
Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
M269 Module-wide Tutorial

Phil Molyneux

9 February 2025

1/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Commentary 1
Agenda, Aims and Topics

1 Agenda, Aims and Topics

▶ Overview of aims of tutorial

▶ Note selection of topics

▶ Recursion is used throughout the topics

▶ Points about my own background and preferences

▶ Adobe Connect slides for reference

2/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

M269 Tutorial
Agenda & Aims

1. Welcome and introductions

2. Material on Binary Trees and Searching

3. Implementation in Python

4. Learning themes:
▶ Evaluation of expressions
▶ Synthesising an algorithm from an initial idea

5. To cover some of
▶ Binary Trees
▶ Binary Search Trees
▶ Height Balanced (AVL) Trees

6. Questions & discussion (at any point)

7. Adobe Connect — if you or I get cut off, wait till we
reconnect (or send you an email)

8. Source: of slides, notes, programs:

pmolyneux.co.uk/OU/M269FolderSync/M269TutorialSamples2023/

M269TutorialBinaryTreesCmntry2023/

3/338

https://pmolyneux.co.uk/OU/M269FolderSync/M269TutorialSamples2023/
https://pmolyneux.co.uk/OU/M269FolderSync/M269TutorialSamples2023/M269TutorialBinaryTreesCmntry2023/

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees Tutorial
Agenda

▶ There is a lot more material in these slides/notes than
we can cover in the available time, so I will cover:

(1) Binary Tree terminology and representation — some
choices

(2) Tree traversal — depth first recursive

(3) Tree traversal — breadth first — recursive first,
transformed to the usual iterative version

▶ These notes are as much about recursion as Binary
trees — the notes give several examples of evaluations
and what to do when you make a mistake

(4) Binary search trees — deleting a node — choices

(5) AVL or height balanced trees — brief introduction

Health Warning These notes contain some material
that is not part of M269 but is present for interest

4/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees Tutorial
Materials

▶ From the Web link to the folder containing the tutorial
materials you should find:

▶ File with name ending .beamer.pdf — the slides

▶ File with name ending .article.pdf — the notes
version

▶ Table of contents — in the slides this is a clickable
sidebar; in the notes it is an expanded list of sections
with links from the end of sections

▶ Indices — the notes version has an index of the Python
code and the diagrams

▶ References — the notes version has references which
have back references to the pages where the reference
is cited

5/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

M269 Tutorial
Introductions — Phil

▶ Name Phil Molyneux
▶ Background

▶ Undergraduate: Physics and Maths (Sussex)
▶ Postgraduate: Physics (Sussex), Operational Research

(Brunel), Computer Science (University College, London)
▶ Worked in Operational Research, Business IT, Web

technologies, Functional Programming

▶ First programming languages Fortran, BASIC, Pascal
▶ Favourite Software

▶ Haskell — pure functional programming language
▶ Text editors TextMate, Sublime Text — previously Emacs
▶ Word processing in LATEX — all these slides and notes
▶ Mac OS X

▶ Learning style — I read the manual before using the
software

6/338

https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://www.haskell.org/
https://macromates.com
http://www.sublimetext.com
https://www.emacswiki.org/
https://www.latex-project.org/
https://developer.apple.com/

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

M269 Tutorial
Introductions — You

▶ Name ?

▶ Favourite software/Programming language ?

▶ Favourite text editor or integrated development
environment (IDE)

▶ List of text editors, Comparison of text editors and
Comparison of integrated development environments

▶ Other OU courses ?

▶ Anything else ?

7/338

https://en.wikipedia.org/wiki/Text_editor
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/List_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Adobe Connect
Interface — Host View

8/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Adobe Connect
Interface — Participant View

9/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Adobe Connect
Settings

▶ Everybody Menu bar Meeting Speaker & Microphone Setup

▶ Menu bar Microphone Allow Participants to Use Microphone ✔

▶ Check Participants see the entire slide Workaround
▶ Disable Draw Share pod Menu bar Draw icon

▶ Fit Width Share pod Bottom bar Fit Width icon ✔

▶ Meeting Preferences General Host Cursor Show to all attendees

▶ Menu bar Video Enable Webcam for Participants ✔

▶ Do not Enable single speaker mode

▶ Cancel hand tool

▶ Do not enable green pointer

▶ Recording Meeting Record Session ✔

▶ Documents Upload PDF with drag and drop to share
pod

▶ Delete Meeting Manage Meeting Information Uploaded Content

and check filename click on delete

10/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Adobe Connect
Access

▶ Tutor Access

TutorHome M269 Website Tutorials

Cluster Tutorials M269 Online tutorial room

Tutor Groups M269 Online tutor group room

Module-wide Tutorials M269 Online module-wide room

▶ Attendance

TutorHome Students View your tutorial timetables

▶ Beamer Slide Scaling 440% (422 x 563 mm)

▶ Clear Everyone’s Status

Attendee Pod Menu Clear Everyone’s Status

▶ Grant Access and send link via email

Meeting Manage Access & Entry Invite Participants. . .

▶ Presenter Only Area

Meeting Enable/Disable Presenter Only Area

11/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Adobe Connect
Keystroke Shortcuts

▶ Keyboard shortcuts in Adobe Connect

▶ Toggle Mic + M (Mac), Ctrl + M (Win) (On/Disconnect)

▶ Toggle Raise-Hand status + E

▶ Close dialog box (Mac), Esc (Win)

▶ End meeting + \

12/338

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Adobe Connect Interface
Sharing Screen & Applications

▶ Share My Screen Application tab Terminal for Terminal

▶ Share menu Change View Zoom in for mismatch of screen
size/resolution (Participants)

▶ (Presenter) Change to 75% and back to 100% (solves
participants with smaller screen image overlap)

▶ Leave the application on the original display

▶ Beware blued hatched rectangles — from other (hidden)
windows or contextual menus

▶ Presenter screen pointer affects viewer display —
beware of moving the pointer away from the application

▶ First time: System Preferences Security & Privacy Privacy

Accessibility

13/338

https://en.wikipedia.org/wiki/Terminal_(macOS)

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Adobe Connect
Ending a Meeting

▶ Notes for the tutor only
▶ Student: Meeting Exit Adobe Connect

▶ Tutor:
▶ Recording Meeting Stop Recording ✔

▶ Remove Participants Meeting End Meeting. . . ✔

▶ Dialog box allows for message with default message:
▶ The host has ended this meeting. Thank you for

attending.

▶ Recording availability In course Web site for joining
the room, click on the eye icon in the list of recordings
under your recording — edit description and name

▶ Meeting Information Meeting Manage Meeting Information —
can access a range of information in Web page.

▶ Delete File Upload Meeting Manage Meeting Information

Uploaded Content tab select file(s) and click Delete

▶ Attendance Report see course Web site for joining
room

14/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Adobe Connect
Invite Attendees

▶ Provide Meeting URL Menu Meeting Manage Access & Entry

Invite Participants. . .

▶ Allow Access without Dialog Menu Meeting

Manage Meeting Information provides new browser window
with Meeting Information Tab bar Edit Information

▶ Check Anyone who has the URL for the meeting can
enter the room

▶ Default Only registered users and accepted guests may
enter the room

▶ Reverts to default next session but URL is fixed

▶ Guests have blue icon top, registered participants have
yellow icon top — same icon if URL is open

▶ See Start, attend, and manage Adobe Connect meetings
and sessions

15/338

https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html
https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Adobe Connect
Entering a Room as a Guest (1)

▶ Click on the link sent in email from the Host

▶ Get the following on a Web page

▶ As Guest enter your name and click on Enter Room

16/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Adobe Connect
Entering a Room as a Guest (2)

▶ See the Waiting for Entry Access for Host to give
permission

17/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Adobe Connect
Entering a Room as a Guest (3)

▶ Host sees the following dialog in Adobe Connect and
grants access

18/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Adobe Connect
Layouts

▶ Creating new layouts example Sharing layout

▶ Menu Layouts Create New Layout. . . Create a New Layout dialog

Create a new blank layout and name it PMolyMain

▶ New layout has no Pods but does have Layouts Bar open
(see Layouts menu)

▶ Pods

▶ Menu Pods Share Add New Share and resize/position —
initial name is Share n — rename PMolyShare

▶ Rename Pod Menu Pods Manage Pods. . . Manage Pods

Select Rename or Double-click & rename

▶ Add Video pod and resize/reposition

▶ Add Attendance pod and resize/reposition

▶ Add Chat pod — rename it PMolyChat — and
resize/reposition

19/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Adobe Connect
Layouts

▶ Dimensions of Sharing layout (on 27-inch iMac)
▶ Width of Video, Attendees, Chat column 14 cm
▶ Height of Video pod 9 cm
▶ Height of Attendees pod 12 cm
▶ Height of Chat pod 8 cm

▶ Duplicating Layouts does not give new instances of
the Pods and is probably not a good idea (apart from
local use to avoid delay in reloading Pods)

▶ Auxiliary Layouts name PMolyAux0n
▶ Create new Share pod
▶ Use existing Chat pod
▶ Use same Video and Attendance pods

20/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Adobe Connect
Chat Pods

▶ Format Chat text

▶ Chat Pod menu icon My Chat Color

▶ Choices: Red, Orange, Green, Brown, Purple, Pink, Blue,
Black

▶ Note: Color reverts to Black if you switch layouts

▶ Chat Pod menu icon Show Timestamps

21/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Graphics Conversion
PDF to PNG/JPG

▶ Conversion of the screen snaps for the installation of
Anaconda on 1 May 2020

▶ Using GraphicConverter 11

▶ File Convert & Modify Conversion Convert

▶ Select files to convert and destination folder

▶ Click on Start selected Function or +

22/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Adobe Connect Recordings
Exporting Recordings

▶ Menu bar Meeting Preferences Video

▶ Aspect ratio Standard (4:3) (not Wide screen (16:9) default)

▶ Video quality Full HD (1080p not High default 480p)

▶ Recording Menu bar Meeting Record Session ✔

▶ Export Recording

▶ Menu bar Meeting Manage Meeting Information

▶ New window Recordings check Tutorial Access Type button

▶ check Public check Allow viewers to download

▶ Download Recording

▶ New window Recordings check Tutorial Actions Download File

23/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Commentary 2
Binary Trees

2 Binary Trees

▶ Usage, terminology, example trees

▶ Representation, Abstract Data Types and notation

▶ Tree traversals, Depth First and Breadth First

▶ Recursive versions first

▶ Iterative versions derived from recursive versions

▶ Iterative depth first traversals for interest only

▶ Points on performance

24/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Introduction

▶ The tree data structure is the most widely used
non-linear structure in many algorithms.

▶ Almost all algorithms that take logarithmic time,
O(log n), do so because of an underlying tree structure.

▶ Common examples

▶ Binary search tree — this is used in many search
applications

▶ Huffman coding tree — used in compression algorithms
in, for example, JPEG and MP3 files

▶ Heaps — used to implement priority queues

▶ B-trees — generalisation of Binary search trees used in
databases.

25/338

https://en.wikipedia.org/wiki/Binary_search_tree
https://en.wikipedia.org/wiki/Huffman_coding
https://en.wikipedia.org/wiki/Heap_(data_structure)
https://en.wikipedia.org/wiki/B-tree

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Terminology

▶ Binary Tree definition — a Binary tree is either
▶ an Empty Tree or
▶ a Node with an item and two subtrees
▶ One subtree is designated a left subtree and the other a

right subtree

▶ Note that this is a recursive or inductive definition —
this is very common in programming.

▶ Can also define trees as graphs without cycles — see
graph notes

26/338

https://en.wikipedia.org/wiki/Recursive_definition

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Other Recursive Data Structures

▶ Other examples of recursive or inductively defined data
structures we have seen include:

▶ A List is either
▶ an Empty List or
▶ an Item followed by the rest of the list

▶ A Stack is either
▶ an Empty Stack or
▶ the Top item followed by the rest of the stack

▶ In each case the recursive nature of the data structure
definition frequently gives a clue about how to write a
recursive program for a computational problem.

27/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Terminology

▶ Children — subtrees of a node that are not empty

▶ Leaves — nodes with two empty subtrees

▶ Full Binary Tree — every node other than the leaves
has two non empty subtrees

▶ Perfect Binary Tree — all leaves are at the same
level (or depth) children

▶ Complete Binary Tree — every level, except possibly
the last, is completely filled, and all nodes are as far left
as possible — used for Binary Heap

▶ Health Warning: the terminology varies from text to
text and between graph theory in mathematics and
computing.

28/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Example egBSTree

H

egBSTree

D

egBSTreeL

B

LL

A C

F

LR

E G

L

egBSTreeR

J

RL

I K

N

RR

M O

29/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Example egBSTree1

H

egBSTree1

D

egBSTree1L

L

egBSTree1R

J

RL

N

RR

M O

30/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Example egBSTree2

H

egBSTree2

D

egBSTree2L

B

LL

A C

F

LR

E G

L

egBSTree2R

J

RL

I

N

RR

31/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Example egBSTree3

H

egBSTree3

D

egBSTree3L

B

LL

A C

F

LR

G

L

egBSTree3R

N

RR

M O

32/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Activity 1 Binary Tree Types

▶ What types of trees are the above example trees ?

▶ egBSTree

▶ egBSTree1

▶ egBSTree2

▶ egBSTree3

Go to Answer

33/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Answer 1 Binary Tree Types (a)

▶ egBSTree — perfect

H

egBSTree

D

egBSTreeL

B

LL

A C

F

LR

E G

L

egBSTreeR

J

RL

I K

N

RR

M O

▶ Answer 1 continued on next slide

Go to Activity

34/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Answer 1 Binary Tree Types (b)

▶ egBSTree1 — full

H

egBSTree1

D

egBSTree1L

L

egBSTree1R

J

RL

N

RR

M O

▶ Answer 1 continued on next slide

Go to Activity

35/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Answer 1 Binary Tree Types (c)

▶ egBSTree2 — complete

H

egBSTree2

D

egBSTree2L

B

LL

A C

F

LR

E G

L

egBSTree2R

J

RL

I

N

RR

▶ Answer 1 continued on next slide

Go to Activity

36/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Answer 1 Binary Tree Types (d)

▶ egBSTree3 — just a binary tree

H

egBSTree3

D

egBSTree3L

B

LL

A C

F

LR

G

L

egBSTree3R

N

RR

M O

Go to Activity

37/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Python from 21J

Alternate
Representation

Operations

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Python Representation from 2021J (1)

▶ In 2021J M269 revision the Binary Tree Abstract Data
Type (ADT) is represented by the following Python Class

▶ The code is in the M269 Jupyter Notebooks and the
provided file m269_trees.py

▶ The code is reproduced in the file
M269BinaryTrees2021J.py but, for brevity, without
the docstrings

10class Tree :

12 def __init__(self) :
13 self.root = None
14 self.left = None
15 self.right = None

17def is_empty(tree: Tree) -> bool :
18 return (tree.root == tree.left == tree.right
19 == None)

21def join(item: object, left: Tree, right: Tree) -> Tree :
22 tree = Tree()
23 tree.root = item
24 tree.left = left
25 tree.right = right
26 return tree

38/338

m269_trees.py
M269BinaryTrees2021J.py
https://www.python.org/dev/peps/pep-0257/

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Python from 21J

Alternate
Representation

Operations

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Python Representation from 2021J (2)

▶ The functions is_leaf, size, height

28def is_leaf(tree: Tree) -> bool :
29 return (not is_empty(tree)
30 and is_empty(tree.left) and is_empty(tree.right))

32def size(tree: Tree) -> int :
33 if is_empty(tree) :
34 return 0
35 else :
36 return (size(tree.left) + size(tree.right) + 1)

38def height(tree: Tree) -> int :
39 if is_empty(tree) :
40 return 0
41 else :
42 return (max(height(tree.left), height(tree.right)) + 1)

39/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Python from 21J

Alternate
Representation

Operations

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Python Representation from 2021J (2)

▶ This representation works (see the M269 book) but has
the slight disadvantage in the it has no default print
representation that is useful

▶ For example, here is what happens when we attempt to
print a very small tree — threeBT is the same as THREE
in the chapter

Python3>>> threeBT = join(3,Tree(),Tree())
Python3>>> threeBT
<M269BinaryTrees2021J.Tree object at 0x10095a0a0>
Python3>>>

▶ We could write a method to implement a print
representation of an instance of the class Tree() but
that might be a lot of code

40/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Python from 21J

Alternate
Representation

Operations

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Python Representation from 2021J (2)

▶ The main point of having an Abstract Data Type (ADT)
is we can swap out the underlying implementation for
another one

▶ This might be done for efficiency reasons but here we
do it to get an underlying type with a default print
representation

▶ All we have to do is keep operations which provide
access to the underlying representation

▶ This is called a learning opportunity!

41/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Python from 21J

Alternate
Representation

Operations

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Python Alternate Representation (1)

▶ We first list the operations which will (or might) need to
have direct access to the underlying representation

▶ Make an empty tree

▶ Construct a new tree from an item and two trees

▶ Query if a given tree is an empty tree

▶ Given a tree, return the left sub tree

▶ Given a tree, return the right sub tree

▶ Find the height of a tree

▶ Find the size of a tree

▶ The last two do not need access to the underlying
representation (we can calculate the size and height
with just the other operations) but as we will see later,
we might give access for efficiency reasons

42/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Python from 21J

Alternate
Representation

Operations

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Python Alternate Representation (2)

▶ To fully hide the ADT implementation we give common
function names to the operations

Tree Class Common Name Category

Tree() mkEmptyBT() Constructor

join() mkNodeBT() Constructor

is_empty() isEmptyBT() Inspector

tree.root getDataBT() Destructor

tree.left getLeftBT() Destructor

tree.right getRightBT() Destructor

height() heightBT() Operation

size() sizeBT() Operation

43/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Python from 21J

Alternate
Representation

Operations

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Python Alternate Representation (3)

▶ The functions labelled Constructor, Inspector,
Destructor are operations that have direct access to the
underlying representation

▶ sizeBT() and heightBT() are just ordinary operations
in this version of the Tree ADT but for efficiency
reasons they may become Inspectors in a later version

44/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Python from 21J

Alternate
Representation

Operations

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Python Alternate Representation (4)

▶ We shall represent nodes by a named tuple — a quick
and dirty object recommended by Guido van Rossum
(author of the Python programming language).

▶ namedtuple() is a factory function for creating tuple
subclasses with named fields

▶ It is imported from the collections module.

▶ It has a default print representation

7 from collections import namedtuple

9 EmptyBT = namedtuple(’EmptyBT’,[])

11 NodeBT = namedtuple(’NodeBT’
12 ,[’dataBT’,’leftBT’,’rightBT’])

45/338

https://docs.python.org/3.3/library/collections.html#namedtuple-factory-function-for-tuples-with-named-fields
https://plus.google.com/115212051037621986145/posts/HajXHPGN752

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Python from 21J

Alternate
Representation

Operations

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Python Alternate Representation (5)

▶ The Python code above is in the file
Python/M269TutorialBinaryTrees2022.py

▶ The line numbers in the margin correspond to the line
numbers in the file.

▶ Notational convention:

▶ Python reserved identifiers are shown in this color

▶ Python buit-in functions in this color

▶ User defined data constructors and functions such as
NodeBT and EmptyBT are shown in that color

▶ Health Warning: these notes may not be totally
consistent with syntax colouring.

