M269 TMA03 Topics Revue

M269 Revue Tutorial

Contents

1	Tutorial Agenda	2
Co	ommentary 1	3
2	Adobe Connect 2.1 Interface	3 3 4 5 6 6 7 8 8 9
Co	ommentary 2	9
3	Computability 3.1 The Turing Machine 3.2 Turing Machine Examples 3.2.1 The Successor Function 3.2.2 The Binary Palindrome Function 3.2.3 Binary Addition Example 3.3 Computability, Decidability and Algorithms 3.3.1 Non-Computability — Halting Problem 3.3.2 Reductions & Non-Computability 3.4 Lambda Calculus 3.4.1 Motivation 3.4.2 Lambda Terms 3.4.3 Substitution 3.4.4 Lambda Calculus Encodings	12 14 16 19 24 26 32 34 35
Co	ommentary 3	39
4	Complexity44.1 P and NP44.2 Class NP44.3 NP-completeness44.4 Boolean Satisfiability4	40 42
5	Turing Machine TMA Question	46
6		46 48

	6.2 Complexity & Python Data Types 6.3 Definitions and Rules for Complexity 6.3.1 Big-O and Big-Theta Definitions 6.3.2 Big-O and Big-Theta Rules 6.3.3 Big-Theta Rules — Example 6.4 List Comprehensions Activity 1 List Comprehension Exercises 6.4.1 Complexity of List Comprehensions 6.5 Master Theorem for Divide-and-Conquer Recurrences 6.5.1 Master Theorem Example Usage	5 	2 3 3 4 6 0
_	Lamantalisma	6	
7	Logarithms	6	_
	7.1 Exponentials and Logarithms — Definitions		
	7.2 Rules of Indices		
	7.3 Logarithms — Motivation		
	7.4 Exponentials and Logarithms — Graphs		
	7.5 Laws of Logarithms		
	7.6 Arithmetic and Inverses		
	7.7 Change of Base	6	1
8	Before Calculators	6	7
	8.1 Log Tables	6	7
	8.2 Slide Rules		
	8.3 Calculators	7	1
	8.4 Example Calculation	7	3
9	Logic Introduction	7	, <u>-</u>
9	9.1 Boolean Expressions and Truth Tables		_
	9.2 Conditional Expressions and Validity		
	9.3 Boolean Expressions Exercise		
	9.4 Propositional Calculus		
	9.5 Truth Function	0	·
10	References	8	_
	10.1 Web Sites	8	3
	References	8	4

M269 End of Module Tutorial: Agenda

- Welcome & Introductions
- Topics from TMA03
- Abstract Data Types Bags
- Abstract Data Types Graphs
- Complexity
- Computability

Introductions — **Me**

- Name Phil Molyneux
- Background Physics and Maths, Operational Research, Computer Science
 - Undergraduate: Physics and Maths (Sussex)
 - Postgraduate: Physics (Sussex), Operational Research (Brunel), Computer Science (University College, London)
- First programming languages Fortran, BASIC, Pascal
- Favourite Software
 - Haskell pure functional programming language
 - Text editors TextMate, Sublime Text previously Emacs
 - Word processing and presentation slides in LATEX
 - Mac OS X
- *Learning style* I read the manual before using the software (really)

Introductions — You

- Name?
- Position in M269? Which part of which Units and/or Reader have you read?
- Particular topics you want to look at?
- Learning Syle?

ToC

Commentary 1

1 Agenda, Aims and Topics

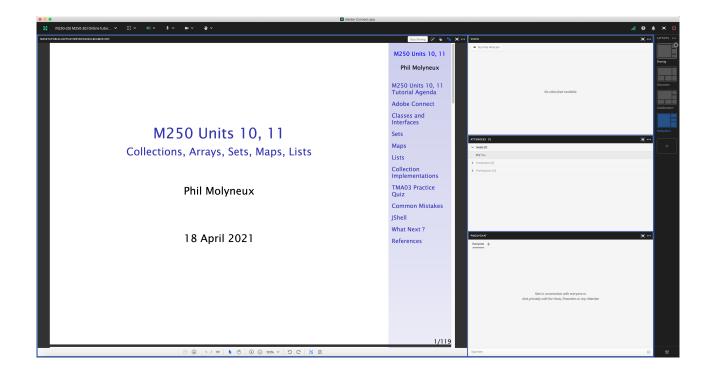
- Overview of aims of tutorial
- Note selection of topics
- Points about my own background and preferences
- Adobe Connect slides for reference
- Note that the Computability notes are here mainly for reference since the Complexity notes refer to them
- This session is mainly on the Complexity topics

ToC

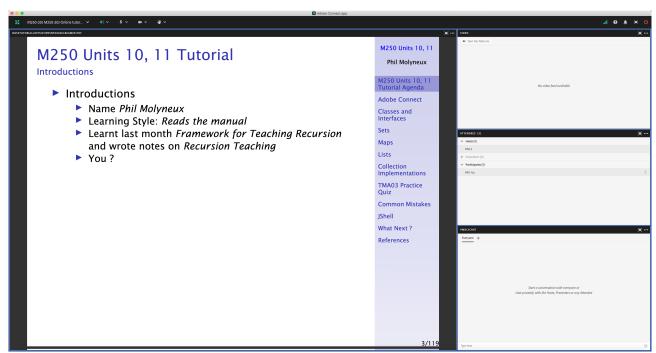
2 Adobe Connect Interface and Settings

2.1 Adobe Connect Interface

Adobe Connect Interface — Host View



Adobe Connect Interface — Participant View



2.2 Adobe Connect Settings

Adobe Connect — Settings

- Everybody Menu bar Meeting Speaker & Microphone Setup
- Menu bar Microphone Allow Participants to Use Microphone
- Check Participants see the entire slide including slide numbers bottom right Workaround
 - Disable Draw Share pod Menu bar Draw icon
 - Fit Width Share pod Bottom bar Fit Width icon

- Meeting Preferences General Host Cursor Show to all attendees
- Menu bar Video Enable Webcam for Participants
- Do not Enable single speaker mode
- Cancel hand tool
- Do not enable green pointer
- Recording Meeting Record Session ✔
- Documents Upload PDF with drag and drop to share pod
- Delete Meeting Manage Meeting Information Uploaded Content and check filename click on delete

Adobe Connect — Access

Tutor Access

```
TutorHome M269 Website Tutorials

Cluster Tutorials M269 Online tutorial room

Tutor Groups M269 Online tutor group room

Module-wide Tutorials M269 Online module-wide room
```

• Attendance

```
TutorHome Students View your tutorial timetables
```

- Beamer Slide Scaling 440% (422 x 563 mm)
- Clear Everyone's Status

```
Attendee Pod Menu Clear Everyone's Status
```

• Grant Access and send link via email

```
Meeting Manage Access & Entry Invite Participants...
```

• Presenter Only Area

```
Meeting Enable/Disable Presenter Only Area
```

Adobe Connect — **Keystroke Shortcuts**

- Keyboard shortcuts in Adobe Connect
- Toggle Mic # + M (Mac), Ctrl + M (Win) (On/Disconnect)
- Toggle Raise-Hand status # + E
- Close dialog box [5] (Mac), Esc (Win)
- End meeting #+\

2.3 Adobe Connect — Sharing Screen & Applications

- Share My Screen Application tab Terminal for Terminal
- Share menu Change View Zoom in for mismatch of screen size/resolution (Participants)

- (Presenter) Change to 75% and back to 100% (solves participants with smaller screen image overlap)
- Leave the application on the original display
- Beware blued hatched rectangles from other (hidden) windows or contextual menus
- Presenter screen pointer affects viewer display beware of moving the pointer away from the application
- First time: System Preferences Security & Privacy Privacy Accessibility

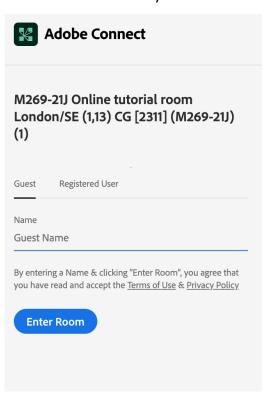
2.4 Adobe Connect — Ending a Meeting

- Notes for the tutor only
- Student: Meeting Exit Adobe Connect
- Tutor:
- Recording Meeting Stop Recording
- Remove Participants Meeting End Meeting...
 - Dialog box allows for message with default message:
 - The host has ended this meeting. Thank you for attending.
- Recording availability In course Web site for joining the room, click on the eye icon in the list of recordings under your recording edit description and name
- **Meeting Information** Meeting Manage Meeting Information can access a range of information in Web page.
- Delete File Upload Meeting Manage Meeting Information Uploaded Content tab select file(s) and click Delete
- Attendance Report see course Web site for joining room

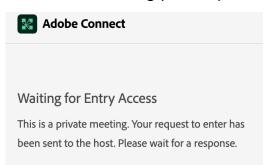
2.5 Adobe Connect — Invite Attendees

- Provide Meeting URL Menu Meeting Manage Access & Entry Invite Participants...
- Allow Access without Dialog Menu Meeting Manage Meeting Information provides new browser window with Meeting Information Tab bar Edit Information
- Check Anyone who has the URL for the meeting can enter the room
- Default Only registered users and accepted guests may enter the room
- Reverts to default next session but URL is fixed
- Guests have blue icon top, registered participants have yellow icon top same icon if URL is open
- See Start, attend, and manage Adobe Connect meetings and sessions
- Click on the link sent in email from the Host
- Get the following on a Web page

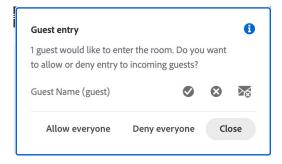
• As Guest enter your name and click on Enter Room



• See the Waiting for Entry Access for Host to give permission



• Host sees the following dialog in Adobe Connect and grants access



2.6 Layouts

- Creating new layouts example Sharing layout
- Menu Layouts Create New Layout... Create a New Layout dialog Create a new blank layout and name it PMolyMain
- New layout has no Pods but does have Layouts Bar open (see Layouts menu)

- Pods
- Menu Pods Share Add New Share and resize/position initial name is Share n rename PMolyShare
- Rename Pod Menu Pods Manage Pods... Manage Pods Select Rename Or Double-click & rename
- Add Video pod and resize/reposition
- Add Attendance pod and resize/reposition
- Add Chat pod rename it *PMolyChat* and resize/reposition
- Dimensions of **Sharing** layout (on 27-inch iMac)
 - Width of Video, Attendees, Chat column 14 cm
 - Height of Video pod 9 cm
 - Height of Attendees pod 12 cm
 - Height of Chat pod 8 cm
- **Duplicating Layouts** does *not* give new instances of the Pods and is probably not a good idea (apart from local use to avoid delay in reloading Pods)
- Auxiliary Layouts name PMolyAuxOn
 - Create new Share pod
 - Use existing Chat pod
 - Use same Video and Attendance pods

2.7 Chat Pods

- Format Chat text
- Chat Pod menu icon My Chat Color
- Choices: Red, Orange, Green, Brown, Purple, Pink, Blue, Black
- Note: Color reverts to Black if you switch layouts
- Chat Pod menu icon Show Timestamps

2.8 Graphics Conversion for Web

- Conversion of the screen snaps for the installation of Anaconda on 1 May 2020
- Using GraphicConverter 11
- File Convert & Modify Conversion Convert
- Select files to convert and destination folder
- Click on Start selected Function or (第)+←

Phil Molyneux M269 Revue Tutorial 9

2.9 Adobe Connect Recordings

- Menu bar Meeting Preferences Video
- Aspect ratio Standard (4:3) (not Wide screen (16:9) default)
- Video quality Full HD (1080p not High default 480p)
- Recording Menu bar Meeting Record Session
- Export Recording
- Menu bar Meeting Manage Meeting Information
- New window Recordings check Tutorial Access Type button
- check Public check Allow viewers to download
- Download Recording
- New window Recordings check Tutorial Actions Download File

Commentary 2

2 Computability

- Description of Turing Machine
- Turing Machine examples
- · Computability, Decidability and Algorithms
- Non-computability Halting Problem
- · Reductions and non-computability
- Lambda Calculus (optional)
- Note that the Computability notes are here mainly for reference since the Complexity notes refer to them
- This session is mainly on the Complexity topics

3 Computability

Ideas of Computation

- The idea of an algorithm and what is effectively computable
- **Church-Turing thesis** Every function that would naturally be regarded as computable can be computed by a deterministic Turing Machine. (Unit 7 Section 4)
- See Phil Wadler on computability theory performed as part of the Bright Club at The Strand in Edinburgh, Tuesday 28 April 2015

Computability — Models of Computation

• In automata theory, a *problem* is the question of deciding whether a given string is a member of some particular language

- If Σ is an alphabet, and L is a language over Σ , that is $L \subseteq \Sigma^*$, where Σ^* is the set of all strings over the alphabet Σ then we have a more formal definition of *decision* problem
- Given a string $w \in \Sigma^*$, decide whether $w \in L$
- Example: Testing for a prime number can be expressed as the language L_p consisting of all binary strings whose value as a binary number is a prime number (only divisible by 1 or itself)
- See Hopcroft et al. (2007, section 1.5.4)

Automata Theory — Alphabets, Strings, Languages

- An **Alphabet**, Σ , is a finite, non-empty set of symbols.
- Binary alphabet $\Sigma = \{0, 1\}$
- Lower case letters $\Sigma = \{a, b, \dots, z\}$
- A **String** is a finite sequence of symbols from some alphabet
- 01101 is a string from the Binary alphabet $\Sigma = \{0, 1\}$
- The **Empty string**, ϵ , contains no symbols
- **Powers**: Σ^k is the set of strings of length k with symbols from Σ
- The set of all strings over an alphabet Σ is denoted Σ^*
- $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \dots$
- **Question** Does $\Sigma^0 = \emptyset$? (\emptyset is the empty set)
- An Language, L, is a subset of Σ^*
- The set of binary numerals whose value is a prime

```
\{10, 11, 101, 111, 1011, \dots\}
```

• The set of binary numerals whose value is a square

```
\{100, 1001, 10000, 11001, \ldots\}
```

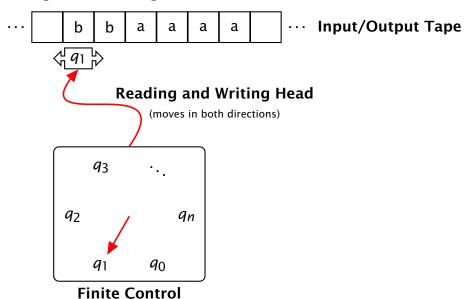
Computability — Church-Turing Thesis

- Church-Turing thesis Every function that would naturally be regarded as computable can be computed by a deterministic Turing Machine.
- **physical Church-Turing thesis** Any finite physical system can be simulated (to any degree of approximation) by a Universal Turing Machine.
- strong Church-Turing thesis Any finite physical system can be simulated (to any degree of approximation) with polynomial slowdown by a Universal Turing Machine.
- Shor's algorithm (1994) quantum algorithm for factoring integers an NP problem that is not known to be P also not known to be NP-complete and we have no proof that it is not in P
- Reference: Section 4 of Unit 6 & 7 Reader

3.1 The Turing Machine

- Finite control which can be in any of a finite number of states
- Tape divided into cells, each of which can hold one of a finite number of symbols
- Initially, the **input**, which is a finite-length string of symbols in the *input alphabet*, is placed on the tape
- All other tape cells (extending unbounded left and right) hold a special symbol called blank
- A tape head which initially is over the leftmost input symbol
- A move of the Turing Machine depends on the state and the tape symbol scanned
- A move can change state, write a symbol in the current cell, move left, right or stay
- References: Hopcroft et al. (2007, page 326), Unit 6 & 7 Reader (section 5.3)

Turing Machine Diagram



Source: Sebastian Sardina http://www.texample.net/tikz/examples/turing-machine-2/

Date: 18 February 2012 (seen Sunday, 24 August 2014)

Further Source: Partly based on Ludger Humbert's pics of Universal Turing Machine at https://haspe.homeip.net/projekte/ddi/browser/tex/pgf2/turingmaschine-schema.tex (not found) — http://www.texample.net/tikz/examples/turing-machine/

Turing Machine notation

- *Q* finite set of states of the finite control
- Σ finite set of *input symbols* (M269 *S*)
- Γ complete set of *tape symbols* $\Sigma \subset \Gamma$
- δ Transition function (M269 instructions, I) $\delta :: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, S\}$ $\delta(q, X) \mapsto (p, Y, D)$

- $\delta(q, X)$ takes a state, q and a tape symbol, X and returns (p, Y, D) where p is a state, Y is a tape symbol to overwrite the current cell, D is a direction, Left, Right or Stay
- q_0 start state $q_0 \in Q$
- B blank symbol $B \in \Gamma$ and $B \notin \Sigma$
- F set of final or accepting states $F \subseteq Q$

3.2 Turing Machine Examples

Turing Machine Simulators

- Morphett's Turing machine simulator the examples below are adapted from here
- Ugarte's Turing machine simulator
- XKCD A Bunch of Rocks XKCD Explanation

Image below (will need expanding to be readable)

• The term *state* is used in two different ways:

