Graphs and Greedy Algorithms
M269 Tutorial

Contents

1 Agenda

2 Adobe Connect
2.1 Interface e e e e e e e
2.2 Settings e e e e e e e e e e e e e e e
2.3 Sharing Screen & Applications L e
2.4 EndingaMeeting e e e e e e e e e
2.5 Invite Attendees e e e e e e e e e e
2.6 LayoUuls e e e e e e e e e e e e e e e
2.7 Chat Pods e e e e e e
2.8 Web Graphics o e e e e e e e e
2.9 Recordings i e e e e e e e e e e

3 M269 Graph Algorithms
3.1 Graph Definitions e e e
3.2 Graph Representation i i i i it e e
Activity 1 Graph Operations e e e e e e e e

4 Algorithm Descriptions & Implementations
4.1 List Comprehensions i i i i i i e e e
Activity 2 List Comprehension Exercises i i i
4.2 Python Graph Representation,
4.3 Python Graph Representationfrom 21)
4.3.1 Graph Representation Choices
4.3.2 DiGraph Class e e e
4.3.3 Weighted DiGraph Class it
4.3.4 Undirected Graph Class,
4.3.5 Weighted Undirected Graph Class
4.3.6 Drawing Graphs
4.3.7 Enumerations: Subsequences, Combinations

5 Topological Sort
5.1 Topological Sort — Algorithm
5.2 Topological Sort Example OT i i
Activity 3 Trace Exercise o i e e e e e e e e e

6 Dijkstra’s Algorithm
6.1 Dijkstra’s Algorithm — Description
6.2 Dijkstra’s Algorithm Example OT
6.3 Dijkstra’s Algorithm — Further points
6.4 Dijkstra’s Algorithm Example 02.
6.5 Dijkstra’s Algorithm Example 03

7 Prim’s Algorithm

11
12
12
18
19
19
20
22
24
25
27
28

30
30
31
31

34
34
35
37
37
41

43

2 Graphs and Greedy Algorithms 9 March 2025

7.1 Prim’s Algorithm — Description, 43

7.2 Prim’s Algorithm — Example 44
8 Greedy Algorithms 44

8.1 Interval Scheduling. e 44
9 Future Work 47
10 Web Sites & References 47

10.1Shortest Paths e e e e e 48

10.2Web Sites for Dynamic Programming 48

References e e e e 49
Python Code Index 51
Pseudocode Index 52
M269 DiGraph Code Index 53
M269 Weighted DiGraph Code Index 54
M269 Undirected Graph Code Index 55
M269 Weighted Undirected Graph Code Index 56
Diagrams Index 57
1 Agenda

e Welcome and introductions

e Session on M269 Graph, Greedy & DP Algorithms

e Graph definitions and representations

e Python: List comprehensions, Named Tuples

e Topological Sort for directed acyclic graphs

e Dijkstra’s Shortest Path Algorithm

e Prim’s Minimum Spanning Tree Algorithm

e Dynamic Programming

e Implementations in Structured English, Python and Haskell (Optional)

e Note there is more material here than we can cover — some is for optional interest

e Slides/Notes are at pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269Tutoria05

e Recording {Meeting>> Record Meeting. .. } v

Introductions — Me
e Name Phil Molyneux

e Background Physics & Maths, Operational Research, Computer Science

http://pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269Tutorial05GraphGreedDP/

Phil Molyneux M269 Tutorial 3

e First programming languages Fortran, BASIC, Pascal

e Favourite Software

Haskell — pure functional programming language

Text editors TextMate, Sublime Text — previously Emacs

Word processing in IATEX — all these slides and notes

Mac OS X

e Learning style — | read the manual before using the software

Introductions — You
e Name?
e New topics last month?
e M269 Graph. Greedy & Dyamic Programming Algorithm topics you want covered ?

Learning style?

Other OU courses ?

Anything else ?

Adobe Connect — if you or | get cut off, wait till we reconnect (or send you an email)

2 Adobe Connect Interface and Settings

2.1 Adobe Connect Interface

Adobe Connect Interface — Host View

M250 Units 10, 11
Phil Molyneux
M250 Units 10, 11
Tutorial Agenda
Adobe Connect

Classes and
Interfaces

M250 Units 10, 11 sets

Collections, Arrays, Sets, Maps, Lists Heps

Lists

Collection
Implementations

TMAO3 Practice

Phil Molyneux Quiz

Common Mistakes

JShell
What Next ?

18 Ap”l 2021 References

http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/BASIC
http://en.wikipedia.org/wiki/Pascal_(programming_language)
http://www.haskell.org/haskellwiki/Haskell
https://macromates.com
http://www.sublimetext.com
http://www.emacswiki.org
http://www.latex-project.org
https://developer.apple.com/

4 Graphs and Greedy Algorithms 9 March 2025

Adobe Connect Interface — Participant View

ja— B Adobe Comect.app

M250 Units 10, 11

M250 Units 10, 11 Tutorial

Introductions

Phil Molyneux

M250 Units 10, 11
Tutorial Agenda

> Introductions Adobe Connect
> Name Phil Molyneux Classes and
> Learning Style: Reads the manual e
> Learnt last month Framework for Teaching Recursion
and wrote notes on Recursion Teaching
> You?

Sets

Maps

Lists

Collection
Implementations

TMAO3 Practice
Quiz

Common Mistakes
JShell
What Next ?

References

2.2 Adobe Connect Settings

Adobe Connect — Settings

Everybody [Menu bar>> Meeting>> Speaker & Microphone Setup}

{Menu bar>> Microphone>> Allow Participants to Use Microphone} v

Check Participants see the entire slide including slide numbers bottom right Workaround

- Disable Draw [Share pod>> Menu bar>> Draw icon}

- Fit Width [Share pod>> Bottom bar>> Fit Width icon} v

{Meeting>> Preferences>> General>> Host Cursor>> Show to all attendees

{Menu bar>> Video>> Enable Webcam for Participants} v

e Do not Enable single speaker mode

Cancel hand tool

Do not enable green pointer

Recording {Meeting>> Record Session} v

Documents Upload PDF with drag and drop to share pod

Delete [Meeting>> Manage Meeting Information>> Uploaded Content} and [check ﬁlename>> click on delete

Adobe Connect — Access

e Tutor Access

{TutorHome>> M269 Website>> Tutorials}

{Cluster Tutorials>> M269 Online tutorial room}

Phil Molyneux M269 Tutorial 5

{Tutor Groups>> M269 Online tutor group room}

{Module-wide Tutorials>> M269 Online module-wide room}

Attendance

{TutorHome>> Students>> View your tutorial timetables}

Beamer Slide Scaling 440% (422 x 563 mm)

Clear Everyone’s Status

{Attendee Pod>> Menu>> Clear Everyone’s Status}

Grant Access and send link via email

{Meeting>> Manage Access & Entry>> Invite Participants. .. }

Presenter Only Area

{Meeting>> Enable/Disable Presenter Only Area}

Adobe Connect — Keystroke Shortcuts

2.4

Keyboard shortcuts in Adobe Connect

Toggle Mic 3]+ M] (Mao), [ctrl)+[M] (win) (On/Disconnect)
Toggle Raise-Hand status [38])+E |

Close dialog box [®] (Mac), [Esc] (win)
End meeting [32])+\]

Adobe Connect — Sharing Screen & Applications

{Share My Screen>> Application tab>> Terminal} for Terminal

Share menu)) Change View)) Zoom in| for mismatch of screen size/resolution (Participants)

(Presenter) Change to 75% and back to 100% (solves participants with smaller screen
image overlap)

Leave the application on the original display

Beware blued hatched rectangles — from other (hidden) windows or contextual
menus

Presenter screen pointer affects viewer display — beware of moving the pointer away
from the application

First time: [System Preferences>> Security & Privacy>> Privacy>> Accessibility}

Adobe Connect — Ending a Meeting

Notes for the tutor only

Student: {Meeting>> Exit Adobe Connect}

Tutor:

Recording {Meeting>> Stop Recording} v

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html
https://en.wikipedia.org/wiki/Terminal_(macOS)

6 Graphs and Greedy Algorithms 9 March 2025
e Remove Participants [Meeting)) End Meeting. .. | o/
- Dialog box allows for message with default message:
- The host has ended this meeting. Thank you for attending.
e Recording availability In course Web site for joining the room, click on the eye icon
in the list of recordings under your recording — edit description and name
e Meeting Information [Meeting)) Manage Meeting Information] — can access a range of informa-
tion in Web page.
e Delete File Upload {Meeting) Manage Meeting Information>> Uploaded Content tab} select file(s) and
click
e Attendance Report see course Web site for joining room
2.5 Adobe Connect — Invite Attendees

Provide Meeting URL {Menu>> Meeting>> Manage Access & Entry>> Invite Participants. . . }

Allow Access without Dialog [Menu) Meeting) Manage Meeting Information| provides new browser
window with Meeting Information [Tab bar)) Edit Information |

Check Anyone who has the URL for the meeting can enter the room
Default Only registered users and accepted guests may enter the room
Reverts to default next session but URL is fixed

Guests have blue icon top, registered participants have yellow icon top — same icon
if URL is open

See Start, attend, and manage Adobe Connect meetings and sessions
Click on the link sent in email from the Host

Get the following on a Web page

As Guest enter your name and click on

https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html

Phil Molyneux M269 Tutorial 7

a Adobe Connect

M269-21) Online tutorial room
London/SE (1,13) CG [2311] (M269-21))

)

Guest Registered User
Name

Guest Name

By entering a Name & clicking "Enter Room'", you agree that
you have read and accept the Terms of Use & Privacy Policy,

e See the Waiting for Entry Access for Host to give permission

k74 Adobe Connect

Waiting for Entry Access

This is a private meeting. Your request to enter has

been sent to the host. Please wait for a response.

e Host sees the following dialog in Adobe Connect and grants access

! Guest entry o

1 guest would like to enter the room. Do you want
to allow or deny entry to incoming guests?

Guest Name (guest) 9 O ’Ave?

Allow everyone Deny everyone Close

2.6 Layouts

e Creating new layouts example Sharing layout

° [Menu>> Layouts>> Create New Layout. . } [Create a New Layout dialog>> Create a new blank Iayout} and name it
PMolyMain

e New layout has no Pods but does have Layouts Bar open (see Layouts menu)

e Pods

8 Graphs and Greedy Algorithms 9 March 2025

[Menu)) Pods) Share) Add New Share| and resize/position — initial name is Share n — rename
PMolyShare

e Rename Pod {Menu>> Pods>> Manage Pods. . } [Manage Pods>> Select>> Rename} or [Double-click & rename

e Add Video pod and resize/reposition
e Add Attendance pod and resize/reposition
e Add Chat pod — rename it PMolyChat — and resize/reposition

e Dimensions of Sharing layout (on 27-inch iMac)

Width of Video, Attendees, Chat column 14 cm

Height of Video pod 9 cm

Height of Attendees pod 12 cm

Height of Chat pod 8 cm

e Duplicating Layouts does not give new instances of the Pods and is probably not a
good idea (apart from local use to avoid delay in reloading Pods)

e Auxiliary Layouts name PMolyAux0On
- Create new Share pod
- Use existing Chat pod

- Use same Video and Attendance pods

2.7 Chat Pods

e Format Chat text

° {Chat Pod>> menu icon>> My Chat Color}

e Choices: Red, Orange, Green, Brown, Purple, Pink, Blue, Black

e Note: Color reverts to Black if you switch layouts

) {Chat Pod>> menu icon>> Show Timestamps}

2.8 Graphics Conversion for Web
e Conversion of the screen snaps for the installation of Anaconda on 1 May 2020

e Using GraphicConverter 11

° > Convert & Modify>> Conversion>> Convert}

e Select files to convert and destination folder

e Click on [Start selected Function] or +

2.9 Adobe Connect Recordings

° {Menu bar>> Meeting>> Preferences>> Video}

e [Aspect ratio)) Standard (4:3)] (not Wide screen (16:9) default)

Phil Molyneux M269 Tutorial 9

|Video quality)) Full HD| (1080p not High default 480p)

Recording {Menu bar>> Meeting>> Record Session} 4

Export Recording

{Menu bar>> Meeting>> Manage Meeting Information}

{New window>> Recordings>> check Tutorial>> Access Type button

{check Public>> check Allow viewers to download}

Download Recording

{New window>> Recordings>> check Tutorial>> Actions>> Download File

3 M269 Graph Algorithms

3.1

Graph Definitions

A Graph, G, consists of a pair: a set of vertices, V, and a set of edges, E, where an
edge (u, v) represents a connection between two vertices, u and v

Equivalently, a graph is a set of objects together with a relation over that set

Edges may have direction — that is, the relation is not symmetric — a graph with
directed edges is called a digraph

Informally, graphs are represented as diagrams (see below)

If G =(V,E) is a weighted digraph then there is a function w :: E — R which maps
edges to real numbers.