46/338

http://www.pmolyneux.co.uk/OU/M269/M269TutorialResources/M269TutorialResourcesBinaryTrees/

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Python from 21J

Alternate
Representation

Operations

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Python Alternate Representation (6)

▶ We declare the Python type for a Union type since a Tree
is either an empty tree or a non-empty tree

▶ This is venturing into some of the areas of Python Type
Annotations that feel rather awkward but we shall use
them in a simple way

▶ Remember that the Python interpreter only checks the
type annotations for validity but not for correctness —
they just have to look like proper types but the
processor does not check them

14 # Tree type

16 from typing import TypeVar,Union,NewType

18 T = TypeVar(’T’)
19 Tree = NewType(’Tree’,Union[EmptyBT,NodeBT]).

47/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Python from 21J

Alternate
Representation

Operations

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Python Alternate Representation (7)

▶ Note that using namedtuple means that all items are
assumed to have Any types (see mypy: Named tuples)

▶ You could use NamedTuple which is a typed version of
namedtuple but this would be getting a lot more
complicated than types as used in M269

▶ in particular you would get involved in specifying
user-defined generic types and forward references
(since the Tree data type is recursive)

▶ We could have avoided Union by just having NodeBT
and representing an empty tree by the Python None

▶ This would be isomorphic to the Class version with
default printing

48/338

https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/typing.html#the-any-type
https://mypy.readthedocs.io/en/stable/kinds_of_types.html#named-tuples
https://docs.python.org/3/library/typing.html#other-special-directives
https://docs.python.org/3/library/typing.html#user-defined-generic-types
https://peps.python.org/pep-0484/#forward-references

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Python from 21J

Alternate
Representation

Operations

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Operations (1)

▶ We now provide functions to create, inspect and take
apart binary trees

▶ The code with the line numbers is the code for the
implementation using namedtuples

23 def mkEmptyBT() -> Tree :
24 return EmptyBT()

26 def mkNodeBT(x : T,t1 : Tree,t2 : Tree) -> Tree :
27 return NodeBT(x,t1,t2)

29 def isEmptyBT(t : Tree) -> bool:
30 return t == EmptyBT()

▶ mkEmptyBT, mkNodeBT are constructor functions — we
could have used the raw named tuples but the
discipline is good for you and it makes it easier to
refactor in future

▶ isEmptyBT uses the == operator for identity check (not
identity (is))

▶ this is in line with PEP 8 — Style Guide for Python Code
▶ to see an example of why using (==) for comparison

with None may produce odd results see When is the ==
operator not equivalent to the is operator? or Python
None comparison: shouldI use is or ==?

49/338

https://stackoverflow.com/questions/3647692/when-is-the-operator-not-equivalent-to-the-is-operator-python
https://stackoverflow.com/questions/3647692/when-is-the-operator-not-equivalent-to-the-is-operator-python
https://stackoverflow.com/questions/14247373/python-none-comparison-should-i-use-is-or
https://stackoverflow.com/questions/14247373/python-none-comparison-should-i-use-is-or

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Python from 21J

Alternate
Representation

Operations

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Operations (2)

▶ The code with no line numbers illustrates how the
previous implementation using Class Tree can be given
the same operations interface

def mkEmptyBT() -> Tree :
return Tree()

def mkNodeBT(x : T,t1 : Tree,t2 : Tree) -> Tree :
return join(x,t1,t2)

def isEmptyBT(t : Tree) -> bool:
return is_empty(t)

50/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Python from 21J

Alternate
Representation

Operations

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Operations (3)

▶ Here are the operations that access the parts of the tree

32 def getDataBT(t : Tree) -> T:
33 if isEmptyBT(t):
34 raise RuntimeError("getDataBT applied to EmptyBT()")
35 else:
36 return t.dataBT

38 def getLeftBT(t : Tree) -> Tree :
39 if isEmptyBT(t):
40 raise RuntimeError("getLeftBT applied to EmptyBT()")
41 else:
42 return t.leftBT

44 def getRightBT(t : Tree) -> Tree :
45 if isEmptyBT(t):
46 raise RuntimeError("getRightBT applied to EmptyBT()")
47 else:
48 return t.rightBT

51/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Python from 21J

Alternate
Representation

Operations

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Operations (4)

▶ The Class Tree implementation of the above operations

def getDataBT(t : Tree) -> T:
if isEmptyBT(t):
raise RuntimeError("getDataBT applied to empty tree")

else:
return t.root

def getLeftBT(t : Tree) -> Tree :
if isEmptyBT(t):
raise RuntimeError("getLeftBT applied to empty tree")

else:
return t.left

def getRightBT(t : Tree) -> Tree :
if isEmptyBT(t):
raise RuntimeError("getRightBT applied to empty tree")

else:
return t.right

52/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Python from 21J

Alternate
Representation

Operations

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Operations (5)

▶ Here are the operations heightBT() and sizeBT()

▶ Note that height of an empty tree is 0

59def heightBT(t : Tree) -> int :
60 if isEmptyBT(t):
61 return 0
62 else:
63 return (1 + max(heightBT(getLeftBT(t))
64 ,heightBT(getRightBT(t))))

66def sizeBT(t : Tree) -> int :
67 if isEmptyBT(t) :
68 return 0
69 else :
70 return (1 + sizeBT(getLeftBT(t))
71 + sizeBT(getRightBT(t)))

▶ The Class Tree implementation of the above operations
is exactly the same

▶ If we make height or size directly part of the data
structure this may change

53/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Python from 21J

Alternate
Representation

Operations

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Activity 2 Python Representation

▶ Write Python implementations of the following trees
(from the diagrams above) using the named tuple
NodeBT and EmptyBT

▶ egBSTree

▶ egBSTree1

▶ egBSTree2

▶ egBSTree3

Go to Answer

54/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Python from 21J

Alternate
Representation

Operations

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Answer 2 Python Representation — egBSTree

70 egBSTree = mkNodeBT(’H’,
71 mkNodeBT(’D’,
72 mkNodeBT(’B’,
73 mkNodeBT(’A’,mkEmptyBT(),mkEmptyBT()),
74 mkNodeBT(’C’,mkEmptyBT(),mkEmptyBT())
75),
76 mkNodeBT(’F’,
77 mkNodeBT(’E’,mkEmptyBT(),mkEmptyBT()),
78 mkNodeBT(’G’,mkEmptyBT(),mkEmptyBT())
79)
80),
81 mkNodeBT(’L’,
82 mkNodeBT(’J’,
83 mkNodeBT(’I’,mkEmptyBT(),mkEmptyBT()),
84 mkNodeBT(’K’,mkEmptyBT(),mkEmptyBT())
85),
86 mkNodeBT(’N’,
87 mkNodeBT(’M’,mkEmptyBT(),mkEmptyBT()),
88 mkNodeBT(’O’,mkEmptyBT(),mkEmptyBT())
89)
90)
91)

▶ Answer 2 continued on next slide

Go to Activity

55/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Python from 21J

Alternate
Representation

Operations

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Answer 2 Python Representation — egBSTree1

195egBSTree1 = mkNodeBT(’H’,
196 mkNodeBT(’D’,mkEmptyBT(),mkEmptyBT()),
197 mkNodeBT(’L’,
198 mkNodeBT(’J’,mkEmptyBT(),mkEmptyBT()),
199 mkNodeBT(’N’,
200 mkNodeBT(’M’,mkEmptyBT(),mkEmptyBT()),
201 mkNodeBT(’O’,mkEmptyBT(),mkEmptyBT())
202)
203)
204)

▶ Answer 2 continued on next slide

Go to Activity

56/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Python from 21J

Alternate
Representation

Operations

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Answer 2 Python Representation — egBSTree2

221egBSTree2 = mkNodeBT(’H’,
222 mkNodeBT(’D’,
223 mkNodeBT(’B’,
224 mkNodeBT(’A’,mkEmptyBT(),mkEmptyBT()),
225 mkNodeBT(’C’,mkEmptyBT(),mkEmptyBT())
226),
227 mkNodeBT(’F’,
228 mkNodeBT(’E’,mkEmptyBT(),mkEmptyBT()),
229 mkNodeBT(’G’,mkEmptyBT(),mkEmptyBT())
230)
231),
232 mkNodeBT(’L’,
233 mkNodeBT(’J’,
234 mkNodeBT(’I’,mkEmptyBT(),mkEmptyBT()),
235 mkEmptyBT()
236),
237 mkNodeBT(’N’,mkEmptyBT(),mkEmptyBT())
238)
239)

▶ Answer 2 continued on next slide

Go to Activity

57/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Python from 21J

Alternate
Representation

Operations

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Answer 2 Python Representation — egBSTree3

265egBSTree3 = mkNodeBT(’H’,
266 mkNodeBT(’D’,
267 mkNodeBT(’B’,
268 mkNodeBT(’A’,mkEmptyBT(),mkEmptyBT()),
269 mkNodeBT(’C’,mkEmptyBT(),mkEmptyBT())
270),
271 mkNodeBT(’F’,
272 mkEmptyBT(),
273 mkNodeBT(’G’,mkEmptyBT(),mkEmptyBT())
274)
275),
276 mkNodeBT(’L’,
277 mkEmptyBT(),
278 mkNodeBT(’N’,
279 mkNodeBT(’M’,mkEmptyBT(),mkEmptyBT()),
280 mkNodeBT(’O’,mkEmptyBT(),mkEmptyBT())
281)
282)
283)

Go to Activity

58/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Python from 21J

Alternate
Representation

Operations

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Answer 2 Python Representation — egBSTreeL

122egBSTreeL = mkNodeBT(’D’,
123 mkNodeBT(’B’,
124 mkNodeBT(’A’,mkEmptyBT(),mkEmptyBT()),
125 mkNodeBT(’C’,mkEmptyBT(),mkEmptyBT())
126),
127 mkNodeBT(’F’,
128 mkNodeBT(’E’,mkEmptyBT(),mkEmptyBT()),
129 mkNodeBT(’G’,mkEmptyBT(),mkEmptyBT())
130)
131)

Go to Activity

59/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Python from 21J

Alternate
Representation

Operations

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Answer 2 Python Representation — egBSTreeLL

146egBSTreeLL = mkNodeBT(’B’,
147 mkNodeBT(’A’,mkEmptyBT(),mkEmptyBT()),
148 mkNodeBT(’C’,mkEmptyBT(),mkEmptyBT())
149)

Go to Activity

60/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Trees
Tree Traversals

▶ Many applications require visiting each node in a binary
tree and doing some processing.

▶ This could be adding quantities to find a total,
identifying the number of nodes with a particular
property and so on.

▶ There are several common patterns of visiting each
node or traversing a tree
▶ Depth first where the search tree is deepened as much

as possible on each child before visiting the next sibling
▶ Breadth first where we visit every node on a level before

visiting the next level

▶ Each traversal takes a tree and returns a list of items at
the nodes of the tree

61/338

https://en.wikipedia.org/wiki/Tree_traversal
https://en.wikipedia.org/wiki/Depth-first_search
https://en.wikipedia.org/wiki/Breadth-first_search

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Tree Traversals
Depth First

▶ In-Order traversal of tree t
1. If t is an empty tree then return the empty list
2. Otherwise do an In Order traversal of the left subtree of

t then append a list just containing the data item at the
root of t followed by an In Order traversal of the right
subtree of t

▶ Pre-Order traversal of tree t
▶ As In-Order but output a list with the item at the root of

t before traversing the two subtrees

▶ Post-Order traversal of tree t
▶ As Pre-Order but output a list with the item at the root of

t after traversing the two subtrees

▶ In-Order, Pre-Order and Post-Order traversals are
collectively termed Depth First Traversals

▶ We first provide the usual recursive implementations —
in a later section we translate the recursive versions
into iterative versions

62/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Depth First Traversal
Example

▶ Tree egBSTreeLL Python code at line 146 on slide 60

B

egBSTreeLL

A C

▶ The Depth first traversals are implemented in Python by
inOrderBT(), preOrderBT() and postOrderBT()

Python3>>> inOrderBT(egBSTreeLL)
[’A’, ’B’, ’C’]
Python3>>> preOrderBT(egBSTreeLL)
[’B’, ’A’, ’C’]
Python3>>> postOrderBT(egBSTreeLL)
[’A’, ’C’, ’B’]

63/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Depth First Traversals
Python

311 def inOrderBT(t) :
312 if isEmptyBT(t) :
313 return []
314 else :
315 return (inOrderBT(getLeftBT(t)) + [getDataBT(t)]
316 + inOrderBT(getRightBT(t)))

318 def preOrderBT(t) :
319 if isEmptyBT(t) :
320 return []
321 else :
322 return ([getDataBT(t)] + preOrderBT(getLeftBT(t))
323 + preOrderBT(getRightBT(t)))

325 def postOrderBT(t) :
326 if isEmptyBT(t) :
327 return []
328 else :
329 return (postOrderBT(getLeftBT(t))
330 + postOrderBT(getRightBT(t)) + [getDataBT(t)])

64/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Tree Exercises
Activity 3 Depth First Traversals

▶ Give the lists of items in an in-order traversal of
egBSTree, egBSTree1, egBSTree2, egBSTree3

▶ Give the lists of items in a pre-order traversal of
egBSTree, egBSTree1, egBSTree2, egBSTree3

▶ Give the lists of items in a post-order traversal of
egBSTree, egBSTree1, egBSTree2, egBSTree3

▶ Depth first traversal code is from line 311 on slide 64
(Python)

▶ Binary tree code is from line 70 on slide 64 (Python)

Go to Answer

65/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Tree Exercises
Answer 3 Depth First Traversals — In-Order

Python3>>> inOrderBT(egBSTree)
[’A’, ’B’, ’C’, ’D’, ’E’, ’F’, ’G’,
’H’, ’I’, ’J’, ’K’, ’L’, ’M’, ’N’, ’O’]
Python3>>> inOrderBT(egBSTree1)
[’D’, ’H’, ’J’, ’L’, ’M’, ’N’, ’O’]
Python3>>> inOrderBT(egBSTree2)
[’A’, ’B’, ’C’, ’D’, ’E’, ’F’, ’G’,
’H’, ’I’, ’J’, ’L’, ’N’]
Python3>>> inOrderBT(egBSTree3)
[’A’, ’B’, ’C’, ’D’, ’F’, ’G’, ’H’,
’L’, ’M’, ’N’, ’O’]

▶ (Line breaks introduced for layout)

▶ Answer 3 continued on next slide

Go to Activity

66/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Tree Exercises
Answer 3 Depth First Traversals — Pre-Order

Python3>>> preOrderBT(egBSTree)
[’H’, ’D’, ’B’, ’A’, ’C’, ’F’, ’E’,
’G’, ’L’, ’J’, ’I’, ’K’, ’N’, ’M’, ’O’]
Python3>>> preOrderBT(egBSTree1)
[’H’, ’D’, ’L’, ’J’, ’N’, ’M’, ’O’]
Python3>>> preOrderBT(egBSTree2)
[’H’, ’D’, ’B’, ’A’, ’C’, ’F’, ’E’,
’G’, ’L’, ’J’, ’I’, ’N’]
Python3>>> preOrderBT(egBSTree3)
[’H’, ’D’, ’B’, ’A’, ’C’, ’F’, ’G’,
’L’, ’N’, ’M’, ’O’]

▶ Answer 3 continued on next slide

Go to Activity

67/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Tree Exercises
Answer 3 Depth First Traversals — Post-Order

Python3>>> postOrderBT(egBSTree)
[’A’, ’C’, ’B’, ’E’, ’G’, ’F’, ’D’,
’I’, ’K’, ’J’, ’M’, ’O’, ’N’, ’L’, ’H’]
Python3>>> postOrderBT(egBSTree1)
[’D’, ’J’, ’M’, ’O’, ’N’, ’L’, ’H’]
Python3>>> postOrderBT(egBSTree2)
[’A’, ’C’, ’B’, ’E’, ’G’, ’F’, ’D’,
’I’, ’J’, ’N’, ’L’, ’H’]
Python3>>> postOrderBT(egBSTree3)
[’A’, ’C’, ’B’, ’G’, ’F’, ’D’, ’M’,
’O’, ’N’, ’L’, ’H’]

Go to Activity

68/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Breadth First V01

Breadth First V02

Breadth First V03

Breadth First V04

Breadth First V05

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Tree Traversals
Breadth First

▶ The M269 book section 16.3.5 gives an iterative version
of a breadth first traversal but only mentions a
recursive version briefly

▶ We shall start with a recursive version and transform
that by stages into the iterative version in the book

▶ I find it easier to think of the recursive version first —
you should observe how people think they think about
programming

▶ First we do some exercises

69/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Breadth First V01

Breadth First V02

Breadth First V03

Breadth First V04

Breadth First V05

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Tree Exercises
Activity 4 Breadth First Traversals

▶ A level order traversal of a binary tree takes a tree and
returns the list of levels

▶ Each level is the list of items at that level

▶ Give the list of levels for:

▶ egBSTree

▶ egBSTreeL

▶ egBSTree1

▶ egBSTree2

▶ egBSTree3

Go to Answer

70/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Breadth First V01

Breadth First V02

Breadth First V03

Breadth First V04

Breadth First V05

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Tree Exercises
Answer 4 Breadth First Traversals

▶ Answer 4 Breadth First Traversals

Python3>>> levelOrderBT(egBSTree)
[[’H’], [’D’, ’L’], [’B’, ’F’, ’J’, ’N’],
[’A’, ’C’, ’E’, ’G’, ’I’, ’K’, ’M’, ’O’]]

Python3>>> levelOrderBT(egBSTreeL)
[[’D’], [’B’, ’F’], [’A’, ’C’, ’E’, ’G’]]
Python3>>> levelOrderBT(egBSTree1)
[[’H’], [’D’, ’L’], [’J’, ’N’], [’M’, ’O’]]
Python3>>> levelOrderBT(egBSTree2)
[[’H’], [’D’, ’L’], [’B’, ’F’, ’J’, ’N’],
[’A’, ’C’, ’E’, ’G’, ’I’]]

Python3>>> levelOrderBT(egBSTree3)
[[’H’], [’D’, ’L’], [’B’, ’F’, ’N’], [’A’, ’C’, ’G’, ’M’, ’O’]]
Python3>>>

Go to Activity

71/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Breadth First V01

Breadth First V02

Breadth First V03

Breadth First V04

Breadth First V05

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Tree Exercises
Answer 4 Breadth First Traversals (c)

▶ Answer 4 Breadth First Traversals

Python3>>> levelOrderBT(egBSTreeL)
[[’D’], [’B’, ’F’], [’A’, ’C’, ’E’, ’G’]]

D

egBSTreeL

B

LL

A C

F

LR

E G

▶ Answer 4 continued on next slide

Go to Activity

72/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Breadth First V01

Breadth First V02

Breadth First V03

Breadth First V04

Breadth First V05

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Breadth First Traversal
Version 01 (a)

▶ The first version will be recursive and driven by the
structure of trees and will start by writing
levelOrder() which takes a binary tree and returns a
list of levels — a level is a list of items at the level

(1) An empty tree has an empty list of levels (level zero)
(2) A non-empty tree has the list of the root item followed

by combining the two lists of the levels for the two
sub-trees

▶ We will call the function that combines the two lists of
levels longZipMerge() since it is similar to the Python
library zip() function

428 def levelOrderBT(t : Tree) -> [[T]] :
429 if isEmptyBT(t) :
430 return []
431 else :
432 x = getDataBT(t)
433 left = getLeftBT(t)
434 right = getRightBT(t)
435 return ([[x]] +
436 longZipMerge(levelOrderBT(left),levelOrderBT(right)))

73/338

https://docs.python.org/3/library/functions.html#zip

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Breadth First V01

Breadth First V02

Breadth First V03

Breadth First V04

Breadth First V05

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Breadth First Traversal
Version 01 (b)

▶ longZipMerge() is a variant on the Python library
function zip()

▶ zip() iterates over several iterables in parallel,
producing tuples with an item from each one.

