Graphs and Greedy Algorithms
M269 Tutorial

Phil Molyneux

9 March 2025

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

1/159

M269 Graph Algorithms e

Agenda & Aims Phil Molyneux
. . Agenda
» Welcome and introductions A
obe Connect
Session on M269 Graph, Greedy & DP Algorithms M269 Graph
gorithms
Graph definitions and representations Algorithm
. . Descriptions &
Python: List comprehensions, Named Tuples Implementations
. . . Te logical Sort
Topological Sort for directed acyclic graphs opoiegieeor

Dijkstra’s Algorithm
DUkStra,S Shortest Path A|gOI’Ithm Prim’s Algorithm

Greedy Algorithms

Prim’s Minimum Spanning Tree Algorithm

Future Work

Dynamic Programming

Implementations in Structured English, Python and
Haskell (Optional)

» Note there is more material here than we can cover —
some is for optional interest

» Slides/Notes are at
pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269Tutoria05GraphGreedDP/

» Recording [Meeting)) Record Meeting. ... | v/

vV VY VvV VvV VvVVY

2/159

http://pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269Tutorial05GraphGreedDP/

M269 Tutorial

Introductions — Me

>
>

Name Phil Molyneux

Background Physics & Maths, Operational Research,
Computer Science

First programming languages Fortran, BASIC, Pascal
Favourite Software

Haskell — pure functional programming language

Text editors TextMate, Sublime Text — previously Emacs
Word processing in KTEX — all these slides and notes
Mac OS X

Learning style — | read the manual before using the
software

vYyy

v

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

3/159

http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/BASIC
http://en.wikipedia.org/wiki/Pascal_(programming_language)
http://www.haskell.org/haskellwiki/Haskell
https://macromates.com
http://www.sublimetext.com
http://www.emacswiki.org
http://www.latex-project.org
https://developer.apple.com/

M269 Tutorial

Introductions — You

>
>

vV vyVYyy

Name ?
New topics last month?

M269 Graph. Greedy & Dyamic Programming Algorithm
topics you want covered ?

Learning style?
Other OU courses ?
Anything else?

Adobe Connect — if you or | get cut off, wait till we
reconnect (or send you an email)

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

4/159

Adobe Connect

Interface — Host View

M250 Units 10, 11

Collections, Arrays, Sets, Maps, Lists

Phil Molyneux

18 April 2021

M250 Units 10, 11
Phil Molyneux
M250 Units 10, 11
Tutorial Agenda
Adobe Connect

Classes and
Interfaces.

Sets
Maps
Uists

Collection
Implementations.

TMAO3 Practice
Quiz

Common Mistakes
sshell
What Next ?

References,

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

5/159

Graphs and Greedy

Adobe Connect et

Interface — Participant View Phil Molyneux

Agenda
Adobe Connect

M250 Units 10, 11

M250 Units 10, 11 Tutorial

Phil Molyneux Interface
Introductions §
’zsnnz&n Settings
> Introductions e Sharing Screen &
Applications

> Name Phil Molyneux Classes and

> Learning Style: Reads the manual s

> Learnt last month Framework for Teaching Recursion
and wrote notes on Recursion Teaching

> You?

Ending a Meeting
Invite Attendees
Layouts

o Chat Pods

Web Graphics
Recordings

M269 Graph
Algorithms

Sets

Maps

Uists

Collection
Implementations.

TMAO3 Practice
Quiz

Common Mistakes
Ishell
What Next ?

References

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Prim’s Algorithm
Greedy Algorithms

Future Work

6/159

Adobe Connect

Settings

>

v

Everybody [Menu bar>> Meeting>> Speaker & Microphone Setup]

[Menu bar>> Microphone>> Allow Participants to Use Microphone] 4

Check Participants see the entire slide Workaround

» Disable Draw [Share pod>> Menu bar>> Draw icon]
> Fit Width [Share p0d>> Bottom bar>> Fit Width icon] %4

[Meeting)) Preferences>> General >> Host Cursor>> Show to all attendees

[Menu bar>> Video>> Enable Webcam for Participants] 4

Do not Enable single speaker mode
Cancel hand tool
Do not enable green pointer

Recording [Meeting>> Record Session] v

Documents Upload PDF with drag and drop to share
pod

Delete [Meeting>> Manage Meeting Information>> Uploaded Content]
and [check ﬁlename>> click on delete]

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

7/159

Adobe Connect

Access

> Tutor Access
[TutorHome)) M269 Website >> Tutorials]

[Cluster Tutorials>> M269 Online tutorial room]

[Tutor Groups>> M269 Online tutor group room}

[Module—wide Tutorials>> M269 Online module-wide room]
> Attendance
[TutorHome>> Students>> View your tutorial timetables]
Beamer Slide Scaling 440% (422 x 563 mm)
Clear Everyone’s Status
[Attendee Pod >> Menu >> Clear Everyone’s Status]

vy

v

Grant Access and send link via email
[Meeting >> Manage Access & Entry>> Invite Participants. ..]

> Presenter Only Area
[Meeting >> Enable/Disable Presenter Only Area

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

8/159

Adobe Connect

Keystroke Shortcuts

v

vV vyVvyy

Keyboard shortcuts in Adobe Connect

Toggle Mic (58)+(M] (Mac), [Ctrl)+[M] win) (On/Disconnect)
Toggle Raise-Hand status [38)+E]

Close dialog box [®] (Mac), (Win)

End meeting (¢]+[\]

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

9/159

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html

Adobe Connect Interface

Sharing Screen & Applications

vy

[Share My Screen>> Application tab >> Terminal] for Terminal

[Share menu >> Change View>> Zoom in] for mismatch of screen
size/resolution (Participants)

(Presenter) Change to 75% and back to 100% (solves
participants with smaller screen image overlap)

Leave the application on the original display

Beware blued hatched rectangles — from other (hidden)
windows or contextual menus

Presenter screen pointer affects viewer display —
beware of moving the pointer away from the application

First time: [System Preferences)) Security & Privacy)) Privacy)

Accessibility

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

10/159

https://en.wikipedia.org/wiki/Terminal_(macOS)

Adobe Connect

Ending a Meeting

>

>
>
>
>

Notes for the tutor only
Student: [Meeting>> Exit Adobe Connect]

Tutor:
Recording [Meeting)) Stop Recording] v/
Remove Participants Meeting)) End Meeting. .. | v
> Dialog box allows for message with default message:
» The host has ended this meeting. Thank you for
attending.
Recording availability In course Web site for joining
the room, click on the eye icon in the list of recordings
under your recording — edit description and name

Meeting Information [Meeting>> Manage Meeting Information] —
can access a range of information in Web page.

Delete File Upload [Meeting>> Manage Meeting Information>
2 Uploaded Content tab] select file(s) and click

Attendance Report see course Web site for joining
room

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings
Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

11/159

Adobe Connect

Invite Attendees

>

Provide Meeting URL [Menu>> Meeting>> Manage Access & Entry>
Y Invite Participants. ... |

Allow Access without Dialog

9 Manage Meeting Information| provides new browser window
with Meeting Information (Tab bar)) Edit Information)

Check Anyone who has the URL for the meeting can
enter the room

Default Only registered users and accepted guests may
enter the room

Reverts to default next session but URL is fixed

Guests have blue icon top, registered participants have
yellow icon top — same icon if URL is open

See Start, attend, and manage Adobe Connect meetings
and sessions

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

12/159

https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html
https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html

Adobe Connect

Entering a Room as a Guest (1)

» Click on the link sent in email from the Host
> Get the following on a Web page

> As Guest enter your hame and click on

m Adobe Connect

M269-21) Online tutorial room
London/SE (1,13) CG [2311] (M269-21))

()

Guest Registered User
Name

Guest Name

By entering a Name & clicking "Enter Room’, you agree that
you have read and accept the Terms of Use & Privacy_Policy

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

13/159

Adobe Connect

Entering a Room as a Guest (2)

> See the Waiting for Entry Access for Host to give
permission

4 Adobe Connect

Waiting for Entry Access

This is a private meeting. Your request to enter has

been sent to the host. Please wait for a response.

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting

Layouts

Chat Pods
Web Graphics
Recordings

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

14/159

Adobe Connect

Entering a Room as a Guest (3)

> Host sees the following dialog in Adobe Connect and

grants access

Guest entry

Guest Name (guest)

Allow everyone

(]

1 guest would like to enter the room. Do you want
to allow or deny entry to incoming guests?

9 0 =

Denyeveryone Close

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting

Layouts

Chat Pods
Web Graphics
Recordings

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

15/159

Adobe Connect

Layouts

>

v

v

Creating new layouts example Sharing layout

[Menu>> Layouts>> Create New Layout. ..] [Create a New Layout dialog>

) Create a new blank layout] and name it PMolyMain

New layout has no Pods but does have Layouts Bar open
(see Layouts menu)

Pods

(Menu) Pods) Share)) Add New Share] and resize/position —
initial name is Share n — rename PMolyShare

Rename Pod [Menu>> Pods>> Manage Pods. . . } [Manage Pods>
> Select>> Rename] or [Double-click & rename]

Add Video pod and resize/reposition
Add Attendance pod and resize/reposition

Add Chat pod — rename it PMolyChat — and
resize/reposition

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

16/159

Adobe Connect

Layouts

» Dimensions of Sharing layout (on 27-inch iMac)
» Width of Video, Attendees, Chat column 14 cm
> Height of Video pod 9 cm
> Height of Attendees pod 12 cm
> Height of Chat pod 8 cm
» Duplicating Layouts does not give new instances of
the Pods and is probably not a good idea (apart from
local use to avoid delay in reloading Pods)

» Auxiliary Layouts name PMolyAux0On

> Create new Share pod
> Use existing Chat pod
> Use same Video and Attendance pods

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

17/159

Adobe Connect

Chat Pods

>

vy

vy

Format Chat text
[Chat Pod >> menu icon>> My Chat CoIor]

Choices: Red, Orange, Green, Brown, Purple, Pink, Blue,
Black

Note: Color reverts to Black if you switch layouts
[Chat Pod>> menu icon>> Show Timestamps]

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

18/159

Graphics Conversion
PDF to PNG/JPG

» Conversion of the screen snaps for the installation of
Anaconda on 1 May 2020

» Using GraphicConverter 11

> > Convert & Modify>> Conversion>> Convert]

> Select files to convert and destination folder

> Click on [Start selected Function] or [$8]+(<2)

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings
Sharing Screen &
Applications
Ending a Meeting
Invite Attendees
Layouts
Chat Pods
Web Graphics
Recordings

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

19/159

Adobe Connect Recordings

Exporting Recordings

v

VYV Vv VvV VvV VvV VvVYVYyy

[Menu bar>> Meeting>> Preferences >> Video]

(Aspect ratio)) Standard (4:3)] (not Wide screen (16:9) default)
(Video quality)) Full HD] (1080p not High default 480p)
Recording [Menu bar)) Meeting)) Record Session | v/

Export Recording

[Menu bar>> Meeting>> Manage Meeting Information]

[New window>> Recordings>> check Tutorial>> Access Type button

(check Public)) check Allow viewers to download|

Download Recording
[New window>> Recordings>> check Tutorial>> Actions>> Download File

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings
Sharing Screen &
Applications
Ending a Meeting
Invite Attendees
Layouts
Chat Pods
Web Graphics
Recordings

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

20/159

Graph Algorithms O aaritms
Definitions Phil Molyneux
Agenda

» A Graph, G, consists of a pair: a set of vertices, V, and a

Adobe Connect

set of edges, E, where an edge (u, v) represents a
connection between two vertices, u and v

Equivalently, a graph is a set of objects together with a
relation over that set

Edges may have direction — that is, the relation is not
symmetric — a graph with directed edges is called a
digraph

Informally, graphs are represented as diagrams (see
below)

If G=(V,E)is a weighted digraph then there is a
function w :: E — R which maps edges to real numbers.