If e=(u, v) we write w(u, v) for w(e)

Example Digraph

1
B
7
s 3/ |, 8
2
A

3.2

- »
e

C
4 >2
c D

Graph Representation

e What operations do we want on graphs ?

How can we implement a representation of graphs and the operations efficiently ?

e Common representations

10 Graphs and Greedy Algorithms 9 March 2025

- Adjacency list — a linear structure holds every vertex together with a list of
successor vertices and the weights of the successor edges.

- Adjacency matrix — 2 dimensional array of values of dimension |V| X |V| where
both coordinates u and v are vertices and the entry (u, v) is the weight of the
edge (if it exists)

e Additional points:

- A vertex may have other data: name, label with data (shortest path predeces-
sors, distance, ...)

- An edge may have other data: weight, status (on shortest path, minimum span-
ning tree, ...)

Graph Operations
Activity 1 Graph Operations

e In the space below give a graph operation indicating whether it is a creator, inspector
or modifier and give its pre and post conditions

Go to Answer
Answer 1 Graph Operations
e Answer 1 Graph Operations — see next slide
Go to Activity
e emptyGraph returns an empty graph
e mkGraph takes a list of vertices, and a list of edges and returns a graph
e isEmptyGraph takes a graph and returns True if and only if the graph is empty.
e vertices takes a graph and returns the vertices
e edges takes a graph and returns the edges

e succlists takes a graph and returns a list of pairs of vertices and lists of successor
edges

e predLists takes a graph and returns a list of pairs of vertices and lists of predecessor
edges

e startVertices takes a graph and returns a list of vertices with no predecessors
e endVertices takes a graph and returns a list of vertices with no successors

e removeVertex takes a vertex and a graph and returns a graph with the vertex re-
moved.

e Further service functions:

- esRemoveV takes a vertex and a list of edges and returns the list of edges with
the vertex removed.

- esStartV takes a vertex and a list of edges and returns the list of edges where
the given vertex is the start of an edge

Phil Molyneux M269 Tutorial 11

- eskndV takes a vertex and a list of edges and returns the list of edges where
the given vertex is the end of an edge

Graph Representation 01

Adjacency matrix Assign a unique label to each vertex and construct an nx n
matrix of values in which (i, j) is x if (i,j) € E and x is its label, (i, i) is 0 and all other
entries are oo

The adjacency matrix for the previous example digraph is:

S A B C D
S 0 2 7 o o
A oo 0O 3 8 5
B o 2 0 1 o
C o oo oo 0 4
D o0 o0 oo 2 0

Graph Representation 02

The explicit adjacency list or matrix representations are biased towards the proce-
dural view of programming.

A functional view looks for an inductive definition (as we had with trees)
Functional view:
- A graph is either the empty graph or

- a graph extended by a new node v together with its label and with edges to
those of v’s successors and predecessors that are already in the graph

See FGL — A Functional Graph Library and Erwig (2001)
M269 Python examples use adjacency lists to represent graphs.

The Haskell examples in these notes use a simple (but inefficient) representation to
illustrate the algorithms.

ToC

Algorithm Descriptions & Implementations

The algorithms are described in a mix of Structured English, Python and Haskell

The Python and Haskell code does not use any advanced features but may use some
features not mentioned in M269

In Python the code may use:

- List comprehensions (tutorial), List comprehensions (reference) — a neat way of
expressing iterations over a list, came from Miranda

- Named tuples — a Factory Function for tuple with named fields — quick & dirty
objects

The Haskell syntax is defined as it is used — novel concepts may be:

http://web.engr.oregonstate.edu/~erwig/fgl/
https://en.wikipedia.org/wiki/Structured_English
https://docs.python.org/3/
https://www.haskell.org/documentation
https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/reference/expressions.html#displays-for-lists-sets-and-dictionaries
http://www.miranda.org.uk
https://docs.python.org/3/library/collections.html#collections.namedtuple

12 Graphs and Greedy Algorithms 9 March 2025

- Algebraic Data Types — just name your user defined data type and name its
elements — magic!

- Explicit type specifications — Haskell has a very powerful type system that can
help spot errors.

- List comprehensions — as above

4.1 List Comprehensions
List Comprehensions — Python

e List Comprehensions provide a concise way of performing calculations over lists
(or other iterables)

e Example: Square the even numbers between 0 and 9

Python3>>> [x #% 2 for x in range(10) if x % 2 == 0]
[0, 4, 16, 36, 64]
Python3>>> [(x,y) for x in range(4)

for y in range(4)

if x % 2 ==

and y % 3 == 0]

[(0 0, (0, 3, 2, 0, (2 31
Python3>>>

e In general

[expr for targetl in iterablel if condl
for target2 1in iterable2 if cond2 ...
for targetN in iterableN if condN]

e Lots example usage in the algorithms below

List Comprehensions — Haskell
e List Comprehensions provide a concise way of performing calculations over lists

e Example: Square the even numbers between 0 and 9

GHCi> [xA2 | x <- [0..9], x ‘mod‘ 2 == 0]
[0,4,16,36,64]

GHCi>
e In general
[[expr | quall, qual2,..., qualN] J

e The qualifiers qual can be
- Generators pattern <- Tist
- Boolean guards — acting as filters

- Local declarations with Tet decls for use in expr and later generators and
boolean guards

Activity 2 (a) Stop Words Filter

e Stop words are the most common words that most search engines avoid: ’a’,’an’, ’the’

e Using list comprehensions, write a function filterStopWords that takes a list of
words and filters out the stop words

th

https://en.wikipedia.org/wiki/Algebraic_data_type
https://en.wikibooks.org/wiki/Haskell/Type_basics
https://en.wikipedia.org/wiki/List_comprehension
https://en.wikipedia.org/wiki/Stop_words

11
12

16
17
18
19

21
22

11
12

16
17
18
19

21
22

38
39
40
41

43
44
45
46
47

Phil Molyneux M269 Tutorial 13

e Here is the initial code

sentence \
= "the_quick_brown_fox_jumps_over_the_lazy dog"

words = sentence.split()

wordsTest \
= (words == [’the’, ’quick’, ’brown’
, 'fox’, ’jumps’, ’over’
, 'the’, ’Tazy’, ’dog’])

stopWords \
= [’a’,’an’,’the’, that’]

Go to Answer

Activity 2 (a) Stop Words Filter

sentence \
= "the_quick_brown_fox_jumps_over_the Tlazy_dog"

words = sentence.split()

wordsTest \
= (words == [’the’, ’'quick’, ’brown’
, 'fox’, ’jumps’, ’over’
, 'the’, ’Tazy’, ’dog’])

stopWords \
= [’a’,’an’,’the’, that’]

e Notice the Python Explicit line joining with (\<n1>) and Python Implicit line joining
with (C...))

e The backslash (\) must be followed by an end of line character (<nl1>)
e The (') symbol represents a space (see Unicode U+2423 Open Box)
Go to Answer
Activity 2 (b) Transpose Matrix
e A matrix can be represented as a list of rows of numbers
e We transpose a matrix by swapping columns and rows

e Here is an example

matrixA \

= [[1! 2! 3! 4]
,[5, 6, 7 ,8]
,[9, 10, 11, 12]]

matATr \
= [[1, 5
,[2, 6
,[3, 7
,[4, 8

, 9]

,» 10]
’ 11]
,» 1211

e Using list comprehensions, write a function transMat, to transpose a matrix
Go to Answer
Activity 2 (c) List Pairs in Fair Order

e Write a function which takes a pair of positive integers and outputs a list of all
possible pairs in those ranges

e If we do this in the simplest way we get a bias to one argument

https://docs.python.org/3/reference/lexical_analysis.html#explicit-line-joining
https://docs.python.org/3/reference/lexical_analysis.html#implicit-line-joining
https://en.wikipedia.org/wiki/Backslash
https://en.wikipedia.org/wiki/Newline

14 Graphs and Greedy Algorithms 9 March 2025

e Here is an example of a bias to the second argument

68 yBiasLstTest \

69 = (yBiasListing(5,5)

70 == [(07 0)! (01 1)! (0! 2)1 (Ol 3), (01 4)
71 , (1, 00, (1, D, @@, 2, @@, 3, a,
72 2, 0, 2, D, 2, 2y, 2, 3, 2, D

73 : G, 0, 3, D, 3, 2), 3, 3, G, D
74 , (4, 00, (4, D, (4, 2), (4, 3, (4, DD

Go to Answer
Activity 2 (c) List Pairs in Fair Order

e Rewrite the function which takes a pair of positive integers and outputs a list of all
possible pairs in those ranges

e The output should treat each argument fairly — any initial prefix should have roughly
the same number of instances of each argument

e Here is an example output

81 fairLstTest \

82 = (fairListing(5,5)

83 == [(0, 0)

84 , (0, D, 1, 0

85 , (0, 2), (1, D, (@2, 0

86 , (0, 3), (1, 2, @2, 1, G, 0O

87 , (0, 4, @, 3, 2, 2, 3, D, 4, OD

Go to Answer
Activity 2 (c) List Pairs in Fair Order

e Rewrite the function which takes a pair of positive integers and outputs a list of lists
of all possible pairs in those ranges

e The output should treat each argument fairly — any initial prefix should have roughly
the same number of instances of each argument — further, the output should be
segment by each initial prefix (see example below)

e Here is an example output

94 fairlLstATest \

95 = (fairListingA(5,5)

96 == [[(0, 0)]

97 , [0, D, 1, 0]

98 [0, 2>, (1, 1, (2, 0]

%9 L [0, 3), (1, D, @2, 1), G, 0]
100 L, &), 3D, @ D, G D, G 01D

Go to Answer
Answer 2 (a) Stop Words Filter
e Answer 2 (a) Stop Words Filter
o Write here:
Answer 2 (a) Stop Words Filter
e Answer 2 (a) Stop Words Filter

24 def filterStopWords(words) :

25 nonStopWords \

26 = [word for word in words

27 if word not 1in stopWords]

28

49
50
51
52
53

55
56
57

38
39
40
41

Phil Molyneux M269 Tutorial 15

return nonStopWords

filterStopWordsTest \
= filterStopWords(words) \
== ['quick’, ’brown’, ’fox’
, 'jumps’, ’over’, ’lazy’, ’dog’]