▶ longZipMerge() takes two lists and returns a new list
with merged pairs of items from each list which is a
level order traverse of the subtrees

▶ The two lists do not need to be of the same length —
any excess is just appended to the merged result so far

438 def longZipMerge(xss : [[T]],yss : [[T]]) -> [[T]] :
439 if xss == [] :
440 return yss
441 elif yss == [] :
442 return xss
443 else :
444 return ([xss[0] + yss[0]] + longZipMerge(xss[1:],yss[1:]))

74/338

https://docs.python.org/3/library/functions.html#zip
https://docs.python.org/3/library/functions.html#zip

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Breadth First V01

Breadth First V02

Breadth First V03

Breadth First V04

Breadth First V05

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Breadth First Traversal
Version 01 (c)

▶ Evaluation of levelOrderBT(egBSTreeL)

levelOrderBT(egBSTreeLL)
= [[’B’]] # by line 431

+ longZipMerge(levelOrderBT(egBSTreeLLL),
levelOrderBT(egBSTreeLLR))

= [[’B’]] # by lines 431,439
+ longZipMerge([[’A’]],[[’C’]])

= [[’B’]] + [[’A’,’C’]] # by line 441
= [[’B’],[’A’,’C’]]

levelOrderBT(egBSTreeLR)
= [[’F’],[’E’,’G’]] # as above

levelOrderBT(egBSTreeL)
= [[’D’]] # by line 431

+ longZipMerge(levelOrderBT(egBSTreeLL),
levelOrderBT(egBSTreeLR))

= [[’D’]] # as above
+ longZipMerge([[’B’],[’A’,’C’]],

[[’F’],[’E’,’G’]])
= [[’D’]] # by line 441

+ [[’B’,’F’],[’A’,’C’,’E’,’G’]]
= [[’D’],[’B’,’F’],[’A’,’C’,’E’,’G’]] # correct - check the steps

75/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Breadth First V01

Breadth First V02

Breadth First V03

Breadth First V04

Breadth First V05

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Breadth First Traversal
Version 01 (d)

▶ Testing can only show the presence of bugs but not the
absence of bugs (Edsger W Dijkstra Quotes)

▶ We shall now investigate a similar program with a subtle
error

465 def levelOrderBT01(t : Tree) -> [[T]] :
466 if isEmptyBT(t) :
467 return []
468 else :
469 x = getDataBT(t)
470 left = getLeftBT(t)
471 right = getRightBT(t)
472 return ([x] +
473 longZipMerge01(levelOrderBT01(left),levelOrderBT01(right)))

475 def longZipMerge01(xss : [[T]],yss : [[T]]) -> [[T]] :
476 if xss == [] :
477 return yss
478 elif yss == [] :
479 return xss
480 else :
481 return ([xss[0],yss[0]] + longZipMerge01(xss[1:],yss[1:]))

76/338

https://en.wikiquote.org/wiki/Edsger_W._Dijkstra

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Breadth First V01

Breadth First V02

Breadth First V03

Breadth First V04

Breadth First V05

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Breadth First Traversal
Version 01 (e)

▶ We first do a few tests

Python3>>> levelOrderBT(egBSTreeLL)
[[’B’], [’A’, ’C’]]
Python3>>> levelOrderBT01(egBSTreeLL)
[’B’, ’A’, ’C’]
Python3>>> levelOrderBT(egBSTree1)
[[’H’], [’D’, ’L’], [’J’, ’N’], [’M’, ’O’]]
Python3>>> levelOrderBT01(egBSTree1)
[’H’, ’D’, ’L’, ’J’, ’N’, ’M’, ’O’]

▶ Correct order but a list of items not a list of levels

Python3>>> levelOrderBT(egBSTreeL)
[[’D’], [’B’, ’F’], [’A’, ’C’, ’E’, ’G’]]
Python3>>> levelOrderBT01(egBSTreeL)
[’D’, ’B’, ’F’, ’A’, ’E’, ’C’, ’G’]

▶ Wrong order — we now do an evaluation to see where
the error is

77/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Breadth First V01

Breadth First V02

Breadth First V03

Breadth First V04

Breadth First V05

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Breadth First Traversal
Version 01 (f)

▶ Evaluation of levelOrderBT01(egBSTreeL)

levelOrderBT01(egBSTreeLL)
= [’B’] # by line 468

+ longZipMerge01(levelOrderBT01(egBSTreeLLL),
levelOrderBT01(egBSTreeLLR))

= [’B’] # by lines 468,476
+ longZipMerge01([’A’],[’C’])

= [’B’] + [’A’,’C’] # by line 478
= [’B’,’A’,’C’]

levelOrderBT01(egBSTreeLR)
= [’F’,’E’,’G’] # as above

levelOrderBT01(egBSTreeL)
= [’D’] # by line 468

+ longZipMerge01(levelOrderBT01(egBSTreeLL),
levelOrderBT01(egBSTreeLR)))

= [’D’] # as above
+ longZipMerge01([’B’,’A’,’C’],

[’F’,’E’,’G’])
= [’D’] # by line 478

+ [’B’,’F’,’A’,’E’,’C’,’G’]
= [’D’,’B’,’F’,’A’,’E’,’C’,’G’] # notice the error ?

78/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Breadth First V01

Breadth First V02

Breadth First V03

Breadth First V04

Breadth First V05

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Breadth First Traversal
Version 01 (g)

▶ levelOrderBT01() is not only of the wrong type but
produces the wrong order except for a limited number
of trees

▶ The Python type annotations are only checked for
syntax but not for correctness

▶ We get the final breadthBT01() by flattening the list of
levels

▶ This uses a list comprehension as a shorthand for
nested loops — see explanation below

454 def flattenLevels(levels : [[T]]) -> [T] :
455 return ([elem for level in levels for elem in level])

457 def breadthBT01(t : Tree) -> [T] :
458 return flattenLevels(levelOrderBT(t))

79/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Breadth First V01

Breadth First V02

Breadth First V03

Breadth First V04

Breadth First V05

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Breadth First Traversal
Version 01 (h) List Comprehensions

▶ Python List comprehensions (tutorial), List
comprehensions (reference) — a neat way of expressing
iterations over a list

▶ Example (a) Square the even numbers between 0 and 9

▶ Example (b) Generate a list of pairs which satisfy some
condition

Python3>>> [x ** 2 for x in range(10) if x % 2 == 0]
[0, 4, 16, 36, 64]
Python3>>> [(x,y) for x in range(4)
... for y in range(4)
... if x % 2 == 0
... and y % 3 == 0]
[(0, 0), (0, 3), (2, 0), (2, 3)]
Python3>>>

▶ In general

[expr for target1 in iterable1 if cond1
for target2 in iterable2 if cond2 ...
for targetN in iterableN if condN]

80/338

https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/reference/expressions.html#displays-for-lists-sets-and-dictionaries
https://docs.python.org/3/reference/expressions.html#displays-for-lists-sets-and-dictionaries

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Breadth First V01

Breadth First V02

Breadth First V03

Breadth First V04

Breadth First V05

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Breadth First Traversal
Version 01 (i) List Comprehensions

▶ Instead of the list comprehension, flattenLevels()
could be defined with an accumulating list and nested
loops.

▶ M269 does not mention list comprehensions so you
would have to decide whether they are worth
mentioning

490def flattenLevelsA(levels : [[T]]) -> [T] :
491 accumList = []
492 for level in levels :
493 for elem in level :
494 accumList = accumList + [elem]
495 return accumList

81/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Breadth First V01

Breadth First V02

Breadth First V03

Breadth First V04

Breadth First V05

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Breadth First Traversal
Version 02 (a)

▶ We now have a correct program breadthBT01() but
this does lots of (how many?) traversals of the data —
we may want a more efficient version and hence we
transform our program

▶ Version 02 uses a helper function bfTraverse(vs,ts)
which takes a list of item seen, vs, and a list (or queue)
of trees to be visited, ts

▶ As we visit a node, we add its subtree to the queue, ts

501def breadthBT02(t : Tree) -> [T] :
502 return bfTraverse([],[t])

504def bfTraverse(vs : [T],ts : [Tree]) -> [T] :
505 if ts == []:
506 return vs
507 elif isEmptyBT(ts[0]):
508 return bfTraverse(vs,ts[1:])
509 else:
510 return (bfTraverse(vs + [getDataBT(ts[0])],
511 ts[1:] + [getLeftBT(ts[0]),getRightBT(ts[0])]))

82/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Breadth First V01

Breadth First V02

Breadth First V03

Breadth First V04

Breadth First V05

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Breadth First Traversal
Version 03 (a)

▶ Version 02 removed some of the recursion by
enqueueing trees to be visited

▶ This version has the disadvantage that no output until
all the nodes are visited, which could mean a long wait
or never if the tree is infinite

▶ Version 03 enables a lazier approach — Python could
use a Generator expression or augment the code with
Yield expressions (both not used in M269) but other
languages, such as Haskell use lazy evaluation by
default

513def breadthBT03(t : Tree) -> [T] :
514 return lbfBT([t])

516def lbfBT(ts : [Tree]) -> [T] :
517 if ts == []:
518 return []
519 elif isEmptyBT(ts[0]):
520 return lbfBT(ts[1:])
521 else:
522 return ([getDataBT(ts[0])]
523 + lbfBT(ts[1:] + [getLeftBT(ts[0]),getRightBT(ts[0])]))

83/338

https://docs.python.org/3/reference/expressions.html#generator-expressions
https://docs.python.org/3/reference/expressions.html#yield-expressions
https://www.haskell.org

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Breadth First V01

Breadth First V02

Breadth First V03

Breadth First V04

Breadth First V05

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Breadth First Traversal
Version 04 (a)

▶ Version 03 has the only recursive call as (almost) the
last thing

▶ So we can implement this with a while loop

527def breadthBT04(t : Tree) -> [T] :
528 ts = [t] # Trees to visit
529 vs = [] # Values seen
530 while (ts != []) :
531 if not (isEmptyBT(ts[0])) :
532 vs = vs + [getDataBT(ts[0])]
533 ts = ts[1:] + [getLeftBT(ts[0]),getRightBT(ts[0])]
534 else :
535 ts = ts[1:]
536 return vs

84/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Breadth First V01

Breadth First V02

Breadth First V03

Breadth First V04

Breadth First V05

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Breadth First Traversal
Activity 5 Breadth First Error

▶ There is an error in the following version — what is the
error ?

▶ Why would the print statements not help ?

▶ Why don’t the Python type annotations help ?

543def breadthBT04A(t : Tree) -> [T] :
544 ts = [t] # Trees to visit
545 vs = [] # Values seen
546 while not (isEmptyBT(ts)) :
547 print(’ts = ’,ts)
548 if not (isEmptyBT(ts[0])) :
549 print(’len(ts) = ’,len(ts))
550 print(’getDataBT(ts[0]) = ’,getDataBT(ts[0]))
551 vs = vs + [getDataBT(ts[0])]
552 ts = ts[1:] + [getLeftBT(ts[0]),getRightBT(ts[0])]
553 else :
554 print(’ts[0] is empty’,’len(ts) = ’,len(ts))
555 ts = ts[1:]
556 return vs

Go to Answer

85/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Breadth First V01

Breadth First V02

Breadth First V03

Breadth First V04

Breadth First V05

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Breadth First Traversal
Answer 5 Breadth First Error

▶ The error is the while condition at line 546

▶ isEmptyBT(ts) will never return True since ts is a list
of trees

▶ The article version of these notes contains an output of
the print statements and the error report

▶ The error is reported at line 548 as IndexError: list
index out of range

▶ So the print statements do not show the real error

▶ The Python interpreter does not check the type
annotations for correctness, just the syntax

▶ Remember that Python is a weakly typed language

Go to Activity

86/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Breadth First V01

Breadth First V02

Breadth First V03

Breadth First V04

Breadth First V05

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Breadth First Traversal
Version 05 (a)

▶ There is one disadvantage of version 01

▶ The program traverses the entire left subtree before
traversing the right subtree

▶ Bad news for large trees and very bad for infinite trees

▶ This version produces the traversal level by level

563def labelsAtDepth(d : int, t : Tree) -> [T] :
564 if isEmptyBT(t) :
565 return []
566 else :
567 x = getDataBT(t)
568 left = getLeftBT(t)
569 right = getRightBT(t)
570 if d == 0 :
571 return [x]
572 else :
573 return (labelsAtDepth((d-1),left) + labelsAtDepth((d-1),right))

87/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees
Terminology

Examples

Representation

Tree Traversals

Depth First

Breadth First

Breadth First V01

Breadth First V02

Breadth First V03

Breadth First V04

Breadth First V05

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Breadth First Traversal
Version 05 (b)

▶ Breadth first traversal with labelsAtDepth

▶ Version based on Sannella et al (2022, page 261)
Introduction to Computation: Haskell, Logic and
Automata

577def bfTraverseByLevels(t : Tree) -> [T] :
578 return bfTbyL(0,t)

580def bfTbyL(d : int, t : Tree) -> [T] :
581 xs = labelsAtDepth(d,t)
582 if xs == [] :
583 return []
584 else :
585 return (xs + bfTbyL((d+1),t))

88/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals
Iterative InOrder
Traversal

Iterative PreOrder
Traversal

Iterative PostOrder
Traversal

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Iterative Tree Traversals
Recursion Removal

▶ We have used recursion in our implementation of
algorithms on binary trees

▶ This has made it easier to produce correct and fairly
simple implementations

▶ This is mainly because the binary tree data structure is
itself defined recursively

▶ A binary tree is either an empty tree or a node with a
data item and two subtrees.

▶ However the efficiency of this approach will depend on
how the chosen programming language is
implemented.

▶ We are using Python and, while Python permits
recursion, it does not do some of the optimisations
available in other languages, especially pure functional
languages (such as Haskell).

▶ Hence you may find some Python texts down play the
use of recursion.

89/338

https://www.haskell.org/

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals
Iterative InOrder
Traversal

Iterative PreOrder
Traversal

Iterative PostOrder
Traversal

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Iterative Tree Traversals
Recursion Removal

▶ It is always possible to convert a recursive program into
one that just uses iteration with while loops or
(possibly) for loops

▶ We give below examples of the depth first tree
traversals translated from their recursive forms to
non-recursive.

▶ Note that this subsection is for illustration only and you
would not be expected to be able to reproduce the code
or convert other recursive code.

90/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals
Iterative InOrder
Traversal

Iterative PreOrder
Traversal

Iterative PostOrder
Traversal

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Iterative Tree Traversals
inOrder Traversal (1)

▶ Here is the original recursive version (from line 311 on
slide 64)

311def inOrderBT(t) :
312 if isEmptyBT(t) :
313 return []
314 else :
315 return (inOrderBT(getLeftBT(t)) + [getDataBT(t)]
316 + inOrderBT(getRightBT(t)))

91/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals
Iterative InOrder
Traversal

Iterative PreOrder
Traversal

Iterative PostOrder
Traversal

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Iterative Tree Traversals
inOrder Traversal (2)

▶ We start with the recursive version but with an
accumulating result.

335def inOrderBT0(t) :
336 result = []
337 if not isEmptyBT(t) :
338 result = result + (inOrderBT0(getLeftBT(t)))
339 result.append(getDataBT(t))
340 result = result + (inOrderBT0(getRightBT(t)))
341 return result

92/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals
Iterative InOrder
Traversal

Iterative PreOrder
Traversal

Iterative PostOrder
Traversal

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Iterative Tree Traversals
inOrder Traversal (3)

▶ Turn the final (almost tail recursive) call into a while
loop

343def inOrderIterBT1(t) :
344 result = []
345 while not isEmptyBT(t) :
346 result = result + (inOrderIterBT1(getLeftBT(t)))
347 result.append(getDataBT(t))
348 t = getRightBT(t)
349 return result

▶ The term almost since the last operation is the addition
(+) but that could be wrapped into the last call

93/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals
Iterative InOrder
Traversal

Iterative PreOrder
Traversal

Iterative PostOrder
Traversal

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Iterative Tree Traversals
inOrder Traversal (4)

▶ There is now one recursive call.

▶ Create a stack to store the function call context.

▶ In the loop have a conditional to determine whether to
store a new context and make the left sub tree the
current node or if we are returning, with the
appropriate code.

351def inOrderIterBT2(t) :
352 result = []
353 stack = []
354 while (not (stack == []) or not isEmptyBT(t)) :
355 if not isEmptyBT(t) :
356 stack.append(t)
357 t = getLeftBT(t)
358 else:
359 t = stack.pop()
360 result.append(getDataBT(t))
361 t = getRightBT(t)
362 return result

94/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals
Iterative InOrder
Traversal

Iterative PreOrder
Traversal

Iterative PostOrder
Traversal

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Iterative Tree Traversals
inOrder Traversal (5)

Algorithm Description
▶ inOrderIterBT2 takes a tree t and returns a list of

items at the nodes, depth first from left to right
1. Initialise result to an empty list, and stack, for the

stack of trees to visit, to an empty list
2. While stack is not empty or t is not the empty tree

2.1 If t is not empty, append t to stack and assign t to be
its left sub tree — this is the left recursion

2.2 Otherwise make t the top of the stack (and remove it),
append the item at its node to result and make t to be
its right sub tree

3. Finally return result

95/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals
Iterative InOrder
Traversal

Iterative PreOrder
Traversal

Iterative PostOrder
Traversal

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Iterative Tree Traversals
preOrder Traversal (1)

▶ Here is the original recursive version (from line 318 on
slide 64)

318def preOrderBT(t) :
319 if isEmptyBT(t) :
320 return []
321 else :
322 return ([getDataBT(t)] + preOrderBT(getLeftBT(t))
323 + preOrderBT(getRightBT(t)))

96/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals
Iterative InOrder
Traversal

Iterative PreOrder
Traversal

Iterative PostOrder
Traversal

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Iterative Tree Traversals
preOrder Traversal (2)

▶ Start with recursive version with accumulating result.

364def preOrderBT0(t) :
365 result = []
366 if not isEmptyBT(t) :
367 result.append(getDataBT(t))
368 result = result + (preOrderBT0(getLeftBT(t)))
369 result = result + (preOrderBT0(getRightBT(t)))
370 return result

97/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals
Iterative InOrder
Traversal

Iterative PreOrder
Traversal

Iterative PostOrder
Traversal

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Iterative Tree Traversals
preOrder Traversal (3)

▶ Turn the final (almost tail recursive) call into a while
loop.

372def preOrderIterBT1(t) :
373 result = []
374 while not isEmptyBT(t) :
375 result.append(getDataBT(t))
376 result = result + (preOrderIterBT1(getLeftBT(t)))
377 t = getRightBT(t)
378 return result

98/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals
Iterative InOrder
Traversal

Iterative PreOrder
Traversal

Iterative PostOrder
Traversal

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Iterative Tree Traversals
preOrder Traversal (4)

▶ There is now one recursive call.

▶ Create a stack to store the function call context.

▶ In the loop have a conditional to determine whether to
store a new context and make the left sub tree the
current node or if we are returning, with the
appropriate code

380def preOrderIterBT2(t) :
381 result = []
382 stack = []
383 while (not (stack == []) or not isEmptyBT(t)) :
384 if not isEmptyBT(t) :
385 result.append(getDataBT(t))
386 stack.append(t)
387 t = getLeftBT(t)
388 else :
389 t = stack.pop()
390 t = getRightBT(t)
391 return result

99/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals
Iterative InOrder
Traversal

Iterative PreOrder
Traversal

Iterative PostOrder
Traversal

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Iterative Tree Traversals
postOrder Traversal (1)

▶ Here is the original recursive version (from line 325 on
slide 64)

325def postOrderBT(t):
326 if isEmptyBT(t):
327 return []
328 else:
329 return (postOrderBT(getLeftBT(t))
330 + postOrderBT(getRightBT(t)) + [getDataBT(t)])

100/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals
Iterative InOrder
Traversal

Iterative PreOrder
Traversal

Iterative PostOrder
Traversal

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Iterative Tree Traversals
postOrder Traversal (2)

▶ Start with recursive version with accumulating result.

393def postOrderBT0(t) :
394 result = []
395 if not isEmptyBT(t) :
396 result = result + (postOrderIterBT1(getLeftBT(t)))
397 result = result + (postOrderIterBT1(getRightBT(t)))
398 result.append(getDataBT(t))
399 return result

101/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals
Iterative InOrder
Traversal

Iterative PreOrder
Traversal

Iterative PostOrder
Traversal

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Iterative Tree Traversals
postOrder Traversal (3)

▶ There is now no final (tail recursive) call.