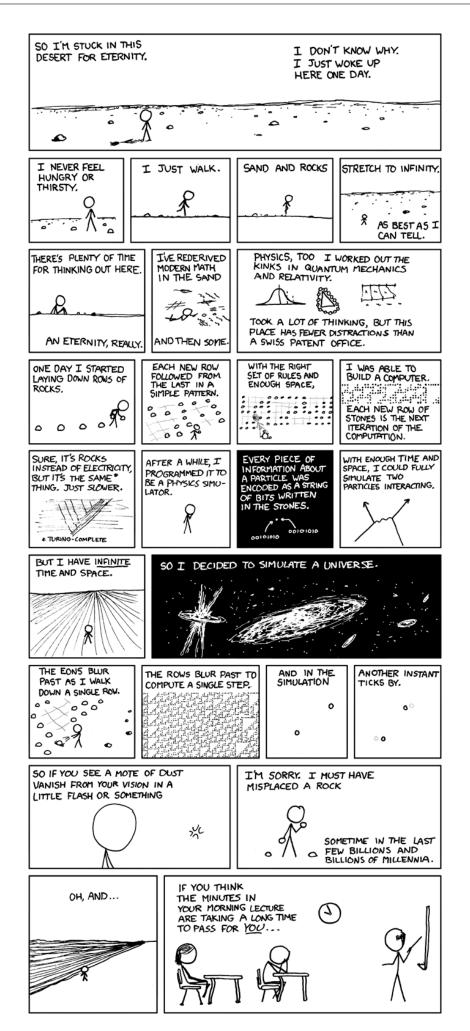
The value of the Finite Control

The overall configuration of *Finite Control* and current contents of the tape

See Turing Machine: State

will lead to some confusion

XKCD A Bunch of Rocks



Turing Machine Examples: Meta-Exercise

For each of the Turing Machine Examples below, identify

$$(Q, \Sigma, \Gamma, \delta, q_0, B, F)$$

3.2.1 The Successor Function

- **Input** binary representation of numeral *n*
- Output binary representation of n+1
- Example 1010 → 1011 and 1011 → 1100
- Initial cell: leftmost symbol of *n*
- Strategy
- Stage A make the rightmost cell the current cell
- Stage B Add 1 to the current cell.
- If the current cell is 0 then replace it with 1 and go to stage C
- If the current cell is 1 replace it with 0 and go to stage B and move Left
- If the current cell is blank, replace it by 1 and go to stage C
- Stage C Finish up by making the leftmost cell current
- Represent the Turing Machine program as a list of quintuples (q, X, p, Y, D)
- Stage A

$$(q_0, 0, q_0, 0, R)$$

$$(q_0, 1, q_0, 1, R)$$

$$(q_0, B, q_1, B, L)$$

• Stage B

$$(q_1, 0, q_2, 1, S)$$

$$(q_1, 1, q_1, 0, L)$$

$$(q_1, B, q_2, 1, S)$$

• Stage C

$$(q_2, 0, q_2, 0, L)$$

$$(q_2, 1, q_2, 1, L)$$

$$(q_2, B, q_h, B, R)$$

(Smith, 2013, page 315)

- Exercise Translate the quintuples (q, X, p, Y, D) into English and check they are the same as the specification
- Stage A make the rightmost cell the current cell

$$(q_0, 0, q_0, 0, R)$$

If state q_0 and read symbol 0 then stay in state q_0 write 0, move R

```
(q_0, 1, q_0, 1, R)
If state q_0 and read symbol 1 then stay in state q_0 write 1, move R
(q_0, B, q_1, B, L)
If state q_0 and read symbol B then state q_1 write B, move L
```

- Exercise Translate the quintuples (q, X, p, Y, D) into English
- Stage B Add 1 to the current cell.

```
(q_1, 0, q_2, 1, S)

If state q_1 and read symbol 0 then state q_2 write 1, stay (q_1, 1, q_1, 0, L)

If state q_1 and read symbol 1 then state q_1 write 0, move L (q_1, B, q_2, 1, S)

If state q_1 and read symbol B then state q_2 write 1, stay
```

- Exercise Translate the quintuples (q, X, p, Y, D) into English
- Stage C Finish up by making the leftmost cell current

$$(q_2, 0, q_2, 0, L)$$

If state q_2 and read symbol 0 then state q_2 write 0, move L

$$(q_2, 1, q_2, 1, L)$$

If state q_2 and read symbol 1 then state q_2 write 0, move L

$$(q_2, B, q_h, B, R)$$

If state q_2 and read symbol B then state q_h write B, move R HALT

• Notice that the Turing Machine feels like a series of if ... then or case statements inside a while loop

Turing Machine Examples: Meta-Exercise: Successor Function

- Identify $(Q, \Sigma, \Gamma, \delta, q_0, B, F)$ Blank slide for working
- Identify $(Q, \Sigma, \Gamma, \delta, q_0, B, F)$
- $Q = \{q_0, q_1, q_2, q_h\}$
- q₀ finding the rightmost symbol
- q₁ add 1 to current cell
- q₂ move to leftmost cell
- q_h finish
- $\Sigma = \{0, 1\}$
- $\Gamma = \Sigma \cup \{B\}$
- $\delta :: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$ $\delta(q, X) \mapsto (p, Y, D)$

```
\delta is represented as \{(q,X,p,Y,D)\}
equivalent to \{((q,X),(p,Y,D))\} set of pairs
```

- q_0 start with leftmost symbol under head, state moving to rightmost symbol
- B is _ a visible space
- $F = \{q_h\}$
- Sample Evaluation 11 → 100
- Representation $\cdots BX_1X_2 \cdots X_{i-1}qX_iX_{i+1} \cdots X_nB \cdots$

```
q<sub>0</sub>11
```

1*q*₀1

 $11q_0B$

1 q 1 1

 $q_{1}10$

 q_1B00

q₂100

 $q_2 B100$

q_h100

- Exercise evaluate 1011 → 1100
- Representation $\cdots BX_1X_2 \cdots X_{i-1}qX_iX_{i+1} \cdots X_nB \cdots$
- q is the state of the TM
- The head is scanning the symbol X_i
- Leading or trailing blanks B are (usually) not shown unless the head is scanning them
- \vdash_M denotes one move of the TM M
- \vdash_{M}^{*} denotes zero or more moves
- ⊢ will be used if the TM *M* is understood
- If (q, X_i, p, Y, L) denotes a TM move then

$$X_1 \cdot \cdot \cdot X_{i-1} q X_i \cdot \cdot \cdot X_n \vdash_M X_1 \cdot \cdot \cdot X_{i-2} p X_{i-1} Y \cdot \cdot \cdot X_n$$

(Hopcroft et al., 2007, sec 8.2.3)

ToC

3.2.2 The Binary Palindrome Function

- **Input** binary string s
- Output YES if palindrome, NO otherwise
- Example 1010 → NO and 1001 → YES
- Initial cell: leftmost symbol of s

- Strategy
- Stage A read the leftmost symbol
- If blank then accept it and go to stage D otherwise erase it
- Stage B find the rightmost symbol
- If the current cell matches leftmost recently read then erase it and go to stage C
- Otherwise reject it and go to stage E
- Stage C return to the leftmost symbol and stage A
- Stage D print YES and halt
- Stage E erase the remaining string and print NO
- Represent the Turing Machine program as a list of quintuples (q, X, p, Y, D)
- Stage A read the leftmost symbol

$$(q_0, 0, q_{1_0}, B, R)$$

$$(q_0, 1, q_{1i}, B, R)$$

$$(q_0, B, q_5, B, S)$$

• Stage B find rightmost symbol

$$(q_{1_o}, B, q_{2_o}, B, L)$$

$$(q_{1o}, *, q_{1o}, *, R)$$
 * is a wild card, matches anything

$$(q_{1i}, B, q_{2i}, B, L)$$

$$(q_{1i}, *, q_{1i}, *, R)$$

• Stage B check

$$(q_{20}, 0, q_{3}, B, L)$$

$$(q_{2_o}, B, q_5, B, S)$$

$$(q_{20}, *, q_{6}, *, S)$$

$$(q_{2i}, 1, q_3, B, L)$$

$$(q_{2i}, B, q_{5}, B, S)$$

$$(q_{2i}, *, q_6, *, S)$$

• Stage C return to the leftmost symbol and stage A

$$(q_3, B, q_5, B, S)$$

$$(q_3, *, q_4, *, L)$$

$$(q_4, B, q_0, B, R)$$

$$(q_4, *, q_4, *, L)$$

Stage D accept and print YES

$$(q_5, *, q_{5a}, Y, R)$$

$$(q_{5_a}, *, q_{5_b}, E, R)$$

$$(q_{5h}, *, q_7, S, S)$$

• Stage E erase the remaining string and print NO

$$(q_6, B, q_{6a}, N, R)$$

 $(q_6, *, q_6, B, L)$
 $(q_{6a}, *, q_7, O, S)$

Finish

$$(q_7, B, q_h, B, R)$$

 $(q_7, *, q_7, *, L)$

Turing Machine Examples: Meta-Exercise: Binary Palindrome Function

- Identify $(Q, \Sigma, \Gamma, \delta, q_0, B, F)$ Blank slide for working
- Identify $(Q, \Sigma, \Gamma, \delta, q_0, B, F)$
- $Q = \{q_0, q_{1_0}, q_{1_i}, q_{2_0}, q_{2_i}, q_{3_i}, q_{4_i}, q_{5_i}, q_{5_0}, q_{5_0}, q_{6_i}, q_{6_0}, q_{7_i}, q_{h}\}$
- q₀ read leftmost symbol
- q_{1_0} , q_{1_i} find rightmost symbol looking for 0 or 1
- q_{2_0} , q_{2_i} check, confirm or reject
- q₃, q₄ check finish or move to start
- q_5 , q_6 , q_7 print YES or NO and finish
- q_h finish
- $\Sigma = \{0, 1\}$
- $\Gamma = \Sigma \cup \{B, Y, E, S, N, O\}$
- $\delta :: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, S\}$ $\delta(q, X) \mapsto (p, Y, D)$ δ is represented as $\{(q, X, p, Y, D)\}$

equivalent to $\{((q, X), (p, Y, D))\}\$ set of pairs

- Start with leftmost symbol under head, state q_0
- *B* is a visible space
- $F = \{q_h\}$
- Sample Evaluation 101 → YES

$$q_0101 \vdash Bq_{1i}01 \vdash B0q_{1i}1 \vdash B01q_{1i}B$$
 $\vdash B0q_{2i}1$
 $\vdash Bq_30B \vdash q_4B0B$
 $\vdash Bq_00B \vdash BBq_{1o}B$
 $\vdash Bq_{2o}BB$

$$\vdash$$
 $Bq_5BB \vdash Yq_{5_a}B \vdash YEq_{5_b}B \vdash YEq_7S$
 \vdash $Yq_7ES \vdash Bq_7YES \vdash q_7BYES \vdash q_hYES$

• Exercise Evaluate 110 → NO

ToC

3.2.3 Binary Addition Example

- Input two binary numerals separated by a single space n1 n2
- Output binary numeral which is the sum of the inputs
- Example 110110 + 101011 → 1100001
- Initial cell: leftmost symbol of *n*1 *n*2
- Insight look at the arithmetic algorithm

• **Discussion** how can we overwrite the first number with the result and remember how far we have gone?

Binary Addition Example — Arithmetic Reinvented

	1	1	0	1	1	0
_	1	0	1	0	1	1
	1	1	0	1	1	У
_	1	0	1	0	1	ш
	1	1	1	0	Х	у
	1	0	1	0	ш	u
	1	1	1	Х	Х	у
ш	1	0	1	ш	ш	ш
1	0	0	X	Х	Х	У
	1	0				ш
ш	•			_	_	
<u> </u>	0	Х	X	X	X	
1						у
1 1	0	X	Х	Х	Х	у
	0	X	X	X	X	У
	0	X	X X	X L	X X	у у

- Input two binary numerals separated by a single space n1 n2
- Output binary numeral which is the sum of the inputs
- Example 110110 + 101011 → 1100001
- Initial cell: leftmost symbol of n1 n2
- Strategy

Stage A find the rightmost symbol

If the symbol is 0 erase and go to stage Bx
If the symbol is 1 erase go to stage By
If the symbol is blank go to stage F
dealing with each digit in n2

if no further digits in n2 go to final stage

- Stage Bx Move left to a blank go to stage Cx
- Stage By Move left to a blank go to stage Cy moving to n1
- Stage Cx Move left to find first 0, 1 or B
 Turn 0 or B to X, turn 1 to Y and go to stage A
 adding 0 to a digit finalises the result (no carry one)
- Stage Cy Move left to find first 0, 1 or B
 Turn 0 or B to 1 and go to stage D
 Turn 1 to 0, move left and go to stage Cy
 dealing with the carry one in school arithmetic
- Stage D move right to X, Y or B and go to stage E
- **Stage E** replace 0 by X, 1 by Y, move right and go to Stage A finalising the value of a digit resulting from a *carry*
- Stage F move left and replace X by 0, Y by 1 and at B halt
- Represent the Turing Machine program as a list of quintuples (q, X, p, Y, D)
- Stage A find the rightmost symbol

$$(q_0, B, q_1, B, R)$$

 $(q_0, *, q_0, *, R)$ * is a wild card, matches anything
 (q_1, B, q_2, B, L)
 $(q_1, *, q_1, *, R)$
 $(q_2, 0, q_{3_X}, B, L)$
 $(q_2, 1, q_{3_Y}, B, L)$
 (q_2, B, q_7, B, L)

• Stage Bx move left to blank

$$(q_{3_x}, B, q_{4_x}, B, L)$$

 $(q_{3_x}, *, q_{3_x}, *, L)$

• Stage By move left to blank

$$(q_{3_{V}}, B, q_{4_{V}}, B, L)$$

$$(q_{3_{V}}, *, q_{3_{V}}, *, L)$$

• Stage Cx move left to 0, 1, or blank

$$(q_{4_X},0,q_0,x,R)$$

$$(q_{4x}, 1, q_0, y, R)$$

$$(q_{4x}, B, q_0, x, R)$$

$$(q_{4_X}, *, q_{4_X}, *, L)$$

• Stage Cy move left to 0, 1, or blank

$$(q_{4_{V}}, 0, q_{5}, 1, S)$$

$$(q_{4_{V}}, 1, q_{4_{V}}, 0, L)$$

$$(q_{4_{v}}, B, q_{5}, 1, S)$$

$$(q_{4_y}, *, q_{4_y}, *, L)$$

• Stage D move right to x, y or B

$$(q_5, x, q_6, x, L)$$

$$(q_5, y, q_6, y, L)$$

$$(q_5, B, q_6, B, L)$$

$$(q_5, *, q_5, *, R)$$

• Stage E replace 0 by x, 1 by y

$$(q_6, 0, q_0, x, R)$$

$$(q_6, 1, q_0, y, R)$$

• Stage F replace x by 0, y by 1

$$(q_7, x, q_7, 0, L)$$

$$(q_7, y, q_7, 1, L)$$

$$(q_7, B, q_h, B, R)$$

$$(q_7, *, q_7, *, L)$$

• Exercise Evaluate 11 + 10 → 101

Turing Machine Examples: Meta-Exercise: Successor Function

- Identify $(Q, \Sigma, \Gamma, \delta, q_0, B, F)$ Blank slide for working
- Identify $(Q, \Sigma, \Gamma, \delta, q_0, B, F)$
- $Q = \{q_0, q_1, q_2, q_{3_X}, q_{3_Y}, q_{4_X}, q_{4_Y}, q_5, q_6, q_7, q_h\}$
- q_0, q_1, q_2 find rightmost symbol of second number
- q_{3_x} , q_{3_y} move left to inter-number blank
- q_{4x} , q_{4y} move left to 0, 1 or blank
- q₅ move right to x, y or B

- q_6 replace 0 by x, 1 by y and move right
- q₇ replace x by 0, y by 1 and move left
- q_h finish
- $\Sigma = \{0, 1\}$
- $\Gamma = \Sigma \cup \{B, x, y\}$
- $\delta :: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$

$$\delta(q, X) \mapsto (p, Y, D)$$

 δ is represented as $\{(q, X, p, Y, D)\}$

equivalent to $\{((q, X), (p, Y, D))\}\$ set of pairs

- Start with leftmost symbol under head, state q_0
- B is _ a visible space
- $F = \{q_h\}$
- Exercise Evaluate 11 + 10 → 101
- Stage A find the rightmost symbol

BBq₀11B10B Note space symbols B at start and end

- $\vdash BB1q_01B10B$
- $\vdash BB11q_0B10B$
- $\vdash BB11Bq_110B$
- $\vdash BB11B1q_10B$
- $\vdash BB11B10q_1B$
- $\vdash BB11B1q_20B$
- $\vdash BB11Bq_{3x}1BB$
- Stage Bx move left to blank
- $\vdash B11q_{3_x}B1BB$
- Stage Cx move left to 0, 1, or blank
- $\vdash BB1q_{4x}1B1BB$
- $\vdash BB1 Yq_0B1BB$
- Stage A find the rightmost symbol
- \vdash BB1 BYBq₁ 1 BB
- $\vdash BB1YB1q_1BB$
- $\vdash BB1YBq_21BB$
- $\vdash BB1 Yq_{3_{\nu}}BBBB$
- Stage Cy move left to 0, 1, or blank
- $\vdash BB1 q_{4_V} YBBBB$

Phil Molyneux M269 Revue Tutorial

- $\vdash BBq_{4_{v}}1YBBBB$
- $\vdash Bq_{4_{V}}BOYBBBB$
- $\vdash Bq_510YBBBB$
- Stage D move right to x, y or B
- $\vdash Bq_50YBBBB$
- $\vdash B0q_5YBBBB$
- $\vdash Bq_60YBBBB$
- Stage E replace 0 by x, 1 by y
- $\vdash B1Xq_0YBBBB$
- Stage A find the rightmost symbol
- $\vdash B1XYq_0BBBB$
- $\vdash B1XYBq_1BBB$
- $\vdash B1XYq_2BBBB$
- $\vdash B1Xq_7YBBBB$
- Stage F replace x by 0, y by 1
- $\vdash B1q_7X1BBBB$
- ⊢ *Ba*₇101*BBBB*
- ⊢ *Bq*₇*B*101*BBBB*
- $\vdash Bq_h101BBBB$
- This is mimicking what you learnt to do on paper as a child! Real step-by-step instructions
- See Morphett's Turing machine simulator for more examples (takes too long by hand!)

