
Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Graphs and Greedy Algorithms
M269 Tutorial

Phil Molyneux

9 March 2025

1/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

M269 Graph Algorithms
Agenda & Aims

▶ Welcome and introductions

▶ Session on M269 Graph, Greedy & DP Algorithms

▶ Graph definitions and representations

▶ Python: List comprehensions, Named Tuples

▶ Topological Sort for directed acyclic graphs

▶ Dijkstra’s Shortest Path Algorithm

▶ Prim’s Minimum Spanning Tree Algorithm

▶ Dynamic Programming

▶ Implementations in Structured English, Python and
Haskell (Optional)

▶ Note there is more material here than we can cover —
some is for optional interest

▶ Slides/Notes are at
pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269Tutoria05GraphGreedDP/

▶ Recording Meeting Record Meeting. . . ✔

2/159

http://pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269Tutorial05GraphGreedDP/

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

M269 Tutorial
Introductions — Me

▶ Name Phil Molyneux

▶ Background Physics & Maths, Operational Research,
Computer Science

▶ First programming languages Fortran, BASIC, Pascal
▶ Favourite Software

▶ Haskell — pure functional programming language
▶ Text editors TextMate, Sublime Text — previously Emacs
▶ Word processing in LATEX — all these slides and notes
▶ Mac OS X

▶ Learning style — I read the manual before using the
software

3/159

http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/BASIC
http://en.wikipedia.org/wiki/Pascal_(programming_language)
http://www.haskell.org/haskellwiki/Haskell
https://macromates.com
http://www.sublimetext.com
http://www.emacswiki.org
http://www.latex-project.org
https://developer.apple.com/

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

M269 Tutorial
Introductions — You

▶ Name ?

▶ New topics last month ?

▶ M269 Graph. Greedy & Dyamic Programming Algorithm
topics you want covered ?

▶ Learning style ?

▶ Other OU courses ?

▶ Anything else ?

▶ Adobe Connect — if you or I get cut off, wait till we
reconnect (or send you an email)

4/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Adobe Connect
Interface — Host View

5/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Adobe Connect
Interface — Participant View

6/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Adobe Connect
Settings

▶ Everybody Menu bar Meeting Speaker & Microphone Setup

▶ Menu bar Microphone Allow Participants to Use Microphone ✔

▶ Check Participants see the entire slide Workaround
▶ Disable Draw Share pod Menu bar Draw icon

▶ Fit Width Share pod Bottom bar Fit Width icon ✔

▶ Meeting Preferences General Host Cursor Show to all attendees

▶ Menu bar Video Enable Webcam for Participants ✔

▶ Do not Enable single speaker mode

▶ Cancel hand tool

▶ Do not enable green pointer

▶ Recording Meeting Record Session ✔

▶ Documents Upload PDF with drag and drop to share
pod

▶ Delete Meeting Manage Meeting Information Uploaded Content

and check filename click on delete

7/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Adobe Connect
Access

▶ Tutor Access

TutorHome M269 Website Tutorials

Cluster Tutorials M269 Online tutorial room

Tutor Groups M269 Online tutor group room

Module-wide Tutorials M269 Online module-wide room

▶ Attendance

TutorHome Students View your tutorial timetables

▶ Beamer Slide Scaling 440% (422 x 563 mm)

▶ Clear Everyone’s Status

Attendee Pod Menu Clear Everyone’s Status

▶ Grant Access and send link via email

Meeting Manage Access & Entry Invite Participants. . .

▶ Presenter Only Area

Meeting Enable/Disable Presenter Only Area

8/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Adobe Connect
Keystroke Shortcuts

▶ Keyboard shortcuts in Adobe Connect

▶ Toggle Mic + M (Mac), Ctrl + M (Win) (On/Disconnect)

▶ Toggle Raise-Hand status + E

▶ Close dialog box (Mac), Esc (Win)

▶ End meeting + \

9/159

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Adobe Connect Interface
Sharing Screen & Applications

▶ Share My Screen Application tab Terminal for Terminal

▶ Share menu Change View Zoom in for mismatch of screen
size/resolution (Participants)

▶ (Presenter) Change to 75% and back to 100% (solves
participants with smaller screen image overlap)

▶ Leave the application on the original display

▶ Beware blued hatched rectangles — from other (hidden)
windows or contextual menus

▶ Presenter screen pointer affects viewer display —
beware of moving the pointer away from the application

▶ First time: System Preferences Security & Privacy Privacy

Accessibility

10/159

https://en.wikipedia.org/wiki/Terminal_(macOS)

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Adobe Connect
Ending a Meeting

▶ Notes for the tutor only
▶ Student: Meeting Exit Adobe Connect

▶ Tutor:
▶ Recording Meeting Stop Recording ✔

▶ Remove Participants Meeting End Meeting. . . ✔

▶ Dialog box allows for message with default message:
▶ The host has ended this meeting. Thank you for

attending.

▶ Recording availability In course Web site for joining
the room, click on the eye icon in the list of recordings
under your recording — edit description and name

▶ Meeting Information Meeting Manage Meeting Information —
can access a range of information in Web page.

▶ Delete File Upload Meeting Manage Meeting Information

Uploaded Content tab select file(s) and click Delete

▶ Attendance Report see course Web site for joining
room

11/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Adobe Connect
Invite Attendees

▶ Provide Meeting URL Menu Meeting Manage Access & Entry

Invite Participants. . .

▶ Allow Access without Dialog Menu Meeting

Manage Meeting Information provides new browser window
with Meeting Information Tab bar Edit Information

▶ Check Anyone who has the URL for the meeting can
enter the room

▶ Default Only registered users and accepted guests may
enter the room

▶ Reverts to default next session but URL is fixed

▶ Guests have blue icon top, registered participants have
yellow icon top — same icon if URL is open

▶ See Start, attend, and manage Adobe Connect meetings
and sessions

12/159

https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html
https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Adobe Connect
Entering a Room as a Guest (1)

▶ Click on the link sent in email from the Host

▶ Get the following on a Web page

▶ As Guest enter your name and click on Enter Room

13/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Adobe Connect
Entering a Room as a Guest (2)

▶ See the Waiting for Entry Access for Host to give
permission

14/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Adobe Connect
Entering a Room as a Guest (3)

▶ Host sees the following dialog in Adobe Connect and
grants access

15/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Adobe Connect
Layouts

▶ Creating new layouts example Sharing layout

▶ Menu Layouts Create New Layout. . . Create a New Layout dialog

Create a new blank layout and name it PMolyMain

▶ New layout has no Pods but does have Layouts Bar open
(see Layouts menu)

▶ Pods

▶ Menu Pods Share Add New Share and resize/position —
initial name is Share n — rename PMolyShare

▶ Rename Pod Menu Pods Manage Pods. . . Manage Pods

Select Rename or Double-click & rename

▶ Add Video pod and resize/reposition

▶ Add Attendance pod and resize/reposition

▶ Add Chat pod — rename it PMolyChat — and
resize/reposition

16/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Adobe Connect
Layouts

▶ Dimensions of Sharing layout (on 27-inch iMac)
▶ Width of Video, Attendees, Chat column 14 cm
▶ Height of Video pod 9 cm
▶ Height of Attendees pod 12 cm
▶ Height of Chat pod 8 cm

▶ Duplicating Layouts does not give new instances of
the Pods and is probably not a good idea (apart from
local use to avoid delay in reloading Pods)

▶ Auxiliary Layouts name PMolyAux0n
▶ Create new Share pod
▶ Use existing Chat pod
▶ Use same Video and Attendance pods

17/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Adobe Connect
Chat Pods

▶ Format Chat text

▶ Chat Pod menu icon My Chat Color

▶ Choices: Red, Orange, Green, Brown, Purple, Pink, Blue,
Black

▶ Note: Color reverts to Black if you switch layouts

▶ Chat Pod menu icon Show Timestamps

18/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Graphics Conversion
PDF to PNG/JPG

▶ Conversion of the screen snaps for the installation of
Anaconda on 1 May 2020

▶ Using GraphicConverter 11

▶ File Convert & Modify Conversion Convert

▶ Select files to convert and destination folder

▶ Click on Start selected Function or +

19/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Adobe Connect Recordings
Exporting Recordings

▶ Menu bar Meeting Preferences Video

▶ Aspect ratio Standard (4:3) (not Wide screen (16:9) default)

▶ Video quality Full HD (1080p not High default 480p)

▶ Recording Menu bar Meeting Record Session ✔

▶ Export Recording

▶ Menu bar Meeting Manage Meeting Information

▶ New window Recordings check Tutorial Access Type button

▶ check Public check Allow viewers to download

▶ Download Recording

▶ New window Recordings check Tutorial Actions Download File

20/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms
Graph Definitions

Graph Representation

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Graph Algorithms
Definitions

▶ A Graph, G, consists of a pair: a set of vertices, V , and a
set of edges, E, where an edge (u, v) represents a
connection between two vertices, u and v

▶ Equivalently, a graph is a set of objects together with a
relation over that set

▶ Edges may have direction — that is, the relation is not
symmetric — a graph with directed edges is called a
digraph

▶ Informally, graphs are represented as diagrams (see
below)

▶ If G = (V , E) is a weighted digraph then there is a
function w :: E → R which maps edges to real numbers.

▶ If e = (u, v) we write w(u, v) for w(e)

21/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms
Graph Definitions

Graph Representation

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Graph Algorithms
Example Digraph egDigraph

S

A

B C

D

2

7

1

8

5

3 2 4 2

22/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms
Graph Definitions

Graph Representation

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Graph Algorithms
Graph Representation

▶ What operations do we want on graphs ?

▶ How can we implement a representation of graphs and
the operations efficiently ?

▶ Common representations
▶ Adjacency list — a linear structure holds every vertex

together with a list of successor vertices and the weights
of the successor edges.

▶ Adjacency matrix — 2 dimensional array of values of
dimension |V |× |V | where both coordinates u and v are
vertices and the entry (u, v) is the weight of the edge (if
it exists)

▶ Additional points:
▶ A vertex may have other data: name, label with data

(shortest path predecessors, distance, . . .)
▶ An edge may have other data: weight, status (on

shortest path, minimum spanning tree, . . .)

23/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms
Graph Definitions

Graph Representation

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Graph Algprithms
Activity 1 Graph Operations

▶ In the space below give a graph operation indicating
whether it is a creator, inspector or modifier and give
its pre and post conditions

Go to Answer

24/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms
Graph Definitions

Graph Representation

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Graph Algprithms
Answer 1 Graph Operations

▶ Answer 1 Graph Operations — see next slide

Go to Activity

25/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms
Graph Definitions

Graph Representation

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Graph Algorithms
Graph Operations 01

▶ emptyGraph returns an empty graph

▶ mkGraph takes a list of vertices, and a list of edges and
returns a graph

▶ isEmptyGraph takes a graph and returns True if and
only if the graph is empty.