401def postOrderIterBT1(t) :
402 result = []
403 if isEmptyBT(t) :
404 return result
405 stack = []
406 while not (stack == []) or (not isEmptyBT(t)) :
407 while not isEmptyBT(t) :
408 if not isEmptyBT(getRightBT(t)) :
409 stack.append(getRightBT(t))
410 stack.append(t)
411 t = getLeftBT(t)
412 t = stack.pop()
413 if ((not isEmptyBT(getRightBT(t)))
414 and (stack != [] and stack[-1] is getRightBT(t))) :
415 tr = stack.pop()
416 stack.append(t)
417 t = getRightBT(t)
418 else :
419 result.append(getDataBT(t))
420 t = mkEmptyBT() # To avoid infinite loop - it is t.rightBT
421 return result

102/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals
Iterative InOrder
Traversal

Iterative PreOrder
Traversal

Iterative PostOrder
Traversal

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Iterative Tree Traversals
postOrder Traversal (4) — Algorithm Description

1. Initialise result to an empty list.
2. If t is empty then return result (not really needed

since the loop would take care of this)
3. Initialise stack, for the stack of trees to visit, to an

empty list
4. While stack is not empty or t is not the empty tree

4.1 While t is not the empty tree
▶ If the right sub tree of t is not empty, push it on to stack
▶ Append t to stack
▶ Assign t its left sub tree

4.2 Pop a node from stack and set it as t
4.3 If the popped node has a non empty right child and the

right child is at the top of stack
▶ Remove the right child from the stack
▶ Push the current node t on to stack
▶ Set t to be t’s right child

4.4 Otherwise
▶ Append the data at the root of t to result
▶ Set t to Empty() — marking t as visited, prevents infinite

looping (it is t.rightBT)

5. Finally return result
103/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals
Iterative InOrder
Traversal

Iterative PreOrder
Traversal

Iterative PostOrder
Traversal

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Iterative Tree Traversals
Concluding Points

▶ Recursive versions are easier to get right.

▶ Iterative versions mimic the stack of recursive function
calls.

▶ Other non-recursive versions use different data
structures with pointers to parent nodes. The code is
still more complex (and error prone) compared to the
recursive versions.

104/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Commentary 3
Binary Search Trees

3 Binary Search Trees

▶ Binary trees with the binary search tree property

▶ Inserting a node

▶ Other BST operations

▶ Deletion — investigating choices

105/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Search Trees
Definition

▶ A binary search tree (BST) is a binary tree with the
binary search tree property:

1. The left sub tree contains nodes with keys less than the
root node

2. The right sub tree contains nodes with keys greater than
the root node

3. The left and right sub trees must also be binary search
trees

4. No nodes with duplicate keys
5. An empty tree is a binary search tree
6. Nothing else is a binary search tree

▶ The data at each node is to contain a key and any
values. The operations required for a BST will include:

insertBST(), inBST(), isBSTree(),
insertListBST(), buildBST(), deleteBST()

106/338

https://en.wikipedia.org/wiki/Binary_search_tree

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Search Trees
Motivation

▶ A perfect binary tree of height h will have 2h – 1 nodes

▶ This means that there will be at most log2(n + 1) steps
from the root of the tree to any node in the tree.

▶ This provides the basis for efficient searching if we give
an appropriate structure to the tree — a Binary Search
Tree (BST)

▶ However we have to keep the BST as near to a perfect
tree otherwise we lose the advantage

107/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Perfect Trees
Activity 6 Nodes of Perfect Tree

▶ Justify the statement that a perfect binary tree of height
h will have 2h – 1 nodes

Go to Answer

108/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Perfect Trees
Answer 6 Nodes of Perfect Tree

▶ There are many ways of showing that a perfect binary
tree of height h will have 2h – 1 nodes — here is one way

▶ Let Nh be the number of nodes in a perfect tree and Lh
be the number of leaves in the same tree.

▶ Then we have L0 = 0, L1 = 1, L2 = 2, L3 = 4, . . . and in
general Lh = 2h–1, h á 1

▶ Now Nh = L1 + L2 + · · · + Lh = 20 + 21 + · · · + 2h–1

▶ 2Nh = 21 + 22 + · · · + 2h–1 + 2h

▶ Subtract the Nh from 2Nh and we get Nh = 2h – 1

▶ Notice that Nh = 1 + 2×Nh–1 — when we consider the
performance we will use similar recurrence relations

Go to Activity

109/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Inserting a Node
Description

▶ The function that takes a item (key and payload) and an
existing BST has to return a new binary tree with the
item inserted and the new tree must be a BST. We deal
with each possible binary tree: an empty tree and a
non-empty tree:

▶ To insert an item into an empty tree, we return a new
tree which is a singleton node with the item and two
empty sub-trees.

▶ To insert an item, with key k, into a tree which is a node
with an item with key p and two sub-trees then we have
two possibilities
▶ If k is less than p then insert the item in the left sub-tree
▶ If k is greater than p then insert the item in the right

sub-tree

▶ We are going to assume duplicate keys are not allowed

110/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Search Tree
Inserting a Node

564def insertBST(x,t):
565 if isEmptyBT(t):
566 return mkNodeBT(x,mkEmptyBT(),mkEmptyBT())
567 else:
568 y = getDataBT(t)
569 if x < y:
570 return mkNodeBT(y,insertBST(x,getLeftBT(t)),getRightBT(t))
571 elif x > y:
572 return mkNodeBT(y,getLeftBT(t),insertBST(x,getRightBT(t)))
573 else:
574 return t

111/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Search Tree
Activity 7 Inserting an Item

▶ Draw diagrams of the binary search trees that result
from inserting an item with key 28 into each of the
three BSTs in the diagrams below of insBSTreeA,
insBSTreeB, insBSTreeC

insBSTreeA

57

insBSTreeA

▶ Activity 7 continued on next slide

Go to Answer

112/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Search Tree
Activity 7 Inserting an Item — insBSTreeB

insBSTreeB

26

insBSTreeB

21

3

45

73

▶ Activity 7 continued on next slide

Go to Answer

113/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Search Tree
Activity 7 Inserting an Item — insBSTreeC

insBSTreeC

51

insBSTreeC

26

4

3

69

57

62

73

Go to Answer

114/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Search Tree
Answer 7 Inserting an Item — insBSTreeA

insBSTreeAa

57

insBSTreeAa

28

▶ Answer 7 continued on next slide

Go to Activity

115/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Search Tree
Answer 7 Inserting an Item — insBSTreeB

insBSTreeBa

26

insBSTreeBa

21

3

45

28 73

▶ Answer 7 continued on next slide

Go to Activity

116/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Search Tree
Answer 7 Inserting an Item — insBSTreeC

insBSTreeCa

51

insBSTreeCa

26

4

3

28

69

57

62

73

Go to Activity

117/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

Testing a BST

List to BST

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Search Tree
Activity 8 Membership

▶ Write Python code for a function, inBST(k,t) which
take a key, k, and a BST, t and returns True if an item
with key k is in the tree and False otherwise

Go to Answer

118/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

Testing a BST

List to BST

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Search Tree
Answer 8 Membership

576def inBST(k,t):
577 if isEmptyBT():
578 return False
579 else:
580 p = getDataBT(t)
581 if k < p:
582 return inBST(k,getLeftBT(t))
583 elif k > p:
584 return inBST(k,getRightBT(t))
585 else:
586 return True

Go to Activity

119/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

Testing a BST

List to BST

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Search Tree Operations
Testing if a Binary Tree is a BST

▶ One strategy for this might be to do an in-order
traversal of the tree and check that the list returned was
an ordered list.

▶ The ordering relation is (<) for strict ordering and no
duplicates

588def isBSTree(t):
589 return orderedList(inOrderBT(t))

591def orderedList(xs):
592 return (len(xs) <= 1
593 or (xs[0] < xs[1] and orderedList(xs[1:])))

120/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

Testing a BST

List to BST

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Search Tree Operations
Building a Binary Search Tree from a list of items

▶ We could insert a list of items one by one from the list
in turn — here is the Python code:

595def insertListBST(xs,t) :
596 if xs == [] :
597 return t
598 else :
599 return insertListBST (xs[1:], insertBST(xs[0],t))

▶ However, see what happens when we insert various lists
— how compact is the resulting tree ?

121/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

Testing a BST

List to BST

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Search Trees
Activity 9 Insert List

▶ For the following lists of keys, draw the diagrams of the
trees produced when insertListBST() is used to
produce the trees from the lists inserting the keys into
an initially empty tree

▶ keys1 = [10, 4, 32, 12, 9, 55, 92, 97, 36, 41, 34]

▶ keys2 = [4, 9, 10, 12, 32, 97, 92, 55, 41, 34, 32]

▶ keys3 = [34, 10, 9, 4, 32, 12, 55, 41, 36, 97, 92]

Go to Answer

122/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

Testing a BST

List to BST

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Search Trees
Answer 9 Insert List tKeys1 = insertListBST(keys1, mkEmptyBT())

10

tKeys1

4

9

32

12 55

36

34 41

92

97

▶ Answer 9 continued on next slide

Go to Activity

123/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

Testing a BST

List to BST

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Search Trees
Answer 9 Insert List tKeys1 = insertListBST(keys1, mkEmptyBT())

tKeys1 = mkNodeBT(10,
mkNodeBT(4,
mkEmptyBT(),
mkNodeBT(9, mkEmptyBT(), mkEmptyBT())),

mkNodeBT(32,
mkNodeBT(12, mkEmptyBT(), mkEmptyBT()),
mkNodeBT(55,
mkNodeBT(36,
mkNodeBT(34, mkEmptyBT(), mkEmptyBT()),
mkNodeBT(41, mkEmptyBT(), mkEmptyBT())),

mkNodeBT(92,
mkEmptyBT(),
mkNodeBT(97, mkEmptyBT(), mkEmptyBT())))))

tKeys1Test = (tKeys1
== insertListBST(keys1, mkEmptyBT()))

▶ Note that when the Python interpreter prints tKeys1 it
includes field names and values and has no line breaks.

▶ Answer 9 continued on next slide

Go to Activity

124/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

Testing a BST

List to BST

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Search Trees
Answer 9 Insert List tKeys2 = insertListBST(keys2, mkEmptyBT())

4

tKeys2

9

10

12

97

92

55

41

36

34

▶ Answer 9 continued on next slide

Go to Activity

125/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

Testing a BST

List to BST

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Search Trees
Answer 9 Insert List tKeys2 = insertListBST(keys2, mkEmptyBT())

tKeys2 = mkNodeBT(4, mkEmptyBT(),
mkNodeBT(9, mkEmptyBT(),
mkNodeBT(10, mkEmptyBT(),
mkNodeBT(12, mkEmptyBT(),
mkNodeBT(32, mkEmptyBT(),
mkNodeBT(97,
mkNodeBT(92,
mkNodeBT(55,
mkNodeBT(41,
mkNodeBT(36,
mkNodeBT(34, mkEmptyBT(),

mkEmptyBT()),
mkEmptyBT()),

mkEmptyBT()),
mkEmptyBT()),

mkEmptyBT()),
mkEmptyBT()))))))

tKeys2Test = (tKeys2
== insertListBST(keys2, mkEmptyBT()))

▶ Answer 9 continued on next slide

Go to Activity

126/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

Testing a BST

List to BST

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Search Trees
Answer 9 Insert List tKeys3 = insertListBST(keys3, mkEmptyBT())

34

tKeys3

10

9

4

32

12

55

41

36

97

92

Go to Activity

127/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

Testing a BST

List to BST

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Search Trees
Answer 9 Insert List tKeys3 = insertListBST(keys3, mkEmptyBT())

tKeys3 = mkNodeBT(34,
mkNodeBT(10,
mkNodeBT(9,
mkNodeBT(4, mkEmptyBT(), mkEmptyBT()),
mkEmptyBT()),

mkNodeBT(32,
mkNodeBT(12, mkEmptyBT(), mkEmptyBT()),
mkEmptyBT())),

mkNodeBT(55,
mkNodeBT(41,
mkNodeBT(36, mkEmptyBT(), mkEmptyBT()),
mkEmptyBT()),

mkNodeBT(97,
mkNodeBT(92, mkEmptyBT(), mkEmptyBT()),
mkEmptyBT())))

tKeys3Test = (tKeys3
== insertListBST(keys3, mkEmptyBT()))

▶ Answer 9 continued on next slide

Go to Activity

128/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

Testing a BST

List to BST

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Search Trees
Answer 9 Insert List

▶ Notice that tree tKeys2 has height equal to the number
of items 11

▶ The structure might as well be a list
▶ In this case the tree structure would not be more

efficient than a list for searching.
▶ The height of tKeys3 is 4 which is as compact a tree

with the number of items between 8 and 15.
▶ tKeys2 shows inserting a list in even partly sorted

order results in the worst case for efficiency.
▶ If a binary search tree is built from insertion of a list of

random data then it can be shown that the expected
height of the tree is O(log n)

▶ The proof of this requires knowledge of statistics
outside the remit of this course — if interested, a proof
is in Cormen et al. (2009, page 300) Theorem 12.4 and
Cormen et al (2022, page 328) Problem 12-3

Go to Activity

129/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

Testing a BST

List to BST

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Search Trees
Building a Compact BST

▶ To produce as compact a tree as possible, we could we
could do the following:

▶ Sort the list

▶ Find the middle item in the sorted list

▶ Construct a binary tree node with the middle item as
the data

▶ The left and right sub-trees should be formed by
recursively building binary trees from the front and
back parts of the sorted list

▶ Below is an implementation in Python

130/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

Testing a BST

List to BST

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Search Trees
Building a Compact BST

604def buildBST(xs) :
605 return bBST(mkEmptyBT(), sorted(xs))

608def bBST(t,xs) :
609 if xs == [] :
610 return t
611 else :
612 half = len(xs) // 2
613 x = xs[half]
614 frontxs = xs[:half]
615 backxs = xs[half+1:]
616 if isEmptyBT(t) :
617 return (mkNodeBT(x,
618 bBST(mkEmptyBT(),frontxs),
619 bBST(mkEmptyBT(),backxs)))
620 else :
621 errMsg = ("bBST: Trying to insert" + str(xs)
622 + " into nonempty tree" + str(t))
623 raise RuntimeError(errMsg)

131/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

Testing a BST

List to BST

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Search Trees
Building a Compact BST — Example

Python3>>> xs = [1, 9, 2, 8, 3, 7, 4, 6, 5]
Python3>>> buildBST(xs)
NodeBT(dataBT=5,
leftBT=NodeBT(dataBT=3,

leftBT=NodeBT(dataBT=2,
leftBT=NodeBT(dataBT=1,

leftBT=EmptyBT(),
rightBT=EmptyBT()),

rightBT=EmptyBT()),
rightBT=NodeBT(dataBT=4,

leftBT=EmptyBT(),
rightBT=EmptyBT())),

rightBT=NodeBT(dataBT=8,
leftBT=NodeBT(dataBT=7,

leftBT=NodeBT(dataBT=6,
leftBT=EmptyBT(),
rightBT=EmptyBT()),

rightBT=EmptyBT()),
rightBT=NodeBT(dataBT=9,

leftBT=EmptyBT(),
rightBT=EmptyBT())))

Python3>>>

▶ Note that when the Python interpreter prints a
namedtuple it includes field names and values and has
no line breaks

132/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Search Trees
Deleting a Node

▶ Deleting an item from a binary search tree involves
more choices than insertion

▶ Initial insight
▶ Find the node with the item (key) by following left or

right sub trees
▶ Delete the item by joining the two sub trees of the node
▶ If the item is not in the tree, just return mkEmptyBT()

▶ The tricky bit is deciding how to join the two sub trees
while keeping the binary search tree property and
keeping the tree compact (otherwise we lose the
advantage of a binary search tree).

▶ The following presents three alternatives which each
use some information about binary search trees — each
version is correct but the later versions produce a more
compact tree.

▶ Below is the initial insight implemented in Python:

133/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Deleting an Item from a BST
Python

627def deleteBST(x, t):
628 if isEmptyBT(t):
629 return mkEmptyBT()
630 else:
631 y = getDataBT(t)
632 leftT = getLeftBT(t)
633 rightT = getRightBT(t)
634 if x < y:
635 return mkNodeBT(y, (deleteBST(x,leftT)), rightT)
636 elif x > y:
637 return mkNodeBT(y, leftT, (deleteBST(x,rightT)))
638 else:
639 return joinBST(leftT, rightT)

134/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Deleting an Item from a BST
Example BST

▶ We now investigate different ways of joining two
subtrees with the function joinBST(leftT, rightT)

▶ We shall use the small tree egBSTreeL to illustrate the
choices deleting the node with key D

D

egBSTreeL

B

A C

F

E G

135/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Example BST
Python

▶ Here is a Python implementation of the tree egBSTreeL

122egBSTreeL = mkNodeBT(’D’,
123 mkNodeBT(’B’,
124 mkNodeBT(’A’,mkEmptyBT(),mkEmptyBT()),
125 mkNodeBT(’C’,mkEmptyBT(),mkEmptyBT())
126),
127 mkNodeBT(’F’,
128 mkNodeBT(’E’,mkEmptyBT(),mkEmptyBT()),
129 mkNodeBT(’G’,mkEmptyBT(),mkEmptyBT())
130))

136/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

joinBST
Version 1

▶ joinBST1 lists out all the elements of the left sub tree
and inserts them in the right subtree.

▶ It does an in-order traversal of the left sub tree and then
inserts the resulting list of items in the right subtree.

643def joinBST1(leftT, rightT):
644 if isEmptyBT(leftT):
645 return rightT
646 else:
647 return (insertListBST(inOrderBT(leftT), rightT))

137/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Deleting an Item from a BST
Activity 10 joinBST Version 1

▶ Draw the diagram of the tree resulting from deleting D
with joinBST1

▶ Why is joinBST1 not a good strategy ?

Go to Answer

138/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

joinBST
Answer 10 joinBST Version 1 (a)

F

E

A

B

C

G

▶ Answer 10 continued on next slide

Go to Activity

139/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

joinBST
Answer 10 joinBST Version 1 (b)

651delBSTreeJoin1 = joinBST1(egBSTreeLL,egBSTreeLR)

653delBSTreeJoin1ans = \
654 NodeBT(dataBT=’F’,
655 leftBT=NodeBT(dataBT=’E’,
656 leftBT=NodeBT(dataBT=’A’,
657 leftBT=EmptyBT(),
658 rightBT=NodeBT(dataBT=’B’,
659 leftBT=EmptyBT(),
660 rightBT=NodeBT(dataBT=’C’,
661 leftBT=EmptyBT(),
662 rightBT=EmptyBT()))),
663 rightBT=EmptyBT()),
664 rightBT=NodeBT(dataBT=’G’,
665 leftBT=EmptyBT(),
666 rightBT=EmptyBT()))

668delBSTreeJoin1test = delBSTreeJoin1 == delBSTreeJoin1ans

Go to Activity

140/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

joinBST
Version 2

▶ joinBST1 results in a near linear structure and is not as
compact as it could be.

▶ The first definition made no use of our knowledge of
binary search trees.

▶ We know that:

maxKey leftT < minKey rightT

since they were subtrees of the original Binary Search
tree, egBSTreeL

▶ In particular we therefore know that the root of the left
subtree is less than any item in the right subtree.

▶ So we attach the left subtree under the smallest
element in the right sub tree.

141/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

joinBST
Version 2

672def joinBST2(leftT, rightT):
673 if isEmptyBT(rightT):
674 return leftT
675 else:
676 return (mkNodeBT(getDataBT(rightT),
677 joinBST2(leftT, getLeftBT(rightT)),
678 getRightBT(rightT)))

142/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Deleting an Item from a BST
Activity 11 joinBST Version 2

▶ Draw the diagram of the tree resulting fron deleting D
with joinBST2

▶ Can you see how we can improve on joinBST2 ?