Go to Activity

Answer 2 (b) Transpose Matrix

e Answer 2 (b) Transpose Matrix

o Write here:

Answer 2 (b) Transpose Matrix

e Answer 2 (b) Transpose Matrix

def transMat(mat) :
rowLen = Ten(mat[0])
matTr \
= [[row[i] for row in mat] for i 1in range(rowlLen)]
return matTr

transMatTestA \
= (transMat(matrixA)
== matATr)

e Note that a list comprehension is a valid expression as a target expression in a list
comprehension

e The code assumes every row is of the same length

Go to Activity

Answer 2 (b) Transpose Matrix

e Note the differences in the list comprehensions below

matrixA \

= [[1, 2, 3, 4]
![5! 6! 7 18]
,[9, 10, 11, 12]]

Python3>>> [[row[i] for row in matrixA]

ce for i 1in range(4)]

[[11 51 9]’ [27 67 10]1 [31 71 11]1 [41 81 12]]
Python3>>> [row[i] for row in matrixA

- for i 1in range(4)]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
Python3>>> [row[i] for i in range(4)

- for row in matrixA]

[1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8, 12]
Python3>>> [[row[i] for i 1in range(4)]

e for row in matrixA]

(fz, 2, 3, 41, (5, 6, 7, 81, [9, 10, 11, 12]]

Go to Activity

Answer 2 (b) Transpose Matrix

e Answer 2 (b) Transpose Matrix
e The Python NumPy package provides functions for N-dimensional array objects

e For transpose see numpy.ndarray.transpose

https://www.numpy.org/
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.transpose.html

69

71
72
73
74
75

63
64
65
66
67

69
70
71
72
73
74
75

84
85
86
87
88
89

16 Graphs and Greedy Algorithms 9 March 2025

Python3>>> 1import numpy as np
Python3>>> ar = np.array([[1,2],[3,4]])
Python3>>> ar
array([[1, 21,
[3, 41D
Python3>>> arT = ar.transpose()
Python3>>> arT
array([[1, 3],
[2, 41D
Python3>>> ar
array([[1, 21,
[3, 41D
Python3>>> ar.shape

@2, 2

Go to Activity
Answer 2 (c) List Pairs in Fair Order
e Answer 2 (c) List Pairs in Fair Order — first version

e Write here

yBiasLstTest \
= (yBiasListing(5,5)
== [(07 0)1 (01 1)7 (0, 2)1 (Ol 3), (01 4)
, 1, 00, (1, 1, @, 2), (1, 3, @, 4
, 2, 00, 2, D, @, 2, @2, 3, @2, D
, 3, 0, 3, D, B, 2), (3, 3), B3, 4
, (4, 00, (4, D, (4, 2), (4, 3), 4, DD

Go to Activity
Answer 2 (c) List Pairs in Fair Order
e Answer 2 (c) List Pairs in Fair Order

e This is the obvious but biased version

def yBiasListing(xRng,yRng) :
yBiasLst \
= [(x,y) for x 1in range(xRng)
for y 1in range(yRng)]
return yBiaslLst

yBiasLstTest \
= (yBiasListing(5,5)
== [(0, 0), (0, 1), (0, 2), (O, 3), (O, O
, 1, 00, 1, D, @, 2, @, 3, a, &
’ (21 0)’ (2! 1)7 (21 2)! (2! 3)1 (21 4)
, 3, 00, 3, D, 3, 2, (3, 3, G, H
, (4, 00, (4, D, (4, 2, (4, 3, (4, DD

Go to Activity
Answer 2 (c) List Pairs in Fair Order
e Answer 2 (c) List Pairs in Fair Order — second version

e Write here

fairLstTest \
= (fairListing(5,5)
== [(0, 0)
, (0, D, @, 0
, (0, 2, (1, D, 2, 0
, (0, 3), @, 2, 2, D, 3, 0
, (0, 4, @, 3, 2, 2, G, 1, (4, 0D

77
78
79
80
81

83
84
85
86
87
88
89

97
98
99
100
101
102
103

91
92
93
94
95

97
98
99
100
101
102
103

Phil Molyneux M269 Tutorial

17

Go to Activity
Answer 2 (c) List Pairs in Fair Order
e Answer 2 (c) List Pairs in Fair Order — second version

e This works by making the sum of the coordinates the same for each prefix

def fairListing(xRng,yRng) :
fairLst \
= [(x,d-x) for d 1in range(yRng)
for x 1in range(d+1)]
return fairlLst

fairLstTest \
= (fairListing(5,5)
== [(0, 0)
, (0, D, @@, 0
, (0, 2), (1, D, @2, 0
, (0, 3, (1, 2, 2, D, @G, 0
, (0, 4, @1, 3, @, 2, (3, D, 4, 0]

Go to Activity
Answer 2 (c) List Pairs in Fair Order
e Answer 2 (c) List Pairs in Fair Order — third version

e Write here

fairlLstATest \
= (fairListingA(5,5)
== [[(0, 0)]
, [0, 1), (1, 0)]
, [0, 2), (1, 1), (2, 0)]
, [0, 3), (1, 2, (2, D, (@3, 0]
, [0, &, 1, 3), 2, 2, 3, L, 4, OID

Go to Activity
Answer 2 (c) List Pairs in Fair Order
e Answer 2 (c) List Pairs in Fair Order — third version

e The inner loop is placed into its own list comprehension

def fairListingA(xRng,yRng) :
fairLstA \
= [[(x,d-x) for x 1in range(d+1)]
for d in range(yRng)]
return fairLstA

fairLstATest \
= (fairListingA(5,5)
== [[(0, 0)]
, [0, D, (1, 0)]
, [0, 2), (1, D, (2, 0]
, [C0, 3), (1, 2, (2, D, (@3, 0]
, [0, &, 1, 3), 2, 2>, (3, L, 4, OID

Go to Activity

Python & Haskell Tutorials
e Python tutorials:

- Beginner’s Python Tutorial

https://en.wikibooks.org/wiki/A_Beginner%27s_Python_Tutorial

12
13

17
18
19
20
21
22
23
24

26

28
29

31

33

35

18 Graphs and Greedy Algorithms 9 March 2025
- Python Programming
- Non-Programmer’s Tutorial for Python 3
- Non-Programmer’s Tutorial for Python 2.6
e Haskell Tutorials:
- Haskell Wikibook
- What | Wish | Knew When Learning Haskell
- Haskell Meta-tutorial
- Learn You a Haskell for Great Good
- Real World Haskell
4.2 Python Graph Representation
from collections import namedtuple
Vertex = namedtuple(’Vertex’
, [’ vtxName’1)
Edge = namedtuple(’Edge’

,[’startVtx’,’endVtx’])

This is from Python/M269TutorialGraphs2020].py
Reserved identifiers are shown in this color
User defined data constructors such as Vertex and Edge are shown in that color

Vertex is a named tuple with named fields — a quick and dirty object — recom-
mended by Guido van Rossum (checked 16 January 2016)

Health Warning: these notes may not be totally consistent with syntax colouring.

Example Graphs — Python

ta
th
tc
td
te
tf
tg
th

eg01Vs

eg0lEs

eg01Gr
eg02Es

eg02Gr

Vertex(’TA’)
Vertex(’TB’)
Vertex(’TC’)
Vertex(’TD’)
Vertex('TE’)
Vertex('TF’)
Vertex('TG’)
Vertex(’TH’)

= [ta,tb,tc,td, te,tf,tg, th]

= [(ta,tb), (tg,tb), (tg,th), (tb,tc)
, (tb, tf), (tf,th), (tc, td), (td, te), (te, th)]

= (eg01Vs, egOlEs)
= [(ta,th), (th,tc), (tc,ta)] # cycles

= ([ta,tb,tc], eg02Es)

Used ordinary tuples for edges here

https://en.wikibooks.org/wiki/Python_Programming
https://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_3
https://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_2.6
https://en.wikibooks.org/wiki/Haskell
http://dev.stephendiehl.com/hask/
https://wiki.haskell.org/Meta-tutorial
http://learnyouahaskell.com
http://book.realworldhaskell.org
https://plus.google.com/115212051037621986145/posts/HajXHPGN752
https://plus.google.com/115212051037621986145/posts/HajXHPGN752

39
40

42
43

45
46

48
49

51
52
53

55
56
57

59
60
61

63
64

66
67
68

70
71
72

74
75
76
77
78
79
80
81

Phil Molyneux M269 Tutorial 19

Graph Service Functions — Python

def vertices(gr):
return gr[0]

def edges(gr):
return gr[1]

def esStartV(v,es):
return [edge for edge in es if edge[0] == v]

def esEndV(v,es):
return [edge for edge 1in es if edge[l] == v]

def esRemoveV(v,es):
return [edge for edge 1in es
if edge[0] !'= v and edge[l] != v]

e Choice of service function (or class methods) is a design issue — a bit of a fudge
here (to avoid complexity in these notes)

def succlLists(gr):
return [(v, esStartV(v, (edges(gr))))
for v 1in vertices(gr)]

def predLists(gr):
return [(v, esEndV(v, (edges(gr))))
for v 1in vertices(gr)]

def isEmptyGraph(gr):
return gr[0] == [] and gr[1] == []

def startVertices(gr):
return [pLst[0] for pLst in predLists(gr)
if pLst[1] == [1]

def endVertices(gr):
return [sLst[0] for sLst in succlLists(gr)
if sLst[1] == []1]

def removeVertex(v, gr):
vs = gr[0]
vsl = vs[:]
if v in vsl:

vsl.remove (V)

es = gr[1]
esl = esRemoveV(v,es)
return (vsl,esl)

e Note that vs1 at line 76 is a (shallow) copy of vs
e If vertices had more structure we might have to write a function to do a proper copy

ToC

4.3 Python Graph Representation from 21]
4.3.1 Graph Representation Choices

e A graph is a pair of sets of nodes and edges, possibly with information attached
to nodes and edges such as labels, weights, durations or distances — this is the
mathematical view of graphs

e Algorithms also need to consider representations for the efficiency of the operations
— M269 discusses several graph representations:

e Edge list representation

10
11

13
14

16
17
18

20
21

23
24
25

27
28

30
31
32

34
35

37
38
39

41
42

44

46
47
48
49

51
52

54
55
56
57
58

60
61

20 Graphs and Greedy Algorithms 9 March 2025

e Adjacency matrix representation
e Adjacency list representation

e The implementation is given for directed graphs or digraphs and undirected graphs
using adjacency list representations

ToC

4.3.2 DiGraph Class

e The following code is from M269TutorialGraphs2021]Digraph.py which is from
m269_digraph.py modified only for layout

import networkx
from typing import Hashable

class DiGraph:
"""A directed graph with hashable node objects.

Edges are between different nodes.
There’s at most one edge from one node to another.

mn

def __init__(self):
self.out = dict() # a map of nodes to their out-neighbours

def has_node(self, node: Hashable) -> bool:
"""Return True if and only if the graph has the node.
return node in self.out

mren

def has_edge(self, start: Hashable, end: Hashable) -> bool:
"""Return True if and only if edge start -> end exists.

Preconditions: self.has_node(start) and self.has_node(end)

min

return end in self.out[start]

def add_node(self, node: Hashable) -> None:
"""Add the node to the graph.

Preconditions: not self.has_node(node)

min

self.out[node] = set()

def add_edge(self, start: Hashable, end: Hashable) -> None:
"""Add edge start -> end to the graph.