3.3 Computability, Decidability and Algorithms

Universal Turing Machine

- Universal Turing Machine, U, is a Turing Machine that can simulate any arbitrary Turing machine, M
- Achieves this by encoding the transition function of M in some standard way
- The input to U is the encoding for M followed by the data for M
- See Turing machine examples
- **Decidable** there is a TM that will halt with yes/no for a decision problem that is, given a string w over the alphabet of P the TM with halt and return yes.no the string is in the language P (same as recursive in Recursion theory old use of the word)

- **Semi-decidable** there is a TM will halt with yes if some string is in *P* but may loop forever on some inputs (same as *recursively enumerable*) *Halting Problem*
- **Highly-undecidable** no outcome for any input *Totality, Equivalence Problems*

Undecidable Problems

- Halting problem the problem of deciding, given a program and an input, whether the program will eventually halt with that input, or will run forever — term first used by Martin Davis 1952
- Entscheidungsproblem the problem of deciding whether a given statement is provable from the axioms using the rules of logic shown to be undecidable by Turing (1936) by reduction from the *Halting problem* to it
- Type inference and type checking in the second-order lambda calculus (important for functional programmers, Haskell, GHC implementation)
- Undecidable problem see link to list

(Turing, 1936, 1937)

3.3.1 Non-Computability — Halting Problem

Halting Problem — **Sketch Proof**

- Halting problem is there a program that can determine if any arbitrary program will halt or continue forever?
- Assume we have such a program (Turing Machine) h(f,x) that takes a program f
 and input x and determines if it halts or not

```
h(f,x)
= if f(x) runs forever
return True
else
return False
```

- We shall prove this cannot exist by contradiction
- Now invent two further programs:
- q(f) that takes a program f and runs h with the input to f being a copy of f
- r(f) that runs q(f) and halts if q(f) returns True, otherwise it loops

```
q(f)
= h(f,f)

r(f)
= if q(f)
return
else
while True: continue
```

- What happens if we run r(r)?
- If it loops, q(r) returns True and it does not loop contradiction.
- Scooping theLoop Snooper: A proof that the Halting Problem is undecidable Geoffrey K Pullum (21 May 2024)

Why undecidable problems must exist

- A problem is really membership of a string in some language
- The number of different languages over any alphabet of more than one symbol is uncountable
- Programs are finite strings over a finite alphabet (ASCII or Unicode) and hence countable.
- There must be an infinity (big) of problems more than programs.
- Computational problem defined by a function
- **Computational problem is computable** if there is a Turing machine that will calculate the function.

Reference: Hopcroft et al. (2007, page 318)

Computability and Terminology (1)

- The idea of an algorithm dates back 3000 years to Euclid, Babylonians...
- In the 1930s the idea was made more formal: which functions are computable?
- A function is a set of pairs $f = \{(x, f(x)) : x \in X \land f(x) \in Y\}$ with the function property
- Function property: $(a, b) \in f \land (a, c) \in f \Rightarrow b == c$
- Function property: Same input implies same output
- Note that maths notation is deeply inconsistent here see Function and History of the function concept
- What do we mean by computing a function an algorithm?

Function: Relation and Rules

- The idea of function as a set of pairs (Binary relation) with the function property (each element of the domain has at most one element in the co-domain) is fairly recent — see History of the function concept
- School maths presents us with function as rule to get from the input to the output
- Example: the square function: square $x = x \times x$
- But lots of rules (or algorithms) can implement the same function
- square1 $x = x^2$

Computability and Terminology (2)

- In the 1930s three definitions:
- λ -Calculus, simple semantics for computation Alonzo Church
- General recursive functions Kurt Gödel
- Universal (Turing) machine Alan Turing

- Terminology:
 - Recursive, recursively enumerable Church, Kleene
 - Computable, computably enumerable Gödel, Turing
 - Decidable, semi-decidable, highly undecidable
 - In the 1930s, computers were human
 - Unfortunate choice of terminology
- Turing and Church showed that the above three were equivalent
- Church-Turing thesis function is intuitively computable if and only if Turing machine computable

Sources on Computability Terminology

- Soare (1996) on the history of the terms computable and recursive meaning calculable
- See also Soare (2013, sections 9.9-9.15) in Copeland et al. (2013)

3.3.2 Reductions & Non-Computability

Reducing one problem to another

- To reduce problem P_1 to P_2 , invent a construction that converts instances of P_1 to P_2 that have the same answer. That is:
 - any string in the language P_1 is converted to some string in the language P_2
 - any string over the alphabet of P_1 that is not in the language of P_1 is converted to a string that is not in the language P_2
- With this construction we can solve P₁
 - Given an instance of P_1 , that is, given a string w that may be in the language P_1 , apply the construction algorithm to produce a string x
 - Test whether x is in P_2 and give the same answer for w in P_1

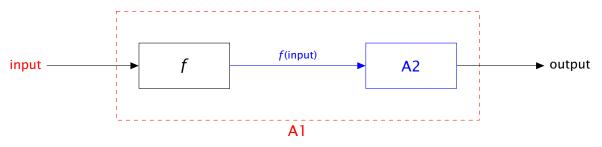
(Hopcroft et al., 2007, page 322)

- Problem Reduction Ordinary Example
- Want to phone Alice but don't have her number
- You know that Bill has her number
- So *reduce* the problem of finding Alice's number to the problem of getting hold of Bill

(Rich, 2007, page 449)

- The direction of reduction is important
- If we can reduce P_1 to P_2 then (in some sense) P_2 is at least as hard as P_1 (since a solution to P_2 will give us a solution to P_1)

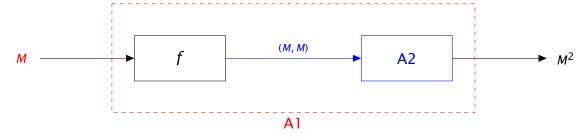
- So, if P_2 is decidable then P_1 is decidable
- To show a problem is undecidable we have to reduce from an known undecidable problem to it
- $\forall x(dp_{P_1}(x) = dp_{P_2}(reduce(x)))$
- Since, if P_1 is undecidable then P_2 is undecidable
- Some further examples
- Totality and Equivalence Problems http://www.cs.ucc.ie/~dgb/courses/toc/handout36.pdf
- Totality and Equivalence Problems https://www.cs.rochester.edu/~nelson/courses/csc_173/computability/undecidable.html (29 April 2022) was at Undecidability
- See CS 3813 Formal Languages and Automata (26 May 2022)



- A reduction of problem P_1 to problem P_2
 - transforms inputs to P_1 into inputs to P_2
 - runs algorithm A2 (which solves P_2) and
 - interprets the outputs from A2 as answers to P₁
- More formally: A problem P_1 is *reducible* to a problem P_2 if there is a function f that takes any input x to P_1 and transforms it to an input f(x) of P_2

such that the solution of P_2 on f(x) is the solution of P_1 on x

Source: Bridge Theory of Computation, 2007



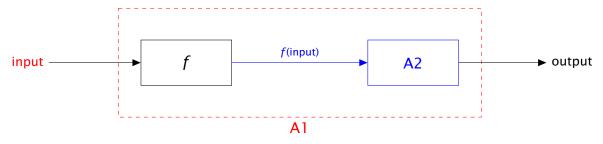
- Given an algorithm (A2) for matrix multiplication (P_2)
 - Input: pair of matrices, (M_1, M_2)
 - Output: matrix result of multiplying M_1 and M_2
- P₁ is the problem of squaring a matrix
 - Input: matrix M
 - Output: matrix M²

• Algorithm A1 has

$$f(M) = (M, M)$$

uses A2 to calculate $M \times M = M^2$

Non-Computable Problems



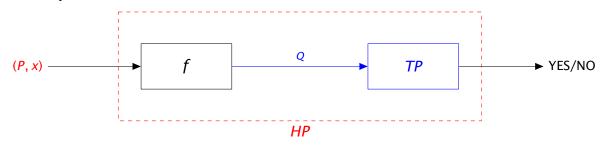
- If P_2 is computable (A2 exists) then P_1 is computable (f being simple or polynomial)
- Equivalently If P_1 is non-computable then P_2 is non-computable
- Exercise: show $B \rightarrow A \equiv \neg A \rightarrow \neg B$
- Proof by Contrapositive
- $B \rightarrow A \equiv \neg B \lor A$ by truth table or equivalences

$$\equiv \neg(\neg A) \lor \neg B$$
 commutativity and negation laws

$$\equiv \neg A \rightarrow \neg B$$
 equivalences

• Common error: switching the order round

Totality Problem

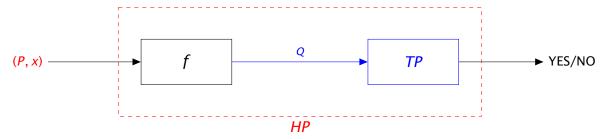


• Totality Problem

- Input: program Q

- Output: YES if Q terminates for all inputs else NO

- Assume we have algorithm TP to solve the Totality Problem
- Now reduce the Halting Problem to the Totality Problem

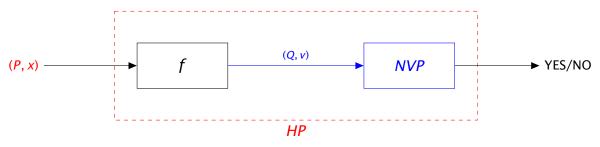


• Define f to transform inputs to HP to TP pseudo-Python

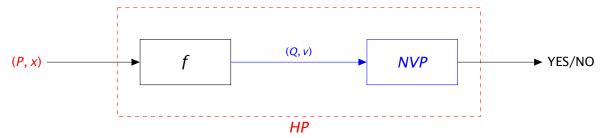
```
def f(P,x) :
    def Q(y):
        # ignore y
        P(x)
    return Q
```

- Run TP on Q
 - If TP returns YES then P halts on x
 - If TP returns NO then P does not halt on x
- We have solved the Halting Problem contradiction

Negative Value Problem



- Negative Value Problem
 - Input: program Q which has no input and variable v used in Q
 - Output: YES if v ever gets assigned a negative value else NO
- Assume we have algorithm *NVP* to solve the Negative Value Problem
- Now reduce the Halting Problem to the Negative Value Problem

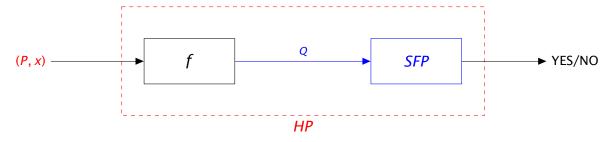


• Define f to transform inputs to HP to NVP pseudo-Python

```
def f(P,x) :
    def Q(y):
        # ignore y
        P(x)
        v = -1
    return (Q,var(v))
```

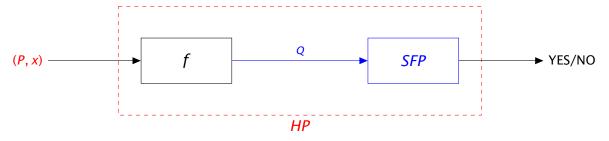
- Run NVP on (Q, var(v)) var(v) gets the variable name
 - If NVP returns YES then P halts on x
 - If NVP returns NO then P does not halt on x
- We have *solved* the Halting Problem contradiction

Squaring Function Problem



• Squaring Function Problem

- Input: program Q which takes an integer, y
- Output: YES if Q always returns the square of y else NO
- Assume we have algorithm SFP to solve the Squaring Function Problem
- Now reduce the Halting Problem to the Squaring Function Problem

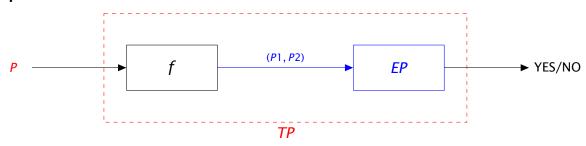


• Define f to transform inputs to HP to SFP pseudo-Python

```
def f(P,x) :
    def Q(y):
        P(x)
        return y * y
    return Q
```

- Run SFP on Q
 - If SFP returns YES then P halts on x
 - If SFP returns NO then P does not halt on x
- We have *solved* the Halting Problem contradiction

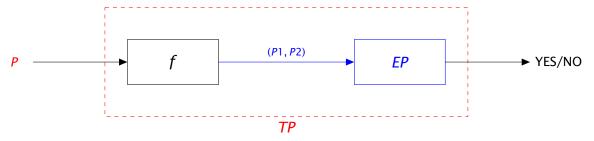
Equivalence Problem



• Equivalence Problem

- Input: two programs P1 and P2
- Output: YES if P1 and P2 solve the same problem (same output for same input) else NO

- Assume we have algorithm EP to solve the Equivalence Problem
- Now reduce the Totality Problem to the Equivalence Problem

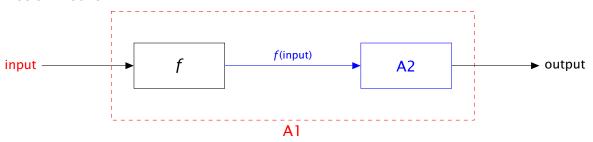


• Define f to transform inputs to TP to EP pseudo-Python

```
def f(P) :
    def P1(x):
        P(x)
        return "Same_string"
    def P2(x)
        return "Same_string"
    return (P1,P2)
```

- Run *EP* on (*P*1, *P*2)
 - If EP returns YES then P halts on all inputs
 - If EP returns NO then P does not halt on all inputs
- We have *solved* the Totality Problem contradiction

Rice's Theorem



- Rice's Theorem all non-trivial, semantic properties of programs are undecidable. HG
 Rice 1951 PhD Thesis
- Equivalently: For any non-trivial property of partial functions, no general and effective method can decide whether an algorithm computes a partial function with that property.
- A property of partial functions is called trivial if it holds for all partial computable functions or for none.
- Rice's Theorem and computability theory
- Let S be a set of languages that is nontrivial, meaning
 - there exists a Turing machine that recognizes a language in S
 - there exists a Turing machine that recognizes a language not in S
- Then, it is undecidable to determine whether the language recognized by an arbitrary Turing machine lies in S.

- This has implications for compilers and virus checkers
- Note that Rice's theorem does not say anything about those properties of machines or programs that are not also properties of functions and languages.
- For example, whether a machine runs for more than 100 steps on some input is a decidable property, even though it is non-trivial.

3.4 Lambda Calculus

3.4.1 Motivation

- Lambda Calculus is a formal system in mathematical logic for expressing computation based on function abstraction and application using variable binding and substitution
- Lambda calculus is Turing complete it can simulate any Turing machine
- Introduced by Alonzo Church in 1930s
- Basis of functional programming languages Lisp, Scheme, ISWIM, ML, SASL, KRC, Miranda, Haskell, Scala, F#...
- Note this is not part of M269 but may help understand ideas of computability

Functions — Binding and Substitution

• School maths introduces functions as

$$f(x) = 3x^2 + 4x + 5$$

- Substitution: $f(2) = 3 \times 2^2 + 4 \times 2 + 5 = 25$
- Generalise: $f(x) = ax^2 + bx + c$
- What is wrong with the following:
- $f(a) = a \times a^2 + b \times a + c$
- The ideas of free and bound variables and substitution

Expressions — Evaluation Strategies

- In evaluating an expression we have choices about the order in which we evaluate subterms
- Some choices may involve more work than others but the Church-Rosser theorem ensures that if the evaluation terminates then all choices get to the same answer
- The second edition of a famous book on Functional programming Bird (1998, Ex 1.2.2, page 6) had the following exercise:
- How many ways can you evaluate $(3 + 7)^2$ List the evaluations and assumptions
- The first edition Bird and Wadler (1988, Ex 1.2.2, page 6) had the exercise:

- How many ways can you evaluate $((3+7)^2)^2$
- How many ways can you evaluate $(3 + 7)^2$ List the evaluations and assumptions
- Answer 3 ways
- Reducible expressions (redexes)

```
x^2 \rightarrow x \times x where x is a term
```

a + b where a and b are numbers

 $x \times y$ where x and y are numbers

```
[sqr (3+7),((3+7)*(3+7)),((3+7)*10),(10*10),100]
[sqr (3+7),((3+7)*(3+7)),(10*(3+7)),(10*10),100]
[sqr (3+7),sqr 10,(10*10),100]
```

The assumed redexes do not include distributive laws

```
(a + b) \times (x + y) \rightarrow a \times x + a \times y + b \times x + b \times y
```

- This would increase the number of different evaluations
- How many ways can you evaluate $((3+7)^2)^2$
- Answer 547 ways

```
[sqr sqr (3+7),(sqr (3+7)*sqr (3+7)),(sqr (3+7)*((3+7)*(3+7))), (sqr (3+7)*((3+7)*10)),(sqr (3+7)*(10*10)), (sqr (3+7)*100),(((3+7)*100),(((3+7)*10)*100), ((10*10)*100),(100*100),10000]
[sqr sqr (3+7),(sqr (3+7)*sqr (3+7)),(sqr(3+7)*((3+7)*(3+7))), (sqr (3+7)*((3+7)*10)),(sqr (3+7)*(10*10)), (sqr (3+7)*100),(((3+7)*(3+7))*100),((10*(3+7))*100), ((10*(3+7))*100), ((10*(3+7))*100), ((10*(3+7))*100), ((3+7))*1000]
```

```
[sqr sqr (3+7),sqr sqr 10,sqr (10*10), ((10*10)*(10*10)),(100*(10*10)),(100*100),10000]
[sqr sqr (3+7),sqr sqr 10,sqr (10*10),sqr 100,(100*100),10000]
```

- Enumerating all 547 ways may have taken some concentration
- The actual Evaluation strategy used by a particular programming language implementation may have optimisations which make an evaluation which looks costly to be somewhat cheaper
- For example, the Haskell implementation GHC optimises the evaluation of common subexpressions so that (3+7) will be evaluated only once

```
[sqr sqr (3+7),(sqr (3+7)*sqr (3+7)),(sqr (3+7)*((3+7)*(3+7))), (sqr (3+7)*((3+7)*10)),(sqr (3+7)*(10*10)), (sqr (3+7)*100),(((3+7)*10)),(((3+7)*10)*100), ((10*10)*100),(100*100),10000]
[sqr sqr (3+7),(sqr (3+7)*sqr (3+7)),(sqr(3+7)*((3+7)*(3+7))), (sqr (3+7)*((3+7)*10)),(sqr (3+7)*(10*10)), (sqr (3+7)*100),(((3+7)*(3+7))*100),((10*(3+7))*100), ((10*(3+7))*100), ((10*(3+7))*100), ((10*(3+7))*100), ((10*(3+7))*100), ((10*(3+7))*100), ((10*(3+7))*100), ((10*(3+7))*100), ((10*(3+7))*100), ((10*(3+7))*100), ((10*(3+7))*100), ((10*(3+7))*100), ((10*(3+7))*100), ((10*(3+7))*100), ((10*(3+7))*100), ((10*(3+7))*100), ((10*(3+7))*100), ((10*(3+7))*100), ((10*(3+7))*100), ((10*(3+7))*100), ((10*(3+7))*100), ((10*(3+7))*100), ((10*(3+7))*100), ((10*(3+7))*100), ((10*(3+7))*100), ((10*(3+7))*100), ((10*(3+7))*100), ((10*(3+7))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100), ((10*(3+7)))*100
```

