M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

M269 End of Module Bags

Abstract Data Types
M269 Tutorial 07 Computability,

Complexity

Commentary 2

i C tabilit
Phil Molyneux el
Commentary 3
Complexity
Future Work
References
4 May 2025

1/175

M269 End of Module Tutorial

Agenda

>

>
>
>
>
>

Welcome & Introductions
Topics from TMAO3

Abstract Data Types — Bags
Abstract Data Types — Graphs
Complexity

Computability

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

2/175

M269 Tutorial

Introductions — Me

>
>

vy

v

Name Phil Molyneux

Background Physics and Maths, Operational Research,
Computer Science

> Undergraduate: Physics and Maths (Sussex)

> Postgraduate: Physics (Sussex), Operational Research

(Brunel), Computer Science (University College, London)

First programming languages Fortran, BASIC, Pascal
Favourite Software

> Haskell — pure functional programming language

> Text editors TextMate, Sublime Text — previously Emacs

> Word processing and presentation slides in IATEX

> Mac OS X

Learning style — | read the manual before using the
software (really)

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

3/175

http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/BASIC
http://en.wikipedia.org/wiki/Pascal_(programming_language)
http://www.haskell.org/haskellwiki/Haskell
https://macromates.com
http://www.sublimetext.com
http://www.emacswiki.org
http://www.latex-project.org
https://developer.apple.com/devcenter/mac/index.action

M269 Tutorial

Introductions — You

» Name?

> Position in M269 ? Which part of which Units and/or
Reader have you read ?

> Particular topics you want to look at?
» Learning Syle?

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

4/175

Adobe Connect

Interface — Host View

M250 Units 10, 11

Collections, Arrays, Sets, Maps, Lists

Phil Molyneux

18 April 2021

M250 Units 10, 11
Phil Molyneux
M250 Units 10, 11
Tutorial Agenda
Adobe Connect

Classes and
Interfaces.

Sets
Maps
Uists

Collection
Implementations.

TMAO3 Practice
Quiz

Common Mistakes
sshell
What Next ?

References,

M269 End of
Module

Phil Molyneux

Tutorial Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

5/175

Adobe Connect

Interface — Participant View

M250 Units 10, 11 Tutorial
Introductions
> Introductions

» Name Phil Molyneux
Learning Style: Reads the manual

vy

and wrote notes on Recursion Teaching
> You?

Learnt last month Framework for Teaching Recursion

M250 Units 10, 11

Phil Molyneux
M250 Units 10, 11
Tutorial Agenda

Adobe Connect

Classes and
Interfaces

Sets
Maps
Uists

Collection
Implementations.

TMAO3 Practice
Quiz

Common Mistakes
Ishell
What Next ?

References

M269 End of
Module

Phil Molyneux

Tutorial Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

6/175

Adobe Connect

Settings

>

v

Everybody [Menu bar>> Meeting>> Speaker & Microphone Setup]

[Menu bar>> Microphone>> Allow Participants to Use Microphone] 4

Check Participants see the entire slide Workaround

» Disable Draw [Share pod>> Menu bar>> Draw icon]
> Fit Width [Share p0d>> Bottom bar>> Fit Width icon] %4

[Meeting)) Preferences>> General >> Host Cursor>> Show to all attendees

[Menu bar>> Video>> Enable Webcam for Participants] 4

Do not Enable single speaker mode
Cancel hand tool
Do not enable green pointer

Recording [Meeting>> Record Session] v

Documents Upload PDF with drag and drop to share
pod

Delete [Meeting>> Manage Meeting Information>> Uploaded Content]
and [check ﬁlename>> click on delete]

M269 End of
Module

Phil Molyneux

Tutorial Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

7/175

Adobe Connect

Access

> Tutor Access

[TutorHome)) M269 Website >> Tutorials]

[Cluster Tutorials>> M269 Online tutorial room]

[Tutor Groups>> M269 Online tutor group room}

[Module—wide Tutorials>> M269 Online module-wide room]
> Attendance
[TutorHome>> Students>> View your tutorial timetables]
Beamer Slide Scaling 440% (422 x 563 mm)
Clear Everyone’s Status
[Attendee Pod >> Menu >> Clear Everyone’s Status]

vy

v

Grant Access and send link via email

[Meeting >> Manage Access & Entry>> Invite Participants. ..]
> Presenter Only Area

[Meeting >> Enable/Disable Presenter Only Area

M269 End of
Module

Phil Molyneux

Tutorial Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

8/175

M269 End of

Adobe Connect Module

Phil Mol
Keystroke Shortcuts 1l Molyneux

Tutorial Agenda

» Keyboard shortcuts in Adobe Connect PR
» Toggle Mic [5£])+(M] (Mac), [Ctrl)+(M] win) (On/Disconnect) Sitings
- Sharing Screen &
> - E Applications
Toggle Raise-Hand status [32]+E] e
> Close dialog box [©] (Mao), (Win) [lvee pendees
> End meeting (58)+[\] e
Recordings
M269 22) TMAO3
Topics
Bags

Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

9/175

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html

Adobe Connect Interface

Sharing Screen & Applications

vy

[Share My Screen>> Application tab >> Terminal] for Terminal

[Share menu >> Change View>> Zoom in] for mismatch of screen
size/resolution (Participants)

(Presenter) Change to 75% and back to 100% (solves
participants with smaller screen image overlap)

Leave the application on the original display

Beware blued hatched rectangles — from other (hidden)
windows or contextual menus

Presenter screen pointer affects viewer display —
beware of moving the pointer away from the application

First time: [System Preferences)) Security & Privacy)) Privacy)

Accessibility

M269 End of
Module

Phil Molyneux

Tutorial Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

10/175

https://en.wikipedia.org/wiki/Terminal_(macOS)

Adobe Connect

Ending a Meeting

>

>
>
>
>

Notes for the tutor only
Student: [Meeting>> Exit Adobe Connect]

Tutor:
Recording [Meeting)) Stop Recording] v/
Remove Participants Meeting)) End Meeting. .. | v
> Dialog box allows for message with default message:
» The host has ended this meeting. Thank you for
attending.
Recording availability In course Web site for joining
the room, click on the eye icon in the list of recordings
under your recording — edit description and name

Meeting Information [Meeting>> Manage Meeting Information] —
can access a range of information in Web page.

Delete File Upload [Meeting>> Manage Meeting Information>

? Uploaded Content tab] select file(s) and click

Attendance Report see course Web site for joining
room

M269 End of
Module

Phil Molyneux

Tutorial Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

11/175

Adobe Connect

Invite Attendees

>

Provide Meeting URL [Menu>> Meeting>> Manage Access & Entry>
Y Invite Participants. ... |

Allow Access without Dialog
2 Manage Meeting Information| provides new browser window
with Meeting Information (Tab bar)) Edit Information)

Check Anyone who has the URL for the meeting can
enter the room

Default Only registered users and accepted guests may
enter the room

Reverts to default next session but URL is fixed

Guests have blue icon top, registered participants have
yellow icon top — same icon if URL is open

See Start, attend, and manage Adobe Connect meetings
and sessions

M269 End of
Module

Phil Molyneux

Tutorial Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

12/175

https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html
https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html

Adobe Connect

Entering a Room as a Guest (1)

» Click on the link sent in email from the Host
> Get the following on a Web page

> As Guest enter your hame and click on

m Adobe Connect

M269-21) Online tutorial room
London/SE (1,13) CG [2311] (M269-21J)
(1)

Guest Registered User

Name

Guest Name

By entering a Name & clicking "Enter Room’, you agree that
you have read and accept the Terms of Use & Privacy_Policy

M269 End of
Module

Phil Molyneux

Tutorial Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

13/175

M269 End of

Adobe Connect et

) Phil Mol
Entering a Room as a Guest (2) f Holyneux

Tutorial Agenda

> See the Waiting for Entry Access for Host to give Adobe Connect
permission Inertace
Settings

Sharing Screen &

EiJ Adobe Connect ing <
Applications

Ending a Meeting

Layouts

Chat Pods
Web Graphics
This is a private meeting. Your request to enter has Recordings

Waiting for Entry Access

been sent to the host. Please wait for a response. M269 22J TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

14/175

M269 End of

Adobe Connect et

) Phil Mol
Entering a Room as a Guest (3) VARIRSEe

Tutorial Agenda

Host sees the following dialog in Adobe Connect and P———
grants access e
Settings
H Sharing Screen &
I Guestentry e Applications
. Ending a Meeting
1 guest would like to enter the room. Do you want
to allow or deny entry to incoming guests? Trom
youts
Guest Name (guest) Q9 O Chat Pods
Web Graphics
Recordings
Allow everyone ~ Deny everyone Close
M269 22) TMAO3
Topics
Bags

Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

15/175

Adobe Connect

Layouts

>

v

Creating new layouts example Sharing layout

[Menu>> Layouts>> Create New Layout. ..] [Create a New Layout dialog>
) Create a new blank layout] and name it PMolyMain

New layout has no Pods but does have Layouts Bar open
(see Layouts menu)

Pods

(Menu) Pods) Share)) Add New Share] and resize/position —
initial name is Share n — rename PMolyShare

Rename Pod [Menu>> Pods>> Manage Pods. . . } [Manage Pods>
> Select>> Rename] or [Double-click & rename]

Add Video pod and resize/reposition
Add Attendance pod and resize/reposition

Add Chat pod — rename it PMolyChat — and
resize/reposition

M269 End of
Module

Phil Molyneux

Tutorial Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

16/175

Adobe Connect

Layouts

» Dimensions of Sharing layout (on 27-inch iMac)
» Width of Video, Attendees, Chat column 14 cm
> Height of Video pod 9 cm
> Height of Attendees pod 12 cm

Height of Chat pod 8 cm

v

» Duplicating Layouts does not give new instances of
the Pods and is probably not a good idea (apart from
local use to avoid delay in reloading Pods)

» Auxiliary Layouts name PMolyAux0On

> Create new Share pod
> Use existing Chat pod
> Use same Video and Attendance pods

M269 End of
Module

Phil Molyneux

Tutorial Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

17/175

M269 End of

Adobe Connect Module

Phil Molyneux
Chat Pods
Tutorial Agenda

> Format Chat text Adobe Connect
3 Interface
> [Chat Pod >> menu |con>> My Chat Color] —
. . Sharing Screen &
» Choices: Red, Orange, Green, Brown, Purple, Pink, Blue, Apiications
nding a Meeting
B I ac k Invite Attendees
Layouts
> Note: Color reverts to Black if you switch layouts Chat pods
eb Graphics
> [Chat Pod>> menu icon>> Show Timestamps] Recollings
M269 22) TMAO3
Topics
Bags

Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

18/175

M269 End of

Graphics Conversion Module

PDF to PNG/JPG Phil Molyneux
. . . Tutorial Agenda
» Conversion of the screen snaps for the installation of Adobe Connect
Anaconda on 1 May 2020 e
ettings
» Using GraphicConverter 11 A

Ending a Meeting

> > Convert & Modify>> Conversion>> Convert] Invite Attendees

Layouts

> Select files to convert and destination folder Chat Pods

Web Graphics

> Click on [Start selected Function] or + Recordings
M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

19/175

M269 End of

Adobe Connect Recordings Module

. . Phil Mol
Exporting Recordings e s

Tutorial Agenda

> [Menu bar>> Meeting>> Preferences >> Video] Adobe Connect
> [Aspect ratio)) Standard (4:3)] (not Wide screen (16:9) default) e
. Sharing Screen &
» [Video quality)) Full HD] (1080p not High default 480p) :pjncﬁnohzs ‘
nding a Meeting
H B < Invite Attendees
> Recordmg [Menu bar>> Meetmg>> Record Sesswn] v Layouts
» Export Recording S
> b - = f S Recordings
[Menu ar>> Meetmg>> Manage Meeting In ormatlon] M269 22) TMAO3
| 2 [New window>> Recordings>> check Tutorial>> Access Type button Topics
Bags
> [check Public)) check Allow viewers to download] Abstract Data Types
: @ tability,
» Download Recording Complexity
> [New window>> Recordings>> check Tutorial>> Actions>> Download File Commentary 2

Computability
Commentary 3
Complexity
Future Work

References

20/175

M269 21) TMAO3

Topics

>

vV vyVvYyYVvVvyTyyey

PT1Qs1-2

PT2Qs3-7

Q1 Abstract Data Type Bag

Q2 ADT Graphs

Q3 Complexity, graphs

Q4 Complexity, problem reduction

Q5 Computability, Turing machine problem

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

21/175

Bags
Definitions
» Bag unordered collection that may contain duplicate
items
> Also known as Multiset
> Multiplicity of an element is the number of instances of
an element
> A Bag or Multiset may be defined as a two-tuple (A, m)
where A is the underlying set from which elements are
drawn, and a function m: A - N
> Note that some definitions exclude 0 from the range of

m so it would be denoted m: A — N>

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags

Bags: Definitions
Bags: Implementations
Python Dictionaries
Python Counter

M269 2021) Bags

Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

22/175

https://en.wikipedia.org/wiki/Multiset

Bags

Example

>

vV vyVvYyYVvVvyTyyey

120 has prime factorization 120 = 23 x 31 x 5!
Gives bag {2,2,2,3,5}

The {} is an abuse of the usual set notation
Representations:

Sorted list [2, 2, 2,3, 5]

Unsorted list [2, 3,2, 5, 2]

Sorted list of pairs [(2, 3),(3, 1), (5, 1)]

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags

Bags: Definitions
Bags: Implementations
Python Dictionaries
Python Counter

M269 2021) Bags

Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

23/175

Bags

Operations

» Create an empty bag
» Queries

>
>
>
>

isEmptyBag

sizeBag total number of elements

elemOccurs number of an element

elemMember is there at least one copy of an element

» Construction

>

vvyyvyy

insertElem insert one copy of an element
insertMany insert a number of copies
deleteElem delete a single copy of an element
deleteMany delete a number of copies
deleteAll deleteAll all copies

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags

Bags: Definitions
Bags: Implementations
Python Dictionaries
Python Counter

M269 2021) Bags

Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

24/175

Bags

M269 2018) TMAO2 Bag Operations

>
>

vV vyVvyy

Bag() creates a new empty bag

add(self, elem) adds one copy of elem to the bag
self

count(self,elem) number of elem in the bag self
size(self) total number of copies in self
clear(self,elem) removes all copies of elem

ordered(self) returns contents of bag self as a list
of pairs (count, elem) in decreasing order of count

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags

Bags: Definitions
Bags: Implementations
Python Dictionaries
Python Counter

M269 2021) Bags

Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

25/175

Bags
Implementations
» Python Counter is a subclass of dict which is Python’s
version of bags or multisets

> Data.MultiSet is Haskell’s implementation of multisets
or bags — it is based on Data.Map

> Multiset describes the ADT multiset or bag in several
programming languages

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags

Bags: Definitions
Bags: Implementations
Python Dictionaries
Python Counter

M269 2021) Bags

Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

26/175

https://docs.python.org/3/library/collections.html#collections.Counter
https://docs.python.org/3/library/stdtypes.html#dict
http://hackage.haskell.org/package/multiset-0.3.4.1/docs/Data-MultiSet.html
http://hackage.haskell.org/package/containers-0.5.11.0/docs/Data-Map.html
https://en.wikipedia.org/wiki/Set_(abstract_data_type)#Multiset

Python dict

Creation

>

A mapping object or dictionary maps hashable values to
arbitrary objects

> A dictionary is a mutable object

> Creation

aD = dict(Q) # dictionary constructor
ab = {} # literal empty dictionary
aDb = {’to’: 2, ’'be’: 2, ’or’: 1, ’not’: 1}

literal key:value pairs

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags

Bags: Definitions
Bags: Implementations
Python Dictionaries
Python Counter

M269 2021) Bags

Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

27/175

Python dict

Creation

» Creation methods

Python3>>> aD {’to’: 2, ’be’: 2

, 'or’: 1, ’not’: 1}

dict(to=2, be=2, orA=1, notA=1)

dict(zip([’to’, be’, or’, not’]

,[2,2,1,11))

dict([("to’,2),("be’,2)
,Cor’,1),(Cnot’,1)1)

dict({’to’: 2, ’'be’: 2

Ce , 'or’: 1, ’not’: 1})

Python3>>> aD == cD == dD == eD

True

Python3>>> bD
Python3>>> cD

Python3>>> dD

Python3>>> eD

» Keywords in keyword arguments must not clash with
built-in keywords

> Implicit line joining means we can split expressions in
parentheses, square brackets or curly braces over more
than one physical line without using backslashes.