▶ vertices takes a graph and returns the vertices

▶ edges takes a graph and returns the edges

▶ succLists takes a graph and returns a list of pairs of
vertices and lists of successor edges

▶ predLists takes a graph and returns a list of pairs of
vertices and lists of predecessor edges

▶ startVertices takes a graph and returns a list of vertices
with no predecessors

▶ endVertices takes a graph and returns a list of vertices
with no successors

26/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms
Graph Definitions

Graph Representation

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Graph Algorithms
Graph Operations 02

▶ removeVertex takes a vertex and a graph and returns a
graph with the vertex removed.

▶ Further service functions:
▶ esRemoveV takes a vertex and a list of edges and returns

the list of edges with the vertex removed.
▶ esStartV takes a vertex and a list of edges and returns

the list of edges where the given vertex is the start of an
edge

▶ esEndV takes a vertex and a list of edges and returns the
list of edges where the given vertex is the end of an edge

27/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms
Graph Definitions

Graph Representation

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Graph Algorithms
Graph Representation 01

▶ Adjacency matrix Assign a unique label to each
vertex and construct an n× n matrix of values in which
(i, j) is x if (i, j) ∈ E and x is its label, (i, i) is 0 and all
other entries are ∞

▶ The adjacency matrix for the previous example digraph
is:

S A B C D
S 0 2 7 ∞ ∞
A ∞ 0 3 8 5
B ∞ 2 0 1 ∞
C ∞ ∞ ∞ 0 4
D ∞ ∞ ∞ 2 0

28/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms
Graph Definitions

Graph Representation

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Graph Algorithms
Graph Representation 02

▶ The explicit adjacency list or matrix representations are
biased towards the procedural view of programming.

▶ A functional view looks for an inductive definition (as
we had with trees)

▶ Functional view:
▶ A graph is either the empty graph or
▶ a graph extended by a new node v together with its label

and with edges to those of v’s successors and
predecessors that are already in the graph

▶ See FGL — A Functional Graph Library and Erwig (2001)

▶ M269 Python examples use adjacency lists to represent
graphs.

▶ The Haskell examples in these notes use a simple (but
inefficient) representation to illustrate the algorithms.

29/159

http://web.engr.oregonstate.edu/~erwig/fgl/

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Algorithm Descriptions & Implementations
Overview

▶ The algorithms are described in a mix of Structured
English, Python and Haskell

▶ The Python and Haskell code does not use any
advanced features but may use some features not
mentioned in M269

▶ In Python the code may use:
▶ List comprehensions (tutorial), List comprehensions

(reference) — a neat way of expressing iterations over a
list, came from Miranda

▶ Named tuples — a Factory Function for tuple with named
fields — quick & dirty objects

▶ The Haskell syntax is defined as it is used — novel
concepts may be:
▶ Algebraic Data Types — just name your user defined

data type and name its elements — magic!
▶ Explicit type specifications — Haskell has a very

powerful type system that can help spot errors.
▶ List comprehensions — as above

30/159

https://en.wikipedia.org/wiki/Structured_English
https://en.wikipedia.org/wiki/Structured_English
https://docs.python.org/3/
https://www.haskell.org/documentation
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/reference/expressions.html#displays-for-lists-sets-and-dictionaries
http://www.miranda.org.uk
https://docs.python.org/3/library/collections.html#collections.namedtuple
https://en.wikipedia.org/wiki/Algebraic_data_type
https://en.wikibooks.org/wiki/Haskell/Type_basics
https://en.wikipedia.org/wiki/List_comprehension

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

List Comprehensions
Python

▶ List Comprehensions provide a concise way of
performing calculations over lists (or other iterables)

▶ Example: Square the even numbers between 0 and 9

Python3>>> [x ** 2 for x in range(10) if x % 2 == 0]
[0, 4, 16, 36, 64]
Python3>>> [(x,y) for x in range(4)
... for y in range(4)
... if x % 2 == 0
... and y % 3 == 0]
[(0, 0), (0, 3), (2, 0), (2, 3)]
Python3>>>

▶ In general

[expr for target1 in iterable1 if cond1
for target2 in iterable2 if cond2 ...
for targetN in iterableN if condN]

▶ Lots example usage in the algorithms below

31/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

List Comprehensions
Haskell

▶ List Comprehensions provide a concise way of
performing calculations over lists

▶ Example: Square the even numbers between 0 and 9

GHCi> [x^2 | x <- [0..9], x ‘mod‘ 2 == 0]
[0,4,16,36,64]
GHCi>

▶ In general

[expr | qual1, qual2,..., qualN]

▶ The qualifiers qual can be
▶ Generators pattern <- list
▶ Boolean guards — acting as filters
▶ Local declarations with let decls for use in expr and

later generators and boolean guards

32/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

List Comprehension Exercises
Activity 2 (a) Stop Words Filter

▶ Stop words are the most common words that most
search engines avoid: ’a’,’an’,’the’,’that’,...

▶ Using list comprehensions, write a function
filterStopWords that takes a list of words and filters
out the stop words

▶ Here is the initial code

11 sentence \
12 = "the quick brown fox jumps over the lazy dog"

14 words = sentence.split()

16 wordsTest \
17 = (words == [’the’, ’quick’, ’brown’
18 , ’fox’, ’jumps’, ’over’
19 , ’the’, ’lazy’, ’dog’])

21 stopWords \
22 = [’a’,’an’,’the’,’that’]

Go to Answer

33/159

https://en.wikipedia.org/wiki/Stop_words

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

List Comprehension Exercises
Activity 2 (a) Stop Words Filter

11 sentence \
12 = "the quick brown fox jumps over the lazy dog"

14 words = sentence.split()

16 wordsTest \
17 = (words == [’the’, ’quick’, ’brown’
18 , ’fox’, ’jumps’, ’over’
19 , ’the’, ’lazy’, ’dog’])

21 stopWords \
22 = [’a’,’an’,’the’,’that’]

▶ Notice the Python Explicit line joining with (\<nl>) and
Python Implicit line joining with ((...))

▶ The backslash (\) must be followed by an end of line
character (<nl>)

▶ The (’ ’) symbol represents a space (see Unicode
U+2423 Open Box)

Go to Answer

34/159

https://docs.python.org/3/reference/lexical_analysis.html#explicit-line-joining
https://docs.python.org/3/reference/lexical_analysis.html#implicit-line-joining
https://en.wikipedia.org/wiki/Backslash
https://en.wikipedia.org/wiki/Newline
https://en.wikipedia.org/wiki/Newline

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

List Comprehension Exercises
Activity 2 (b) Transpose Matrix

▶ A matrix can be represented as a list of rows of
numbers

▶ We transpose a matrix by swapping columns and rows

▶ Here is an example

38 matrixA \
39 = [[1, 2, 3, 4]
40 ,[5, 6, 7 ,8]
41 ,[9, 10, 11, 12]]

43 matATr \
44 = [[1, 5, 9]
45 ,[2, 6, 10]
46 ,[3, 7, 11]
47 ,[4, 8, 12]]

▶ Using list comprehensions, write a function transMat,
to transpose a matrix

Go to Answer

35/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

List Comprehension Exercises
Activity 2 (c) List Pairs in Fair Order

▶ Write a function which takes a pair of positive integers
and outputs a list of all possible pairs in those ranges

▶ If we do this in the simplest way we get a bias to one
argument

▶ Here is an example of a bias to the second argument

68 yBiasLstTest \
69 = (yBiasListing(5,5)
70 == [(0, 0), (0, 1), (0, 2), (0, 3), (0, 4)
71 , (1, 0), (1, 1), (1, 2), (1, 3), (1, 4)
72 , (2, 0), (2, 1), (2, 2), (2, 3), (2, 4)
73 , (3, 0), (3, 1), (3, 2), (3, 3), (3, 4)
74 , (4, 0), (4, 1), (4, 2), (4, 3), (4, 4)])

Go to Answer

36/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

List Comprehension Exercises
Activity 2 (c) List Pairs in Fair Order

▶ Rewrite the function which takes a pair of positive
integers and outputs a list of all possible pairs in those
ranges

▶ The output should treat each argument fairly — any
initial prefix should have roughly the same number of
instances of each argument

▶ Here is an example output

81 fairLstTest \
82 = (fairListing(5,5)
83 == [(0, 0)
84 , (0, 1), (1, 0)
85 , (0, 2), (1, 1), (2, 0)
86 , (0, 3), (1, 2), (2, 1), (3, 0)
87 , (0, 4), (1, 3), (2, 2), (3, 1), (4, 0)])

Go to Answer

37/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

List Comprehension Exercises
Activity 2 (c) List Pairs in Fair Order

▶ Rewrite the function which takes a pair of positive
integers and outputs a list of lists of all possible pairs in
those ranges

▶ The output should treat each argument fairly — any
initial prefix should have roughly the same number of
instances of each argument — further, the output
should be segment by each initial prefix (see example
below)

▶ Here is an example output

94 fairLstATest \
95 = (fairListingA(5,5)
96 == [[(0, 0)]
97 , [(0, 1), (1, 0)]
98 , [(0, 2), (1, 1), (2, 0)]
99 , [(0, 3), (1, 2), (2, 1), (3, 0)]

100 , [(0, 4), (1, 3), (2, 2), (3, 1), (4, 0)]])

Go to Answer

38/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

List Comprehension Exercises
Answer 2 (a) Stop Words Filter

▶ Answer 2 (a) Stop Words Filter

▶ Write here:
▶ Answer 2 continued on next slide

Go to Activity

39/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

List Comprehension Exercises
Answer 2 (a) Stop Words Filter

▶ Answer 2 (a) Stop Words Filter

24 def filterStopWords(words) :
25 nonStopWords \
26 = [word for word in words
27 if word not in stopWords]
28 return nonStopWords

31 filterStopWordsTest \
32 = filterStopWords(words) \
33 == [’quick’, ’brown’, ’fox’
34 , ’jumps’, ’over’, ’lazy’, ’dog’]

Go to Activity

40/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

List Comprehension Exercises
Answer 2 (b) Transpose Matrix

▶ Answer 2 (b) Transpose Matrix

▶ Write here:
▶ Answer 2 continued on next slide

Go to Activity

41/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

List Comprehension Exercises
Answer 2 (b) Transpose Matrix

▶ Answer 2 (b) Transpose Matrix

49 def transMat(mat) :
50 rowLen = len(mat[0])
51 matTr \
52 = [[row[i] for row in mat] for i in range(rowLen)]
53 return matTr

55 transMatTestA \
56 = (transMat(matrixA)
57 == matATr)

▶ Note that a list comprehension is a valid expression as
a target expression in a list comprehension

