership of a string in some
language

▶ The number of different languages over any alphabet of
more than one symbol is uncountable

▶ Programs are finite strings over a finite alphabet (ASCII
or Unicode) and hence countable.

▶ There must be an infinity (big) of problems more than
programs.

▶ Computational problem — defined by a function

▶ Computational problem is computable if there is a
Turing machine that will calculate the function.
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Computability
Computability and Terminology (1)

▶ The idea of an algorithm dates back 3000 years to
Euclid, Babylonians. . .

▶ In the 1930s the idea was made more formal: which
functions are computable?

▶ A function is a set of pairs
f = {(x, f (x)) : x ∈ X ∧ f (x) ∈ Y } with the function
property

▶ Function property: (a, b) ∈ f ∧ (a, c) ∈ f ⇒ b == c

▶ Function property: Same input implies same output

▶ Note that maths notation is deeply inconsistent here —
see Function and History of the function concept

▶ What do we mean by computing a function — an
algorithm ?

69/246

http://en.wikipedia.org/wiki/Computable_function
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/History_of_the_function_concept


M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Functions
Relation and Rule

▶ The idea of function as a set of pairs (Binary relation)
with the function property (each element of the domain
has at most one element in the co-domain) is fairly
recent — see History of the function concept

▶ School maths presents us with function as rule to get
from the input to the output

▶ Example: the square function: square x = x × x

▶ But lots of rules (or algorithms) can implement the
same function

▶ square1 x = x^2

▶ square2 x =

x times︷ ︸︸ ︷
x + · · · + x if x is integer

70/246

https://en.wikipedia.org/wiki/Binary_relation
https://en.wikipedia.org/wiki/History_of_the_function_concept


M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Computability
Computability and Terminology (2)

▶ In the 1930s three definitions:

▶ λ-Calculus, simple semantics for computation — Alonzo
Church

▶ General recursive functions — Kurt Gödel

▶ Universal (Turing) machine — Alan Turing
▶ Terminology:

▶ Recursive, recursively enumerable — Church, Kleene
▶ Computable, computably enumerable — Gödel, Turing
▶ Decidable, semi-decidable, highly undecidable
▶ In the 1930s, computers were human
▶ Unfortunate choice of terminology

▶ Turing and Church showed that the above three were
equivalent

▶ Church-Turing thesis — function is intuitively
computable if and only if Turing machine computable
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Computability
Reducing one problem to another

▶ To reduce problem P1 to P2, invent a construction that
converts instances of P1 to P2 that have the same
answer. That is:
▶ any string in the language P1 is converted to some string

in the language P2
▶ any string over the alphabet of P1 that is not in the

language of P1 is converted to a string that is not in the
language P2

▶ With this construction we can solve P1
▶ Given an instance of P1, that is, given a string w that

may be in the language P1, apply the construction
algorithm to produce a string x

▶ Test whether x is in P2 and give the same answer for w
in P1
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Computability
Problem Reduction

▶ Problem Reduction — Ordinary Example

▶ Want to phone Alice but don’t have her number

▶ You know that Bill has her number

▶ So reduce the problem of finding Alice’s number to the
problem of getting hold of Bill
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Computability
Direction of Reduction

▶ The direction of reduction is important

▶ If we can reduce P1 to P2 then (in some sense) P2 is at
least as hard as P1 (since a solution to P2 will give us a
solution to P1)

▶ So, if P2 is decidable then P1 is decidable

▶ To show a problem is undecidable we have to reduce
from an known undecidable problem to it

▶ ∀x(dpP1 (x) = dpP2
(reduce(x)))

▶ Since, if P1 is undecidable then P2 is undecidable
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Reductions & Non-Computable
Reductions

A1

input outputf A2
f (input)

▶ A reduction of problem P1 to problem P2
▶ transforms inputs to P1 into inputs to P2
▶ runs algorithm A2 (which solves P2) and
▶ interprets the outputs from A2 as answers to P1

▶ More formally: A problem P1 is reducible to a problem
P2 if there is a function f that takes any input x to P1
and transforms it to an input f (x) of P2

such that the solution of P2 on f (x) is the solution of P1
on x
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Reductions & Non-Computible
Example: Squaring a Matrix

A1

M M2f A2
(M, M)

▶ Given an algorithm (A2) for matrix multiplication (P2)
▶ Input: pair of matrices, (M1, M2)
▶ Output: matrix result of multiplying M1 and M2

▶ P1 is the problem of squaring a matrix
▶ Input: matrix M
▶ Output: matrix M2

▶ Algorithm A1 has

f (M) = (M, M)

uses A2 to calculate M ×M = M2
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Reductions & Non-Computable
Non-Computable Problems

A1

input outputf A2
f (input)

▶ If P2 is computable (A2 exists) then P1 is computable (f
being simple or polynomial)

▶ Equivalently If P1 is non-computable then P2 is
non-computable

▶ Exercise: show B → A ≡ ¬A → ¬B

77/246



M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Reductions & Non-Computable
Contrapositive

▶ Proof by Contrapositive

▶ B → A ≡ ¬B ∨ A by truth table or equivalences

≡ ¬(¬A)∨¬B commutativity and negation laws

≡ ¬A → ¬B equivalences

▶ Common error: switching the order round
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Reductions & Non-Computable
Totality Problem

HP

(P, x) YES/NOf TP
Q

▶ Totality Problem
▶ Input: program Q
▶ Output: YES if Q terminates for all inputs else NO

▶ Assume we have algorithm TP to solve the Totality
Problem

▶ Now reduce the Halting Problem to the Totality Problem
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Reductions & Non-Computable
Totality Problem

HP

(P, x) YES/NOf TP
Q

▶ Define f to transform inputs to HP to TP pseudo-Python

def f(P,x) :
def Q(y):
# ignore y
P(x)

return Q

▶ Run TP on Q
▶ If TP returns YES then P halts on x
▶ If TP returns NO then P does not halt on x

▶ We have solved the Halting Problem — contradiction
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Reductions & Non-Computable
Negative Value Problem

HP

(P, x) YES/NOf NVP
(Q, v)

▶ Negative Value Problem
▶ Input: program Q which has no input and variable v

used in Q
▶ Output: YES if v ever gets assigned a negative value else

NO

▶ Assume we have algorithm NVP to solve the Negative
Value Problem

▶ Now reduce the Halting Problem to the Negative Value
Problem
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Reductions & Non-Computable
Negative Value Problem

HP

(P, x) YES/NOf NVP
(Q, v)

▶ Define f to transform inputs to HP to NVP pseudo-Python

def f(P,x) :
def Q(y):
# ignore y
P(x)
v = -1

return (Q,var(v))

▶ Run NVP on (Q, var(v)) var(v) gets the variable name

▶ If NVP returns YES then P halts on x
▶ If NVP returns NO then P does not halt on x

▶ We have solved the Halting Problem — contradiction
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Reductions & Non-Computable
Squaring Function Problem

HP

(P, x) YES/NOf SFP
Q

▶ Squaring Function Problem
▶ Input: program Q which takes an integer, y
▶ Output: YES if Q always returns the square of y else NO

▶ Assume we have algorithm SFP to solve the Squaring
Function Problem

▶ Now reduce the Halting Problem to the Squaring
Function Problem
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Reductions & Non-Computable
Squaring Function Problem

HP

(P, x) YES/NOf SFP
Q

▶ Define f to transform inputs to HP to SFP pseudo-Python

def f(P,x) :
def Q(y):
P(x)
return y * y

return Q

▶ Run SFP on Q
▶ If SFP returns YES then P halts on x
▶ If SFP returns NO then P does not halt on x

▶ We have solved the Halting Problem — contradiction
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Reductions & Non-Computable
Equivalence Problem

TP

P YES/NOf EP
(P1, P2)

▶ Equivalence Problem
▶ Input: two programs P1 and P2
▶ Output: YES if P1 and P2 solve the same problem (same

output for same input) else NO

▶ Assume we have algorithm EP to solve the Equivalence
Problem

▶ Now reduce the Totality Problem to the Equivalence
Problem
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Reductions & Non-Computable
Equivalence Problem

TP

P YES/NOf EP
(P1, P2)

▶ Define f to transform inputs to TP to EP pseudo-Python

def f(P) :
def P1(x):
P(x)
return "Same string"

def P2(x)
return "Same string"

return (P1,P2)

▶ Run EP on (P1, P2)
▶ If EP returns YES then P halts on all inputs
▶ If EP returns NO then P does not halt on all inputs

▶ We have solved the Totality Problem — contradiction

86/246



M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Lambda Calculus

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Reductions & Non-Computable
Rice’s Theorem

A1

input outputf A2
f (input)

▶ Rice’s Theorem all non-trivial, semantic properties of
programs are undecidable. H G Rice 1951 PhD Thesis

▶ Equivalently: For any non-trivial property of partial
functions, no general and effective method can decide
whether an algorithm computes a partial function with
that property.

▶ A property of partial functions is called trivial if it holds
for all partial computable functions or for none.
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Reductions & Non-Computable
Rice’s Theorem

▶ Rice’s Theorem and computability theory
▶ Let S be a set of languages that is nontrivial, meaning

▶ there exists a Turing machine that recognizes a
language in S

▶ there exists a Turing machine that recognizes a
language not in S

▶ Then, it is undecidable to determine whether the
language recognized by an arbitrary Turing machine
lies in S.

▶ This has implications for compilers and virus checkers

▶ Note that Rice’s theorem does not say anything about
those properties of machines or programs that are not
also properties of functions and languages.

▶ For example, whether a machine runs for more than
100 steps on some input is a decidable property, even
though it is non-trivial.
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Lambda Calculus
Motivation

▶ Lambda Calculus is a formal system in mathematical
logic for expressing computation based on function
abstraction and application using variable binding and
substitution

▶ Lambda calculus is Turing complete — it can simulate
any Turing machine

▶ Introduced by Alonzo Church in 1930s

▶ Basis of functional programming languages — Lisp,
Scheme, ISWIM, ML, SASL, KRC, Miranda, Haskell, Scala,
F#. . .