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags

Bags: Definitions
Bags: Implementations
Python Dictionaries
Python Counter

M269 2021) Bags

Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

28/175

https://docs.python.org/3/reference/lexical_analysis.html#implicit-line-joining

Python dict M269 End of

. Phil Molyneux
Queries

> Queries in the M269 Companion

Python3>>> aD = {’to’: 2, 'be’: 2
Ce , 'or’: 1, ’not’: 1}
Python3>>> len(aD)
4
Python3>>> key = ’be’
Python3>>> key 1in aD
True
Python3>>> aD[key]
2
Python3>>> aD.keys(Q)
dict_keys(['to’, ’or’, ’'not’, ’be’])
Python3>>> 1ist(aD.keys())
[’to’, ’or’, ’not’, ’be’]
Python3>>> aD.items()
dict_items([('to’, 2), (Cor’, 1)

, CUnot’, 1), Cbe’, 2)1)
Python3>>> 1list(aD.items())

[Cto’, 2), Cor’, 1), Cnot’, 1), (Che’, 2)]

Python3>>> (’to’,2) in aD.items()
True

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Bags: Definitions
Bags: Implementations

Python Counter
M269 2021) Bags

Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

29/175

M269 End of

Dictionaries Module

L . Phil Mol
Activity 1 Total Exercise f Hlolyneux

Tutorial Agenda

» Write a function, totalValue, that takes a dictionary,

Adobe Connect

xD, and returns the total of all the values of the M269 22 TMAO3
key:value pairs (Assumes value is a numeric type) Topies
Bags

Bags: Definitions
Bags: Implementations
Python Dictionaries
Python Counter

M269 2021) Bags

Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

30/175

Dictionaries

Answer 1 Total Exercise

> Answer 1 Total Exercise

def totalValue(xD)

i

totalValue takes a dictionary, xD,

and returns the total of all the values
of the key:value pairs

Assumes value is a numeric type

i

tval = sum([v for (k,v) in xD.items()])
return tval

Alternative
tVal = sum(xD.values())

P Answer 1 continued on next slide

» Go to Activity

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Bags: Definitions
Bags: Implementations

Python Counter
M269 2021) Bags

Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

31/175

Dictionaries

Answer 1 Total Exercise (contd)

> Answer 1 Total Exercise — sample use

Python3>>> aD

{’not’: 1, ’be’: 2, ’to’: 2,
Python3>>> totalValue(aD)

6

or

1}

» Go to Activity

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Bags: Definitions
Bags: Implementations

Python Counter
M269 2021) Bags

Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

32/175

M269 End of

Python dict Module

e Phil Molyneux
Modifiers y

> Modifiers in the M269 Companion

Python3>>> aD = {’to’: 2, 'be’: 2
Ce , 'or’: 1, ’not’: 1}
Python3>>> aD
{’not’: 1, ’be’: 2, ’to’: 2, ’or’: 1}

Python3>>> aD[’dobe’] = 2

Python3>>> aD

{’not’: 1, ’be’: 2, ’dobe’: 2, ’to’: 2, ’or’: 1}
Python3>>> aD[’do’] =1

Python3>>> aD

{’do’: 1, ’to’: 2, ’or’: 1

, 'not’: 1, ’be’: 2, ’dobe’: 2}

Python3>>> aD[’be’] = 3

Python3>>> aD

{’do’: 1, ’to’: 2, ’or’: 1

, 'not’: 1, ’be’: 3, ’dobe’: 2}

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Bags: Definitions
Bags: Implementations

Python Counter
M269 2021) Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

33/175

- M269 End of

Python dict Vodule
Modifiers (2) Phil Molyneux
. . . Tutorial Agenda
> Modifiers in the M269 Companion Adobe Comnect

M269 22) TMAO3
Topics

Python3>>> aD

{’do’: 1, ’to’: 2, ’or’: 1 e
, 'not’: 1, ’be’: 3, ’dobe’: 2} Bags: Definitions
Python3>>> aD[’do’] = aD[’do’] + 1 Bags: Implementations
Python3>>> aD

{’do’: 2, ’to’: 2, ’or’: 1 Python Counter
, 'not’: 1, ’be’: 3, ’dobe’: 2} M269 2021 Bags
Python3>>> del aD[’dobe’] Abstract Data Types

Python3>>> aD
{’do’: 2, ’to’: 2, ’or’: 1
, 'not’: 1, ’be’: 3}

Computability,
Complexity

Commentary 2

Computability
Commentary 3
Complexity
Future Work

References

34/175

M269 End of

Python dict Module

Phil Molyneux
Errors

Tutorial Agenda

> |t is an error to access a non-existant key

Adobe Connect

M269 22) TMAO3

Python3>>> aD Topics

{’do’: 2, ’to’: 2, 'or’: 1 o

v ‘not’: 1' ‘be’: 3} Bags: Definitions

Pyth°n3>>> aD[’dobe’] Bags: Implementations

Traceback (most recent call last): Python Dictionaries
File '<stdin>’, T1ine 1, in <module> Python Counter

KeyError: ’dobe’ PG 2021 B

Python3>>> del aD[’dobe’] Abstract Data Types

Traceback (most recent call Tast):

N . N . Computability,
File '<stdin>’, Tine 1, in <module> Complexity

KeyError: ’dobe’

Python3>>> aD[’dobe’] = aD[’dobe’] + 1 -

Traceback (most recent call Tast): Computability
File '<stdin>’, Tine 1, in <module> Commentary 3

KeyError: ’dobe’

Commentary 2

Complexity

Future Work

References

35/175

Python dict

Errors (2)

> If a key occurs more than once, the last value for that
key becomes the corresponding value in the new
dictionary. Not an error but could catch you out

Python3>>> fD = {’one’
Python3>>> fD

{’one’: 3}

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags

Bags: Definitions
Bags: Implementations
Python Dictionaries
Python Counter

M269 2021) Bags

Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

36/175

Dictionaries
Activity 2 Add One Exercise

> Write a function, addOneToKey, that takes a key, key, a
dictionary, xD, and adds 1 to the value of the key

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Bags: Definitions
Bags: Implementations

Python Counter
M269 2021) Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

37/175

Dictionaries

Answer 2 Add One Exercise

> Answer 2 Add One Exercise

def addOneToKey(key, xD)
addOneToKey takes a key and a dictionary
and adds one to the value of the key
Invariant for xD:
if key in xD :
xD[key] > 0

i

if key in xD

xD[key] = xD[key] + 1
else :
xD[key] = 1

return xD

P Answer 2 continued on next slide

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Bags: Definitions
Bags: Implementations

Python Counter
M269 2021) Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

38/175

. . . M269 End of
Dictionaries Module
Answer 2 Add One Exercise (contd)) (el rmers

) Tutorial Agenda
> Answer 2 Add One Exercise

Adobe Connect

> Note that addOneToKey has a side effect on the input L LG
dictionary P
Bags: Definitions
Python3>>> aD Bags: Implementations
{’do’: 2, ’to’: 2, ’or’: 1, ’not’: 1, ’be’: 3} Python Counter
Python3>>> addOneToKey(’do’,aD) M269 2021) Bags

{’do’: 3, ’to’: 2, ’or’: 1, ’not’: 1, ’be’: 3}

Abstract Data Types
Python3>>> aD

{’do’: 3, ’to’: 2, ’'or’: 1, ’not’: 1, ’be’: 3} Egmgﬁﬂgm“
Python3>>> addOneToKey(’abba’,aD) q 2
{’do’: 3, ’abba’: 1, ’to’: 2, ’or’: 1 R

, 'not’: 1, ’be’: 3} Computability

Python3>>> aD

{’do’: 3, ’abba’: 1, 'to’: 2, ’or’: 1
, 'not’: 1, ’be’: 3} Complexity
Future Work

Commentary 3

References

39/175

Dictionaries

Activity 3 Delete One Exercise

> Write a function, de10OneFromKey, that takes a key, key,

a dictionary, xD, and subtracts 1 from the value of the
key if the key is in xD

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Bags: Definitions
Bags: Implementations

Python Counter
M269 2021) Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

40/175

Delete One Exercise

Answer 3 Delete One Exercise

» Answer 3 Delete One Exercise

def delOneFromKey(key, xD)
delOneFromKey takes a key and a dictionary
and deletes one from the value of the key
Invariant for xD:
if key in xD :
xD[key] > 0

i

if not key in xD :
pass
elif xD[key] ==
del xD[key]
else :
xD[key] = xD[key] - 1

return xD

P Answer 3 continued on next slide

» Go to Activity

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Bags: Definitions
Bags: Implementations

Python Counter
M269 2021) Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

41/175

M269 End of

Delete One Exercise et

. Phil Mol
Answer 3 Delete One Exercise (contd) £ Holyneux

) Tutorial Agenda
> Answer 3 Delete One Exercise — examples

Adobe Connect

M269 22) TMAO3
Topics

Python3>>> aD

{’do’: 3, ’abba’: 1, 'to’: 2, ’or’: 1 o
4 "not’: 1' "be’: 3} Bags: Definitions
Python3>>> delOneFromKey(’do’,aD) Bags: Implementations
{’do’: 2, ’abba’: 1, ’to’: 2, ’or’: 1

, 'not’: 1, ’be’: 3} Python Counter
Python3>>> aD PG 2021 B
{’do’: 2, ’abba’: 1, ’to’: 2, ’or’: 1 Abstract Data Types
4 ‘not’: 1, "be’: 3} Computability,
Python3>>> delOneFromKey(’abba’,aD) Complexity

{’do’: 2, ’to’: 2, ’or’: 1, ’not’: 1, ’be’: 3}
Python3>>> aD

Commentary 2

{’do’: 2, ’to’: 2, ’or’: 1, ’not’: 1, ’be’: 3} Computability

Python3>>> delOneFromKey(’bbc’,aD) Commentary 3

{’do’: 2, 'to’: 2, ’or’: 1, ’not’: 1, ’be’: 3} o

Python3>>> aD

{’do’: 2, 'to’: 2, ’or’: 1, ’'not’: 1, ’be’: 3} Future Work
References

» Go to Activity

42/175

Python Counter

Overview, Creation
» Counter objects are part of the collections library for
container datatypes

> A Counter is a subclass of the mapping type dict and
has a dictionary interface with some differences and
extensions

» Creation:

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags

Bags: Definitions
Bags: Implementations
Python Dictionaries
Python Counter

M269 2021) Bags

Abstract Data Types

1#1/usr/bin/env python3

3from collections import Counter

Computability,
Complexity

Commentary 2

Computability

AnPython3>>> ctl = Counter() CEmmRmERy 3
AnPython3>>> ctl # new empty Counter Complexity
Counter() Future Work
AnPython3>>> ct2 = Counter(’Tambda _calculus’)

AnPython3>>> ct2 # new Counter from iterable REfEiSnces
Counter({’1’: 3, ’a’: 3, 'c’: 2, 'u’: 2, 'm’: 1, 'b’: 1, 'd’: 1, " ’: 1, 's’: 1})

43/175

https://docs.python.org/3/library/collections.html#counter-objects
https://docs.python.org/3/library/collections.html
https://docs.python.org/3/library/stdtypes.html#mapping-types-dict

Python Counter

Creation

AnPython3>>> ct3 = Counter(a=10, b=0, c=-2, d=4)
AnPython3>>> ct3 # Counter from keyword args
Counter({’a’: 10, ’d’: 4, 'b’: 0, ’c’: -2})

AnPython3>>> ct4 = {’a’: 10, 'd’: 4, 'b’: 0, 'c’: -2}
AnPython3>>> ct4 # not a Counter

{’a’: 10, ’d’: 4, 'b’: 0, 'c’: -2}

AnPython3>>> type(ct4)

<class ’dict’>

AnPython3>>> ct5 = Counter({’a’: 10, 'd’: 4, ’b’: 0, ’c’: -2})
AnPython3>>> ct5 # Counter from a mapping
Counter({’a’: 10, ’d’: 4, 'b’: 0, 'c’: -2})

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Bags: Definitions
Bags: Implementations
Python Dictionaries
M269 2021) Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

44/175

Python Counter

Access, and Operations

AnPython3>>>
AnPython3>>>

Counter({’a’:

AnPython3>>>
0

AnPython3>>>
AnPython3>>>

Counter({’a’:

AnPython3>>>
AnPython3>>>

Counter({’c’:

ct5 = Counter({’a’: 10, 'd’: 4, ’b’: 0, ’c’: -2})
ct5

10, ’d’: 4, ’b’: 0, ’c’: -2})

ct5[’e’]

Cctb = +ct5 # remove zero and negative elements
ct6

10, ’d’: 41}
ct7 = -ct5
ct7

2D

» Accessing missing elements is not an error (unlike a
dictionary)

» Unary addition and subtraction are shortcuts for adding

an empty counter or subtracting from an empty
counter.