If the edge already exists, do nothing.

Preconditions:
self.has_node(start) and self.has_node(end) and start != end

min

self.out[start].add(end)

e Note add is a set method that does not raise an error if the argument is a node
already present

def remove_node(self, node: Hashable) -> None:
"""Remove the node and all its attached edges.

Preconditions: self.has_node(node)

self.out.pop(node)

for start in self.out:
self.remove_edge(start, node)

def remove_edge(self, start: Hashable, end: Hashable) -> None:
"""Remove edge start -> end from the graph.

M269TutorialGraphs2021JDigraph.py
m269_digraph.py

Phil Molyneux M269 Tutorial 21

63 If the edge doesn’t exist, do nothing.

65 Preconditions: self.has_node(start) and self.has_node(end)
66 e

67 self.out[start].discard(end)

e Note discard is a set method that does not raise an error if the argument is a node
that is not present

e popis adict and a set operation

e Note this version of remove_node has a bug — remove the edges to the node first

69 def nodes(self) -> set:

70 """Return the graph’s nodes."""

71 all_nodes = set()

72 for node 1in self.out:

73 all_nodes.add(node)

74 return all_nodes

76 def edges(self) -> set:

77 """Return the graph’s edges as a set of pairs (start, end)."""
78 all_edges = set()

79 for start in self.out:

80 for end 1in self.out[start]:

81 all_edges.add((start, end))

82 return all_edges

84 def out_neighbours(self, node: Hashable) -> set:

85 """Return the out-neighbours of the node.

87 Preconditions: self.has_node(node)

88 .

89 return set(self.out[node]) # return a copy

91 def out_degree(self, node: Hashable) -> int:

92 """Return the number of out-neighbours of the node.
94 Preconditions: self.has_node(node)

o5 .

96 return len(self.out[node])

98 def in_neighbours(self, node: Hashable) -> set:

99 """Return the in-neighbours of the node.

101 Preconditions: self.has_node(node)

102 .

103 start_nodes = set()

104 for start in self.out:

105 if self.has_edge(start, node):

106 start_nodes.add(start)

107 return start_nodes

109 def in_degree(self, node: Hashable) -> int:

110 """Return the number of in-neighbours of the node.
112 Preconditions: self.has_node(node)

13 DI

114 return len(self.in_neighbours(node))

116 def neighbours(self, node: Hashable) -> set:

117 """Return the in- and out-neighbours of the node.
119 Preconditions: self.has_node(node)

120 D

121 return self.out_neighbours(node).union(self.in_neighbours(node))
123 def degree(self, node: Hashable) -> int:

124 """Return the number of in- and out-going edges of the node.
126 Preconditions: self.has_node(node)

127 D

128 return self.in_degree(node) + self.out_degree(node)

130
131
132
133
134
135
136
137
138
139
140

142

144
145

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

166
167

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

187

189
190

192
193
194
195

197

22 Graphs and Greedy Algorithms

9 March 2025

def draw(self) -> None:
"""Draw the graph."""
if type(self) == DiGraph:
graph = networkx.DiGraph()
else:
graph = networkx.Graph()
graph.add_nodes_from(self.nodes())
graph.add_edges_from(self.edges())
networkx.draw(graph, with_labels=True,
node_size=1000, node_color="Tl1ightblue’,
font_size=12, font_weight="bold’)

from collections {import deque

def bfs(graph: DiGraph, start: Hashable) -> DiGraph:
"""Return the subgraph traversed by a breadth-first search.

Preconditions: graph.has_node(start)

changes from traversed function noted in comments
visited = DiGraph(Q)

visited.add_node(start)

unprocessed = deque() # set -> deque
for neighbour in graph.out_neighbours(start):
unprocessed.append((start, neighbour)) # add -> append
while len(unprocessed) > 0:
edge = unprocessed.popleft() # pop -> popleft

previous = edge[0]
current = edge[1]
if not visited.has_node(current):
visited.add_node(current)
visited.add_edge(previous, current)
for neighbour 1in graph.out_neighbours(current):
unprocessed.append((current, neighbour)) # add -> append
return visited

def dfs(graph: DiGraph, start: Hashable) -> DiGraph:
"""Return the subgraph traversed by a depth-first search.

Preconditions: graph.has_node(start)
visited = DiGraph(Q
visited.add_node(start)
unprocessed = [] # deque -> list
for neighbour in graph.out_neighbours(start):
unprocessed.append((start, neighbour))
while len(unprocessed) > 0:
edge = unprocessed.pop() # popleft -> pop
previous = edge[0]
current = edge[1]
if not visited.has_node(current):
visited.add_node(current)
visited.add_edge(previous, current)
for neighbour in graph.out_neighbours(current):
unprocessed.append((current, neighbour))
return visited

4.3.3 Weighted DiGraph Class

import math

class WeightedDiGraph(DiGraph):
"""A weighted directed graph with hashable node objects.

Edges are between different nodes.
There’s at most one edge from one node to another.
Edges have weights, which can be floats or integers.

mien

def add_node(self, node: Hashable) -> None:

198

200
201
202

204
205

207

209
210
211
212

214
215

217
218
219
220
221
222

224
225

227

229
230
231
232

234
235
236
237
238
239
240

242
243

245
246
247

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

265

267
268

270
271

Phil Molyneux M269 Tutorial 23

"""Add the node to the graph.

Preconditions: not self.has_node(node)

min

self.out[node] = dict() # a map of out-neighbours to weights

def add_edge(self, start: Hashable, end: Hashable, weight: float) -> None:
"""Add edge start -> end, with the given weight, to the graph.

If the edge already exists, set its weight.

Preconditions:
self.has_node(start) and self.has_node(end) and start != end

i

self.out[start][end] = weight

def weight(self, start: Hashable, end: Hashable) -> float:
"""Return the weight of edge start -> end or infinity if it doesn’t exist.

Preconditions: self.has_node(start) and self.has_node(end)
if self.has_edge(start, end):

return self.out[start][end]
else:

return math.inf

def remove_edge(self, start: Hashable, end: Hashable) -> None:
"""Remove edge start -> end from the graph.

If the edge doesn’t exist, do nothing.

Preconditions: self.has_node(start) and self.has_node(end)

min

if self.has_edge(start, end):
self.out[start].pop(end)

def edges(self) -> set:
"""Return the graph’s edges as a set of triples (start, end, weight).
all_edges = set()
for start in self.out:
for (end, weight) in self.out[start].items():
all_edges.add((start, end, weight))
return all_edges

o

def out_neighbours(self, node: Hashable) -> set:
"""Return the out-neighbours of the node.

Preconditions: self.has_node(node)

mn

return set(self.out[node].keys())

def draw(self) -> None:

"""Draw the graph."""

if type(self) == WeightedDiGraph:
graph = networkx.DiGraph()

else:
graph = networkx.Graph()

graph.add_nodes_from(self.nodes())

for (nodel, node2, weight) 1in self.edges():
graph.add_edge(nodel, node2, w=weight)

pos = networkx.spring_layout(graph)

networkx.draw(graph, pos, with_labels=True,
node_size=1000, node_color="Tlightblue’,
font_size=12, font_weight="bold’)

networkx.draw_networkx_edge_labels(graph, pos,
edge_labels=networkx.get_edge_attributes(graph, 'w’))

from heapq import heappush, heappop

def dijkstra(graph: WeightedDiGraph, start: Hashable) -> WeightedDiGraph:
"""Return a shortest path from start to each reachable node.

Preconditions:
- graph.has_node(start)

272
273
274
275

278
279
280
281
282
283

285
286
287
288
289
290
291

293
294
295
296
297
298
299
300

12
13

15
16
17

19
20

22

24
25
26
27

29
30

32

34
35
36
37

39
40

42
43

24 Graphs and Greedy Algorithms 9 March 2025

- node objects are comparable
- no weight is negative
visited = WeightedDiGraph()
visited.add_node(start)

create min-priority queue of tuples (cost, (A, B, weight))
cost is total weight from start to B via shortest path to A
unprocessed = [] # min-priority queue
for neighbour in graph.out_neighbours(start):
weight = graph.weight(start, neighbour)
heappush(unprocessed, (weight, (start, neighbour, weight)))

while len(unprocessed) > 0:
info heappop (unprocessed)
cost = info[0]
edge = info[1]
previous = edge[0]
current = edge[1]
weight = edge[2]

if not visited.has_node(current):

visited.add_node(current)

visited.add_edge(previous, current, weight)

for neighbour 1in graph.out_neighbours(current):
weight = graph.weight(current, neighbour)
edge = (current, neighbour, weight)
heappush(unprocessed, (cost + weight, edge))

return visited

4.3.4 Undirected Graph Class

e The following code is from M269TutorialGraphs2021JUngraph.py which is from
m269_ungraph.py modified only for layout

from typing import Hashable

class UndirectedGraph(DiGraph):
"""An undirected graph with hashable node objects.

There’s at most one edge between two different nodes.
There are no edges between a node and itself.

moen

def add_edge(self, nodel: Hashable, node2: Hashable) -> None:
"""Add an undirected edge nodel-node2 to the graph.

If the edge already exists, do nothing.

Preconditions: self.has_node(nodel) and self.has_node(node2)

min

super() .add_edge(nodel, node2)
super() .add_edge(node2, nodel)

def remove_edge(self, nodel: Hashable, node2: Hashable) -> None:
"""Remove edge nodel-node2 from the graph.

If the edge doesn’t exist, do nothing.

Preconditions: self.has_node(nodel) and self.has_node(node2)

min

super() .remove_edge(nodel, node2)
super().remove_edge(node2, nodel)

def edges(self) -> set:
"""Return the graph’s edges as a set of pairs.

Postconditions: for every edge A-B,
the output has either (A, B) or (B, A) but not both

M269TutorialGraphs2021JUngraph.py
m269_ungraph.py

44
45
46
47
48
49
50

52
53

55
56
57

59
60

62
63
64

66
67

69
70
71

73
74

76
77
78

80
81

83
84
85
86

88
89

91

93
94
95
96

98
929

101
103
104

105
106

108
109

111

Phil Molyneux M269 Tutorial

25

min

all_edges = set()
for nodel in self.out:
for node2 in self.out[nodel]:
if (node2, nodel) not in all_edges:
all_edges.add((nodel, node2))
return all_edges

def in_neighbours(self, node: Hashable) -> set:
"""Return all nodes that are adjacent to the node.

Preconditions: self.has_node(node)

min

return self.out_neighbours(node)

def neighbours(self, node: Hashable) -> set:
"""Return all nodes that are adjacent to the node.

Preconditions: self.has_node(node)

min

return self.out_neighbours(node)

def in_degree(self, node: Hashable) -> int:
"""Return the number of edges attached to the node.

Preconditions: self.has_node(node)

mn

return self.out_degree(node)

def degree(self, node: Hashable) -> int:
"""Return the number of edges attached to the node.

Preconditions: self.has_node(node)

m

return self.out_degree(node)

4.3.5 Weighted Undirected Graph Class

class WeightedUndirectedGraph(WeightedDiGraph):
"""A weighted undirected graph with hashable node objects.

There’s at most one edge between two different nodes.
There are no edges between a node and itself.
Edges have weights, which may be integers or floats.

aun

def add_edge(self, nodel: Hashable, node2: Hashable, weight: float) -> None:
"""Add an edge nodel-node2 with the given weight to the graph.

If the edge already exists, do nothing.