▶ Note this is not part of M269 but may help understand
ideas of computability
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Functions
Binding and Substitution

▶ School maths introduces functions as

f (x) = 3x2 + 4x + 5

▶ Substitution: f (2) = 3× 22 + 4× 2 + 5 = 25

▶ Generalise: f (x) = ax2 + bx + c

▶ What is wrong with the following:

▶ f (a) = a× a2 + b × a + c

▶ The ideas of free and bound variables and substitution
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Expressions
Evaluation Strategies (a)

▶ In evaluating an expression we have choices about the
order in which we evaluate subterms

▶ Some choices may involve more work than others but
the Church-Rosser theorem ensures that if the
evaluation terminates then all choices get to the same
answer

▶ The second edition of a famous book on Functional
programming — Bird (1998, Ex 1.2.2, page 6)
Introduction to Functional Programming using Haskell
— had the following exercise:

▶ How many ways can you evaluate (3 + 7)2

List the evaluations and assumptions

▶ The first edition — Bird and Wadler (1988, Ex 1.2.1,
page 6) Introduction to Functional Programming — had
the exercise:

▶ How many ways can you evaluate
(
(3 + 7)2

)2
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Expressions
Evaluation Strategies (b)

▶ How many ways can you evaluate (3 + 7)2

List the evaluations and assumptions

▶ Answer 3 ways

▶ Reducible expressions (redexes)

x2 → x × x where x is a term

a + b where a and b are numbers

x × y where x and y are numbers

1 [sqr (3+7),((3+7)*(3+7)),((3+7)*10),(10*10),100]
2 [sqr (3+7),((3+7)*(3+7)),(10*(3+7)),(10*10),100]
3 [sqr (3+7),sqr 10,(10*10),100]

▶ The assumed redexes do not include distributive laws

(a + b)× (x + y) → a× x + a× y + b × x + b × y

▶ This would increase the number of different evaluations
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Expressions
Evaluation Strategies (c)

▶ How many ways can you evaluate
(
(3 + 7)2

)2

▶ Answer 547 ways

1[sqr sqr (3+7),(sqr (3+7)*sqr (3+7)),(sqr (3+7)*((3+7)*(3+7))), (sqr (3+7)*((3+7)*10)),(sqr (3+7)*(10*10)), (sqr (3+7)*100),(((3+7)*(3+7))*100),(((3+7)*10)*100), ((10*10)*100),(100*100),10000]
2[sqr sqr (3+7),(sqr (3+7)*sqr (3+7)),(sqr(3+7)*((3+7)*(3+7))), (sqr (3+7)*((3+7)*10)),(sqr (3+7)*(10*10)), (sqr (3+7)*100),(((3+7)*(3+7))*100),((10*(3+7))*100), ((10*10)*100),(100*100),10000]

546[sqr sqr (3+7),sqr sqr 10,sqr (10*10), ((10*10)*(10*10)),(100*(10*10)),(100*100),10000]
547[sqr sqr (3+7),sqr sqr 10,sqr (10*10),sqr 100,(100*100),10000]

▶ Enumerating all 547 ways may have taken some
concentration
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Expressions
Evaluation Strategies (d)

▶ The actual Evaluation strategy used by a particular
programming language implementation may have
optimisations which make an evaluation which looks
costly to be somewhat cheaper

▶ For example, the Haskell implementation GHC
optimises the evaluation of common subexpressions so
that (3+7) will be evaluated only once

1[sqr sqr (3+7),(sqr (3+7)*sqr (3+7)),(sqr (3+7)*((3+7)*(3+7))), (sqr (3+7)*((3+7)*10)),(sqr (3+7)*(10*10)), (sqr (3+7)*100),(((3+7)*(3+7))*100),(((3+7)*10)*100), ((10*10)*100),(100*100),10000]
2[sqr sqr (3+7),(sqr (3+7)*sqr (3+7)),(sqr(3+7)*((3+7)*(3+7))), (sqr (3+7)*((3+7)*10)),(sqr (3+7)*(10*10)), (sqr (3+7)*100),(((3+7)*(3+7))*100),((10*(3+7))*100), ((10*10)*100),(100*100),10000]
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Lambda Calculus
Optional Topic

▶ M269 Unit 6/7 Reader Logic and the Limits of
Computation alludes to other formalisations with equal
power to a Turing Machine (pages 81 and 87)

▶ The Reader mentions Alonzo Church and his 1930s
formalism (page 87, but does not give any detail)

▶ The notes in this section are optional and for
comparison with the Turing Machine material

▶ Turing machine: explicit memory, state and implicit
loop and case/if statement

▶ Lambda Calculus: function definition and application,
explicit rules for evaluation (and transformation) of
expressions, explicit rules for substitution (for function
application)

▶ Lambda calculus reduction workbench

▶ Lambda Calculus Calculator
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Lambda Calculus
Lambda Terms

▶ A variable, x, is a lambda term

▶ If M is a lambda term and x is a variable, then (λx.M) is
a lambda term — a lambda abstraction or function
definition

▶ If M and N are lambda terms, the (M N) is lambda term
— an application

▶ Nothing else is a lambda term
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Lambda Calculus
Lambda Terms — Notational Conveniences

▶ Outermost parentheses are omitted (M N) ≡ M N

▶ Application is left associative ((M N) P) ≡ M N P

▶ The body of an abstraction extends as far right as
possible, subject to scope limited by parentheses

▶ λx.M N ≡ λx.(M N) and not (λx.M) N

▶ λx.λy.λz.M ≡ λx y z.M
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Lambda Calculus
Lambda Calculus Semantics

▶ What do we mean by evaluating an expression ?

▶ To evaluate (λx.M)N

▶ Evaluate M with x replaced by N

▶ This rule is called β-reduction

▶ (λx.M)N →
β

M[x := N]

▶ M[x := N] is M with occurrences of x replaced by N

▶ This operation is called substitution — see rules below
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Lambda Calculus
β-Reduction Examples

▶ (λx.x)z → z

▶ (λx.y)z → y

▶ (λx.x y)z → z y

a function that applies its argument to y

▶ (λx.x y)(λz.z) → (λz.z)y → y

▶ (λx.λy.x y)z → λy.z y

A curried function of two arguments — applies first
argument to second

▶ currying replaces f (x, y) with (f x)y — nice notational
convenience — gives partial application for free
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Lambda Calculus
Substitution

▶ To define substitution use recursion on the structure of
terms

▶ x[x := N] ≡ N

▶ y[x := N] ≡ y

▶ (P Q)[x := N] ≡ (P[x := N]) (Q[x := N])

▶ (λx.M)[x := N] = λx.M

In (λx.M), the x is a formal parameter and thus a local
variable, different to any other

▶ (λy.M)[x := N] = what?

▶ Look back at the school maths example above — a
subtle point

100/246



M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Motivation

Lambda Terms

Substitution

Lambda Calculus
Encodings

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Lambda Calculus
Substitution (2)

▶ Renaming bound variables consistently is allowed

▶ λx.x ≡ λy.y ≡ λz.z

▶ λy.λx.y ≡ λz.λx.z

▶ This is called α-conversion

▶ (λx.λy.x y) y → (λx.λz.x z) y → λz.y z
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Lambda Calculus
Substitution (3)

▶ Bound and Free Variables

▶ BV (x) = �
▶ BV (λx.M) = BV (M)∪ {x}

▶ BV (M N) = BV (M)∪ BV (N)

▶ FV (x) = {x}

▶ FV (λx.M) = FV (M) – {x}

▶ FV (M N) = FV (M)∪ FV (N)

▶ The above is a formalisation of school maths

▶ A Lambda term with no free variables is said to be
closed — such terms are also called combinators — see
Combinator and Combinatory logic (Hankin, 2004,
page 10)

▶ α-conversion

▶ λx.M →
α
λy.M[x := y] if y ∉ FV (M)
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Lambda Calculus
Substitution (4)

▶ β-reduction final rule

▶ (λy.M)[x := N] = λy.M if x ∉ FV (M)

▶ (λy.M)[x := N] = λy.M[x := N]

if x ∈ FV (M) and y ∉ FV (N)

▶ (λy.M)[x := N] = λz.M[y := z][x := N]

if x ∈ FV (M) and y ∈ FV (N)

z is chosen to be first variable z ∉ FV (N M)

▶ This is why you cannot go f (a) when given

▶ f (x) = ax2 + bx + c

▶ School maths — but made formal
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Lambda Calculus
Rules Summary — Conversion

▶ α-conversion renaming bound variables

▶ λx.M →
α
λy.M[x := y] if y ∉ FV (M)

▶ β-conversion function application

▶ (λx.M)N →
β

M[x := N]

▶ η-conversion extensionality

▶ λx.F x →
η

F if x ∉ FV (F )
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Lambda Calculus
Rules Summary — Substitution

1. x[x := N] ≡ N

2. y[x := N] ≡ y

3. (P Q)[x := N] ≡ (P[x := N]) (Q[x := N])

4. (λx.M)[x := N] = λx.M

5. (λy.M)[x := N] = λy.M if x ∉ FV (M)

6. (λy.M)[x := N] = λy.M[x := N]

if x ∈ FV (M) and y ∉ FV (N)

7. (λy.M)[x := N] = λz.M[y := z][x := N]

if x ∈ FV (M) and y ∈ FV (N)

z is chosen to be first variable z ∉ FV (N M)
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Lambda Calculus
Lambda Calculus Encodings

▶ So what does this formalism get us ?

▶ The Lambda Calculus is Turing complete

▶ We can encode any computation (if we are clever
enough)

▶ Booleans and propositional logic

▶ Pairs

▶ Natural numbers and arithmetic

▶ Looping and recursion
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Lambda Calculus Encodings
Booleans and Propositional Logic

▶ True = λx.λy.x

▶ False = λx.λy.y

▶ IF a THEN b ELSE c ≡ a b c

▶ IF True THEN b ELSE c → (λx.λy.x) b c

▶ → (λy.b) c → b

▶ IF False THEN b ELSE c → (λx.λy.y) b c

▶ → (λy.y) c → c
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Lambda Calculus Encodings
Booleans and Propositional Logic (2)

▶ Not = λx.((x False)True)

▶ Not x = IF x THEN False ELSE True

▶ Exercise: evaluate Not True

▶ And = λx.λy.((x y) False)

▶ And x y = IF x THEN y ELSE False

▶ Exercise: evaluate And True False

▶ Or = λx.λy.((x True ) y)

▶ Or x y = IF x THEN True ELSE y

▶ Exercise: evaluate Or False True
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Lambda Calculus Encodings
Booleans and Propositional Logic (2) — Exercises

▶ Exercise: evaluate Not True

▶ → (λx.((x False) True)) True

▶ → (True False) True

▶ Could go straight to False from here, but we shall fill in
the detail

▶ → ((λx.λy.x) (λx.λy.y)) (λx.λy.x)

▶ → (λy.(λx.λy.y)) (λx.λy.x)

▶ → (λx.λy.y) ≡ False

▶ Exercise: evaluate And True False

▶ →(IF x THEN y ELSE False) True False

▶ →(IF True THEN False ELSE False) →False

▶ Exercise: evaluate Or False True

▶ →(IF x THEN True ELSE y) False True

▶ →(IF False THEN True ELSE True) →True
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Lambda Calculus Encodings
Natural Numbers — Church Numerals

▶ Encoding of natural numbers

▶ 0 = λf .λy.y

▶ 1 = λf .λy.f y

▶ 2 = λf .λy.f (f y)

▶ 3 = λf .λy.f (f (f y))

▶ Successor Succ = λz.λf .λy.f (z f y)

▶ Succ 0 = (λz.λf .λy.f (z f y))(λf .λy.y)

▶ → λf .λy.f ((λf .λy.y) f y)

▶ → λf .λy.f ((λy.y) y)

▶ → λf .λy.f y = 1

110/246



M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus

Motivation

Lambda Terms

Substitution

Lambda Calculus
Encodings

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

Lambda Calculus Encodings
Natural Numbers — Operations

▶ isZero = λz.z(λy. False ) True

▶ Exercise: evaluate isZero 0

▶ If M and N are numerals (as λ expressions)

▶ Add M N = λx.λy.(M x) ((N x) y)