▶ The code assumes every row is of the same length

▶ Answer 2 continued on next slide

Go to Activity

42/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

List Comprehension Exercises
Answer 2 (b) Transpose Matrix

▶ Note the differences in the list comprehensions below

38 matrixA \
39 = [[1, 2, 3, 4]
40 ,[5, 6, 7 ,8]
41 ,[9, 10, 11, 12]]

Python3>>> [[row[i] for row in matrixA]
... for i in range(4)]
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]
Python3>>> [row[i] for row in matrixA
... for i in range(4)]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
Python3>>> [row[i] for i in range(4)
... for row in matrixA]
[1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8, 12]
Python3>>> [[row[i] for i in range(4)]
... for row in matrixA]
[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]

Go to Activity

43/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

List Comprehension Exercises
Answer 2 (b) Transpose Matrix

▶ Answer 2 (b) Transpose Matrix

▶ The Python NumPy package provides functions for
N-dimensional array objects

▶ For transpose see numpy.ndarray.transpose

Python3>>> import numpy as np
Python3>>> ar = np.array([[1,2],[3,4]])
Python3>>> ar
array([[1, 2],

[3, 4]])
Python3>>> arT = ar.transpose()
Python3>>> arT
array([[1, 3],

[2, 4]])
Python3>>> ar
array([[1, 2],

[3, 4]])
Python3>>> ar.shape
(2, 2)

Go to Activity

44/159

https://www.numpy.org/
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.transpose.html

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

List Comprehension Exercises
Answer 2 (c) List Pairs in Fair Order

▶ Answer 2 (c) List Pairs in Fair Order — first version

▶ Write here

69 yBiasLstTest \
70 = (yBiasListing(5,5)
71 == [(0, 0), (0, 1), (0, 2), (0, 3), (0, 4)
72 , (1, 0), (1, 1), (1, 2), (1, 3), (1, 4)
73 , (2, 0), (2, 1), (2, 2), (2, 3), (2, 4)
74 , (3, 0), (3, 1), (3, 2), (3, 3), (3, 4)
75 , (4, 0), (4, 1), (4, 2), (4, 3), (4, 4)])

Go to Activity

45/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

List Comprehension Exercises
Answer 2 (c) List Pairs in Fair Order

▶ Answer 2 (c) List Pairs in Fair Order

▶ This is the obvious but biased version

63 def yBiasListing(xRng,yRng) :
64 yBiasLst \
65 = [(x,y) for x in range(xRng)
66 for y in range(yRng)]
67 return yBiasLst

69 yBiasLstTest \
70 = (yBiasListing(5,5)
71 == [(0, 0), (0, 1), (0, 2), (0, 3), (0, 4)
72 , (1, 0), (1, 1), (1, 2), (1, 3), (1, 4)
73 , (2, 0), (2, 1), (2, 2), (2, 3), (2, 4)
74 , (3, 0), (3, 1), (3, 2), (3, 3), (3, 4)
75 , (4, 0), (4, 1), (4, 2), (4, 3), (4, 4)])

Go to Activity

46/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

List Comprehension Exercises
Answer 2 (c) List Pairs in Fair Order

▶ Answer 2 (c) List Pairs in Fair Order — second version

▶ Write here

83 fairLstTest \
84 = (fairListing(5,5)
85 == [(0, 0)
86 , (0, 1), (1, 0)
87 , (0, 2), (1, 1), (2, 0)
88 , (0, 3), (1, 2), (2, 1), (3, 0)
89 , (0, 4), (1, 3), (2, 2), (3, 1), (4, 0)])

Go to Activity

47/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

List Comprehension Exercises
Answer 2 (c) List Pairs in Fair Order

▶ Answer 2 (c) List Pairs in Fair Order — second version

▶ This works by making the sum of the coordinates the
same for each prefix

77 def fairListing(xRng,yRng) :
78 fairLst \
79 = [(x,d-x) for d in range(yRng)
80 for x in range(d+1)]
81 return fairLst

83 fairLstTest \
84 = (fairListing(5,5)
85 == [(0, 0)
86 , (0, 1), (1, 0)
87 , (0, 2), (1, 1), (2, 0)
88 , (0, 3), (1, 2), (2, 1), (3, 0)
89 , (0, 4), (1, 3), (2, 2), (3, 1), (4, 0)]

Go to Activity

48/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

List Comprehension Exercises
Answer 2 (c) List Pairs in Fair Order

▶ Answer 2 (c) List Pairs in Fair Order — third version

▶ Write here

97 fairLstATest \
98 = (fairListingA(5,5)
99 == [[(0, 0)]

100 , [(0, 1), (1, 0)]
101 , [(0, 2), (1, 1), (2, 0)]
102 , [(0, 3), (1, 2), (2, 1), (3, 0)]
103 , [(0, 4), (1, 3), (2, 2), (3, 1), (4, 0)]])

Go to Activity

49/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

List Comprehension Exercises
Answer 2 (c) List Pairs in Fair Order

▶ Answer 2 (c) List Pairs in Fair Order — third version

▶ The inner loop is placed into its own list comprehension

91 def fairListingA(xRng,yRng) :
92 fairLstA \
93 = [[(x,d-x) for x in range(d+1)]
94 for d in range(yRng)]
95 return fairLstA

97 fairLstATest \
98 = (fairListingA(5,5)
99 == [[(0, 0)]

100 , [(0, 1), (1, 0)]
101 , [(0, 2), (1, 1), (2, 0)]
102 , [(0, 3), (1, 2), (2, 1), (3, 0)]
103 , [(0, 4), (1, 3), (2, 2), (3, 1), (4, 0)]])

Go to Activity

50/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Algorithm Descriptions & Implementations
Python & Haskell Tutorials

▶ Python tutorials:
▶ Beginner’s Python Tutorial
▶ Python Programming
▶ Non-Programmer’s Tutorial for Python 3
▶ Non-Programmer’s Tutorial for Python 2.6

▶ Haskell Tutorials:
▶ Haskell Wikibook
▶ What I Wish I Knew When Learning Haskell
▶ Haskell Meta-tutorial
▶ Learn You a Haskell for Great Good
▶ Real World Haskell

51/159

https://en.wikibooks.org/wiki/A_Beginner%27s_Python_Tutorial
https://en.wikibooks.org/wiki/Python_Programming
https://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_3
https://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_2.6
https://en.wikibooks.org/wiki/Haskell
http://dev.stephendiehl.com/hask/
https://wiki.haskell.org/Meta-tutorial
http://learnyouahaskell.com
http://book.realworldhaskell.org

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Graph Representation
Python

7from collections import namedtuple

9Vertex = namedtuple(’Vertex’
10 ,[’vtxName’])

12Edge = namedtuple(’Edge’
13 ,[’startVtx’,’endVtx’])

▶ This is from Python/M269TutorialGraphs2020J.py

▶ Reserved identifiers are shown in this color

▶ User defined data constructors such as Vertex and
Edge are shown in that color

▶ Vertex is a named tuple with named fields — a quick
and dirty object — recommended by Guido van Rossum

▶ Health Warning: these notes may not be totally
consistent with syntax colouring.

52/159

https://plus.google.com/115212051037621986145/posts/HajXHPGN752

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Example Graphs
Python

17ta = Vertex(’TA’)
18tb = Vertex(’TB’)
19tc = Vertex(’TC’)
20td = Vertex(’TD’)
21te = Vertex(’TE’)
22tf = Vertex(’TF’)
23tg = Vertex(’TG’)
24th = Vertex(’TH’)

26eg01Vs = [ta,tb,tc,td,te,tf,tg,th]

28eg01Es = [(ta,tb),(tg,tb),(tg,th),(tb,tc)
29 ,(tb,tf),(tf,th),(tc,td),(td,te),(te,th)]

31eg01Gr = (eg01Vs, eg01Es)

33eg02Es = [(ta,tb),(tb,tc),(tc,ta)] # cycles

35eg02Gr = ([ta,tb,tc], eg02Es)

▶ Used ordinary tuples for edges here

53/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Graph Service Functions
Python (1)

39def vertices(gr):
40 return gr[0]

42def edges(gr):
43 return gr[1]

45def esStartV(v,es):
46 return [edge for edge in es if edge[0] == v]

48def esEndV(v,es):
49 return [edge for edge in es if edge[1] == v]

51def esRemoveV(v,es):
52 return [edge for edge in es
53 if edge[0] != v and edge[1] != v]

▶ Choice of service function (or class methods) is a design
issue — a bit of a fudge here (to avoid complexity in
these notes)

54/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Graph Service Functions
Python (2)

55def succLists(gr):
56 return [(v, esStartV(v, (edges(gr))))
57 for v in vertices(gr)]

59def predLists(gr):
60 return [(v, esEndV(v, (edges(gr))))
61 for v in vertices(gr)]

63def isEmptyGraph(gr):
64 return gr[0] == [] and gr[1] == []

66def startVertices(gr):
67 return [pLst[0] for pLst in predLists(gr)
68 if pLst[1] == []]

70def endVertices(gr):
71 return [sLst[0] for sLst in succLists(gr)
72 if sLst[1] == []]

55/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Graph Service Functions
Python (3)

74def removeVertex(v, gr):
75 vs = gr[0]
76 vs1 = vs[:]
77 if v in vs1:
78 vs1.remove(v)
79 es = gr[1]
80 es1 = esRemoveV(v,es)
81 return (vs1,es1)

▶ Note that vs1 at line 76 is a (shallow) copy of vs

▶ If vertices had more structure we might have to write a
function to do a proper copy

56/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Python Graph Representation from 21J
Graph Representation Choices

▶ A graph is a pair of sets of nodes and edges, possibly
with information attached to nodes and edges such as
labels, weights, durations or distances — this is the
mathematical view of graphs

▶ Algorithms also need to consider representations for
the efficiency of the operations — M269 discusses
several graph representations:

▶ Edge list representation

▶ Adjacency matrix representation

▶ Adjacency list representation

▶ The implementation is given for directed graphs or
digraphs and undirected graphs using adjacency list
representations

57/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Python 21J Adjacency List Representation
DiGraph Class

▶ The following code is from
M269TutorialGraphs2021JDigraph.py which is from
m269_digraph.py modified only for layout

10import networkx
11from typing import Hashable

13class DiGraph:
14 """A directed graph with hashable node objects.

16 Edges are between different nodes.
17 There’s at most one edge from one node to another.
18 """

58/159

M269TutorialGraphs2021JDigraph.py
m269_digraph.py

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

DiGraph Class
Constructor, Inspectors

20 def __init__(self):
21 self.out = dict() # a map of nodes to their out-neighbours

23 def has_node(self, node: Hashable) -> bool:
24 """Return True if and only if the graph has the node."""
25 return node in self.out

27 def has_edge(self, start: Hashable, end: Hashable) -> bool:
28 """Return True if and only if edge start -> end exists.