Preconditions: self.has_node(nodel) and self.has_node(node2)

min

super() .add_edge(nodel, node2, weight)
super().add_edge(node2, nodel, weight)

def remove_edge(self, nodel: Hashable, node2: Hashable) -> None:
"""Remove edge nodel-node2 from the graph.

If the edge doesn’t exist, do nothing.

Preconditions: self.has_node(nodel) and self.has_node(node2)

min

super() .remove_edge(nodel, node2)
super() .remove_edge(node2, nodel)

def edges(self) -> set:
"""Return the graph’s edges as a set of triples (nodel, node2, weight).

Postconditions: for every edge A-B,

112
113
114
115
116
117
118
119

121
122

124
125
126

128
129

131
132
133

135
136

138
139
140

142
143

145
146
147

149

151
152

154
155
156
157
158
159
160

162
163
164
165

167
168
169
170
171
172
173
174
175
176
177
178

26 Graphs and Greedy Algorithms 9 March 2025

the output has either (A, B, w) or (B, A, w) but not both
all_edges = set()
for start in self.out:
for (end, weight) 1in self.out[start].items():
if (end, start, weight) not in all_edges:
all_edges.add((start, end, weight))
return all_edges

def in_neighbours(self, node: Hashable) -> set:
"""Return all nodes that are adjacent to the node.

Preconditions: self.has_node(node)

min

return self.out_neighbours(node)

def neighbours(self, node: Hashable) -> set:
"""Return all nodes that are adjacent to the node.

Preconditions: self.has_node(node)

min

return self.out_neighbours(node)

def in_degree(self, node: Hashable) -> int:
"""Return the number of edges attached to the node.

Preconditions: self.has_node(node)

mn

return self.out_degree(node)

def degree(self, node: Hashable) -> int:
"""Return the number of edges attached to the node.

Preconditions: self.has_node(node)

min

return self.out_degree(node)

from heapq import heappush, heappop

def prim(graph: WeightedUndirectedGraph, start: Hashable) -> WeightedUndirectedGraph:
"""Return a minimum spanning tree of graph, beginning at start.

Preconditions:

- graph.has_node(start)

- graph is connected

- node objects are comparable
visited = WeightedUndirectedGraph()
visited.add_node(start)

unprocessed = []

for neighbour in graph.neighbours(start):
weight = graph.weight(start, neighbour)
heappush(unprocessed, (weight, start, neighbour))

while len(unprocessed) > 0:
edge = heappop(unprocessed)
weight = edge[0]
previous = edge[1l]
current = edge[2]
if not visited.has_node(current):
visited.add_node(current)
visited.add_edge(previous, current, weight)
for neighbour 1in graph.neighbours(current):
weight = graph.weight(current, neighbour)
heappush(unprocessed, (weight, current, neighbour))
return visited

e Note that the priority queue heapq does the work of making the next smallest weight
edge available — it is always the first element of unprocessed

ToC

https://docs.python.org/3/library/heapq.html

Phil Molyneux M269 Tutorial 27

4.3.6 Drawing Graphs

e The provided graph code gives two draw methods:

e For Weighted DiGraph or Undirected Graph see line 249, page 23,

e For Unweighted see line 130, page 22,

e NetworkX is a Python package for the creation, manipulation and study of networks

e Matplotlib is a Python library for creating static, animated, and interactive visualiza-
tions

e Matplotlib is used by NetworkX

e Some of the examples in these notes explicitly use savefig(fname) frommatplotlib.pyplot
to save the current figure to an external file

see matplotlib.pyplot.savefig
see also matplotlib.pyplot.show

e NetworkX Drawing reference introduction states that it provides basic functionality
for visualising graphs but its main aim is to enable graph analysis

e The examples in M269 use the Matplotlib interface commands
e It mentions the tools Cytoscape, Gephi, Graphviz, and for LaTeX typesetting, PGF/TikZ

e All of the packages are big and require reading the documentation — for example,
the PGF/TikZ manual is 1321 pages (version 3.1.9a, 11 January 2022) (used in this
document for most diagrams)

e You are not expected to learn any of the visualisation software but it may be worth
noting some points about the provided draw method

e The code for the draw method is repeated on line 249, page 27

249 def draw(self) -> None:

250 """Draw the graph."""

251 if type(self) == WeightedDiGraph:

252 graph = networkx.DiGraph()

253 else:

254 graph = networkx.Graph()

255 graph.add_nodes_from(self.nodes())

256 for (nodel, node2, weight) in self.edges():
257 graph.add_edge(nodel, node2, w=weight)

258 pos = networkx.spring_layout(graph)

259 networkx.draw(graph, pos, with_labels=True,
260 node_size=1000, node_color="Tlightblue’,

261 font_size=12, font_weight="bold’)

262 networkx.draw_networkx_edge_labels(graph, pos,
263 edge_labels=networkx.get_edge_attributes(graph, 'w’))

e The line numbers are in gray to indicate this is a repeat of the code listing

258 (pos = networkx.spring_layout(graph) J

e spring_layout positions nodes using Fruchterman-Reingold force-directed algorithm

e If several layouts are possible then each run of the program will cycle through pos-
sible layouts

e To have reproducible sequences of layout use an explicit seed=n where n is some
fixed value.

https://networkx.org/documentation/stable/index.html
https://matplotlib.org/
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.savefig.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.show.html
https://networkx.org/documentation/stable/reference/drawing.html
https://cytoscape.org/
https://gephi.org/
http://www.graphviz.org/
https://www.latex-project.org/
https://github.com/pgf-tikz/pgf
https://networkx.org/documentation/stable/reference/generated/networkx.drawing.layout.spring_layout.html
https://en.wikipedia.org/wiki/Force-directed_graph_drawing

28 Graphs and Greedy Algorithms 9 March 2025

e Code in context at line 258, page 27,

259 networkx.draw(graph, pos, with_labels=True,
260 node_size=1000, node_color="Tlightblue’,
261 font_size=12, font_weight="bold’)

draw_networkx draws the graph with Matplotlib with various options

If pos is not specified a spring layout will be computed
e with_Tlabels set to True to draw labels on the nodes
e nodelist, edgelist draw only the specified nodes, edges

e Code in context at line 259, page 27

259 networkx.draw_networkx_edge_labels(graph, pos,
260 edge_labels=networkx.get_edge_attributes(graph, 'w’))

draw_networkx_edge_labels draws edge labels

Tabel_pos position of edge label along edge (0=head, 0.5=center, 1=tail)

Code in context at line 262, page 27,

See also draw_networkx_nodes, can take a nodelist

See also draw_networkx_edges, can take an edgelist

e Show the graphic in the Notebook cell with the code

(%matp'lot'l'ib inline J

e Save graphic to PNG format file in current folder

(import matplotlib.pyplot as plt J

(graph = WeightedUndirectedGraph(Q) J

graph.draw()

plt.savefig(""M269TMA02Q3bGraphC.png™)

e savefig in matplotlib.pyplot saves the current figure

e See also savefig in matplotlib.figure

4.3.7 Enumerations: Subsequences, Combinations

e M269 21) TMAO2 Part 2 has questions that refer to calculating subsequences (or
subsets) and combinations of humbers of elements from a list

e It uses the combinations function from the itertools module of the Python Func-
tional Programming Modules

e It may be useful to review some simple programs that implement the same functions,
but less efficiently — it may help understand the concepts

e The following code is in the same Python script as Morse Code M269BinaryTrees2021]MorseCc
py (but probably should be with the graph algorithm notes)

https://networkx.org/documentation/stable/reference/generated/networkx.drawing.nx_pylab.draw_networkx.html
https://networkx.org/documentation/stable/reference/generated/networkx.drawing.nx_pylab.draw_networkx_edge_labels.html
https://networkx.org/documentation/stable/reference/generated/networkx.drawing.nx_pylab.draw_networkx_nodes.html
https://networkx.org/documentation/stable/reference/generated/networkx.drawing.nx_pylab.draw_networkx_edges.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.savefig.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.html
https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.savefig
https://matplotlib.org/stable/api/figure_api.html
M269BinaryTrees2021JMorseCode.py
M269BinaryTrees2021JMorseCode.py

249
250
251
252
253
254
255

271
272
273
274
275
276
277
278

Phil Molyneux M269 Tutorial 29

e The notes here give example implementations of
- All subsequences of a list (a surrogate for subsets)
- Two versions of combinations

e The notes use list comprehensions — a nice alternative to loops or explicit recursion
(list comprehension reference)

e Subsequences of a list are all possible subsequences of elements from the list

AnPython3>>> subSeqsM([1,2,3])
(1, 31, r21, rz2, 31, rii, fa, 31, 11, 21, [1, 2, 311

def subSeqsM(xs) :

if xs == [] :
return [[]]
else :

return ([[xs[0]] + rs if b else rs
for b in [False,True]
for rs 1in subSeqsM(xs[1:]1)1)

e If the list xs is empty there is one subsequence: the empty list

e Otherwise you can choose the first element followed by any of the subsequences of
the rest of the list

or ignore the first element and take any of the subsequences of the rest of the list
e See notes on List Comprehensions in the Graphs notes (mine)

e Combinations takes a list and an integer and return all subsequences of the list of
that length

e Version using list comprehension instead of map

AnPython3>>> combsM01([1,2,3,4,5],3)
rra, 2, 31, (1, 2, 41, (1, 2, 51, [1, 3, 41, [1, 3, 51, [1, 4, 51, [2, 3, 41, [2, 3, 51, [2, 4, 5], [3, 4

def combsMO1(xs, k) :
if k == g
return [[]]
elif xs == [] :
return []
else :
return ([[xs[0]] + ys for ys in combsMO1(xs[1:],k-1)]

+ combsMO1(xs[1:]1,k))

e If k is O then there is one combination, the empty list
e If the list is empty (and k > 1) then there are none

e Otherwise choose the first element followed by (k-1) combinations of the rest of
the list

or ignore the first element and choose k combinations of elements from the rest of
the list

e Combinations takes a list and an integer and return all subsequences of the list of
that length

AnPython3>>> combsM([1,2,3,4,5],3)

511

[[ll 21 3]7 [1! 2, 4]! [17 2! 5], [1! 3! 4]! [1! 3, 5]! [1l 4! 5]7 [2! 3, 4]! [27 37 5], [2! 4! 5]! [3! J, 5]]

https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/reference/expressions.html#displays-for-lists-sets-and-dictionaries

258
259
260
261
262
263
264
265

30 Graphs and Greedy Algorithms 9 March 2025

def combsM(xs, k) :

if k ==
return [[]]
elif xs == [] :
return []
else :
return (list(map(lambda ys : ([xs[0]] + ys), combsM(xs[1:],k-1)))
+ combsM(xs[1:]1,k))

e Same as the list comprehension version (sort of)
e map takes a function and a list and applies the function to every element of the list
e Here the function is expressed as a Tambda expression (an anonymous function)

e We need to convert the result to a list since map creates an iterable (explanation
required?)