▶ Mult M N = λx.(M (N x))

▶ Exercise: show 1 + 1 = 2
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Lambda Calculus Encodings
Pairs

▶ Encoding of a pair a, b

▶ (a, b) = λx. IF x THEN a ELSE b

▶ FST = λf .f True

▶ SND = λf .f False

▶ Exercise: evaluate FST (a, b)

▶ Exercise: evaluate SND (a, b)
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Lambda Calculus Encodings
The Fixpoint Combinator

▶ Y = λf .(λx.f (x x)) (λx.f (x x))

▶ Y F = λf .(λx.f (x x)) (λx.f (x x)) F

▶ → (λx.F (x x))(λx.F (x x))

▶ F ((λx.F (x x)) (λx.F (x x))) = F (Y F )

▶ (Y F ) is a fixed point of F

▶ We can use Y to achieve recursion for F
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Lambda Calculus Encodings
The Fixpoint Combinator — Recursion

▶ Recursion implementation — Factorial

▶ Fact = λf .λn. IF n = 0 THEN 1 ELSE n∗ (f (n – 1))

▶ (Y Fact)1 = (Fact (Y Fact))1

▶ → IF 1 = 0 THEN 1 ELSE 1∗ ((Y Fact) 0)

▶ → 1∗ ((Y Fact) 0)

▶ → 1∗ (Fact (Y Fact) 0)

▶ → 1∗ IF 0 = 0 THEN 1 ELSE 0∗ ((Y Fact) (0 – 1))

▶ → 1∗ 1 → 1

▶ Factorial n = (Y Fact) n

▶ Recursion implemented with a non-recursive function Y
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Computability
Turing Machines, Lambda Calculus and Programming Languages

▶ Anything computable can be represented as TM or
Lambda Calculus

▶ But programs would be slow, large and hard to read

▶ In practice use the ideas to create more expressive
languages which include built-in primitives

▶ Also leads to ideas on data types

▶ Polymorphic data types

▶ Algebraic data types

▶ Also leads on to ideas on higher order functions —
functions that take functions as arguments or returns
functions as results.
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3 Complexity

▶ Complexity Classes P and NP

▶ Class NP

▶ NP-completeness

▶ NP-completeness and Boolean Satisfiability
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Complexity
P and NP

▶ P, the set of all decision problems that can be solved in
polynomial time on a deterministic Turing machine

▶ NP, the set of all decision problems whose solutions can
be verified (certificate) in polynomial time

▶ Equivalently, NP, the set of all decision problems that
can be solved in polynomial time on a non-deterministic
Turing machine

▶ A decision problem, dp is NP-complete if
1. dp is in NP and
2. Every problem in NP is reducible to dp in polynomial time

▶ NP-hard — a problem satisfying the second condition,
whether or not it satisfies the first condition. Class of
problems which are at least as hard as the hardest
problems in NP. NP-hard problems do not have to be in
NP and may not be decision problems
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Complexity
P and NP — Diagram

Euler diagram for P, NP, NP-complete and NP-hard set of
problems

Source: Wikipedia NP-complete entry
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Class NP
Certificate and Verifier

▶ To formalise the definition of the class NP, we need to
formalise the idea of checking a candidate solution

▶ Define a certificate for each problem input that would
return Yes

▶ Describe the verifier algorithm

▶ Demonstrate the verifier algorithm has polynomial
complexity

▶ The terms certificate and verifier have technical
definitions in terms of languages and Turing Machines
but can be thought of as candidate solution and checker
algorithm
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Class NP
Example Decision Problems (1)

▶ Composite Numbers Given a number N decide if N is a
composite (i.e. non-prime) number
Certificate factorization of N

▶ Connectivity Given a graph G and two vertices s, t in G,
decide if s is connected to t in G.
Certificate path from s to t

▶ Linear Programming Given a list of m linear
inequalities with rational coefficients over n variables
u1, . . . , un (a linear inequality has the form
a1u1 + a2u2 · · · + anun à b for some coefficients
a1, . . . , anb), decide if there is an assignment of rational
numbers to the variables u1, . . . , un which satisfies all
the inequalities
Certificate is the assignment
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Class NP
Example Decision Problems (2)

▶ The above are in P

▶ Composite Numbers, Connectivity and Linear
programming are in P

▶ Composite Numbers follows from Integer factorization
and the AKS primality test from 2004

▶ Connectivity follows from the breadth-first search
algorithm

▶ Linear programming shown to be in P by the Ellipsoid
method
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Class NP
Example Decision Problems (3)

▶ Integer Programming some or all variables are
restricted to be integers

▶ Travelling Salesperson Given a set of nodes and
distances between all pairs of nodes and a number k,
decide if there is a closed circuit that visits every node
exactly once and has total length at most k
Certificate sequence of nodesin such a tour

▶ Subset sum Given a list of numbers and a number T ,
decide if there is a subset that adds up to T
Certificate list of members of such a subset

▶ Independent set (graph theory) A subgraph of G with
of at least k vertices which have no edges between them
Certificate the list of k vertices

▶ Clique problem Given a graph and a number k, decide
if there is a complete subgraph (clique) of size k
Certificate list pf nodes. For explanation see Prove
Clique is NP
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Class NP
Example Decision Problems (4)

▶ The above are NP-complete — see List of NP-complete
problems

▶ The following two are not known to be P nor
NP-complete

▶ Graph Isomorphism Given two n× n adjacency
matrices M1,M2, decide if M1 and M2 define the same
graph (up to renaming of the vertices)
Certificate the permutation π : [n] → [n] such that M2 is
equal to M1 after reordering the indices of M1 according
to π

▶ Integer factorization Given three numbers N, L, U
decide if N has a prime factor p in the interval [L, U]
Certificate is the factorization of N
Source Arora and Barak (2009, page 49) Computational Complexity:
A Modern Approach and contained links
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Complexity
NP-complete problems

▶ Boolean satisfiability (SAT) Cook-Levin theorem

▶ Conjunctive Normal Form 3SAT

▶ Hamiltonian path problem

▶ Travelling salesman problem

▶ NP-complete — see list of problems
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Complexity
Knapsack Problem

Source & Explanation: XKCD 287
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NP-Completeness and Boolean Satisfiability
Points on Notes

▶ The Boolean satisfiability problem (SAT) was the first
decision problem shown to be NP-Complete

▶ This section gives a sketch of an explanation

▶ Health Warning different texts have different notations
and there will be some inconsistency in these notes

▶ Health warning these notes use some formal notation
to make the ideas more precise — computation requires
precise notation and is about manipulating strings
according to precise rules.
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NP-Completeness and Boolean Satisfiability
Alphabets, Strings and Languages

▶ Notation:

▶ Σ is a set of symbols — the alphabet

▶ Σk is the set of all string of length k, which each symbol
from Σ

▶ Example: if Σ = {0, 1}
▶ Σ1 = {0, 1}
▶ Σ2 = {00, 01, 10, 11}

▶ Σ0 = {ϵ} where ϵ is the empty string

▶ Σ∗ is the set of all possible strings over Σ
▶ Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ . . .
▶ A Language, L, over Σ is a subset of Σ∗
▶ L ⊆ Σ∗
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NP-Completeness and Boolean Satisfiability
Language Accepted by a Turing Machine

▶ Language accepted by Turing Machine, M denoted by
L(M)

▶ L(M) is the set of strings w ∈ Σ∗ accepted by M

▶ For Final States F = {Y , N}, a string w ∈ Σ∗ is accepted
by M a (if and only if) M starting in q0 with w on the
tape halts in state Y

▶ Calculating a function (function problem) can be turned
into a decision problem by asking whether f (x) = y
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NP-Completeness and Boolean Satisfiability
The NP-Complete Class

▶ If we do not know if P ≠ NP, what can we say ?

▶ A language L is NP-Complete if:
▶ L ∈ NP and
▶ for all other L′ ∈ NP there is a polynomial time

transformation (Karp reducible, reduction) from L′ to L

▶ Problem P1 polynomially reduces (Karp reduces,
transforms) to P2, written P1 ∝ P2 or P1 ≤p P2, iff
∃f : dpP1 → dpP2

such that
▶ ∀I ∈ dpP1

[I ∈ YP1 a f (I) ∈ YP2 ]
▶ f can be computed in polynomial time

129/246



M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity
P and NP

Class NP

NP-completeness

Boolean Satisfiability

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms

Before Calculators

Logic Introduction

References

NP-Completeness and Boolean Satisfiability
The NP-Complete Class (2)

▶ More formally, L1 ⊆ Σ∗1 polynomially transforms to
L2 ⊆ Σ∗2 , written L1 ∝ L2 or L1 ≤p L2, iff ∃f : Σ∗1 → Σ∗2
such that
▶ ∀x ∈ Σ∗1 [x ∈ L1 a f (x) ∈ L2]
▶ There is a polynomial time TM that computes f

▶ Transitivity If L1 ∝ L2 and L2 ∝ L3 then L1 ∝ L3

▶ If L is NP-Hard and L ∈ P then P = NP

▶ If L is NP-Complete, then L ∈ P if and only if P = NP

▶ If L0 is NP-Complete and L ∈ NP and L0 ∝ L then L is
NP-Complete

▶ Hence if we find one NP-Complete problem, it may
become easier to find more

▶ In 1971/1973 Cook-Levin showed that the Boolean
satisfiability problem (SAT) is NP-Complete
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NP-Completeness and Boolean Satisfiability
The Boolean Satisfiability Problem

▶ A propositional logic formula or Boolean expression is
built from variables, operators: AND (conjunction, ∧),
OR (disjunction, ∨), NOT (negation, ¬)

▶ A formula is said to be satisfiable if it can be made True
by some assignment to its variables.

▶ The Boolean Satisfiability Problem is, given a formula,
check if it is satisfiable.
▶ Instance: a finite set U of Boolean variables and a finite

set C of clauses over U
▶ Question: Is there a satisfying truth assignment for C ?

▶ A clause is is a disjunction of variables or negations of
variables

▶ Conjunctive normal form (CNF) is a conjunction of
clauses

▶ Any Boolean expression can be transformed to CNF
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NP-Completeness and Boolean Satisfiability
The Boolean Satisfiability Problem (2)

▶ Given a set of Boolean variable U = {u1, u2, . . . , un}

▶ A literal from U is either any ui or the negation of some
ui (written ui) usual notation ¬ui

▶ A clause is denoted as a subset of literals from U —
{u2, u4, u5} usual notation u2 ∨¬u4 ∨ u5

▶ A clause is satisfied by an assignment to the variables if
at least one of the literals evaluates to True (just like
disjunction of the literals)

▶ Let C be a set of clauses over U — C is satisfiable iff
there is some assignment of truth values to the
variables so that every clause is satisfied (just like CNF)

▶ C = {{u1, u2, u3}, {u2, u3}, {u2, u3}} is satisfiable

usual notation (u1 ∨ u2 ∨ u3)∧ (¬u2 ∨¬u3)∧ (u2 ∨¬u3)

assign (u1, u2, u3) = (T , F , F ), (T , T , F ), (F , T , F )

▶ C = {{u1, u2}, {u1, u2}, {u1}} is not satisfiable

usual notation (u1 ∨ u2)∧ (u1 ∨¬u2)∧ (¬u1)
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NP-Completeness and Boolean Satisfiability
The Boolean Satisfiability Problem (3)

▶ Proof that SAT is NP-Complete looks at the structure of
NDTMs and shows you can transform any NDTM to SAT
in polynomial time (in fact logarithmic space suffices)

▶ SAT is in NP since you can check a solution in
polynomial time

▶ To show that ∀L ∈ NP : L ∝ SAT invent a polynomial
time algorithm for each polynomial time NDTM, M,
which takes as input a string x and produces a Boolean
formula Ex which is satisfiable iff M accepts x

▶ See Cook-Levin theorem
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NP-Completeness and Boolean Satisfiability
Coping with NP-Completeness

▶ What does it mean if a problem is NP-Complete ?
▶ There is a P time verification algorithm.
▶ There is a P time algorithm to solve it iff P = NP (?)
▶ No one has yet found a P time algorithm to solve any

NP-Complete problem
▶ So what do we do ?