If e = (u, v) we write w(u, v) for w(e)

M269 Graph
Algorithms
Graph Definitions
Graph Representation

Algorithm
Descriptions &
Implementations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms
Future Work

21/159

Graph Algorithms

Example Digraph

1

B
7
s 3| |2 8
2
A

5

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect
M269 Graph
Algorithms

Graph Representation

Algorithm
Descriptions &
Implementations

Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

22/159

Graph Algorithms

Graph Representation

» What operations do we want on graphs ?

» How can we implement a representation of graphs and
the operations efficiently ?

» Common representations

> Adjacency list — a linear structure holds every vertex
together with a list of successor vertices and the weights
of the successor edges.

> Adjacency matrix — 2 dimensional array of values of
dimension |V| X |V| where both coordinates u and v are
vertices and the entry (u, v) is the weight of the edge (if
it exists)

» Additional points:

> A vertex may have other data: name, label with data
(shortest path predecessors, distance, ...)

> An edge may have other data: weight, status (on
shortest path, minimum spanning tree, ...)

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms
Graph Definitions
Graph Representation

Algorithm
Descriptions &
Implementations

Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms
Future Work

23/159

Graph Algprithms

Activity 1 Graph Operations

> In the space below give a graph operation indicating
whether it is a creator, inspector or modifier and give
its pre and post conditions

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms
Graph Definitions
Graph Representation

Algorithm
Descriptions &
Implementations

Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

24/159

Graph Algprithms

Answer 1 Graph Operations

» Answer 1 Graph Operations — see next slide

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms
Graph Definitions

Algorithm
Descriptions &
Implementations

Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

25/159

Graph Algorithms

Graph Operations 01

>
>

emptyGraph returns an empty graph

mkGraph takes a list of vertices, and a list of edges and
returns a graph

isEmptyGraph takes a graph and returns True if and
only if the graph is empty.

vertices takes a graph and returns the vertices

edges takes a graph and returns the edges

succlLists takes a graph and returns a list of pairs of
vertices and lists of successor edges

predLists takes a graph and returns a list of pairs of
vertices and lists of predecessor edges

startVertices takes a graph and returns a list of vertices
with no predecessors

endVertices takes a graph and returns a list of vertices
with no successors

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms
Graph Definitions
Graph Representation

Algorithm
Descriptions &
Implementations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms
Future Work

26/159

Graph Algorithms

Graph Operations 02

> removeVertex takes a vertex and a graph and returns a
graph with the vertex removed.

» Further service functions:

> esRemoveV takes a vertex and a list of edges and returns
the list of edges with the vertex removed.

> esStartV takes a vertex and a list of edges and returns
the list of edges where the given vertex is the start of an
edge

> esEndV takes a vertex and a list of edges and returns the
list of edges where the given vertex is the end of an edge

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms
Graph Definitions
Graph Representation

Algorithm
Descriptions &
Implementations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

27/159

Graph Algorithms

Graph Representation 01

» Adjacency matrix Assign a unique label to each
vertex and construct an n x n matrix of values in which
(i,j) is x if (i,j) € E and x is its label, (i, /) is 0 and all
other entries are o

» The adjacency matrix for the previous example digraph

IS:

ONw>»wun

83838 8ow

g g NvNO N>

g 3 owNm

NO—03 0

D

o~ g B

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms
Graph Definitions
Graph Representation

Algorithm
Descriptions &
Implementations

Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

28/159

Graph Algorithms

Graph Representation 02

>

>

The explicit adjacency list or matrix representations are
biased towards the procedural view of programming.
A functional view looks for an inductive definition (as
we had with trees)
Functional view:

> A graph is either the empty graph or

> agraph extended by a new node v together with its label

and with edges to those of v’s successors and
predecessors that are already in the graph

See FGL — A Functional Graph Library and Erwig (2001)

M269 Python examples use adjacency lists to represent
graphs.

The Haskell examples in these notes use a simple (but
inefficient) representation to illustrate the algorithms.

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms
Graph Definitions
Graph Representation

Algorithm
Descriptions &
Implementations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

29/159

http://web.engr.oregonstate.edu/~erwig/fgl/

Algorithm Descriptions & Implementations

Overview

» The algorithms are described in a mix of Structured
English, Python and Haskell

» The Python and Haskell code does not use any
advanced features but may use some features not
mentioned in M269

» In Python the code may use:

> List comprehensions (tutorial), List comprehensions
(reference) — a neat way of expressing iterations over a
list, came from Miranda
» Named tuples — a Factory Function for tuple with named
fields — quick & dirty objects
» The Haskell syntax is defined as it is used — novel
concepts may be:

> Algebraic Data Types — just name your user defined
data type and name its elements — magic!

> Explicit type specifications — Haskell has a very
powerful type system that can help spot errors.

> List comprehensions — as above

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm

Descriptions &

Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

30/159

https://en.wikipedia.org/wiki/Structured_English
https://en.wikipedia.org/wiki/Structured_English
https://docs.python.org/3/
https://www.haskell.org/documentation
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/reference/expressions.html#displays-for-lists-sets-and-dictionaries
http://www.miranda.org.uk
https://docs.python.org/3/library/collections.html#collections.namedtuple
https://en.wikipedia.org/wiki/Algebraic_data_type
https://en.wikibooks.org/wiki/Haskell/Type_basics
https://en.wikipedia.org/wiki/List_comprehension

List Comprehensions
Python

> List Comprehensions provide a concise way of

>

>

performing calculations over lists (or other iterables)
Example: Square the even numbers between 0 and 9

Python3>>> [x #% 2 for x in range(10) if x % 2 == 0]
[0, 4, 16, 36, 64]
Python3>>> [(x y) for x 1in range(4)
for y in range(4)
if x % 2 ==
. and y % 3 == 0]
[(0, 0), (O, 3), (2, 0), (2, 3)]
Python3>>>

In general

[expr for targetl in iterablel if condl
for target2 in iterable2 if cond2 ...
for targetN in iterableN if condN]

> Lots example usage in the algorithms below

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

31/159

List Comprehensions
Haskell

> List Comprehensions provide a concise way of
performing calculations over lists

> Example: Square the even numbers between 0 and 9

GHCi> [xA2 | x <- [0..9], x ‘mod‘ 2 == 0]
[0,4,16,36,64]
GHCi>

> In general

[expr | quall, qual2,..., qualN]

» The qualifiers qual can be

» Generators pattern <- list
> Boolean guards — acting as filters

» Local declarations with Tet decls for use in expr and

later generators and boolean guards

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

32/159

List Comprehension Exercises
Activity 2 (a) Stop Words Filter

11
12

16
17
18
19

21

» Stop words are the most common words that most
search engines avoid: 'a’,’an’,’the’, ’that’,...

» Using list comprehensions, write a function
filterStopWords that takes a list of words and filters
out the stop words

» Here is the initial code

sentence \
= "the_quick_brown_fox_jumps_over_the_lazy dog"

words = sentence.split()

wordsTest \
= (words == [’the’, ’quick’, ’brown’
, “fox’, ’jumps’, ’over’
"the’, ’Tazy’, ’dog’l])

stopWords \
= [’a’,’an’, the’,’ ’that’]

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

33/159

https://en.wikipedia.org/wiki/Stop_words

List Comprehension Exercises
Activity 2 (a) Stop Words Filter

11 sentence \
12 = "the_quick_brown_fox_jumps_over_the_lazy dog"

14 words = sentence.split()

16 wordsTest \

17 = (words == [’the’, ’'quick’, ’brown’
18 , 'fox’, ’jumps’, ’over’
19 , 'the’, ’lazy’, ’dog’])

21 stopWords \
22 = [’a’,’an’,’ the’,’ that’]

» Notice the Python Explicit line joining with (\<n1>) and
Python Implicit line joining with ((...))

» The backslash (\) must be followed by an end of line
character (<n1>)

» The (') symbol represents a space (see Unicode
U+2423 Open Box)

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

34/159

https://docs.python.org/3/reference/lexical_analysis.html#explicit-line-joining
https://docs.python.org/3/reference/lexical_analysis.html#implicit-line-joining
https://en.wikipedia.org/wiki/Backslash
https://en.wikipedia.org/wiki/Newline
https://en.wikipedia.org/wiki/Newline

List Comprehension Exercises
Activity 2 (b) Transpose Matrix

» A matrix can be represented as a list of rows of
numbers

> We transpose a matrix by swapping columns and rows

» Here is an example

38 matrixA \

39 = [[1, 2, 3, 4]

40 ,[5, 6, 7 ,8]

41 ,[9, 10, 11, 12]]
43 matATr \

44 = [[1, 5, 9]

45 ,[2, 6, 10]

46 ,[3, 7, 11]

47 ,[4, 8, 12]1]

» Using list comprehensions, write a function transMat,
to transpose a matrix

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

35/159

List Comprehension Exercises
Activity 2 (c) List Pairs in Fair Order

68
69
70
71

72

74

> Write a function which takes a pair of positive integers
and outputs a list of all possible pairs in those ranges

> If we do this in the simplest way we get a bias to one

argument

> Here is an example of a bias to the second argument

yBiasLstTest \
= (yBiasListing(5,5)
== [(0, 0),

©, 2),

0, 3), (0, 4

, (1, 0, (1, 1, @, 2y, @1, 3), A, 4
@2, 0, 2, 1, @, 2), @, 3), 2, D

LG, 0, G D, G2, G
, (4, 00, (4, D, (4, 2, (4,

3), 3, 4
3, (4, HD

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &

Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

36/159

List Comprehension Exercises
Activity 2 (c) List Pairs in Fair Order

» Rewrite the function which takes a pair of positive

integers and outputs a list of all possible pairs in those
ranges

» The output should treat each argument fairly — any

initial prefix should have roughly the same number of
instances of each argument

» Here is an example output

81 fairLstTest \

82 = (fairListing(5,5)

83 == [(0,

84 , (0, 1, (@1, 0

85 , (0, 2), (1, D, @2, 0)

86 , (0, 3), (1, 2), (2, 1), 3, 0)

87 , (0, 4, @, 3, 2, 2, G, D, (4, 0D

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &

Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

37/159

List Comprehension Exercises
Activity 2 (c) List Pairs in Fair Order

100

» Rewrite the function which takes a pair of positive

integers and outputs a list of lists of all possible pairs in

those ranges

» The output should treat each argument fairly — any
initial prefix should have roughly the same number of
instances of each argument — further, the output
should be segment by each initial prefix (see example

below)

» Here is an example output

fairLstATest \
= (fairListingA(5,5)
[rco, 0]

[¢co, 1, (1, 0]

[co, 2y, (1, 1, (2, 0)]

[co, 3, 1, 2y, (2, 1, @3, 0]

[0, 4, @, 3, 2, 2, G, D, 4, OID

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &

Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

38/159

List Comprehension Exercises
Answer 2 (a) Stop Words Filter

> Answer 2 (a) Stop Words Filter
> Write here:

P Answer 2 continued on next slide

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm

Descriptions &
Implementations

Python Graph
Representation

Python Graph
Representation from 21)

Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms
Future Work

39/159

List Comprehension Exercises

Answer 2 (a) Stop Words Filter

24
25
26
27
28

31
32
33
34

> Answer 2 (a) Stop Words Filter

def filterStopWords(words)
nonStopWords \

= [word for word 1in words
if word not in stopWords]
return nonStopWords

== ['quick’,
» 'Jjumps’,

filterStopWordsTest \
= filterStopWords(words) \

"brown’,
‘over’,

’ fox’
"lazy’,

"dog’]

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph

Representation from 21)
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

40/159

List Comprehension Exercises

Answer 2 (b) Transpose Matrix

» Answer 2 (b) Transpose Matrix
> Write here:

P Answer 2 continued on next slide

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm

Descriptions &
Implementations

Python Graph
Representation

Python Graph
Representation from 21)

Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms
Future Work

41/159

List Comprehension Exercises

Answer 2 (b) Transpose Matrix

» Answer 2 (b) Transpose Matrix

49 def transMat(mat)

50 rowLen = lTen(mat[0])

51 matTr \

52 = [[row[i] for row in mat] for i in range(rowLen)]
53 return matTr

55 transMatTestA \
56 = (transMat(matrixA)
57 == matATr)

» Note that a list comprehension is a valid expression as
a target expression in a list comprehension

» The code assumes every row is of the same length

P Answer 2 continued on next slide

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

42/159

List Comprehension Exercises

Answer 2 (b) Transpose Matrix

> Note the differences in the list comprehensions below

38 matrixA \

39 = [[1, 2, 3, 4]
40 ,[5, 6, 7 ,8]
41 ,[9, 10, 11, 12]]

Python3>>> [[row[i] for row in matrixA]

C for i 1in range(4)]

[r, 5, 91, 2, 6, 101, 3, 7, 111, [4, 8, 12]1]
Python3>>> [row[i] for row in matrixA

Ce for i in range(4)]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
Python3>>> [row[i] for i in range(4)

Ce for row in matrixA]

1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8, 12]
Python3>>> [[row[i] for i 1in range(4)]

Ce for row in matrixA]

[ri, 2, 3, 41, I[5, 6, 7, 81, [9, 10, 11, 12]]

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

43/159

List Comprehension Exercises

Answer 2 (b) Transpose Matrix

» Answer 2 (b) Transpose Matrix

» The Python NumPy package provides functions for
N-dimensional array objects

> For transpose see numpy.ndarray.transpose

Python3>>>
Python3>>>
Python3>>>
array([[1,

[3,
Python3>>>
Python3>>>
array([[1,

(2,
Python3>>>
array([[1,

(3,
Python3>>>
@, 2)

import numpy as np
ar = np.array([[1,2],[3,411
ar

2],

41D

arT = ar.transpose()
arT

3],

41D

ar

2 g

41D

ar.shape

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

44/159

https://www.numpy.org/
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.transpose.html

List Comprehension Exercises

Answer 2 (c) List Pairs in Fair Order

» Answer 2 (c) List Pairs in Fair Order — first version
» Write here

yBiasLstTest \
= (yBiasListing(5,5)
== [(0, 0), (O, L), (0, 2), (0, 3), (0, ¥

a, o0, a, 1, @, 2, @, 3, 4, 9
@2, 0, (2, », @, 2, (2, 3), 2, D
3,0, 3, D, G, 2, G, 3, G, DN
4, 0, (4, 1, (4, 25, (4, 3), (4, HD

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

45/159

List Comprehension Exercises

Answer 2 (c) List Pairs in Fair Order

» Answer 2 (c) List Pairs in Fair Order
» This is the obvious but biased version

63 def yBiasListing(xRng,yRng) :
64 yBiasLst \

65 = [(x,y) for x in range(xRng)
66 for y in range(yRng)]
67 return yBiaslLst

69 yBiasLstTest \

70 = (yBiasListing(5,5)

71 == [(0, 0), (0, 1), (0, 2), (0O, 3), (0, 4

72 , (1, 0, (1, », @, 2, a, 3, a, »
73 , 2, 00, 2, 1, 2, 2, @, 3, @, D
74 , 3, 00, 3, 1, G, 2), @3, 3, G, D
75 , (4, 0, 4, D, (4,2, (4, 3), (4, HD

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

46/159

List Comprehension Exercises

Answer 2 (c) List Pairs in Fair Order

» Answer 2 (c) List Pairs in Fair Order — second version
» Write here

fairLstTest \

= (fairListing(5,5)
== [(0, 0)
, (0, 1), (1,
, 0, 2), (1,
, (0, 3), (1,
, (0, 4, @4,

0)

1, (@2, 0

2), (2, 1), 3, 0

3, @2, 2, B, D, (4, OD

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph

Representation from 21)
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms
Future Work

47/159

List Comprehension Exercises

Answer 2 (c) List Pairs in Fair Order

» Answer 2 (c) List Pairs in Fair Order — second version
» This works by making the sum of the coordinates the

same for each prefix

def fairListing(xRng,yRng) :

fairLst \
= [(x,d-x)

for d in range(yRng)
for x in range(d+1)]

return fairlLst

fairLstTest \

= (fairListing(5,5)
== [(0, 0)

, (0,

1, @, 0

, (0, 2), (1, 1), (2, 0
, (0, 3, 1, 2, 2, D, 3, 0
, (0, 4, 1, 3, @, 2), 3, 1, (4, 0]

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

48/159

List Comprehension Exercises

Answer 2 (c) List Pairs in Fair Order

» Answer 2 (c) List Pairs in Fair Order — third version

» Write here

fairLstATest \
= (fairListingA(5,5)
== [[(0, 0)]

[co, 1, (@,
[co, 23, (,
[co, 3y, (,
[, 4, @a,

0]
1, (2, 0]

2), 2, 1), (3, 0]
3, 2,2, G, D,

4, 01D

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph

Representation from 21)
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

49/159

List Comprehension Exercises

Answer 2 (c) List Pairs in Fair Order

91
92
93
94
95

97

98

99
100
101
102
103

» Answer 2 (c) List Pairs in Fair Order — third version
» The inner loop is placed into its own list comprehension

def fairListingA(xRng,yRng) :

fairLstA \

= [[(x,d-x) for x in range(d+1)]
for d in range(yRng)]
return fairLstA

fairLstATest \

= (fairListingA(5,5)
== [[(0, 0)]

,» LCO,
, LCO,
,» [C0,
, [0,

n, a,
2), 1,
3, @,
4), @,

0]

1, (2, 0]

2), (2, 1), 3, 0)]
3, @, 2, G, D,

4, 01D

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

50/159

Algorithm Descriptions & Implementations

Python & Haskell Tutorials

» Python tutorials:

>
>
>
>

Beginner’s Python Tutorial

Python Programming

Non-Programmer’s Tutorial for Python 3
Non-Programmer’s Tutorial for Python 2.6

» Haskell Tutorials:

v

>
>
>
>

Haskell Wikibook

What | Wish | Knew When Learning Haskell
Haskell Meta-tutorial

Learn You a Haskell for Great Good

Real World Haskell

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

51/159

https://en.wikibooks.org/wiki/A_Beginner%27s_Python_Tutorial
https://en.wikibooks.org/wiki/Python_Programming
https://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_3
https://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_2.6
https://en.wikibooks.org/wiki/Haskell
http://dev.stephendiehl.com/hask/
https://wiki.haskell.org/Meta-tutorial
http://learnyouahaskell.com
http://book.realworldhaskell.org

Graph Representation ot

Python Phil Molyneux

Agenda
7from collections import namedtuple Adobe Connect

9Vertex = namedtuple(’Vertex’ még?iﬁ;’;h
10 ,[’vtxName’])

Algori.thl.'n
12Edge = namedtuple(’Edge’ P,ﬁ;fé;?é'ﬁtliiins
13 5 [’startVtx’ 5 “endVtx’]) List Comprehensions

Python Graph

Representation

» This is from Python/M269TutorialGraphs2020].py Rl ——
> Reserved identifiers are shown in this color eplteg G S

. Dijkstra’s Algorithm
» User defined data constructors such as Vertex and

Edge are shown in that color Greedy Algorithms
> Vertex is a named tuple with named fields — a quick Refoe2 P
and dirty object — recommended by Guido van Rossum

» Health Warning: these notes may not be totally
consistent with syntax colouring.

Prim’s Algorithm

52/159

https://plus.google.com/115212051037621986145/posts/HajXHPGN752

Example Graphs

Python

17ta = Vertex('TA’)
18th = Vertex('TB’)
19tc = Vertex('TC’)
20td = Vertex(’TD’)
21te = Vertex('TE’)
22tf = Vertex('TF’)
23tg = Vertex('TG’)
24th = Vertex(’TH’)

26eg01Vs = [ta,tb,tc,td,te,tf,tg,th]

28eg01Es = [(ta,tb), (tg,tb), (tg,th), (tb,tc)
, (tb, tH), (tf, th), (tc, td), (td, te), (te, th)]

29

31eg01Gr = (eg01Vs, egOlEs)
33eg02Es = [(ta,tb), (tb,tc), (tc,ta)] # cycles

35eg02Gr = ([ta,tb,tc], eg02Es)

» Used ordinary tuples for edges here

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

53/159

Graph Service Functions
Python (1)

39def vertices(gr):
40 return gr[0]

42def edges(gr):
43 return gr[1]

45cdef esStartV(v,es):
46 return [edge for edge in es if edge[0] == v]

48def esEndV(v,es):
49 return [edge for edge in es if edge[l] == v]

s1def esRemoveV(v,es):
52 return [edge for edge 1in es
53 if edge[0] !'= v and edge[1l] != v]

> Choice of service function (or class methods) is a design

issue — a bit of a fudge here (to avoid complexity in
these notes)

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph

Representation from 21)
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

54/159

Graph Service Functions
Python (2)

ssdef succlLists(gr):
s6 return [(v, esStartV(v, (edges(gr))))
57 for v in vertices(gr)]

sodef predLists(gr):
60 return [(v, eskEndV(v, (edges(gr))))
61 for v in vertices(gr)]

63def isEmptyGraph(gr):
64 return gr[0] == [] and gr[1] == []

e6def startVertices(gr):
67 return [pLst[0] for pLst in predLists(gr)
68 if pLst[1l] == []]

7odef endVertices(gr):
71 return [sLst[0] for sLst in succlLists(gr)
72 if sLst[1] == []]

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation from 21)

Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

55/159

Graph Service Functions
Python (3)

7adef removeVertex(v, gr):
75 vs = gr[0]

76 vsl = vs[:]

77 if v in vsl:

78 vsl.remove(v)

79 es = gr[1]

80 esl = esRemoveV(v,es)
81 return (vsl,esl)

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions
Python Graph

» Note that vs1 at line 76 is a (shallow) copy of vs

> If vertices had more structure we might have to write a
function to do a proper copy

Python Graph
Representation from 21)

Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

56/159

Python Graph Representation from 21]

Graph Representation Choices

> A graph is a pair of sets of nodes and edges, possibly

vV vyVvyy

with information attached to nodes and edges such as
labels, weights, durations or distances — this is the
mathematical view of graphs

Algorithms also need to consider representations for
the efficiency of the operations — M269 discusses
several graph representations:

Edge list representation
Adjacency matrix representation
Adjacency list representation

The implementation is given for directed graphs or
digraphs and undirected graphs using adjacency list
representations

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs
Enumerations:
Subsequences,
Combinations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

57/159

Python 21J Adjacency List Representation

DiGraph Class

» The following code is from

M269TutorialGraphs20211Digraph.py which is from
m269_digraph.py modified only for layout

10import networkx
11 from typing import Hashable

13class DiGraph:
14 """A directed graph with hashable node objects.