5 Topological Sort

A topological sort of a directed acyclic graph (DAG) is a linear ordering of its vertices
so that for any directed edge (u, v), u comes before v in the ordering

See en.wikipedia.org/wiki/Topological_sorting

A topological ordering is possible for a graph if and only if it is a DAG

Any DAG has at least one topological ordering

If a Hamiltonian path exists (a path visiting every node in a graph exactly once) then
the graph has exactly one topological ordering

Topological Sort — Example Graph

e Find all the topological orderings on this digraph

5.1 Topological Sort — Algorithm

e topSorts takes a graph, gr and returns a list of lists of vertices (all the topological
sorts of the graph)

e If the graph is empty, it returns a list containing just the empty list — Note: not just
the empty list

https://en.wikipedia.org/wiki/Topological_sorting

85
86
87
88
89
90
91
92
93

Phil Molyneux M269 Tutorial

31

e Obtain a list of all the start vertices of gr

e If the list of start vertices is empty, then the graph has a cycle — so raise an error

and stop
e Otherwise for each start vertex, v

- Join it to ts

- where ts is one of the topological sorts of gr with v removed

Topological Sort — Algorithm — Python

def topSorts(gr):
if isEmptyGraph(gr):
return [[]]
elif startVertices(gr) == []:
raise RuntimeError(’Cycle_in_the_graph’)
else:
return [[v] + ts
for v in startVertices(gr)
for ts in topSorts(removeVertex(v,gr))]

5.2 Topological Sort Example 01

Activity 3 Trace Exercise

e Trace the development of the topological sort algorithm in the following graph

Answer 3 Trace Exercise
e Answer 3 Trace Exercise

e See the following slides

Step 1 Initial Graph

Go to Answer

Go to Activity

32 Graphs and Greedy Algorithms 9 March 2025

e Start vertices

L

Step 2 Remove Vertices TA, TG

e Start vertices

Step 3 Remove Vertex TB

© -
(1e)

e Start vertices

©®

Step 4 Remove Vertices TC, TF

Phil Molyneux M269 Tutorial

33

e Start vertices

e Note: Step 4 to 6 has 4 combinations (see below)

Step 5 Remove Vertex TD

)

e Start vertices

Step 6 Remove Vertex TE

)

e Start vertices

)

e Step 7 would be the empty graph (not drawn)

97

98

99
100
101
102
103
104
105
106

34 Graphs and Greedy Algorithms 9 March 2025

Topological Sort — Output

topSortsEGO1GrTest \

= (topSorts(eg01Gr)
== [[ta,tg,tb,tc,td,te,tf,th]
,[ta,tg,tb,tc,td, tf, te, th]
,[ta,tg,tb,tc,tf,td, te, th]
,[ta, tg,tb,tf,tc,td, te,th]
,[tg,ta,tb,tc,td,te, tf,th]
,[tg,ta,tb,tc,td, tf, te, th]
,[tg,ta,tb,tc,tf,td, te,th]

,[tg,ta,tb,tf,tc,td, te,th]])

Note how the step 4 to 6 combinations get enumerated

Note that a vertex ta would be displayed as

Vertex(vtxName="TA’)

Notice the Python Explicit line joining with (\<n1>) and Python Implicit line joining
with ((...))

The backslash (\) must be followed by an end of line character (<n1>)

6 Dijkstra’s Algorithm

6.1 Dijkstra’s Algorithm — Description
Sources
e From https://www.cse.ust.hk/~dekai/271/ (Lecture 10)

e Cormen et al. (2009, chapter 24) — Cormen et al. (2009, page 648) has a footnote
explaining the origin of the term relaxation

e Sedgewick and Wayne (2011)
e Miller and Ranum (2011, section 7.8)

e A Functional Graph Library http://web.engr.oregonstate.edu/~erwig/fgl/ (Er-
wig, 2001)

e Rabhi and Lapalme (1999, chapter 7)

Dijkstra’s Algorithm — Structured English

dijkstra(gr,weight,s)
for u in vertices(gr)
dist(u) = Infinity
label(u) = Temp
dist(s) = 0
pred(s) = None
g = makePriorityQ(vertices (gr))

while not isEmptyPQ(q)
u = extractMinPQ(q)
for v in adj(gr,u)
if (label(v) == Temp
and dist(u) + weight(edge(u,v)) < dist(v))
dist(v) = dist(u) + weight(edge(u,v))
q = decreaseKeyPQ(q,v, dist(v))
pred(v) = u
label (u) = Permanent

https://docs.python.org/3/reference/lexical_analysis.html#explicit-line-joining
https://docs.python.org/3/reference/lexical_analysis.html#implicit-line-joining
https://en.wikipedia.org/wiki/Backslash
https://en.wikipedia.org/wiki/Newline
https://www.cse.ust.hk/~dekai/271/
http://web.engr.oregonstate.edu/~erwig/fgl/

Phil Molyneux M269 Tutorial

35

6.2 Dijkstra’s Algorithm Example 01

Step O Initialisation

(o0,[D (o0,[])
1

B———— C

7
(0,[D 3 2 8 4 2
2
A—— D
5
(c0,[D (o0,[)
Step 1 Process S
(7,ISD (00,[])

1

B———>C

0, 3 2 4 2

A———— D

(2,ISD (o0,[)

Step 2 Process A

(5,[AD (10,[A])
1

B————>C

0, 3 2 4 2

(2,[SD (7,[AD

Step 3 Process B

36 Graphs and Greedy Algorithms

9 March 2025

(5,[AD (6,[B)
1

B———————> C

0, 3 2 4 2

A——— D

(2,ISD (7,[AD

Step 4 Process C

(5,[AD (6,[B)
1

B———7- """ C

7
(0,[D 3 2 8 4 2
2
A—— D
5
,IS) ALY
Step 5 Process D
(5,[A]) (6,[B])

1

B————>C

0, 3 2 4 2

Shortest Path Tree Edges

Phil Molyneux M269 Tutorial 37

(5,1A]) (6,[B))
1
B > C
7
8
o,m 3 2 4 2
2
A > D
5
i) (7,1AD)

6.3 Dijkstra’s Algorithm — Further points

e See presentation at http://www.ukuug.org/events/agm2010/ShortestPath.pdf

e The algorithm as given assumes unique shortest paths — what if there are multiple
shortest paths ? Modify the algorithm to accommodate this — change the weight on
some edge to test this in the above example (change the weight of edge (A,C) to 4,
for example)

e Implement a priority queue for Dijkstra’s algorithm

e Material essentially comes from Cormen et al. (2009, Chp 24)

6.4 Dijkstra’s Algorithm Example 02

Step O Initialisation

(o0, D (o0,

([])8/ < 3 F

\ 3

.0 7 (o) D c

8 3/67 /
9
(oo,n)4\
E
6

(o0, D (o0,

Step 1 Process S

http://www.ukuug.org/events/agm2010/ShortestPath.pdf

38 Graphs and Greedy Algorithms

9 March 2025

(o0,[D (o0,[])

C F
<7,[S]>8/ 3
2
A 2 5
! 6 >< N
8
0. 7 (o) D o G T
: /6 (o0,
B 7 9 8 e
(8,[51>4\
E o H
(00,11 (c0,[1)
Step 2 Process A
(15,[A]))
C F
(7,I5) 8/ 3
2
A 2 5
7 6 >< 9 N\ (=
8
0,In 7 13,JA) D c
8 /6
B 7 /
9
(s,lspk
E 6
(c0,[) (00,[)
Step 3 Process B
(15,[A]) (c0,1)
C F
(7,IS]) 8/ 3
2
A 2 5
/ 6 >< 9 N\ (0,
8
(0,[D 7 (13,AD) D c
8 /6
B 7 /
9
(&[spk
E c H
(12,[8]) (c0,1)

Step 4 Process E

Phil Molyneux M269 Tutorial

(15,[AD (c0,I1)
C F
AN) 8/ 3
2
A 2 5
7 \6 >< 9 N (=)
8
©,I) 7 13,[A) D c G T
; /6 @1,[E)
B 7 , 8 .
(8,[51>4\
E c H
(12,[8]) (18,[E)
Step 5 Process D
(15,[A]) (15,[D])
C F
(7.I5D 8/ 3
2
A 2 >
7 \6 >< 9 N (=)
8
o, 7 13,[A) D c G T
: / (19,[D))
6
B 7 9 8 8
(s,lspk
E c H
(12,[8) (18,[ED

e Vertex C should have label (15,[A,D]) if we record multiple shortest routes

e How do we change the algorithm ?

Step 6 Process C (or F)

(15,[A]) (15,[0)
C F
(7.ISD 8/ 3
2
A 2 5
7 \6 >< 9 N =)
8
0.1 703 D —— G T
8 / (18,[C)
6
B 7 o8
(8,[51)4\
E c H
(12,[8) (18,[E)

Step 7 Process F

9 March 2025

40 Graphs and Greedy Algorithms
(15,1AD (15,[D])
C F
AN) 8/ 3
A 2 s
7 6 5 SN2 313
8
0, 7034 D ——— G T
; /6 (18,[CD
B 7 , 8 .
(8,[51>4\
E c H
(12,[B]) (18,[ED
Step 8 Process G (or H)
(15,[A]) (15,[D])
C F
(7.I5D 8/ 3
A 2 2 s
7 6) SN2 313
8
0,0 7034 D —— G T
: / (18,[C)
6
B 7 9 8 8
(8,[S])X
E c H
(12,[8]) (18,[ED
Step 9 Process H
(15,1AD (15,[D])
C F
(7.ISD 8/ 3
A 2 2 s
7 6 5 9 N\ 4,f)
8
o, 7 (13,[AD D . G T
(18,[C)
8 P 6 .
9 8
(&[spk
E c H
(12,[B]) (18,[E)

Step 10 Process T

Phil Molyneux M269 Tutorial 41

(15,[A]) (15,[D])
8 C 3 F
(7,18
/ 2
;7 A 6?2 > 9
(24,[F)
\ 3 8
o, 7 (13,JA) D o G T
(18,[C]
8 B /67 8
\ 9 8
(8,IS)
4k H
(12,8 (18,[ED
Shortest Path Tree
(15,[A]) (15,[D])
[s] 3]
7,IS)
/ 2 5
9
'\ ; . (24,[F)
(0, 7 (13,JA) D c G T
(18,[C]

/
v\ 9 8

(8,[SD
E D H
(12,[8)) (18,[ED
Shortest Path Graph
(15,[A,D]) (15,[D])
C F
(7.ISD ‘8/ 3
A 2 > s
7 '\6 5 9 N @4,F)
8
.0 70380 D ——— G T
; - (18,[C)
B / 9 8 8
(&[spx

E<« — H

(12,[B]) (18,[ED

6.5 Dijkstra’s Algorithm Example 03

Problem Description

e In the following graph, the weight on each edge represents the probability of failing
while traversing the edge

e Problem: find the path that maximises the chance of traversing from X to Y

42 Graphs and Greedy Algorithms 9 March 2025

Step O Initialisation

(o0,

(o0, D

Formulation as Shortest Path

e Let p(; j be probability of failing on edge (i,)

The probability of not failing is x(; j = 1 - p()

Over any path x; j are independent so problem is to maximise probability of not

failing [l X
(i,j)epath

Equivalently, if y(; j = log x(; j then problem is to maximise > V(i j)
(i,f))epath

Alternatively, since y(jj € (-,0] as x(j € [0,1] then let z;j; = -100y) and
minimise >z

(i,j))epath
Step 0 Reformulation (a)

(o0, D

e The numbers in red are the probabilities of not failing

® X(ij=1-pij

Step 0 Reformulation (b)

Phil Molyneux M269 Tutorial 43

(o0, D (o0,

40 Y
\0
(c0,1) o
V>~ — D @
1
10

e The numbers in blue are negated scaled logs of x; j

° z(l,_]) =-] 00 IOg]O X(,,J)

7 Prim’s Algorithm

7.1 Prim’s Algorithm — Description

Prim’s Algorithm — Structured English

prim(gr,weight,r)
for u in vertices(gr)

key(u) = Infinity
label (u) = Temp
key(r) =0

pred(r) = None
g = makePriorityQ(vertices (gr))

while not isEmptyPQ(q)
u = extractMinPQ(q)
for v in adj(gr,u)
if (label(v) == Temp
and weight(edge(u,v)) < key(v))

key(v) = weight(edge(u,v))
q = decreaseKeyPQ(q,v, key(v))
pred(v) = u

label (u) = Permanent

Dijkstra’s and Prim’s Algorithms — Comparison
e Both are examples of greedy algorithms
e They choose the next best edge to add to the permanently labelled set
e The algorithms are very similar
e Process each vertex, v, in turn from a priority queue
e Examine all vertices adjacent to v and perform relaxation
e relaxation means updating the distances or keys

e For the term relaxation see Cormen et al. (2009, page 648) has a footnote explaining
the origin of the term relaxation

ToC

44 Graphs and Greedy Algorithms 9 March 2025

7.2 Prim’s Algorithm — Example

From http://www.texample.net/tikz/examples/prims-algorithm/ — note that the
layers had to be declared inside the frame.