30 Preconditions: self.has_node(start) and self.has_node(end)
31 """
32 return end in self.out[start]

59/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

DiGraph Class
Add Node,Edge

34 def add_node(self, node: Hashable) -> None:
35 """Add the node to the graph.

37 Preconditions: not self.has_node(node)
38 """
39 self.out[node] = set()

41 def add_edge(self, start: Hashable, end: Hashable) -> None:
42 """Add edge start -> end to the graph.

44 If the edge already exists, do nothing.

46 Preconditions:
47 self.has_node(start) and self.has_node(end) and start != end
48 """
49 self.out[start].add(end)

▶ Note add is a set method that does not raise an error if
the argument is a node already present

60/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

DiGraph Class
Remove Node,Edge

51 def remove_node(self, node: Hashable) -> None:
52 """Remove the node and all its attached edges.

54 Preconditions: self.has_node(node)
55 """
56 self.out.pop(node)
57 for start in self.out:
58 self.remove_edge(start, node)

60 def remove_edge(self, start: Hashable, end: Hashable) -> None:
61 """Remove edge start -> end from the graph.

63 If the edge doesn’t exist, do nothing.

65 Preconditions: self.has_node(start) and self.has_node(end)
66 """
67 self.out[start].discard(end)

▶ Note discard is a set method that does not raise an
error if the argument is a node that is not present

▶ pop is a dict and a set operation

▶ Note this version of remove_node has a bug — remove
the edges to the node first

61/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

DiGraph Class
Get Nodes,Edges

69 def nodes(self) -> set:
70 """Return the graph’s nodes."""
71 all_nodes = set()
72 for node in self.out:
73 all_nodes.add(node)
74 return all_nodes

76 def edges(self) -> set:
77 """Return the graph’s edges as a set of pairs (start, end)."""
78 all_edges = set()
79 for start in self.out:
80 for end in self.out[start]:
81 all_edges.add((start, end))
82 return all_edges

62/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

DiGraph Class
Out Neighbours, Degrees

84 def out_neighbours(self, node: Hashable) -> set:
85 """Return the out-neighbours of the node.

87 Preconditions: self.has_node(node)
88 """
89 return set(self.out[node]) # return a copy

91 def out_degree(self, node: Hashable) -> int:
92 """Return the number of out-neighbours of the node.

94 Preconditions: self.has_node(node)
95 """
96 return len(self.out[node])

63/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

DiGraph Class
In Neighbours, Degrees

98 def in_neighbours(self, node: Hashable) -> set:
99 """Return the in-neighbours of the node.

101 Preconditions: self.has_node(node)
102 """
103 start_nodes = set()
104 for start in self.out:
105 if self.has_edge(start, node):
106 start_nodes.add(start)
107 return start_nodes

109 def in_degree(self, node: Hashable) -> int:
110 """Return the number of in-neighbours of the node.

112 Preconditions: self.has_node(node)
113 """
114 return len(self.in_neighbours(node))

64/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

DiGraph Class
Neighbours, Degree

116 def neighbours(self, node: Hashable) -> set:
117 """Return the in- and out-neighbours of the node.

119 Preconditions: self.has_node(node)
120 """
121 return self.out_neighbours(node).union(self.in_neighbours(node))

123 def degree(self, node: Hashable) -> int:
124 """Return the number of in- and out-going edges of the node.

126 Preconditions: self.has_node(node)
127 """
128 return self.in_degree(node) + self.out_degree(node)

65/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

DiGraph Class
Draw DiGraph

130 def draw(self) -> None:
131 """Draw the graph."""
132 if type(self) == DiGraph:
133 graph = networkx.DiGraph()
134 else:
135 graph = networkx.Graph()
136 graph.add_nodes_from(self.nodes())
137 graph.add_edges_from(self.edges())
138 networkx.draw(graph, with_labels=True,
139 node_size=1000, node_color=’lightblue’,
140 font_size=12, font_weight=’bold’)

66/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

DiGraph Class
Breadth First Search

142from collections import deque

144def bfs(graph: DiGraph, start: Hashable) -> DiGraph:
145 """Return the subgraph traversed by a breadth-first search.

147 Preconditions: graph.has_node(start)
148 """
149 # changes from traversed function noted in comments
150 visited = DiGraph()
151 visited.add_node(start)
152 unprocessed = deque() # set -> deque
153 for neighbour in graph.out_neighbours(start):
154 unprocessed.append((start, neighbour)) # add -> append
155 while len(unprocessed) > 0:
156 edge = unprocessed.popleft() # pop -> popleft
157 previous = edge[0]
158 current = edge[1]
159 if not visited.has_node(current):
160 visited.add_node(current)
161 visited.add_edge(previous, current)
162 for neighbour in graph.out_neighbours(current):
163 unprocessed.append((current, neighbour)) # add -> append
164 return visited

67/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

DiGraph Class
Depth First Search

166def dfs(graph: DiGraph, start: Hashable) -> DiGraph:
167 """Return the subgraph traversed by a depth-first search.

169 Preconditions: graph.has_node(start)
170 """
171 visited = DiGraph()
172 visited.add_node(start)
173 unprocessed = [] # deque -> list
174 for neighbour in graph.out_neighbours(start):
175 unprocessed.append((start, neighbour))
176 while len(unprocessed) > 0:
177 edge = unprocessed.pop() # popleft -> pop
178 previous = edge[0]
179 current = edge[1]
180 if not visited.has_node(current):
181 visited.add_node(current)
182 visited.add_edge(previous, current)
183 for neighbour in graph.out_neighbours(current):
184 unprocessed.append((current, neighbour))
185 return visited

68/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Weighted DiGraph Class
Initial Code, Add Node, Edge

187import math

189class WeightedDiGraph(DiGraph):
190 """A weighted directed graph with hashable node objects.

192 Edges are between different nodes.
193 There’s at most one edge from one node to another.
194 Edges have weights, which can be floats or integers.
195 """

197 def add_node(self, node: Hashable) -> None:
198 """Add the node to the graph.

200 Preconditions: not self.has_node(node)
201 """
202 self.out[node] = dict() # a map of out-neighbours to weights

204 def add_edge(self, start: Hashable, end: Hashable, weight: float) -> None:
205 """Add edge start -> end, with the given weight, to the graph.

207 If the edge already exists, set its weight.

209 Preconditions:
210 self.has_node(start) and self.has_node(end) and start != end
211 """
212 self.out[start][end] = weight

69/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Weighted DiGraph Class
Weight, Remove Edge

214 def weight(self, start: Hashable, end: Hashable) -> float:
215 """Return the weight of edge start -> end or infinity if it doesn’t exist.

217 Preconditions: self.has_node(start) and self.has_node(end)
218 """
219 if self.has_edge(start, end):
220 return self.out[start][end]
221 else:
222 return math.inf

224 def remove_edge(self, start: Hashable, end: Hashable) -> None:
225 """Remove edge start -> end from the graph.

227 If the edge doesn’t exist, do nothing.

229 Preconditions: self.has_node(start) and self.has_node(end)
230 """
231 if self.has_edge(start, end):
232 self.out[start].pop(end)

70/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Weighted DiGraph Class
Weight, Remove Edge

234 def edges(self) -> set:
235 """Return the graph’s edges as a set of triples (start, end, weight)."""
236 all_edges = set()
237 for start in self.out:
238 for (end, weight) in self.out[start].items():
239 all_edges.add((start, end, weight))
240 return all_edges

242 def out_neighbours(self, node: Hashable) -> set:
243 """Return the out-neighbours of the node.

245 Preconditions: self.has_node(node)
246 """
247 return set(self.out[node].keys())

71/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Weighted DiGraph Class
Draw

249 def draw(self) -> None:
250 """Draw the graph."""
251 if type(self) == WeightedDiGraph:
252 graph = networkx.DiGraph()
253 else:
254 graph = networkx.Graph()
255 graph.add_nodes_from(self.nodes())
256 for (node1, node2, weight) in self.edges():
257 graph.add_edge(node1, node2, w=weight)
258 pos = networkx.spring_layout(graph)
259 networkx.draw(graph, pos, with_labels=True,
260 node_size=1000, node_color=’lightblue’,
261 font_size=12, font_weight=’bold’)
262 networkx.draw_networkx_edge_labels(graph, pos,
263 edge_labels=networkx.get_edge_attributes(graph, ’w’))

72/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Weighted DiGraph Class
Shortest Path: Dijkstra (1)

265from heapq import heappush, heappop

267def dijkstra(graph: WeightedDiGraph, start: Hashable) -> WeightedDiGraph:
268 """Return a shortest path from start to each reachable node.

270 Preconditions:
271 - graph.has_node(start)
272 - node objects are comparable
273 - no weight is negative
274 """
275 visited = WeightedDiGraph()
276 visited.add_node(start)

▶ Shortest Path Dijkstra continued on next slide

73/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Weighted DiGraph Class
Shortest Path: Dijkstra (2)

278 # create min-priority queue of tuples (cost, (A, B, weight))
279 # cost is total weight from start to B via shortest path to A
280 unprocessed = [] # min-priority queue
281 for neighbour in graph.out_neighbours(start):
282 weight = graph.weight(start, neighbour)
283 heappush(unprocessed, (weight, (start, neighbour, weight)))

285 while len(unprocessed) > 0:
286 info = heappop(unprocessed)
287 cost = info[0]
288 edge = info[1]
289 previous = edge[0]
290 current = edge[1]
291 weight = edge[2]

293 if not visited.has_node(current):
294 visited.add_node(current)
295 visited.add_edge(previous, current, weight)
296 for neighbour in graph.out_neighbours(current):
297 weight = graph.weight(current, neighbour)
298 edge = (current, neighbour, weight)
299 heappush(unprocessed, (cost + weight, edge))
300 return visited

74/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Python 21J Adjacency List Representation
Undirected Graph Class

▶ The following code is from
M269TutorialGraphs2021JUngraph.py which is from
m269_ungraph.py modified only for layout

10from typing import Hashable

12class UndirectedGraph(DiGraph):
13 """An undirected graph with hashable node objects.

15 There’s at most one edge between two different nodes.
16 There are no edges between a node and itself.
17 """

75/159

M269TutorialGraphs2021JUngraph.py
m269_ungraph.py

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Undirected Graph Class
Add and Remove Edge

19 def add_edge(self, node1: Hashable, node2: Hashable) -> None:
20 """Add an undirected edge node1-node2 to the graph.

22 If the edge already exists, do nothing.

24 Preconditions: self.has_node(node1) and self.has_node(node2)
25 """
26 super().add_edge(node1, node2)
27 super().add_edge(node2, node1)

29 def remove_edge(self, node1: Hashable, node2: Hashable) -> None:
30 """Remove edge node1-node2 from the graph.