Go to Answer

143/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Deleting an Item from a BST
Answer 11 joinBST Version 2

F

E

B

A C

G

▶ Answer 11 continued on next slide

Go to Activity

144/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Deleting an Item from a BST
Answer 11 joinBST Version 2

681delBSTreeJoin2 = joinBST2(egBSTreeLL,egBSTreeLR)

683delBSTreeJoin2ans = NodeBT(’F’,
684 NodeBT(’E’,
685 NodeBT(’B’,
686 NodeBT(’A’, EmptyBT(), EmptyBT()),
687 NodeBT(’C’, EmptyBT(), EmptyBT())),
688 EmptyBT()),
689 NodeBT(’G’, EmptyBT(), EmptyBT()))

691delBSTreeJoin2test = (delBSTreeJoin2 == delBSTreeJoin2ans)

▶ To see how this works we shall do a step by step
evaluation

▶ Follow the function code for joinBST2 from line 672 on
slide 142

▶ Note from the definitions of delBSTreeJoin1test
(from line 668 on slide 140) and delBSTreeJoin2test
(from line 691 on slide 145) we can use the field names
or leave them out

▶ Answer 11 continued on next slide

Go to Activity

145/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Deleting an Item from a BST
Answer 11 joinBST Version 2

▶ Step 1 In the first call to joinBST2 the leftT is the tree
rooted at B and the rightT is the tree rooted at F

▶ Line 673 tests if the second argument to joinBST2 is
an empty tree

▶ Since it is not empty, joinBST2 evaluates to the value
at line 676

▶ Hence we have

mkNodeBT(’F’,
joinBST2(leftT, getLeftBT(rightT)),
getRightBT(rightT))

▶ Answer 11 continued on next slide

Go to Activity

146/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Deleting an Item from a BST
Answer 11 joinBST Version 2

▶ Step 2 Since the return value has a recursive call to
joinBST2 we need to evaluate that.

▶ Its second argument is rightT.leftBT which is the
tree rooted at E

▶ Line 673 tests if the first argument to joinBST2 is an
empty tree

▶ Since it is not empty, joinBST2 evaluates to the value
at line 676

▶ Hence we have

mkNodeBT(’F’,
mkNodeBT(’E’,

joinBST2(leftT, getLeftBT(getLeftBT(rightT))),
getRightBT(getLeftBT(rightT))),

getRightBT(rightT))

▶ Answer 11 continued on next slide

Go to Activity

147/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Deleting an Item from a BST
Answer 11 joinBST Version 2

▶ Step 3 We have to evaluate a further recursive call

▶ The second argument to the recursive call to joinBST2
is rightT.leftBT.leftBT which is EmptyBT(), so the
recursive call to joinBST2 evaluates to leftT

▶ rightT.leftBT.rightBT evaluates to EmptyBT()

▶ Hence we have

mkNodeBT(’F’,
mkNodeBT(’E’,

leftT,
mkEmptyBT()),

getRightBT(rightT))

▶ Answer 11 continued on next slide

Go to Activity

148/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Deleting an Item from a BST
Answer 11 joinBST Version 2

▶ Hence the final value is

NodeBT(’F’,
NodeBT(’E’,
NodeBT(’B’,
NodeBT(’A’, EmptyBT(), EmptyBT()),
NodeBT(’C’, EmptyBT(), EmptyBT())),

EmptyBT()),
NodeBT(’G’, EmptyBT(), EmptyBT()))

▶ Doing a step by step evaluation of recursive function
calls should help you get a better feel for recursive
thinking.

▶ We can do better than this — see the following.

Go to Activity

149/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

joinBST
Final Version

▶ We can make better use of our knowledge of Binary
Search trees

▶ We know that:

maxKey leftT < root key < minKey rightT

▶ Hence we can promote the minimum item in the right
subtree to be the new root and delete it from its
original position.

▶ Note we could equally well promote the maximum item
in the left subtree to be the new root (and delete it from
its original position).

150/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

joinBST
Final Version

E

B

A C

F

E G

move

151/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

joinBST
Final Version

▶ Here is Python code for the above diagram:

696def joinBST(leftT, rightT):
697 if isEmptyBT(rightT):
698 return leftT
699 else:
700 (y,t) = splitBST(rightT)
701 return mkNodeBT(y, leftT, t)

▶ splitBST will take the right subtree and return a pair of
minimum item and the subtree with that item removed.

▶ This preserves much of the compact nature of the
binary search tree.

152/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

splitBST
Version 1

▶ We still have choices in defining splitBST

▶ We could define splitBST by finding the minimum item
and then deleting that from the subtree.

706def splitBST1(t):
707 if isEmptyBT(t):
708 raise RuntimeError("splitBST1 applied to EmptyBT()")
709 elif isEmptyBT(getLeftBT(t)):
710 return (getDataBT(t), getRightBT(t))
711 else:
712 y = minItemBST(getLeftBT(t))
713 return (y, mkNodeBT(getDataBT(t),
714 deleteBST(y, getLeftBT(t)),
715 getRightBT(t)))

717def minItemBST(t):
718 if isEmptyBT(t):
719 raise RuntimeError("minItemBST applied to EmptyBT()")
720 elif isEmptyBT(getLeftBT(t)):
721 return (getDataBT(t))
722 else:
723 return (minItemBST(getLeftBT(t)))

153/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

splitBST
Final Version

▶ We can do better than splitBST1

▶ It is possible to define splitBST using only one
traversal of the tree.

727def splitBST(t):
728 if isEmptyBT(t):
729 raise RuntimeError("splitBST applied to EmptyBT()")
730 else:
731 x = getDataBT(t)
732 t1 = getLeftBT(t)
733 t2 = getRightBT(t)
734 if isEmptyBT(t1):
735 return (x,t2)
736 else:
737 (y,t3) = splitBST(t1)
738 return (y, mkNodeBT(x, t3, t2))

154/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Search Tree
Activity 12 Split Trace

▶ Trace an evaluation of splitBST(egBSTreeLR)

F

splitBST(egBSTreeLR)

E G

160egBSTreeLR = mkNodeBT(’F’,
161 mkNodeBT(’E’,mkEmptyBT(),mkEmptyBT()),
162 mkNodeBT(’G’,mkEmptyBT(),mkEmptyBT())
163)

▶ egBSTreeLR is defined at line 160 on slide 155,
splitBST is defined at line 727 on slide 154

Go to Answer

155/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Search Tree
Answer 12 Split Trace

▶ Evaluation of splitBST(egBSTreeLR)

Step 1

getLeftBT(egBSTreeLR) is not empty so the else
clause at line 736 is executed

Step 2

A recursive call is made to splitBST with argument
getLeftBT(egBSTreeLR)

getLeftBT(getLeftBT(egBSTreeLR)) is empty so the
if at line 734 returns

(’E’,getRightBT(getLeftBT(egBSTreeLR))) which
is (’E’,EmptyBT())

▶ Answer 12 continued on next slide

Go to Activity

156/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Search Tree
Answer 12 Split Trace

Step 3

The calling function then returns

(’E’, makeBT(’F’, EmptyBT(),
getRightBT(egBSTreeLR)))

(’E’,NodeBT(’F’,
EmptyBT(),
NodeBT(’G’,EmptyBT(),EmptyBT())))

Go to Activity

157/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Search Tree
Activity 13 Join Trace

▶ Trace an evaluation of

joinBST(egBSTreeLL,egBSTreeLR)

▶ egBSTreeLL is defined at line 146 on slide 60, joinBST
is defined at line 696 on slide 152

Go to Answer

158/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Search Tree
Answer 13 Join Trace

▶ Evaluation of

joinBST(egBSTreeLL,egBSTreeLR)

Step 1

The second argument to joinBST is not the empty tree
so the else clause at line 699 — this invokes
splitBST(egBSTreeLR)

Step 2

From the previous activity, splitBST(egBSTreeLR)
returns

(’E’, makeBT(’F’, EmptyBT(),
getRightBT(egBSTreeLR)))

▶ Answer 13 continued on next slide

Go to Activity

159/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Search Tree
Answer 13 Join Trace

Step 3

Finally, the return statement returns

NodeBT(’E’,
NodeBT(’B’,
NodeBT(’A’, EmptyBT(), EmptyBT()),
NodeBT(’C’, EmptyBT(), EmptyBT())),

NodeBT(’F’,
EmptyBT(),
NodeBT(’G’, EmptyBT(), EmptyBT())))

Go to Activity

160/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Search Tree
Activity 14 Delete Trace

▶ Trace an evaluation of

deleteBST(’D’,egBSTreeL)

▶ egBSTreeL is defined at line 122 on page 59,
deleteBST is defined at line 627 on page 134

Go to Answer

161/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Search Tree
Answer 14 Delete Trace

▶ Evaluation of deleteBST(’D’,egBSTreeL)

Step 1

The second argument of deleteBST is not the empty
tree so the else clause at line 630 is executed.

Step 2

The first argument of deleteBST is ’D’ which is equal
to the item at the root of the tree which is the second
argument, so the else clause at line 638 is executed

Step 3

This evaluates to joinBST(egBSTreeLL,egBSTreeLR)
— see previous activity

Go to Activity

162/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Search Trees
Performance

▶ As we noted earlier, on average the height of a binary
search tree is O(log n) where n is the number of nodes
in the tree.

▶ However in the worst case the height is O(n) and this
will affect the performance of searches.

▶ However it is possible to construct variants of binary
search trees which have O(log n) performance in both
average and worst cases

▶ In the next section we will consider one approach.

163/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Commentary 4
Height Balanced Trees (AVL Trees)

4 Height Balanced Trees

▶ Binary search trees with the height balanced property

▶ Also called AVL trees

▶ Inserting a node

▶ AVL transformations

▶ Local changes preserve global AVL property

▶ Deletion

▶ AVL trees application: representing sets (advanced topic)

▶ Note: Haskell uses the same ideas but with size balanced
trees

▶ Python uses something like dictionaries to implement sets
using hashtables

164/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Height Balanced Trees
Introduction

▶ Binary search trees have the problem that in the worst
case the complexity of a search could be O(n) and
maintaining a complete tree during insertions and
deletions involves too much restructuring.

▶ A solution is to keep the tree balanced so that access
time is still O(log n) in both the average and worst
cases.

▶ The essential approach is to have some local
transformations involving only a few nodes to keep the
tree height balanced.

▶ We shall consider one approach called AVL Trees,
named after the Russian inventors G M Adelson-Velskii
and E M Landis

▶ AVL Trees are Binary Search Trees with the property
that for every subtree the heights of the trees differs by
at most 1 (the balance factor).

▶ AVL trees require an extra couple of functions to
maintain the AVL property on each insertion or deletion.

165/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Data Type

▶ As with the Binary Search Tree, we shall use a union of
named tuples to represent the data type for an AVL
Tree.

▶ Note that we store the height of a tree in the node

▶ This is essential to avoid lots of tree traversals to
re-calculate balance factors

743# AVL Tree Data Type

745# from collections import namedtuple

747EmptyABT = namedtuple(’EmptyABT’,[])

749NodeABT = (namedtuple(’NodeABT’,
750 [’heightABT’,’dataABT’,’leftABT’,’rightABT’]))

752# Tree type --- Augmented Binary Tree

754# from typing import TypeVar,Union,NewType

756# T = TypeVar(’T’)
757ABTree = NewType(’ABTree’,Union[EmptyABT,NodeABT]).

166/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Operations(1)

759# AVL Tree Operations

761def mkEmptyABT() -> ABTree :
762 return EmptyABT()

764def mkNodeABT(x: T,t1: ABTree,t2: ABTree) -> ABTree :
765 h = 1 + max(getHeightABT(t1),getHeightABT(t2))
766 return NodeABT(h,x,t1,t2)

768def isEmptyABT(t: ABTree) -> bool :
769 return t == EmptyABT()

167/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Operations (2)

771def getHeightABT(t: ABTree) -> int :
772 if isEmptyABT(t) :
773 return 0
774 else:
775 return t.heightABT

777def getDataABT(t: ABTree) -> T :
778 if isEmptyABT(t) :
779 raise RuntimeError("getDataABT applied to EmptyABT()")
780 else:
781 return t.dataABT

783def getLeftABT(t: ABTree) -> ABTree :
784 if isEmptyABT(t) :
785 raise RuntimeError("getLeftABT applied to EmptyABT()")
786 else:
787 return t.leftABT

789def getRightABT(t: ABTree) -> ABTree :
790 if isEmptyABT(t) :
791 raise RuntimeError("getRightABT applied to EmptyABT()")
792 else:
793 return t.rightABT

168/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Property Functions (1)

797def isBSABTree(t):
798 return orderedList(inOrderABT(t))

800def inOrderABT(t):
801 if isEmptyABT(t):
802 return []
803 else:
804 return (inOrderABT(getLeftABT(t)) + [getDataABT(t)]
805 + inOrderABT(getRightABT(t)))

832def convertBTtoABT(t):
833 if isEmptyBT(t):
834 return mkEmptyABT()
835 else:
836 leftABT = convertBTtoABT(getLeftBT(t))
837 rightABT = convertBTtoABT(getRightBT(t))
838 return mkNodeABT(getDataBT(t), leftABT, rightABT)

169/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Property Functions (2)

809def balFactorABT(t):
810 if isEmptyABT(t):
811 return 0
812 else:
813 return (getHeightABT(getLeftABT(t))
814 - getHeightABT(getRightABT(t)))

818def hasAVLpropABT(t):
819 if isEmptyABT(t):
820 return True
821 else:
822 return (abs(balFactorABT(t)) <= 1
823 and hasAVLpropABT(getLeftABT(t))
824 and hasAVLpropABT(getRightABT(t)))

827def isAVLABTree(t):
828 return (isBSABTree(t) and hasAVLpropABT(t))

170/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Health Warning

▶ Some texts define the height of a singleton node to be
zero — just subtract one from the height as defined
here.

▶ Some texts do not use empty trees — so where these
notes might say a singleton nodes has an element and
two empty subtrees, some texts might say a singleton
node has no subtrees

▶ Some texts define the height of a subtree differently to
the height of a tree or define a subtree differently to
here.

▶ Some texts define the balance factor as the absolute
value or the height of the right sub tree minus the
height of the left sub tree

▶ In all cases be aware that you have choices in the exact
definition of some terms but the ideas will be the same.

171/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Search Tree
Activity 15 Heights and Balance Factors

▶ For the following diagram of a binary search tree,
egBSTree04, add the height and balance factor for each
node.

34

egBSTree04

21

15

11

5 13

18

32

28

41

36 92

55 97

Go to Answer

172/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Binary Search Tree
Answer 15 Heights and Balance Factors

34

egBSTree04a

bf=1 h=5

211 4

151 3

110 2

50 1 130 1

180 1

321 2

280 1

41–1 3

360 1 920 2

550 1 970 1

Go to Activity

173/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Heights and Balance Factors
Activity 16 Add Item LL

▶ Add the item with key 7 to the tree, egNSTree04, and
recalculate the heights and balance factors

▶ Identify the lowest node in the tree which is out of
balance.

Go to Answer

174/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Heights and Balance Factors
Answer 16 Add Item LL

34

egBSTree04b = insertBST(7,egBSTree04)

bf=2 h=6

212 5

152 4

111 3

5–1 2

70 1

130 1

180 1

321 2

280 1

41–1 3

360 1 920 2

550 1 970 1

▶ Lowest node which is out of balance is node with key 15
Go to Activity

175/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Transformations
Sample Tree

▶ Since the subtree of egBSTree04b =
insertBST(7,egBSTree04) at node with key 15 is the
part of the tree out of balance we shall focus on that

NodeABT(4, 15,
NodeABT(3, 11,
NodeABT(2, 5,
EmptyABT(),
NodeABT(1, 7, EmptyABT(), EmptyABT())),

NodeABT(1, 13, EmptyABT(), EmptyABT())),
NodeABT(1, 18, EmptyABT(), EmptyABT()))

176/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Transformation
Sample Tree

15

egBSTree04bLL

2 4

111 3

5–1 2

70 1

130 1

180 1

177/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Transformations
Example Transformation

▶ We can make this tree balanced by

▶ Make the subtree with root 15 the right child of 11

▶ Make the subtree with root 13 the left child of 15

▶ Leave the subtree with root 5 as the left child of 11

▶ Make the new subtree with root 11 the child of
wherever the original subtree with root 15 was (the left
child of 21)

▶ This results in the following tree.

NodeABT(3, 11,
NodeABT(2, 5,
EmptyABT(),
NodeABT(1, 7, EmptyABT(), EmptyABT())),

NodeABT(2, 15,
NodeABT(1, 13, EmptyABT(), EmptyABT()),
NodeABT(1, 18, EmptyABT(), EmptyABT())))

178/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Transformation
Sample Tree — Transformed

11

egBSTree04bLLb

0 3

5–1 2

70 1

150 2

130 1 180 1

179/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Transformations
Python

▶ This transformation is an instance of what is called a
right rotation

▶ Here is Python code that implements it.

843def rotr(t):
844 k = getDataABT(t)
845 kL = getDataABT(getLeftABT(t))
846 leftLeftT = getLeftABT(getLeftABT(t))
847 leftRightT = getRightABT(getLeftABT(t))
848 rightT = getRightABT(t)
849 return (mkNodeABT(kL,
850 leftLeftT,
851 mkNodeABT(k, leftRightT, rightT)))

180/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Right Rotation
Diagram tree t to tree rotr(t)

k

treeBeforeR t

h+3bf=2

kL

tL

h+2

tLL h+1 tLR h

tR h

kL

treeAfterR = rotr(t)

h+20

tLL h+1 k h+1

tLR h tR h

181/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Height and Balance Factors
Activity 17 Add Item RR

▶ Consider egBSTree04 again (defined in Activity 15 on
slide 172) — now add node with key 96 and recalculate
the heights and balance factors

Go to Answer

182/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Height and Balance Factors
Answer 17 Add Item RR

34

egBSTree04c = insertBST(96,egBSTree04)

bf=1 h=5

211 4

151 3

110 2

50 1 130 1

180 1

321 2

280 1

41–2 4

360 1 92–1 3

550 1 971 2

960 1

Go to Activity

183/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Transformations
Example Tree RR

▶ The subtree at node 41 is now unbalanced with the
addition of the node with key 96 to the right subtree of
the right subtree.

41

egBSTree04cRR

bf=–2 h=4

360 1 92–1 3

550 1 971 2

960 1

184/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Transformations
Activity 18 Rebalance RR

▶ This is similar to the previous example but on the right
side

▶ Describe how this can be rebalanced using a mirror
image local transformation.

Go to Answer

185/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Transformations
Answer 18 Rebalance RR

▶ We can make this tree balanced by:

▶ Make the subtree with root 41 the left child of 92

▶ Make the subtree with root 55 the right child of 41

▶ Leave the subtree with root 97 as the right child of 92

▶ Make the new subtree with root 92 the child of
wherever the original subtree with root 41 was (the
right child of 34)

NodeABT(3, 92,
NodeABT(2, 41,
NodeABT(1, 36, EmptyABT(), EmptyABT()),
NodeABT(1, 55, EmptyABT(), EmptyABT())),

NodeABT(2, 97,
NodeABT(1, 96, EmptyABT(), EmptyABT()),
EmptyABT()))

▶ Answer 18 continued on next slide

Go to Activity

186/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Transformations
Answer 18 Rebalance RR

92

egBSTree04cRRb

bf=0 h=3

410 2

360 1 550 1

971 2

960 1

▶ The transformation is called a left rotation

Go to Activity

187/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Transformations
Left Rotation — Python

▶ The transformation (given in the answer) is an instance
of what is called a left rotation

▶ Here is the Python code that implements it.

853def rotl(t):
854 k = getDataABT(t)
855 kR = getDataABT(getRightABT(t))
856 rightLeftT = getLeftABT(getRightABT(t))
857 rightRightT = getRightABT(getRightABT(t))
858 leftT = t.leftABT
859 return (mkNodeABT(kR,
860 mkNodeABT(k, leftT, rightLeftT),
861 rightRightT))

▶ This is a mirror image of the right rotation as you can
see from the two diagrams describing it below.