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags

Bags: Definitions
Bags: Implementations
Python Dictionaries
Python Counter

M269 2021) Bags

Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

45/175

Python Counter

Views

AnPython3>>> ct5 = Counter({’a’: 10, ’d’: 4, ’b’: 0, ’c’: -2})
AnPython3>>> ct5

Counter({’a’: 10, ’d’: 4, ’b’: 0, ’c’: -2})
AnPython3>>> ct8 = ct5.items()

AnPython3>>> ct8

dict_items([(C’a’, 10), ('d’, 4), Cb’, 0), Cc’, -2)1)
AnPython3>>> ct9 = ct5.keysQ

AnPython3>>> ct9

dict_keys([’a’, 'd’, ’b’, 'c’1)

AnPython3>>> ctl0 = ct5.values()

AnPython3>>> ctl0

dict_values([10, 4, 0, -2]1)

> 1items() Return a new view of the dictionary’s items
(Ckey, value) pairs).

keys () Return a new view of the dictionary’s keys.
values () Return a new view of the dictionary’s values.
See Dictionary view objects

They provide a dynamic view on the dictionary’s entries
When he dictionary changes, the view changes as well

vV VvV VvV VY

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags

Bags: Definitions
Bags: Implementations
Python Dictionaries
Python Counter

M269 2021) Bags

Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

46/175

https://docs.python.org/3/library/stdtypes.html#dict-views

M269 BagS Mzagdslni o

Prsntn 2021) TMAO3 Bags Phil Molyneu

Tutorial Agenda
3from collections import Counter Adobe Connect
M269 22) TMAO3

s
5

Topi
6 Implementation of Bag ADT for M269 Prsntn 2021J TMAO3 Q1 BOPICS
i ags
7 Bags: Definitions
Bags: Implementations
oclass Bag :

Python Dictionaries
Python Counter

11 def __init__(self)

12 ”"”Cm_eate a new empty bag. e Abstract Data Types

13 self.items = Counter() -
Computability,

14 self.count = Complexity

16 def size(self) -> int: Commentary 2

17 """Return the total number of copies of all items in the bag.""" Computability

18 return self.count

Commentary 3

Complexity
Future Work

References

47/175

M269 Bags

Prsntn 2021) TMAO3 Bags

20
21
22
23
24

26
27
28
29
30
31

32

def add(self, item: object) -> None
"""Add one copy of item to the bag.
Multiple copies are allowed."""
self.items[item] = self.items[item] + 1
self.count + 1

self.count =

def discard(self, item: object) -> None

""" Remove at most one copy of item from the bag.

No effect if item is not in the bag.

i

if self.items[item] > 0
self.items[item] = self.items[item] - 1

self.count

self.count - 1

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags

Bags: Definitions
Bags: Implementations
Python Dictionaries
Python Counter

Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

48/175

M269 Bags

Prsntn 2021) TMAO3 Bags

35 def contains(self, item: object) -> bool

i

36 Return True if there is at least

37 one copy of item in the bag.

38 win

39 # Add your own code here to replace the following statement
40 pass

» Hint what can a Counter do that in a dict would
generate an error ?

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags

Bags: Definitions
Bags: Implementations
Python Dictionaries
Python Counter

Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

49/175

M269 Bags

Prsntn 2021) TMAO3 Bags

42
43
44
45
46
47

def multiplicity(self, item: object) -> int
"""Return the number of copies of item in the bag.
Return zero if the item doesn’t occur in the bag.

win

Add your own code here to replace the following statement
pass

» Hint remember that Counter is a subclass of dict

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags

Bags: Definitions
Bags: Implementations
Python Dictionaries
Python Counter

Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

50/175

M269 Bags

Prsntn 2021) TMAO3 Bags

49
50
51
52
53
54

def ordered(self)
"""Return the items ordered by decreasing multiplicity.
Return a list of (count, item) pairs.
You will be asked to add your own code here later
pass

> Hint Modify the list comprehension below to only
include items with count > 0

» What functions are available to sort a list ?

AnPython3>>> ct8 = ct5.items()

AnPython3>>> ct8

dict_items([(’a’, 10), (’d’, 4), C’b’, 00, (’c’, -2
AnPython3>>> ctll = [(ct,itm) for (itm,ct) in ct8]
AnPython3>>> ctll

[(10, ’a’), (4, ’d’), (0, ’b’), (-2, 'c’)]

»> See Sorting HOW TO

» What is the difference between sorted() and list.sort() ?

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags

Bags: Definitions
Bags: Implementations
Python Dictionaries
Python Counter

M269 2021) Bags

Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

51/175

https://docs.python.org/3/howto/sorting.html
https://docs.python.org/3/library/functions.html#sorted
https://docs.python.org/3/library/stdtypes.html#list.sort

Abstract Data Types M todule
Overview Phil Molyneux

Tutorial Agenda

> Abstract data type is a type with associated operations, ., ..
but whose representation is hidden (or not accessible) M269 22) TMAO3

Topics

» Common examples in most programming languages
are Integer and Characters and other built in types such

Bags
Abstract Data Types

as tuples and lists T EEEUED=
> Abstract data types are modeled on Algebraic Computablty.
structures TSN
> A set of values Computability
» Collection of operations on the values Commentary 3
> Axioms for the operations may be specified as equations Complexity
or pre and post conditions Future Work
» Health Warning different languages provide different References

ways of doing data abstraction with similar names that
may mean subtly different things

52/175

https://en.wikipedia.org/wiki/Abstract_data_type
https://wiki.haskell.org/Abstract_data_type
https://en.wikipedia.org/wiki/Algebraic_structure
https://en.wikipedia.org/wiki/Algebraic_structure

Abstract Data Types

Overview (2)

>

Abstract Data Types and Object-Oriented
Programming

Example: Shape with Circles, Squares, ...and
operations draw, moveTo, ...

ADT approach centres on the data type — that tells you
what shapes exist

For each operation on shapes, you describe what they
do for different shapes.

00 you declare that to be a shape, you have to have
some operations (draw, moveTo)

For each kind of shape you provide an implementation
of the operations

00 easier to answer What is a circle? and add new
shapes

ADT easier to answer How do you draw a shape? and
add new operations

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types
Abstract Data Types —

Overview

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

53/175

Abstract Data Types

Overview (3)

> Health Warning and Optional Material Discussions
about the merits of Functional programming and
Object-oriented programming tend to look like the
disputes between Lilliput and Blefuscu

» Abstract data type article contrasts ADT and OO as
algebra compared to co-algebra

» What does coalgebra mean in the context of
programming? is a fairly technical but accessible article.

» What does the forall keyword in Haskell do? — is an
accessible article on Existential Quantification

> Bart Jacobs Coalgebra
» nlLab Coalgebra

> Beware the distinction between concepts and features in
programming languages — see OOP Disaster

> Not for this session — this slide is here just in case

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3

Topics

Bags

Abstract Data Types
Abstract Data Types —

Overview

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

54/175

https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Lilliput_and_Blefuscu
https://wiki.haskell.org/Abstract_data_type
http://stackoverflow.com/questions/16015020/what-does-coalgebra-mean-in-the-context-of-programming
http://stackoverflow.com/questions/16015020/what-does-coalgebra-mean-in-the-context-of-programming
http://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do
http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf
https://ncatlab.org/nlab/show/coalgebra
http://www.smashcompany.com/technology/object-oriented-programming-is-an-expensive-disaster-which-must-end

Abstract Data Types

Overview (4) — Shapes ADT Style

1

13
14

16
17

data Shape
= Circle Point Radius
| Square Point Size

draw ::

draw (Circle p r) =
draw (Square p s) =

moveTo ::
moveTo p2 (Circle pl r)
moveTo p2 (Square pl s)

shapes ::

shapes =

shapesO1 :
shapes01 = map (moveTo (2,2)) shapes

Shape -> Pict

drawCircle p r

drawRectangle p s s

Point -> Shape -> Shape

[Shape]

[Circle (0,0) 1, Square (1,1) 2]

[Shape]

Circle p2 r
Square p2 s

» Example based on Lennart Augustsson email of 23 June

2005 on Haskell list

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags

Abstract Data Types
Abstract Data Types —

Overview

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

55/175

Abstract Data Types

Overview (5) — Shapes OO Style

12
13
14

17
18

20
21
22
23

class IsShape shape where
draw :: shape -> Pict
moveTo :: Point -> shape -> shape

data Shape = forall a . (IsShape a) => Shape a

data Circle = Circle Point Radius
instance IsShape Circle where
draw (Circle p r) = drawCircle p r
moveTo p2 (Circle pl r) = Circle p2 r

data Square = Square Point Size

instance IsShape Square where
draw (Square p s) = drawRectangle p s s
moveTo p2 (Square pl s) = Square p2 s

shapes :: [Shape]
shapes = [Shape (Circle (0,0) 10), Shape (Square (1,1) 2)]

shapes01 :: [Shape]
shapes01 = map (moveShapeTo (2,2)) shapes
where
moveShapeTo p (Shape s) = Shape (moveTo p s)

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3

Topics

Bags

Abstract Data Types
Abstract Data Types —

Overview

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

56/175

Abstract Data Types

Overview (6)

>
>

Haskell Type Classes are similar to Java/OOP Interfaces
See OOP vs type classes

See Java’s Interface and Haskell’s type class: differences
and similarities?

See Difference between OOP interfaces and FP type
classes

See What exactly makes the Haskell type system so
revered (vs say, Java)?

Health Warning Much of OO programming is using the
OO syntax to create ADTs

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags

Abstract Data Types
Abstract Data Types —

Overview

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

57/175

https://wiki.haskell.org/OOP_vs_type_classes
https://stackoverflow.com/questions/6948166/javas-interface-and-haskells-type-class-differences-and-similarities
https://stackoverflow.com/questions/6948166/javas-interface-and-haskells-type-class-differences-and-similarities
https://stackoverflow.com/questions/8122109/difference-between-oop-interfaces-and-fp-type-classes
https://stackoverflow.com/questions/8122109/difference-between-oop-interfaces-and-fp-type-classes
https://softwareengineering.stackexchange.com/questions/279316/what-exactly-makes-the-haskell-type-system-so-revered-vs-say-java
https://softwareengineering.stackexchange.com/questions/279316/what-exactly-makes-the-haskell-type-system-so-revered-vs-say-java

Commentary 2
Computability

1 Computability

vV VY V. Vv VvYY

Description of Turing Machine

Turing Machine examples

Computability, Decidability and Algorithms
Non-computability — Halting Problem
Reductions and non-computability

Lambda Calculus (optional)

Note that the Computability notes are here mainly for
reference since the Complexity notes refer to them

This session is mainly on the Complexity topics

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

58/175

M269 End of

Computability Vodule

. Phil Molyneux
Ideas of Computation

Tutorial Agenda

» The idea of an algorithm and what is effectively P
computable M269 22) TMAO3

» Church-Turing thesis Every function that would
naturally be regarded as computable can be computed

Topics
Bags
Abstract Data Types

by a deterministic Turing Machine. (Unit 7 Section 4) Computability,
Complexity
» See Phil Wadler on computability theory performed as Commentary 2
part of the Bright Club at The Strand in Edinburgh, Computability
Tuesday 28 April 2015 s
Examples

Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

59/175

http://wadler.blogspot.co.uk/2015/05/bright-club-computability.html

Computability

Models of Computation

>

In automata theory, a problem is the question of
deciding whether a given string is a member of some
particular language

If > is an alphabet, and L is a language over X, that is
L c *, where I* is the set of all strings over the
alphabet X then we have a more formal definition of
decision problem

Given a string w € *, decide whether w € L
Example: Testing for a prime number — can be
expressed as the language Ly consisting of all binary
strings whose value as a binary number is a prime
number (only divisible by 1 or itself)

See Hopcroft (2007, section 1.5.4)

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability

The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

60/175

Automate Theory
Alphabets, Strings

>

>
>
>

v

An Alphabet, X, is a finite, non-empty set of symbols.
Binary alphabet X ={0, 1}
Lower case letters X ={a, b,..., 2z}

A String is a finite sequence of symbols from some
alphabet

01101 is a string from the Binary alphabet > ={0, 1}
The Empty string, €, contains no symbols

Powers: =K is the set of strings of length k with
symbols from =

The set of all strings over an alphabet X is denoted >*
s =30yustusz2u...
Question Does 30 = @ ? (@ is the empty set)

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity
Commentary 2
Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

61/175

Automata Theory
Languages
> An Language, L, is a subset of 3*
> The set of binary numerals whose value is a prime
{10,11,101,111,1011,...}
» The set of binary numerals whose value is a square
{100,1001,10000,11001,...}

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

62/175

Computability

Church-Turing Thesis & Quantum Computing

>

Church-Turing thesis Every function that would
naturally be regarded as computable can be computed
by a deterministic Turing Machine.

physical Church-Turing thesis Any finite physical
system can be simulated (to any degree of
approximation) by a Universal Turing Machine.

strong Church-Turing thesis Any finite physical
system can be simulated (to any degree of
approximation) with polynomial slowdown by a
Universal Turing Machine.

Shor’s algorithm (1994) — quantum algorithm for
factoring integers — an NP problem that is not known
to be P — also not known to be NP-complete and we
have no proof that it is not in P

Reference: Section 4 of Unit 6 & 7 Reader

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability

The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

63/175

http://en.wikipedia.org/wiki/Shor's_algorithm

Computability

Turing Machine

>

Finite control which can be in any of a finite number of
states

Tape divided into cells, each of which can hold one of a
finite number of symbols

Initially, the input, which is a finite-length string of
symbols in the input alphabet, is placed on the tape

All other tape cells (extending unbounded left and
right) hold a special symbol called blank

A tape head which initially is over the leftmost input
symbol

A move of the Turing Machine depends on the state
and the tape symbol scanned

A move can change state, write a symbol in the current
cell, move left, right or stay

References: Hopcroft (2007, page 326), Unit6 & 7
Reader (section 5.3)

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

64/175

Turing Machine Diagram

Turing Machine Diagram

blalJa]a]la .-+ 1/0O Tape

gc

Reading and Writing Head

(moves in both directions)

a3

q a0

Finite Control

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

65/175

Computability

Turing Machine notation

>

>
>
>

Q finite set of states of the finite control
3. finite set of input symbols (M269 S)
I' complete set of tape symbols 3. C T

o Transition function (M269 instructions, /)

0::QxT - QxTIx{LR,S}

6(q,X) = (p, Y, D)

0(q, X) takes a state, g and a tape symbol, X and returns
(p, Y, D) where p is a state, Y is a tape symbol to
overwrite the current cell, D is a direction, Left, Right or
Stay

qo Start state qgp € Q
B blank symbol BT and B ¢ X
F set of final or accepting states F = Q

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

66/175

Turing Machine Examples

Turing Machine Simulators

>

>
>

Morphett’s Turing machine simulator — the examples
below are adapted from here

Ugarte’s Turing machine simulator

XKCD A Bunch of Rocks — XKCD Explanation
Image below (will need expanding to be readable)
The term state is used in two different ways:

The value of the Finite Control

The overall configuration of Finite Control and current
contents of the tape

See Turing Machine: State
will lead to some confusion

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

67/175

http://morphett.info/turing/turing.html
https://turingmachinesimulator.com/
https://xkcd.com/505/
https://www.explainxkcd.com/wiki/index.php/505:_A_Bunch_of_Rocks
https://en.wikipedia.org/wiki/Turing_machine#The_%22state%22

Turing Machine Examples

XKCD A Bunch of Rocks

0 T sTook e oo™ rood o
DeseRr Fon EBRTY L Dot i
ERE ouE DAY,

N

T 0eT vk, | [[50 o mooes | [reere o wew]

T e
Fueay ox
TR

%

R s ncsrasl
P

foenes o o e
Fo Tons 007 4

A ETERNT, R

P, o0 T vomen e
KRS i comin Febines

o orar T, o
A Fat oonce

[0 omv T smere
o G 235 o

o T W
T D St

o e

Srinaron

ey

e i s

%J

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

68/175

Turing Machine Examples

Meta-Exercise

» For each of the Turing Machine Examples below,

identify

(Q,%,1,6,q90,B,F)

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

The Successor Function
The Binary Palindrome
Function
Binary Addition
Example
Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

69/175

Turing Machine Examples

The Successor Function

>

vV VvVVvyVvVyVvyVvyy

Input binary representation of numeral n
Output binary representation of n+ 1

Example 1010 — 1011 and 1011 ~ 1100

Initial cell: leftmost symbol of n

Strategy

Stage A make the rightmost cell the current cell
Stage B Add 1 to the current cell.