▶ Improved exhaustive search — Dynamic Programming;
Branch and Bound

▶ Heuristic methods — acceptable solutions in acceptable
time — compromise on optimality

▶ Average time analysis — look for an algorithm with
good average time — compromise on generality (see
Big-O Algorithm Complexity Cheatsheet)

▶ Probabilistic or Randomized algorithms — compromise
on correctness
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Turing Machine
TMA Question (a)

▶ The transition function is represented as a Python
dictionary mapping stete, symbol to symbol, move,
state

▶ States are represented as strings — we may define
Python constants to make life easier (see below)

▶ What are the states ?
▶ Tape represented by a list; moves by 1, –1, 0

# Moves
RIGHT = 1
LEFT = -1
STAY = 0

# States
Start = "start"
FindA = "FindA"
Find0 = "Find0"
FindNum = "FindNum"
FinishOK = "FinishOK"
FinishNotOK = "FinishNotOK"
Stop = "stop"

▶ Note that the identifiers must be valid Python
▶ Python has conventions about constantss
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Turing Machine
TMA Question (b)

▶ Describe the actions for each state — possibly using
Python dictionary notation (to make shorter work)

(Start, "a"): ("a", RIGHT,FindA),
(Start, "0"): ("0", RIGHT,Find0),
(Start, "#"): ("#", RIGHT,FindNum),
(Start, None): (None,STAY, Stop), # Is empty input allowed ?

(FindA, "a"): ("a", RIGHT,FinishOK),
(FindA, "0"): ("0", RIGHT,FindA),
(FindA, "#"): ("#", RIGHT,FindA),
(FindA, None): (False,STAY, Stop),

(Find0, "a"): ("a", RIGHT,Find0),
(Find0, "0"): ("0", RIGHT,FinishOK),
(Find0, "#"): ("#", RIGHT,Find0),
(Find0, None): (False,STAY, Stop),

(FindNum, "a"): ("a", RIGHT,FindNum),
(FindNum, "0"): ("0", RIGHT,FindNum),
(FindNum, "#"): ("#", RIGHT,FinishOK),
(FindNum, None): (False,STAY, Stop),
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Turing Machine
TMA Question (c)

▶ FinishOK and FinishNotOK should tidy up the output
and move the read/write head to an approriate position

(FinishOK, "a"): ("a",RIGHT,FinishOK),
(FinishOK, "0"): ("0",RIGHT,FinishOK),
(FinishOK, "#"): ("#",RIGHT,FinishOK),
(FinishOK, None): (True,STAY,Stop),

▶ What if we wanted to erase everything else and only
have False/True as output ?
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Program Complexity
Big O Notation

▶ Measuring program complexity introduced in section 4
of M269 Unit 2

▶ See also Miller and Ranum chapter 2 Big-O Notation

▶ See also Wikipedia: Big O notation

▶ See also Big-O Cheat Sheet
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Program Complexity
Big O Notation (2)

▶ Complexity of algorithm measured by using some
surrogate to get rough idea

▶ In M269 mainly using assignment statements

▶ For exact measure we would have to have cost of each
operation, knowledge of the implementation of the
programming language and the operating system it
runs under.

▶ But mainly interested in the following questions:

▶ (1) Is algorithm A more efficient than algorithm B for
large inputs ?

▶ (2) Is there a lower bound on any possible algorithm for
calculating this particular function ?

▶ (3) Is it always possible to find a polynomial time (nk)
algorithm for any function that is computable

▶ — the later questions are addressed in Unit 7
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Program Complexity
Orders of Common Functions

▶ O(1) constant — look-up table

▶ O(log n) logarithmic — binary search of sorted array,
binary search tree, binomial heap operations

▶ O(n) linear — searching an unsorted list

▶ O(n log n) loglinear — heapsort, quicksort (best and
average), merge sort

▶ O(n2) quadratic — bubble sort (worst case or naive
implementation), Shell sort, quicksort (worst case),
selection sort, insertion sort

▶ O(nc) polynomial

▶ O(cn) exponential — travelling salesman problem via
dynamic programming, determining if two logical
statements are equivalent by brute force

▶ O(n!) factorial — TSP via brute force.
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Program Complexity
Tyranny of Asymptotics

▶ Table from Bentley (1984, page 868)

▶ Cubic algorithm on Cray-1 3.0n3 nanoseconds

▶ Linear algorithm on TRS-80 19.5n× 106 nanoseconds

N Cray-1 TRS-80

10 3.0 microsecs 200 millisecs
100 3.0 millisecs 2.0 secs

1000 3.0 secs 20 secs
10000 49 mins 3.2 mins

100000 35 days 32 mins
1000000 95 yrs 5.4 hrs
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Program Complexity
Big O Complexity Chart
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Program Complexity
Big O Notation

▶ Abuse of notation — we write f (x) = O(g(x))

▶ but O(g(x)) is the class of all functions h(x) such that
|h(x)| à C |g(x)| for some constant C

▶ So we should write f (x) ∈ O(g(x)) (but we don’t)

▶ We ought to use a notation that says that (informally)
the function f is bounded both above and below by g
asymptotically

▶ This would mean that for big enough x we have

k1g(x) à f (x) à k2g(x) for some k1, k2

▶ This is Big Theta, f (x) = Θ(g(x))

▶ But we use Big O to indicate an asymptotically tight
bound where Big Theta might be more appropriate

▶ See Wikipedia: Big O Notation

▶ This could be Maths phobia generated confusion
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Program Complexity
Example

5def someFunction(aList) :
6 n = len(aList)
7 best = 0
8 for i in range(n) :
9 for j in range(i + 1, n + 1) :

10 s = sum(aList[i:j])
11 best = max(best, s)
12 return best

▶ Example from M269 Unit 2 page 46

▶ Code in file M269TutorialProgPythonADT.py

▶ What does the code do ?

▶ (It was a famous problem from the late 1970s/early
1980s)

▶ Can we construct a more efficient algorithm for the
same computational problem ?
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Program Complexity
Example (2)

▶ The code calculates the maximum subsegment of a list

▶ Described in Bentley (1984), (1988, column 7), (2000,
column 7) Also in Gries (1989)

▶ These are all in a procedural programming style (as in
C, Java, Python)

▶ Problem arose from medical image processing.

▶ A functional approach using Haskell is in Bird (1998,
page 134), (2014, page 127, 133) — a variant on this
called the Not the maximum segment sum is given in
Bird (2010, Page 73) — both of these derive a linear
time program from the (n3) initial specification

▶ See Wikipedia: Maximum subarray problem

▶ See Rosetta Code: Greatest subsequential sum
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Program Complexity
Example (3)

▶ Here is the same program but modified to allow lists
that may only have negative numbers

▶ The complexity T (n) function will be slightly different

▶ but the Big O complexity will be the same

14def maxSubSeg01(xs) :
15 n = len(xs)
16 maxSoFar = xs[0]
17 for i in range(1,n) :
18 for j in range(i + 1, n + 1) :
19 s = sum(xs[i:j])
20 maxSoFar = max(maxSoFar, s)
21 return maxSoFar
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Program Complexity
Example (4)

▶ Complexity function T (n) for maxSubSeg01()

▶ Two initial assignments

▶ The outer loop will be executed (n – 1) times,

▶ Hence the inner loop is executed

(n – 1) + (n – 2) + . . . + 2 + 1 =
(n – 1)

2
× n

▶ Assume sum() takes n assignments

▶ Hence T (n) = 2 + (n + 2)×
(

(n – 1)
2

× n
)

= 2 + (n + 2)×
(

n2

2
–

n
2

)
= 2 + 1

2n3 – 1
2n2 + n2 – n

= 1
2n3 + 1

2n2 – n + 2

▶ Hence O(n3)
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Program Complexity
Example (5)

▶ Developing a better algorithm

▶ Assume we know the solution (maxSoFar) for xs[0..(i
- 1)]

▶ We extend the solution to xs[0..i] as follows:

▶ The maximum segment will be either maxSoFar

▶ or the sum of a sublist ending at i (maxToHere) if it is
bigger

▶ This reasoning is similar to divide and conquer in binary
search or Dynamic programming (see Unit 5)

▶ Keep track of both maxSoFar and maxToHere — the
Eureka step
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Program Complexity
Example (6)

▶ Developing a better algorithm maxSubSeg02()

27def maxSubSeg02(xs) :
28 maxToHere = xs[0]
29 maxSoFar = xs[0]
30 for x in xs[1:] :
31 # Invariant: maxToHere, maxSoFar OK for xs[0..(i-1)]
32 maxToHere = max(x, maxToHere + x)
33 maxSoFar = max(maxSoFar, maxToHere)
34 return maxSoFar

▶ Complexity function T (n) = 2 + 2n

▶ Hence O(n)

▶ What if we want more information ?