16 Edges are between different nodes.

17 There’s at most one edge from one node to another.
18 "

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Graph Representation
Choices

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs
Enumerations:

Subsequences,

Combinations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

58/159

M269TutorialGraphs2021JDigraph.py
m269_digraph.py

DiGraph Class

Constructor, Inspectors

20
21

23
24
25

27
28

30
31
32

def __init__(self):
self.out = dictQ # a map of nodes to their out-neighbours

def has_node(self, node: Hashable) -> bool:

"""Return True if and only if the graph has the node."""
return node in self.out

def has_edge(self, start: Hashable, end: Hashable) -> bool:
"""Return True if and only if edge start -> end exists.

win

Preconditions: self.has_node(start) and self.has_node(end)

return end in self.out[start]

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Graph Representation
Choices

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs
Enumerations:
Subsequences,
Combinations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

59/159

DiGraph Class

Add Node,Edge

w
~

35

37
38
39

41
42

44

46
47
48
49

def add_node(self, node: Hashable) -> None:
"""Add the node to the graph.

Preconditions: not self.has_node(node)

i

self.out[node] = set()

def add_edge(self, start: Hashable, end: Hashable) -> None:
"""Add edge start -> end to the graph.

If the edge already exists, do nothing.
Preconditions:

self.has_node(start) and self.has_node(end) and start != end

i

self.out[start].add(end)

» Note add is a set method that does not raise an error if
the argument is a node already present

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Graph Representation
Choices

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs
Enumerations:

Subsequences,

Combinations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

60/159

DiGraph Class

Remove Node,Edge

51
52

54
55
56
57
58

60
61

63

65

66
67

def remove_node(self, node: Hashable) -> None:
"""Remove the node and all its attached edges.

Preconditions: self.has_node(node)

i

self.out.pop(node)
for start in self.out:
self.remove_edge(start, node)

def remove_edge(self, start: Hashable, end: Hashable) -> None:
"""Remove edge start -> end from the graph.

If the edge doesn’t exist, do nothing.
Preconditions: self.has_node(start) and self.has_node(end)

self.out[start].discard(end)

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions
Python Graph
Representation

Python Graph
Representation from 21)

Graph Representation

Choices

DiGraph Class

Weighted DiGraph

Class

Undirected Graph Class
Weighted Undirected
Graph Class

Drawing Graphs

» Note discard is a set method that does not raise an
error if the argument is a node that is not present

» pop is adict and a set operation

> Note this version of remove_node has a bug — remove
the edges to the node first

Subsequences,
Combinations

Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

61/159

DiGraph Class

Get Nodes,Edges

69
70
71

72
73
74

76
77
78
79
80
81

82

def nodes(self) -> set:
"""Return the graph’s nodes."""
all_nodes = set()
for node in self.out:
all_nodes.add(node)
return all_nodes

def edges(self) -> set:
"""Return the graph’s edges as a set of pairs (start,
all_edges = set()
for start in self.out:
for end 1in self.out[start]:
all_edges.add((start, end))
return all_edges

end). """

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Graph Representation
Choices

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs
Enumerations:

Subsequences,

Combinations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

62/159

DiGraph Class

Out Neighbours, Degrees

84
85

87
88
89

91
92

94
95
96

def out_neighbours(self, node: Hashable) -> set:
"""Return the out-neighbours of the node.

Preconditions: self.has_node(node)

return set(self.out[node]) # return a copy

def out_degree(self, node: Hashable) -> int:

"""Return the number of out-neighbours of the node.

Preconditions: self.has_node(node)

win

return len(self.out[node])

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Graph Representation
Choices

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs
Enumerations:
Subsequences,
Combinations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

63/159

DiGraph Class

In Neighbours, Degrees

98
99

101
102
103
104
105
106
107

109
110

112
113
114

def in_neighbours(self, node: Hashable) -> set:
"""Return the in-neighbours of the node.

Preconditions: self.has_node(node)

i

start_nodes = set()
for start in self.out:
if self.has_edge(start, node):
start_nodes.add(start)
return start_nodes

def in_degree(self, node: Hashable) -> int:
"""Return the number of in-neighbours of the node.

Preconditions: self.has_node(node)

i

return len(self.in_neighbours(node))

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Graph Representation
Choices

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

Subsequences,
Combinations

Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

64/159

DiGraph Class

Neighbours, Degree

116
117

119
120
121

123
124

126
127
128

def neighbours(self, node: Hashable) -> set:
"""Return the in- and out-neighbours of the node.

Preconditions: self.has_node(node)

i

return self.out_neighbours(node).union(self.in_neighbours(node))

def degree(self, node: Hashable) -> int:
"""Return the number of in- and out-going edges of the node.

Preconditions: self.has_node(node)

win

return self.in_degree(node) + self.out_degree(node)

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Graph Representation
Choices

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs
Enumerations:

Subsequences,

Combinations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

65/159

DiGraph Class

Draw DiGraph

130
131

132
133
134
135

136

137

138

139
140

def draw(self) -> None:
"""Draw the graph."""
if type(self) == DiGraph:
graph = networkx.DiGraph()
else:
graph = networkx.Graph(Q
graph.add_nodes_from(self.nodes())
graph.add_edges_from(self.edges())
networkx.draw(graph, with_labels=True,
node_size=1000, node_color="Tlightblue’,
font_size=12, font_weight="bold”)

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs
Enumerations:
Subsequences,
Combinations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

66/159

DiGraph Class

Breadth First Search

142 from collections import deque

144def bfs(graph: DiGraph, start: Hashable) -> DiGraph:
145 """Return the subgraph traversed by a breadth-first search.

147 Preconditions: graph.has_node(start)

148 """

149 # changes from traversed function noted in comments

150 visited = DiGraph(Q)

151 visited.add_node(start)

152 unprocessed = deque() # set -> deque
153 for neighbour in graph.out_neighbours(start):

154 unprocessed.append((start, neighbour)) # add -> append
155 while Ten(unprocessed) > 0:

156 edge = unprocessed.popleft() # pop -> popleft
157 previous = edge[0]

158 current = edge[1]

159 if not visited.has_node(current):

160 visited.add_node(current)

161 visited.add_edge(previous, current)

162 for neighbour 1in graph.out_neighbours(current):

163 unprocessed.append((current, neighbour)) # add -> append

164 return visited

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs
Enumerations:
Subsequences,
Combinations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

67/159

DiGraph Class

Depth First Search

166 def dfs(graph: DiGraph, start: Hashable) -> DiGraph:

167

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

win

Return the subgraph traversed by a depth-first search.

Preconditions: graph.has_node(start)
visited = DiGraph()
visited.add_node(start)
unprocessed = [] # deque -> Tist
for neighbour 1in graph.out_neighbours(start):
unprocessed.append((start, neighbour))
while len(unprocessed) > 0:
edge = unprocessed.pop()
previous = edge[0]
current = edge[1]
if not visited.has_node(current):
visited.add_node(current)
visited.add_edge(previous, current)
for neighbour in graph.out_neighbours(current):
unprocessed.append((current, neighbour))
return visited

popleft -> pop

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs
Enumerations:

Subsequences,

Combinations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

68/159

Weighted DiGraph Class

Initial Code, Add Node, Edge

187 import math

189class WeightedDiGraph(DiGraph):

190

192
193
194
195

197
198

200
201
202

204
205

207

209
210
211

212

"""A weighted directed graph with hashable node objects.

Edges are between different nodes.
There’s at most one edge from one node to another.
Edges have weights, which can be floats or integers.

o

def add_node(self, node: Hashable) -> None:
"""Add the node to the graph.

Preconditions: not self.has_node(node)

i

self.out[node] = dict() # a map of out-neighbours to weights

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions
Python Graph
Representation
Python Graph
Representation from 21)
Graph Representation
Choices
DiGraph Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs

def add_edge(self, start: Hashable, end: Hashable, weight: float) -> Némnesations

"""Add edge start -> end, with the given weight, to the graph.
If the edge already exists, set its weight.

Preconditions:
self.has_node(start) and self.has_node(end) and start != end

mwin

self.out[start] [end] = weight

Subsequences,
Combinations

Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

69/159

Weighted DiGraph Class

Weight, Remove Edge

214
215

217
218
219
220
221

222

224
225

227

229
230
231

232

i

def weight(self, start: Hashable, end: Hashable) -> float:

i

Preconditions: self.has_node(start) and self.has_node(end)
if self.has_edge(start, end):
return self.out[start][end]
else:

return math.inf

def remove_edge(self, start: Hashable, end: Hashable) -> None:
Remove edge start -> end from the graph.

If the edge doesn’t exist, do nothing.

Preconditions: self.has_node(start) and self.has_node(end)

win

if self.has_edge(start, end):
self.out[start].pop(end)

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

Return the weight of edge start -> end or infinity if it doesn’t exist.

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions
Python Graph
Representation
Python Graph
Representation from 21)
Graph Representation
Choices
DiGraph Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs
Enumerations:

Subsequences,

Combinations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

70/159

Weighted DiGraph Class

Weight, Remove Edge

234
235
236
237
238
239
240

242
243

245
246
247

def edges(self) -> set:
all_edges = set()
for start in self.out:
for (end, weight) 1in self.out[start].items():
all_edges.add((start, end, weight))
return all_edges

def out_neighbours(self, node: Hashable) -> set:
"""Return the out-neighbours of the node.

Preconditions: self.has_node(node)

win

return set(self.out[node].keys())

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

d t
Return the graph’s edges as a set of triples (start, end, Weightﬁfwsgonmc

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions
Python Graph
Representation
Python Graph
Representation from 21)
Graph Representation
Choices
DiGraph Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs
Enumerations:
Subsequences,
Combinations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

71/159

Weighted DiGraph Class

Draw
249 def draw(self) -> None:
250 """Draw the graph."""
251 if type(self) == WeightedDiGraph:
252 graph = networkx.DiGraph()
253 else:
254 graph = networkx.Graph(Q
255 graph.add_nodes_from(self.nodes())
256 for (nodel, node2, weight) in self.edges():
257 graph.add_edge(nodel, node2, w=weight)
258 pos = networkx.spring_Tlayout(graph)
259 networkx.draw(graph, pos, with_labels=True,
260 node_size=1000, node_color="Tlightblue’,
261 font_size=12, font_weight="bold")
262 networkx.draw_networkx_edge_labels(graph, pos,
263

edge_labels=networkx.get_edge_attributes(graph, 'w’))

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs
Enumerations:

Subsequences,

Combinations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

72/159

Weighted DiGraph Class

Shortest Path: Dijkstra (1)

265 from heapq import heappush, heappop

267def dijkstra(graph: WeightedDiGraph, start: Hashable) ->

268

270
271

272
273
274
275
276

"""Return a shortest path from start to each reachable node.