- M269 Unit 6/7 Reader Logic and the Limits of Computation alludes to other formalisations with equal power to a Turing Machine (pages 81 and 87)
- The *Reader* mentions Alonzo Church and his 1930s formalism (page 87, but does not give any detail)
- The notes in this section are optional and for comparison with the Turing Machine material

- Turing machine: explicit memory, state and implicit loop and case/if statement
- Lambda Calculus: function definition and application, explicit rules for evaluation (and transformation) of expressions, explicit rules for substitution (for function application)
- Lambda calculus reduction workbench
- Lambda Calculus Calculator

3.4.2 Lambda Terms

- A variable, x, is a lambda term
- If M is a lambda term and x is a variable, then $(\lambda x.M)$ is a lambda term a **lambda** abstraction or function definition
- If M and N are lambda terms, the (M N) is lambda term an **application**
- Nothing else is a lambda term

(Lambda Calculus notes based on lecture slides at CMSC 330, Spring 2011)

- Outermost parentheses are omitted $(M \ N) \equiv M \ N$
- Application is left associative $((M \ N) \ P) \equiv M \ N \ P$
- The body of an abstraction extends as far right as possible, subject to scope limited by parentheses
- $\lambda x.M N \equiv \lambda x.(M N)$ and not $(\lambda x.M) N$
- $\lambda x. \lambda y. \lambda z. M = \lambda x y z. M$

Lambda Calculus Semantics

- What do we mean by evaluating an expression?
- To evaluate $(\lambda x.M)N$
- Evaluate M with x replaced by N
- This rule is called β -reduction
- $(\lambda x.M) \stackrel{\mathsf{N}}{\sim} M[x := N]$
- M[x := N] is M with occurrences of x replaced by N
- This operation is called *substitution* see rules below

β -Reduction Examples

- $(\lambda x.x)z \rightarrow z$
- $(\lambda x.y)z \rightarrow y$
- $(\lambda x. x y)z \rightarrow z y$

a function that applies its argument to y

- $(\lambda x.xy)(\lambda z.z) \rightarrow (\lambda z.z)y \rightarrow y$
- $(\lambda x. \lambda y. x y)z \rightarrow \lambda y. z y$

A curried function of two arguments — applies first argument to second

• currying replaces f(x, y) with (f x)y — nice notational convenience — gives partial application for free

3.4.3 Substitution

- To define substitution use recursion on the structure of terms
- $\bullet \ \ x[x \coloneqq N] \equiv N$
- $y[x := N] \equiv y$
- $(P Q)[x := N] \equiv (P[x := N])(Q[x := N])$
- $(\lambda x.M)[x := N] = \lambda x.M$

In $(\lambda x.M)$, the x is a formal parameter and thus a local variable, different to any other

- $(\lambda y.M)[x := N] = \text{what}?$
- Look back at the school maths example above a subtle point
- Renaming bound variables consistently is allowed
- $\lambda x.x \equiv \lambda y.y \equiv \lambda z.z$
- $\lambda y.\lambda x.y \equiv \lambda z.\lambda x.z$
- This is called α -conversion
- $(\lambda x.\lambda y.xy)y \rightarrow (\lambda x.\lambda z.xz)y \rightarrow \lambda z.yz$
- Bound and Free Variables
- $BV(x) = \emptyset$
- $BV(\lambda x.M) = BV(M) \cup \{x\}$
- $BV(MN) = BV(M) \cup BV(N)$
- $FV(x) = \{x\}$
- $FV(\lambda x.M) = FV(M) \{x\}$
- $FV(MN) = FV(M) \cup FV(N)$
- The above is a formalisation of school maths
- A Lambda term with no free variables is said to be closed such terms are also called combinators — see Combinator and Combinatory logic (Hankin, 2004, page 10)
- α -conversion
- $\lambda x.M \xrightarrow{\alpha} \lambda y.M[x := y]$ if $y \notin FV(M)$
- β -reduction final rule

•
$$(\lambda y.M)[x := N] = \lambda y.M \text{ if } x \notin FV(M)$$

•
$$(\lambda y.M)[x := N] = \lambda y.M[x := N]$$

if $x \in FV(M)$ and $y \notin FV(N)$

•
$$(\lambda y.M)[x := N] = \lambda z.M[y := z][x := N]$$

if $x \in FV(M)$ and $y \in FV(N)$

z is chosen to be first variable $z \notin FV(NM)$

- This is why you cannot go f(a) when given
- $f(x) = ax^2 + bx + c$
- School maths but made formal

Lambda Calculus — Rules Summary — Conversion

- α -conversion renaming bound variables
- $\lambda x.M \xrightarrow{\alpha} \lambda y.M[x := y]$ if $y \notin FV(M)$
- β -conversion function application
- $(\lambda x.M) \stackrel{N}{\sim} M[x := N]$
- η-conversion extensionality
- $\lambda x.Fx \xrightarrow{n} F \text{ if } x \notin FV(F)$

Lambda Calculus — Rules Summary — Substitution

1.
$$x[x := N] \equiv N$$

2.
$$y[x := N] \equiv y$$

3.
$$(PQ)[x := N] \equiv (P[x := N])(Q[x := N])$$

4.
$$(\lambda x.M)[x := N] = \lambda x.M$$

5.
$$(\lambda y.M)[x := N] = \lambda y.M \text{ if } x \notin FV(M)$$

6.
$$(\lambda y.M)[x := N] = \lambda y.M[x := N]$$

if $x \in FV(M)$ and $y \notin FV(N)$

7.
$$(\lambda y.M)[x := N] = \lambda z.M[y := z][x := N]$$

if $x \in FV(M)$ and $y \in FV(N)$
 z is chosen to be first variable $z \notin FV(NM)$

ToC

3.4.4 Lambda Calculus Encodings

- So what does this formalism get us?
- The Lambda Calculus is Turing complete

- We can encode any computation (if we are clever enough)
- Booleans and propositional logic
- Pairs
- Natural numbers and arithmetic
- Looping and recursion

Booleans and Propositional Logic

- True = $\lambda x. \lambda y. x$
- False = $\lambda x. \lambda y. y$
- IF a THEN b ELSE $c \equiv abc$
- IF True THEN b ELSE $c \rightarrow (\lambda x. \lambda y. x) b c$
- $\rightarrow (\lambda y.b) c \rightarrow b$
- IF False THEN b ELSE $c \rightarrow (\lambda x. \lambda y. y) b c$
- $\rightarrow (\lambda y.y) c \rightarrow c$
- Not = λx .((x False)True)
- Not x = IF x THEN False ELSE True
- Exercise: evaluate Not True
- And = $\lambda x. \lambda y. ((x y) \text{ False})$
- And x y = IF x THEN y ELSE False
- Exercise: evaluate And True False
- Or = $\lambda x. \lambda y. ((x \text{ True }) y)$
- Or x y = IF x THEN True ELSE y
- Exercise: evaluate Or False True
- Exercise: evaluate Not True
- \rightarrow (λx .((x False) True)) True
- → (True False) True
- Could go straight to False from here, but we shall fill in the detail
- $\rightarrow ((\lambda x.\lambda y.x)(\lambda x.\lambda y.y))(\lambda x.\lambda y.x)$
- $\rightarrow (\lambda y.(\lambda x.\lambda y.y))(\lambda x.\lambda y.x)$
- \rightarrow $(\lambda x.\lambda y.y) \equiv$ False
- Exercise: evaluate And True False
- \rightarrow (IF x THEN y ELSE False) True False
- →(IF True THEN False ELSE False) → False
- Exercise: evaluate Or False True

- \rightarrow (IF x THEN True ELSE y) False True
- →(IF False THEN True ELSE True) →True

Natural Numbers — Church Numerals

- Encoding of natural numbers
- $0 = \lambda f . \lambda y . y$
- $1 = \lambda f . \lambda y . f y$
- $2 = \lambda f . \lambda y . f(f y)$
- $3 = \lambda f . \lambda y . f(f(f y))$
- Successor Succ = $\lambda z.\lambda f.\lambda y.f(zfy)$
- Succ $0 = (\lambda z.\lambda f.\lambda y.f(zfy))(\lambda f.\lambda y.y)$
- $\rightarrow \lambda f.\lambda y.f((\lambda f.\lambda y.y)fy)$
- $\rightarrow \lambda f. \lambda y. f((\lambda y. y) y)$
- $\rightarrow \lambda f. \lambda y. f y = 1$

Natural Numbers — Operations

- isZero = $\lambda z.z(\lambda y. \text{ False})$ True
- Exercise: evaluate isZero 0
- If M and N are numerals (as λ expressions)
- Add $MN = \lambda x. \lambda y. (Mx) ((Nx) y)$
- Mult $MN = \lambda x.(M(Nx))$
- Exercise: show 1 + 1 = 2

Pairs

- Encoding of a pair a, b
- $(a, b) = \lambda x$. IF x THEN a ELSE b
- FST = $\lambda f.f$ True
- SND = $\lambda f.f$ False
- Exercise: evaluate FST (a, b)
- Exercise: evaluate SND (a, b)

The Fixpoint Combinator

- $Y = \lambda f.(\lambda x.f(x x))(\lambda x.f(x x))$
- $Y F = \lambda f \cdot (\lambda x \cdot f(x x)) (\lambda x \cdot f(x x)) F$
- $\rightarrow (\lambda x.F(xx))(\lambda x.F(xx))$
- $F((\lambda x.F(xx))(\lambda x.F(xx))) = F(YF)$

- (YF) is a fixed point of F
- We can use Y to achieve recursion for F
- Recursion implementation Factorial
- Fact = $\lambda f.\lambda n$. IF n = 0 THEN 1 ELSE n * (f(n-1))
- (*Y* Fact)1 = (Fact (*Y* Fact))1
- \rightarrow IF 1 = 0 THEN 1 ELSE 1 * ((Y Fact) 0)
- \rightarrow 1 * ((Y Fact) 0)
- → 1 * (Fact (*Y* Fact) 0)
- $\rightarrow 1 * \text{ IF } 0 = 0 \text{ THEN } 1 \text{ ELSE } 0 * ((Y \text{ Fact})(0 1))$
- $\bullet \rightarrow 1 * 1 \rightarrow 1$
- Factorial n = (Y Fact) n
- Recursion implemented with a non-recursive function Y

Turing Machines, Lambda Calculus and Programming Languages

- Anything computable can be represented as TM or Lambda Calculus
- But programs would be slow, large and hard to read
- In practice use the ideas to create more expressive languages which include built-in primitives
- Also leads to ideas on data types
- Polymorphic data types
- Algebraic data types
- Also leads on to ideas on higher order functions functions that take functions as arguments or returns functions as results.

Commentary 3

3 Complexity

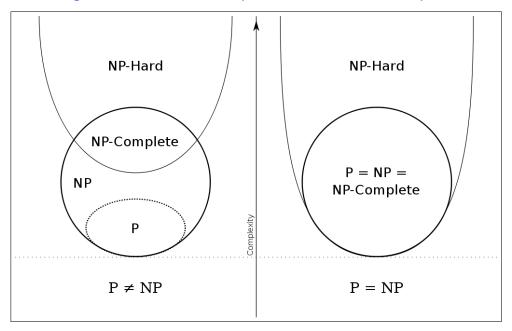
- Complexity Classes P and NP
- Class NP
- NP-completeness
- NP-completeness and Boolean Satisfiability

4 Complexity

4.1 Complexity Classes P and NP

- P, the set of all decision problems that can be solved in polynomial time on a deterministic Turing machine
- NP, the set of all decision problems whose solutions can be verified (certificate) in polynomial time
- Equivalently, NP, the set of all decision problems that can be solved in polynomial time on a non-deterministic Turing machine
- A decision problem, dp is NP-complete if
 - 1. dp is in NP and
 - 2. Every problem in NP is reducible to dp in polynomial time
- NP-hard a problem satisfying the second condition, whether or not it satisfies the first condition. Class of problems which are at least as hard as the hardest problems in NP. NP-hard problems do not have to be in NP and may not be decision problems

Euler diagram for P, NP, NP-complete and NP-hard set of problems



Source: Wikipedia NP-complete entry

4.2 Class NP

- To formalise the definition of the class NP, we need to formalise the idea of checking a candidate solution
- Define a certificate for each problem input that would return Yes
- Describe the verifier algorithm
- Demonstrate the *verifier* algorithm has polynomial complexity

 The terms certificate and verifier have technical definitions in terms of languages and Turing Machines but can be thought of as candidate solution and checker algorithm

Example NP Decision Problems

• **Composite Numbers** Given a number *N* decide if *N* is a composite (i.e. non-prime) number

Certificate factorization of N

• Connectivity Given a graph G and two vertices s, t in G, decide if s is connected to t in G.

Certificate path from s to t

• Linear Programming Given a list of m linear inequalities with rational coefficients over n variables u_1, \ldots, u_n (a linear inequality has the form $a_1 u_1 + a_2 u_2 \cdots + a_n u_n \le b$ for some coefficients $a_1, \ldots, a_n b$), decide if there is an assignment of rational numbers to the variables u_1, \ldots, u_n which satisfies all the inequalities

Certificate is the assignment

- The above are in P
- Composite Numbers, Connectivity and Linear programming are in P
- Composite Numbers follows from Integer factorization and the AKS primality test from 2004
- Connectivity follows from the breadth-first search algorithm
- Linear programming shown to be in P by the Ellipsoid method
- Integer Programming some or all variables are restricted to be integers
- Travelling Salesperson Given a set of nodes and distances between all pairs of nodes and a number k, decide if there is a closed circuit that visits every node exactly once and has total length at most k

Certificate sequence of nodesin such a tour

 Subset sum Given a list of numbers and a number T, decide if there is a subset that adds up to T

Certificate list of members of such a subset

• Independent set (graph theory) A subgraph of G with of at least k vertices which have no edges between them

Certificate the list of *k* vertices

• Clique problem Given a graph and a number k, decide if there is a complete subgraph (clique) of size k

Certificate list pf nodes. For explanation see Prove Clique is NP

- The above are **NP-complete** see List of NP-complete problems
- The following two are not known to be **P** nor **NP-complete**

• Graph Isomorphism Given two $n \times n$ adjacency matrices M_1, M_2 , decide if M_1 and M_2 define the same graph (up to renaming of the vertices)

Certificate the permutation $\pi:[n] \to [n]$ such that M_2 is equal to M_1 after reordering the indices of M_1 according to π

• Integer factorization Given three numbers N, L, U decide if N has a prime factor p in the interval [L, U]

Certificate is the factorization of N

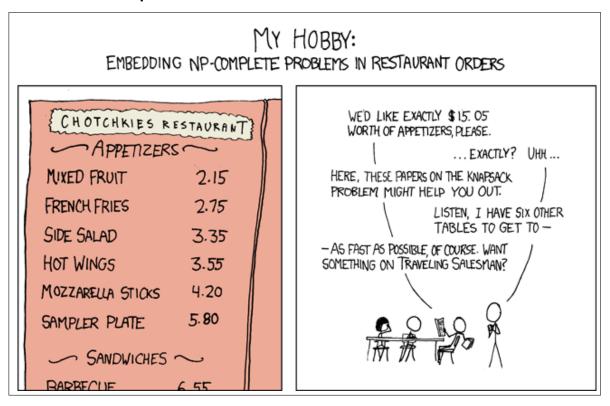
Source Arora and Barak (2009, page 49) Computational Complexity: A Modern Approach and contained links

4.3 NP-completeness

NP-complete problems

- Boolean satisfiability (SAT) Cook-Levin theorem
- Conjunctive Normal Form 3SAT
- Hamiltonian path problem
- Travelling salesman problem
- NP-complete see list of problems

XKCD on NP-Complete Problems



Source & Explanation: XKCD 287

4.4 NP-Completeness and Boolean Satisfiability

- The *Boolean satisfiability problem (SAT)* was the first decision problem shown to be *NP-Complete*
- This section gives a sketch of an explanation
- **Health Warning** different texts have different notations and there will be some inconsistency in these notes
- **Health warning** these notes use some formal notation *to make the ideas more precise* computation requires precise notation and is about manipulating strings according to precise rules.