See https://www.cse.ust.hk/~dekai/271/ (Lecture 7) and Cormen et al. (2009, chap-
ter 23), Sedgewick and Wayne (2011), Miller and Ranum (2011, section 7.8), (Rabhi and
Lapalme, 1999, section 7.5)

Tutorial Material — Prim’s algorithm

Example Graph 01

a

/ \“/

\/
AN,

8 Greedy Algorithms

8.1 Interval Scheduling

e Greedy algorithms follow the problem solving heuristic of making the locally optimal
choice at each stage with the intent of finding a global optimum

e In general this rarely works — but it does in some cases including
- Dijkstra’s algorithm and A* search algorithm for graph search and shortest path
finding
- Kruskal’s algorithm and Prim’s algorithm for constructing minimum spanning

trees of a given connected graph

- Interval scheduling or Activity selection problem to find the maximum number
of activities that do not clash with each other

e If a greedy algorithm can be proven to yield the global optimum for a given prob-
lem class, it typically becomes the method of choice because it is faster than other
optimization methods such as dynamic programming.

e Interval scheduling
e Job j starts at s; and finishes at f;

e Two jobs are compatible if they do not overlap

http://www.texample.net/tikz/examples/prims-algorithm/
https://www.cse.ust.hk/~dekai/271/
https://en.wikipedia.org/wiki/Greedy_algorithm
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/Kruskal%27s_algorithm
https://en.wikipedia.org/wiki/Prim%27s_algorithm
https://en.wikipedia.org/wiki/Interval_scheduling
https://en.wikipedia.org/wiki/Activity_selection_problem
https://en.wikipedia.org/wiki/Dynamic_programming
https://en.wikipedia.org/wiki/Interval_scheduling

Phil Molyneux M269 Tutorial 45

Q What is the maximum subset of mutually compatible jobs?

Greedy template Consider jobs in some order. Take each job provided it is compat-
ible with the ones already taken.

Exercise What orderings can we have ?
Example from Greedy algorithms: Interval scheduling

Greedy template Consider jobs in some order. Take each job provided it is compat-
ible with the ones already taken.

Earliest start time Consider jobs in ascending order of start time s;
Earliest finish time Consider jobs in ascending order of finish time f;
Shortest interval Consider jobs in ascending order of interval length fj +1 - s;

Fewest conflicts For each job, count the number of conflicting jobs ¢; and schedule
in ascending order of conflicts ¢;

For the jobs given below, produce an ordering by each of the greedy templates
(above) and the schedule produced

Each triple in the list below means (name, s;, fi) where the times are inclusive

jobs
= [(3,1,6),(b,z,4),(c,4,5),(d,4,8)

,(e,5,7),(F,6,9,(9,7,10), (h,9,11)]

/)

9
_ h

1 |2 |3 |4 |5 |6| 7| 8| 9|1o|11

Schedule jobs a, g (2 jobs)

I8

9
__ h_ 3

1J2]3]4]s5]6[7][8]o]io][n

e Schedule jobs b, e, h (3 jobs)

https://ocw.tudelft.nl/course-lectures/3-greedy-algorithms/

46 Graphs and Greedy Algorithms 9 March 2025
|G D)
e
_C_h
9
C_ g9
. d 5

C a D
123456789]10[1

e Schedule jobs c, h (2 jobs)

Ch@ 3
C a (5) D]

e
C_—da®m >

1|2|3|4|5|6|7|8|9|10|11

e Schedule jobs h, b, e (3 jobs)

e For each of the following Greedy Templates produce a counter example to show it
may not produce the optimal schedule

o Earliest start time Consider jobs in ascending order of start time s;

e Shortest interval Consider jobs in ascending order of interval length fj+ 1 - s;

e Fewest conflicts For each job, count the number of conflicting jobs ¢j and schedule
in ascending order of conflicts ¢;

C a) C b 3§ C c

DI G D

=

1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17

e e dominates the optimal schedule by starting earlier and overlapping the others

C a) C

b)

1|2|3|4|5|6|7|8|9|1o|11|12|13|14|15|16|17

e c dominates the optimal schedule y being shorter and overlapping the other two

Phil Molyneux M269 Tutorial 47

C_k
1|2|3|4|5|6|7|8|9|1o|11|12|13|14|15|16|17

e f dominates the optimal schedule by only having two conflicts and overlapping b
and c

Order by Earliest Finish Time — Optimality Proof
e Basic structure of correctness proof:

Assume that there is an optimal solution that is different from the greedy solution.

e Find the first difference between the two solutions.

e Argue that we can exchange the optimal choice for the greedy choice without making
the solution worse (although the exchange might not make it better).

e This argument implies by induction that some optimal solution contains the entire
greedy solution, and therefore equals the greedy solution.

e Sometimes, an additional step is required to show no optimal solution strictly im-
proves the greedy solution.

e See Jeff Erickson: Algorithms
e Proof also in Interval Scheduling and Greedy Algorithms

e The slides at Kevin Wayne: Greedy Algorithms are from Kleinberg and Eva Tardos
(2013)

ToC

9 Future Work

e Thursday, 13 March 2025 TMAOQ2

e Sunday, 6 April 2025 Tutorial Online (Module wide) Dynamic Programming

e Sunday, 27 April 2025 Tutorial Online (Module wide) Computability and Complexity
e Sunday, 4 May 2025 Tutorial Online Review of course material for TMAO3

e Thursday, 22 May 2025 TMAO3

10 Web Sites & References

e Tree (Graph Theory) http://en.wikipedia.org/wiki/Tree_(graph_theory)

e Graph Theory http://en.wikipedia.org/wiki/Graph_theory

e Dekai Wu Algorithms course https://www.cse.ust.hk/~dekai/271/

e Jeff Erickson Algorithms http://jeffe.cs.illinois.edu/teaching/algorithms/

http://jeffe.cs.illinois.edu/teaching/algorithms/
https://ocw.tudelft.nl/wp-content/uploads/Algoritmiek_Interval_scheduling.pdf
https://ocw.tudelft.nl/course-lectures/3-greedy-algorithms/
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsI.pdf
http://en.wikipedia.org/wiki/Tree_(graph_theory)
http://en.wikipedia.org/wiki/Graph_theory
https://www.cse.ust.hk/~dekai/271/
http://jeffe.cs.illinois.edu/teaching/algorithms/

48 Graphs and Greedy Algorithms 9 March 2025

10.1 Shortest Paths
e Dijkstra’s Algorithm
- Dijkstra’s shortest path algorithm

e Bellman-Ford

Bellman-Ford Algorithm

Bellman Ford Algorithm (Simple Implementation)

Haskell Hackage Data.BellmanFord

Data.lGraph from igraph igraph Reference Manual Chapter 13 Structural Prop-
erties of Graphs R igraph manual pages: Shortest (directed or undirected) paths
between vertices IGraph/M: a Mathematica interface for igraph

ToC

10.2 Web Sites for Dynamic Programming

e Stack Exchange http://cs.stackexchange.com/questions/645/deciding-on-
sub-problems-for-dynamic-programming

e Jeff Erickson Algorithms http://jeffe.cs.i1linois.edu/teaching/algorithms/
e Cormen et al. (2009, page 407) has same example as Jeff Erickson
e Edit Distance HaskellWiki https://wiki.haskell.org/Edit_distance

e FEdit Distance in Haskell http://stackoverflow.com/questions/5515025/edit-
distance-algorithm-in-haskell-performance-tuning

e Wikibooks Algorithm implementation — Levenshtein Distance http://en.wikibooks.
org/wiki/Algorithm_Implementation/Strings/Levenshtein_distance

e Wikipedia Levenshtein Distance http://en.wikipedia.org/wiki/Levenshtein_
distance

e Andrew McCallumhttp://bioinfo.ict.ac.cn/~dbu/AlgorithmCourses/Lectures/
Lec6-EditDistance.pdf — beware inconsistent (i,j)

e https://web.stanford.edu/class/cs124/1lec/med.pdf

e Needleman-Wunsch algorithmhttp://en.wikipedia.org/wiki/Needleman\T1l\textendast
algorithm

e Peter Norvig Spell Checkerhttp://norvig.com/spell-correct.html (from http:
//stackoverflow.com/questions/2460177/edit-distance-in-python)

e LaTeX and PGF/TikZ code for table

- LaTeX Stack Exchange — How do | draw horizontal and vertical lines for a
TikZ matrix http://tex.stackexchange.com/questions/134209/how-do-
i-draw-horizontal-and-vertical-Tines-for-a-tikz-matrix

- LaTeX Stack Exchange — Table-like lines in TikZ matrix http://tex.stackexchange.
com/questions/204358/table-Tike-Tines-in-tikz-matrix — butrequires
adjustment for non-zero column sep and row sep and for pgflinewidth

https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/
https://www.geeksforgeeks.org/bellman-ford-algorithm-dp-23/
https://www.geeksforgeeks.org/bellman-ford-algorithm-simple-implementation/
https://hackage.haskell.org/package/ConcurrentUtils-0.4.5.0/docs/Data-BellmanFord.html
http://giorgidze.github.io/igraph/Data-IGraph.html
https://igraph.org/
https://igraph.org/c/doc/igraph-Structural.html
https://igraph.org/c/doc/igraph-Structural.html
https://igraph.org/r/doc/distances.html
https://igraph.org/r/doc/distances.html
http://szhorvat.net/pelican/igraphm-a-mathematica-interface-for-igraph.html
http://cs.stackexchange.com/questions/645/deciding-on-sub-problems-for-dynamic-programming
http://cs.stackexchange.com/questions/645/deciding-on-sub-problems-for-dynamic-programming
http://jeffe.cs.illinois.edu/teaching/algorithms/
https://wiki.haskell.org/Edit_distance
http://stackoverflow.com/questions/5515025/edit-distance-algorithm-in-haskell-performance-tuning
http://stackoverflow.com/questions/5515025/edit-distance-algorithm-in-haskell-performance-tuning
http://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Levenshtein_distance
http://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Levenshtein_distance
http://en.wikipedia.org/wiki/Levenshtein_distance
http://en.wikipedia.org/wiki/Levenshtein_distance
http://bioinfo.ict.ac.cn/~dbu/AlgorithmCourses/Lectures/Lec6-EditDistance.pdf
http://bioinfo.ict.ac.cn/~dbu/AlgorithmCourses/Lectures/Lec6-EditDistance.pdf
https://web.stanford.edu/class/cs124/lec/med.pdf
http://en.wikipedia.org/wiki/Needleman\T1\textendash Wunsch_algorithm
http://en.wikipedia.org/wiki/Needleman\T1\textendash Wunsch_algorithm
http://norvig.com/spell-correct.html
http://stackoverflow.com/questions/2460177/edit-distance-in-python
http://stackoverflow.com/questions/2460177/edit-distance-in-python
http://tex.stackexchange.com/questions/134209/how-do-i-draw-horizontal-and-vertical-lines-for-a-tikz-matrix
http://tex.stackexchange.com/questions/134209/how-do-i-draw-horizontal-and-vertical-lines-for-a-tikz-matrix
http://tex.stackexchange.com/questions/204358/table-like-lines-in-tikz-matrix
http://tex.stackexchange.com/questions/204358/table-like-lines-in-tikz-matrix

Phil Molyneux M269 Tutorial 49

References

Bird, Richard (1998). Introduction to Functional Programming using Haskell. Prentice Hall,
second edition. ISBN 0134843460.