If the current cell is O then replace it with 1 and go to
stage C

If the current cell is 1 replace it with 0 and go to stage B
and move Left

If the current cell is blank, replace it by 1 and go to
stage C

Stage C Finish up by making the leftmost cell current

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

70/175

Turing Machine Examples

The Successor Function (2)

> Represent the Turing Machine program as a list of
quintuples (g, X, p, Y, D)

>

Stage A

(40,0, 90,0, R
(90,1,490,1,R)
(90,8, 4a1,B,1)
Stage B

(@1,0,92,1,5)
(@1,1,41,0,0)
(q1,B,42,1,5)
Stage C

(42,0,492,0,0)
(g2,1,92,1,0)
(g2, B, qn, B, R)

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example
Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

71/175

Turing Machine Examples

The Successor Function (2a)

>

>

Exercise Translate the quintuples (g, X, p, Y, D) into
English and check they are the same as the specification

Stage A make the rightmost cell the current cell
(90,0,40,0,R)

If state go and read symbol O then stay in state gg write 0, move R
(40,1,490,1,R)

If state go and read symbol 1 then stay in state gg write 1, move R
(90, B, 0, B,1)

If state go and read symbol B then state g; write B, move L

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function
Binary Addition
Example
Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

72/175

Turing Machine Examples

The Successor Function (2b)

>

>

Exercise Translate the quintuples (g, X, p, Y, D) into
English

Stage B Add 1 to the current cell.

(41,0,92,1,5)

If state g1 and read symbol O then state g, write 1, stay
(@1,1,91,0,0)

If state g7 and read symbol 1 then state g7 write O, move L
(a1,B,92,1,5)

If state g1 and read symbol B then state g, write 1, stay

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example
Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

73/175

Turing Machine Examples

The Successor Function (2¢)

» Exercise Translate the quintuples (g, X, p, Y, D) into
English

> Stage C Finish up by making the leftmost cell current
(42,0,492,0,0)
If state g and read symbol 0O then state g, write 0, move L
(@2,1,42,1,0
If state g and read symbol 1 then state g, write O, move L
(42, B,49n, B,R)
If state g and read symbol B then state gj write B, move R HALT

> Notice that the Turing Machine feels like a series of if
then or case statements inside a while loop

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function
Binary Addition
Example
Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

74/175

Turing Machine Examples

The Successor Function (2d) — Meta-Exercise

> |dentify (Q,%,T, 6, q0, B, F)

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags

Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Binary Palindrome
Function

Binary Addition
Example
Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

75/175

Turing Machine Examples

The Successor Function (2e) — Meta-Exercise

v

VVVvyVvVYVYyVvVYyYyYy

Identify (Q, 2, T, 6, q0, B, F)
Q=1{dq0, a1, g2, an}

qo finding the rightmost symbol
g1 add 1 to current cell

q> move to leftmost cell

qp finish
>={0,1}
Ir=3u{B}

0::QxT - QxTIXx{L,R,S}

6(q,X) -~ (p, Y, D)

0 is represented as {(q,X,p,Y,D)}
equivalent to {((g, X), (p, Y, D))} set of pairs

qo start with leftmost symbol under head, state moving
to rightmost symbol

Bis _ avisible space
F={qn}

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

76/175

Turing Machine Examples

The Successor Function (3)

» Sample Evaluation 11 —~ 100

> Representation - - - BX1 X3 - - - Xj-1gXiXiy1 - -

qoll

1g01

11g0B

1911

710

q1B00

q2100

q2B100
qn100

> Exercise evaluate 1011 —~ 1100

“XpB- - -

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example
Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

77/175

Turing Machine Examples

Instantaneous Description

>

v yYyy

vV YvyVvyy

Representation - - - BX1 X2 - - - Xj-1gXiXjx1 - - - XpB - - -

q is the state of the TM
The head is scanning the symbol X;

Leading or trailing blanks B are (usually) not shown
unless the head is scanning them

+um denotes one move of the TM M

+p denotes zero or more moves

+ will be used if the TM M is understood

If (g9, Xi, p, Y, L) denotes a TM move then

X1 Xie1gXi- - - Xan M X1 - - XiapXic1Y - - - Xp

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

78/175

Turing Machine Examples

The Binary Palindrome Function

>

vV VvVyVvyVvVVyvyyy

vy

vV vyVvVvyy

Input binary string s

Output YES if palindrome, NO otherwise
Example 1010 — NO and 1001 — YES
Initial cell: leftmost symbol of s
Strategy

Stage A read the leftmost symbol

If blank then accept it and go to stage D otherwise
erase it

Stage B find the rightmost symbol

If the current cell matches leftmost recently read then
erase it and go to stage C

Otherwise reject it and go to stage E

Stage C return to the leftmost symbol and stage A
Stage D print YES and halt

Stage E erase the remaining string and print NO

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

79/175

Turing Machine Examples

The Binary Palindrome Function (2)

>

>

Represent the Turing Machine program as a list of
quintuples (g, X, p, Y, D)

Stage A read the leftmost symbol

(40,0, 91,,B,R)

(90,1, 91;,B,R)

(90, B, s, B,)

Stage B find rightmost symbol
(@1,,B,492,,B, 1)

(q1 oy X5 q1,, %, R) *is a wild card, matches anything
(41, B,a2;,B, 1)

(g1, %, q1;, %, R

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function
Binary Addition
Example
Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

80/175

Turing Machine Examples MBS B i

The Binary Palindrome Function (3) Phil Molyneux

Tutorial Agenda

> Stage B check

Adobe Connect

(420, 0,93,B,1) ¥()2£25221 TMAO3
(q201 B’ QS, B’ S) Bags
(qza’ *, q6! *, S) Abstract D.a-ta Types
Computa_blllty,
(quv 1 , 43, B’ [_) Complexity
Commentary 2
(qzi’ B’ as, B’ S) Computability
The Turing Machine
(qu: * ’ q6 ’ * ’ S) Turing Machine
Examples
> Stage C return to the leftmost symbol and stage A The Successor Function
The Binary Palindrome
(q31 Bl 675, Bl S) :rnna?\lo:ddition
Example
* *x, L Compuptability,
(q3’ » 44, %, Decidability and
(q41 Bl q01 Bl R) f;?:l;::t:lculus
(44, *) 44, * ’ L) GO &
Complexity

Future Work

References

81/175

Turing Machine Examples

The Binary Palindrome Function (4)

> Stage D accept and print YES
(gs,%*,95,,Y, R
(g5,, *,45,,E,R)
(g5,, *,497, S, S)
> Stage E erase the remaining string and print NO
(96, B, g6,, N, R)
(g6, *, g6, B, L)
(g6,, *,97,0,5)
» Finish
(97, B, an, B,R)
(g7, *,97,*,L)

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function
Binary Addition
Example
Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

82/175

Turing Machine Examples

The Binary Palindrome Function (3a) — Meta-Exercise

> |dentify (Q,%,T, 6, q0, B, F)

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags

Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

Binary Addition
Example
Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

83/175

Turing Machine Examples

The Binary Palindrome Function (3b) — Meta-Exercise

v

VVVYVYVVYVYYVYYVYYVYY

v

Identify (Q,>,T, 9, g0, B, F)

Q=1{q0, %0, 41}, 920, 42;, 93, 94, 45, 454, 95, 96, 64, 97, Gh}

qo read leftmost symbol

a1, 91, find rightmost symbol looking for 0 or 1
d2,, 42; check, confirm or reject

q3, g4 check finish or move to start

gs, de, g7 print YES or NO and finish

qp finish

>={0,1}

Ir=u{B,Y,E,S,N, O}

0.:QxT - QxTIx{L,R,S}

6(q,X) = (p, Y, D)

0 is represented as {(q,X,p,Y,D)}

equivalent to {((g, X), (p, Y, D))} set of pairs
Start with leftmost symbol under head, state gg
Bis _ avisible space

F ={qn}

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

84/175

M269 End of

Turing Machine Examples Module

The Binary Palindrome Function (4) Phil Molyneux

Tutorial Agenda

» Sample Evaluation 101 — YES

Adobe Connect

qo101 + Bgq1,01 +~ BOgy;1 +~ BO1g1,B ¥5§2522JTMA03

~ BOg> i1 ags

~ Bg30B +~ gq4BOB Abstract Data Types

+ BqoOB - BBq1,B Compianiy ™

- 842,88 .

+ BgsBB+ Yqs,B + YEqs,B+ YEq7S lrfi::;nagcx::hme

- Ya7ES v Bgy YES - q7BYES - GuYES o ancion
> Exercise Evaluate 110 — NO ES%;':'”

Biarard

Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

85/175

Turing Machine Examples
Binary Addition Example

>

vV vyVvVvyy

Input two binary numerals separated by a single space
nl n2

Output binary numeral which is the sum of the inputs
Example 110110+ 101011 —~ 1100001

Initial cell: leftmost symbol of nl n2

Insight look at the arithmetic algorithm

1 1 0 1T 1T O

L 1.0 1 0 1 1

T 1.0 0 0 0 1

Discussion how can we overwrite the first number with
the result and remember how far we have gone ?

—

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function
Binary Addition
Example
Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

86/175

Turing Machine Examples

Binary Addition Example — Arithmetic Reinvented

o1 1 0o 1 1 0
o1 0o 1 0o 1 1
o1 1 0o 1 1 y
o1 0 1 0 1 o
o1 1 0 x vy
o1 0 o . .
. 1 1 X X y
. o 1 . . o
1 0 0 x x x vy
T
1 0 x x X X Yy
T
1 y X X X X Yy
1 1 o 0 o0 o0 1

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function
Binary Addition
Example
Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

87/175

Turing Machine Examples
Binary Addition Example (2)

>

vV vyVvyyvyy

Input two binary numerals separated by a single space
nl n2

Output binary numeral which is the sum of the inputs
Example 110110+ 101011 —~ 1100001
Initial cell: leftmost symbol of nl n2
Strategy

Stage A find the rightmost symbol

If the symbol is 0 erase and go to stage Bx
If the symbol is 1 erase go to stage By

If the symbol is blank go to stage F

dealing with each digit in n2

if no further digits in n2 go to final stage

Stage Bx Move left to a blank go to stage Cx
Stage By Move left to a blank go to stage Cy

moving to nl

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function
Binary Addition
Example
Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

88/175

Turing Machine Examples MBS B i

Binary Addition Example (3) D CENTICDE:

Tutorial Agenda

> Stage Cx Move left to find first 0, 1 or B

Adobe Connect

Turn 0 or Bto X, turn 1 to Y and go to stage A P8 2T
adding 0 to a digit finalises the result (no carry one) Bags
> Stage Cy Move left to find first 0, 1 or B Abstract Data Types
Computability,
Turn 0 or Bto 1 and go to stage D Gonpliy

Commentary 2

Turn 1 to 0, move left and go to stage Cy Computabllity

The Turing Machine

Turing Machine
Examples

dealing with the carry one in school arithmetic

» Stage D move right to X, Y or B and go to stage E The Successor Function
The Binary Palindrome
> Stage E replace 0 by X, 1 by Y, move right and go to S —
Stage A CEo):r::’tl:bility,

Decidability and

finalising the value of a digit resulting from a carry f:;’n";::t;cm
> Stage F move left and replace X by 0, Y by 1 and at B Commentary 3
halt Complexity

Future Work

References

89/175

Turing Machine Examples
Binary Addition Example (4)

>

>

Represent the Turing Machine program as a list of
quintuples (g, X, p, Y, D)

Stage A find the rightmost symbol

(40, B, 91, B, R)

(qo, *, q0, *, R) * is a wild card, matches anything
(q1,B,492,B,1)

(@, %, q1,%,R)

(42,0, 43,,B,1)

(g2,1,43,,8B,01)

(92, 8B,497,B,1)

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function
Binary Addition
Example
Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

90/175

Turing Machine Examples
Binary Addition Example (5)

> Stage Bx move left to blank
(g3, B, q4,, B, L)
(43, *, 43, *, L)

> Stage By move left to blank
(g3,,B,494,,B,1)
(@3,, %,43,, %, L)

» Stage Cx move left to 0, 1, or blank
(94,0, 90, X, R)
(945, 1,490, ¥, R)
(94, B, g0, x, R)
G4y, *, Q4y, *, L)

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function
Binary Addition
Example
Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

91/175

Turing Machine Examples MBS B i

Binary Addition Example (6) BRIIMOVIERS

Tutorial Agenda

» Stage Cy move left to 0, 1, or blank

Adobe Connect

(94,,0,45,1,5) LA P
(q4y|] 144,,,0,L) Bags
(514y. B, gs, 1 , S) Abstract Data Types
Computa_bility,
(‘74,/: *, Cf4y, *1 L) Complexity
> . h Commentary 2
Stage D move right to x, y or B Computabilty
(as, x, 6, %, D U
Examples
(515, y: q6, yi L) The zuccessor Function
The Binary Palindrome
(an Bl 676, Bl L) ;iunna(r;:-\ddi(ion
Example
(45 ’ * ’ 45 ’ *1 R) g??ﬁ:éﬁiy"?ﬁd
Algorithms
> Stage E replace 0 by x, 1 by y e
(q6’ O’ a0, X, R) Commentary 3
Complexity
(QG,]) qOI y! R) Future Work
References

92/175

Turing Machine Examples
Binary Addition Example (7)
> Stage F replace x by 0, y by 1
(g7, x,497,0,L)
(@7,y,a7,1,D
(g7, B, an, B, R)
(g7, *,q97,*,L)
> Exercise Evaluate 11+ 10 ~ 101

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect
M269 22) TMAO3
Topics

Bags

Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

93/175

Turing Machine Examples

The Binary Addition Function (7a) — Meta-Exercise

> |dentify (Q,%,T, 6, q0, B, F)

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect
M269 22) TMAO3
Topics

Bags

Abstract Data Types
Computability,
Complexity
Commentary 2
Computability

The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

94/175

Turing Machine Examples
The Binary Addition Function (7b) — Meta-Exercise

v

VVVYVVVVYVYVYVYYY

Identify (Q, %, T, 6, g0, B, F)

Q=1{do, N, a2, A3, 43y, Gax d4y, 95, 6, 47, dn}

q0, 91, q2 find rightmost symbol of second number
a3, 93, move left to inter-number blank

d4,, g4, move left to 0, 1 or blank

gs move rightto x, y or B

ge replace 0 by x, 1 by y and move right

q7 replace x by 0, y by 1 and move left

qp finish
>={0,1}
Ir=>u{B, x,y}

0.:QxT - QxTIx{L,R,S}

6(q,X) = (p, Y, D)

0 is represented as {(g, X, p, Y, D)}

equivalent to {((gq, X), (p, Y, D))} set of pairs
Start with leftmost symbol under head, state gg
Bis _, avisible space

F={qn}

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function
Binary Addition
Example
Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

95/175

Turing Machine Examples
Binary Addition Example (8a)

>
>

T T YT YT T T T T T T

Exercise Evaluate 11 +10 ~ 101
Stage A find the rightmost symbol
BBqp11B10B Note space symbols B at start and end

BB14o1B108
BB114oB108
BB11Bg1108
BB11B14108
BB11B104: B
BB11B14,08
BB11Bgs, 1BB

Stage Bx move left to blank

B11g3,B1BB

Stage Cx move left to 0, 1, or blank

BB1g4,1B1BB
BB1YqoB1BB

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function
Binary Addition
Example
Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

96/175

Turing Machine Examples
Binary Addition Example (8b)

v

T Y7T T T YT TTTUWYTTTTV

Exercise Evaluate 11 +10 — 101 (contd)
Stage A find the rightmost symbol
BB1BYBqg11BB

BB1YB1q1 BB

BB1YBg,1BB

BB1Yq3, BBBB

Stage Cy move left to 0, 1, or blank
BB1qg4,YBBBB

BBq4y1 YBBBB

Bq4,BOYBBBB

Bgs10YBBBB

Stage D move rightto x, y or B
Bgs0YBBBB

BOgs YBBBB

Bgs0YBBBB

Stage E replace O by x, 1 by y
B1Xqo YBBBB

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function
Binary Addition
Example
Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

97/175

Turing Machine Examples
Binary Addition Example (8c)

vy T T T T YT TTT VY

v

Exercise Evaluate 11 +10 — 101 (contd)
Stage A find the rightmost symbol
B1XYqoBBBB

B1XYBqgy BBB

B1XYq, BBBB

B1Xq7YBBBB

Stage F replace x by 0, y by 1
B1g7X1BBBB

Bg7101BBBB

Bq7B101BBBB

Bg,101BBBB

This is mimicking what you learnt to do on paper as a
child! Real step-by-step instructions

See Morphett’s Turing machine simulator for more
examples (takes too long by hand!)