Alphabets, Strings and Languages

- Notation:
- Σ is a set of symbols the alphabet
- Σ^k is the set of all string of length k, which each symbol from Σ
- Example: if $\Sigma = \{0, 1\}$
 - $-\Sigma^1 = \{0, 1\}$
 - $-\Sigma^2 = \{00, 01, 10, 11\}$
- $\Sigma^0 = \{\epsilon\}$ where ϵ is the empty string
- Σ^* is the set of all possible strings over Σ
- $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \dots$
- A Language, L, over Σ is a subset of Σ^*
- $L \subseteq \Sigma^*$

Language Accepted by a Turing Machine

- Language accepted by Turing Machine, M denoted by L(M)
- L(M) is the set of strings $w \in \Sigma^*$ accepted by M
- For *Final States F* = {*Y*, *N*}, a string $w \in \Sigma^*$ is accepted by $M \Leftrightarrow$ (if and only if) M starting in q_0 with w on the tape halts in state Y
- Calculating a function (function problem) can be turned into a decision problem by asking whether f(x) = y

The NP-Complete Class

- If we do not know if P ≠ NP, what can we say?
- A language *L* is *NP-Complete* if:
 - $L \in NP$ and
 - for all other $L' \in NP$ there is a *polynomial time transformation* (Karp reducible, reduction) from L' to L

- Problem P_1 polynomially reduces (Karp reduces, transforms) to P_2 , written $P_1 \propto P_2$ or $P_1 \leq_p P_2$, iff $\exists f : dp_{P_1} \rightarrow dp_{P_2}$ such that
 - $\forall I \in \mathsf{dp}_{P_1}[I \in Y_{P_1} \Leftrightarrow f(I) \in Y_{P_2}]$
 - f can be computed in polynomial time
- More formally, $L_1 \subseteq \Sigma_1^*$ polynomially transforms to $L_2 \subseteq \Sigma_2^*$, written $L_1 \propto L_2$ or $L_1 \leq_p L_2$, iff $\exists f : \Sigma_1^* \to \Sigma_2^*$ such that
 - $\forall x \in \Sigma_1^* [x \in L_1 \Leftrightarrow f(x) \in L_2]$
 - There is a polynomial time TM that computes f
- Transitivity If $L_1 \propto L_2$ and $L_2 \propto L_3$ then $L_1 \propto L_3$
- If L is NP-Hard and $L \in P$ then P = NP
- If L is NP-Complete, then $L \in P$ if and only if P = NP
- If L_0 is NP-Complete and $L \in NP$ and $L_0 \propto L$ then L is NP-Complete
- Hence if we find one NP-Complete problem, it may become easier to find more
- In 1971/1973 Cook-Levin showed that the Boolean satisfiability problem (SAT) is NP-Complete

The Boolean Satisfiability Problem

- A propositional logic formula or Boolean expression is built from variables, operators: AND (conjunction, ∧), OR (disjunction, ∨), NOT (negation, ¬)
- A formula is said to be *satisfiable* if it can be made True by some assignment to its variables.
- The Boolean Satisfiability Problem is, given a formula, check if it is satisfiable.
 - Instance: a finite set U of Boolean variables and a finite set C of clauses over U
 - Question: Is there a satisfying truth assignment for C?
- A clause is is a disjunction of variables or negations of variables
- Conjunctive normal form (CNF) is a conjunction of clauses
- Any Boolean expression can be transformed to CNF
- Given a set of Boolean variable $U = \{u_1, u_2, \dots, u_n\}$
- A literal from U is either any u_i or the negation of some u_i (written $\overline{u_i}$) usual notation $\neg u_i$
- A clause is denoted as a subset of literals from $U = \{u_2, \overline{u_4}, u_5\}$ usual notation $u_2 \vee \neg u_4 \vee u_5$
- A clause is satisfied by an assignment to the variables if at least one of the literals evaluates to True (just like disjunction of the literals)
- Let C be a set of clauses over U-C is satisfiable iff there is some assignment of truth values to the variables so that every clause is satisfied (just like CNF)
- $C = \{\{u_1, u_2, u_3\}, \{\overline{u_2}, \overline{u_3}\}, \{u_2, \overline{u_3}\}\}\$ is satisfiable

```
usual notation (u_1 \lor u_2 \lor u_3) \land (\neg u_2 \lor \neg u_3) \land (u_2 \lor \neg u_3)
assign (u_1, u_2, u_3) = (T, F, F), (T, T, F), (F, T, F)
```

- $C = \{\{u_1, u_2\}, \{u_1, \overline{u_2}\}, \{\overline{u_1}\}\}\$ is not satisfiable
 - usual notation $(u_1 \vee u_2) \wedge (u_1 \vee \neg u_2) \wedge (\neg u_1)$
- Proof that SAT is NP-Complete looks at the structure of NDTMs and shows you can transform any NDTM to SAT in polynomial time (in fact logarithmic space suffices)
- SAT is in NP since you can check a solution in polynomial time
- To show that $\forall L \in \text{NP} : L \propto \text{SAT}$ invent a polynomial time algorithm for each polynomial time NDTM, M, which takes as input a string x and produces a Boolean formula E_X which is satisfiable iff M accepts x
- See Cook-Levin theorem

Sources

- Garey and Johnson (1979, page 34) has the notation $L_1 \propto L_2$ for polynomial transformation
- Arora and Barak (2009, page 42) has the notation $L_1 \leq_p L_2$ for polynomial-time Karp reducible
- The sketch of Cook's theorem is from Garey and Johnson (1979, page 38)
- For the satisfiable C we could have assignments $(u_1, u_2, u_3) \in \{(T, T, F), (T, F, F), (F, T, F)\}$

Coping with NP-Completeness

- What does it mean if a problem is NP-Complete?
 - There is a P time verification algorithm.
 - There is a P time algorithm to solve it iff P = NP (?)
 - No one has yet found a P time algorithm to solve any NP-Complete problem
 - So what do we do?
- Improved exhaustive search Dynamic Programming; Branch and Bound
- Heuristic methods acceptable solutions in acceptable time compromise on optimality
- Average time analysis look for an algorithm with good average time compromise on generality (see Big-O Algorithm Complexity Cheatsheet)
- Probabilistic or Randomized algorithms compromise on correctness

Sources

- Practical Solutions for Hard Problems Rich (2007, chp 30)
- Coping with NP-Complete Problems Garey and Johnson (1979, chp 6)

5 Turing Machine TMA Question

- The transition function is represented as a Python dictionary mapping stete, symbol to symbol, move, state
- States are represented as strings we may define Python constants to make life easier (see below)
- What are the states?
- Tape represented by a list; moves by 1, -1, 0

```
# Moves
RIGHT = 1
LEFT = -1
STAY = 0

# States
Start = "start"
FindA = "FindA"
FindO = "FindO"
FindNum = "FindNum"
FinishOK = "FinishOK"
FinishNotOK = "FinishNotOK"
Stop = "stop"
```

- Note that the identifiers must be valid Python
- Python has conventions about constantss
- Describe the actions for each state possibly using Python dictionary notation (to make shorter work)

```
(Start, "a"): ("a", RIGHT,FindA),
  (Start, "0"): ("0", RIGHT,FindO),
  (Start, "#"): ("#", RIGHT,FindNum),
  (Start, None): (None,STAY, Stop), # Is empty input allowed ?

(FindA, "a"): ("a", RIGHT,FinishOK),
  (FindA, "0"): ("0", RIGHT,FindA),
  (FindA, "#"): ("#", RIGHT,FindA),
  (FindA, None): (False,STAY, Stop),

(FindO, "a"): ("a", RIGHT,FindO),
  (FindO, "b"): ("0", RIGHT,FinishOK),
  (FindO, "#"): ("#", RIGHT,FindO),
  (FindO, None): (False,STAY, Stop),

(FindNum, "a"): ("a", RIGHT,FindNum),
  (FindNum, "a"): ("a", RIGHT,FindNum),
  (FindNum, "b"): ("b", RIGHT,FinishOK),
  (FindNum, "b"): ("b", RIGHT,FinishOK),
  (FindNum, None): (False,STAY, Stop),
```

• FinishOK and FinishNotOK should tidy up the output and move the read/write head to an approriate position

```
(FinishOK, "a"): ("a",RIGHT,FinishOK),
  (FinishOK, "0"): ("0",RIGHT,FinishOK),
  (FinishOK, "#"): ("#",RIGHT,FinishOK),
  (FinishOK, None): (True,STAY,Stop),
```

What if we wanted to erase everything else and only have False/True as output?

6 Complexity and Big O Notation

Measuring program complexity introduced in section 4 of M269 Unit 2

- See also Miller and Ranum chapter 2 Big-O Notation
- See also Wikipedia: Big O notation
- See also Big-O Cheat Sheet
- Complexity of algorithm measured by using some surrogate to get rough idea
- In M269 mainly using assignment statements
- For exact measure we would have to have cost of each operation, knowledge of the implementation of the programming language and the operating system it runs under.
- But mainly interested in the following questions:
- (1) Is algorithm A more efficient than algorithm B for large inputs?
- (2) Is there a lower bound on any possible algorithm for calculating this particular function?
- (3) Is it always possible to find a polynomial time (n^k) algorithm for any function that is computable
- — the later questions are addressed in Unit 7

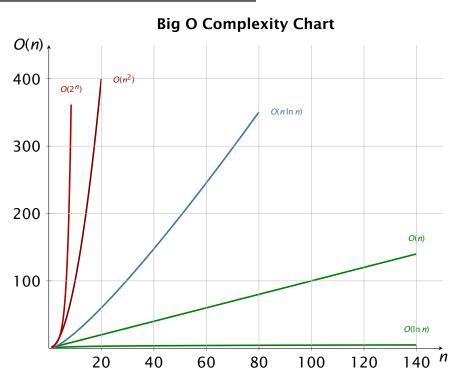
Orders of Common Functions

- O(1) constant look-up table
- $O(\log n)$ **logarithmic** binary search of sorted array, binary search tree, binomial heap operations
- O(n) linear searching an unsorted list
- O(n log n) loglinear heapsort, quicksort (best and average), merge sort
- $O(n^2)$ quadratic bubble sort (worst case or naive implementation), Shell sort, quicksort (worst case), selection sort, insertion sort
- $O(n^c)$ polynomial
- $O(c^n)$ exponential travelling salesman problem via dynamic programming, determining if two logical statements are equivalent by brute force
- *O*(*n*!) **factorial** TSP via brute force.

Tyranny of Asymptotics

- Table from Bentley (1984, page 868)
- Cubic algorithm on Cray-1 supercomputer with FORTRAN3.0n3 nanoseconds
- Linear algorithm on TRS-80 micro with BASIC $19.5n \times 10^6$ nanoseconds

N	Cray-1	TRS-80
10	3.0 microsecs	200 millisecs
100	3.0 millisecs	2.0 secs
1000	3.0 secs	20 secs
10000	49 mins	3.2 mins
100000	35 days	32 mins
1000000	95 yrs	5.4 hrs



Big O Notation

- Abuse of notation we write f(x) = O(g(x))
- but O(g(x)) is the class of all functions h(x) such that $|h(x)| \le C|g(x)|$ for some constant C
- So we should write $f(x) \in O(g(x))$ (but we don't)
- We ought to use a notation that says that (informally) the function f is bounded both above and below by g asymptotically
- This would mean that for big enough x we have

$$k_1 g(x) \le f(x) \le k_2 g(x)$$
 for some k_1, k_2

- This is Big Theta, $f(x) = \Theta(g(x))$
- But we use Big O to indicate an asymptotically tight bound where Big Theta might be more appropriate
- See Wikipedia: Big O Notation
- This could be Maths phobia generated confusion

6.1 Complexity Example

```
def someFunction(aList) :
    n = len(aList)
    best = 0
    for i in range(n) :
        for j in range(i + 1, n + 1) :
            s = sum(aList[i:j])
            best = max(best, s)
    return best
```

- Example from M269 Unit 2 page 46
- Code in file M269TutorialProgPythonADT.py
- What does the code do?
- (It was a famous problem from the late 1970s/early 1980s)
- Can we construct a more efficient algorithm for the same computational problem?
- The code calculates the maximum subsegment of a list
- Described in Bentley (1984), Bentley (1986, column 7), Bentley (2000, column 8) Also in Gries (1989)
- These are all in a procedural programming style (as in C, Java, Python)
- Problem arose from medical image processing.
- A functional approach using Haskell is in Bird (1998, page 134), Bird (2014, page 127, 133) a variant on this called the *Not the maximum segment sum* is given in Bird (2010, Page 73) both of these *derive* a linear time program from the (n^3) initial specification
- See Wikipedia: Maximum subarray problem
- See Rosetta Code: Greatest subsequential sum
- Here is the same program but modified to allow lists that may only have negative numbers
- The complexity T(n) function will be slightly different
- but the Big O complexity will be the same

```
def maxSubSeg01(xs) :
14
15
      n = len(xs)
16
      maxSoFar = xs[0]
17
      for i in range(1,n):
        for j in range(i + 1, n + 1):
18
19
          s = sum(xs[i:j])
          \max SoFar = \max(\max SoFar, s)
20
21
      return maxSoFar
```

- Complexity function *T(n)* for maxSubSeg01()
- Two initial assignments
- The outer loop will be executed (n-1) times,
- Hence the inner loop is executed

$$(n-1)+(n-2)+\ldots+2+1=\frac{(n-1)}{2}\times n$$

• Assume sum() takes *n* assignments

- Hence $T(n) = 2 + (n+2) \times \left(\frac{(n-1)}{2} \times n\right)$ $= 2 + (n+2) \times \left(\frac{n^2}{2} - \frac{n}{2}\right)$ $= 2 + \frac{1}{2}n^3 - \frac{1}{2}n^2 + n^2 - n$ $= \frac{1}{2}n^3 + \frac{1}{2}n^2 - n + 2$
- Hence $O(n^3)$
- · Developing a better algorithm
- Assume we know the solution (maxSoFar) for xs[0..(i 1)]
- We extend the solution to xs[0..i] as follows:
- The maximum segment will be either maxSoFar
- or the sum of a sublist ending at i (maxToHere) if it is bigger
- This reasoning is similar to divide and conquer in binary search or Dynamic programming (see Unit 5)
- Keep track of both maxSoFar and maxToHere the Eureka step
- Developing a better algorithm maxSubSeg02()

```
27
    def maxSubSeg02(xs) :
      maxToHere = xs[0]
28
29
      \max SoFar = xs[0]
30
      for x in xs[1:]:
        # Invariant: maxToHere, maxSoFar OK for xs[0..(i-1)]
31
        maxToHere = max(x, maxToHere + x)
32
        maxSoFar = max(maxSoFar, maxToHere)
33
34
      return maxSoFar
```

- Complexity function T(n) = 2 + 2n
- Hence O(n)
- What if we want more information?
- Return the (or a) segment with max sum and position in list

```
38
    def maxSubSeg03(xs) :
      maxSoFar = maxToHere = xs[0]
39
      startIdx, endIdx, startMaxToHere = 0, 0, 0
40
41
      for i, x in enumerate(xs) :
        if maxToHere + x < x:
42
          maxToHere = x
43
          startMaxToHere = i
44
45
        else:
          maxToHere = maxToHere + x
46
        if maxSoFar < maxToHere :</pre>
          maxSoFar = maxToHere
49
          startIdx, endIdx = startMaxToHere, i
50
      return (maxSoFar,xs[startIdx:endIdx+1],startIdx,endIdx)
52
```

- Developing a better algorithm maxSubSeg03()
- Complexity function worst case T(n) = 2 + 3 + (2 + 3)n
- Hence still O(n)

- Note Python assignments, enumerate() and tuple
- Sample data and output

```
egList = [-2,1,-3,4,-1,2,1,-5,4]

egList01 = [-1,-1,-1]

egList02 = [1,2,3]

assert maxSubSeg03(egList) == (6, [4, -1, 2, 1], 3, 6)

assert maxSubSeg03(egList01) == (-1, [-1], 0, 0)

assert maxSubSeg03(egList02) == (7, [1, 2, 3], 0, 2)
```

ToC

6.2 Complexity & Python Data Types

Lists

Operation	Notation	Average	Amortized Worst
Get item	x = xs[i]	<i>O</i> (1)	<i>O</i> (1)
Set item	xs[i] = x	<i>O</i> (1)	<i>O</i> (1)
Append	xs = ys + zs	<i>O</i> (1)	<i>O</i> (1)
Сору	xs = ys[:]	O(n)	O(n)
Pop last	xs.pop()	<i>O</i> (1)	<i>O</i> (1)
Pop other	xs.pop(i)	O(k)	O(k)
Insert(i,x)	xs[i:i] = [x]	O(n)	O(n)
Delete item	del xs[i:i+1]	O(n)	O(n)
Get slice	xs = ys[i:j]	O(k)	O(k)
Set slice	xs[i:j] = ys	O(k+n)	O(k + n)
Delete slice	xs[i:j] = []	O(n)	O(n)
Member	x in xs	O(n)	
Get length	n = len(xs)	<i>O</i> (1)	<i>O</i> (1)
Count(x)	n = xs.count(x)	O(n)	<i>O</i> (<i>n</i>)

- Source https://wiki.python.org/moin/TimeComplexity
- See https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range

Bags

```
class Bag:
      def __init__(self):
        self.list = []
 8
      def add(self, item):
10
11
        self.list.append(item)
13
      def remove(self, item):
        self.list.remove(item)
14
      def contains(self, item):
16
        return item in self.list
17
      def count(self, item):
19
        return self.list.count(item)
20
22
      def size(self):
        return len(self.list)
23
```

```
def __str__(self):
    return str(self.list)
```

Information Retrieval Functions

- **Term Frequency**, **tf**, takes a string, **term**, and a Bag, **document** *returns* occurrences of **term** divided by total strings in **document**
- Inverse Document Frequency, idf, takes a string, term, and a list of Bags, documents returns log(total/(1 + containing)) — total is total number of Bags, containing is the number of Bags containing term
- **tf-idf**, tf_idf, takes a string, term, and a list of Bags, documents returns a sequence $[r_0, r_1, ..., r_{n-1}]$ such that $r_i = \text{tf}(\text{term}, d_i) \times \text{idf}(\text{term}, \text{documents})$

6.3 Definitions and Rules for Complexity

6.3.1 Big-O and Big-Theta Definitions

- We compare the functions implementing algorithms by looking at the asymptotic behaviour of the functions for large inputs.
- If f and g are functions taking taking natural numbers as input (the problem size) and returning nonnegative results (the effort required in the calculations.)
- f is of order g and write $f = \Theta(g)$, if there are positive constants k_1 and k_2 and a natural number n_0 such that

$$k_1 g(n) \leq f(n) \leq k_2 g(n)$$
 for all $n > n_0$

This means that some multipliers times g(n) provide upper and lower bounds to f(n)

- If we only wanted an upper bound on the values of a function, then you can use Big-O notation.
- We say f is of order at most g and write f = O(g), if there is a positive constant k and a natural number n_0 such that

$$f(n) \leq kg(n)$$
 for all $n > n_0$

Note that the notation is heavily abused:

Many authors use Big-O notation when they really mean Big- Θ notation

We really should define the Θ notation to say that $\Theta(g)$ denotes the set of all functions f with the stated property and write $f \in \Theta(g)$ — however the use of $f = \Theta(g)$ is traditional

 The next section gives some rules for manipulating the notation to calculate overall complexities of functions from their component parts — this also abuses the notation for equality Based on Bird and Gibbons (2020, page 25) Algorithm Design with Haskell and Graham et al. (1994, page 450) Concrete Mathematics: A Foundation for Computer Science

ToC

6.3.2 Big-O and Big-Theta Rules

• $n^p = O(n^q)$ where $p \le q$

This has some surprising consequences — n = O(n) and $n = O(n^2)$ — remember Big-O just gives upper bounds.