Preconditions:

- graph.has_node(start)

- node objects are comparable
- no weight is negative
visited = WeightedDiGraph()
visited.add_node(start)

P Shortest Path Dijkstra continued on next slide

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

WeightedDiGrap269 Graph

[gorithms

Algorithm
Descriptions &
Implementations
List Comprehensions
Python Graph
Representation
Python Graph
Representation from 21)
Graph Representation
Choices
DiGraph Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs
Enumerations:
Subsequences,
Combinations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

73/159

Weighted DiGraph Class

Shortest Path: Dijkstra (2)

278
279
280
281

282
283

285
286
287

293
294
295
296
297
298
299
300

create min-priority queue of tuples (cost, (A, B, weight))
cost is total weight from start to B via shortest path to A
unprocessed = [] # min-priority queue
for neighbour in graph.out_neighbours(start):
weight = graph.weight(start, neighbour)
heappush(unprocessed, (weight, (start, neighbour, weight)))

while len(unprocessed) > 0:
info = heappop(unprocessed)
cost = info[0]
edge = info[1]
previous = edge[0]
current = edge[1]
weight = edge[2]

if not visited.has_node(current):

visited.add_node(current)

visited.add_edge(previous, current, weight)

for neighbour 1in graph.out_neighbours(current):
weight = graph.weight(current, neighbour)
edge = (current, neighbour, weight)
heappush(unprocessed, (cost + weight, edge))

return visited

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs
Enumerations:

Subsequences,

Combinations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

74/159

Python 21J Adjacency List Representation

Undirected Graph Class

» The following code is from

M269TutorialGraphs2021JUngraph.py which is from
m269_ungraph.py modified only for layout

10 from typing import Hashable

12class UndirectedGraph(DiGraph):

13

15
16
17

o

'An undirected graph with hashable node objects.

There’s at most one edge between two different nodes.
There are no edges between a node and itself.

min

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Weighted Undirected
Graph Class

Drawing Graphs
Enumerations:

Subsequences,

Combinations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

75/159

M269TutorialGraphs2021JUngraph.py
m269_ungraph.py

Undirected Graph Class

Add and Remove Edge

19
20

22

24
25
26
27

29
30

32

34
35
36
37

def add_edge(self, nodel: Hashable, node2: Hashable) -> None:
"""Add an undirected edge nodel-node2 to the graph.

If the edge already exists, do nothing.

Preconditions: self.has_node(nodel) and self.has_node(node2)

mwin

super() .add_edge(nodel, node2)
super().add_edge(node2, nodel)

def remove_edge(self, nodel: Hashable, node2: Hashable) -> None:

i

Remove edge nodel-node2 from the graph.
If the edge doesn’t exist, do nothing.

Preconditions: self.has_node(nodel) and self.has_node(node2)

win

super() .remove_edge(nodel, node2)
super().remove_edge(node2, nodel)

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Weighted Undirected
Graph Class

Drawing Graphs
Enumerations:
Subsequences,
Combinations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

76/159

Undirected Graph Class

Edges, Neighbours

39
40

42
43
44
45
46
47
48
49
50

52
53

55
56
57

59
60

62
63
64

def edges(self) -> set:
"""Return the graph’s edges as a set of pairs.

Postconditions: for every edge A-B,
the output has either (A, B) or (B, A) but not both

i

all_edges = set()
for nodel in self.out:
for node2 1in self.out[nodel]:
if (node2, nodel) not in all_edges:
all_edges.add((nodel, node2))
return all_edges

def in_neighbours(self, node: Hashable) -> set:
"""Return all nodes that are adjacent to the node.

Preconditions: self.has_node(node)

i

return self.out_neighbours(node)

def neighbours(self, node: Hashable) -> set:
"""Return all nodes that are adjacent to the node.

Preconditions: self.has_node(node)

i

return self.out_neighbours(node)

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Weighted Undirected
Graph Class

Drawing Graphs
Enumerations:

Subsequences,

Combinations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

77/159

Undirected Graph Class

In Degree, Degree

66
67

69
70
71

73
74

76
77
78

def in_degree(self, node: Hashable) -> int:

i

Preconditions: self.has_node(node)

i

return self.out_degree(node)

def degree(self, node: Hashable) -> int:

"""Return the number of edges attached to the node.

Preconditions: self.has_node(node)

win

return self.out_degree(node)

Return the number of edges attached to the node.

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Weighted Undirected
Graph Class

Drawing Graphs
Enumerations:
Subsequences,
Combinations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

78/159

Weighted Undirected Graph Class

Initial Code

81

83
84
85
86

goclass WeightedUndirectedGraph(WeightedDiGraph):

"""A weighted undirected graph with hashable node objects.

There’s at most one edge between two different nodes.
There are no edges between a node and itself.
Edges have weights, which may be integers or floats.

mn

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Drawing Graphs
Enumerations:

Subsequences,

Combinations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

79/159

Weighted Undirected Graph Class

Add and Remove Edge

88
89

91

93
94
95
96

98
99

101

103
104
105
106

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

def add_edge(self, nodel: Hashable, node2: Hashable, weight: float) 2NN et

"""Add an edge nodel-node2 with the given weight to the graph.
If the edge already exists, do nothing.

Preconditions: self.has_node(nodel) and self.has_node(node2)

i

super().add_edge(nodel, node2, weight)
super().add_edge(node2, nodel, weight)

def remove_edge(self, nodel: Hashable, node2: Hashable) -> None:
"""Remove edge nodel-node2 from the graph.

If the edge doesn’t exist, do nothing.

Preconditions: self.has_node(nodel) and self.has_node(node2)

win

super() .remove_edge(nodel, node2)
super().remove_edge(node2, nodel)

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Drawing Graphs
Enumerations:
Subsequences,
Combinations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

80/159

Weighted Undirected Graph Class o garime !

Phil Mol
Edges il Molyneux
Agenda
108 deﬁntla’dges(seﬁ) -> set!:)) ﬁd be Connect
109 Return the graph’s edges as a set of triples (nodel, node2, weig 1:3.
M269 Graph
0.0 Algorithms
m Postconditions: for every edge A-B, g i
112 the output has either (A, B, w) or (B, A, w) but not both Algorithm
i Descriptions &
13 Implementations
114 aTI_edges = Set() List Comprehensions
15 for start in self.out: Python Graph
16 for (end, weight) in self.out[start].items(): ::::2":;‘:"
17 if (end, start, weight) not in all_edges: Representation from 21J
18 all_edges.add((start, end, weight)) Rt s
19 return all_edges !

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Drawing Graphs
Enumerations:
Subsequences,
Combinations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

81/159

Weighted Undirected Graph Class

In Neighbours, Neighbours, In Degree, Degree

121
122

124
125
126

128
129

131
132
133

135
136

138
139
140

142
143

145
146
147

def in_neighbours(self, node: Hashable) -> set:
"""Return all nodes that are adjacent to the node.

Preconditions: self.has_node(node)

wn

return self.out_neighbours(node)

def neighbours(self, node: Hashable) -> set:
"""Return all nodes that are adjacent to the node.

Preconditions: self.has_node(node)

i

return self.out_neighbours(node)

def in_degree(self, node: Hashable) -> int:
"""Return the number of edges attached to the node.

Preconditions: self.has_node(node)

mwin

return self.out_degree(node)

def degree(self, node: Hashable) -> int:
"""Return the number of edges attached to the node.

Preconditions: self.has_node(node)

i

return self.out_degree(node)

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Drawing Graphs
Enumerations:

Subsequences,

Combinations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

82/159

Weighted Undirected Graph Class

Minimum Spanning Tree: Prim (1)

149 from heapq import heappush, heappop

152

154
155
156
157
158
159
160

162
163
164
165

Preconditions:

- graph.has_node(start)
- graph is connected

- node objects are comparable

min

visited = WeightedUndirectedGraph()

visited.add_node(start)

unprocessed = []

for neighbour 1in graph.neighbours(start):
weight = graph.weight(start, neighbour)

heappush (unprocessed,

(weight, start, neighbour))

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda

Adobe Connect

15s1def prim(graph: WeightedUndirectedGraph, start: Hashable) -> WeightedUngﬁgﬁgﬁgﬂcraph
"""Return a minimum spanning tree of graph, beginning at start. g

Algorithm
Descriptions &
Implementations
List Comprehensions
Python Graph
Representation
Python Graph
Representation from 21)
Graph Representation
Choices
DiGraph Class
Weighted DiGraph
Class
Undirected Graph Class

Drawing Graphs

P Minimum Spanning Tree Prim continued on next slide

Subsequences,
Combinations

Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

83/159

Weighted Undirected Graph Class

Minimum Spanning Tree: Prim (2)

167
168
169
170
171
172
173
174
175
176
177
178

while len(unprocessed) > 0:

edge = heappop(unprocessed)

weight = edge[0]

previous = edge[1]

current = edge[2]

if not visited.has_node(current):
visited.add_node(current)
visited.add_edge(previous, current, weight)
for neighbour 1in graph.neighbours(current):

weight = graph.weight(current, neighbour)

heappush(unprocessed, (weight, current, neighbour))

return visited

> Note that the priority queue heapq does the work of
making the next smallest weight edge available — it is

always the first element of unprocessed

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs
Enumerations:

Subsequences,

Combinations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

84/159

https://docs.python.org/3/library/heapq.html

Drawing Graphs

Weighted DiGraph

>
>

The provided graph code gives two draw methods:

For Weighted DiGraph or Undirected Graph see
line 249, slide 72,

For Unweighted see line 130, slide 66,

NetworkX is a Python package for the creation,
manipulation and study of networks

Matplotlib is a Python library for creating static,
animated, and interactive visualizations

Matplotlib is used by NetworkX

Some of the examples in these notes explicitly use

savefig(fname) from matplotTib.pyplot to save the
current figure to an external file

see matplotlib.pyplot.savefig
see also matplotlib.pyplot.show

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs
Enumerations:
Subsequences,
Combinations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

85/159

https://networkx.org/documentation/stable/index.html
https://matplotlib.org/
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.savefig.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.show.html

Graphs and Greedy
Algorithms

Drawing Graphs

NetworkX, Matplotlib Phil Molyneux

» NetworkX Drawing reference introduction states that it
provides basic functionality for visualising graphs but
its main aim is to enable graph analysis

» The examples in M269 use the Matplotlib interface
commands

It mentions the tools Cytoscape, Gephi, Graphviz, and
for LaTeX typesetting, PGF/TikZ

> All of the packages are big and require reading the
documentation — for example, the PGF/TikZ manual is
1321 pages (version 3.1.9a, 11 January 2022) (used in
this document for most diagrams)

> You are not expected to learn any of the visualisation
software but it may be worth noting some points about
the provided draw method

The code for the draw method is repeated on line 249,
slide 87

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs
Enumerations:

Subsequences,
Combinations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

86/159

https://networkx.org/documentation/stable/reference/drawing.html
https://cytoscape.org/
https://gephi.org/
http://www.graphviz.org/
https://www.latex-project.org/
https://github.com/pgf-tikz/pgf

Drawing Weighted DiGraph

draw method

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

def draw(self) -> None:
"""Draw the graph."""
if type(self) == WeightedDiGraph:
graph = networkx.DiGraph()
else:
graph = networkx.Graph(Q
graph.add_nodes_from(self.nodes())
for (nodel, node2, weight) in self.edges():
graph.add_edge(nodel, node2, w=weight)
pos = networkx.spring_Tlayout(graph)
networkx.draw(graph, pos, with_labels=True,
node_size=1000, node_color="Tlightblue’,
font_size=12, font_weight="bold")
networkx.draw_networkx_edge_Tlabels(graph, pos,

edge_labels=networkx.get_edge_attributes(graph,

‘w’))

of the code listing

» The line numbers are in gray to indicate this is a repeat

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs
Enumerations:

Subsequences,

Combinations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

87/159

Draw Method

Spring Layout

258

pos = networkx.spring_Tlayout(graph)

» spring_layout positions nodes using
Fruchterman-Reingold force-directed algorithm

> If several layouts are possible then each run of the
program will cycle through possible layouts

» To have reproducible sequences of layout use an
explicit seed=n where n is some fixed value.