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function
Binary Addition
Example
Computability,
Decidability and
Algorithms
Lambda Calculus
Commentary 3
Complexity
Future Work

References

98/175

http://morphett.info/turing/turing.html

Computability
Universal Turing Machine
» Universal Turing Machine, U, is a Turing Machine that
can simulate any arbitrary Turing machine, M

> Achieves this by encoding the transition function of M
in some standard way

> The input to U is the encoding for M followed by the
data for M

» See Turing machine examples

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect
M269 22) TMAO3
Topics

Bags

Abstract Data Types
Computability,
Complexity
Commentary 2
Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and

Algorithms
Non-Computability —
Halting Problem
Reductions &

Non-Computability
Lambda Calculus
Commentary 3
Complexity
Future Work

References

99/175

https://en.wikipedia.org/wiki/Universal_Turing_machine
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Turing_machine_examples

Computability

Decidability

» Decidable — there is a TM that will halt with yes/no for
a decision problem — that is, given a string w over the
alphabet of P the TM with halt and return yes.no the
string is in the language P (same as recursive in
Recursion theory — old use of the word)

> Semi-decidable — there is a TM will halt with yes if
some string is in P but may loop forever on some inputs
(same as recursively enumerable) — Halting Problem

» Highly-undecidable — no outcome for any input —
Totality, Equivalence Problems

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,

Decidability and

Algorithms
Non-Computability —
Halting Problem
Reductions &

Non-Computability
Lambda Calculus
Commentary 3
Complexity
Future Work

References

100/175

http://en.wikipedia.org/wiki/Recursion_theory

Computability

Undecidable Problems

» Halting problem — the problem of deciding, given a

program and an input, whether the program will
eventually halt with that input, or will run forever —
term first used by Martin Davis 1952

Entscheidungsproblem — the problem of deciding
whether a given statement is provable from the axioms
using the rules of logic — shown to be undecidable by
Turing (1936) by reduction from the Halting problem to
it

Type inference and type checking in the second-order
lambda calculus (important for functional
programmers, Haskell, GHC implementation)

» Undecidable problem — see link to list

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect
M269 22) TMAO3
Topics

Bags

Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,

Decidability and

Algorithms
Non-Computability —
Halting Problem
Reductions &

Non-Computability
Lambda Calculus
Commentary 3
Complexity
Future Work

References

101/175

http://en.wikipedia.org/wiki/Halting_problem
http://en.wikipedia.org/wiki/Entscheidungsproblem
http://en.wikipedia.org/wiki/System_F
http://en.wikipedia.org/wiki/Undecidable_problem

Computability

Halting Problem — Sketch Proof (1)

» Halting problem — is there a program that can
determine if any arbitrary program will halt or continue
forever?

» Assume we have such a program (Turing Machine)
h(f,x) that takes a program f and input x and
determines if it halts or not

h(f,x)
= if f(x) runs forever
return True
else
return False

» We shall prove this cannot exist by contradiction

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect
M269 22) TMAO3
Topics

Bags

Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and

Algorithms
Non-Computability —
Halting Problem
Reductions &

Non-Computability
Lambda Calculus
Commentary 3
Complexity
Future Work

References

102/175

https://simple.wikipedia.org/wiki/Halting_problem

Computability

Halting Problem — Sketch Proof (2)

> Now invent two further programs:

» q(f) that takes a program f and runs h with the input

to f being a copy of f

» r(f) that runs q(f) and halts if q(f) returns True,
otherwise it loops

q(f)
= h(f,f)

r(f)
= if q(f)
return
else
while True: continue

» What happens if we run r(r) ?

> If it loops, q(r) returns True and it does not loop —
contradiction.

> Scooping theLoop Snooper: A proof that the Halting

Problem is undecidable Geoffrey K Pullum (21 May
2024)

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect
M269 22) TMAO3
Topics

Bags

Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and

Algorithms
Non-Computability —
Halting Problem
Reductions &

Non-Computability
Lambda Calculus
Commentary 3
Complexity
Future Work

References

103/175

http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html
http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html

Computability

Why undecidable problems must exist

>

>

A problem is really membership of a string in some
language

The number of different languages over any alphabet of
more than one symbol is uncountable

Programs are finite strings over a finite alphabet (ASCII
or Unicode) and hence countable.

There must be an infinity (big) of problems more than
programs.

Computational problem — defined by a function

Computational problem is computable if there is a
Turing machine that will calculate the function.

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect
M269 22) TMAO3
Topics

Bags

Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and

Algorithms
Non-Computability —
Halting Problem
Reductions &

Non-Computability
Lambda Calculus
Commentary 3
Complexity
Future Work

References

104/175

Computability

Computability and Terminology (1)

>

The idea of an algorithm dates back 3000 years to
Euclid, Babylonians...

In the 1930s the idea was made more formal: which
functions are computable?

A function is a set of pairs
f={x,f(x): x € XA f(x) € Y}with the function
property

Function property: (a,b) € f A(a,c) € f = b==
Function property: Same input implies same output

Note that maths notation is deeply inconsistent here —
see Function and History of the function concept

What do we mean by computing a function — an
algorithm ?

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect
M269 22) TMAO3
Topics

Bags

Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &

Non-Computability
Lambda Calculus
Commentary 3
Complexity
Future Work

References

105/175

http://en.wikipedia.org/wiki/Computable_function
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/History_of_the_function_concept

Functions

Relation and Rule

>

The idea of function as a set of pairs (Binary relation)
with the function property (each element of the domain
has at most one element in the co-domain) is fairly
recent — see History of the function concept

School maths presents us with function as rule to get
from the input to the output

Example: the square function: square x=x X x

But lots of rules (or algorithms) can implement the
same function

squarel x = xA2
X times
square2 x = x+---+xif xis integer

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect
M269 22) TMAO3
Topics

Bags

Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and

Algorithms
Non-Computability —
Halting Problem
Reductions &

Non-Computability
Lambda Calculus
Commentary 3
Complexity
Future Work

References

106/175

https://en.wikipedia.org/wiki/Binary_relation
https://en.wikipedia.org/wiki/History_of_the_function_concept

Computability

Computability and Terminology (2)

>
>

In the 1930s three definitions:

A-Calculus, simple semantics for computation — Alonzo
Church

General recursive functions — Kurt Godel
Universal (Turing) machine — Alan Turing
Terminology:

> Recursive, recursively enumerable — Church, Kleene
Computable, computably enumerable — Gédel, Turing
Decidable, semi-decidable, highly undecidable

In the 1930s, computers were human

Unfortunate choice of terminology

Turing and Church showed that the above three were
equivalent

vvyyvyy

Church-Turing thesis — function is intuitively
computable if and only if Turing machine computable

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect
M269 22) TMAO3
Topics

Bags

Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and

Algorithms
Non-Computability —
Halting Problem
Reductions &

Non-Computability
Lambda Calculus
Commentary 3
Complexity
Future Work

References

107/175

http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Alonzo_Church
http://en.wikipedia.org/wiki/Alonzo_Church
https://en.wikipedia.org/wiki/%CE%9C-recursive_function
https://en.wikipedia.org/wiki/Kurt_G%C3%B6del
http://en.wikipedia.org/wiki/Universal_Turing_machine
http://en.wikipedia.org/wiki/Alan_Turing
http://en.wikipedia.org/wiki/Stephen_Cole_Kleene
https://en.wikipedia.org/wiki/Church%E2%80%93Turing_thesis

Computability

Reducing one problem to another

» To reduce problem P; to P, invent a construction that
converts instances of P; to P, that have the same
answer. That is:

> any string in the language P; is converted to some string
in the language P>
> any string over the alphabet of Py that is not in the
language of Py is converted to a string that is not in the
language P>
» With this construction we can solve P;

> Given an instance of P, that is, given a string w that
may be in the language P71, apply the construction
algorithm to produce a string x

> Test whether x is in P, and give the same answer for w
in P

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect
M269 22) TMAO3
Topics

Bags

Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem
Reductions &
Non-Computability
Lambda Calculus
Commentary 3
Complexity
Future Work

References

108/175

Computability

Problem Reduction
» Problem Reduction — Ordinary Example
» Want to phone Alice but don’t have her number
» You know that Bill has her number

» So reduce the problem of finding Alice’s number to the
problem of getting hold of Bill

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect
M269 22) TMAO3
Topics

Bags

Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and

Algorithms
Non-Computability —
Halting Problem
Reductions &

Non-Computability
Lambda Calculus
Commentary 3
Complexity
Future Work

References

109/175

Computability

Direction of Reduction

>
>

The direction of reduction is important

If we can reduce P; to P, then (in some sense) P is at
least as hard as Py (since a solution to P, will give us a
solution to P7)

So, if P, is decidable then Py is decidable

To show a problem is undecidable we have to reduce
from an known undecidable problem to it

V x(dpp, (x) = dpp, (reduce(x)))
Since, if Py is undecidable then P, is undecidable

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect
M269 22) TMAO3
Topics

Bags

Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and

Algorithms
Non-Computability —
Halting Problem
Reductions &

Non-Computability
Lambda Calculus
Commentary 3
Complexity
Future Work

References

110/175

Reductions & Non-Computable

Reductions

|
|
. f(input) !
input ———p| f » A2 ——>» output

» A reduction of problem P; to problem P,
» transforms inputs to Py into inputs to P>
> runs algorithm A2 (which solves P,) and
> interprets the outputs from A2 as answers to P,

» More formally: A problem Py is reducible to a problem
P, if there is a function f that takes any input x to P,
and transforms it to an input f(x) of P

such that the solution of P, on f(x) is the solution of P;
on x

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect
M269 22) TMAO3
Topics

Bags

Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem
Reductions &
Non-Computability
Lambda Calculus
Commentary 3
Complexity
Future Work

References

111/175

Reductions & Non-Computible

Example: Squaring a Matrix

» Given an algorithm (A2) for matrix multiplication (Py)
» |nput: pair of matrices, (M, M>)
> Qutput: matrix result of multiplying My and M,

> Pj is the problem of squaring a matrix

> Input: matrix M
> Output: matrix M2

> Algorithm Al has
f(M) = (M, M)
uses A2 to calculate M x M = M?

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect
M269 22) TMAO3
Topics

Bags

Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem
Reductions &
Non-Computability
Lambda Calculus
Commentary 3
Complexity
Future Work

References

112/175

Reductions & Non-Computable

Non-Computable Problems

|

|

f(input) ‘
» ——> output

» If P, is computable (A2 exists) then Py is computable (f
being simple or polynomial)

» Equivalently If P; is non-computable then P; is
non-computable

> Exercise: show B— A= —-A— —-B

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect
M269 22) TMAO3
Topics

Bags

Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and

Algorithms
Non-Computability —
Halting Problem
Reductions &

Non-Computability
Lambda Calculus
Commentary 3
Complexity
Future Work

References

113/175

Reductions & Non-Computable

Contrapositive

» Proof by Contrapositive
» B — A= =BV A by truth table or equivalences

—(—A) V =B commutativity and negation laws
= A — —B equivalences

» Common error: switching the order round

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples
Computability,
Decidability and
Algorithms
Non-Computability —
Halting Problem

Lambda Calculus
Commentary 3
Complexity
Future Work

References

114/175

https://en.wikipedia.org/wiki/Proof_by_contrapositive

Reductions & Non-Computable

Totality Problem

(P, x) ———» f 2 » TP +———» YES/NO

» Totality Problem
> Input: program Q
> OQutput: YES if Q terminates for all inputs else NO

»> Assume we have algorithm TP to solve the Totality
Problem

» Now reduce the Halting Problem to the Totality Problem

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect
M269 22) TMAO3
Topics

Bags

Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and

Algorithms
Non-Computability —
Halting Problem
Reductions &

Non-Computability
Lambda Calculus
Commentary 3
Complexity
Future Work

References

115/175

Reductions & Non-Computable

Totality Problem

|

|

Q l
- YES/NO

» Define f to transform inputs to HP to TP pseudo-Python

def f(P,x)
def Q(y):
ignore y
PO

return Q

> Run TP on Q

> If TP returns YES then P halts on x
» |If TP returns NO then P does not halt on x

> We have solved the Halting Problem — contradiction

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect
M269 22) TMAO3
Topics

Bags

Abstract Data Types
Computability,
Complexity
Commentary 2
Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &

Non-Computability

Lambda Calculus
Commentary 3
Complexity
Future Work

References

116/175

Reductions & Non-Computable

Negative Value Problem

Qv |
(P, x) ———» f » NVP ——» YES/NO

> Negative Value Problem
> |nput: program Q which has no input and variable v
used in Q
> OQutput: YES if v ever gets assigned a negative value else
NO
» Assume we have algorithm NVP to solve the Negative
Value Problem

» Now reduce the Halting Problem to the Negative Value
Problem

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect
M269 22) TMAO3
Topics

Bags

Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and

Algorithms
Non-Computability —
Halting Problem
Reductions &

Non-Computability
Lambda Calculus
Commentary 3
Complexity
Future Work

References

117/175

Reductions & Non-Computable

Negative Value Problem

Qv }
> L » YES/NO

» Define f to transform inputs to HP to NVP pseudo-Python

def f(P,x)
def Q(y):
ignore y
PO
v =-1
return (Q,var(v))

» Run NVP on (Q, var(v)) var(v) gets the variable name

> If NVP returns YES then P halts on x
> If NVP returns NO then P does not halt on x