- O(f(n)) + O(g(n)) = O(|f(n)| + |g(n)|)
- $\Theta(n^p) + \Theta(n^q) = \Theta(n^q)$ where $p \le q$
- $f(n) = \Theta(f(n))$
- $c \cdot \Theta(f(n)) = \Theta(f(n))$ if c is constant
- $\Theta(\Theta(f(n))) = \Theta(f(n))$
- $\Theta(f(n))\Theta(g(n)) = \Theta(f(n)g(n))$
- $\Theta(f(n)g(n)) = f(n)\Theta(g(n))$

ToC

6.3.3 Big-Theta Rules — Example

```
def numVowels(txt : str) -> int ;
    """Find the number of vowels in text

vowelCount = 0
vowels = "aeiouAEIOU"

for ch in txt :
    if ch in vowels :
        vowelCount = vowelCount + 1
return vowelCount
```

The rules give

```
\Theta(1) + \Theta(1) + \Theta(n) \times \Theta(|vowels|) \times \Theta(1)
where n = |txt|
```

• Since |vowels| = 10 the overall complexity is $\Theta(n)$

6.4 List Comprehensions

List Comprehensions — Python

• List Comprehensions (tutorial), List Comprehensions (reference) provide a concise way of performing calculations over lists (or other iterables)

• Example: Square the even numbers between 0 and 9

```
Python3>>> [x ** 2 for x in range(10) if x % 2 == 0]
[0, 4, 16, 36, 64]
```

- Example: List all pairs of integers (x, y) such that x < 4, y < 4 and x is divisible by 2 and y is divisible by 3

• In general

```
[expr for target1 in iterable1 if cond1
    for target2 in iterable2 if cond2 ...
    for targetN in iterableN if condN ]
```

· Lots example usage in the algorithms below

List Comprehensions — Haskell

- List Comprehensions provide a concise way of performing calculations over lists
- Example: Square the even numbers between 0 and 9

```
GHCi> [x^2 | x <- [0..9], x 'mod' 2 == 0]

[0,4,16,36,64]

GHCi>
```

In general

```
[expr | qual1, qual2,..., qualN]
```

- The qualifiers qual can be
 - Generators pattern <- list
 - Boolean guards acting as filters
 - Local declarations with let decls for use in expr and later generators and boolean guards

Activity 1 (a) Stop Words Filter

- Stop words are the most common words that most search engines avoid: 'a', 'an', 'the', 'the
- Using list comprehensions, write a function filterStopWords that takes a list of words and filters out the stop words
- Here is the initial code

Go to Answer

Activity 1 (a) Stop Words Filter

```
sentence \
11
         = "the_quick_brown_fox_jumps_over_the_lazy_dog"
12
14
       words = sentence.split()
       wordsTest \
16
        = (words == ['the', 'quick', 'brown'
, 'fox', 'jumps', 'over'
, 'the', 'lazy', 'dog'])
17
18
19
21
       stopWords \
         = ['a','an','the','that']
22
```

- Notice the Python Explicit line joining with (\<n1>) and Python Implicit line joining with ((...))
- The backslash (\) must be followed by an end of line character (<n1>)
- The ('...') symbol represents a space (see Unicode U+2423 Open Box)

Go to Answer

Activity 1 (b) Transpose Matrix

- A matrix can be represented as a list of rows of numbers
- We transpose a matrix by swapping columns and rows
- Here is an example

Using list comprehensions, write a function transMat, to transpose a matrix

Go to Answer

Activity 1 (c) List Pairs in Fair Order

- Write a function which takes a pair of positive integers and outputs a list of all possible pairs in those ranges
- If we do this in the simplest way we get a bias to one argument
- Here is an example of a bias to the second argument

Go to Answer

- Rewrite the function which takes a pair of positive integers and outputs a list of all possible pairs in those ranges
- The output should treat each argument *fairly* any initial prefix should have roughly the same number of instances of each argument
- Here is an example output

Go to Answer

Activity 1 (c) List Pairs in Fair Order

- Rewrite the function which takes a pair of positive integers and outputs a list of lists of all possible pairs in those ranges
- The output should treat each argument *fairly* any initial prefix should have roughly the same number of instances of each argument further, the output should be segment by each initial prefix (see example below)
- Here is an example output

Go to Answer

6.4.1 Complexity of List Comprehensions

- Note that list comprehensions are not in M269
- See Complexity of a List Comprehension

```
[f(e) for e in row for row in mat]
```

- Suppose $f = \Theta(g)$ with *n* elements in a row and *m* rows
- Then complexity is $\Theta(g(e)) \times \Theta(n) \times \Theta(m) = \Theta(m \times n \times g(e))$

```
[[e**2 for e in row] for row in mat]
```

- $\Theta(e * * 2) = \Theta(1)$
- Suppose *n* is maximum length of a row and *m* rows
- Then complexity is $\Theta(1) \times \Theta(n) \times \Theta(m) = \Theta(n \times m)$

ToC

Answer 1 (a) Stop Words Filter

Answer 1 (a) Stop Words Filter

• Write here:

Answer 1 (a) Stop Words Filter

Answer 1 (a) Stop Words Filter

```
def filterStopWords(words) :
24
25
          nonStopWords \
           = [word for word in words
26
                      if word not in stopWords]
27
          return nonStopWords
28
       filterStopWordsTest \
31
        = filterStopWords(words) \
== ['quick', 'brown', 'fox'
, 'jumps', 'over', 'lazy', 'dog']
32
33
34
```

Go to Activity

Answer 1 (b) Transpose Matrix

- Answer 1 (b) Transpose Matrix
- Write here:

Answer 1 (b) Transpose Matrix

Answer 1 (b) Transpose Matrix

```
def transMat(mat) :
49
        rowLen = len(mat[0])
50
51
        matTr \
         = [[row[i] for row in mat] for i in range(rowLen)]
52
53
        return matTr
55
      transMatTestA \
       = (transMat(matrixA)
56
57
          == matATr)
```

- Note that a list comprehension is a valid expression as a target expression in a list comprehension
- The code assumes every row is of the same length

Go to Activity

Answer 1 (b) Transpose Matrix

Note the differences in the list comprehensions below

```
38 matrixA \
= [[1, 2, 3, 4]
, [5, 6, 7,8]
, [9, 10, 11, 12]]
```

Go to Activity

Answer 1 (b) Transpose Matrix

- Answer 1 (b) Transpose Matrix
- The Python NumPy package provides functions for N-dimensional array objects
- For transpose see numpy.ndarray.transpose

Go to Activity

Answer 1 (c) List Pairs in Fair Order

- Answer 1 (c) List Pairs in Fair Order first version
- Write here

Go to Activity

Answer 1 (c) List Pairs in Fair Order

- Answer 1 (c) List Pairs in Fair Order
- This is the obvious but biased version

```
def yBiasListing(xRng,yRng) :
63
            yBiasLst \
64
             = [(x,y) for x in range(xRng)
65
                           for y in range(yRng)]
66
            return yBiasLst
67
         yBiasLstTest \
69
           = (yBiasListing(5,5)
70
                = [(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (2, 0), (2, 1), (2, 2), (2, 3), (2, 4)
71
72
73
                     , (3, 0), (3, 1), (3, 2), (3, 3), (3, 4), (4, 0), (4, 1), (4, 2), (4, 3), (4, 4)])
74
```

Go to Activity

Answer 1 (c) List Pairs in Fair Order

- Answer 1 (c) List Pairs in Fair Order second version
- Write here

Go to Activity

Answer 1 (c) List Pairs in Fair Order

- Answer 1 (c) List Pairs in Fair Order second version
- This works by making the sum of the coordinates the same for each prefix

```
def fairListing(xRng,yRng) :
77
         fairLst \
78
          = [(x,d-x) for d in range(yRng)
79
80
                       for x in range(d+1)]
81
         return fairLst
83
      fairLstTest \
        = (fairListing(5,5)
84
85
            == [(0, 0)]
                , (0, 1), (1, 0)
86
                , (0, 2), (1, 1), (2, 0)
, (0, 3), (1, 2), (2, 1), (3, 0)
87
88
                (0, 4), (1, 3), (2, 2), (3, 1), (4, 0)
89
```

Go to Activity

Answer 1 (c) List Pairs in Fair Order

- Answer 1 (c) List Pairs in Fair Order third version
- Write here

```
fairLstATest \
    = (fairListingA(5,5)
    = [[(0, 0)]
    , [(0, 1), (1, 0)]
    , [(0, 2), (1, 1), (2, 0)]
    , [(0, 3), (1, 2), (2, 1), (3, 0)]
    , [(0, 4), (1, 3), (2, 2), (3, 1), (4, 0)]])
```

Go to Activity

Answer 1 (c) List Pairs in Fair Order

- Answer 1 (c) List Pairs in Fair Order third version
- The *inner loop* is placed into its own list comprehension

```
def fairListingA(xRng,yRng) :
91
           fairLstA \
92
93
            = [[(x,d-x) \text{ for } x \text{ in } range(d+1)]
                            for d in range(yRng)]
94
           return fairLstA
95
97
        fairLstATest \
          = (fairListingA(5,5)
98
99
               == [[(0, 0)]]
                  , [(0, 1), (1, 0)]
, [(0, 2), (1, 1), (2, 0)]
, [(0, 3), (1, 2), (2, 1), (3, 0)]
100
101
102
                    [(0, 4), (1, 3), (2, 2), (3, 1), (4, 0)]])
103
```


6.5 Master Theorem for Divide-and-Conquer Recurrences

• The Divide-and-Conquer Method

Many useful algorithms are recursive in structure and often follow a divide-and-conquer method

They break the problem into several subproblems similar to the original problem

- The time analysis is represented by a recurrence system
- References
- Big O notation
- Master theorem
- Cormen et al. (2022, chp 4) Algorithms
- These notes are partly based on M261 Mathematics in Computing and M263 Building Blocks of Software and are not part of M269 Algorithms, Data Structures and Computability
- Recurrence System

$$T(1) = b \tag{1}$$

$$T(n) = bn^{\beta} + cT\left(\frac{n}{d}\right) \qquad \{n = d^{\alpha} > 1\}$$
 (2)

• Typical Expansion

n T(n)

$$d^{0} b$$

$$d^{1} bn^{\beta} + cb$$

$$d^{2} bn^{\beta} + cb \left(\frac{n}{d}\right)^{\beta} + c^{2}b$$

General Expansion

$$T(n) = bn^{\beta} + cT\left(\frac{n}{d}\right)$$

$$= bn^{\beta} + cb\left(\frac{n}{d}\right)^{\beta} + c^{2}T\left(\frac{n}{d^{2}}\right)$$

$$= bn^{\beta}\left(1 + \frac{c}{d^{\beta}} + \left(\frac{c}{d^{\beta}}\right)^{2} + \dots + \left(\frac{c}{d^{\beta}}\right)^{\alpha}\right)$$

$$T(n) = bn^{\beta}\sum_{i=0}^{\log_{d} n} \left(\frac{c}{d^{\beta}}\right)^{i}$$
(3)

- Proof of Closed Form Equation (3)
- For n = 1 equation (3) gives

$$T(1) = b1^{\beta} \sum_{i=0}^{0} \left(\frac{c}{d^{\beta}}\right)^{i} = b$$
 which is correct (same as (1))

• Assume equation (3) holds for $n = d^{\alpha}$. Then for $n = d^{\alpha+1}$

$$T\left(d^{\alpha+1}\right) = cT\left(d^{\alpha}\right) + bn^{\beta} \qquad \text{by equation (2)}$$

$$= cbd^{\alpha\beta} \sum_{i=0}^{\alpha} \left(\frac{c}{d^{\beta}}\right)^{i} + bd^{(\alpha+1)\beta} \qquad \text{by assumption}$$

$$= \left(\frac{c}{d^{\beta}}\right) bd^{(\alpha+1)\beta} \sum_{i=0}^{\alpha} \left(\frac{c}{d^{\beta}}\right)^{i} + bd^{(\alpha+1)\beta}$$

$$= bd^{(\alpha+1)\beta} \left(\sum_{i=1}^{\alpha+1} \left(\frac{c}{d^{\beta}}\right)^{i} + 1\right) \qquad \text{by rearrangement}$$

$$= bd^{(\alpha+1)\beta} \sum_{i=0}^{\alpha+1} \left(\frac{c}{d^{\beta}}\right)^{i} \qquad \text{by rearrangement}$$

- Hence equation (3) holds for all $n = d^{\alpha}$ where $\alpha \in \mathbb{N}$
- 1. If $c < d^{\beta}$ then the sum converges and T(n) is $\Theta(n^{\beta})$
- 2. If $c = d^{\beta}$ then each term in the sum is 1 and T(n) is $\Theta\left(n^{\beta} \log_d n\right)$

3. If
$$c > d^{\beta}$$
 then use $\sum_{i=0}^{p} x^{i} = \frac{x^{p+1} - 1}{x - 1}$

$$T(n) = bn^{\beta} \left[\frac{\left(\frac{c}{d^{\beta}}\right)^{\log_{d} n + 1} - 1}{\left(\frac{c}{d^{\beta}}\right) - 1} \right]$$

$$= \Theta \left(n^{\beta} \left(\frac{c}{d^{\beta}}\right)^{\log_{d} n} \right)$$

$$= \Theta \left(c^{\log_{d} n} \right)$$

$$= \Theta \left(n^{\log_{d} c} \right) \text{ since } a^{\log_{b} x} = x^{\log_{b} a}$$

6.5.1 Master Theorem Example Usage

- Algorithm
- Find mid point and check
 if not equal to target, recurse on half the data
- Timing equations

$$T(1) \le 1$$

$$T(n) = T\left(\frac{n}{2}\right) + 1$$

• Hence c = 1, d = 2, $\beta = 0 \rightarrow \text{case (2)}$ $T(n) = \Theta(\log_2 n)$

Algorithm

- Best case: splitting on median of data
- Recursively sort each half
- Timing equations

$$T(1) \le k$$

 $T(n) = 2T(\frac{n}{2}) + kn$

• Hence c = 2, d = 2, $\beta = 1 \rightarrow \text{case (2)}$ $T(n) = \Theta(n \log_2 n)$

- See Averages/Median
- Matrix Multiplication
- Let A, B be two square matrices over a ring, \mathcal{R}
- Informally, a *ring* is a set with two binary operations which look similar to addition and multiplication of integers
- The problem is to implement matrix multiplication to find the matrix product C = AB
- Without loss of generality, we may assume that A, and B have sizes which are powers of 2 — if A, and B were not of this size, they could be padded with rows or columns of zeroes
- The Strassen algorithm partitions A, B and C into equally sized blocks

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \qquad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} \qquad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$
 with A_{ij} , B_{ij} , $C_{ij} \in \text{Mat}_{2^{n-1} \times 2^{n-1}}(\mathcal{R})$

• The usual (naive, standard) algorithm gives

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$

$$= \begin{pmatrix} A_{11} \times B_{11} + A_{12} \times B_{21} & A_{11} \times B_{12} + A_{12} \times B_{22} \\ A_{21} \times B_{11} + A_{22} \times B_{21} & A_{21} \times B_{12} + A_{22} \times B_{22} \end{pmatrix}$$

- This as 8 multiplications and if we assume multiplication is more expensive than addition then the time complexity is $\Theta(n^3)$
- The Strassen algorithm rearranges the calculation

$$M_1 = (A_{11} + A_{22}) \times (B_{11} + B_{22})$$

$$M_2 = (A_{21} + A_{22}) \times B_{11}$$

$$M_3 = A_{11} \times (B_{12} - B_{22})$$

$$M_4 = A_{22} \times (B_{21} - B_{11})$$

$$M_5 = (A_{11} + A_{12}) \times B_{22}$$

$$M_6 = (A_{21} - A_{11}) \times (B_{11} + B_{12})$$

$$M_7 = (A_{12} - A_{22}) \times (B_{21} + B_{22})$$

• We now express the C_{ij} in terms of the M_k

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$

$$= \begin{pmatrix} M_1 + M_4 - M_5 + M_7 & M_3 + M_5 \\ M_2 + M_4 & M_1 - M_2 + M_3 + M_6 \end{pmatrix}$$

• Strassen Matrix Multiplication Timing Equations

$$T(n) = 7T\left(\frac{n}{2}\right) + \frac{18}{4}n^2$$
$$T(1) \le \frac{18}{4}$$

- This is derived from the 7 multiplications and 18 additions or subtractions
- c = 7, d = 2, $\beta = 2 \rightarrow case (3)$ $T(n) = \Theta(n^{\log_2 7}) = \Theta(n^{2.8})$

ToC

7 Exponentials and Logarithms

7.1 Exponentials and Logarithms — Definitions

- Exponential function $y = a^x$ or $f(x) = a^x$
- $a^n = a \times a \times \cdots \times a$ (n a terms)
- Logarithm reverses the operation of exponentiation
- $\log_a y = x$ means $a^x = y$
- $\log_a 1 = 0$
- $\log_a a = 1$
- Method of logarithms propounded by John Napier from 1614
- Log Tables from 1617 by Henry Briggs
- Slide Rule from about 1620-1630 by William Oughtred of Cambridge
- Logarithm from Greek logos ratio, and arithmos number Chambers (2014) Chambers
 Dictionary

ToC

7.2 Rules of Indices

1.
$$a^{m} \times a^{n} = a^{m+n}$$

2.
$$a^m \div a^n = a^{m-n}$$

3.
$$a^{-m} = \frac{1}{a^m}$$

4.
$$a^{\frac{1}{m}} = \sqrt[m]{a}$$

5.
$$(a^m)^n = a^{mn}$$

6.
$$a^{\frac{n}{m}} = \sqrt[m]{a^n}$$

7.
$$a^0 = 1$$
 where $a \neq 0$

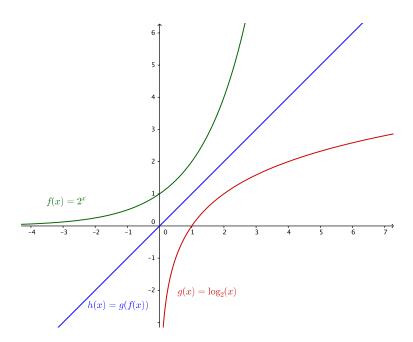
- Exercise Justify the above rules
- What should 00 evaluate to?
- See Wikipedia: Exponentiation
- The *justification* above probably only worked for whole or *rational* numbers see later for exponents with *real* numbers (and the value of *logarithms*, *calculus*...)