» Code in context at line 258, slide 87,

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs
Enumerations:
Subsequences,
Combinations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

88/159

https://networkx.org/documentation/stable/reference/generated/networkx.drawing.layout.spring_layout.html
https://en.wikipedia.org/wiki/Force-directed_graph_drawing

Draw Method

NetworkX draw function

259
260
261

networkx.draw(graph, pos, with_labels=True,
node_size=1000, node_color="T1ightblue’,
font_size=12, font_weight="bold")

draw_networkx draws the graph with Matplotlib with
various options

If pos is not specified a spring layout will be computed
with_Tabels set to True to draw labels on the nodes

nodelist, edgelist draw only the specified nodes,
edges

Code in context at line 259, slide 87

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs
Enumerations:
Subsequences,
Combinations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

89/159

https://networkx.org/documentation/stable/reference/generated/networkx.drawing.nx_pylab.draw_networkx.html

Draw Method

NetworkX Draw Edge Labels function

259
260

networkx.draw_networkx_edge_1labels(graph, pos,
edge_labels=networkx.get_edge_attributes(graph, 'w’))

» draw_networkx_edge_labels draws edge labels

» Tabel_pos position of edge label along edge (0=head,
0.5=center, 1=tail)

» Code in context at line 262, slide 87,
» See also draw_networkx_nodes, can take a nodeTist
» See also draw_networkx_edges, can take an edgelist

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs
Enumerations:
Subsequences,
Combinations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

90/159

https://networkx.org/documentation/stable/reference/generated/networkx.drawing.nx_pylab.draw_networkx_edge_labels.html
https://networkx.org/documentation/stable/reference/generated/networkx.drawing.nx_pylab.draw_networkx_nodes.html
https://networkx.org/documentation/stable/reference/generated/networkx.drawing.nx_pylab.draw_networkx_edges.html

Draw Method

Inline and Externalizing Graphics

> Show the graphic in the Notebook cell with the code

%matplotlib inline

> Save graphic to PNG format file in current folder

import matplotlib.pyplot as plt

graph = WeightedUndirectedGraph(Q)

graph.draw()

plt.savefig("M269TMA02Q3bGraphC.png")

> savefig in matplotlib.pyplot saves the current figure
> See also savefig in matplotlib.figure

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs
Enumerations:

Subsequences,

Combinations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

91/159

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.savefig.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.html
https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.savefig
https://matplotlib.org/stable/api/figure_api.html

Enumerations

Subsequences, Combinations

» M269 21) TMAO2 Part 2 has questions that refer to
calculating subsequences (or subsets) and
combinations of numbers of elements from a list

> It uses the combinations function from the itertools
module of the Python Functional Programming Modules

> It may be useful to review some simple programs that
implement the same functions, but less efficiently — it
may help understand the concepts

» The following code is in the same Python script as
Morse Code M269BinaryTrees2021IMorseCode.py
(but probably should be with the graph algorithm notes)

> The notes here give example implementations of

> All subsequences of a list (a surrogate for subsets)
» Two versions of combinations
» The notes use list comprehensions — a nice alternative

to loops or explicit recursion (list comprehension
reference)

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs
Enumerations:

Subsequences

Combinations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

92/159

M269BinaryTrees2021JMorseCode.py
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/reference/expressions.html#displays-for-lists-sets-and-dictionaries
https://docs.python.org/3/reference/expressions.html#displays-for-lists-sets-and-dictionaries

Enumerations

Subsequences

> Subsequences of a list are all possible subsequences of
elements from the list

AnPython3>>> subSeqsM([1,2,3])
rea, 31, re1, rz, 31, (i1, [z, 31, [1, 21, [1, 2, 311

249def subSeqsM(xs) :

250 if xs == [] :

251 return [[]]

252 else :

253 return ([[xs[0]] + rs if b else rs
254 for b in [False,True]

255 for rs 1in subSeqsM(xs[1:1)1)

> If the list xs is empty there is one subsequence: the
empty list

» Otherwise you can choose the first element followed by
any of the subsequences of the rest of the list
or ignore the first element and take any of the
subsequences of the rest of the list

» See notes on List Comprehensions in the Graphs notes
(mine)

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs
Enumerations:

Subsequences,

Combinations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

93/159

Enumerations Graphs and Greedy

Algorithms
Combinations (1) A RS e
. . . . d
» Combinations takes a list and an integer and return all Agenda
. Adobe Connect
subsequences of the list of that length V265 Crah
> Version using list comprehension instead of map AFERinE
Algorithm
AnPython3>>> combsM01([1,2,3,4,5],3) Desmpgr?tns 5
rra, 2, 31, (1, 2, 41, [1, 2, 51, [1, 3, 41, [1, 3, 51, [1, 4, 51, [2, T éﬂmh ionsS
;ythonG:a;‘)h
epresentation
s;; de:fCEmEEM()l(XS, k) : E?;T,Z?e“niiﬁ'ln from 21)
- . Graph Representation
273 return [[]1] Crgceg Presetas
274 elif xs == [] : DiGraph Class
275 return [] gealsqsh(eleGraph
276 else : Undirected Graph Class
277 return ([[xs[0]] + ys for ys in combsMO1(xs[1:],k-1)] VGVewg:xETUndirecred
278 + combsM01(xs[1:1,k)) D:fvingf;phs
Enumerations:
. Sub: nces,
> If k is O then there is one combination, the empty list Combiations
> If the list is empty (and k > 1) then there are none e Gl e
. 2 Dijkstra’s Algorithm
» Otherwise choose the first element followed by (k-1) brim's Algorithn
combinations of the rest of the list R
or ignore the first element and choose k combinations Future Work

of elements from the rest of the list

94/159

Enumerations

Combinations (2)

259
260
261

262
263
264
265

» Combinations takes a list and an integer and return all
subsequences of the list of that length

1, 2, 41,

AnPython3>>> combsM([1,2,3,4,5],3)

[, 2, 31, (1, 3, 41, [1, 3, 51, [1, 4, 51, [2,

258def combsM(xs, k) :

if k == 0 :
return [[]]
elif xs == []
return []
else :

return (Tist(map(lambda ys :
+ combsM(xs[1:],k))

([xs[0]]1 + ys), combsM(xs[1:],k-1)))

» Same as the list comprehension version (sort of)

> map takes a function and a list and applies the function
to every element of the list

» Here the function is expressed as a Tambda expression

(an anonymous function)

> We need to convert the result to a list since map creates
an iterable (explanation required?)

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Igorjthm
escf*iﬂonga’ 3’
Implementations

List Comprehensions

Python Graph
Representation

Python Graph
Representation from 21)

Graph Representation
Choices

DiGraph Class

Weighted DiGraph
Class

Undirected Graph Class

Weighted Undirected
Graph Class

Drawing Graphs
Enumerations:

Subsequences,

Combinations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

95/159

Topological Sort

Definition

> A topological sort of a directed acyclic graph (DAG) is a
linear ordering of its vertices so that for any directed
edge (u, v), u comes before v in the ordering

> See en.wikipedia.org/wiki/Topological_sorting

> A topological ordering is possible for a graph if and
only if it is a DAG

» Any DAG has at least one topological ordering

> If a Hamiltonian path exists (a path visiting every node

in a graph exactly once) then the graph has exactly one
topological ordering

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Topological Sort —
Algorithm

Topological Sort
Example 01
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

96/159

https://en.wikipedia.org/wiki/Topological_sorting

Topological Sort

Example Graph

» Find all the topological orderings on this digraph

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Topological Sort —
Algorithm

Topological Sort
Example 01
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

97/159

Topological Sort
Algorithm

>

topSorts takes a graph, gr and returns a list of lists of
vertices (all the topological sorts of the graph)

If the graph is empty, it returns a list containing just the
empty list — Note: not just the empty list

Obtain a list of all the start vertices of gr

If the list of start vertices is empty, then the graph has a
cycle — so raise an error and stop

Otherwise for each start vertex, v

> Joinitto ts
> where ts is one of the topological sorts of gr with v
removed

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Topological Sort —
Algorithm

Topological Sort
Example 01
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

98/159

Topological Sort — Algorithm

Python

gsdef topSorts(gr):
86 if isEmptyGraph(gr):

87 return [[]]

88 elif startVertices(gr) == []:

89 raise RuntimeError(’Cycle_in_the_graph’)

90 else:

91 return [[v] + ts

92 for v in startVertices(gr)

93 for ts in topSorts(removeVertex(v,gr))]

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Topological Sort
Example 01

Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

99/159

Topological Sort Example 01

Activity 3 Trace Exercise

> Trace the development of the topological sort algorithm

in the following graph

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Topological Sort —
Algorithm

Topological Sort
Example 01
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

100/159

Topological Sort Example 01

Answer 3 Trace Exercise

» Answer 3 Trace Exercise
> See the following slides

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Topological Sort —
Algorithm

Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

101/159

Topological Sort Example 01
Step 1 Initial Graph

» Start vertices

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Topological Sort —
Algorithm

Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

102/159

Topological Sort Example 01

Step 2 Remove Vertices TA, TG

» Start vertices

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Topological Sort —
Algorithm

Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

103/159

Topological Sort Example 01

Step 3 Remove Vertex TB

» Start vertices

©®

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Topological Sort —
Algorithm

Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

104/159

Topological Sort Example 01

Step 4 Remove Vertices TC, TF

» Start vertices

» Note: Step 4 to 6 has 4 combinations (see below)

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Topological Sort —
Algorithm

Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

105/159

Topological Sort Example 01

Step 5 Remove Vertex TD

» Start vertices

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Topological Sort —
Algorithm

Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

106/159

Topological Sort Example 01

Step 6 Remove Vertex TE

)

» Start vertices

)

> Step 7 would be the empty graph (not drawn)

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Topological Sort —
Algorithm

Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

107/159

Topological Sort — Example
Output — Python

97 topSortsEGO1GrTest \

98

= (topSorts(eg01Gr)

== [[ta,tg,tb,tc,td,te,tf,th]
,[ta,tg,tb,tc,td, tf,te,th]
,[ta,tg,tb,tc,tf,td, te, th]
,[ta,tg,th,tf,tc,td,te, th]
,[tg,ta,tb,tc,td,te,tf,th]
,[tg,ta,tb,tc,td,tf,te,th]
,[tg,ta,th,tc,tf,td, te,th]
,[tg,ta,tb,tf,tc,td,te,th]])

> Note how the step 4 to 6 combinations get enumerated

» Note that a vertex ta would be displayed as
Vertex(vtxName="TA’)

> Notice the Python Explicit line joining with (\<n1>) and
Python Implicit line joining with ((...))