32 If the edge doesn’t exist, do nothing.

34 Preconditions: self.has_node(node1) and self.has_node(node2)
35 """
36 super().remove_edge(node1, node2)
37 super().remove_edge(node2, node1)

76/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Undirected Graph Class
Edges, Neighbours

39 def edges(self) -> set:
40 """Return the graph’s edges as a set of pairs.

42 Postconditions: for every edge A-B,
43 the output has either (A, B) or (B, A) but not both
44 """
45 all_edges = set()
46 for node1 in self.out:
47 for node2 in self.out[node1]:
48 if (node2, node1) not in all_edges:
49 all_edges.add((node1, node2))
50 return all_edges

52 def in_neighbours(self, node: Hashable) -> set:
53 """Return all nodes that are adjacent to the node.

55 Preconditions: self.has_node(node)
56 """
57 return self.out_neighbours(node)

59 def neighbours(self, node: Hashable) -> set:
60 """Return all nodes that are adjacent to the node.

62 Preconditions: self.has_node(node)
63 """
64 return self.out_neighbours(node)

77/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Undirected Graph Class
In Degree, Degree

66 def in_degree(self, node: Hashable) -> int:
67 """Return the number of edges attached to the node.

69 Preconditions: self.has_node(node)
70 """
71 return self.out_degree(node)

73 def degree(self, node: Hashable) -> int:
74 """Return the number of edges attached to the node.

76 Preconditions: self.has_node(node)
77 """
78 return self.out_degree(node)

78/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Weighted Undirected Graph Class
Initial Code

80class WeightedUndirectedGraph(WeightedDiGraph):
81 """A weighted undirected graph with hashable node objects.

83 There’s at most one edge between two different nodes.
84 There are no edges between a node and itself.
85 Edges have weights, which may be integers or floats.
86 """

79/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Weighted Undirected Graph Class
Add and Remove Edge

88 def add_edge(self, node1: Hashable, node2: Hashable, weight: float) -> None:
89 """Add an edge node1-node2 with the given weight to the graph.

91 If the edge already exists, do nothing.

93 Preconditions: self.has_node(node1) and self.has_node(node2)
94 """
95 super().add_edge(node1, node2, weight)
96 super().add_edge(node2, node1, weight)

98 def remove_edge(self, node1: Hashable, node2: Hashable) -> None:
99 """Remove edge node1-node2 from the graph.

101 If the edge doesn’t exist, do nothing.

103 Preconditions: self.has_node(node1) and self.has_node(node2)
104 """
105 super().remove_edge(node1, node2)
106 super().remove_edge(node2, node1)

80/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Weighted Undirected Graph Class
Edges

108 def edges(self) -> set:
109 """Return the graph’s edges as a set of triples (node1, node2, weight).

111 Postconditions: for every edge A-B,
112 the output has either (A, B, w) or (B, A, w) but not both
113 """
114 all_edges = set()
115 for start in self.out:
116 for (end, weight) in self.out[start].items():
117 if (end, start, weight) not in all_edges:
118 all_edges.add((start, end, weight))
119 return all_edges

81/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Weighted Undirected Graph Class
In Neighbours, Neighbours, In Degree, Degree

121 def in_neighbours(self, node: Hashable) -> set:
122 """Return all nodes that are adjacent to the node.

124 Preconditions: self.has_node(node)
125 """
126 return self.out_neighbours(node)

128 def neighbours(self, node: Hashable) -> set:
129 """Return all nodes that are adjacent to the node.

131 Preconditions: self.has_node(node)
132 """
133 return self.out_neighbours(node)

135 def in_degree(self, node: Hashable) -> int:
136 """Return the number of edges attached to the node.

138 Preconditions: self.has_node(node)
139 """
140 return self.out_degree(node)

142 def degree(self, node: Hashable) -> int:
143 """Return the number of edges attached to the node.

145 Preconditions: self.has_node(node)
146 """
147 return self.out_degree(node)

82/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Weighted Undirected Graph Class
Minimum Spanning Tree: Prim (1)

149from heapq import heappush, heappop

151def prim(graph: WeightedUndirectedGraph, start: Hashable) -> WeightedUndirectedGraph:
152 """Return a minimum spanning tree of graph, beginning at start.

154 Preconditions:
155 - graph.has_node(start)
156 - graph is connected
157 - node objects are comparable
158 """
159 visited = WeightedUndirectedGraph()
160 visited.add_node(start)

162 unprocessed = []
163 for neighbour in graph.neighbours(start):
164 weight = graph.weight(start, neighbour)
165 heappush(unprocessed, (weight, start, neighbour))

▶ Minimum Spanning Tree Prim continued on next slide

83/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Weighted Undirected Graph Class
Minimum Spanning Tree: Prim (2)

167 while len(unprocessed) > 0:
168 edge = heappop(unprocessed)
169 weight = edge[0]
170 previous = edge[1]
171 current = edge[2]
172 if not visited.has_node(current):
173 visited.add_node(current)
174 visited.add_edge(previous, current, weight)
175 for neighbour in graph.neighbours(current):
176 weight = graph.weight(current, neighbour)
177 heappush(unprocessed, (weight, current, neighbour))
178 return visited

▶ Note that the priority queue heapq does the work of
making the next smallest weight edge available — it is
always the first element of unprocessed

84/159

https://docs.python.org/3/library/heapq.html

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Drawing Graphs
Weighted DiGraph

▶ The provided graph code gives two draw methods:

▶ For Weighted DiGraph or Undirected Graph see
line 249, slide 72,

▶ For Unweighted see line 130, slide 66,

▶ NetworkX is a Python package for the creation,
manipulation and study of networks

▶ Matplotlib is a Python library for creating static,
animated, and interactive visualizations

▶ Matplotlib is used by NetworkX

▶ Some of the examples in these notes explicitly use
savefig(fname) from matplotlib.pyplot to save the
current figure to an external file

see matplotlib.pyplot.savefig

see also matplotlib.pyplot.show

85/159

https://networkx.org/documentation/stable/index.html
https://matplotlib.org/
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.savefig.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.show.html

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Drawing Graphs
NetworkX, Matplotlib

▶ NetworkX Drawing reference introduction states that it
provides basic functionality for visualising graphs but
its main aim is to enable graph analysis

▶ The examples in M269 use the Matplotlib interface
commands

▶ It mentions the tools Cytoscape, Gephi, Graphviz, and
for LaTeX typesetting, PGF/TikZ

▶ All of the packages are big and require reading the
documentation — for example, the PGF/TikZ manual is
1321 pages (version 3.1.9a, 11 January 2022) (used in
this document for most diagrams)

▶ You are not expected to learn any of the visualisation
software but it may be worth noting some points about
the provided draw method

▶ The code for the draw method is repeated on line 249,
slide 87

86/159

https://networkx.org/documentation/stable/reference/drawing.html
https://cytoscape.org/
https://gephi.org/
http://www.graphviz.org/
https://www.latex-project.org/
https://github.com/pgf-tikz/pgf

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Drawing Weighted DiGraph
draw method

249 def draw(self) -> None:
250 """Draw the graph."""
251 if type(self) == WeightedDiGraph:
252 graph = networkx.DiGraph()
253 else:
254 graph = networkx.Graph()
255 graph.add_nodes_from(self.nodes())
256 for (node1, node2, weight) in self.edges():
257 graph.add_edge(node1, node2, w=weight)
258 pos = networkx.spring_layout(graph)
259 networkx.draw(graph, pos, with_labels=True,
260 node_size=1000, node_color=’lightblue’,
261 font_size=12, font_weight=’bold’)
262 networkx.draw_networkx_edge_labels(graph, pos,
263 edge_labels=networkx.get_edge_attributes(graph, ’w’))

▶ The line numbers are in gray to indicate this is a repeat
of the code listing

87/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Draw Method
Spring Layout

258 pos = networkx.spring_layout(graph)

▶ spring_layout positions nodes using
Fruchterman-Reingold force-directed algorithm

▶ If several layouts are possible then each run of the
program will cycle through possible layouts

▶ To have reproducible sequences of layout use an
explicit seed=n where n is some fixed value.

▶ Code in context at line 258, slide 87,

88/159

https://networkx.org/documentation/stable/reference/generated/networkx.drawing.layout.spring_layout.html
https://en.wikipedia.org/wiki/Force-directed_graph_drawing

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Draw Method
NetworkX draw function

259 networkx.draw(graph, pos, with_labels=True,
260 node_size=1000, node_color=’lightblue’,
261 font_size=12, font_weight=’bold’)

▶ draw_networkx draws the graph with Matplotlib with
various options

▶ If pos is not specified a spring layout will be computed

▶ with_labels set to True to draw labels on the nodes

▶ nodelist, edgelist draw only the specified nodes,
edges

▶ Code in context at line 259, slide 87

89/159

https://networkx.org/documentation/stable/reference/generated/networkx.drawing.nx_pylab.draw_networkx.html

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Draw Method
NetworkX Draw Edge Labels function

259 networkx.draw_networkx_edge_labels(graph, pos,
260 edge_labels=networkx.get_edge_attributes(graph, ’w’))

▶ draw_networkx_edge_labels draws edge labels

▶ label_pos position of edge label along edge (0=head,
0.5=center, 1=tail)

▶ Code in context at line 262, slide 87,

▶ See also draw_networkx_nodes, can take a nodelist

▶ See also draw_networkx_edges, can take an edgelist

90/159

https://networkx.org/documentation/stable/reference/generated/networkx.drawing.nx_pylab.draw_networkx_edge_labels.html
https://networkx.org/documentation/stable/reference/generated/networkx.drawing.nx_pylab.draw_networkx_nodes.html
https://networkx.org/documentation/stable/reference/generated/networkx.drawing.nx_pylab.draw_networkx_edges.html

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Draw Method
Inline and Externalizing Graphics

▶ Show the graphic in the Notebook cell with the code

%matplotlib inline

▶ Save graphic to PNG format file in current folder

import matplotlib.pyplot as plt

graph = WeightedUndirectedGraph()

graph.draw()

plt.savefig("M269TMA02Q3bGraphC.png")

▶ savefig in matplotlib.pyplot saves the current figure

▶ See also savefig in matplotlib.figure

91/159

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.savefig.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.html
https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.savefig
https://matplotlib.org/stable/api/figure_api.html

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Enumerations
Subsequences, Combinations

▶ M269 21J TMA02 Part 2 has questions that refer to
calculating subsequences (or subsets) and
combinations of numbers of elements from a list

▶ It uses the combinations function from the itertools
module of the Python Functional Programming Modules

▶ It may be useful to review some simple programs that
implement the same functions, but less efficiently — it
may help understand the concepts

▶ The following code is in the same Python script as
Morse Code M269BinaryTrees2021JMorseCode.py
(but probably should be with the graph algorithm notes)

▶ The notes here give example implementations of
▶ All subsequences of a list (a surrogate for subsets)
▶ Two versions of combinations