Bird, Richard and Phil Wadler (1988). Introduction to Functional Programming. Prentice
Hall, first edition. ISBN 0134841972.

Cormen, Thomas H.; Charles E. Leiserson; Ronald L. Rivest; and Clifford Stein (2009).
Introduction to Algorithms. MIT Press, third edition. ISBN 0262533057. URL http:
//mitpress.mit.edu/books/introduction-algorithms. 34, 37, 43, 44, 48

Dijkstra, Edsger W (1959). A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269-271.

Erwig, Martin (2001). Inductive graphs and functional graph algorithms. Journal of Func-
tional Programming, 11:467-492. ISSN 1469-7653. doi:10.1017/50956796801004075.
URL https://web.engr.oregonstate.edu/~erwig/fgl/. 11, 34

Hudak, Paul; John Hughes; Simon Peyton Jones; and Phil Wadler (2007). A History of
Haskell: Being Lazy with Class. In Proceedings of the third ACM SIGPLAN conference on
History of programming languages, pages 12-1-12-55. ACM New York, NY, USA.

Kleinberg, Jon and Eva Tardos (2013). Algorithm Design. Pearson. ISBN 1292023945. URL
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/. 47

Lee, Gias Kay (2013). Functional Programming in 5 Minutes. Web. http://gsklee.im,
URL http://slid.es/gsklee/functional-programming-in-5-minutes.

Lutz, Mark (2011). Programming Python. O’Reilly, fourth edition. ISBN 0596158106. URL
http://learning-python.com/books/about-ppde.html.

Lutz, Mark (2013). Learning Python. O’Reilly, fifth edition. ISBN 1449355730. URL
http://learning-python.com/books/about-Tp5e.html.

Marlow, Simon and Simon Peyton Jones (2010). Haskell Language and Library Specifi-
cation. Web. URL http://www.haskell.org/haskellwiki/Language_and_library_
specification.

Miller, Bradley W. and David L. Ranum (2011). Problem Solving with Algorithms and
Data Structures Using Python. Franklin, Beedle Associates Inc, second edition. ISBN
1590282574. URL http://interactivepython.org/courselib/static/pythonds/
index.html. 34, 44

O’Donnell, John; Cordelia Hall; and Rex Page (2006). Discrete Mathematics Using a Com-
puter. Springer, second edition. ISBN 1846282411. URL http://www.dcs.gla.ac.uk/
~jtod/discrete-mathematics/.

Okasaki, Chris (1998). Purely Functional Data Structures. Cambridge University Press.
ISBN 0-521-63124-6.

O’Sullivan, Bryan; John Goerzen; and Donald Stewart (2008). Real World Haskell. O’Reilly,
first edition. ISBN 0596514980. URL http://book.realworldhaskell.org/.

http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
https://web.engr.oregonstate.edu/~erwig/fgl/
https://www.cs.princeton.edu/~wayne/kleinberg-tardos/
http://gsklee.im
http://slid.es/gsklee/functional-programming-in-5-minutes
http://learning-python.com/books/about-pp4e.html
http://learning-python.com/books/about-lp5e.html
http://www.haskell.org/haskellwiki/Language_and_library_specification
http://www.haskell.org/haskellwiki/Language_and_library_specification
http://interactivepython.org/courselib/static/pythonds/index.html
http://interactivepython.org/courselib/static/pythonds/index.html
http://www.dcs.gla.ac.uk/~jtod/discrete-mathematics/
http://www.dcs.gla.ac.uk/~jtod/discrete-mathematics/
http://book.realworldhaskell.org/

50 Graphs and Greedy Algorithms 9 March 2025

Rabhi, Fethi and Guy Lapalme (1999). Algorithms: A Functional Programming Approach.
Addison-Wesley, second edition. ISBN 0201596040. URL http://www.iro.umontreal.
ca/~Tapalme/Algorithms-functional.html. 34, 44

Sedgewick, Robert and Kevin Wayne (2011). Algorithms. Addison Wesley, fourth edition.
ISBN 032157351X. URL http://algs4.cs.princeton.edu/home/. 34, 44

Thompson, Simon (2011). Haskell the Craft of Functional Programming. Addison Wes-
ley, third edition. ISBN 0201882957. URL http://www.haskellcraft.com/craft3e/
Home.html.

van Rossum, Guido and Fred Drake (2011a). An Introduction to Python. Network Theory
Limited, revised edition. ISBN 1906966133.

van Rossum, Guido and Fred Drake (2011b). The Python Language Reference Manual.
Network Theory Limited, revised edition. ISBN 1906966141.

ToC

http://www.iro.umontreal.ca/~lapalme/Algorithms-functional.html
http://www.iro.umontreal.ca/~lapalme/Algorithms-functional.html
http://algs4.cs.princeton.edu/home/
http://www.haskellcraft.com/craft3e/Home.html
http://www.haskellcraft.com/craft3e/Home.html

Python Code Index

Index for some (but not all) of the python code. Note that the index commands are placed
after any listings environment containing the code to be indexed.

combsM, 30 predLists, 19

combsMO01, 29
removeVertex, 19

Edge, 18

edges, 19 startVertices, 19
endVertices, 19 subSegsM, 29
esEndV, 19 succLists, 19
esRemoveV, 19

esStartV, 19 topSorts, 31

transMat, 15
fairListing, 17

fairListingA, 17 Vertex, 18
filterStopWords, 15 vertices, 19
isEmptyGraph, 19 yBiasListing, 16

51

Pseudocode Index

Index for some of the pseudo code. Note that the index commands are placed after any
listings environment containing the code to be indexed.

dijkstra, 35 prim, 43

52

M269 DiGraph Code Index

Index for some of the M269 DiGraph code. Note that the index commands are placed after
any listings environment containing the code to be indexed.

add_edge, 20 in_degree, 21
add_node, 20 in_neighbours, 21
bfs, 22 neighbours, 22
degree, 22 nodes, 21

dfs, 22

DiGraph, 20 out, 20

draw, 22 out_degree, 21
edges, 21 out_neighbours, 21
has_edge, 20 remove_edge, 21
has_node, 20 remove_node, 21

53

M269 Weighted DiGraph Code Index

Index for some of the M269 Weighted DiGraph code. Note that the index commands are
placed after any listings environment containing the code to be indexed.

add_edge, 23
add_node, 23

dijkstra, 24
draw, 23

edges, 23

out_neighbours, 23
remove_edge, 23

weight, 23
WeightedDiGraph, 23

54

M269 Undirected Graph Code Index

Index for some of the M269 Undirected Graph code. Note that the index commands are
placed after any listings environment containing the code to be indexed.

add_edge, 24 in_neighbours, 25
degree, 25 neighbours, 25

edges, 25 remove_edge, 24
in_degree, 25 UndirectedGraph, 24

55

M269 Weighted Undirected Graph Code Index

Index for some of the M269 Weighted Undirected Graph code. Note that the index com-
mands are placed after any listings environment containing the code to be indexed.

add_edge, 25 neighbours, 26
degree, 26 prim, 26
edges, 26
remove_edge, 25
in_degree, 26
in_neighbours, 26 WeightedUndirectedGraph, 25

56

Diagrams Index

Index for some of the PGF/TikZ diagrams. Note that the indexing commands are placed

after the diagram code

egDigraph, 9
egDijkstraGraph0100, 35
egDijkstraGraph0101, 35
egDijkstraGraph0102, 35
egDijkstraGraph0103, 36
egDijkstraGraph0104, 36
egDijkstraGraph0105, 36
egDijkstraGraph0106, 37
egDijkstraGraph0200, 37
egDijkstraGraph0201, 38
egDijkstraGraph0202, 38
egDijkstraGraph0203, 38
egDijkstraGraph0204, 39
egDijkstraGraph0205, 39
egDijkstraGraph0206, 39
egDijkstraGraph0207, 40
egDijkstraGraph0208, 40
egDijkstraGraph0209, 40
egDijkstraGraph0210, 41
egDijkstraGraph02SPG, 41

egDijkstraGraph02SPT, 41
egDijkstraGraph0300, 42
egDijkstraGraph0300a, 42
egDijkstraGraph0300b, 43
egGanttO1Conflicts, 46
egGanttO1ConflictsCntr, 47
egGanttO1EFT, 45
egGanttO1EST, 45
egGanttO1ESTcntr, 46
egGanttO1Shortint, 46
egGanttO1ShortintCntr, 46
egPrimGraph00, 44
egTopSortGraph, 30
egTopSortGraph00, 31
egTopSortGraph01, 32
egTopSortGraph02, 32
egTopSortGraph03, 32
egTopSortGraph04, 33
egTopSortGraph05, 33
egTopSortGraph06, 33

Author Phil Molyneux Written 9 March 2025

Printed 4th March 2025

Subject dir: (baseURL)/0U/Courses/Computing/M269/M269Presentations/M269Prsntn2024]

Topic path:

/M269Prsntn2024]Tutorials/M269Tutorial20250309GraphsGreedPrsntn2024]/M269Tutorial20250309GraphsGreedPrsntn2024].pdf

	Agenda
	Adobe Connect
	Interface
	Settings
	Sharing Screen & Applications
	Ending a Meeting
	Invite Attendees
	Layouts
	Chat Pods
	Web Graphics
	Recordings

	M269 Graph Algorithms
	Graph Definitions
	Graph Representation
	Activity 1 Graph Operations

	Algorithm Descriptions & Implementations
	List Comprehensions
	Activity 2 List Comprehension Exercises
	Python Graph Representation
	Python Graph Representation from 21J
	Graph Representation Choices
	DiGraph Class
	Weighted DiGraph Class
	Undirected Graph Class
	Weighted Undirected Graph Class
	Drawing Graphs
	Enumerations: Subsequences, Combinations

	Topological Sort
	Topological Sort — Algorithm
	Topological Sort Example 01
	Activity 3 Trace Exercise

	Dijkstra's Algorithm
	Dijkstra's Algorithm — Description
	Dijkstra's Algorithm Example 01
	Dijkstra's Algorithm — Further points
	Dijkstra's Algorithm Example 02
	Dijkstra's Algorithm Example 03

	Prim's Algorithm
	Prim's Algorithm — Description
	Prim's Algorithm — Example

	Greedy Algorithms
	Interval Scheduling

	Future Work
	Web Sites & References
	Shortest Paths
	Web Sites for Dynamic Programming
	References

	Python Code Index
	Pseudocode Index
	M269 DiGraph Code Index
	M269 Weighted DiGraph Code Index
	M269 Undirected Graph Code Index
	M269 Weighted Undirected Graph Code Index
	Diagrams Index