▶ Return the (or a) segment with max sum and position in
list
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Program Complexity
Example (7)

38def maxSubSeg03(xs) :
39 maxSoFar = maxToHere = xs[0]
40 startIdx, endIdx, startMaxToHere = 0, 0, 0
41 for i, x in enumerate(xs) :
42 if maxToHere + x < x :
43 maxToHere = x
44 startMaxToHere = i
45 else :
46 maxToHere = maxToHere + x

48 if maxSoFar < maxToHere :
49 maxSoFar = maxToHere
50 startIdx, endIdx = startMaxToHere, i

52 return (maxSoFar,xs[startIdx:endIdx+1],startIdx,endIdx)

▶ Developing a better algorithm maxSubSeg03()

▶ Complexity function worst case T (n) = 2 + 3 + (2 + 3)n

▶ Hence still O(n)

▶ Note Python assignments, enumerate() and tuple
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Program Complexity
Example (8)

▶ Sample data and output

56egList = [-2,1,-3,4,-1,2,1,-5,4]

58egList01 = [-1,-1,-1]

60egList02 = [1,2,3]

62assert maxSubSeg03(egList) == (6, [4, -1, 2, 1], 3, 6)

64assert maxSubSeg03(egList01) == (-1, [-1], 0, 0)

66assert maxSubSeg03(egList02) == (7, [1, 2, 3], 0, 2)
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Program Complexity
Python Data Types — Lists

Operation Notation Average Amortized Worst

Get item x = xs[i] O(1) O(1)
Set item xs[i] = x O(1) O(1)
Append xs = ys + zs O(1) O(1)
Copy xs = ys[:] O(n) O(n)
Pop last xs.pop() O(1) O(1)
Pop other xs.pop(i) O(k) O(k)
Insert(i,x) xs[i:i] = [x] O(n) O(n)
Delete item del xs[i:i+1] O(n) O(n)
Get slice xs = ys[i:j] O(k) O(k)
Set slice xs[i:j] = ys O(k + n) O(k + n)
Delete slice xs[i:j] = [] O(n) O(n)
Member x in xs O(n)
Get length n = len(xs) O(1) O(1)
Count(x) n = xs.count(x) O(n) O(n)

▶ Source https://wiki.python.org/moin/TimeComplexity
▶ See https://docs.python.org/3/library/stdtypes.html#

sequence-types-list-tuple-range
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Program Complexity
User Defined Type — Bags

5class Bag:

7 def __init__(self):
8 self.list = []

10 def add(self, item):
11 self.list.append(item)

13 def remove(self, item):
14 self.list.remove(item)

16 def contains(self, item):
17 return item in self.list

19 def count(self, item):
20 return self.list.count(item)

22 def size(self):
23 return len(self.list)

25 def __str__(self):
26 return str(self.list)
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Using a Data Type
Information Retrieval Functions

▶ Term Frequency, tf, takes a string, term, and a Bag,
document

returns occurrences of term divided by total strings in
document

▶ Inverse Document Frequency, idf, takes a string,
term, and a list of Bags, documents

returns log(total/(1 + containing)) — total is total
number of Bags, containing is the number of Bags
containing term

▶ tf-idf, tf_idf, takes a string, term, and a list of Bags,
documents

returns a sequence [r0, r1, . . . , rn–1] such that
ri = tf(term, di)× idf(term,documents)
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Complexity
Big-O and Big-Theta Definitions (a)

▶ We compare the functions implementing algorithms by
looking at the asymptotic behaviour of the functions for
large inputs.

▶ If f and g are functions taking taking natural numbers
as input (the problem size) and returning nonnegative
results (the effort required in the calculations.)

▶ f is of order g and write f = Θ(g), if there are positive
constants k1 and k2 and a natural number n0 such that

k1g(n) à f (n) à k2g(n) for all n > n0

This means that some multipliers times g(n) provide
upper and lower bounds to f (n)

▶ If we only wanted an upper bound on the values of a
function, then you can use Big-O notation.

▶ We say f is of order at most g and write f = O(g), if
there is a positive constant k and a natural number n0
such that

f (n) à kg(n) for all n > n0
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Complexity
Big-O and Big-Theta Definitions (b)

▶ Note that the notation is heavily abused:

Many authors use Big-O notation when they really mean
Big-Θ notation

We really should define the Θ notation to say that Θ(g)
denotes the set of all functions f with the stated
property and write f ∈ Θ(g) — however the use of
f = Θ(g) is traditional

▶ The next section gives some rules for manipulating the
notation to calculate overall complexities of functions
from their component parts — this also abuses the
notation for equality

Based on Bird and Gibbons (2020, page 25) Algorithm
Design with Haskell and Graham, Knuth and Patashnik
(1994, page 450) Concrete Mathematics: A Foundation
for Computer Science
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Complexity
Big-O and Big-Theta Rules

▶ np = O(nq) where p à q

This has some surprising consequences — n = O(n) and
n = O(n2) — remember Big-O just gives upper bounds.

▶ O(f (n)) + O(g(n)) = O(|f (n)| + |g(n)|)

▶ Θ(np) +Θ(nq) = Θ(nq) where p à q

▶ f (n) = Θ(f (n))

▶ c ·Θ(f (n)) = Θ(f (n)) if c is constant

▶ Θ(Θ(f (n))) = Θ(f (n))

▶ Θ(f (n))Θ(g(n)) = Θ(f (n)g(n))

▶ Θ(f (n)g(n)) = f (n)Θ(g(n))
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Complexity
Big-Theta Rules — Example

1 def numVowels(txt : str) -> int ;
2 """Find the number of vowels in text

4 """

6 vowelCount = 0
7 vowels = "aeiouAEIOU"

9 for ch in txt :
10 if ch in vowels :
11 vowelCount = vowelCount + 1
12 return vowelCount

▶ The rules giveΘ(1) +Θ(1) +Θ(n)×Θ(|vowels|)×Θ(1)

where n = |txt|

▶ Since |vowels| = 10 the overall complexity is Θ(n)
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List Comprehensions
Python

▶ List Comprehensions (tutorial), List Comprehensions
(reference) provide a concise way of performing
calculations over lists (or other iterables)

▶ Example: Square the even numbers between 0 and 9

Python3>>> [x ** 2 for x in range(10) if x % 2 == 0]
[0, 4, 16, 36, 64]

▶ Example: List all pairs of integers (x, y) such that x < 4,
y < 4 and x is divisible by 2 and y is divisible by 3

Python3>>> [(x,y) for x in range(4)
... for y in range(4)
... if x % 2 == 0
... and y % 3 == 0]
[(0, 0), (0, 3), (2, 0), (2, 3)]
Python3>>>

▶ In general

[expr for target1 in iterable1 if cond1
for target2 in iterable2 if cond2 ...
for targetN in iterableN if condN ]

▶ Lots example usage in the algorithms below
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List Comprehensions
Haskell

▶ List Comprehensions provide a concise way of
performing calculations over lists

▶ Example: Square the even numbers between 0 and 9

GHCi> [x^2 | x <- [0..9], x ‘mod‘ 2 == 0]
[0,4,16,36,64]
GHCi>

▶ In general

[expr | qual1, qual2,..., qualN]

▶ The qualifiers qual can be
▶ Generators pattern <- list
▶ Boolean guards — acting as filters
▶ Local declarations with let decls for use in expr and

later generators and boolean guards
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List Comprehension Exercises
Activity 1 (a) Stop Words Filter

▶ Stop words are the most common words that most
search engines avoid: ’a’,’an’,’the’,’that’,...

▶ Using list comprehensions, write a function
filterStopWords that takes a list of words and filters
out the stop words

▶ Here is the initial code

11 sentence \
12 = "the quick brown fox jumps over the lazy dog"

14 words = sentence.split()

16 wordsTest \
17 = (words == [’the’, ’quick’, ’brown’
18 , ’fox’, ’jumps’, ’over’
19 , ’the’, ’lazy’, ’dog’])

21 stopWords \
22 = [’a’,’an’,’the’,’that’]

Go to Answer
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List Comprehension Exercises
Activity 1 (a) Stop Words Filter

11 sentence \
12 = "the quick brown fox jumps over the lazy dog"

14 words = sentence.split()

16 wordsTest \
17 = (words == [’the’, ’quick’, ’brown’
18 , ’fox’, ’jumps’, ’over’
19 , ’the’, ’lazy’, ’dog’])

21 stopWords \
22 = [’a’,’an’,’the’,’that’]

▶ Notice the Python Explicit line joining with (\<nl>) and
Python Implicit line joining with ((...))

▶ The backslash (\) must be followed by an end of line
character (<nl>)

▶ The (’ ’) symbol represents a space (see Unicode
U+2423 Open Box)

Go to Answer
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List Comprehension Exercises
Activity 1 (b) Transpose Matrix

▶ A matrix can be represented as a list of rows of
numbers

▶ We transpose a matrix by swapping columns and rows

▶ Here is an example

38 matrixA \
39 = [[1, 2, 3, 4]
40 ,[5, 6, 7 ,8]
41 ,[9, 10, 11, 12]]

43 matATr \
44 = [[1, 5, 9]
45 ,[2, 6, 10]
46 ,[3, 7, 11]
47 ,[4, 8, 12]]

▶ Using list comprehensions, write a function transMat,
to transpose a matrix

Go to Answer
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List Comprehension Exercises
Activity 1 (c) List Pairs in Fair Order

▶ Write a function which takes a pair of positive integers
and outputs a list of all possible pairs in those ranges

▶ If we do this in the simplest way we get a bias to one
argument

▶ Here is an example of a bias to the second argument

68 yBiasLstTest \
69 = (yBiasListing(5,5)
70 == [(0, 0), (0, 1), (0, 2), (0, 3), (0, 4)
71 , (1, 0), (1, 1), (1, 2), (1, 3), (1, 4)
72 , (2, 0), (2, 1), (2, 2), (2, 3), (2, 4)
73 , (3, 0), (3, 1), (3, 2), (3, 3), (3, 4)
74 , (4, 0), (4, 1), (4, 2), (4, 3), (4, 4)])

Go to Answer
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List Comprehension Exercises
Activity 1 (c) List Pairs in Fair Order

▶ Rewrite the function which takes a pair of positive
integers and outputs a list of all possible pairs in those
ranges

▶ The output should treat each argument fairly — any
initial prefix should have roughly the same number of
instances of each argument

▶ Here is an example output

81 fairLstTest \
82 = (fairListing(5,5)
83 == [(0, 0)
84 , (0, 1), (1, 0)
85 , (0, 2), (1, 1), (2, 0)
86 , (0, 3), (1, 2), (2, 1), (3, 0)
87 , (0, 4), (1, 3), (2, 2), (3, 1), (4, 0)])

Go to Answer
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List Comprehension Exercises
Activity 1 (c) List Pairs in Fair Order

▶ Rewrite the function which takes a pair of positive
integers and outputs a list of lists of all possible pairs in
those ranges

▶ The output should treat each argument fairly — any
initial prefix should have roughly the same number of
instances of each argument — further, the output
should be segment by each initial prefix (see example
below)

▶ Here is an example output

94 fairLstATest \
95 = (fairListingA(5,5)
96 == [[(0, 0)]
97 , [(0, 1), (1, 0)]
98 , [(0, 2), (1, 1), (2, 0)]
99 , [(0, 3), (1, 2), (2, 1), (3, 0)]

100 , [(0, 4), (1, 3), (2, 2), (3, 1), (4, 0)]])

Go to Answer
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Compexity
List Comprehensions

▶ Note that list comprehensions are not in M269

▶ See Complexity of a List Comprehension

[f(e) for e in row for row in mat]

▶ Suppose f = Θ(g) with n elements in a row and m rows

▶ Then complexity isΘ(g(e))×Θ(n)×Θ(m) = Θ(m× n× g(e))

[[e**2 for e in row] for row in mat]

▶ Θ(e∗∗2) = Θ(1)

▶ Suppose n is maximum length of a row and m rows

▶ Then complexity isΘ(1)×Θ(n)×Θ(m) = Θ(n×m)
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List Comprehension Exercises
Answer 1 (a) Stop Words Filter

▶ Answer 1 (a) Stop Words Filter

▶ Write here:
▶ Answer 1 continued on next slide

Go to Activity
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List Comprehension Exercises
Answer 1 (a) Stop Words Filter

▶ Answer 1 (a) Stop Words Filter

24 def filterStopWords(words) :
25 nonStopWords \
26 = [word for word in words
27 if word not in stopWords]
28 return nonStopWords