188/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Transformations
Left Rotation

k

treeBeforeL t

h+3bf=–2

tL h kR

tR

h+2

tRL h tRR h+1

kR

treeAfterL = rotl(t)

h+20

k h+1

tL h tRL h

tRR h+1

189/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Transformations
Insight

▶ The functions for insertion and deletion of an item in an
AVL tree will be the same as a Binary Search tree except

▶ When we construct a new tree we must maintain the
AVL property via a function makeAVLTree (line 865 on
slide 210) not just makeABTree (line 764 on slide 167).
(some texts call this rebalancing or something similar)

▶ What we know is that the original tree must be a
properly formed AVL tree and that the insertion or
deletion of one item can alter the height of any subtree
by at most 1.

▶ Hence we can implement makeAVLTree(x, leftT,
rightT) assuming that leftT and rightT are both
AVL trees whose heights differ by at most 2.

▶ We proceed by analysing each possible case and
provide a manipulation of the tree for each case.
Consider the diagram below:

190/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Transformations
Cases Diagram

k

treeCaseDiag t

kL

tL

tLL tLR

kR

tR

tRL tRR

▶ Our right and left rotation functions, rotr and rotl
have dealt with the cases where the subsubtrees LL and
RR had increased by one caused the balance to go
outside the permitted range.

▶ We now have to investigate cases where the
subsubtrees LR or RL become heavy.

▶ Below is an example, egBSTree05

191/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Transformations
Tree egBSTree05

21

egBSTree05

bf=1 h=4

150 3

110 2

50 1 130 1

180 2

160 1 190 1

321 2

280 1

192/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Transformations
Activity 19 egBSTree05 Add Item LR 1

▶ Add the item with key 20 to the tree and recalculate the
heights and balance factors

▶ Identify the lowest node in the tree which is out of
balance.

Go to Answer

193/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Transformations
Answer 19 egBSTree05 Add Item LR 1

21

egBSTree05b

bf=2 h=5

15–1 4

110 2

50 1 130 1

18–1 3

160 1 19–1 2

200 1

321 2

280 1

▶ The node with key 21 has balance factor 2 and is the
lowest node out of balance.

Go to Activity

194/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Transformations
Activity 20 Add Item LR 2

▶ Given the resulting tree from Self-assessment
activity 19, does a right rotation around the lowest
node which is out of balance bring it back to balance ?

Go to Answer

195/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Transformations
Answer 20 Add Item LR 2

▶ Here is the result of a right rotation around node with
key 21

15

egBSTree05bRotr

bf=–2 h=5

110 2

50 1 130 1

211 4

18–1 3

160 1 19–1 2

200 1

321 2

280 1

Go to Activity
196/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Transformations
LR Heavy

▶ This has just switched the balance factor of the root of
the tree from 2 to –2 so we have to do something else.

▶ The Eureka step is realising that we can break up the
problematic subtree under node 18 by doing a left
rotation around node 15 — this produces the following
tree.

197/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Transformations
LR Heavy

21

egBSTree05bLRotl

bf=2 h=5

181 4

151 3

110 2

50 1 130 1

160 1

19–1 2

200 1

321 2

280 1

▶ Notice that this has converted a tree which was LR heavy
to one where it is LL heavy — so we can now use a right
rotation on the tree rooted at 21 to get the following:

198/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Transformations
LR Heavy

18

egBSTree05bLRotlRotr

bf=0 h=4

151 3

110 2

50 1 130 1

160 1

210 3

19–1 2

200 1

321 2

280 1

▶ We now have a balanced tree — but were we just lucky
or have we found a general rule ? Here are diagrams of
the double rotation to show it works in general:

199/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Transformations
Case LR subsubtree heavy

k

treeCaseLR t

balance factor 2 height h+3

kL

tL

h+2

tLL h kLR

tLR

h+1

tLRL h or h–1 tLRR h–1 or h

tR h

200/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Transformations
Case LR — Step (A) Rotate Left about kL

k

treeCaseLRLRotl

balance factor 2 height h+3

kLR h+2

kL h+1

tLL h tLRL h or h–1

tLRR h–1 or h

tR h

201/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Transformations
Case LR — Step (B) Rotate Right about k

kLR

treeCaseLRLRotlRotr

balance factor 0 height h+2

kL h+1

tLL h tLRL h or h–1

k h+1

tLRR h–1 or h tR h

202/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Transformations
Activity 21 Case RL Heavy

▶ Draw the equivalent diagram for the final case where
subsubtree tRL is heavy

▶ Note that this must be the mirror image of the tLR case

Go to Answer

203/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Transformations
Answer 21 Case RL Heavy

k

treeCaseRL t

balance factor –2 height h+3

tL h kR

tR

h+2

kRL

tRL

h+1

tRLL h–1
or h tRLR h or

h–1

tRR h

▶ Answer 21 continued on next slide

Go to Activity
204/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Transformations
Answer 21 Case RL Heavy — Step (A) Rotate Right about kR

k

treeCaseRLRRotr

balance factor –2 height h+3

tL h kRL h+2

tRLL h–1
or h kR h+1

tRLR h or
h–1 tRR h

▶ Answer 21 continued on next slide

Go to Activity
205/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Transformations
Answer 21 Case RL Heavy — Step (B) Rotate Left about k

kRL

treeCaseRLRRotrRotl

balance factor 0 height h+2

k h+1

tL h tRLL h–1
or h

kR h+1

tRLR h or
h–1 tRR h

Go to Activity

206/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Comparison with
Storing Balance Factors

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
The makeAVLTree Function

▶ The makeAVLTree takes an item, x, two subtrees,
leftT, rightT and returns a new augmented binary
tree

▶ It would be the same as makeABTree except it has to do
the appropriate transformation if the new tree would be
out of balance.

▶ We will only ever use makeAVLTree when inserting or
deleting an item in a valid AVL tree

▶ So we know from our insight above that the heights of
leftT and rightT can differ by at most 2 after
insertion/deletion

▶ Hence we consider each case in turn using the
transformations we have developed above.

207/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Comparison with
Storing Balance Factors

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
The makeAVLTree Function

Case 1 LL Heavy

(getHeightABT(leftT) - getHeightABT(rightT) = 2
and balFactorABT(leftT) >= 0)

▶ Do a right rotation of the tree formed from
makeABTree(x, leftT, rightT)

Case 2 LR Heavy

(getHeightABT(leftL) - getHeightABT(rightT) = 2
and balFactorABT(leftT) == -1)

▶ Do a left rotation of leftT

▶ Do a right rotation of the tree formed from
makeABTree(x, rotl(leftT), rightT)

208/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Comparison with
Storing Balance Factors

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
The makeAVLTree Function

Case 3 RL Heavy

(getHeightABT(leftL) - getHeightABT(rightT) = -2
and balFactorABT(rightT) == 1)

▶ Do a right rotation of rightT

▶ Do a left rotation of the tree formed from
makeABTree(x, leftT, rotr(rightT))

Case 4 RR Heavy

(getHeightABT(leftL) - getHeightABT(rightT) = -2
and balFactorABT(rightT) <= 0)

▶ Do a left rotation of the tree formed from
makeABTree(x, leftT, rightT)

Case 5 Otherwise

▶ Just use makeABTree(x, leftT, rightT)

▶ No transformations required

209/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Comparison with
Storing Balance Factors

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

makeAVLTree Function
Python

865def makeAVLTree(x, leftT, rightT):
866 hL = getHeightABT(leftT)
867 hR = getHeightABT(rightT)
868 if (hR + 1 < hL) and (balFactorABT(leftT) >= 0):
869 return rotr(mkNodeABT(x, leftT, rightT))
870 elif (hR + 1 < hL):
871 return rotr(mkNodeABT(x, (rotl(leftT)),rightT))
872 elif (hL + 1 < hR) and (balFactorABT(rightT) > 0):
873 return rotl(mkNodeABT(x, leftT, rotr(rightT)))
874 elif (hL + 1 < hR):
875 return rotl(mkNodeABT(x, leftT, rightT))
876 else:
877 return mkNodeABT(x, leftT, rightT)

210/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Comparison with
Storing Balance Factors

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Transformations
Conclusions

▶ This section has been quite long but most of the space
has been occupied with diagrams

▶ Some implementations can look quite tricky since they
may be trying to avoid recursion or manipulate the data
structures

▶ We will discuss efficiency and recursion removal in a
later section.

▶ Here are diagrams of the two rotate functions to
emphasise that they are really quite simple.

211/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Comparison with
Storing Balance Factors

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Transformations
Rotate Right

k

treeBeforeRotr

kL

tLL tLR

tR

kL

treeAfterRotr

tLL k

tLR tR

212/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Comparison with
Storing Balance Factors

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Transformations
Rotate Left

k

treeBeforeRotl

tL kR

tRL tRR

kR

treeAfterRotl

k

tL tRL

tRR

213/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Comparison with
Storing Balance Factors

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Comparison with Storing Balance Factors

▶ Some texts implement AVL Trees by storing balance
factors at the nodes rather than the heights (Miller and
Ranum, 2011, Section 6.8.2, page 290)

▶ The Miller and Ranum explanation of updating the
balance factors after a right or left rotation refer to
diagrams similar to rotate right on slide 212 and rotate
left on slide 213

▶ This note translates the Miller & Ranum notation to the
notation used in these diagrams

▶ Both approaches have performance O(log n) but have
differences in detail

214/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Comparison with
Storing Balance Factors

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Comparison with Storing Balance Factors
Right Rotation (1)

▶ New and old balance factors of node k

▶ Using pseudo-code:

newBal(k) = height(tLR) - height(tR)
oldBal(k) = oldHeight(kL) - height(tR)

= (1 + max(height(tLL), height(tLR)))
- height(tR)

newBal(k) - oldBal(k)
= (height(tLR) - height(tR))
- ((1 + max(height(tLL), height(tLR)))

- height(tR))
= height(tLR)
- 1 - max(height(tLL), height(tLR))

= height(tLR)
- 1 + min(-height(tLL), -height(tLR))

= min(height(tLR) - height(tLL)
, height(tLR) - height(tLR)) - 1

= min(-oldBal(kL), 0) - 1
since -max(a, b) = min(-a,-b)

min(a,b) + c = min(a+c, b+c)

215/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Comparison with
Storing Balance Factors

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Comparison with Storing Balance Factors
Right Rotation (2)

▶ New and old balance factors of node kL

newBal(kL) = height(tLL) - newHeight(k)
= height(tLL)
- (1 + max(height(tLR), height(tR)))

oldBal(kL) = height(tLL) - height(tLR)

newBal(kL) - oldBal(kL)
= (height(tLL)
- (1 + max(height(tLR), height(tR))))

- (height(tLL) - height(tLR))
= height(tLR)
- 1 - max(height(tLR), height(tR))

= height(tLR)
- 1 + min(-height(tLR), -height(tR))

= min(height(tLR) - height(tLR)
, height(tLR) - height(tR)) - 1

= min(0, newBal(k)) - 1

216/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Comparison with
Storing Balance Factors

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Comparison with Storing Balance Factors
Right Rotation (3)

▶ Right rotation: New and old balance factors of nodes k
and kR

newBal(k)
= oldBal(k) + min(-oldBal(kL), 0) - 1

newBal(kL)
= oldBal(kL) + min(0, newBal(k)) - 1

▶ This fits with the right rotation diagrams annotated with
heights and balance factors on slide 181,

oldBal(k) = +2
oldBal(kL) = +1
newBal(k) = 0 = +2 + min(-1, 0) - 1
newBal(kL) = 0 = +1 + min(0, 0) - 1

217/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Comparison with
Storing Balance Factors

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Comparison with Storing Balance Factors
Left Rotation (1)

▶ New and old balance factors of node k

▶ Using pseudo-code:

newBal(k) = height(tL) - height(tRL)
oldBal(k) = height(tL) - oldHeight(kR)

= height(tL)
- (1 + max(height(tRL), height(tRR)))

newBal(k) - oldBal(k)
= (height(tL) - height(tRL))
- (height(tL)

- (1 + max(height(tRL), height(tRR))))
= 1 + max(height(tRL), height(tRR)) - height(tRL)
= 1 + max(height(tRL) - height(tRL)

, height(tRR) - height(tRL))
= 1 + max(0, -oldBal(kR))
= 1 - min(0, oldBal(kR))
since max(-a, -b) = -min(a,b)

max(a,b) - c = max(a-c, b-c)

218/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Comparison with
Storing Balance Factors

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Comparison with Storing Balance Factors
Left Rotation (2)

▶ New and old balance factors of node kR

newBal(kR) = newHeight(k) - height(tRR)
= (1 + max(height(tL), height(tRL)))
- height(tRR)

oldBal(kR) = height(tRL) - height(tRR)

newBal(kR) - oldBal(kR)
= ((1 + max(height(tL), height(tRL)))
- height(tRR))

- (height(tRL) - height(tRR))
= 1 + max(height(tL), height(tRL)) - height(tRL)
= 1 + max(height(tL) - height(tRL)

, height(tRL) - height(tRL))
= 1 + max(newBal(k), 0)

219/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Comparison with
Storing Balance Factors

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Comparison with Storing Balance Factors
Left Rotation (3)

▶ Left rotation: New and old balance factors of nodes k
and kR

newBal(k)
= oldBal(k) + 1 - min(0, oldBal(kR))

newBal(kR)
= oldBal(kR) + 1 + max(newBal(k), 0)

▶ This fits with the left rotation diagrams annotated with
heights and balance factors on slide 189,

oldBal(k) = -2
oldBal(kR) = -1
newBal(k) = 0 = -2 + 1 - min(0,-1)
newBal(kR) = 0 = -1 + 1 + max(0, 0)

220/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Insertion and Deletion

▶ The insertion and deletion functions are the same as for
Binary Search Trees except we have to use
makeAVLTree to make a tree unless we really know that
the AVL property will be preserved.

881def insertAVLT(x,t):
882 if isEmptyABT(t):
883 return mkNodeABT(x, mkEmptyABT(), mkEmptyABT())
884 else:
885 y = getDataABT(t)
886 leftT = getLeftABT(t)
887 rightT = getRightABT(t)
888 if x < y:
889 return makeAVLTree(y, insertAVLT(x, leftT), rightT)
890 elif x > y:
891 return makeAVLTree(y, leftT, insertAVLT(x, rightT))
892 else:
893 return t

895def insertListAVLT(xs,t):
896 if xs == []:
897 return t
898 else:
899 return insertListAVLT(xs[1:], (insertAVLT(xs[0],t)))

221/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Insertion and Deletion

901def deleteAVLT(x,t):
902 if isEmptyABT(t):
903 return mkEmptyABT()
904 else:
905 y = getDataABT(t)
906 leftT = getLeftABT(t)
907 rightT = getRightABT(t)
908 if x < y:
909 return makeAVLTree(y, deleteAVLT(x, leftT), rightT)
910 elif x > y:
911 return makeAVLTree(y, leftT, deleteAVLT(x, rightT))
912 else:
913 return joinAVLT(leftT, rightT)

222/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Insertion and Deletion

917def joinAVLT(leftT, rightT):
918 if isEmptyABT(rightT):
919 return leftT
920 else:
921 (y,t) = splitAVLT(rightT)
922 return makeAVLTree(y, leftT, t)

926def splitAVLT(t):
927 if isEmptyABT(t):
928 raise RuntimeError("splitAVLT applied to EmptyABT()")
929 else:
930 x = getDataABT(t)
931 t1 = getLeftABT(t)
932 t2 = getRightABT(t)
933 if isEmptyABT(t1):
934 return (x,t2)
935 else:
936 (y,t3) = splitAVLT(t1)
937 return (y, makeAVLTree(x, t3, t2))

223/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Activity 22 Insert Lists and Delete Items

▶ Draw the AVL Trees resulting from inserting the
following lists of items into an empty tree one by one in
order given — do the insertions by hand following the
AVL insertion algorithm — you can use the Python code
to check your answers

1. [1,2,3,4,5,6,7,8,9,10]
2. [10,9,8,7,6,5,4,3,2,1]
3. [68,88,61,89,94,50,4,76,66,82,99]

▶ For each of the previous trees, show the result when the
fourth item inserted is deleted

▶ The insertAVLT function is defined at line 881,
slide 221 (Python), the deleteAVLT function is defined
at line 901, slide 222 (Python),

▶ insertListAVLT is defined at line 895, slide 221
(Python),

Go to Answer

224/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Answer 22 Insert Lists and Delete Items

listQ1a = [1,2,3,4,5,6,7,8,9,10]
exsAVLInsDelQ1a = insertListAVLT(listQ1a, EmptyABT())

4

exsAVLInsDelQ1a

4

2 2

1 1 3 1

8 3

6 2

5 1 7 1

9 2

10 1

▶ Answer 22 continued on next slide

Go to Activity

225/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Answer 22 Insert Lists and Delete Items

▶ Here is the Python representation of the resulting AVL
tree

exsAVLInsDelQ1aAns \
= (NodeABT(4, 4,

NodeABT(2, 2,
NodeABT(1, 1, EmptyABT(), EmptyABT()),
NodeABT(1, 3, EmptyABT(), EmptyABT())),

NodeABT(3, 8,
NodeABT(2, 6,
NodeABT(1, 5, EmptyABT(), EmptyABT()),
NodeABT(1, 7, EmptyABT(), EmptyABT())),

NodeABT(2, 9,
EmptyABT(),
NodeABT(1, 10, EmptyABT(), EmptyABT())))))

▶ Answer 22 continued on next slide

Go to Activity

226/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Answer 22 Insert Lists and Delete Items

▶ Here are the insertions done one by one with separate
diagrams

exsAVLInsDelQ1a01 \
= insertListAVLT(listQ1a[:1], EmptyABT())

1

exsAVLInsDelQ1a01

1

▶ Answer 22 continued on next slide

Go to Activity

227/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Answer 22 Insert Lists and Delete Items

exsAVLInsDelQ1a02 \
= insertListAVLT(listQ1a[:2], EmptyABT())

1

exsAVLInsDelQ1a02

2

2 1

▶ Answer 22 continued on next slide

Go to Activity

228/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Answer 22 Insert Lists and Delete Items

exsAVLInsDelQ1a03 \
= insertListAVLT(listQ1a[:3], EmptyABT())

Left rotation about 1

2

exsAVLInsDelQ1a03

2

1 1 3 1

▶ Answer 22 continued on next slide

Go to Activity

229/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Answer 22 Insert Lists and Delete Items

exsAVLInsDelQ1a04 \
= insertListAVLT(listQ1a[:4], EmptyABT())

2

exsAVLInsDelQ1a04

3

1 1 3 2

4 1

▶ Answer 22 continued on next slide

Go to Activity

230/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Answer 22 Insert Lists and Delete Items

exsAVLInsDelQ1a05 \
= insertListAVLT(listQ1a[:5], EmptyABT())

Left rotation about 3

2

exsAVLInsDelQ1a05

3

1 1 4 2

3 1 5 1

▶ Answer 22 continued on next slide

Go to Activity

231/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Answer 22 Insert Lists and Delete Items

exsAVLInsDelQ1a06 \
= insertListAVLT(listQ1a[:6], EmptyABT())

Left rotation about 2

4

exsAVLInsDelQ1a06

3

2 2

1 1 3 1

5 2

6 1

▶ Answer 22 continued on next slide

Go to Activity

232/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Answer 22 Insert Lists and Delete Items

exsAVLInsDelQ1a07 \
= insertListAVLT(listQ1a[:7], EmptyABT())

Left rotation about 5

4

exsAVLInsDelQ1a07

3

2 2

1 1 3 1

6 2

5 1 7 1

▶ Answer 22 continued on next slide

Go to Activity

233/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Answer 22 Insert Lists and Delete Items

exsAVLInsDelQ1a08 \
= insertListAVLT(listQ1a[:8], EmptyABT())

4

exsAVLInsDelQ1a08

4

2 2

1 1 3 1

6 3

5 1 7 2

8 1

▶ Answer 22 continued on next slide

Go to Activity

234/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Answer 22 Insert Lists and Delete Items

exsAVLInsDelQ1a09 \
= insertListAVLT(listQ1a[:9], EmptyABT())