▶ The notes use list comprehensions — a nice alternative
to loops or explicit recursion (list comprehension
reference)

92/159

M269BinaryTrees2021JMorseCode.py
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/reference/expressions.html#displays-for-lists-sets-and-dictionaries
https://docs.python.org/3/reference/expressions.html#displays-for-lists-sets-and-dictionaries

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Enumerations
Subsequences

▶ Subsequences of a list are all possible subsequences of
elements from the list

AnPython3>>> subSeqsM([1,2,3])
[[], [3], [2], [2, 3], [1], [1, 3], [1, 2], [1, 2, 3]]

249def subSeqsM(xs) :
250 if xs == [] :
251 return [[]]
252 else :
253 return ([[xs[0]] + rs if b else rs
254 for b in [False,True]
255 for rs in subSeqsM(xs[1:])])

▶ If the list xs is empty there is one subsequence: the
empty list

▶ Otherwise you can choose the first element followed by
any of the subsequences of the rest of the list
or ignore the first element and take any of the
subsequences of the rest of the list

▶ See notes on List Comprehensions in the Graphs notes
(mine)

93/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Enumerations
Combinations (1)

▶ Combinations takes a list and an integer and return all
subsequences of the list of that length

▶ Version using list comprehension instead of map

AnPython3>>> combsM01([1,2,3,4,5],3)
[[1, 2, 3], [1, 2, 4], [1, 2, 5], [1, 3, 4], [1, 3, 5], [1, 4, 5], [2, 3, 4], [2, 3, 5], [2, 4, 5], [3, 4, 5]]

271def combsM01(xs, k) :
272 if k == 0 :
273 return [[]]
274 elif xs == [] :
275 return []
276 else :
277 return ([[xs[0]] + ys for ys in combsM01(xs[1:],k-1)]
278 + combsM01(xs[1:],k))

▶ If k is 0 then there is one combination, the empty list
▶ If the list is empty (and k á 1) then there are none
▶ Otherwise choose the first element followed by (k-1)

combinations of the rest of the list
or ignore the first element and choose k combinations
of elements from the rest of the list

94/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21J

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Enumerations:
Subsequences,
Combinations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Enumerations
Combinations (2)

▶ Combinations takes a list and an integer and return all
subsequences of the list of that length

AnPython3>>> combsM([1,2,3,4,5],3)
[[1, 2, 3], [1, 2, 4], [1, 2, 5], [1, 3, 4], [1, 3, 5], [1, 4, 5], [2, 3, 4], [2, 3, 5], [2, 4, 5], [3, 4, 5]]

258def combsM(xs, k) :
259 if k == 0 :
260 return [[]]
261 elif xs == [] :
262 return []
263 else :
264 return (list(map(lambda ys : ([xs[0]] + ys), combsM(xs[1:],k-1)))
265 + combsM(xs[1:],k))

▶ Same as the list comprehension version (sort of)
▶ map takes a function and a list and applies the function

to every element of the list
▶ Here the function is expressed as a lambda expression

(an anonymous function)
▶ We need to convert the result to a list since map creates

an iterable (explanation required?)
95/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort
Topological Sort —
Algorithm

Topological Sort
Example 01

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Topological Sort
Definition

▶ A topological sort of a directed acyclic graph (DAG) is a
linear ordering of its vertices so that for any directed
edge (u, v), u comes before v in the ordering

▶ See en.wikipedia.org/wiki/Topological_sorting

▶ A topological ordering is possible for a graph if and
only if it is a DAG

▶ Any DAG has at least one topological ordering

▶ If a Hamiltonian path exists (a path visiting every node
in a graph exactly once) then the graph has exactly one
topological ordering

96/159

https://en.wikipedia.org/wiki/Topological_sorting

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort
Topological Sort —
Algorithm

Topological Sort
Example 01

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Topological Sort
Example Graph egTopSortGraph

TA

TB

TC TD

TETF

TG TH

▶ Find all the topological orderings on this digraph

97/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort
Topological Sort —
Algorithm

Topological Sort
Example 01

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Topological Sort
Algorithm

▶ topSorts takes a graph, gr and returns a list of lists of
vertices (all the topological sorts of the graph)

▶ If the graph is empty, it returns a list containing just the
empty list — Note: not just the empty list

▶ Obtain a list of all the start vertices of gr

▶ If the list of start vertices is empty, then the graph has a
cycle — so raise an error and stop

▶ Otherwise for each start vertex, v
▶ Join it to ts
▶ where ts is one of the topological sorts of gr with v

removed

98/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort
Topological Sort —
Algorithm

Topological Sort
Example 01

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Topological Sort — Algorithm
Python

85def topSorts(gr):
86 if isEmptyGraph(gr):
87 return [[]]
88 elif startVertices(gr) == []:
89 raise RuntimeError(’Cycle in the graph’)
90 else:
91 return [[v] + ts
92 for v in startVertices(gr)
93 for ts in topSorts(removeVertex(v,gr))]

99/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort
Topological Sort —
Algorithm

Topological Sort
Example 01

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Topological Sort Example 01
Activity 3 Trace Exercise egTopSortGraph00

▶ Trace the development of the topological sort algorithm
in the following graph

TA

TB

TC TD

TETF

TG TH

Go to Answer

100/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort
Topological Sort —
Algorithm

Topological Sort
Example 01

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Topological Sort Example 01
Answer 3 Trace Exercise

▶ Answer 3 Trace Exercise

▶ See the following slides

Go to Activity

101/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort
Topological Sort —
Algorithm

Topological Sort
Example 01

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Topological Sort Example 01
Step 1 Initial Graph egTopSortGraph01

TA

TB

TC TD

TETF

TG TH

▶ Start vertices

TA TG

102/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort
Topological Sort —
Algorithm

Topological Sort
Example 01

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Topological Sort Example 01
Step 2 Remove Vertices TA, TG egTopSortGraph02

TA

TB

TC TD

TETF

TG TH

▶ Start vertices

TB

103/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort
Topological Sort —
Algorithm

Topological Sort
Example 01

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Topological Sort Example 01
Step 3 Remove Vertex TB egTopSortGraph03

TA

TB

TC TD

TETF

TG TH

▶ Start vertices

TC TF

104/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort
Topological Sort —
Algorithm

Topological Sort
Example 01

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Topological Sort Example 01
Step 4 Remove Vertices TC, TF egTopSortGraph04

TA

TB

TC TD

TETF

TG TH

▶ Start vertices

TD

▶ Note: Step 4 to 6 has 4 combinations (see below)

105/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort
Topological Sort —
Algorithm

Topological Sort
Example 01

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Topological Sort Example 01
Step 5 Remove Vertex TD egTopSortGraph05

TA

TB

TC TD

TETF

TG TH

▶ Start vertices

TE

106/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort
Topological Sort —
Algorithm

Topological Sort
Example 01

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Topological Sort Example 01
Step 6 Remove Vertex TE egTopSortGraph06

TA

TB

TC TD

TETF

TG TH

▶ Start vertices

TH

▶ Step 7 would be the empty graph (not drawn)

107/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort
Topological Sort —
Algorithm

Topological Sort
Example 01

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Topological Sort — Example
Output — Python

97topSortsEG01GrTest \
98 = (topSorts(eg01Gr)
99 == [[ta,tg,tb,tc,td,te,tf,th]

100 ,[ta,tg,tb,tc,td,tf,te,th]
101 ,[ta,tg,tb,tc,tf,td,te,th]
102 ,[ta,tg,tb,tf,tc,td,te,th]
103 ,[tg,ta,tb,tc,td,te,tf,th]
104 ,[tg,ta,tb,tc,td,tf,te,th]
105 ,[tg,ta,tb,tc,tf,td,te,th]
106 ,[tg,ta,tb,tf,tc,td,te,th]])

▶ Note how the step 4 to 6 combinations get enumerated

▶ Note that a vertex ta would be displayed as

Vertex(vtxName=’TA’)

▶ Notice the Python Explicit line joining with (\<nl>) and
Python Implicit line joining with ((...))

▶ The backslash (\) must be followed by an end of line
character (<nl>)

108/159

https://docs.python.org/3/reference/lexical_analysis.html#explicit-line-joining
https://docs.python.org/3/reference/lexical_analysis.html#implicit-line-joining
https://en.wikipedia.org/wiki/Backslash
https://en.wikipedia.org/wiki/Newline
https://en.wikipedia.org/wiki/Newline

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra’s Algorithm —
Description

Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm

Greedy Algorithms

Future Work

Dijkstra’s Algorithm
Sources

▶ From https://www.cse.ust.hk/~dekai/271/
(Lecture 10)

▶ Cormen (2009, chapter 24) — Cormen (2009, page
648) has a footnote explaining the origin of the term
relaxation

▶ Sedgewick and Wayne (2011)

▶ Miller and Ranum (2011, section 7.8)

▶ A Functional Graph Library
http://web.engr.oregonstate.edu/~erwig/fgl/

▶ Rabhi and Lapalme (1999, chapter 7)

109/159

https://www.cse.ust.hk/~dekai/271/
http://web.engr.oregonstate.edu/~erwig/fgl/

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra’s Algorithm —
Description

Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm

Greedy Algorithms

Future Work

Dijkstra’s Algorithm
Structured English

di jkst ra (gr , weight , s)
for u in vert ices (gr)

dist (u) = I n f i n i t y
label (u) = Temp

dist (s) = 0
pred (s) = None
q = makePriorityQ (vert ices (gr))

while not isEmptyPQ (q)
u = extractMinPQ (q)
for v in adj (gr ,u)

i f (label (v) == Temp
and dist (u) + weight (edge (u ,v)) < dist (v))

dist (v) = dist (u) + weight (edge (u ,v))
q = decreaseKeyPQ (q,v , dist (v))
pred (v) = u

label (u) = Permanent

110/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra’s Algorithm —
Description

Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm

Greedy Algorithms

Future Work

Dijkstra’s Algorithm Example 01
Step 0 Initialisation egDijkstraGraph0100

S(0,[])

A

(∞,[])

B

(∞,[])

C

(∞,[])

D

(∞,[])

2

7

1

8

5

3 2 4 2

111/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra’s Algorithm —
Description

Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm

Greedy Algorithms

Future Work

Dijkstra’s Algorithm Example
Step 1 Process S egDijkstraGraph0101

S(0,[])

A

(2,[S])

B

(7,[S])

C

(∞,[])

D

(∞,[])

2

7

1

8

5

3 2 4 2

112/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra’s Algorithm —
Description

Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm

Greedy Algorithms

Future Work

Dijkstra’s Algorithm Example
Step 2 Process A egDijkstraGraph0102

S(0,[])

A

(2,[S])

B

(5,[A])

C

(10,[A])

D

(7,[A])

2

7

1

8

5

3 2 4 2

113/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra’s Algorithm —
Description

Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm

Greedy Algorithms

Future Work

Dijkstra’s Algorithm Example
Step 3 Process B egDijkstraGraph0103

S(0,[])

A

(2,[S])

B

(5,[A])

C

(6,[B])

D

(7,[A])

2

7

1

8

5

3 2 4 2

114/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra’s Algorithm —
Description

Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm

Greedy Algorithms

Future Work

Dijkstra’s Algorithm Example
Step 4 Process C egDijkstraGraph0104

S(0,[])

A

(2,[S])

B

(5,[A])

C

(6,[B])

D

(7,[A])

2

7

1

8

5

3 2 4 2

115/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra’s Algorithm —
Description

Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm

Greedy Algorithms

Future Work

Dijkstra’s Algorithm Example
Step 5 Process D egDijkstraGraph0105

S(0,[])

A

(2,[S])

B

(5,[A])

C

(6,[B])

D

(7,[A])

2

7

1

8

5

3 2 4 2

116/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra’s Algorithm —
Description

Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm

Greedy Algorithms

Future Work

Dijkstra’s Algorithm Example
Shortest Path Tree Edges egDijkstraGraph0106

S(0,[])

A

(2,[S])

B

(5,[A])

C

(6,[B])

D

(7,[A])

2

7

1

8

5

3 2 4 2

117/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra’s Algorithm —
Description

Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm

Greedy Algorithms

Future Work

Dijkstra’s Algorithm
Further points

▶ See presentation at http://www.ukuug.org/events/
agm2010/ShortestPath.pdf

▶ The algorithm as given assumes unique shortest paths
— what if there are multiple shortest paths ? Modify the
algorithm to accommodate this — change the weight on
some edge to test this in the above example (change
the weight of edge (A,C) to 4, for example)

▶ Implement a priority queue for Dijkstra’s algorithm

▶ Material essentially comes from Cormen, chp 24

118/159

http://www.ukuug.org/events/agm2010/ShortestPath.pdf
http://www.ukuug.org/events/agm2010/ShortestPath.pdf

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra’s Algorithm —
Description

Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm

Greedy Algorithms

Future Work

Dijkstra’s Algorithm Example 02
Step 0 Initialisation egDijkstraGraph0200

S(0,[])

A

(∞,[])

B

(∞,[])

C

(∞,[])

D(∞,[])

E

(∞,[])

F

(∞,[])

G
(∞,[])

H

(∞,[])

T

(∞,[])7

8

7

8

6

6

4

2

3

3

7

2

6

9

6

5
9

8

8

8

119/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra’s Algorithm —
Description

Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm

Greedy Algorithms

Future Work

Dijkstra’s Algorithm Example 02
Step 1 Process S egDijkstraGraph0201

S(0,[])

A

(7,[S])

B

(8,[S])

C

(∞,[])

D(∞,[])

E

(∞,[])

F

(∞,[])

G
(∞,[])

H

(∞,[])

T

(∞,[])7

8

7

8

6

6

4

2

3

3

7

2

6

9

6

5
9

8

8

8

120/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra’s Algorithm —
Description

Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm

Greedy Algorithms

Future Work

Dijkstra’s Algorithm Example 02
Step 2 Process A egDijkstraGraph0202

S(0,[])

A

(7,[S])

B

(8,[S])

C

(15,[A])

D(13,[A])

E

(∞,[])

F

(∞,[])

G
(∞,[])

H

(∞,[])

T

(∞,[])7

8

7

8

6

6

4

2

3

3

7

2

6

9

6

5
9

8

8

8

121/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra’s Algorithm —
Description

Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm

Greedy Algorithms

Future Work

Dijkstra’s Algorithm Example 02
Step 3 Process B egDijkstraGraph0203

S(0,[])

A

(7,[S])

B

(8,[S])

C

(15,[A])

D(13,[A])

E

(12,[B])

F

(∞,[])

G
(∞,[])

H

(∞,[])

T

(∞,[])7

8

7

8

6

6

4

2

3

3

7

2

6

9

6

5
9

8

8

8

122/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra’s Algorithm —
Description

Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm

Greedy Algorithms

Future Work

Dijkstra’s Algorithm Example 02
Step 4 Process E egDijkstraGraph0204

S(0,[])

A

(7,[S])

B

(8,[S])

C

(15,[A])

D(13,[A])

E

(12,[B])

F

(∞,[])

G
(21,[E])

H

(18,[E])

T

(∞,[])7

8

7

8

6

6

4

2

3

3

7

2

6

9

6

5
9

8

8

8

123/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra’s Algorithm —
Description

Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm

Greedy Algorithms

Future Work

Dijkstra’s Algorithm Example 02
Step 5 Process D egDijkstraGraph0205

S(0,[])

A

(7,[S])

B

(8,[S])

C

(15,[A])

D(13,[A])

E

(12,[B])

F

(15,[D])

G
(19,[D])

H

(18,[E])

T

(∞,[])7

8

7

8

6

6

4

2

3

3

7

2

6

9

6

5
9

8

8

8

▶ Vertex C should have label (15,[A,D]) if we record
multiple shortest routes

▶ How do we change the algorithm ?

124/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra’s Algorithm —
Description

Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm

Greedy Algorithms

Future Work

Dijkstra’s Algorithm Example 02
Step 6 Process C (or F) egDijkstraGraph0206

S(0,[])

A

(7,[S])

B

(8,[S])

C

(15,[A])

D(13,[A])

E

(12,[B])

F

(15,[D])

G
(18,[C])

H

(18,[E])

T

(∞,[])7

8

7

8

6

6

4

2

3

3

7

2

6

9

6

5
9

8

8

8

125/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra’s Algorithm —
Description

Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm

Greedy Algorithms

Future Work

Dijkstra’s Algorithm Example 02
Step 7 Process F egDijkstraGraph0207

S(0,[])

A

(7,[S])

B

(8,[S])

C

(15,[A])

D(13,[A])

E

(12,[B])

F

(15,[D])

G
(18,[C])

H

(18,[E])

T

(24,[F])7

8

7

8

6

6

4

2

3

3

7

2

6

9

6

5
9

8

8

8

126/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra’s Algorithm —
Description

Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm

Greedy Algorithms

Future Work

Dijkstra’s Algorithm Example 02
Step 8 Process G (or H) egDijkstraGraph0208

S(0,[])

A

(7,[S])

B

(8,[S])

C

(15,[A])

D(13,[A])

E

(12,[B])

F

(15,[D])

G
(18,[C])

H

(18,[E])

T

(24,[F])7

8

7

8

6

6

4

2

3

3

7

2

6

9

6

5
9

8

8

8

127/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra’s Algorithm —
Description

Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm

Greedy Algorithms

Future Work

Dijkstra’s Algorithm Example 02
Step 9 Process H egDijkstraGraph0209

S(0,[])

A

(7,[S])

B

(8,[S])

C

(15,[A])

D(13,[A])

E

(12,[B])

F

(15,[D])

G
(18,[C])

H

(18,[E])

T

(24,[F])7

8

7

8

6

6

4

2

3

3

7

2

6

9

6

5
9

8

8

8

128/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra’s Algorithm —
Description

Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm

Greedy Algorithms

Future Work

Dijkstra’s Algorithm Example 02
Step 10 Process T egDijkstraGraph0210

S(0,[])

A

(7,[S])

B

(8,[S])

C

(15,[A])

D(13,[A])

E

(12,[B])

F

(15,[D])

G
(18,[C])

H

(18,[E])

T

(24,[F])7

8

7

8

6

6

4

2

3

3

7

2

6

9

6

5
9

8

8

8

129/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra’s Algorithm —
Description

Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm

Greedy Algorithms

Future Work

Dijkstra’s Algorithm Example 02
Shortest Path Tree egDijkstraGraph02SPT

S(0,[])

A

(7,[S])

B

(8,[S])

C

(15,[A])

D(13,[A])

E

(12,[B])

F

(15,[D])

G
(18,[C])

H

(18,[E])

T

(24,[F])7

8

7

8

6

6

4

2

3

3

7

2

6

9

6

5
9

8

8

8

130/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra’s Algorithm —
Description

Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm

Greedy Algorithms

Future Work

Dijkstra’s Algorithm Example 02
Shortest Path Graph egDijkstraGraph02SPG

S(0,[])

A

(7,[S])

B

(8,[S])

C

(15,[A,D])

D(13,[A])

E

(12,[B])

F

(15,[D])

G
(18,[C])

H

(18,[E])

T

(24,[F])7

8

7

8

6

6

4

2

3

3

7

2

6

9

6

5
9

8

8

8

131/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra’s Algorithm —
Description

Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm

Greedy Algorithms

Future Work

Dijkstra’s Algorithm Example 03
Problem Description

▶ In the following graph, the weight on each edge
represents the probability of failing while traversing the
edge

▶ Problem: find the path that maximises the chance of
traversing from X to Y

132/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra’s Algorithm —
Description

Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm

Greedy Algorithms

Future Work

Dijkstra’s Algorithm Example 03
Step 0 Initialisation egDijkstraGraph0300

X(0,[])

A

(∞,[])

B

(∞,[])

C

(∞,[])

D (∞,[])

Y

(∞,[])

0.25

0.
5

0.6
0.3

0.2

0.6

0.05

0.2

0.3

0.1

0.2

0.
3

133/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra’s Algorithm —
Description

Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm

Greedy Algorithms

Future Work

Dijkstra’s Algorithm Example 03
Formulation as Shortest Path

▶ Let p(i,j) be probability of failing on edge (i, j)

▶ The probability of not failing is x(i,j) = 1 – p(i,j)

▶ Over any path x(i,j) are independent so problem is to
maximise probability of not failing

∏
(i,j)∈path

x(i,j)

▶ Equivalently, if y(i,j) = log x(i,j) then problem is to
maximise

∑
(i,j)∈path

y(i,j)

▶ Alternatively, since y(i,j) ∈ (–∞, 0] as x(i,j) ∈ [0, 1] then
let z(i,j) = –100y(i,j) and minimise

∑
(i,j)∈path

z(i,j)

134/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra’s Algorithm —
Description

Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm

Greedy Algorithms

Future Work

Dijkstra’s Algorithm Example 03
Step 0 Reformulation (a) egDijkstraGraph0300a

X(0,[])

A

(∞,[])

B

(∞,[])

C

(∞,[])

D (∞,[])

Y

(∞,[])

0.75

0.
5

0.4
0.7

0.8

0.4

0.95

0.8

0.7

0.8

0.8

0.
7

▶ The numbers in red are the probabilities of not failing

▶ x(i,j) = 1 – p(i,j)

135/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra’s Algorithm —
Description

Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm

Greedy Algorithms

Future Work

Dijkstra’s Algorithm Example 03
Step 0 Reformulation (b) egDijkstraGraph0300b

X(0,[])

A

(∞,[])