31 filterStopWordsTest \
32 = filterStopWords(words) \
33 == [’quick’, ’brown’, ’fox’
34 , ’jumps’, ’over’, ’lazy’, ’dog’]

Go to Activity
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List Comprehension Exercises
Answer 1 (b) Transpose Matrix

▶ Answer 1 (b) Transpose Matrix

▶ Write here:
▶ Answer 1 continued on next slide

Go to Activity
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List Comprehension Exercises
Answer 1 (b) Transpose Matrix

▶ Answer 1 (b) Transpose Matrix

49 def transMat(mat) :
50 rowLen = len(mat[0])
51 matTr \
52 = [[row[i] for row in mat] for i in range(rowLen)]
53 return matTr

55 transMatTestA \
56 = (transMat(matrixA)
57 == matATr)

▶ Note that a list comprehension is a valid expression as
a target expression in a list comprehension

▶ The code assumes every row is of the same length

▶ Answer 1 continued on next slide

Go to Activity
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List Comprehension Exercises
Answer 1 (b) Transpose Matrix

▶ Note the differences in the list comprehensions below

38 matrixA \
39 = [[1, 2, 3, 4]
40 ,[5, 6, 7 ,8]
41 ,[9, 10, 11, 12]]

Python3>>> [[row[i] for row in matrixA]
... for i in range(4)]
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]
Python3>>> [row[i] for row in matrixA
... for i in range(4)]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
Python3>>> [row[i] for i in range(4)
... for row in matrixA]
[1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8, 12]
Python3>>> [[row[i] for i in range(4)]
... for row in matrixA]
[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]

Go to Activity
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List Comprehension Exercises
Answer 1 (b) Transpose Matrix

▶ Answer 1 (b) Transpose Matrix

▶ The Python NumPy package provides functions for
N-dimensional array objects

▶ For transpose see numpy.ndarray.transpose

Python3>>> import numpy as np
Python3>>> ar = np.array([[1,2],[3,4]])
Python3>>> ar
array([[1, 2],

[3, 4]])
Python3>>> arT = ar.transpose()
Python3>>> arT
array([[1, 3],

[2, 4]])
Python3>>> ar
array([[1, 2],

[3, 4]])
Python3>>> ar.shape
(2, 2)

Go to Activity
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List Comprehension Exercises
Answer 1 (c) List Pairs in Fair Order

▶ Answer 1 (c) List Pairs in Fair Order — first version

▶ Write here

69 yBiasLstTest \
70 = (yBiasListing(5,5)
71 == [(0, 0), (0, 1), (0, 2), (0, 3), (0, 4)
72 , (1, 0), (1, 1), (1, 2), (1, 3), (1, 4)
73 , (2, 0), (2, 1), (2, 2), (2, 3), (2, 4)
74 , (3, 0), (3, 1), (3, 2), (3, 3), (3, 4)
75 , (4, 0), (4, 1), (4, 2), (4, 3), (4, 4)])

Go to Activity
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List Comprehension Exercises
Answer 1 (c) List Pairs in Fair Order

▶ Answer 1 (c) List Pairs in Fair Order

▶ This is the obvious but biased version

63 def yBiasListing(xRng,yRng) :
64 yBiasLst \
65 = [(x,y) for x in range(xRng)
66 for y in range(yRng)]
67 return yBiasLst

69 yBiasLstTest \
70 = (yBiasListing(5,5)
71 == [(0, 0), (0, 1), (0, 2), (0, 3), (0, 4)
72 , (1, 0), (1, 1), (1, 2), (1, 3), (1, 4)
73 , (2, 0), (2, 1), (2, 2), (2, 3), (2, 4)
74 , (3, 0), (3, 1), (3, 2), (3, 3), (3, 4)
75 , (4, 0), (4, 1), (4, 2), (4, 3), (4, 4)])

Go to Activity
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List Comprehension Exercises
Answer 1 (c) List Pairs in Fair Order

▶ Answer 1 (c) List Pairs in Fair Order — second version

▶ Write here

83 fairLstTest \
84 = (fairListing(5,5)
85 == [(0, 0)
86 , (0, 1), (1, 0)
87 , (0, 2), (1, 1), (2, 0)
88 , (0, 3), (1, 2), (2, 1), (3, 0)
89 , (0, 4), (1, 3), (2, 2), (3, 1), (4, 0)])

Go to Activity
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List Comprehension Exercises
Answer 1 (c) List Pairs in Fair Order

▶ Answer 1 (c) List Pairs in Fair Order — second version

▶ This works by making the sum of the coordinates the
same for each prefix

77 def fairListing(xRng,yRng) :
78 fairLst \
79 = [(x,d-x) for d in range(yRng)
80 for x in range(d+1)]
81 return fairLst

83 fairLstTest \
84 = (fairListing(5,5)
85 == [(0, 0)
86 , (0, 1), (1, 0)
87 , (0, 2), (1, 1), (2, 0)
88 , (0, 3), (1, 2), (2, 1), (3, 0)
89 , (0, 4), (1, 3), (2, 2), (3, 1), (4, 0)]

Go to Activity
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List Comprehension Exercises
Answer 1 (c) List Pairs in Fair Order

▶ Answer 1 (c) List Pairs in Fair Order — third version

▶ Write here

97 fairLstATest \
98 = (fairListingA(5,5)
99 == [[(0, 0)]

100 , [(0, 1), (1, 0)]
101 , [(0, 2), (1, 1), (2, 0)]
102 , [(0, 3), (1, 2), (2, 1), (3, 0)]
103 , [(0, 4), (1, 3), (2, 2), (3, 1), (4, 0)]])

Go to Activity
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List Comprehension Exercises
Answer 1 (c) List Pairs in Fair Order

▶ Answer 1 (c) List Pairs in Fair Order — third version

▶ The inner loop is placed into its own list comprehension

91 def fairListingA(xRng,yRng) :
92 fairLstA \
93 = [[(x,d-x) for x in range(d+1)]
94 for d in range(yRng)]
95 return fairLstA

97 fairLstATest \
98 = (fairListingA(5,5)
99 == [[(0, 0)]

100 , [(0, 1), (1, 0)]
101 , [(0, 2), (1, 1), (2, 0)]
102 , [(0, 3), (1, 2), (2, 1), (3, 0)]
103 , [(0, 4), (1, 3), (2, 2), (3, 1), (4, 0)]])

Go to Activity
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Complexity
Master Theorem for Divide-and-Conquer Recurrences

▶ The Divide-and-Conquer Method

Many useful algorithms are recursive in structure and
often follow a divide-and-conquer method

They break the problem into several subproblems
similar to the original problem

▶ The time analysis is represented by a recurrence system

▶ References

▶ Big O notation

▶ Master theorem

▶ Cormen et al (2022, chp 4) Algorithms

▶ These notes are partly based on M261 Mathematics in
Computing and M263 Building Blocks of Software and
are not part of M269 Algorithms, Data Structures and
Computability
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Master Theorem
Recurrence System (a)

▶ Recurrence System

T (1) = b (1)

T (n) = bnβ + cT
(

n
d

)
{n = dα > 1} (2)

▶ Typical Expansion

n T(n)
d0 b
d1 bnβ + cb

d2 bnβ + cb
(

n
d

)β
+ c2b

181/246



M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity
Complexity Example

Complexity & Python
Data Types

Definitions and Rules
for Complexity

List Comprehensions

Master Theorem for
Divide-and-Conquer
Recurrences

Master Theorem
Example Usage

Logarithms

Before Calculators

Logic Introduction

References

Master Theorem
Recurrence System (b)

▶ General Expansion

T (n) = bnβ + cT
(

n
d

)
= bnβ + cb

(
n
d

)β
+ c2T

(
n

d2

)
= bnβ

(
1 +

c

dβ
+
(

c

dβ

)2
+ · · · +

(
c

dβ

)α)

T (n) = bnβ
logd n∑

i=0

(
c

dβ

)i
(3)
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Master Theorem
Recurrence System (c)

▶ Proof of Closed Form Equation (3)
▶ For n = 1 equation (3) gives

T (1) = b1β
0∑

i=0

(
c

dβ

)i
= b which is correct (same as (1))

▶ Assume equation (3) holds for n = dα. Then for n = dα+1

T
(
dα+1

)
= cT (dα) + bnβ by equation (2)

= cbdαβ
α∑

i=0

(
c

dβ

)i
+ bd(α+1)β by assumption

=
(

c
dβ

)
bd(α+1)β

α∑
i=0

(
c

dβ

)i
+ bd(α+1)β

= bd(α+1)β
(
α+1∑
i=1

(
c

dβ

)i
+ 1

)
by rearrangement

= bd(α+1)β
α+1∑
i=0

(
c

dβ

)i
by rearrangement

▶ Hence equation (3) holds for all n = dα where α ∈ N
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Master Theorem
Cases

1. If c < dβ then the sum converges and T(n) is Θ(nβ)

2. If c = dβ then each term in the sum is 1 and
T(n) is Θ(nβ logd n

)
3. If c > dβ then use

p∑
i=0

x i =
xp+1 – 1

x – 1

T (n) = bnβ


(

c

dβ

)logd n+1
– 1(

c

dβ

)
– 1


= Θ(nβ

(
c

dβ

)logd n
)

= Θ(clogd n
)

= Θ(nlogd c
)

since alogb x = x logb a
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Master Theorem Example Usage (1)
Binary Search

▶ Algorithm

▶ Find mid point and check
if not equal to target, recurse on half the data

▶ Timing equations

T (1) à 1

T (n) = T
(

n
2

)
+ 1

▶ Hence c = 1, d = 2, β = 0 → case (2)

T (n) = Θ(log2 n)
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Master Theorem Example Usage (2)
Quicksort

▶ Algorithm

▶ Best case: splitting on median of data

▶ Recursively sort each half

▶ Timing equations

T (1) à k

T (n) = 2T
(

n
2

)
+ kn

▶ Hence c = 2, d = 2, β = 1 → case (2)

T (n) = Θ(n log2 n)

▶ See Averages/Median
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Master Theorem Example Usage (3)
Matrix Multiplication — Strassen’s Algorithm (a)

▶ Matrix Multiplication

▶ Let A, B be two square matrices over a ring, R
▶ Informally, a ring is a set with two binary operations

which look similar to addition and multiplication of
integers

▶ The problem is to implement matrix multiplication to
find the matrix product C = AB

▶ Without loss of generality, we may assume that A, and B
have sizes which are powers of 2 — if A, and B were not
of this size, they could be padded with rows or columns
of zeroes

▶ The Strassen algorithm partitions A, B and C into
equally sized blocks

A =

(
A11 A12
A21 A22

)
B =

(
B11 B12
B21 B22

)
C =

(
C11 C12
C21 C22

)
with Aij, Bij, Cij ∈ Mat2n–1×2n–1 (R)
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Master Theorem Example Usage (3)
Matrix Multiplication — Strassen’s Algorithm (b)

▶ The usual (naive, standard) algorithm gives(
C11 C12
C21 C22

)