Left rotation about 7

4

exsAVLInsDelQ1a09

4

2 2

1 1 3 1

6 3

5 1 8 2

7 1 9 1

▶ Answer 22 continued on next slide

Go to Activity

235/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Answer 22 Insert Lists and Delete Items

exsAVLInsDelQ1a10 \
= insertListAVLT(listQ1a[:10], EmptyABT())

Left rotation around 6

4

exsAVLInsDelQ1a10

4

2 2

1 1 3 1

8 3

6 1

5 1 7 1

9 2

10 1

▶ Answer 22 continued on next slide

Go to Activity

236/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Answer 22 Insert Lists and Delete Items

listQ1b = [10,9,8,7,6,5,4,3,2,1]
exsAVLInsDelQ1b = insertListAVLT(listQ1b, EmptyABT())

7

exsAVLInsDelQ1b

4

3 3

2 2

1 1

5 2

4 1 6 1

9 2

8 1 10 1

▶ Answer 22 continued on next slide

Go to Activity

237/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Answer 22 Insert Lists and Delete Items

listQ1c = [68,88,61,89,94,50,4,76,66,82,99]
exsAVLInsDelQ1b = insertListAVLT(listQ1c, EmptyABT())

68

exsAVLInsDelQ1c

4

50 3

4 1 61 2

66 1

89 3

82 2

76 1 88 1

94 2

99 1

▶ Answer 22 continued on next slide

Go to Activity

238/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Answer 22 Q2(a) Delete 4th Item

listQ1a = [1,2,3,4,5,6,7,8,9,10]
exsAVLInsDelQ2a \
= deleteAVLT(listQ1a[3], exsAVLInsDelQ1a)

5

exsAVLInsDelQ2a

4

2 2

1 1 3 1

8 3

6 2

7 1

9 2

10 1

▶ Answer 22 continued on next slide

Go to Activity

239/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Answer 22 Q2(b) Delete 4th Item

listQ1b = [10,9,8,7,6,5,4,3,2,1]
exsAVLInsDelQ2b \
= deleteAVLT(listQ1b[3], exsAVLInsDelQ1b)

8

exsAVLInsDelQ2b

4

3 3

2 2

1 1

5 2

4 1 6 1

9 2

10 1

▶ Answer 22 continued on next slide

Go to Activity

240/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Answer 22 Insert Lists and Delete Items

listQ1c = [68,88,61,89,94,50,4,76,66,82,99]
exsAVLInsDelQ2c \
= deleteAVLT(listQ1c[3], exsAVLInsDelQ1c)

68

exsAVLInsDelQ2c

4

50 3

4 1 61 2

66 1

94 3

82 2

76 1 88 1

99 1

Go to Activity

241/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Delete Insertion
Activity 23 Deleting Inserted List

▶ Using listQ1a show that deleting the elements of the
list from the tree one by one in reverse order does not
result in the reverse sequence of AVL trees

listQ1a = [1,2,3,4,5,6,7,8,9,10]
exsAVLInsDelQ1a = insertListAVLT(listQ1a, EmptyABT())

Go to Answer

242/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Delete Insertion
Answer 23 Deleting Inserted List

listQ1a = [1,2,3,4,5,6,7,8,9,10]
exsAVLInsDelQ1a = insertListAVLT(listQ1a, EmptyABT())
delete listQ1a[-1]

4

exsAVLInsDelQ1a

4

2 2

1 1 3 1

8 3

6 2

5 1 7 1

9 2

10 1

▶ Answer 23 continued on next slide

Go to Activity

243/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Delete Insertion
Answer 23 Deleting Inserted List

exsAVLDelListQ1a01 \
= deleteAVLT(listQ1a[-1], exsAVLInsDelQ1a)
delete listQ1a[-2]

4

exsAVLDelListQ1a01

4

2 2

1 1 3 1

8 3

6 2

5 1 7 1

9 1

▶ Answer 23 continued on next slide

Go to Activity

244/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Delete Insertion
Answer 23 Deleting Inserted List

exsAVLDelListQ1a02 \
= deleteAVLT(listQ1a[-2], exsAVLDelListQ1a01)
Right rotation about node 8

4

exsAVLDelListQ1a02

4

2 2

1 1 3 1

6 3

5 1 8 2

7 1

▶ Answer 23 continued on next slide

Go to Activity

245/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Delete Insertion
Answer 23 Deleting Inserted List

exsAVLDelListQ1a01 \
= deleteAVLT(listQ1a[-1], exsAVLInsDelQ1a)
delete 5 first followed by 9

4

exsAVLDelListQ1a01A

4

2 2

1 1 3 1

8 3

6 2

5 1del first 7 1

9 1

del second

▶ Answer 23 continued on next slide

Go to Activity

246/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Delete Insertion
Answer 23 Deleting Inserted List

exsAVLDelListQ1a02a \
= deleteAVLT(listQ1a[-6], exsAVLDelListQ1a01)
exsAVLDelListQ1a02b \
= deleteAVLT(listQ1a[-2], exsAVLDelListQ1a02a)
Double rotation: left about 6, right about 8

4

exsAVLDelListQ1a02b

3

2 2

1 1 3 1

7 2

6 1 8 1

Go to Activity

247/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Delete Example
Activity 24 Delete with Rebalance

▶ Example from Specimen Exam (2016) Q 8
▶ Redraw the tree with node 34 deleted and tree

rebalanced. Note here we have height of empty tree as
0 and singleton node as 1

55

exsAVLTdelEG

h 4bf –1

34 21

29 10

68 31

59 2–1

65 10

86 10

Go to Answer

248/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Delete Example
Answer 24 Delete with Rebalance (1)

▶ Here is the tree with node 34 deleted but not
rebalanced

▶ The new balance factor for the root is –2 so two
possible transformations — RR heavy or RL heavy

55

exsAVLTdelEGa

h 4bf –2

29 10 68 31

59 2–1

65 10

86 10

▶ Answer 24 continued on next slide

Go to Activity 249/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Delete Example
Answer 24 Delete with Rebalance (2)

k

tree RR heavy

h+3bf –2

tL h kR

tR

h+2

tRL h or
h+1 tRR h+1

k

tree RL heavy

bf –2 h+3

tL h kR

tR

h+2

kRL

tRL

h+1

tRLL h–1
or h tRLR h or

h–1

tRR h

▶ Answer 24 continued on next slide

Go to Activity

250/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Delete Example
Answer 24 Delete with Rebalance (3)

▶ Exercise: Identify the parts of the tree given in the
question with the names given for key nodes and
subtrees given in the above diagrams

▶ Which of the two cases is the given tree an instance of ?

▶ Answer 24 continued on next slide

Go to Activity

251/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Delete Example
Answer 24 Delete with Rebalance (4)

▶ Key k is 55

▶ Key kR is 68

▶ Key kRL is 59

▶ Subtree tL is rooted at 29

▶ Subtree tRL is rooted at 59

▶ Subtree RR is rooted at 86

▶ Subtree tRLL is an empty tree

▶ Subtree tRLR is rooted at 65

▶ The given tree is an instance of RL heavy

▶ This requires a double rotation to rebalance

Go to Activity

252/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Delete Example
Answer 24 Delete with Rebalance (5)

k

tree RL heavy

bf –2 h+3

tL h kR

tR

h+2

kRL

tRL

h+1

tRLL h–1
or h tRLR h or

h–1

tRR h

55

exsAVLTdelEGa

h+3bf –2

29 h0 68 h+21

59 h+1–1

65 h0

86 h0

▶ Answer 24 continued on next slide

Go to Activity

253/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Delete Example
Answer 24 Delete with Rebalance (6) — Right Inner Rotation

k

tree RL heavy inner rotr

bf –2 h+3

tL h kRL h+2

tRLL h–1
or h kR h+1

tRLR h or
h–1 tRR h

▶ Answer 24 continued on next slide

Go to Activity

254/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Delete Example
Answer 24 Delete with Rebalance (7) — Right Inner Rotation on EGa

55

tree EGa inner rotr

h+3bf –2

29 h0 59 h+2–2

68 h+10

65 h0 86 h0

▶ Answer 24 continued on next slide

Go to Activity

255/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Delete Example
Answer 24 Delete with Rebalance (8) — Left Outer Rotation

kRL

tree RL heavy outer rotl

bf 0 h+2

k h+1

tL h tRLL h–1
or h

kR h+1

tRLR h or
h–1 tRR h

▶ Answer 24 continued on next slide

Go to Activity

256/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Delete Example
Answer 24 Delete with Rebalance (9) — Left Outer Rotation on EGa

59

tree EGa outer rotl

h+2bf 0

55 h+11

29 h0

68 h+10

65 h0 86 h0

▶ Answer 24 continued on next slide

Go to Activity

257/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Delete Example
Answer 24 Delete with Rebalance (10) — Wrong Rotation

▶ Exercise: what would have happened if we had chosen
only to do a left rotation around the root ?

Go to Activity

258/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Delete Example
Answer 24 Delete with Rebalance (11) — Left Rotation Only

kR

tree RL heavy rotl only

bf 2 h+3

k h+2

tL h kRL h+1

tRLL h–1
or h tRLR h or

h–1

tRR h

▶ Answer 24 continued on next slide

Go to Activity

259/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Delete Example
Answer 24 Delete with Rebalance (12) — Left Outer Rotation on EGa

68

tree EGa rotl only

h+2bf 2

55 h+2–1

29 h0 59 h+1–1

65 h0

86 h0

▶ This tree is LR heavy and could be rebalanced via a
further double rotation but obviously this would be
extra work compared to getting the correct double
rotation in the first place

▶ Answer 24 continued on next slide

Go to Activity

260/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Delete Example
Answer 24 Delete with Rebalance (13)

▶ Key point when performing a rebalance, check which
case applies

▶ LL heavy right rotation

▶ LR heavy inner left rotation, right outer rotation

▶ RL heavy inner right rotation, left outer rotation

▶ RR heavy left rotation

▶ See the notes for the details

Go to Activity

261/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

Proof of Euler-Binet
Formula

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Performance (1)

▶ While a height balanced tree may not always have the
minimum possible height, it has the advantage that it
will always be reasonably small

▶ For a tree with n items we shall show that the maximum
number of steps to insert, delete or retrieve an item is
O(log n)

▶ Finding the maximum height of a tree with n items is
equivalent to finding the minimum number of items, Th
in a tree of height h

▶ For h = 0 we have an empty tree so T0 = 0

▶ For T1 we have a singleton item so T1 = 1

▶ In general for h á 2 we have Th = 1 + Th–1 + Th–2

since the tree must be balanced and each subtree must
have a minimum number of items

262/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

Proof of Euler-Binet
Formula

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Performance (2)

▶ The sequence Th looks very similar to the Fibonacci
sequence

▶ F0 = 0, F1 = 1

▶ Fk = Fk–1 + Fk–2, k á 2

▶ The Fibonacci sequence appeared in a work by
Leonardo Fibonacci Pisano, who also popularized the
Hindu-Arabic numeral system via his 1202 book Liber
Abaci (Book of Calculations).

▶ The sequence also appeared in Indian mathematics
much earlier.

▶ The Fibonacci numbers have lots of interesting
properties and turn up in many places in nature

▶ In our case we have Th = Fh+2 – 1

263/338

https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Fibonacci
http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fib.html
http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fib.html

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

Proof of Euler-Binet
Formula

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Performance (2a)

▶ Deriving Th = Fh+2 – 1

▶ Let Rh = Th – Th–1 = 1 + Th–2

▶ Then Rh+2 = 1 + Th = 1 + 1 + Th–1 + Th–2 = Rd+1 + Rd

▶ R2 = 1 + T0 = 1 + 0 = 1 = F2 and

R3 = 1 + T1 = 1 + 1 = 2 = F3

▶ Hence Rh = Fh, ∀h á 2

▶ Hence Th = Fh+2 – 1, ∀h á 0

264/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

Proof of Euler-Binet
Formula

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Performance (2b)

▶ Miller & Ranum approach

▶ Level number of edges from root to node

▶ Height maximum level of any node in the tree — this is
one less than my definition

▶ Nh is the minimum number of nodes in an AVL tree of
height h

▶ N0 = 1 since tree of one node has no edges

N1 = 2

▶ Nh = 1 + Nh–1 + Nh–2, h á 2

▶ Let Sh = Nh – Nh–1 = 1 + Nh–2

▶ Then Sh+2 = 1 + Nh = 1 + 1 + Nh–1 + Nh–2 = Sd+1 + Sd

▶ S2 = 1 + N0 = 1 + 1 = 2 = F3 and

S3 = 1 + N1 = 1 + 2 = 3 = F4

▶ Hence Sh = Fh+1, ∀h á 2

▶ Hence Nh = Fh+3 – 1, ∀h á 0

265/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

Proof of Euler-Binet
Formula

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Performance (2c)

▶ P(h) : Th = Fh+2 – 1 proof by induction

▶ Basis P(0), P(1)

▶ T0 = 1 and F2 – 1 = 1 – 1 = 0

▶ T1 = 1 and F3 – 1 = 2 – 1 = 1

▶ Inductive step ∀k P(k) ⇒ P(k + 1)

▶ Tk = 1 + Tk–1 + Tk–2

= 1 + (Fk+1 – 1) + (Fk – 1)

= Fk+2 – 1

▶ Hence Th = Fh+2 – 1, ∀h á 0

266/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

Proof of Euler-Binet
Formula

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Performance (3)

▶ There is a closed-form solution for the Fibonacci
sequence known as the Euler-Binet Formula (see also A
formula for Fib(n))

▶ Fk =
φk – (1 –φ)k√

5
▶ φ is the Golden mean

▶ φ =
1

φ – 1
=

1 +
√

5
2

≈ 1.61803 . . .

▶ Hence Th =
φh+2 – (1 –φ)h+2

√
5

– 1

▶ Since (1 –φ) < 1 then for large h we have

▶ Th = n ≈ φh+2
√

5
– 1 → log(

√
5(n + 1)) ≈ (h + 2) logφ

▶ Hence in the worst case, the height of a AVL tree is
O(log n)

267/338

https://proofwiki.org/wiki/Euler-Binet_Formula
http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibFormula.html
http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibFormula.html
https://proofwiki.org/wiki/Definition:Golden_Mean

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

Proof of Euler-Binet
Formula

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Fibonacci Euler-Binet Formula
Proof (1a)

▶ Proof of the Euler-Binet Formula is not required for
M269 but here is a brief summary

▶ Proof by Induction

▶ Let P(n) = Fn =
φn – (1 –φ)n√

5
▶ Basis for Induction

▶ P(0) is true since

φ0 – (1 –φ)0√
5

=
1 – 1√

5
= 0 == F0

▶ P(1) is true since

φ1 – (1 –φ)1√
5

=

(
1+
√

5
2

)
–
(

1 –
(

1+
√

5
2

))
√

5
▶ = 1 == F1

268/338

https://proofwiki.org/wiki/Euler-Binet_Formula

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

Proof of Euler-Binet
Formula

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Fibonacci Euler-Binet Formula
Proof (1b)

▶ Induction Hypothesis Step

▶ Show P(j) : 0 à j à k + 1 ⇒ P(k + 2)

▶ φk+2 – (1 –φ)k+2 = φ2φk – (1 –φ)2(1 –φ)k and

▶ φ2 =
(

1+
√

5
2

)2
=

1
4

(1 + 2
√

5 + 5) = 1 +φ

▶ (1 –φ)2 =
(

1–
√

5
2

)2
= 1 + (1 –φ) hence

▶ φk+2 – (1 –φ)k+2 = (1 +φ)φk – (1 + (1 –φ))(1 –φ)k

▶ =
(
φk – (1 –φ)k

)
+
(
φk+1 – (1 –φ)k+1

)
▶ =

√
5(Fk + Fk+1) by inductive hypothesis

▶ =
√

5Fk+2 by Fibonacci definition

▶ Hence ∀n ∈ N : Fn =
φn – (1 –φ)n√

5

269/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

Proof of Euler-Binet
Formula

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Fibonacci Euler-Binet Formula
Proof (2a)

▶ The above proof confirms the formula but here is a
derivation

▶ Define T (x, y) = (y, x + y)

▶ Then Tn(0, 1) = (Fn, Fn+1) (proof by induction)

▶ Now find λ1,λ2 and (x1, y1), (x2, y2)

so T (x1, y1) = λ1(x1, y1) and T (x2, y2) = λ2(x2, y2)

and (0, 1) = p1(x1, y1) + p2(x2, y2)

▶ T (x, y) = (y, x + y) = λ(x, y)

→ x + y = λx and x = λy → λ2 – λ – 1 = 0

→ λ1 = φ and λ2 = 1 –φ
and T (1,φ) = (φ, 1 +φ) = φ(1,φ)

T (1, 1 –φ) = (1 –φ, 1 + (1 –φ)) = (1 –φ)(1, 1 –φ)

270/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions

Example AVL Trees

AVL Transformations

makeAVLTree Function

Insertion and Deletion

AVL Tree Performance

Proof of Euler-Binet
Formula

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Fibonacci Euler-Binet Formula
Proof (2b)

▶ (0, 1) = 1√
5

(1,φ) – 1√
5

(1, 1 –φ) confirm by inspection

▶ (Fn, Fn+1) = Tn(0, 1)

= 1√
5

Tn(1,φ) – 1√
5

Tn(1, 1 –φ)

= 1√
5
φn(1,φ) – 1√

5
(1 –φ)n(1, 1 –φ)

= 1√
5

(φn,φn+1) – 1√
5

((1 –φ)n, (1 –φ)n+1)

▶ Hence Fn =
φn – (1 –φ)n√

5

271/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Application
Sets

▶ Ordered sets and ordered maps are important data
types in programming

▶ Some programming languages have them as builtin
types (Python) or supply them as standard libraries
(C++, C#, Java, Scala, Haskell, ML)

▶ This section describes an example implementation
based on Blelloch et al (2016) Just Join for Parallel
Ordered Sets and Adams (1993) Functional Pearls
Efficient sets — a balancing act

▶ Note that this example also shows the use of recursive
thinking in practice

272/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Application
Documentation

▶ In Python the documentation for Sets is at Set Types
and for Dictionaries (Maps) at Mapping Types — dict

▶ The Python implementation can be found at the Python
Developer’s Guide and the source code for Sets is at
setobject.c — the implementation is in C using hash
tables — see How is set() implemented?