B

(∞,[])

C

(∞,[])

D (∞,[])

Y

(∞,[])

12

30

40
15

10

40

2

10

15

5

10

15

▶ The numbers in blue are negated scaled logs of x(i,j)

▶ z(i,j) = –100 log10 x(i,j)

136/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm
Prim’s Algorithm —
Description

Prim’s Algorithm —
Example

Greedy Algorithms

Future Work

Prim’s Algorithm
Structured English

prim (gr , weight , r)
for u in vert ices (gr)

key (u) = I n f i n i t y
label (u) = Temp

key (r) = 0
pred (r) = None
q = makePriorityQ (vert ices (gr))

while not isEmptyPQ (q)
u = extractMinPQ (q)
for v in adj (gr ,u)

i f (label (v) == Temp
and weight (edge (u ,v)) < key (v))

key (v) = weight (edge (u ,v))
q = decreaseKeyPQ (q,v , key (v))
pred (v) = u

label (u) = Permanent

137/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm
Prim’s Algorithm —
Description

Prim’s Algorithm —
Example

Greedy Algorithms

Future Work

Dijkstra’s and Prim’s Algorithms
Comparison

▶ Both are examples of greedy algorithms

▶ They choose the next best edge to add to the
permanently labelled set

▶ The algorithms are very similar

▶ Process each vertex, v, in turn from a priority queue

▶ Examine all vertices adjacent to v and perform
relaxation

▶ relaxation means updating the distances or keys

▶ For the term relaxation see Cormen (2009, page 648)
has a footnote explaining the origin of the term
relaxation

138/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm
Prim’s Algorithm —
Description

Prim’s Algorithm —
Example

Greedy Algorithms

Future Work

Tutorial Material — Prim’s algorithm
Example Graph 01 egPrimGraph00

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

d

139/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm
Prim’s Algorithm —
Description

Prim’s Algorithm —
Example

Greedy Algorithms

Future Work

Tutorial Material — Prim’s algorithm
Example Graph 01 egPrimGraph00

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

d

a

140/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm
Prim’s Algorithm —
Description

Prim’s Algorithm —
Example

Greedy Algorithms

Future Work

Tutorial Material — Prim’s algorithm
Example Graph 01 egPrimGraph00

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

d

a

f

141/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm
Prim’s Algorithm —
Description

Prim’s Algorithm —
Example

Greedy Algorithms

Future Work

Tutorial Material — Prim’s algorithm
Example Graph 01 egPrimGraph00

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

d

a

f

b

142/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm
Prim’s Algorithm —
Description

Prim’s Algorithm —
Example

Greedy Algorithms

Future Work

Tutorial Material — Prim’s algorithm
Example Graph 01 egPrimGraph00

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

d

a

f

b

e

143/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm
Prim’s Algorithm —
Description

Prim’s Algorithm —
Example

Greedy Algorithms

Future Work

Tutorial Material — Prim’s algorithm
Example Graph 01 egPrimGraph00

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

d

a

f

b

e

c

144/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm
Prim’s Algorithm —
Description

Prim’s Algorithm —
Example

Greedy Algorithms

Future Work

Tutorial Material — Prim’s algorithm
Example Graph 01 egPrimGraph00

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

d

a

f

b

e

c

g

145/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms
Interval Scheduling

Future Work

Greedy Algorithms
Overview

▶ Greedy algorithms follow the problem solving heuristic
of making the locally optimal choice at each stage with
the intent of finding a global optimum

▶ In general this rarely works — but it does in some cases
including
▶ Dijkstra’s algorithm and A* search algorithm for graph

search and shortest path finding
▶ Kruskal’s algorithm and Prim’s algorithm for

constructing minimum spanning trees of a given
connected graph

▶ Interval scheduling or Activity selection problem to find
the maximum number of activities that do not clash with
each other

▶ If a greedy algorithm can be proven to yield the global
optimum for a given problem class, it typically becomes
the method of choice because it is faster than other
optimization methods such as dynamic programming.

146/159

https://en.wikipedia.org/wiki/Greedy_algorithm
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/Kruskal%27s_algorithm
https://en.wikipedia.org/wiki/Prim%27s_algorithm
https://en.wikipedia.org/wiki/Interval_scheduling
https://en.wikipedia.org/wiki/Activity_selection_problem
https://en.wikipedia.org/wiki/Dynamic_programming

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms
Interval Scheduling

Future Work

Greedy Algorithms
Interval Scheduling

▶ Interval scheduling

▶ Job j starts at sj and finishes at fj
▶ Two jobs are compatible if they do not overlap

▶ Q What is the maximum subset of mutually compatible
jobs?

▶ Greedy template Consider jobs in some order. Take
each job provided it is compatible with the ones already
taken.

▶ Exercise What orderings can we have ?

▶ Example from Greedy algorithms: Interval scheduling

147/159

https://en.wikipedia.org/wiki/Interval_scheduling
https://ocw.tudelft.nl/course-lectures/3-greedy-algorithms/

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms
Interval Scheduling

Future Work

Greedy Algorithms
Interval Scheduling

▶ Greedy template Consider jobs in some order. Take
each job provided it is compatible with the ones already
taken.

▶ Earliest start time Consider jobs in ascending order of
start time sj

▶ Earliest finish time Consider jobs in ascending order
of finish time fj

▶ Shortest interval Consider jobs in ascending order of
interval length fj + 1 – sj

▶ Fewest conflicts For each job, count the number of
conflicting jobs cj and schedule in ascending order of
conflicts cj

148/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms
Interval Scheduling

Future Work

Interval Scheduling
Example

▶ For the jobs given below, produce an ordering by each
of the greedy templates (above) and the schedule
produced

▶ Each triple in the list below means (name,si,fi) where
the times are inclusive

jobs
= [(a,1,6),(b,2,4),(c,4,5),(d,4,8)
,(e,5,7),(f,6,9),(g,7,10),(h,9,11)]

149/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms
Interval Scheduling

Future Work

Interval Scheduling
Order by Earliest Start Time egGantt01EST

a

b

c

d

e

f

g

h

1 2 3 4 5 6 7 8 9 10 11

▶ Schedule jobs a, g (2 jobs)

150/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms
Interval Scheduling

Future Work

Interval Scheduling
Order by Earliest Finish Time egGantt01EFT

b

c

a

e

d

f

g

h

1 2 3 4 5 6 7 8 9 10 11

▶ Schedule jobs b, e, h (3 jobs)

151/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms
Interval Scheduling

Future Work

Interval Scheduling
Order by Shortest Interval egGantt01ShortInt

c

b

e

h

f

g

d

a

1 2 3 4 5 6 7 8 9 10 11

▶ Schedule jobs c, h (2 jobs)

152/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms
Interval Scheduling

Future Work

Interval Scheduling
Order by Fewest Conflicts egGantt01Conflicts

h (2)

b (3)

c (4)

g (4)

a (5)

e (5)

f (5)

d (6)

1 2 3 4 5 6 7 8 9 10 11

▶ Schedule jobs h, b, e (3 jobs)

153/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms
Interval Scheduling

Future Work

Interval Scheduling
Counter Examples

▶ For each of the following Greedy Templates produce a
counter example to show it may not produce the
optimal schedule

▶ Earliest start time Consider jobs in ascending order of
start time sj

▶ Shortest interval Consider jobs in ascending order of
interval length fj + 1 – sj

▶ Fewest conflicts For each job, count the number of
conflicting jobs cj and schedule in ascending order of
conflicts cj

154/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms
Interval Scheduling

Future Work

Interval Scheduling
Order by Earliest Start Time — Counter Example egGantt01ESTcntr

a b c d

e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

▶ e dominates the optimal schedule by starting earlier
and overlapping the others

155/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms
Interval Scheduling

Future Work

Interval Scheduling
Order by Shortest Interval — Counter Example egGantt01ShortIntCntr

a b

c

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

▶ c dominates the optimal schedule y being shorter and
overlapping the other two

156/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms
Interval Scheduling

Future Work

Interval Scheduling
Order by Fewest Conflicts — Counter Example egGantt01ConflictsCntr

a b c d

e f g

h i

j k

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

▶ f dominates the optimal schedule by only having two
conflicts and overlapping b and c

157/159

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms
Interval Scheduling

Future Work

Interval Scheduling
Order by Earliest Finish Time — Optimality Proof

▶ Basic structure of correctness proof:

▶ Assume that there is an optimal solution that is
different from the greedy solution.

▶ Find the first difference between the two solutions.

▶ Argue that we can exchange the optimal choice for the
greedy choice without making the solution worse
(although the exchange might not make it better).

▶ This argument implies by induction that some optimal
solution contains the entire greedy solution, and
therefore equals the greedy solution.

▶ Sometimes, an additional step is required to show no
optimal solution strictly improves the greedy solution.

▶ See Jeff Erickson: Algorithms

▶ Proof also in Interval Scheduling and Greedy Algorithms

▶ The slides at Kevin Wayne: Greedy Algorithms are from
Kleinberg (2013)

158/159

http://jeffe.cs.illinois.edu/teaching/algorithms/
https://ocw.tudelft.nl/wp-content/uploads/Algoritmiek_Interval_scheduling.pdf
https://ocw.tudelft.nl/course-lectures/3-greedy-algorithms/
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm

Greedy Algorithms

Future Work

Future Work
Graph algorithms, Greed, Logic, Computability

▶ Thursday, 13 March 2025 TMA02

▶ Sunday, 6 April 2025 Tutorial Online (Module wide)
Dynamic Programming

▶ Sunday, 27 April 2025 Tutorial Online (Module wide)
Computability and Complexity

▶ Sunday, 4 May 2025 Tutorial Online Review of course
material for TMA03

▶ Thursday, 22 May 2025 TMA03

159/159

	Agenda
	Adobe Connect Interface and Settings
	Adobe Connect Interface
	Adobe Connect Settings
	Adobe Connect — Sharing Screen & Applications
	Adobe Connect — Ending a Meeting
	Adobe Connect — Invite Attendees
	Layouts
	Chat Pods
	Graphics Conversion for Web
	Adobe Connect Recordings

	M269 Graph Algorithms
	Graph Definitions
	Graph Representation

	Algorithm Descriptions & Implementations
	List Comprehensions
	Python Graph Representation
	Python Graph Representation from 21J

	Topological Sort
	Topological Sort — Algorithm
	Topological Sort Example 01

	Dijkstra's Algorithm
	Dijkstra's Algorithm — Description
	Dijkstra's Algorithm Example 01
	Dijkstra's Algorithm — Further points
	Dijkstra's Algorithm Example 02
	Dijkstra's Algorithm Example 03

	Prim's Algorithm
	Prim's Algorithm — Description
	Prim's Algorithm — Example

	Greedy Algorithms
	Interval Scheduling

	Future Work