=

(
A11 × B11 + A12 × B21 A11 × B12 + A12 × B22
A21 × B11 + A22 × B21 A21 × B12 + A22 × B22

)
▶ This as 8 multiplications and if we assume

multiplication is more expensive than addition then the
time complexity is Θ(n3)
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Master Theorem Example Usage (3)
Matrix Multiplication — Strassen’s Algorithm (c)

▶ The Strassen algorithm rearranges the calculation

M1 = (A11 + A22)× (B11 + B22)

M2 = (A21 + A22)× B11

M3 = A11 × (B12 – B22)

M4 = A22 × (B21 – B11)

M5 = (A11 + A12)× B22

M6 = (A21 – A11)× (B11 + B12)

M7 = (A12 – A22)× (B21 + B22)

▶ We now express the Cij in terms of the Mk(
C11 C12
C21 C22

)

=

(
M1 + M4 – M5 + M7 M3 + M5

M2 + M4 M1 – M2 + M3 + M6

)
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Master Theorem Example Usage (3)
Matrix Multiplication — Strassen’s Algorithm (d)

▶ Strassen Matrix Multiplication Timing Equations

T (n) = 7T
(

n
2

)
+ 18

4 n2

T (1) à 18
4

▶ This is derived from the 7 multiplications and 18
additions or subtractions

▶ c = 7, d = 2, β = 2 → case (3)

T (n) = Θ(nlog2 7
)

= Θ(n2.8
)
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Exponentials and Logarithms
Definitions

▶ Exponential function y = ax or f (x) = ax

▶ an = a× a× · · · × a (n a terms)

▶ Logarithm reverses the operation of exponentiation

▶ loga y = x means ax = y

▶ loga 1 = 0

▶ loga a = 1

▶ Method of logarithms propounded by John Napier from
1614

▶ Log Tables from 1617 by Henry Briggs

▶ Slide Rule from about 1620–1630 by William Oughtred
of Cambridge

▶ Logarithm from Greek logos ratio, and arithmos
number Chambers Dictionary (13th Edition, 2014)
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Exponentiation
Rules of Indices

1. am × an = am+n

2. am ÷ an = am–n

3. a–m =
1

am

4. a
1
m = m√a

5. (am)n = amn

6. a
n
m =

m
√

an

7. a0 = 1 where a ≠ 0

▶ Exercise Justify the above rules

▶ What should 00 evaluate to ?

▶ See Wikipedia: Exponentiation

▶ The justification above probably only worked for whole
or rational numbers — see later for exponents with real
numbers (and the value of logarithms, calculus. . . )
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Logarithms
Motivation

▶ Make arithmetic easier — turns multiplication and
division into addition and subtraction (see later)

▶ Complete the range of elementary functions for
differentiation and integration

▶ An elementary function is a function of one variable
which is the composition of a finite number of
arithmetic operations ((+), (–), (×), (÷)), exponentials,
logarithms, constants, and solutions of algebraic
equations (a generalization of nth roots).

▶ The elementary functions include the trigonometric and
hyperbolic functions and their inverses, as they are
expressible with complex exponentials and logarithms.

▶ See A Level FP2 for Euler’s relation eiθ = cosθ + i sinθ

▶ In A Level C3, C4 we get
∫

1
x

= loge |x| + C

▶ e is Euler’s number 2.71828. . .

193/246

https://en.wikipedia.org/wiki/Elementary_function
https://en.wikipedia.org/wiki/Elementary_function
https://en.wikipedia.org/wiki/E_(mathematical_constant)


M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms
Exponentials and
Logarithms —
Definitions

Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs

Laws of Logarithms

Arithmetic and Inverses

Change of Base

Before Calculators

Logic Introduction

References

Exponentials and Logarithms
Graphs

▶ See GeoGebra file expLog.ggb
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Exponentials and Logarithms
Laws of Logarithms

▶ Multiplication law loga xy = loga x + loga y

▶ Division law loga

(
x
y

)
= loga x – loga y

▶ Power law loga xk = k loga x

▶ Proof of Multiplication Law

x = aloga x

y = aloga y by definition of log

xy = aloga x × aloga y

= aloga x+loga y by laws of indices

Hence loga xy = loga x + loga y by definition of log
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Arithmetic Operations
Inverse Operations

▶ Notation helps or maybe not ?

▶ Addition add(b, x) = x + b

▶ Subtraction sub(b, x) = x – b

▶ Inverse sub(b, add(b, x)) = (x + b) – b = x

▶ Multiplication mul(b, x) = x × b

▶ Division div(b, x) = x ÷ b = x
b = x/b

▶ Inverse div(b, mul(b, x)) = (x × b)÷ b = (x×b)
b = x

▶ Exponentiation exp(b, x) = bx

▶ Logarithm log(b, x) = logb x

▶ Inverse log(b, exp(b, x)) = logb(bx ) = x

▶ What properties do the operations have that work (or
not) with the notation ?
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Logic Introduction
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Arithmetic Operations
Commutativity and Associativity

▶ Commutativity x ⊛ y = y ⊛ x

▶ Associativity (x ⊛ y)⊛ z = x ⊛ (y ⊛ z)

▶ (+) and (×) are semantically commutative and
associative — so we can leave the brackets out

▶ (–) and (÷) are not

▶ Evaluate (3 – (2 – 1)) and ((3 – 2) – 1)

▶ Evaluate (3/(2/2)) and ((3/2)/2)

▶ We have the syntactic ideas of left (and right)
associativity

▶ We choose (–) and (÷) to be left associative

▶ 3 – 2 – 1 means ((3 – 2) – 1)

▶ 3/2/2 means ((3/2)/2)

▶ Operator precedence is also a choice (remember
BIDMAS or BODMAS ?)

▶ If in doubt, put the brackets in
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Exponentials and Logarithms
Associativity

▶ What should 234
mean ?

▶ Let b ^ x ≡ bx

▶ Evaluate (2 ^ 3) ^ 4 and 2 ^ (3 ^ 4)

▶ Evaluate c = logb(logb((b ^ b) ^ x))

▶ Evaluate d = logb(logb(b ^ (b ^ x)))

▶ Beware spreadsheets Excel and LibreOffice here
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Logic Introduction
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Exponentials and Logarithms
Associativity

▶ (23)4 = 212 and 234
= 281

▶ Exponentiation is not semantically associative

▶ We choose the syntactic left or right associativity to
make the syntax nicer.

▶ Evaluate c = logb(logb((b ^ b) ^ x))

▶ c = logb(x logb(bb)) = logb(x · (b logb b)) = logb(x · b · 1)

▶ Hence c = logb x + logb b = logb x + 1

▶ Not symmetrical (unless b and x are both 2)

▶ Evaluate d = logb(logb(b ^ (b ^ x)))

▶ d = logb((b ^ x)(logb b)) = logb((b ^ x)× 1)

▶ Hence d = logb(b ^ x) = x(logb b) = x

▶ Which is what we want — so exponentiation is chosen to
be right associative

199/246



M269 TMA03
Topics Revue

Phil Molyneux

Tutorial Agenda

Commentary 1

Adobe Connect

Computability,
Complexity

Commentary 2

Computability

Commentary 3

Complexity

Turing Machine
TMA Question

Complexity, Logic

Complexity

Logarithms
Exponentials and
Logarithms —
Definitions

Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs

Laws of Logarithms

Arithmetic and Inverses

Change of Base

Before Calculators

Logic Introduction
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Exponentials and Logarithms
Change of Base

▶ Change of base

loga x =
logb x

logb a

Proof: Let y = loga x

ay = x

logb ay = logb x

y logb a = logb x

y =
logb x

logb a

▶ Given x, logb x, find the base b

▶ b = x
1

logb x

▶ loga b =
1

logb a
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Before Calculators and Computers

▶ We had computers before 1950 — they were humans
with pencil, paper and some further aids:

▶ Slide rule invented by William Oughtred in the 1620s —
major calculating tool until pocket calculators in 1970s

▶ Log tables in use from early 1600s — method of
logarithms propounded by John Napier

▶ Logarithm from Greek logos ratio, and arithmos
number
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Log Tables
Knott’s Four-Figure Mathematical Tables
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Slide Rules
Pickett N 3-ES from 1967

▶ See Oughtred Society

▶ UKSRC

▶ Rod Lovett’s Slide Rules

▶ Slide Rule Museum
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Slide Rules
Pickett log log Slide Rules Manual 1953
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HP HP-21 Calculator from 1975 £69
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Calculators
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Calculators
Calculator Links

▶ HP Calculator Museum http://www.hpmuseum.org

▶ HP Calculator Emulators
http://nonpareil.brouhaha.com

▶ HP Calculator Emulators for OS X
http://www.bartosiak.org/nonpareil/

▶ Vintage Calculators Web Museum
http://www.vintagecalculators.com
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Example Calculation
Log Tables, Slide Rule and Calculator

▶ Evaluate 89.7× 597

▶ Knott’s Tables

▶ log10 89.7 = 1.9528 and log10 597 = 2.7760

▶ Shows mantissa (decimal) & characteristic (integral)

▶ Add 4.7288, take antilog to get 5346 + 10 = 5.356×104

▶ HP-21 Calculator — set display to 4 decimal places

▶ 89.7 log = 1.9528 and 597 log = 2.7760

▶ + displays 4.7288

▶ 10 ENTER , x ⇄ y and yx displays 53550.9000

▶ Casio fx-85GT PLUS

▶ log 89.7 ) = 1.952792443 + log 597 ) = 2.775974331 =

▶ 4.728766774 Ans + 10x gives 53550.9
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Exercise
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Truth Function
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Boolean Expressions
Traffic Lights Example (1)

▶ Consider traffic light at the intersection of roads AC and
BD with the following rules for the AC controller

▶ Vehicles should not wait on red on BD for too long.

▶ If there is a long queue on AC then BD is only given a
green for a short interval.