» The backslash (\) must be followed by an end of line
character (<n1>)

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Topological Sort —
Algorithm

Topological Sort
Example 01
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms

Future Work

108/159

https://docs.python.org/3/reference/lexical_analysis.html#explicit-line-joining
https://docs.python.org/3/reference/lexical_analysis.html#implicit-line-joining
https://en.wikipedia.org/wiki/Backslash
https://en.wikipedia.org/wiki/Newline
https://en.wikipedia.org/wiki/Newline

Dijkstra’s Algorithm

Sources

>

From https://www.cse.ust.hk/~dekai/271/
(Lecture 10)

Cormen (2009, chapter 24) — Cormen (2009, page
648) has a footnote explaining the origin of the term
relaxation

Sedgewick and Wayne (2011)
Miller and Ranum (2011, section 7.8)

A Functional Graph Library
http://web.engr.oregonstate.edu/~erwig/fgl/

Rabhi and Lapalme (1999, chapter 7)

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra’s Algorithm —
Description

Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points
Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm
Greedy Algorithms

Future Work

109/159

https://www.cse.ust.hk/~dekai/271/
http://web.engr.oregonstate.edu/~erwig/fgl/

Dijkstra’s Algorithm

Structured English

dijkstra(gr,weight,s)
for u in vertices(gr)
dist(u) = Infinity
label (u) = Temp
dist(s) =0
pred(s) = None
q = makePriorityQ(vertices(gr))

while not isEmptyPQ(q)
u = extractMinPQ(q)
for v in adj(gr,u)
if (label(v) == Temp
and dist(u) + weight(edge(u,v)) < dist(v))
dist(v) = dist(u) + weight(edge(u,v))
q = decreaseKeyPQ(qg,v,dist(v))
pred(v) = u
label(u) = Permanent

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm

Dijkstra’s Algorithm —
Description

Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points
Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm
Greedy Algorithms

Future Work

110/159

Dijkstra’s Algorithm Example 01

Step O Initialisation

(A1)

(o0,

»

B

(o0,[)

-

(o0, 1)
C

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort
Dijkstra’s Algorithm

Dijkstra's Algorithm —
Description

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 02
Dijkstra’s Algorithm
Example 03
Prim’s Algorithm
Greedy Algorithms

Future Work

111/159

Dijkstra’s Algorithm Example

Step 1 Process S

(A1)

(7,[SD

»

B

-

(2,[SD)

(o0, 1)
C

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort
Dijkstra’s Algorithm

Dijkstra's Algorithm —
Description

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
Example 03
Prim’s Algorithm
Greedy Algorithms

Future Work

112/159

Dijkstra’s Algorithm Example

Step 2 Process A

(5,[A] (10,[AD
1
B > C
7
(0,0) 3 2 8 4 2
2
A > D
5
(2,[SD (7,[AD)

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort
Dijkstra’s Algorithm

Dijkstra's Algorithm —
Description

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
Example 03
Prim’s Algorithm
Greedy Algorithms

Future Work

113/159

Dijkstra’s Algorithm Example

Step 3 Process B

(A1)

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort
Dijkstra’s Algorithm

Dijkstra's Algorithm —
Description

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 02
Dijkstra’s Algorithm
Example 03
Prim’s Algorithm
Greedy Algorithms

Future Work

114/159

Dijkstra’s Algorithm Example

Step 4 Process C

(A1)

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort
Dijkstra’s Algorithm

Dijkstra's Algorithm —
Description

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 02
Dijkstra’s Algorithm
Example 03
Prim’s Algorithm
Greedy Algorithms

Future Work

115/159

Dijkstra’s Algorithm Example

Step 5 Process D

(A1)

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort
Dijkstra’s Algorithm

Dijkstra's Algorithm —
Description

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 02
Dijkstra’s Algorithm
Example 03
Prim’s Algorithm
Greedy Algorithms

Future Work

116/159

Dijkstra’s Algorithm Example

Shortest Path Tree Edges

(A1)

(5,[AD

1

(6,[B])

B——— ——7 > C

A———» D

(2,[SD)

(7,[AD

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort
Dijkstra’s Algorithm

Dijkstra's Algorithm —
Description

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
Example 03
Prim’s Algorithm
Greedy Algorithms

Future Work

117/159

Dijkstra’s Algorithm

Further points

> See presentation at http://www.ukuug.org/events/
agm2010/ShortestPath.pdf

» The algorithm as given assumes unique shortest paths
— what if there are multiple shortest paths ? Modify the
algorithm to accommodate this — change the weight on
some edge to test this in the above example (change
the weight of edge (A,C) to 4, for example)

» Implement a priority queue for Dijkstra’s algorithm
» Material essentially comes from Cormen, chp 24

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra's Algorithm —
Description

Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points
Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm
Greedy Algorithms

Future Work

118/159

http://www.ukuug.org/events/agm2010/ShortestPath.pdf
http://www.ukuug.org/events/agm2010/ShortestPath.pdf

Dijkstra’s Algorithm Example 02
Step O Initialisation
(c0,[) (00,1)

C———F

(oo,u)y
2
AL 2 5
’ \ 3 (o,
8
. 7 D) D G T

(o0,

/A

(o0,[) (o0,

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra's Algorithm —
Description
Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm
Greedy Algorithms

Future Work

119/159

Dijkstra’s Algorithm Example 02

Step 1 Process S

(co,D) (co,11)
c——F
@, [51/
A g 5
2
9
7 x ; (1)
8
©.0) 7 0D ——— G T
/ (0,
8 6
B 7 5 8 s
@®, [51)\

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra's Algorithm —
Description
Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm
Greedy Algorithms

Future Work

120/159

Dijkstra’s Algorithm Example 02

Step 2 Process A

(15.[A]) (o0,)
C——F
@, [51/
A ? 5
2
9
7 x ; (0,1
8
©.) 7 (3A) D G T
6
/ (o0,01)
8 6
B 7 \ 8 §
@®, [51)\

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra's Algorithm —
Description
Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm
Greedy Algorithms

Future Work

121/159

Dijkstra’s Algorithm Example 02

Step 3 Process B

(15,[AD (oo,
C—5— F
@, [51/
A s
2
9
7 x ; (0,1
8
©.1) 7 (30A). D G T
6
/ (o0,01)
8 6
B 7 ; 8 .
@®, [51)\
E — H
(12,[8) (e0,11)

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra's Algorithm —
Description
Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm
Greedy Algorithms

Future Work

122/159

Dijkstra’s Algorithm Example 02

Step 4 Process E

(15,[A]) (0,1
C—5— F
@, [51/
A ? 5
2
9
7 x 3 (00,[1)
8
(Hi) 7 (3JA) D c G T
/ @1,[ED
8 6
B 7 . 8 g
@®, [51)\
E———— H
(12,[8]) (18,[E)

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra's Algorithm —
Description
Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm
Greedy Algorithms

Future Work

123/159

Dijkstra’s Algorithm Example 02

Step 5 Process D

(15,[AD (15,[D])
C—5—F
<7[51/
A s
2
9
7 X ; (0,1
. 7 3W)D ——— G ——— T
/ (19,I0)
8 6
B 7 . 8 .
<8[51)\
E——H
(12,[8) (18,[ED)

» Vertex C should have label (15,[A,D]) if we record
multiple shortest routes

» How do we change the algorithm ?

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra's Algorithm —
Description
Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm
Greedy Algorithms

Future Work

124/159

Dijkstra’s Algorithm Example 02

Step 6 Process C (or F)

(15,[AD (15,[D)
C—5— F
@, [51/
A s
2
9
7 x ; (0,1
8
©.1) 7 03 D ——— G T
/ (18,CD)
8 6
B 7 ; 8 .
@®, [51)\
E — H
(12,[8) (18,[ED

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra's Algorithm —
Description
Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm
Greedy Algorithms

Future Work

125/159

Dijkstra’s Algorithm Example 02

Step 7 Process F

(15,[A]) (15,[D])
C—5—F
@, [51/
2
A 2 5
7 6 9
3 (24,[F))
8
.0 7 (3,A) D - G T
/ (18,[C])
8 6
B 7 ; 8 .
@®, [51)\
E — H
(12,[8) (18,[E])

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra's Algorithm —
Description
Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm
Greedy Algorithms

Future Work

126/159

Dijkstra’s Algorithm Example 02

Step 8 Process G (or H)

(15,[A]) (15,[D])
C—5—F
@, [51/
2
A 2 5
7 6 9
3 (24,[F))
8
.0 7 (3,A) D - G T
/ (18,[C])
8 6
B 7 ; 8 .
@®, [51)\
E———— H
(12,[8) (18,[E])

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra's Algorithm —
Description
Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm
Greedy Algorithms

Future Work

127/159

Dijkstra’s Algorithm Example 02

Step 9 Process H

(15,[A]) (15,[D])
C—5—F
@, [51/
2
A 2 5
7 6 9
3 (24,[F))
8
.0 7 (3,A) D - G T
/ (18,[C])
8 6
B 7 ; 8 .
@®, [51)\
E — H
(12,[8) (18,[E])

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra's Algorithm —
Description
Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm
Greedy Algorithms

Future Work

128/159

Dijkstra’s Algorithm Example 02

Step 10 Process T

(15,[A] (15,[D])
cC— F
(7,[S])y 3
2
A 2 5 4
7 x 3 24,[F])
8
o, 7 Q3JAD) D G T
/ 6 as,[c)
8 B ° 8
\ 9 8
(8,[SD) 4 : "
6
(12,[B]) (18,[ED

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra's Algorithm —
Description
Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm
Greedy Algorithms

Future Work

129/159

Dijkstra’s Algorithm Example 02

Shortest Path Tree

(15,[A]) (15,00)
¢ F
(7, [S]/
2
A 2 >
7 6 9
; (24,[F))
8
o0 (s) 7 (3 D ——— G T
'\ / (18,1ch
8 6
B 7 5 8 8
s, [svv\

(12,[B]) (18,[ED

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra's Algorithm —
Description
Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm
Greedy Algorithms

Future Work

130/159

Dijkstra’s Algorithm Example 02

Shortest Path Graph

(15,[A,D]) (15,[D])
C—— F
3
<7,[51y
2
A 2 5
7 6 9
3 (24,[F)
8
(o,n)@ 7 13 D ——— G T
\ / (18,1Ch
8 6
B 7 . 8 §
(B’BIN

E <« H

(12,[B]) (18,[ED

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra's Algorithm —
Description
Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm
Greedy Algorithms

Future Work

131/159

Dijkstra’s Algorithm Example 03

Problem Description

> In the following graph, the weight on each edge
represents the probability of failing while traversing the
edge

» Problem: find the path that maximises the chance of
traversing from X to Y

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra's Algorithm —
Description
Dijkstra’s Algorithm
Example 01
Dijkstra’s Algorithm —
Further points
Dijkstra’s Algorithm
Example 02
Dijkstra’s Algorithm
Example 03

Prim’s Algorithm
Greedy Algorithms
Future Work

132/159

Dijkstra’s Algorithm Example 03

Step O Initialisation
(c0,[])

(o0,[D)
Y

(o0,[)

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra's Algorithm —
Description
Dijkstra’s Algorithm
Example 01
Dijkstra’s Algorithm —
Further points
Dijkstra’s Algorithm
Example 02

Prim’s Algorithm
Greedy Algorithms

Future Work

133/159

Dijkstra’s Algorithm Example 03

Formulation as Shortest Path

>
>
>

Let p(; j) be probability of failing on edge (i,)
The probability of not failing is x5 =1 - p(
Over any path x(; j are independent so problem is to
maximise probability of not failing [[X
(i,j)epath

Equivalently, if y(; j = log x(j j) then problem is to
maximise

(i,j)epath
Alternatively, since y(j j) € (-0, 0] as x(; j € [0, 1] then

let z; j =-100y() and minimise > Z;
(i,j)epath

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra's Algorithm —
Description
Dijkstra’s Algorithm
Example 01

Dijkstra’s Algorithm —
Further points
Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
Example 03

Prim’s Algorithm
Greedy Algorithms

Future Work

134/159

Dijkstra’s Algorithm Example 03
Step 0 Reformulation (a)
(c0,[]) (c0,[])