7.3 Logarithms — Motivation

- Make arithmetic easier turns multiplication and division into addition and subtraction (see later)
- Complete the range of elementary functions for differentiation and integration
- An elementary function is a function of one variable which is the composition of a finite number of arithmetic operations ((+), (-), (×), (÷)), exponentials, logarithms, constants, and solutions of algebraic equations (a generalization of nth roots).
- The elementary functions include the trigonometric and hyperbolic functions and their inverses, as they are expressible with complex exponentials and logarithms.
- See A Level FP2 for Euler's relation $e^{i\theta} = \cos \theta + i \sin \theta$
- In A Level C3, C4 we get $\int \frac{1}{x} = \log_e |x| + C$
- e is Euler's number 2.71828...

7.4 Exponentials and Logarithms — Graphs

• See GeoGebra file expLog.ggb



ToC

7.5 Laws of Logarithms

- Multiplication law $\log_a xy = \log_a x + \log_a y$
- Division law $\log_a \left(\frac{x}{y}\right) = \log_a x \log_a y$
- Power law $\log_a x^k = k \log_a x$
- Proof of Multiplication Law

$$x = a^{\log_a x}$$

$$y = a^{\log_a y}$$

$$xy = a^{\log_a x} \times a^{\log_a y}$$

$$= a^{\log_a x + \log_a y}$$
Hence $\log_a xy = \log_a x + \log_a y$

by definition of log

by laws of indices by definition of log

ToC

7.6 Arithmetic and Inverses

- Notation helps or maybe not?
- Addition add(b, x) = x + b
- Subtraction sub(b, x) = x b
- Inverse sub(b, add(b, x)) = (x + b) b = x
- Multiplication $mul(b, x) = x \times b$
- **Division** div(b, x) = $x \div b = \frac{x}{b} = x/b$

- Inverse div(b, mul(b, x)) = $(x \times b) \div b = \frac{(x \times b)}{b} = x$
- **Exponentiation** $exp(b, x) = b^{x}$
- Logarithm $\log(b, x) = \log_b x$
- Inverse $\log(b, \exp(b, x)) = \log_b(b^x) = x$
- What properties do the operations have that work (or not) with the notation?

Arithmetic Operations — Commutativity and Associativity

- Commutativity $x \circledast y = y \circledast x$
- Associativity $(x \otimes y) \otimes z = x \otimes (y \otimes z)$
- ullet (+) and (imes) are *semantically* commutative and associative so we can leave the brackets out
- (-) and (÷) are not
- Evaluate (3 (2 1)) and ((3 2) 1)
- Evaluate (3/(2/2)) and ((3/2)/2)
- We have the syntactic ideas of left (and right) associativity
- We choose (-) and (÷) to be left associative
- 3-2-1 means ((3-2)-1)
- 3/2/2 means ((3/2)/2)
- Operator precedence is also a choice (remember BIDMAS or BODMAS ?)
- If in doubt, put the brackets in

Exponentials and Logarithm — Associativity

- What should 2³⁴ mean?
- Let $b \wedge x \equiv b^X$
- Evaluate (2 ^ 3) ^ 4 and 2 ^ (3 ^ 4)
- Evaluate $c = \log_b(\log_b((b \land b) \land x))$
- Evaluate $d = \log_b(\log_b(b \land (b \land x)))$
- Beware spreadsheets Excel and LibreOffice here
- $(2^3)^4 = 2^{12}$ and $2^{3^4} = 2^{81}$
- Exponentiation is not semantically associative
- We choose the syntactic left or right associativity to make the syntax nicer.
- Evaluate $c = \log_b(\log_b((b \land b) \land x))$
- $c = \log_h(x \log_h(b^b)) = \log_h(x \cdot (b \log_h b)) = \log_h(x \cdot b \cdot 1)$
- Hence $c = \log_b x + \log_b b = \log_b x + 1$
- Not symmetrical (unless b and x are both 2)

- Evaluate $d = \log_b(\log_b(b \land (b \land x)))$
- $d = \log_b((b \land x)(\log_b b)) = \log_b((b \land x) \times 1)$
- Hence $d = \log_b(b \land x) = x(\log_b b) = x$
- Which is what we want so exponentiation is *chosen* to be right associative

7.7 Change of Base

• Change of base

$$\log_{a} x = \frac{\log_{b} x}{\log_{b} a}$$
Proof: Let $y = \log_{a} x$

$$a^{y} = x$$

$$\log_{b} a^{y} = \log_{b} x$$

$$y \log_{b} a = \log_{b} x$$

$$y = \frac{\log_{b} x}{\log_{b} a}$$

• Given x, log_b x, find the base b

$$-b=x^{\frac{1}{\log_b x}}$$

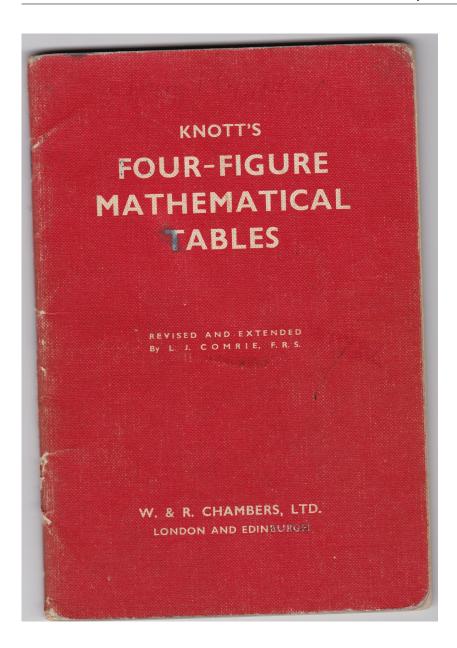
•
$$\log_a b = \frac{1}{\log_b a}$$

8 Before Calculators and Computers

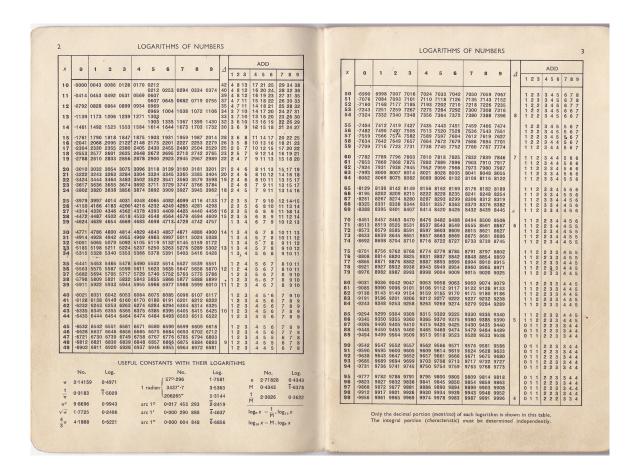
- We had computers before 1950 they were *humans* with pencil, paper and some further aids:
- **Slide rule** invented by William Oughtred in the 1620s major calculating tool until pocket calculators in 1970s
- Log tables in use from early 1600s method of logarithms propounded by John Napier
- Logarithm from Greek logos ratio, and arithmos number

8.1 Log Tables

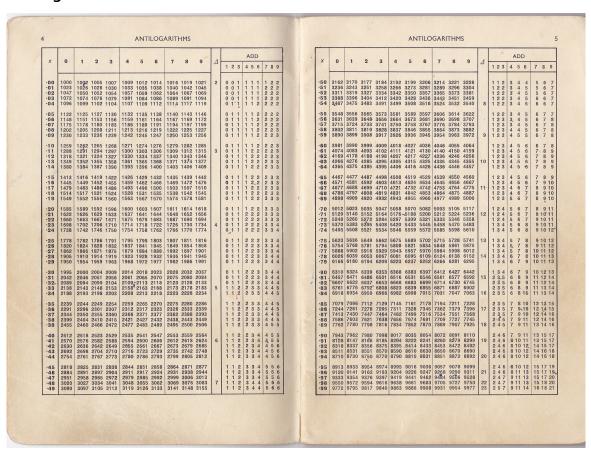
Knott's Four-Figure Mathematical Tables



Logarithms of Numbers

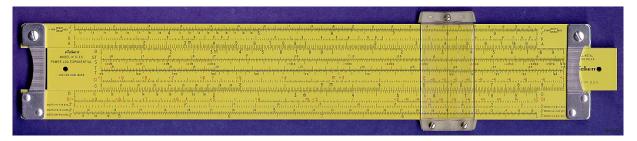


Antilogarithms



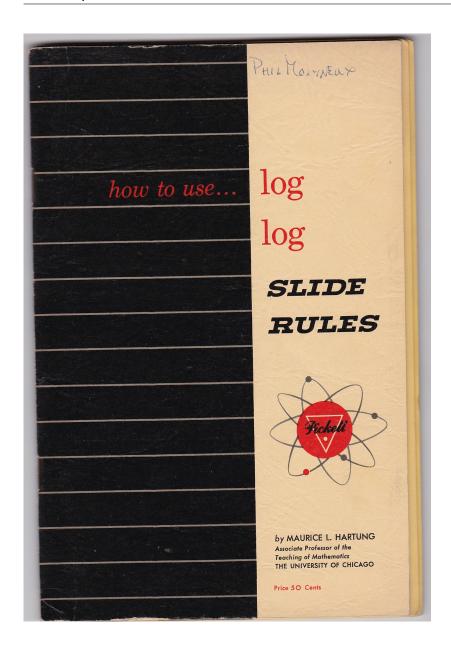
8.2 Slide Rules

Pickett N 3-ES from 1967



- See Oughtred Society
- UKSRC
- Rod Lovett's Slide Rules
- Slide Rule Museum

Pickett log log Slide Rules Manual 1953



ToC

8.3 Calculators

HP HP-21 Calculator from 1975 £69

Casio fx-85GT PLUS Calculator from 2013 £10

Calculator links

• HP Calculator Museum http://www.hpmuseum.org

- HP Calculator Emulators http://nonpareil.brouhaha.com
- HP Calculator Emulators for OS X http://www.bartosiak.org/nonpareil/
- Vintage Calculators Web Museum http://www.vintagecalculators.com

8.4 Example Calculation

- Evaluate 89.7 × 597
- Knott's Tables
- $\log_{10} 89.7 = 1.9528$ and $\log_{10} 597 = 2.7760$
- Shows mantissa (decimal) & characteristic (integral)
- Add 4.7288, take *antilog* to get $5346 + 10 = 5.356 \times 10^4$
- HP-21 Calculator set display to 4 decimal places
- 89.7 log = 1.9528 and 597 log = 2.7760
- + displays 4.7288
- 10 ENTER, $x \neq y$ and y^x displays 53550.9000
- Casio fx-85GT PLUS
- log 89.7) = 1.952792443 + log 597) = 2.775974331 =
- 4.728766774 Ans + 10^x gives 53550.9

9 Logic and Truth Tables

9.1 Boolean Expressions and Truth Tables

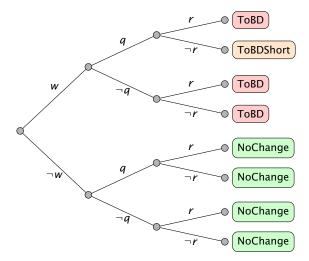
Traffic Lights Example

- Consider traffic light at the intersection of roads AC and BD with the following rules for the AC controller
- Vehicles should not wait on red on BD for too long.
- If there is a long queue on AC then BD is only given a green for a short interval.
- If both queues are long the usual flow times are used.
- We use the following propositions:
 - w Vehicles have been waiting on red on BD for too long
 - q Queue on AC is too long
 - r Queue on BD is too long
- Given the following events:
 - ToBD Change flow to BD

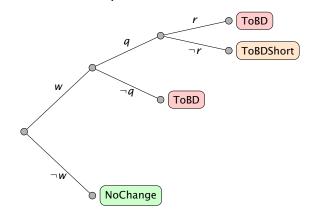
- ToBDShort Change flow to BD for short time
- NoChange No Change to lights
- Express above as truth table, outcome tree, boolean expression
- Traffic Lights outcome table

W	q	r	Event
Т	Т	Т	ToBD
Т	Τ	F	ToBDShort
Т	F	Τ	ToBD
Т	F	F	ToBD
F	Τ	Τ	NoChange
F	Т	F	NoChange
F	F	Τ	NoChange
F	F	F	NoChange

• Traffic lights outcome tree



• Traffic lights outcome tree simplified



- Traffic Lights code 01
- See M269TutorialProgPythonADT01.py

```
def trafficLights01(w,q,r) :
    """
    Input 3 Booleans
    Return Event string
    """
    if w :
```

```
if q:
10
          if r:
            evnt = "ToBD"
11
12
          else:
            evnt = "ToBDShort"
13
        else
14
          evnt = "ToBD"
15
      else:
16
        evnt = "NoChange"
17
18
      return evnt
```

• Traffic Lights test code 01

```
trafficLights01Evnts = [((w,q,r), trafficLights01(w,q,r))]
22
                                             for w in [True,False]
23
24
                                             for q in [True, False]
                                             for r in [True,False]]
25
27
     assert trafficLights01Evnts \
       == [((True, True, True), 'ToBD')
28
              ((True, False), 'ToBDShort')
,((True, False, True), 'ToBD')
,((True, False, False), 'ToBD')
29
30
31
              ,((False, True, True), 'NoChange')
32
              ,((False, True, False), 'NoChange')
,((False, False, True), 'NoChange')
33
34
              ,((False, False, False), 'NoChange')]
35
```

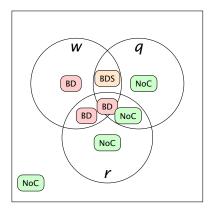
• Traffic Lights code 02 compound Boolean conditions

```
def trafficLights02(w,q,r) :
37
38
      Input 3 Booleans
39
      Return Event string
40
41
      if ((w and q and r) or (w and not q)) :
42
        evnt = "ToBD"
43
44
      elif (w and q and not r):
        evnt = "ToBDShort"
45
46
      else:
        evnt = "NoChange"
47
      return evnt
48
```

- What objectives do we have for our code?
- Traffic Lights test code 02

```
trafficLights02Evnts = [((w,q,r), trafficLights02(w,q,r))
for w in [True,False]
for q in [True,False]
for r in [True,False]]

assert trafficLights02Evnts == trafficLights01Evnts
```



• Traffic Lights Venn diagram

• OK using a fill colour would look better but didn't have the time to hack the package

9.2 Conditional Expressions and Validity

- Validity of Boolean expressions
- Complete every outcome returns an event (or error message, raises an exception)
- Consistent we do not want two nested if statements or expressions resulting in different events
- We check this by ensuring that the events form a disjoint partition of the set of outcomes see the Venn diagram
- We would quite like the programming language processor to warn us otherwise not always possible

9.3 Boolean Expressions Exercise

Rail Ticket Exercise

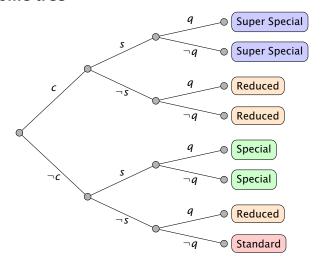
- Rail ticket discounts for:
 - c Rail card
 - q Off-peak time
 - s Special offer
- 4 fares: Standard, Reduced, Special, Super Special
- Rules:
 - 1. Reduced fare if rail card or at off-peak time
 - 2. Without rail card no reduction for both special offer and off-peak.
 - 3. Rail card always has reduced fare but cannot get off-peak discount as well.
 - 4. Rail card gets super special discount for journey with special offer
- Draw up truth table, outcome tree, Venn diagram and conditional statement (or expression) for this
- Rail ticket outcome table

С	9	S	Event
Т	Т	Т	Super Special
Τ	Τ	F	Reduced
Τ	F	Τ	Super Special
Τ	F	F	Reduced
F	Τ	Τ	Special
F	Т	F	Reduced
F	F	Τ	Special
F	F	F	Standard

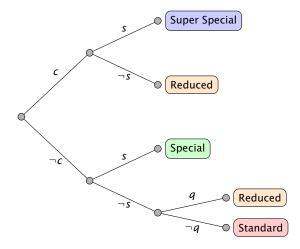
- Rail ticket outcome table
- Note that it may be more convenient to change columns

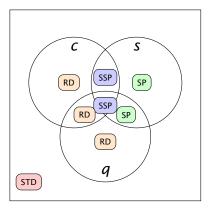
С	S	q	Event		
Т	Т	Т	Super Special		
Т	Т	F	Super Special		
Τ	F	Т	Reduced		
Т	F	F	Reduced		
F	Τ	Т	Special		
F	Т	F	Special		
F	F	Т	Reduced		
F	F	F	Standard		

- Real fares are a little more complex see brfares.com
- Rail Ticket outcome tree



• Rail Ticket outcome tree simplified





- Rail Ticket Venn diagram
- Rail Ticket code 01

```
def railTicket01(c,s,q) :
61
62
      Input 3 Booleans
63
64
      Return Event string
65
66
      if c:
        if s:
67
          evnt = "SSP"
68
        else:
69
          evnt = "RD"
70
71
      else:
        if s:
72
          evnt = "SP"
73
74
        else:
          if q:
75
76
            evnt = "RD"
77
          else:
            evnt = "STD"
78
      return evnt
79
```

• Rail Ticket test code 01

```
railTicket01Evnts = [((c,s,q), railTicket01(c,s,q))
83
                                            for c in [True,False]
84
                                            for s in [True,False]
                                            for q in [True,False]]
86
    assert railTicket01Evnts \
== [((True, True, True), 'SSP')
88
89
              ,((True, True, False), 'SSP')
90
              ,((True, False, True), 'RD')
91
              ,((True, False, False), 'RD'
,((False, True, True), 'SP')
                                             'RD')
92
93
              ,((False, True, False), 'SP'),((False, False, True), 'RD')
94
95
              ,((False, False, False), 'STD')]
96
```