▶ If both queues are long the usual flow times are used.
▶ We use the following propositions:

▶ w Vehicles have been waiting on red on BD for too long
▶ q Queue on AC is too long
▶ r Queue on BD is too long

▶ Given the following events:
▶ ToBD Change flow to BD
▶ ToBDShort Change flow to BD for short time
▶ NoChange No Change to lights

▶ Express above as truth table, outcome tree, boolean
expression
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Boolean Expressions
Traffic Lights Example (2)

▶ Traffic Lights outcome table

w q r Event

T T T ToBD
T T F ToBDShort
T F T ToBD
T F F ToBD
F T T NoChange
F T F NoChange
F F T NoChange
F F F NoChange
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Boolean Expressions
Traffic Lights Example (3)

▶ Traffic lights outcome tree

NoChange¬r

NoChanger¬q

NoChange¬r

NoChanger

q
¬w

ToBD¬r

ToBDr¬q

ToBDShort¬r

ToBDr

q

w
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Boolean Expressions
Traffic Lights Example (4)

▶ Traffic lights outcome tree simplified

NoChange

¬w

ToBD
¬q

ToBDShort¬r

ToBDr

q

w
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Boolean Expressions
Traffic Lights Example (5)

▶ Traffic Lights code 01

▶ See M269TutorialProgPythonADT01.py

3def trafficLights01(w,q,r) :
4 """
5 Input 3 Booleans
6 Return Event string
7 """
8 if w :
9 if q :

10 if r :
11 evnt = "ToBD"
12 else :
13 evnt = "ToBDShort"
14 else :
15 evnt = "ToBD"
16 else :
17 evnt = "NoChange"
18 return evnt
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Boolean Expressions
Traffic Lights Example (6)

▶ Traffic Lights test code 01

22trafficLights01Evnts = [((w,q,r), trafficLights01(w,q,r))
23 for w in [True,False]
24 for q in [True,False]
25 for r in [True,False]]

27assert trafficLights01Evnts \
28 == [((True, True, True), ’ToBD’)
29 ,((True, True, False), ’ToBDShort’)
30 ,((True, False, True), ’ToBD’)
31 ,((True, False, False), ’ToBD’)
32 ,((False, True, True), ’NoChange’)
33 ,((False, True, False), ’NoChange’)
34 ,((False, False, True), ’NoChange’)
35 ,((False, False, False), ’NoChange’)]
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Boolean Expressions
Traffic Lights Example (7)

▶ Traffic Lights code 02 compound Boolean conditions

37def trafficLights02(w,q,r) :
38 """
39 Input 3 Booleans
40 Return Event string
41 """
42 if ((w and q and r) or (w and not q)) :
43 evnt = "ToBD"
44 elif (w and q and not r) :
45 evnt = "ToBDShort"
46 else :
47 evnt = "NoChange"
48 return evnt

▶ What objectives do we have for our code ?
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Boolean Expressions
Traffic Lights Example (8)

▶ Traffic Lights test code 02

52trafficLights02Evnts = [((w,q,r), trafficLights02(w,q,r))
53 for w in [True,False]
54 for q in [True,False]
55 for r in [True,False]]

57assert trafficLights02Evnts == trafficLights01Evnts
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Boolean Expressions
Traffic Lights Example (9)

w q

r

BD

BD

BD

BDS

NoC

NoC

NoC

NoC

▶ Traffic Lights Venn diagram

▶ OK using a fill colour would look better but didn’t have the time to hack the

package
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Boolean Expressions
Validity

▶ Validity of Boolean expressions

▶ Complete every outcome returns an event (or error
message, raises an exception)

▶ Consistent — we do not want two nested if
statements or expressions resulting in different events

▶ We check this by ensuring that the events form a
disjoint partition of the set of outcomes — see the Venn
diagram

▶ We would quite like the programming language
processor to warn us otherwise — not always possible
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Booleans Expressions
Rail Ticket Exercise (1)

▶ Rail ticket discounts for:
▶ c Rail card
▶ q Off-peak time
▶ s Special offer

▶ 4 fares: Standard, Reduced, Special, Super Special
▶ Rules:

1. Reduced fare if rail card or at off-peak time
2. Without rail card no reduction for both special offer and

off-peak.
3. Rail card always has reduced fare but cannot get

off-peak discount as well.
4. Rail card gets super special discount for journey with

special offer

▶ Draw up truth table, outcome tree, Venn diagram and
conditional statement (or expression) for this
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Booleans Expressions
Rail Ticket Exercise (2)

▶ Rail ticket outcome table

c q s Event

T T T Super Special
T T F Reduced
T F T Super Special
T F F Reduced
F T T Special
F T F Reduced
F F T Special
F F F Standard
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Booleans Expressions
Rail Ticket Exercise (3)

▶ Rail ticket outcome table

▶ Note that it may be more convenient to change columns

c s q Event

T T T Super Special
T T F Super Special
T F T Reduced
T F F Reduced
F T T Special
F T F Special
F F T Reduced
F F F Standard

▶ Real fares are a little more complex — see brfares.com
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Rail Ticket Exercise (4)

▶ Rail Ticket outcome tree

Standard¬q

Reducedq
¬s

Special¬q

Specialq

s¬c

Reduced¬q

Reducedq
¬s

Super Special¬q

Super Specialq

s

c
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Boolean Expressions
Rail Ticket Exercise (5)

▶ Rail Ticket outcome tree simplified

Standard¬q

Reducedq
¬s

Special
s¬c

Reduced
¬s

Super Special
s

c
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Boolean Expressions
Rail Ticket Example (6)

c s

q

SSP

RD

RD

SSP

STD

SP

RD

SP

▶ Rail Ticket Venn diagram
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Boolean Expressions
Rail Ticket Example (7)

▶ Rail Ticket code 01

61def railTicket01(c,s,q) :
62 """
63 Input 3 Booleans
64 Return Event string
65 """
66 if c :
67 if s :
68 evnt = "SSP"
69 else :
70 evnt = "RD"
71 else :
72 if s :
73 evnt = "SP"
74 else :
75 if q :
76 evnt = "RD"
77 else :
78 evnt = "STD"
79 return evnt
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Boolean Expressions
Rail Ticket Example (8)

▶ Rail Ticket test code 01

83railTicket01Evnts = [((c,s,q), railTicket01(c,s,q))
84 for c in [True,False]
85 for s in [True,False]
86 for q in [True,False]]

88assert railTicket01Evnts \
89 == [((True, True, True), ’SSP’)
90 ,((True, True, False), ’SSP’)
91 ,((True, False, True), ’RD’)
92 ,((True, False, False), ’RD’)
93 ,((False, True, True), ’SP’)
94 ,((False, True, False), ’SP’)
95 ,((False, False, True), ’RD’)
96 ,((False, False, False), ’STD’)]
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Boolean Expressions
Rail Ticket Example (9)

▶ Rail Ticket code 02 compound Boolean expressions

98def railTicket02(c,s,q) :
99 """

100 Input 3 Booleans
101 Return Event string
102 """
103 if (c and s) :
104 evnt = "SSP"
105 elif ((c and not s) or (not c and not s and q)) :
106 evnt = "RD"
107 elif (not c and s) :
108 evnt = "SP"
109 else :
110 evnt = "STD"
111 return evnt
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Boolean Expressions
Rail Ticket Example (10)

▶ Rail Ticket test code 02

115railTicket02Evnts = [((c,s,q), railTicket02(c,s,q))
116 for c in [True,False]
117 for s in [True,False]
118 for q in [True,False]]

120assert railTicket02Evnts == railTicket01Evnts
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Propositional Calculus
Introduction

▶ Unit 2 section 3.2 A taste of formal logic introduces
Propositional calculus

▶ A language for calculating about Booleans — truth
values

▶ Gives operators (connectives) conjunction (∧) AND,
disjunction (∨) OR, negation (¬) NOT, implication (⇒) IF

▶ There are 16 possible functions (B,B) → B — see below
— defined by their truth tables

▶ Discussion Did you find the truth table for implication
weird or surprising ?
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Propositional Calculus
Implication

▶ Implication has a negative definition — we accept its
truth unless we have contrary evidence

▶ T ⇒ T == T and T ⇒ F == F

▶ Hence 4 possibilities for truth table

p q p
⇒

q

q p
a

q

p
∧

q
T T T T T T
T F F F F F
F T T T F F
F F T F T F

▶ (⇒) must have the entry shown — the others are taken

▶ Do not think of p causing q
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Propositional Calculus
Functional Completeness, Boolean Programming

▶ Functionally complete set of connectives is one which
can be used to express all possible connectives

▶ p ⇒ q ≡ ¬p ∨ q so we could just use {¬,∧,∨}

▶ Boolean programming — we have to have a
functionally complete set but choose more to make the
programming easier

▶ Expressiveness is an issue in programming language
design
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Propositional Calculus
NAND, NOR

▶ NAND p∧q, p ↑ q, Sheffer stroke

▶ NOR p∨q, p ↓ q, Pierce’s arrow

▶ See truth tables below — both {↑}, {↓} are functionally
complete

▶ Exercise verify
▶ ¬p ≡ p ↑ p
▶ p ∧ q ≡ ¬(p ↑ q) = (p ↑ q) ↑ (p ↑ q)
▶ p ∨ q ≡ (p ↑ p) ↑ (q ↑ q)
▶ ¬p ≡ p ↓ p
▶ p ∧ q ≡ (p ↓ p) ↓ (q ↓ q)
▶ p ∨ q ≡ ¬(p ↓ q) = (p ↓ q) ↓ (p ↓ q)

▶ Not a novelty — the Apollo Guidance Computer was
implemented in NOR gates alone.
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Truth Function
Truth Function References

▶ The following appendix notes illustrate the 16 binary
functions of two Boolean variables

▶ See Truth function

▶ See Functional completeness

▶ See Sheffer stroke

▶ See Logical NOR
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Truth Function
Table of Binary Truth Functions

p q ⊤ p
∨

q

p
⇐

q

p p
⇒

q

q p
a

q

p
∧

q

T T T T T T T T T T
T F T T T T F F F F
F T T T F F T T F F
F F T F T F T F T F

p q ⊥ p
∨

q

p
f

q

¬
p

p
h

q

¬
q

p
g

q

p
⊼

q

T T F F F F F F F F
T F F F F F T T T T
F T F F T T F F T T
F F F T F T F T F T
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Truth Function
Tautology/Contradiction

▶ Tautology True, ⊤, Top

U

p q

▶ Contradiction False, ⊥, Bottom

U

p q
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Truth Function
Disjunction/Joint Denial

▶ Disjunction OR, p ∨ q

U

p q

▶ Joint Denial NOR, p∨q, p ↓ q, Pierce’s arrow

U

p q
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Truth Function
Converse Implication/Converse Nonimplication

▶ Converse Implication p ⇐ q

U

p q

▶ Converse Nonimplication p f q

U

p q
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Truth Function
Proposition p/Negation of p

▶ Proposition p

U

p q

▶ Negation of p

U

p q
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Material Implication/Material Nonimplication

▶ Material Implication p ⇒ q

U

p q

▶ Material Nonimplication p h q

U

p q
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Proposition q/Negation of q

▶ Proposition q q

U

p q

▶ Negation of q ¬q

U

p q
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Truth Function
Biconditional/Exclusive disjunction

▶ Biconditional If and only if, IFF, p a q

U

p q

▶ Exclusive disjunction XOR, p g q

U

p q
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Truth Function
Conjunction/Alternative denial

▶ Conjunction AND, p ∧ q

U

p q

▶ Alternative denial NAND, p ⊼ q, p ↑ q, Sheffer stroke

U

p q
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Web Sites
Computability

▶ Logic
▶ WFF, WFF’N Proof online

▶ Computability
▶ Computability
▶ Computable function
▶ Decidability (logic)
▶ Turing Machines
▶ Universal Turing Machine
▶ Turing machine simulator
▶ Lambda Calculus
▶ Von Neumann Architecture
▶ Turing Machine XKCD 205 Candy Button Paper
▶ Turing Machine XKCD 505 A Bunch of Rocks
▶ RIP John Conway Why can Conway’s Game of Life be

classified as a universal machine?
▶ Phil Wadler Bright Club on Computability
▶ Bridges: Theory of Computation: Halting Problem
▶ Bridges: Theory of Computation: Other Non-computable

Problems
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▶ Complexity
▶ Complexity class
▶ NP complexity
▶ NP complete
▶ Reduction (complexity)
▶ P versus NP problem
▶ Graph of NP-Complete Problems
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