Y

(c0,[])
> The numbers in red are the probabilities of not failing
> Xij =1~ Pij

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort

Dijkstra’s Algorithm
Dijkstra's Algorithm —
Description
Dijkstra’s Algorithm
Example 01
Dijkstra’s Algorithm —
Further points
Dijkstra’s Algorithm
Example 02

Prim’s Algorithm
Greedy Algorithms

Future Work

135/159

Graphs and Greedy

Dijkstra’s Algorithm Example 03 Algorithms
Step 0 Reformulation (b) Phil Molyneux
(0,[1) (o0,[D Agenda

40 Adobe Connect

A Y M269 Graph
Algorithms

A0 Algorithm
Descriptions &
\6’ Implementations

Topological Sort

Dijkstra’s Algorithm
C D (D e
Dijkstra's Algorithm —
Description
Dijkstra’s Algorithm
1 Example 01

Dijkstra’s Algorithm —
1 Q Further points
Dijkstra’s Algorithm
Example 02

Dijkstra’s Algorithm
B J Example 03

(o0,

Prim’s Algorithm

Greedy Algorithms
> The numbers in blue are negated scaled logs of x(;) Future Work
> Z,j =-100logyo X,

136/159

Prim’s Algorithm
Structured English

prim(gr,weight,r)
for u in vertices(gr)
key(u) = Infinity
label (u) = Temp
key(r) =0
pred(r) = None
q = makePriorityQ(vertices(gr))

while not isEmptyPQ(q)
u = extractMinPQ(q)
for v in adj(gr,u)
if (label(v) == Temp
and weight(edge(u,v)) < key(v))

key(v) = weight(edge(u,v))
q = decreaseKeyPQ(q,vVv, key(v))
pred(v) = u

label(u) = Permanent

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Prim’s Algorithm —
Description

Prim’s Algorithm —
Example

Greedy Algorithms

Future Work

137/159

Dijkstra’s and Prim’s Algorithms

Comparison

> Both are examples of greedy algorithms

» They choose the next best edge to add to the
permanently labelled set

» The algorithms are very similar

> Process each vertex, v, in turn from a priority queue

» Examine all vertices adjacent to v and perform
relaxation

> relaxation means updating the distances or keys

>

For the term relaxation see Cormen (2009, page 648)
has a footnote explaining the origin of the term
relaxation

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Prim’s Algorithm —
Description

Prim’s Algorithm —
Example

Greedy Algorithms

Future Work

138/159

Tutorial Material — Prim’s algorithm
Example Graph 01

\/
A

/\/

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Prim's Algorithm —
Description

Prim’s Algorithm —
Example

Greedy Algorithms

Future Work

Tutorial Material — Prim’s algorithm
Example Graph 01

8

N A
A

/\/

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Prim's Algorithm —
Description

Prim’s Algorithm —
Example

Greedy Algorithms

Future Work

140/159

Tutorial Material — Prim’s algorithm
Example Graph 01

\/
A

(_/

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm

Prim’s Algorithm —
Description

Greedy Algorithms

Future Work

141/159

Tutorial Material — Prim’s algorithm
Example Graph 01

\/
A

{ _/

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm

Prim’s Algorithm —
Description

Greedy Algorithms

Future Work

142/159

Tutorial Material — Prim’s algorithm
Example Graph 01

\/
S

{ _/

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm

Prim’s Algorithm —
Description

Greedy Algorithms

Future Work

143/159

Tutorial Material — Prim’s algorithm
Example Graph 01

NS
JZ

4y

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm

Prim’s Algorithm —
Description

Greedy Algorithms

Future Work

144/159

Tutorial Material — Prim’s algorithm

Example Graph 01

 —

/ \/

KA
AN

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm

Prim’s Algorithm —
Description

Greedy Algorithms

Future Work

145/159

Greedy Algorithms

Overview

> Greedy algorithms follow the problem solving heuristic
of making the locally optimal choice at each stage with
the intent of finding a global optimum
» In general this rarely works — but it does in some cases
including
> Dijkstra’s algorithm and A* search algorithm for graph
search and shortest path finding
» Kruskal’s algorithm and Prim’s algorithm for
constructing minimum spanning trees of a given
connected graph
> Interval scheduling or Activity selection problem to find
the maximum number of activities that do not clash with
each other

> If a greedy algorithm can be proven to yield the global
optimum for a given problem class, it typically becomes
the method of choice because it is faster than other
optimization methods such as dynamic programming.

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm

Greedy Algorithms
Interval Scheduling

Future Work

146/159

https://en.wikipedia.org/wiki/Greedy_algorithm
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/Kruskal%27s_algorithm
https://en.wikipedia.org/wiki/Prim%27s_algorithm
https://en.wikipedia.org/wiki/Interval_scheduling
https://en.wikipedia.org/wiki/Activity_selection_problem
https://en.wikipedia.org/wiki/Dynamic_programming

Greedy Algorithms

Interval Scheduling

v

vyYyy

Interval scheduling
Job j starts at s; and finishes at f;
Two jobs are compatible if they do not overlap

Q What is the maximum subset of mutually compatible
jobs?

Greedy template Consider jobs in some order. Take
each job provided it is compatible with the ones already
taken.

Exercise What orderings can we have ?
Example from Greedy algorithms: Interval scheduling

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm

Greedy Algorithms
Interval Scheduling

Future Work

147/159

https://en.wikipedia.org/wiki/Interval_scheduling
https://ocw.tudelft.nl/course-lectures/3-greedy-algorithms/

Greedy Algorithms

Interval Scheduling

>

Greedy template Consider jobs in some order. Take
each job provided it is compatible with the ones already
taken.

Earliest start time Consider jobs in ascending order of
start time s;

Earliest finish time Consider jobs in ascending order
of finish time f;

Shortest interval Consider jobs in ascending order of
interval length fj+ 1 - s;

Fewest conflicts For each job, count the number of
conflicting jobs ¢j and schedule in ascending order of
conflicts ¢j

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm

Greedy Algorithms
Interval Scheduling

Future Work

148/159

Interval Scheduling

Example

> For the jobs given below, produce an ordering by each
of the greedy templates (above) and the schedule
produced

» Each triple in the list below means (name, s;, fi) where
the times are inclusive

jobs
= [(a,1,6),
7),

,2,4),(c,4,5),(d,4,8)
,(e,5, 9,

(b
(f,6, (9,7,10), (h,9,11)]

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm

Greedy Algorithms
Interval Scheduling

Future Work

149/159

Interval Scheduling

Order by Earliest Start Time

h

TG o

» Schedule jobs a, g (2 jobs)

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm

Greedy Algorithms

Future Work

150/159

Interval Scheduling

Order by Earliest Finish Time

h

TG o

» Schedule jobs b, e, h (3 jobs)

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm

Greedy Algorithms

Future Work

151/159

Interval Scheduling

Order by Shortest Interval

S

SRS

» Schedule jobs c, h (2 jobs)

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm

Greedy Algorithms

Future Work

152/159

Interval Scheduling

a5

Order by Fewest Conflicts

,

)

i(Ah (Z)A

9@

|2|3|4i5i6i7i8|9|10|11

» Schedule jobs h, b, e (3 jobs)

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm

Greedy Algorithms

Future Work

153/159

Interval Scheduling

Counter Examples

» For each of the following Greedy Templates produce a
counter example to show it may not produce the
optimal schedule

> Earliest start time Consider jobs in ascending order of
start time s;

> Shortest interval Consider jobs in ascending order of
interval length fj + 1 - s;

> Fewest conflicts For each job, count the number of
conflicting jobs ¢; and schedule in ascending order of
conflicts ¢j

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm

Greedy Algorithms
Interval Scheduling

Future Work

154/159

Interval Scheduling

Order by Earliest Start Time — Counter Example
C a) C b) C <) d D!

e D

1|2|3|4|5|6|7|8|9|10|1l|12|13|14|15|16|17

» e dominates the optimal schedule by starting earlier
and overlapping the others

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm

Greedy Algorithms

Future Work

155/159

Inte

rval Scheduling

Order by Shortest Interval — Counter Example

C

2) C b D)

1|2|3|4|5|6|7|8|9|10|1l|12|13|14|15|16|17

» c dominates the optimal schedule y being shorter and

overlapping the other two

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm

Greedy Algorithms

Future Work

156/159

Interval Scheduling

Order by Fewest Conflicts — Counter Example

Ca) b) e) Cd

C e D C f o C 9 D)
| G

1Izl3|4|5IeI7IsI9|10|11|12|13|14|15|16|17

» f dominates the optimal schedule by only having two
conflicts and overlapping b and ¢

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm

Greedy Algorithms
Interval Scheduling

Future Work

157/159

Interval Scheduling
Order by Earliest Finish Time — Optimality Proof

>
>

Basic structure of correctness proof:

Assume that there is an optimal solution that is
different from the greedy solution.

Find the first difference between the two solutions.

Argue that we can exchange the optimal choice for the
greedy choice without making the solution worse
(although the exchange might not make it better).

This argument implies by induction that some optimal
solution contains the entire greedy solution, and
therefore equals the greedy solution.

Sometimes, an additional step is required to show no
optimal solution strictly improves the greedy solution.

See Jeff Erickson: Algorithms
Proof also in Interval Scheduling and Greedy Algorithms

The slides at Kevin Wayne: Greedy Algorithms are from
Kleinberg (2013)

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations

Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm

Greedy Algorithms
Interval Scheduling

Future Work

158/159

http://jeffe.cs.illinois.edu/teaching/algorithms/
https://ocw.tudelft.nl/wp-content/uploads/Algoritmiek_Interval_scheduling.pdf
https://ocw.tudelft.nl/course-lectures/3-greedy-algorithms/
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf

Future Work

Graph algorithms, Greed, Logic, Computability

>
>

Thursday, 13 March 2025 TMAO2

Sunday, 6 April 2025 Tutorial Online (Module wide)
Dynamic Programming

Sunday, 27 April 2025 Tutorial Online (Module wide)
Computability and Complexity

Sunday, 4 May 2025 Tutorial Online Review of course
material for TMAO3

Thursday, 22 May 2025 TMAO3

Graphs and Greedy
Algorithms

Phil Molyneux

Agenda
Adobe Connect

M269 Graph
Algorithms

Algorithm
Descriptions &
Implementations
Topological Sort
Dijkstra’s Algorithm
Prim’s Algorithm
Greedy Algorithms
Future Work

159/159

	Agenda
	Adobe Connect Interface and Settings
	Adobe Connect Interface
	Adobe Connect Settings
	Adobe Connect — Sharing Screen & Applications
	Adobe Connect — Ending a Meeting
	Adobe Connect — Invite Attendees
	Layouts
	Chat Pods
	Graphics Conversion for Web
	Adobe Connect Recordings

	M269 Graph Algorithms
	Graph Definitions
	Graph Representation

	Algorithm Descriptions & Implementations
	List Comprehensions
	Python Graph Representation
	Python Graph Representation from 21J

	Topological Sort
	Topological Sort — Algorithm
	Topological Sort Example 01

	Dijkstra's Algorithm
	Dijkstra's Algorithm — Description
	Dijkstra's Algorithm Example 01
	Dijkstra's Algorithm — Further points
	Dijkstra's Algorithm Example 02
	Dijkstra's Algorithm Example 03

	Prim's Algorithm
	Prim's Algorithm — Description
	Prim's Algorithm — Example

	Greedy Algorithms
	Interval Scheduling

	Future Work