> We have solved the Halting Problem — contradiction

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect
M269 22) TMAO3
Topics

Bags

Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and

Algorithms
Non-Computability —
Halting Problem
Reductions &

Non-Computability
Lambda Calculus
Commentary 3
Complexity
Future Work

References

118/175

Reductions & Non-Computable

Squaring Function Problem

|

|

Q l
- YES/NO

» Squaring Function Problem
> |Input: program Q which takes an integer, y
> OQutput: YES if Q always returns the square of y else NO
» Assume we have algorithm SFP to solve the Squaring
Function Problem

» Now reduce the Halting Problem to the Squaring
Function Problem

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect
M269 22) TMAO3
Topics

Bags

Abstract Data Types
Computability,
Complexity
Commentary 2
Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem
Reductions &
Non-Computability
Lambda Calculus
Commentary 3
Complexity
Future Work

References

119/175

Reductions & Non-Computable

Squaring Function Problem

|

|

Q l
- YES/NO

» Define f to transform inputs to HP to SFP pseudo-Python

def f(P,x)
def Q(y):
P(x)
return y * y
return Q

> Run SFP on Q

» |f SFP returns YES then P halts on x
» |If SFP returns NO then P does not halt on x

» We have solved the Halting Problem — contradiction

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect
M269 22) TMAO3
Topics

Bags

Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and

Algorithms
Non-Computability —
Halting Problem
Reductions &

Non-Computability
Lambda Calculus
Commentary 3
Complexity
Future Work

References

120/175

Reductions & Non-Computable

Equivalence Problem

|

|

(P1,P2) ;
> - » YES/NO

» Equivalence Problem

> |nput: two programs P1 and P2
> Qutput: YES if P1 and P2 solve the same problem (same
output for same input) else NO

» Assume we have algorithm EP to solve the Equivalence
Problem

» Now reduce the Totality Problem to the Equivalence
Problem

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect
M269 22) TMAO3
Topics

Bags

Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability
Lambda Calculus
Commentary 3
Complexity
Future Work

References

121/175

Reductions & Non-Computable

Equivalence Problem

|

|

(P1,P2) ;
> - » YES/NO

» Define f to transform inputs to TP to EP pseudo-Python

def f(P) :
def P1(x):
PO
return "Same_string"
def P2(x)
return "Same_string"
return (P1,P2)

» Run EP on (P1, P2)

» If EP returns YES then P halts on all inputs
> If EP returns NO then P does not halt on all inputs

» We have solved the Totality Problem — contradiction

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect
M269 22) TMAO3
Topics

Bags

Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem
Reductions &
Non-Computability
Lambda Calculus
Commentary 3
Complexity
Future Work

References

122/175

Reductions & Non-Computable

Rice’s Theorem

|
|
. f(input) !
input ———p| f » A2 ——>» output

» Rice’s Theorem all non-trivial, semantic properties of
programs are undecidable. H G Rice 1951 PhD Thesis

» Equivalently: For any non-trivial property of partial
functions, no general and effective method can decide
whether an algorithm computes a partial function with
that property.

> A property of partial functions is called trivial if it holds
for all partial computable functions or for none.

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and

Algorithms
Non-Computability —
Halting Problem
Reductions &

Non-Computability
Lambda Calculus
Commentary 3
Complexity
Future Work

References

123/175

https://en.wikipedia.org/wiki/Rice%27s_theorem

Reductions & Non-Computable

Rice’s Theorem

vy

Rice’s Theorem and computability theory

Let S be a set of languages that is nontrivial, meaning
> there exists a Turing machine that recognizes a
language in S
> there exists a Turing machine that recognizes a
language not in S
Then, it is undecidable to determine whether the
language recognized by an arbitrary Turing machine
lies in S.

This has implications for compilers and virus checkers

Note that Rice’s theorem does not say anything about
those properties of machines or programs that are not
also properties of functions and languages.

For example, whether a machine runs for more than
100 steps on some input is a decidable property, even
though it is non-trivial.

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem
Reductions &
Non-Computability
Lambda Calculus
Commentary 3
Complexity
Future Work

References

124/175

https://en.wikipedia.org/wiki/Rice%27s_theorem

Lambda Calculus

Motivation

» Lambda Calculus is a formal system in mathematical
logic for expressing computation based on function

abstraction and application using variable binding and
substitution

Lambda calculus is Turing complete — it can simulate
any Turing machine

» Introduced by Alonzo Church in 1930s

» Basis of functional programming languages — Lisp,
Scheme, ISWIM, ML, SASL, KRC, Miranda, Haskell, Scala,
F#...

>

Note this is not part of M269 but may help understand
ideas of computability

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus
Motivation
Lambda Terms
Substitution
Lambda Calculus

Encodings
Commentary 3
Complexity
Future Work

References

125/175

https://en.wikipedia.org/wiki/Lambda_calculus
https://en.wikipedia.org/wiki/Formal_system
https://en.wikipedia.org/wiki/Mathematical_logic
https://en.wikipedia.org/wiki/Mathematical_logic
https://en.wikipedia.org/wiki/Computability
https://en.wikipedia.org/wiki/Name_binding
https://en.wikipedia.org/wiki/Substitution_(algebra)
https://en.wikipedia.org/wiki/Turing_completeness
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Scheme_(programming_language)
https://en.wikipedia.org/wiki/ISWIM
https://en.wikipedia.org/wiki/ML_(programming_language)
https://en.wikipedia.org/wiki/SASL_(programming_language)
https://en.wikipedia.org/wiki/Kent_Recursive_Calculator
https://en.wikipedia.org/wiki/Miranda_(programming_language)
https://en.wikipedia.org/wiki/Haskell_(programming_language)
https://en.wikipedia.org/wiki/Scala_(programming_language)
https://en.wikipedia.org/wiki/F_Sharp_(programming_language)

Functions
Binding and Substitution

» School maths introduces functions as
f(x)=3x%+4x+5

> Substitution: f(2) =3 x22+4x2+5=25

» Generalise: f(x) = ax? + bx + ¢

» What is wrong with the following:

> fla)=axa’+bxa+c

» The ideas of free and bound variables and substitution

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus
Motivation
Lambda Terms
Substitution
Lambda Calculus

Encodings
Commentary 3
Complexity
Future Work

References

126/175

Expressions

Evaluation Strategies (a)

> In evaluating an expression we have choices about the

>

order in which we evaluate subterms

Some choices may involve more work than others but
the Church-Rosser theorem ensures that if the
evaluation terminates then all choices get to the same
answer

The second edition of a famous book on Functional
programming — Bird (1998, Ex 1.2.2, page 6)
Introduction to Functional Programming using Haskell
— had the following exercise:

How many ways can you evaluate (3 + 7)2

List the evaluations and assumptions

The first edition — Bird and Wadler (1988, Ex 1.2.1,

page 6) Introduction to Functional Programming — had
the exercise:

2
How many ways can you evaluate ((3 + 7)2)

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus
Motivation
Lambda Terms
Substitution
Lambda Calculus

Encodings
Commentary 3
Complexity
Future Work

References

127/175

https://en.wikipedia.org/wiki/Church%E2%80%93Rosser_theorem
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Functional_programming

H M269 End of
Expressions

Module
Evaluation Strategies (b) Pl Molynewx
2 Tutorial Agenda
» How many ways can you evaluate (3 + 7)

Adobe Connect

List the evaluations and assumptions M269 22) TMAO3

Topics
> Answer 3 ways Bags
» Reducible expressions (redexes) sl BEE Tofpes
2 . Ccmputa_bility,
X% — x X x where x is a term Complexity
Commentary 2
a+ b where a and b are numbers

Computability
X X y where x and y are numbers TR

Turing Machine

Examples
[sqr (3+7), ((3+7)%(3+7)), ((3+7)10) , (10%10) ,100] Decabilty and
2 [sqr (3+7),((3+7)%(3+7)), (10%(3+7)), (10¥10) ,100] Aorims
[sqr (3+7),sqr 10, (10%10),100] ambda
Lambda Terms
. . . . Substitution
» The assumed redexes do not include distributive laws Lambda Calculus

Encodings

(@+b)x(x+y)—axx+axy+bxx+bxy Commentary 3
> This would increase the number of different evaluations ™"

Future Work

References

128/175

https://en.wikipedia.org/wiki/Distributive_property

. M269 End of
Expressions

Module
Evaluation Strategies (c) Phil Molyneu
2 Tutorial Agenda

» How many ways can you evaluate ((3 + 7)2) Adobe Connect

> Answer 547 ways M2cs 22) TMAD3
Bags

1[sqr sar (3+7),(sqr (3+7)xsar (3+7)), (sar (3+7)x((3+7)%(3+7))), (sqr (3+7)%((3+7)10

2[sqr sqr (3+7),(sar (3+7)xsqr (3+7)),(sar(3+7)*((3+7)%(3+7))), (sar (3+9§¥’C‘t‘§1%‘3.¥f65)

Computability,
Complexity
s46 [sqr sqr (3+7),sqr sqr 10,sqr (10%10), ((10%10)+*(10%10)), (100%=(10%10)), c200=160%,100
547 [sqr sqr (3+7),sqr sqr 10,sqr (10%10),sqr 100, (100%100),10000]

Computability

The Turing Machine

. Turing Machine
» Enumerating all 547 ways may have taken some

Examples
Computability,
H Decidability and
concentration Aigorithms.

Lambda Calculus
Motivation
Lambda Terms
Substitution
Lambda Calculus

Encodings
Commentary 3
Complexity
Future Work

References

129/175

. M269 End of
Expressions Module
Evaluation Strategies (d) A Rl

Tutorial Agenda

» The actual Evaluation strategy used by a particular Adobe Connect
programming language implementation may have M269 22) TMAO3
optimisations which make an evaluation which looks VL

B:
costly to be somewhat cheaper o

Abstract Data Types
» For example, the Haskell implementation GHC Computability,
. . . . Complexity
optimises the evaluation of common subexpressions so
. Commentary 2
that (3+7) will be evaluated only once

Computability

The Turing Machine
1[sqr sqr (3+7),(sqr (3+7)*sqr (3+7)),(sqr (3+7)=((3+7)*(3+7))), (sqr (3437??' {B4e7) 10
2[sqr sqr (3+7),(sqr (3+7)=sqr (3+7)),(sqr(3+7)=((3+7)*(3+7))), (sqr (3+fcfi;;£,) %10)
ey s
Lambda Calculus
Motivation

Lambda Terms
Substitution

Lambda Calculus
Encodings

Commentary 3
Complexity
Future Work

References

130/175

https://en.wikipedia.org/wiki/Evaluation_strategy
https://www.haskell.org/
https://www.haskell.org/ghc/
https://wiki.haskell.org/Performance/Strictness

Lambda Calculus T

Optional Topic Phil Molyneux
i . P Tutorial Agenda
> M269 Unit 6/7 Reader Logic and the Limits of Adobe Commect
Computation alludes to other formalisations with equal M269 22) TMAO3
power to a Turing Machine (pages 81 and 87) Topics

Bags

» The Reader mentions Alonzo Church and his 1930s
formalism (page 87, but does not give any detail)

» The notes in this section are optional and for
comparison with the Turing Machine material

Abstract Data Types

Computability,
Complexity

Commentary 2

Computability

. The Turing Machine
» Turing machine: explicit memory, state and implicit TuringMachine
loop and case/if statement Compubity,
» Lambda Calculus: function definition and application, oo ol
explicit rules for evaluation (and transformation) of Lambei Torms
expressions, explicit rules for substitution (for function substtution
application) el
) Commentary 3
» Lambda calculus reduction workbench ——
» Lambda Calculus Calculator Future Work

References

131/175

http://www.itu.dk/people/sestoft/lamreduce/
https://lambdacalc.io/

Lambda Calculus

Lambda Terms

> A variable, x, is a lambda term

> If Mis alambda term and x is a variable, then (Ax.M) is

a lambda term — a lambda abstraction or function
definition

If M and N are lambda terms, the (M N) is lambda term
— an application

» Nothing else is a lambda term

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus
Motivation
Lambda Terms
Substitution
Lambda Calculus

Encodings
Commentary 3
Complexity
Future Work

References

132/175

Lambda Calculus

Lambda Terms — Notational Conveniences

» OQOutermost parentheses are omitted (M N) = M N

> Application is left associative (M N) P) = M N P

» The body of an abstraction extends as far right as
possible, subject to scope limited by parentheses

» Ax.M N = Ax.(M N) and not (Ax.M) N

> Ax.Ay.Az.M = Axyz.M

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus
Motivation
Lambda Terms
Substitution
Lambda Calculus

Encodings
Commentary 3
Complexity
Future Work

References

133/175

Lambda CaICUIUS M269 End of

Module
Lambda Calculus Semantics Phil Molyneux
. 3 Tutorial Agenda
» What do we mean by evaluating an expression?

Adobe Connect

» To evaluate (Ax.M)N

M269 22) TMAO3

Topics
> Evaluate M with x replaced by N Bags
» This rule is called B-reduction Plixsiee et Tifpes
Computability,

> (AXM)N - M[X = N] Complexity

B Commentary 2
> Mi[x = N] is M with occurrences of x replaced by N B
» This operation is called substitution — see rules below e

Examples

Computability,
Decidability and
Algorithms

Lambda Calculus
Motivation
Lambda Terms
Substitution
Lambda Calculus

Encodings
Commentary 3
Complexity
Future Work

References

134/175

Lambda CaICUIUS M269 End of

Module
B-Reduction Examples Al (el
Tutorial Agenda
> (AX'X)Z -z Adobe Connect
» - M269 22) TMAO3
()\X. y)z y Topics
> ()\X'Xy)z - Zy Bags
a function that applies its argument to y SostaciDa e
Computa_bility,
> (Ax.xy)(Az.2) - (Az.2)y - y Complexity
Commentary 2
> (AXAyX y)z -)\yz y Computability
A curried function of two arguments — applies first Toe T achine
argument to second ij,jnm;’u'j:b"w
. . ;) Decidability and
> currying replaces f(x, y) with (f x)y — nice notational LA
convenience — gives partial application for free i

Substitution

Lambda Calculus

Encodings
Commentary 3
Complexity

Future Work

References

135/175

Lambda Calculus

Substitution

» To define substitution use recursion on the structure of

vV vyVvVvyy

terms
X[x=N]=N
ylx=N]=y

(P QIx = N] = (P[x = ND) (QIx = NI])

(Ax.M)[x = N] = Ax.M

In (Ax.M), the x is a formal parameter and thus a local
variable, different to any other

(Ay.M)[x = N] = what?