• Rail Ticket code 02 compound Boolean expressions

```
98
     def railTicket02(c,s,q) :
99
100
        Input 3 Booleans
        Return Event string
101
102
        if (c and s) :
    evnt = "SSP"
103
104
105
        elif ((c and not s) or (not c and not s and q)) :
          evnt = "RD"
106
        elif (not c and s) :
  evnt = "SP"
107
108
        else:
109
          evnt = "STD"
110
        return evnt
111
```

• Rail Ticket test code 02

```
railTicket02Evnts = [((c,s,q), railTicket02(c,s,q))

for c in [True,False]

for s in [True,False]

for q in [True,False]]

assert railTicket02Evnts == railTicket01Evnts
```

ToC

9.4 Propositional Calculus

- Unit 2 section 3.2 A taste of formal logic introduces Propositional calculus
- A language for calculating about Booleans truth values
- Gives operators (connectives) conjunction (∧) AND, disjunction (∨) OR, negation (¬)
 NOT, implication (⇒) IF
- There are 16 possible functions $(\mathbb{B}, \mathbb{B}) \to \mathbb{B}$ see below defined by their truth tables
- Discussion Did you find the truth table for implication weird or surprising?
- Implication has a negative definition we accept its truth unless we have contrary evidence
- $T \Rightarrow T == T$ and $T \Rightarrow F == F$
- Hence 4 possibilities for truth table

p	9	$b \Leftrightarrow d$	4	$b \Leftrightarrow d$	$b \wedge d$
Т	Т	Т	Т	Т	Т
Т	F	F	F	F	F
F	Τ	Τ	Τ	F	F
F	F	Т	F	Т	F

- (⇒) must have the entry shown the others are taken
- Do not think of p causing q
- Functionally complete set of connectives is one which can be used to express all
 possible connectives
- $p \Rightarrow q \equiv \neg p \lor q$ so we could just use $\{\neg, \land, \lor\}$
- **Boolean programming** we have to have a functionally complete set but choose more to make the programming easier
- Expressiveness is an issue in programming language design
- NAND $p \overline{\wedge} q$, $p \uparrow q$, Sheffer stroke
- NOR $p \overline{\lor} q$, $p \downarrow q$, Pierce's arrow
- See truth tables below both {↑}, {↓} are functionally complete
- Exercise verify

$$- \neg p \equiv p \uparrow p$$

$$- p \land q \equiv \neg (p \uparrow q) = (p \uparrow q) \uparrow (p \uparrow q)$$

$$- p \lor q \equiv (p \uparrow p) \uparrow (q \uparrow q)$$

$$- \neg p \equiv p \downarrow p$$

$$- p \land q \equiv (p \downarrow p) \downarrow (q \downarrow q)$$

$$- p \lor q \equiv \neg (p \downarrow q) = (p \downarrow q) \downarrow (p \downarrow q)$$

• Not a novelty — the Apollo Guidance Computer was implemented in NOR gates alone.

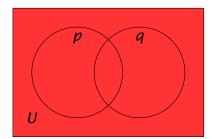
9.5 Truth Function

- The following appendix notes illustrate the 16 binary functions of two Boolean variables
- See Truth function
- See Functional completeness
- See Sheffer stroke
- See Logical NOR

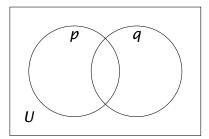
Table of Binary Truth Functions

p	q	Т	$b \wedge d$	$b \Rightarrow d$	d	$b \Leftrightarrow d$	Ь	$b \Leftrightarrow d$	$b \vee d$
Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	F	Т	Т	Т	Т	F	F	F	F
F	Τ	Т	Т	F	F	Т	Т	F	F
F	F	Т	F	Т	F	Т	F	Т	F
				6		6		, d	9
p	9		b∧d	b # d	d Γ	b ⇔ d	b [b	<i>p</i> ∨ <i>q</i>
р Т	9 Т	 F	<i>b</i>	#	<i>d</i>	4	b [F	\$	<
				p	Γ	4	Γ	\$	a <
Т	Т	F	F	# a F	г ⁻	\$ C F	Г F	\$ a F	< a F

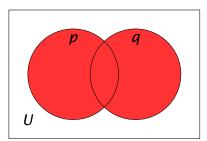
• Tautology True, ⊤, *Top*



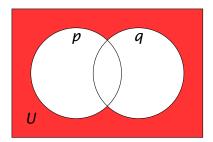
• Contradiction False, ⊥, Bottom



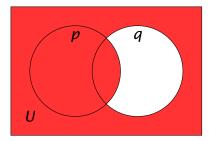
• Disjunction OR, $p \vee q$



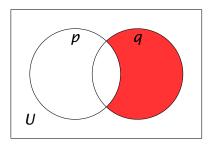
• **Joint Denial NOR**, $p \overline{\lor} q$, $p \downarrow q$, *Pierce's arrow*



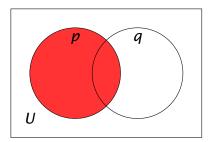
• Converse Implication $p \in q$



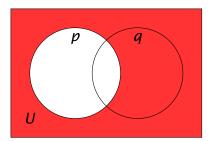
• Converse Nonimplication $p \notin q$



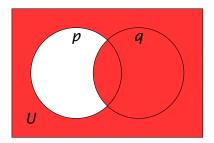
• Proposition *p*



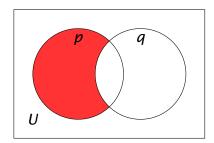
• Negation of *p*



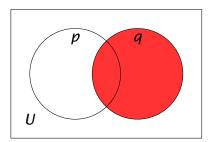
• Material Implication $p \Rightarrow q$



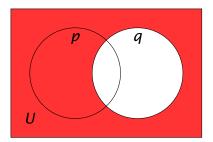
• Material Nonimplication $p \Rightarrow q$



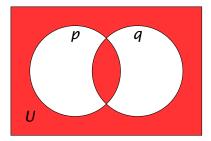
• Proposition q q

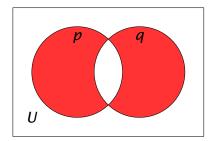


• Negation of $q \neg q$

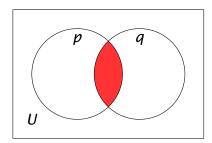


• **Biconditional** If and only if, IFF, $p \Leftrightarrow q$

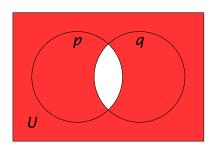




• Conjunction AND, $p \wedge q$



• Alternative denial NAND, $p \pm q$, $p \uparrow q$, Sheffer stroke



ToC

10 Web Sites & References

10.1 Web Sites

• Logic

- WFF, WFF'N Proof online

Computability

- Computability
- Computable function
- Decidability (logic)
- Turing Machines
- Universal Turing Machine
- Turing machine simulator
- Lambda Calculus
- Von Neumann Architecture
- Turing Machine XKCD 205 Candy Button Paper
- Turing Machine XKCD 505 A Bunch of Rocks
- RIP John Conway Why can Conway's Game of Life be classified as a universal machine?
- Phil Wadler Bright Club on Computability
- Bridges: Theory of Computation: Halting Problem
- Bridges: Theory of Computation: Other Non-computable Problems

Complexity

- Complexity class
- NP complexity
- NP complete
- Reduction (complexity)
- P versus NP problem
- Graph of NP-Complete Problems

Go to Table of Contents

Note on References — the list of references is mainly to remind me where I obtained some of the material and is not required reading.

References

Adelson-Velskii, G M and E M Landis (1962). An algorithm for the organization of information. In *Doklady Akademia Nauk SSSR*, volume 146, pages 263-266. Translated from *Soviet Mathematics* — *Doklady*; 3(5), 1259-1263.

Arora, Sanjeev and Boaz Barak (2009). *Computational Complexity: A Modern Approach*. Cambridge University Press. ISBN 0521424267. URL http://www.cs.princeton.edu/theory/complexity/. 42, 45

- Bentley, Jon (1984). Programming pearls: Algorithm design techniques. *Commun. ACM*, 27(9):865-873. ISSN 0001-0782. doi:10.1145/358234.381162. URL http://doi.acm.org/10.1145/358234.381162. 47, 49
- Bentley, Jon (1986). Programming Pearls. Addison Wesley. ISBN 0201103311. 49
- Bentley, Jon (2000). *Programming Pearls*. Addison Wesley, second edition. ISBN 0201657880. 49
- Bird, Richard (1998). *Introduction to Functional Programming using Haskell*. Prentice Hall, second edition. ISBN 0134843460. 32, 49
- Bird, Richard (2010). *Pearls of Functional Algorithm Design*. Cambridge University Press. ISBN 0521513383. 49
- Bird, Richard (2014). *Thinking Functionally with Haskell*. Cambridge University Press. ISBN 1107452643. URL https://www.cs.ox.ac.uk/publications/books/functional/. 49
- Bird, Richard and Jeremy Gibbons (2020). *Algorithm Design with Haskell*. Cambridge University Press. ISBN 9781108869041. URL https://www.cs.ox.ac.uk/publications/books/adwh/. 53
- Bird, Richard and Phil Wadler (1988). *Introduction to Functional Programming*. Prentice Hall, first edition. ISBN 0134841972. 32
- Chambers (2014). *The Chambers Dictionary (13th Edition)*. Chambers. ISBN 1473602254. 63
- Chiswell, Ian and Wilfrid Hodges (2007). *Mathematical Logic*. Oxford University Press. ISBN 0199215626.
- Church, Alonzo et al. (1937). Review: AM Turing, On Computable Numbers, with an Application to the Entscheidungsproblem. *Journal of Symbolic Logic*, 2(1):42-43.
- Cook, Stephen A. (1971). The Complexity of Theorem-proving Procedures. In *Proceedings of the Third Annual ACM Symposium on Theory of Computing*, STOC '71, pages 151–158. ACM, New York, NY, USA. doi:10.1145/800157.805047. URL http://doi.acm.org/10.1145/800157.805047.
- Copeland, B Jack, editor (2004). The Essential Turing: Seminal Writings in Computing, Logic, Philosophy, Artificial Intelligence, and Artificial Life plus The Secrets of Enigma. Oxford University Press. ISBN 0198250800.
- Copeland, B. Jack; Carl J. Posy; and Oron Shagrir (2013). *Computability: Turing, Gödel, Church, and Beyond.* The MIT Press. ISBN 0262018993. 26
- Cormen, Thomas H.; Charles E. Leiserson; Ronald L. Rivest; and Clifford Stein (2009). *Introduction to Algorithms*. MIT Press, third edition. ISBN 0262533057. URL http://mitpress.mit.edu/books/introduction-algorithms.
- Cormen, Thomas H.; Charles E. Leiserson; Ronald L. Rivest; and Clifford Stein (2022). Introduction to Algorithms. MIT Press, fourth edition. ISBN 9780262046305. URL https://mitpress.mit.edu/books/introduction-algorithms-fourth-edition. 60
- Davis, Martin (1995). Influences of mathematical logic on computer science. In *The Universal Turing Machine A Half-Century Survey*, pages 289–299. Springer.

- Davis, Martin (2012). *The Universal Computer: The Road from Leibniz to Turing*. A K Peters/CRC Press. ISBN 1466505192.
- Dowsing, R.D.; V.J Rayward-Smith; and C.D Walter (1986). First Course in Formal Logic and Its Applications in Computer Science. Blackwells Scientific. ISBN 0632013087.
- Franzén, Torkel (2005). *Gödel's Theorem: An Incomplete Guide to Its Use and Abuse*. A K Peters, Ltd. ISBN 1568812388.
- Fulop, Sean A. (2006). On the Logic and Learning of Language. Trafford Publishing. ISBN 1412023815.
- Garey, Michael R. and David S. Johnson (1979). *Computers and Intractability: A Guide to the Theory of NP-completeness*. W.H.Freeman Co Ltd. ISBN 0716710455. 45
- Graham, Ronald L.; Donald E. Knuth; and Oren Patashnik (1994). *Concrete Mathematics: Foundation for Computer Science*. Addison Wesley, second edition. ISBN 0201558025. 53
- Gries, David (1989). The maximum-segment-sum problem. In *Formal development programs and proofs*, pages 33–36. Addison-Wesley Longman Publishing Co., Inc. 49
- Halbach, Volker (2010). *The Logic Manual*. OUP Oxford. ISBN 0199587841. URL http://logicmanual.philosophy.ox.ac.uk/index.html.
- Halpern, Joseph Y; Robert Harper; Neil Immerman; Phokion G Kolaitis; Moshe Y Vardi; and Victor Vianu (2001). On the unusual effectiveness of logic in computer science. *Bulletin of Symbolic Logic*, pages 213–236.
- Hankin, Chris (2004). An Introduction to Lambda Calculi for Computer Scientists. King's College Publications. ISBN 0954300653. URL http://www.doc.ic.ac.uk/~clh/. 35
- Hindley, J. Roger and Jonathan P. Seldin (1986). Introduction to Combinators and λ -Calculus. Cambridge University Press. ISBN 0521318394. URL http://www-maths.swan.ac.uk/staff/jrh/.
- Hindley, J. Roger and Jonathan P. Seldin (2008). *Lambda-Calculus and Combinators:* An Introduction. Cambridge University Press. ISBN 0521898854. URL http://www-maths.swan.ac.uk/staff/jrh/.
- Hodges, Wilfred (1977). Logic. Penguin. ISBN 0140219854.
- Hodges, Wilfred (2001). Logic. Penguin, second edition. ISBN 0141003146.
- Hopcroft, John E.; Rajeev Motwani; and Jeffrey D. Ullman (2001). *Introduction to Automata Theory, Languages, and Computation*. Addison-Wesley, second edition. URL 0201441241.
- Hopcroft, John E.; Rajeev Motwani; and Jeffrey D. Ullman (2007). *Introduction to Automata Theory, Languages, and Computation*. Pearson, third edition. ISBN 0321514483. URL http://infolab.stanford.edu/~ullman/ialc.html. 10, 11, 16, 25, 26
- Hopcroft, John E. and Jeffrey D. Ullman (1979). *Introduction to Automata Theory, Languages, and Computation*. Addison-Wesley, first edition. ISBN 020102988X.
- Lemmon, Edward John (1965). *Beginning Logic*. Van Nostrand Reinhold. ISBN 0442306768.

- Levin, Leonid A (1973). Universal sorting problems. *Problemy Peredachi Informatsii*, 9(3):265–266.
- Manna, Zohar (1974). *Mathematical Theory of Computation*. McGraw-Hill. ISBN 0-07-039910-7.
- Miller, Bradley W. and David L. Ranum (2011). *Problem Solving with Algorithms and Data Structures Using Python*. Franklin, Beedle Associates Inc, second edition. ISBN 1590282574. URL http://interactivepython.org/courselib/static/pythonds/index.html.
- Pelletier, Francis Jeffrey and Allen P Hazen (2012). A history of natural deduction. In Gabbay, Dov M; Francis Jeffrey Pelletier; and John Woods, editors, *Logic: A History of Its Central Concepts*, volume 11 of *Handbook of the History of Logic*, pages 341–414. North Holland. ISBN 0444529373. URL http://www.ualberta.ca/~francisp/papers/PellHazenSubmittedv2.pdf.
- Pelletier, Francis Jeffry (2000). A history of natural deduction and elementary logic text-books. Logical consequence: Rival approaches, 1:105-138. URL http://www.sfu.ca/~jeffpell/papers/pelletierNDtexts.pdf.
- Rayward-Smith, V J (1983). A First Course in Formal Language Theory. Blackwells Scientific. ISBN 0632011769.
- Rayward-Smith, V J (1985). *A First Course in Computability*. Blackwells Scientific. ISBN 0632013079.
- Rich, Elaine A. (2007). Automata, Computability and Complexity: Theory and Applications. Prentice Hall. ISBN 0132288060. URL http://www.cs.utexas.edu/~ear/cs341/automatabook/. 26, 45
- Smith, Peter (2003). *An Introduction to Formal Logic*. Cambridge University Press. ISBN 0521008042. URL http://www.logicmatters.net/ifl/.
- Smith, Peter (2007). *An Introduction to Gödel's Theorems*. Cambridge University Press, first edition. ISBN 0521674530.
- Smith, Peter (2013). An Introduction to Gödel's Theorems. Cambridge University Press, second edition. ISBN 1107606756. URL https://www.logicmatters.net/igt/. 14
- Smullyan, Raymond M. (1995). First-Order Logic. Dover Publications Inc. ISBN 0486683702.
- Soare, Robert Irving (1996). Computability and Recursion. *Bulletin of Symbolic Logic*, 2:284-321. URL http://www.people.cs.uchicago.edu/~soare/History/. 26
- Soare, Robert Irving (2013). Interactive computing and relativized computability. In *Computability: Turing, Gödel, Church, and Beyond*, chapter 9, pages 203-260. The MIT Press. URL http://www.people.cs.uchicago.edu/~soare/Turing/shagrir.pdf. 26
- Teller, Paul (1989a). A Modern Formal Logic Primer: Predicate and Metatheory: 2. Prentice-Hall. ISBN 0139031960. URL http://tellerprimer.ucdavis.edu.
- Teller, Paul (1989b). A Modern Formal Logic Primer: Sentence Logic: 1. Prentice-Hall. ISBN 0139031707. URL http://tellerprimer.ucdavis.edu.
- Thompson, Simon (1991). *Type Theory and Functional Programming*. Addison Wesley. ISBN 0201416670. URL http://www.cs.kent.ac.uk/people/staff/sjt/TTFP/.

- Tomassi, Paul (1999). Logic. Routledge. ISBN 0415166969. URL http://emilkirkegaard.dk/en/wp-content/uploads/Paul-Tomassi-Logic.pdf.
- Turing, Alan Mathison (1936). On computable numbers, with an application to the Entscheidungsproblem. *Proceedings of the London Mathematical Society*, 42:230–265.
- Turing, Alan Mathison (1937). On computable numbers, with an application to the Entscheidungsproblem. A Correction. *Proceedings of the London Methematical Society*, 43:544–546. 24
- van Dalen, Dirk (1994). *Logic and Structure*. Springer-Verlag, third edition. ISBN 0387578390.
- van Dalen, Dirk (2012). *Logic and Structure*. Springer-Verlag, fifth edition. ISBN 1447145577.