Look back at the school maths example above — a
subtle point

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus
Motivation
Lambda Terms
Substitution
Lambda Calculus

Encodings
Commentary 3
Complexity
Future Work

References

136/175

Lambda Calculus

Substitution (2)

» Renaming bound variables consistently is allowed
> AxX.X=Ay.y =Az.z

> Ay.AX.y = Az.Ax.z

» This is called «-conversion

> AX.Ay.xy)y - (Ax.Az.x2)y - Az.yz

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus
Motivation
Lambda Terms
Substitution
Lambda Calculus

Encodings
Commentary 3
Complexity
Future Work

References

137/175

Lambda Calculus

Substitution (3)

>
>

vV VvV VvV Vvy Vv VvyyYy

Bound and Free Variables

BV(x)=0

BV(Ax.M) = BV(M) U {x}

BV(M N) = BV(M) U BV(N)

FV(x) = {x}

FV(Ax.M) = FV(M) - {x}

FV(MN) = FV(M) u FV(N)

The above is a formalisation of school maths

A Lambda term with no free variables is said to be
closed — such terms are also called combinators — see
Combinator and Combinatory logic (Hankin, 2004,
page 10)

x-conversion
Ax.M = Ay.M[x =ylify ¢ FVY(M)

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus
Motivation
Lambda Terms
Substitution
Lambda Calculus

Encodings
Commentary 3
Complexity
Future Work

References

138/175

https://wiki.haskell.org/Combinator
https://en.wikipedia.org/wiki/Combinatory_logic

Lambda Calculus
Substitution (4)

» B-reduction final rule
> (Ay.M)[x = N]=Ay.Mif x ¢ FV(M)
> (Ay.M)[x = N]=Ay.M[x = N]
if x e FV(M) and y ¢ FV(N)
> (Ay.M)[x = N] =Az.M[y = z][x := N]
if x € FV(M) and y € FV(N)
z is chosen to be first variable z ¢ FV(N M)
» This is why you cannot go f(a) when given
> f(x)=ax?+bx+c
» School maths — but made formal

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus
Motivation
Lambda Terms
Substitution
Lambda Calculus

Encodings
Commentary 3
Complexity
Future Work

References

139/175

Lambda Calculus

Rules Summary — Conversion
> -conversion renaming bound variables
> Ax.M = Ay.M[x =ylif y ¢ FV(M)
» B-conversion function application
> (Ax.M)N E M[x = N]

> n-conversion extensionality
> Ax.Fx 7 Fif x ¢ FV(F)

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus
Motivation
Lambda Terms
Substitution
Lambda Calculus

Encodings
Commentary 3
Complexity
Future Work

References

140/175

https://en.wikipedia.org/wiki/Extensionality

Lambda Calculus

Rules Summary — Substitution

. X[x=N]=N
.yIx=Nl=y

1
2
3. (PQIx = N] = (P[x := N]) (Q[x := N])
4.
5
6

(Ax.M)[x = N] = Ax.M

. Ay.M)[x = N]=Ay.Mif x ¢ FV(M)
. Ay.M)[x = N] =Ay.M[x = N]

if x € FV(M) and y ¢ FV(N)
(Ay.M)[x = N]=AzMly = z][x = N]
if x € FV(M) and y € FV(N)
z is chosen to be first variable z ¢ FV(N M)

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus
Motivation
Lambda Terms
Substitution
Lambda Calculus

Encodings
Commentary 3
Complexity
Future Work

References

141/175

Lambda Calculus

Lambda Calculus Encodings

>
>

vV vyVvyy

So what does this formalism get us ?
The Lambda Calculus is Turing complete

We can encode any computation (if we are clever
enough)

Booleans and propositional logic
Pairs

Natural numbers and arithmetic
Looping and recursion

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus
Motivation
Lambda Terms
Substitution
Lambda Calculus

Encodings
Commentary 3
Complexity
Future Work

References

142/175

Lambda Calculus Encodings

Booleans and Propositional Logic

>

>
S
>
>
>
>

True = Ax.Ay.x

False = Ax.Ay.y

IFaTHEN bELSEc=abc

IF True THEN b ELSE ¢ — (Ax.Ay.x)bc
- (Ay.byc—b

IF False THEN b ELSE ¢ — (Ax.Ay.y)bc
- @Ay.y)c—c

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus
Motivation
Lambda Terms
Substitution

Commentary 3
Complexity
Future Work

References

143/175

Lambda Calculus Encodings

Booleans and Propositional Logic (2)

v

vV Vv VvVVvYy VvV VvVVvYYy

Not = Ax.((xFalse)True)

Not x = IF x THEN False ELSE True
Exercise: evaluate Not True

And = Ax.Ay.((x y) False)

And x y = IF x THEN y ELSE False
Exercise: evaluate And True False
Or = Ax.Ay.((x True)y)

Or x y =IF x THEN True ELSE y
Exercise: evaluate Or False True

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus
Motivation
Lambda Terms
Substitution
Lambda Calculus

Encodings
Commentary 3
Complexity
Future Work

References

144/175

Lambda Calculus Encodings

Booleans and Propositional Logic (2) — Exercises

>

vyYyy

vV VY VYV VvV VvV VY VY

Exercise: evaluate Not True
— (Ax.((x False) True)) True
— (True False) True

Could go straight to False from here, but we shall fill in
the detail

- (Ax.Ay.x) (AX.Ay.y)) (Ax.Ay.x)

- Ay.Ax.Ay.y)) (Ax.Ay.x)

— (Ax.Ay.y) = False

Exercise: evaluate And True False

—(IF x THEN y ELSE False) True False
—(IF True THEN False ELSE False) —False
Exercise: evaluate Or False True

—(IF x THEN True ELSE y) False True
—(IF False THEN True ELSE True) —True

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus
Motivation
Lambda Terms
Substitution
Lambda Calculus

Encodings
Commentary 3
Complexity
Future Work

References

145/175

Lambda Calculus Encodings

Natural Numbers — Church Numerals

» Encoding of natural numbers
0=Af.Ay.y
1=Af.Ay.fy

2=Af.Ay.f(fy)

3=AfAy.f(f(fy)

Successor Succ = Az.Af.Ay.f(zfy)
Succ 0 = (Az.Af.Ay.f(zf y)Af.Ay.y)
= AfAYf(Af.Ay.y)fy)

= AfAy.f(Ay.y)y)

- AfAy.fy=1

VYV Vv VVvVy VvV VvVYVYyy

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus
Motivation
Lambda Terms
Substitution
Lambda Calculus

Encodings
Commentary 3
Complexity
Future Work

References

146/175

Lambda Calculus Encodings
Natural Numbers — Operations
» isZero = Az.z(Ay. False) True
> Exercise: evaluate isZero 0
> If M and N are numerals (as A expressions)
» Add MN = Ax.Ay.(Mx)((NX)y)
» Mult MN = Ax.(M(N x))
» Exercise: show 1 +1 =2

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus
Motivation
Lambda Terms
Substitution
Lambda Calculus

Encodings
Commentary 3
Complexity
Future Work

References

147/175

Lambda Calculus Encodings B

Module
Pairs Phil Molyneux
. . Tutorial Agenda
» Encoding of a pair a, b

Adobe Connect

» (a,b) = Ax. IF x THEN a ELSE b

M269 22) TMAO3

Topics
» FST = Af.f True Bags
» SND = Af.f False Abstract Data Types
. Computa_bility,
> Exercise: evaluate FST (a, b) Complexity
. Commentary 2
» Exercise: evaluate SND (a, b)

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus
Motivation
Lambda Terms
Substitution
Lambda Calculus

Encodings
Commentary 3
Complexity
Future Work

References

148/175

Lambda Calculus Encodings
The Fixpoint Combinator
> Y = Af.(Ax.f (x x)) (Ax.f (x X))
> YF=Af.(Ax.f (xx))(Ax.f (xx)) F
» — (AX.F(xX))(Ax.F (xx))
> F((AX.F(xx))(Ax.F(xx)))=F(YF)
» (Y F)is a fixed point of F
> We can use Y to achieve recursion for F

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus
Motivation
Lambda Terms
Substitution
Lambda Calculus

Encodings
Commentary 3
Complexity
Future Work

References

149/175

https://en.wikipedia.org/wiki/Fixed_point_(mathematics)

Lambda Calculus Encodings

The Fixpoint Combinator — Recursion

v

VYV VvV VvV VvV VvV VvVYVYyy

Recursion implementation — Factorial

Fact = Af.An.IF n=0THEN 1 ELSE n * (f (n- 1))

(Y Fact)1 = (Fact (Y Fact))1

— IF1=0THEN 1 ELSE 1 % ((Y Fact) 0)

— 1 % ((Y Fact) 0)

— 1 % (Fact (Y Fact) 0)

— 1% IFO=0THEN 1 ELSE O % ((Y Fact) (0-1))

- 1%x1-=1

Factorial n = (Y Fact) n

Recursion implemented with a non-recursive function Y

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus
Motivation
Lambda Terms
Substitution
Lambda Calculus

Encodings
Commentary 3
Complexity
Future Work

References

150/175

Computability

Turing Machines, Lambda Calculus and Programming Languages

» Anything computable can be represented as TM or

v

vV vyYyyswy

Lambda Calculus

But programs would be slow, large and hard to read

In practice use the ideas to create more expressive
languages which include built-in primitives

Also leads to ideas on data types
Polymorphic data types
Algebraic data types

Also leads on to ideas on higher order functions —

functions that take functions as arguments or returns
functions as results.

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus
Motivation
Lambda Terms
Substitution
Lambda Calculus

Encodings
Commentary 3
Complexity
Future Work

References

151/175

M269 End of

Commentary 3 Module

. Phil Molyneux
Complexity

Tutorial Agenda
Adobe Connect
M269 22) TMAO3

q Topi

> Complexity Classes P and NP opies
Bags

>

Class NP Abstract Data Types

> NP-completeness Computability,
Complexity

>

NP-completeness and Boolean Satisfiability Commentary 2

Computability
Complexity
Future Work

References

152/175

Complexity

P and NP

>

P, the set of all decision problems that can be solved in
polynomial time on a deterministic Turing machine

NP, the set of all decision problems whose solutions can
be verified (certificate) in polynomial time

Equivalently, NP, the set of all decision problems that
can be solved in polynomial time on a non-deterministic
Turing machine
A decision problem, dp is NP-complete if

1. dpis in NP and

2. Every problem in NP is reducible to dp in polynomial time
NP-hard — a problem satisfying the second condition,
whether or not it satisfies the first condition. Class of
problems which are at least as hard as the hardest
problems in NP. NP-hard problems do not have to be in
NP and may not be decision problems

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3

Complexity
P and NP
Class NP
NP-completeness
Boolean Satisfiability

Future Work

References

153/175

http://en.wikipedia.org/wiki/P_(complexity)
http://en.wikipedia.org/wiki/NP_(complexity)
http://en.wikipedia.org/wiki/NP-complete
https://en.wikipedia.org/wiki/NP-hardness

Complexity M rodute

P and NP — Diagram Phil Molyneux

Tutorial Agenda

Euler diagram for P, NP, NP-complete and NP-hard set of
problems

Adobe Connect

M269 22) TMAO3
Topics

Bags
NP-Hard

NP-Hard

Abstract Data Types

Computability,
Complexity

Commentary 2

NP-Complete

Computability
P = NP =
NP-Complete Commentary 3
Complexity

P and NP

Class NP
NP-completeness
Boolean Satisfiability

P = NP P=NP Future Work

Complexity

References

Source: Wikipedia NP-complete entry

154/175

http://en.wikipedia.org/wiki/Euler_diagram
http://en.wikipedia.org/wiki/NP-complete

Class NP

Certificate and Verifier

>

To formalise the definition of the class NP, we need to
formalise the idea of checking a candidate solution

Define a certificate for each problem input that would

return Yes

Describe the verifier algorithm
Demonstrate the verifier algorithm has polynomial

complexity

The terms certificate and verifier have technical
definitions in terms of languages and Turing Machines
but can be thought of as candidate solution and checker

algorithm

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3

Complexity

P and NP

Class NP
NP-completeness
Boolean Satisfiability

Future Work

References

155/175

https://en.wikipedia.org/wiki/NP_(complexity)

M269 End of
Class NP Modle
Example Decision Problems (1) A Rl

Tutorial Agenda

» Composite Numbers Given a number N decide if Nis a

Adobe Connect

composite (i.e. non-prime) number M269 22) TMAQ3
Certificate factorization of N :’p‘“‘
ags
» Connectivity Given a graph G and two vertices s, tin G, Abitract Data Types
decide if sis connected to t in G. Computability,
Certificate path from sto t Complextty
Commentary 2
» Linear Programming Given a list of m linear Computability
inequalities with rational coefficients over n variables Commentary 3
ui, ..., Uy (alinear inequality has the form ioapoLiXity
ayuy +axuy - - -+ apuy < b for some coefficients Class NP
ai,...,anb), decide if there is an assignment of rational sesen serasiy
numbers to the variables u1,..., uy which satisfies all Future Work
the inequalities References

Certificate is the assignment

156/175

https://en.wikipedia.org/wiki/Composite_number
https://en.wikipedia.org/wiki/Connectivity_(graph_theory)
https://en.wikipedia.org/wiki/Linear_programming

Class NP

Example Decision Problems (2)

>
>

The above are in P

Composite Numbers, Connectivity and Linear
programming are in P

Composite Numbers follows from Integer factorization
and the AKS primality test from 2004

Connectivity follows from the breadth-first search
algorithm

Linear programming shown to be in P by the Ellipsoid
method

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3

Complexity
P and NP
Class NP
NP-completeness
Boolean Satisfiability

Future Work

References

157/175

https://en.wikipedia.org/wiki/Integer_factorization
https://en.wikipedia.org/wiki/AKS_primality_test
https://en.wikipedia.org/wiki/Ellipsoid_method
https://en.wikipedia.org/wiki/Ellipsoid_method

Class NP

Example Decision Problems (3)

>

Integer Programming some or all variables are
restricted to be integers

Travelling Salesperson Given a set of nodes and
distances between all pairs of nodes and a number k,
decide if there is a closed circuit that visits every node
exactly once and has total length at most k
Certificate sequence of nodesin such a tour

Subset sum Given a list of numbers and a number T,
decide if there is a subset that adds upto T
Certificate list of members of such a subset

Independent set (graph theory) A subgraph of G with
of at least k vertices which have no edges between them
Certificate the list of k vertices

Clique problem Given a graph and a number k, decide
if there is a complete subgraph (clique) of size k
Certificate list pf nodes. For explanation see Prove
Clique is NP

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3

Complexity

P and NP

Class NP
NP-completeness
Boolean Satisfiability

Future Work

References

158/175

https://en.wikipedia.org/wiki/Integer_programming
https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Subset_sum_problem
https://en.wikipedia.org/wiki/Independent_set_(graph_theory)
https://en.wikipedia.org/wiki/Clique_problem
https://cs.stackexchange.com/questions/74988/prove-clique-is-np
https://cs.stackexchange.com/questions/74988/prove-clique-is-np

Class NP

Example Decision Problems (4)

>

>

>

The above are NP-complete — see List of NP-complete
problems

The following two are not known to be P nor
NP-complete

Graph Isomorphism Given two n X n adjacency
matrices My,M>, decide if M7 and M, define the same
graph (up to renaming of the vertices)

Certificate the permutation 11 : [n] — [n] such that My is
equal to My after reordering the indices of My according
toTr

Integer factorization Given three numbers N, L, U
decide if N has a prime factor p in the interval [L, U]
Certificate is the factorization of N

Source Arora and Barak (2009, page 49) Computational Complexity:
A Modern Approach and contained links

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3

Complexity
P and NP
Class NP
NP-completeness
Boolean Satisfiability

Future Work

References

159/175

https://en.wikipedia.org/wiki/NP-completeness
https://en.wikipedia.org/wiki/List_of_NP-complete_problems
https://en.wikipedia.org/wiki/List_of_NP-complete_problems
https://en.wikipedia.org/wiki/Graph_isomorphism
https://en.wikipedia.org/wiki/Integer_factorization

Complexity M odule

Phil Molyneux
NP-complete problems

Tutorial Agenda

» Boolean satisfiability (SAT) Cook-Levin theorem

Adobe Connect

» Conjunctive Normal Form 3SAT iz v

» Hamiltonian path problem Bags

» Travelling salesman problem Abstract Data Types
) Computa_bility,

» NP-complete — see list of problems Complexity

Commentary 2
Computability
Commentary 3

Complexity
P and NP
Class NP

Boolean Satisfiability
Future Work

References

160/175

http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Cook-Levin_theorem
http://en.wikipedia.org/wiki/3-satisfiability
http://en.wikipedia.org/wiki/Hamiltonian_path_problem
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/NP-complete

Complexity

Knapsack Problem

MY HOBBY:
EMBEDDING NP-(OMPLETE PROBLEMS IN RESTAURANT ORDERS

— APPENZERS —

MIXED FRUIT 2.15
FRENCH FRIES 275
SIDE 5ALAD 335
HoT WINGS 3.55

MOZZAREUA STICKs Y.20
SAMPLER PLATE 5.80

—— SANDWICHES ~—
RARBENIIE £&r

{ CHOTCHRIES RESTAURAWLT

WED LIKE EXACTLY $15.05
WORTH OF APPETIZERS, PLEASE.

1 o EXACTLY? UMK ..
HERE, THESE PAPERS ON THE KNAPSACK
PROBLEM MIGHT HELP YOU OUT.
LISTEN, I HAVE Six OTHER
TABLES T0 GET T0 —

~AG FAST AS POSSIBLE, (F (OURSE. WANT
SOMETHING ON TRAVELING SALESHAN? /

\
LR

Source & Explanation: XKCD 287

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3

Complexity
P and NP
Class NP
NP-completeness
Boolean Satisfiability

Future Work

References

161/175

http://www.explainxkcd.com/wiki/index.php/287:_NP-Complete

NP-Completeness and Boolean Satisfiability

Points on Notes

» The Boolean satisfiability problem (SAT) was the first
decision problem shown to be NP-Complete

> This section gives a sketch of an explanation

> Health Warning different texts have different notations
and there will be some inconsistency in these notes

> Health warning these notes use some formal notation
to make the ideas more precise — computation requires
precise notation and is about manipulating strings
according to precise rules.

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3

Complexity
P and NP
Class NP
NP-completeness
Boolean Satisfiability

Future Work

References

162/175

http://en.wikipedia.org/wiki/Boolean_satisfiability_problem

NP-Completeness and Boolean Satisfiability
Alphabets, Strings and Languages

>
>
>

vVvyVvyYVvyy

Notation:
3. is a set of symbols — the alphabet

sk is the set of all string of length k, which each symbol
from X

Example: if X ={0, 1}
> 3! ={0, 1}
> 2 ={00,01,10,11}

30 = {€} where € is the empty string

* is the set of all possible strings over =
s* =350yuslus?u..,

A Language, L, over X is a subset of 3*
Lc=*

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3

Complexity
P and NP
Class NP
NP-completeness
Boolean Satisfiability

Future Work

References

163/175

NP-Completeness and Boolean Satisfiability
Language Accepted by a Turing Machine

» Language accepted by Turing Machine, M denoted by
L(M)
> [(M) is the set of strings w € * accepted by M

> For Final States F ={Y, N}, a string w € 3* is accepted
by M < (if and only if) M starting in g with w on the
tape halts in state Y

» Calculating a function (function problem) can be turned
into a decision problem by asking whether f(x) =y

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3

Complexity
P and NP
Class NP
NP-completeness
Boolean Satisfiability

Future Work

References

164/175

http://en.wikipedia.org/wiki/Function_problem
http://en.wikipedia.org/wiki/Decision_problem

NP-Completeness and Boolean Satisfiability
The NP-Complete Class

» |If we do not know if P = NP, what can we say ?

> A language L is NP-Complete if:
» [€ NPand
> for all other L’ € NP there is a polynomial time
transformation (Karp reducible, reduction) from L’ to L
» Problem Py polynomially reduces (Karp reduces,
transforms) to P,, written Py oc P, or Py <p Py, iff
3f : dpp, — dpp, such that
> Viedppll€Yp < f() € Yp]
> f can be computed in polynomial time

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3

Complexity
P and NP
Class NP
NP-completeness
Boolean Satisfiability

Future Work

References

165/175

NP-Completeness and Boolean Satisfiability

The NP-Complete Class (2)

>

vV vYyywy

More formally, L1 < ZT polynomially transforms to
L c Z?, written Ly oc Ly or Ly <p Ly, iff 3f : ZT - Zik
such that

> VxeZf[x el o f(x) € L]

» There is a polynomial time TM that computes f
Transitivity If Ly oc Ly and Ly oc L3 then Ly oc L3
If Lis NP-Hard and L € P then P = NP
If Lis NP-Complete, then L € P if and only if P = NP

If Ly is NP-Complete and L € NP and Lg oc L then Lis
NP-Complete

Hence if we find one NP-Complete problem, it may
become easier to find more

In 1971/1973 Cook-Levin showed that the Boolean
satisfiability problem (SAT) is NP-Complete

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3

Complexity
P and NP
Class NP
NP-completeness
Boolean Satisfiability

Future Work

References

166/175

http://en.wikipedia.org/wiki/Cook\T1\textendash Levin_theorem
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem

NP-Completeness and Boolean Satisfiability Hodie "

The Boolean Satisfiability Problem A Rl

Tutorial Agenda

> A propositional logic formula or Boolean expression is

Adobe Connect

built from variables, operators: AND (conjunction, A), G) TG
OR (disjunction, V), NOT (negation, —) Topics
Bags
> A formula is said to be satisfiable if it can be made True ju.iact pata Types
by some assignment to its variables. Computability,

Complexity

» The Boolean Satisfiability Problem is, given a formula,
check if it is satisfiable.

Commentary 2

Computability

> Instance: a finite set U of Boolean variables and a finite Commentary 3
set C of clauses over U Complexity
> Question: Is there a satisfying truth assignment for C ? o
> A clause is is a disjunction of variables or negations of S
variables Future Work

References

> Conjunctive normal form (CNF) is a conjunction of
clauses

> Any Boolean expression can be transformed to CNF

167/175

NP-Completeness and Boolean Satisfiability
The Boolean Satisfiability Problem (2)

>
>

Given a set of Boolean variable U ={u1, uy,..., un}

A literal from U is either any u; or the negation of some
uj (written uj) usual logic notation —u;

A clause is denoted as a subset of literals from U —
{uz, Ug, Us} usual notation vy v —~us v us

A clause is satisfied by an assignment to the variables if
at least one of the literals evaluates to True (just like
disjunction of the literals)

Let C be a set of clauses over U — C is satisfiable iff
there is some assignment of truth values to the
variables so that every clause is satisfied (just like CNF)

C ={u, up, us},{uy, uz},{up, us}} is satisfiable
usual notation (uy Vv uz vV u3) A (mu2 vV =u3) A (U V —u3)
assign (uy, u2,u3) =(T,F,F),(T, T,F),(F, T,F)

C ={{u1, up},{u1,uz},{ur}} is not satisfiable

usual notation (u; Vv uz) A (U1 vV —u2) A (—uy)

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3

Complexity
P and NP
Class NP
NP-completeness
Boolean Satisfiability

Future Work

References

168/175

NP-Completeness and Boolean Satisfiability
The Boolean Satisfiability Problem (3)

» Proof that SAT is NP-Complete looks at the structure of
NDTMs and shows you can transform any NDTM to SAT
in polynomial time (in fact logarithmic space suffices)

» SAT is in NP since you can check a solution in
polynomial time

» To show that VL € NP : L o< SAT invent a polynomial
time algorithm for each polynomial time NDTM, M,
which takes as input a string x and produces a Boolean
formula Ex which is satisfiable iff M accepts x

» See Cook-Levin theorem

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3

Complexity
P and NP
Class NP
NP-completeness
Boolean Satisfiability

Future Work

References

169/175

http://en.wikipedia.org/wiki/Cook-Levin_theorem

M269 End of

NP-Completeness and Boolean Satisfiability Module

Coping with NP-Completeness Phil Molyneux

Tutorial Agenda

» What does it mean if a problem is NP-Complete ?

Adobe Connect

> There is a P time verification algorithm. M269 221 TMAO3
> There is a P time algorithm to solve it iff P = NP (?) TS
> No one has yet found a P time algorithm to solve any Bags
NP-Complete problem Abstract Data Types
» So what do we do ? ggmgluer:it:iymv,
» Improved exhaustive search — Dynamic Programming; Commentary 2
Branch and Bound Computability

Commentary 3

» Heuristic methods — acceptable solutions in acceptable

Complexity
time — compromise on optimality pand e
> Average time analysis — look for an algorithm with .
good average time — compromise on generality (see Future Work
Big-O Algorithm Complexity Cheatsheet) References

» Probabilistic or Randomized algorithms — compromise
on correctness

170/175

http://bigocheatsheet.com

What Next ?

Phil Molyneux

Programming, Debugging, Psychology

Tutorial Agenda

Although programming techniques have improved
immensely since the early days, the process of finding and

Adobe Connect
M269 22) TMAO3

correcting errors in programming — known graphically if Topics
inelegantly as debugging — still remains a most difficult, s
confused and unsatisfactory operation. The chief impact of ARG DRV RS

Computability,

this state of affairs is psychological. Although we are happy Complexity
to pay lip-service to the adage that to err is human, most of Commentary 2
us like to make a small private reservation about our own Corinpuiiillizy
performance on special occasions when we really try. It is Commentary 3
somewhat deflating to be shown publicly and complextty
incontrovertibly by a machine that even when we do try, we
in fact make just as many mistakes as other people. If your
pride cannot recover from this blow, you will never make a
programmer.

Christopher Strachey, Scientific American 1966 vol 215 (3) September
ppl12-124

Future Work

References

171/175

https://en.wikipedia.org/wiki/Christopher_Strachey

What Next ?

To err is human ?

>

>

To err is human, to really foul things up requires a
computer.

Attributed to Paul R. Ehrlich in 101 Great Programming
Quotes
Attributed to Bill Vaughn in Quote Investigator
Derived from Alexander Pope (1711, An Essay on
Criticism)
To Err is Humane; to Forgive, Divine
This also contains

A little learning is a dangerous thing;

Drink deep, or taste not the Pierian Spring
In programming, this means you have to read the
fabulous manual (RTFM)

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

172/175

https://en.wikipedia.org/wiki/Paul_R._Ehrlich
http://www.devtopics.com/101-great-computer-programming-quotes/
http://www.devtopics.com/101-great-computer-programming-quotes/
https://en.wikipedia.org/wiki/William_E._Vaughan
http://quoteinvestigator.com/2010/12/07/foul-computer/
https://en.wikipedia.org/wiki/Alexander_Pope
https://en.wikipedia.org/wiki/An_Essay_on_Criticism
https://en.wikipedia.org/wiki/An_Essay_on_Criticism
https://en.wikipedia.org/wiki/Pierian_Spring
https://lmgtfy.com/?q=rtfm

Future Work

Dates

> Sunday, 4 May 2026 online tutorial TMAO3 topics
» Thursday, 22 May 2025 TMAO3 due

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity

References

173/175

Web Sites

Computability

> Logic

» WFF, WFF’N Proof online
» Computability
> Computability
Computable function
Decidability (logic)
Turing Machines
Universal Turing Machine
Turing machine simulator
Lambda Calculus
Von Neumann Architecture
Turing Machine XKCD 205 Candy Button Paper
Turing Machine XKCD 505 A Bunch of Rocks
RIP John Conway Why can Conway’s Game of Life be
classified as a universal machine?
Phil Wadler Bright Club on Computability
Bridges: Theory of Computation: Halting Problem
Bridges: Theory of Computation: Other Non-computable
Problems

VVYyVVVYVYVYYVYYVYY

vyy

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References
Web Sites

174/175

http://en.wikipedia.org/wiki/Well-formed_formula
http://www.oercommons.org/authoring/1364-basic-wff-n-proof-a-teaching-guide/view
http://en.wikipedia.org/wiki/Computability
http://en.wikipedia.org/wiki/Computable_function
http://en.wikipedia.org/wiki/Decidability_(logic)
http://en.wikipedia.org/wiki/Turing_machine
http://en.wikipedia.org/wiki/Universal_Turing_machine
http://morphett.info/turing/turing.html
http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Von_Neumann_architecture
http://www.explainxkcd.com/wiki/index.php/205:_Candy_Button_Paper
http://www.explainxkcd.com/wiki/index.php/505:_A_Bunch_of_Rocks
https://xkcd.com/2293/
https://stackoverflow.com/questions/394957/why-can-conway-s-game-of-life-be-classified-as-a-universal-machine
https://stackoverflow.com/questions/394957/why-can-conway-s-game-of-life-be-classified-as-a-universal-machine
http://wadler.blogspot.co.uk/2015/05/bright-club-computability.html
http://www.cs.ucc.ie/~dgb/courses/toc/handout35.pdf
http://www.cs.ucc.ie/~dgb/courses/toc/handout36.pdf
http://www.cs.ucc.ie/~dgb/courses/toc/handout36.pdf

Web Sites

Complexity

» Complexity

>

vVvyvVvyvyy

Complexity class

NP complexity

NP complete

Reduction (complexity)

P versus NP problem

Graph of NP-Complete Problems

M269 End of
Module

Phil Molyneux

Tutorial Agenda
Adobe Connect

M269 22) TMAO3
Topics

Bags
Abstract Data Types

Computability,
Complexity

Commentary 2
Computability
Commentary 3
Complexity
Future Work

References

175/175

http://en.wikipedia.org/wiki/Complexity_class
http://en.wikipedia.org/wiki/NP_(complexity)
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/Reduction_(complexity)
http://en.wikipedia.org/wiki/P_%3D_NP_problem
http://adriann.github.io/npc/npc.html

	M269 End of Module Tutorial: Agenda
	Adobe Connect Interface and Settings
	Adobe Connect Interface
	Adobe Connect Settings
	Adobe Connect — Sharing Screen & Applications
	Adobe Connect — Ending a Meeting
	Adobe Connect — Invite Attendees
	Layouts
	Chat Pods
	Graphics Conversion for Web
	Adobe Connect Recordings

	M269 22J TMA03 Topics
	Bags
	Bags: Definitions
	Bags: Implementations
	Python Dictionaries
	Python Counter
	M269 2021J Bags

	Abstract Data Types
	Abstract Data Types — Overview

	Computability, Complexity
	Commentary 2
	Computability
	The Turing Machine
	Turing Machine Examples
	Computability, Decidability and Algorithms
	Lambda Calculus

	Commentary 3
	Complexity
	Complexity Classes P and NP
	Class NP
	NP-completeness
	NP-Completeness and Boolean Satisfiability

	Future Work
	Web Sites & References
	Web Sites