▶ In Haskell the documentation and implementation of
Sets is at Containers: Data.Set and for Maps at
Containers: Data.Map.Strict — both of these are from
the package containers: Assorted concrete container
types

▶ The Haskell implementation uses size balanced trees —
this is similar to AVL balanced trees

▶ For an introduction see containers - Introduction and
Tutorial

▶ For an overview of Sets see Containers: Sets

273/338

https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset
https://docs.python.org/3/library/stdtypes.html#mapping-types-dict
https://devguide.python.org/
https://devguide.python.org/
https://github.com/python/cpython/blob/master/Objects/setobject.c
https://stackoverflow.com/questions/3949310/how-is-set-implemented
http://hackage.haskell.org/package/containers-0.6.0.1/docs/Data-Set.html
http://hackage.haskell.org/package/containers-0.6.0.1/docs/Data-Map-Strict.html
http://hackage.haskell.org/package/containers
http://hackage.haskell.org/package/containers
https://haskell-containers.readthedocs.io/en/latest/
https://haskell-containers.readthedocs.io/en/latest/
https://haskell-containers.readthedocs.io/en/latest/set.html

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Tree Application
Sets

▶ M269 Unit 5 has representation of graphs for various
algorithms — here are some references for that topic
for future notes

▶ For Haskell graph libraries see
▶ fgl: Martin Erwig’s Functional Graph Library
▶ graphs: A simple monadic graph library by Edward Kmett
▶ Data.Graph based on King and Launchbury (1995)

Structuring depth-first search algorithms in Haskell

274/338

http://hackage.haskell.org/package/fgl
http://hackage.haskell.org/package/graphs
http://hackage.haskell.org/package/containers-0.6.0.1/docs/Data-Graph.html

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Split, Join

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Set Representation — Split, Join (1)

▶ The representation of sets uses the ABTree data type
but with generalised versions of the split and join
functions

▶ While implementing sets in AVL trees is not directly part
of M269, it gives good examples of recursive thinking
in an important application

▶ Note that the data item is used as the key for a node in
the tree — in practice there would be separate key and
data

275/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Split, Join

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Set Representation — Split, Join (2)

▶ splitAVLS takes a key k and an AVL tree t and returns
two trees tL and tR and a boolean b — tL and tR have
elements less than and greater than k respectively and
b indicates if k was in t

▶ splitLastAVLS, splitFirstAVLS take an AVL tree t
and return the largest, smallest elemeent k respectively
and the rest of the tree — splitFirstAVLS is similar to
splitAVLT at line 926 on slide 223

▶ join2AVLS, joinAVLS take two AVL trees, tL, tR where
all elements of tL are less than all elements of tR and
returns a new AVL tree — joinAVLS also takes a key k
with a value in between the elements of the two trees —
join2AVLS is similar to joinAVLT at line 917 on
slide 223

▶ exposeABT takes apart an augmented tree, t to give
(tL, k, tR)

276/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Split, Join

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Set Representation — Split, Join (3)

▶ Here is a reminder of some of the ABTree constructors
and inspectors from file
M269TutorialBinaryTrees2022.py

761def mkEmptyABT() -> ABTree :
762 return EmptyABT()

764def mkNodeABT(x: T,t1: ABTree,t2: ABTree) -> ABTree :
765 h = 1 + max(getHeightABT(t1),getHeightABT(t2))
766 return NodeABT(h,x,t1,t2)

768def isEmptyABT(t: ABTree) -> bool :
769 return t == EmptyABT()

▶ And here is the additional inspector expose in
M269TutorialBinaryTrees2022AVLSets.py

11def exposeABT(t: ABTree) -> (ABTree, T, ABTree) :
12 if isEmptyABT(t) :
13 raise RuntimeError("exposeABT applied to EmptyABT()")
14 else :
15 tL = getLeftABT(t)
16 k = getDataABT(t)
17 tR = getRightABT(t)
18 return (tL,k,tR)

277/338

M269TutorialBinaryTrees2022.py
M269TutorialBinaryTrees2022AVLSets.py

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Split, Join

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Set Representation — Split, Join (4)

▶ joinAVLS take a key, k, two AVL trees, tL, tR where all
elements of tL are less than k which is less than all
elements of tR and returns a new AVL tree

20def joinAVLS(k: T, tL: ABTree, tR: ABTree) -> ABTree :
21 if getHeightABT(tL) > getHeightABT(tR) + 1 :
22 return joinRightAVLS(k,tL,tR)
23 elif getHeightABT(tR) > getHeightABT(tL) + 1 :
24 return joinLeftAVLS(k,tL,tR)
25 else :
26 return mkNodeABT(k,tL,tR)

278/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Split, Join

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Set Representation — Split, Join (5)

▶ joinRightAVLS description is in the following diagrams

28def joinRightAVLS(k: T, tL: ABTree, tR: ABTree) -> ABTree :
29 (tLL,kL,tLR) = exposeABT(tL)
30 if getHeightABT(tLR) <= getHeightABT(tR) + 1 :
31 t1 = mkNodeABT(k,tLR,tR)
32 if getHeightABT(t1) <= getHeightABT(tLL) + 1 :
33 return mkNodeABT(kL,tLL,t1)
34 else :
35 return rotl(mkNodeABT(kL,tLL,(rotr(t1))))
36 else :
37 t2 = joinRightAVLS(k,tLR,tR)
38 t3 = mkNodeABT(kL,tLL,t2)
39 if getHeightABT(t2) <= getHeightABT(tLL) + 1 :
40 return t3
41 else :
42 return rotl(t3)

279/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Split, Join

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Set Representation — Split, Join (7)

. . .
t

kL

tL

h+2

tLL h or
h+1 tLR h or

h+1

k

tR h

▶ The base case (line 30 on slide 279) of joinRightAVLS
follows the right spine of t to a node kL for which

getHeightABT(tL) > getHeightABT(tR) + 1
getHeightABT(tLR) <= getHeightABT(tR) + 1

▶ We then connect tL, k and tR

280/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Split, Join

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Set Representation — Split, Join (8)

. . .
t

kL h+2 or
h+3

tLL h or
h+1 k h+1 or

h+2

t1

tLR h or
h+1 tR h

▶ Needs double rotation if

getHeightABT(t1) > getHeightABT(tLL) + 1

281/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Split, Join

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Set Representation — Split, Join (9)

. . .
t

kLR h+2

kL h+1

tLL h tLRL h or
h–1

k h+1

tLRR h or
h–1 tR h

282/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Split, Join

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Set Representation — Split, Join (10)

▶ The recursive case (line 36 on slide 279) of
joinRightAVLS follows the right spine further

getHeightABT(tLR) > getHeightABT(tR) + 1

. . .
t

kL h+3

t3

tLL h or
h+1 kt2 h+2

t2

t2L h or
h+1 t2R h+1

283/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Split, Join

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Set Representation — Split, Join (11)

▶ A single left rotation is needed if

getHeightABT(t2) > getHeightABT(tLL) + 1

. . .
t

kt2 h+2 or
h+3

kL h+1 or
h+2

tLL h or
h+1 t2L h or

h+1

t2R h+1

284/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Split, Join

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Set Representation — Split, Join (12)

44def joinLeftAVLS(k: T, tL: ABTree, tR: ABTree) -> ABTree :
45 (tRL, kR, tRR) = exposeABT(tR)
46 if getHeightABT(tRL) <= getHeightABT(tL) + 1 :
47 t1 = mkNodeABT(k,tL,tRL)
48 if getHeightABT(t1) <= getHeightABT(tRR) + 1 :
49 return mkNodeABT(kR,t1,tRR)
50 else :
51 return rotr(mkNodeABT(kR,(rotl(t1)),tRR))
52 else :
53 t2 = joinLeftAVLS(k,tL,tRL)
54 t3 = mkNodeABT(kR,t2,tRR)
55 if getHeightABT(t2) <= getHeightABT(tRR) + 1 :
56 return t3
57 else :
58 return rotr(t3)

285/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Split, Join

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Activity 25 joinLeftAVLS Diagrams

▶ joinLeftAVLS is the mirror image of joinRightAVLS

▶ Produce the equivalent diagrams describing the
function

Go to Answer

286/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Split, Join

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Answer 25 joinLeftAVLS Diagrams

▶ TODO: Answer 25 joinLeftAVLS Diagrams

Go to Activity

287/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Split, Join

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Activity 26 joinLeftAVLS Bug

▶ A previous version of joinLeftAVLS had a bug (beware
copy/paste) — see below

▶ What would happen if the elements of [10,9,8,7,6] were
given as input ?

def joinLeftAVLS(k: T, tL: ABTree, tR: ABTree) -> ABTree :
(tRL, kR, tRR) = exposeABT(tR)
if getHeightABT(tRL) <= getHeightABT(tL) + 1 :
t1 = mkNodeABT(k,tL,tRL)
if getHeightABT(t1) <= getHeightABT(tRR) + 1 :
return mkNodeABT(kR,t1,tRR)

else :
return rotr(mkNodeABT(kR,(rotl(t1)),tRR))

else :
t2 = joinRightAVLS(k,tL,tRL)
t3 = mkNodeABT(kR,t2,tRR)
if getHeightABT(t2) <= getHeightABT(tRR) + 1 :
return t3

else :
return rotr(t3)

Go to Answer

288/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Split, Join

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Answer 26 joinLeftAVLS Bug

▶ TODO: Answer 26 joinLeftAVLS Bug

Go to Activity

289/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Split, Join

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Set Representation — Split, Join (13)

60def splitLastAVLS(t: ABTree) -> (ABTree,T) :
61 (tL,k,tR) = exposeABT(t)
62 if isEmptyABT(tR) :
63 return (tL,k)
64 else :
65 (tR1,k1) = splitLastAVLS(tR)
66 return (joinAVLS(k,tL,tR1),k1)

68def splitFirstAVLS(t: ABTree) -> (ABTree,T) :
69 (tL, k, tR) = exposeABT(t)
70 if isEmptyABT(tL) :
71 return (tR,k)
72 else :
73 (tL1,k1) = splitFirstAVLS(tL)
74 return (joinAVLS(k,tL1,tR),k1)

290/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Split, Join

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Set Representation — Split, Join (14)

76def splitAVLS(k: T,t: ABTree) -> (ABTree,bool,ABTree) :
77 if isEmptyABT(t) :
78 return (mkEmptyABT(),False,mkEmptyABT())
79 else :
80 (tL, k1, tR) = exposeABT(t)
81 if k == k1 :
82 return (tL,True,tR)
83 elif k < k1 :
84 (tLL, b, tLR) = splitAVLS(k,tL)
85 return (tLL, b, (joinAVLS(k1,tLR,tR)))
86 else :
87 (tRL, b, tRR) = splitAVLS(k,tR)
88 return ((joinAVLS(k1,tL,tRL)), b, tRR)

291/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Split, Join

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Set Representation — Split, Join (15)

90def join2AVLS(tL: ABTree,tR: ABTree) -> ABTree :
91 if isEmptyABT(tL) :
92 return tR
93 else :
94 (tL1, k) = splitLastAVLS(tL)
95 return joinAVLS(k,tL1,tR)

292/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Set Operations (1)

▶ Set Operations

▶ insertAVLS(t,k) inserts a key, k, into a tree, t

▶ deleteAVLS(t,k) deletes key, k, from a tree, t, if it is
in the tree

▶ unionAVLS(t1,t2) takes two AVL trees whose values
may overlap, and returns the union as a tree

▶ intersectAVLS(t1,t2) takes two AVL trees and
returns the intersection as a tree

▶ disjoint(t1,t2) takes two AVL trees and returns
True if and only if they have no members in common

▶ differenceAVLS t1 t2 takes two AVL trees and
returns the elements that are in t1 but not t2

▶ subsetAVLS(t1,t2) takes two AVL trees and returns
True if and only if every member of t1 is a member of
t2

293/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Set Operations (2)

97def insertAVLS(t: ABTree,k: T) -> ABTree :
98 (tL, found, tR) = splitAVLS(k,t)
99 return joinAVLS(k,tL,tR)

101def deleteAVLS(t: ABTree,k: T) -> ABTree :
102 (tL, found, tR) = splitAVLS(k,t)
103 return join2AVLS(tL,tR)

105def insertListAVLS(t: ABTree,xs: [T]) -> ABTree :
106 if xs == [] :
107 return t
108 else :
109 return insertListAVLS(insertAVLS(t,xs[0]),xs[1:])

111def setFromListAVLS(xs: [T])-> ABTree :
112 return insertListAVLS(mkEmptyABT(),xs)

294/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Set Operations (3)

114def unionAVLS(t1: ABTree,t2: ABTree) -> ABTree :
115 if isEmptyABT(t1) :
116 return t2
117 elif isEmptyABT(t2) :
118 return t1
119 else :
120 (t2L, k2, t2R) = exposeABT(t2)
121 (t1L, found, t1R) = splitAVLS(k2,t1)
122 tL = unionAVLS(t1L,t2L)
123 tR = unionAVLS(t1R,t2R)
124 return joinAVLS(k2,tL,tR)

▶ unionAVLS(t1,t2) returns the set of all members of
t1 or t2 (or both)

295/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Set Operations (4)

126def intersectAVLS(t1: ABTree,t2: ABTree) -> ABTree :
127 if isEmptyABT(t1) :
128 return mkEmptyABT()
129 elif isEmptyABT(t2) :
130 return mkEmptyABT()
131 else :
132 (t2L, k2, t2R) = exposeABT(t2)
133 (t1L, found, t1R) = splitAVLS(k2,t1)
134 tL = intersectAVLS(t1L,t2L)
135 tR = intersectAVLS(t1R,t2R)
136 if found :
137 return joinAVLS(k2,tL,tR)
138 else :
139 return join2AVLS(tL,tR)

▶ intersectAVLS(t1,t2) returns the set of all members
of both t1 and t2

▶ Notice it needs the if statement to check that a
member of t2 is a member of t1

296/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Set Operations (5)

141def disjointAVLS(t1: ABTree,t2: ABTree) -> ABTree :
142 if isEmptyABT(t1) :
143 return True
144 elif isEmptyABT(t2) :
145 return True
146 else :
147 (t2L, k2, t2R) = exposeABT(t2)
148 (t1L, found, t1R) = splitAVLS(k2,t1)
149 return (not found
150 and disjointAVLS(t1L,t2L)
151 and disjointAVLS(t1R,t2R))

▶ disjoint(t1,t2) returns True if there are no
elements in common

▶ If an element in common is found then False is
returned

▶ Note that the behaviour of splitAVLS() ensures the
search space is reduced at each recursive call

297/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

AVL Trees
Set Operations (6)

153def differenceAVLS(t1: ABTree,t2: ABTree) -> ABTree :
154 if isEmptyABT(t1) :
155 return mkEmptyABT()
156 elif isEmptyABT(t2) :
157 return t1
158 else :
159 (t2L, k2, t2R) = exposeABT(t2)
160 (t1L, found, t1R) = splitAVLS(k2,t1)
161 tL = differenceAVLS(t1L,t2L)
162 tR = differenceAVLS(t1R,t2R)
163 return join2AVLS(tL,tR)

▶ differenceAVLS(t1,t2) returns the set of members
of t1 that are not in t2

▶ On first reading it may be surprising there is no if
statement

▶ Remember the behaviour of splitAVLS()

298/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Further Set Operations
Activity 27 Set to Ascending List

▶ Write a function setToAscList which takes a set and
returns the contents as an ascending list

Go to Answer

299/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Set to Ascending List
Answer 27 Set to Ascending List (1)

▶ Probably the simplest solution at this stage is to use
inOrderABT()

181def setToAscList(t) :
182 return inOrderABT(t)

Python3>>> list3 = [2,1,4,3,6,5,8,7,10,9]
Python3>>> t10 = setFromListAVLS(list3)
Python3>>> type(t10)
<class ’M269TutorialBinaryTrees2022.NodeABT’>
Python3>>> list4 = setToAscList(t10)
Python3>>> list4
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
Python3>>>

▶ Answer 27 continued on next slide

Go to Activity

300/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Set to Ascending List
Answer 27 Set to Ascending List (2)

▶ Of course, someone from the pure functional
programming world would define a higher order
function to capture the recursion pattern with
setFoldr() (this is not part of M269)

184def setFoldr(f,z,t) :
185 def go(y,t) :
186 if isEmptyABT(t) :
187 return y
188 else :
189 (tL,x,tR) = exposeABT(t)
190 return (go(f(x,(go(y,tR))),tL))
191 return go(z,t)

193def setToAscListA(t) :
194 def cons(x,xs) :
195 return ([x] + xs)
196 return setFoldr(cons,[],t)

Go to Activity

301/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Further Set Operations
Activity 28 Set Equality

▶ Write a function setEquality which takes two sets, t1
and t2 and returns True if they are equal and False
otherwise

Go to Answer

302/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Further Set Operations
Answer 28 Set Equality

▶ Answer 28 Set Equality

198def setEquality(t1,t2) :
199 list1 = setToAscList(t1)
200 list2 = setToAscList(t2)
201 return (len(list1) == len(list2)
202 and list1 == list2)

Python3>>> list1
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
Python3>>> t1 = setFromListAVLS(list1)
Python3>>> list10
[2, 1, 4, 3, 6, 5, 8, 7, 10, 9]
Python3>>> t10 = setFromListAVLS(list10)
Python3>>> t1 == t10
False
Python3>>> setEquality(t1,t10)
True
Python3>>>

Go to Activity

303/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Further Set Operations
Activity 29 Subset

▶ Write a function subsetAVLS that takes two sets t1, t2
and returns True if t1 is a subset of t2 and False
otherwise

▶ t1 is a subset of t2 if every element of t1 is a member
of t2

Go to Answer

304/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Further Set Operations
Answer 29 Subset

165def subsetAVLS(t1: ABTree,t2: ABTree) -> bool :
166 if isEmptyABT(t1) :
167 return True
168 elif isEmptyABT(t2) :
169 return False
170 else :
171 (t1L, k1, t1R) = exposeABT(t1)
172 (t2L, found, t2R) = splitAVLS(k1,t2)
173 return (found
174 and subsetAVLS(t1L,t2L)
175 and subsetAVLS(t1R,t2R))

▶ How does this work ?

▶ The recursive case at line 170 checks that the key at the
root of t1 is in t2 and recursively checks the sub-trees

▶ splitAVLS() ensures that the subtrees are the correct
ones to be checked

Go to Activity

305/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Sets, Maps
Implementation Points

▶ The only tree specific functions are joinAVLS,
joinRightAVLS and joinLeftAVLS — AVL trees could
be changed to size balanced or Red-Black trees with
little to be changed

▶ The various sets operations use splitAVLS and
joinAVLS or join2AVLS to avoid more complex
algorithms — some implementations may inline the
functions for efficiency

▶ The diagrams for joinRightAVLS are essential for the
understanding of the base and recursive cases

▶ The unionAVLS, intersectAVLS and differenceAVLS
functions are very similar in their usage of split and
join

306/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Sets, Maps
Implementation Points

▶ From O’Sullivan Real World Haskell (2008) see Data
Structures

▶ Maps give us the same capabilities as hash tables do in
other languages. Internally, a map is implemented as a
balanced binary tree. Compared to a hash table, this is
a much more efficient representation in a language with
immutable data. This is the most visible example of how
deeply pure functional programming affects how we
write code: we choose data structures and algorithms
that we can express cleanly and that perform efficiently,
but our choices for specific tasks are often different
[from] their counterparts in imperative languages.

▶ See Curious about the HashTable performance issues

307/338

http://book.realworldhaskell.org/read/data-structures.html
http://book.realworldhaskell.org/read/data-structures.html
https://stackoverflow.com/questions/3058529/curious-about-the-hashtable-performance-issues

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets
Set Representation

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Sets, Maps
Implementation Points

Python Haskell

Operation Average Worst Worst

Member O(1) O(n) O(log n)

Union O(m + n) O(m log(n
m + 1))

Intersection O(min(m, n)) O(m× n) O(m log(n
m + 1))

Difference O(m) O(m log(n
m + 1))

Insert O(1) O(n) O(log n)

Delete O(1) O(n) O(log n)

▶ Python: Time Complexity

▶ Haskell: Data.Set and Data.Map.Strict

▶ Remember that actual behaviour will depend on the
data and compiler settings

308/338

https://wiki.python.org/moin/TimeComplexity
http://hackage.haskell.org/package/containers-0.6.0.1/docs/Data-Set.html
http://hackage.haskell.org/package/containers-0.6.0.1/docs/Data-Map-Strict.html

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Commentary 5
Binary Tree Further Exercises

5 Binary Tree Exercises

▶ Binary Tree shapes

▶ Generating Binary Trees

▶ Catalan Numbers (advanced)

309/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises
Binary Tree Shapes

Generating Binary Trees

Catalan Numbers

Commentary 6

Future Work

References

Binary Tree Common Exercises
Interview Questions and Practice Problems

▶ This section contains some common exercises used in
Google Interview Questions

▶ See the References section for Web sites with more
examples

▶ Note that this section is not directly part of M269 and is
here for interest and practice using recursion

▶ Further questions may be added to this section

310/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises
Binary Tree Shapes

Isomorphic Binary
Trees

Generating Binary Trees

Catalan Numbers

Commentary 6

Future Work

References

Binary Tree Shapes
Activity 30 Shape Exercises

▶ isSameShape(t1,t2) takes two binary trees and
returns True if they have the same shape

▶ isMirrorShape(t1,t2) takes two binary trees and
returns True if they are a mirror of each other

▶ isSymmetric(t) takes a binary tree and returns True
if it is symmetric

▶ genMirrorShape(t) takes a binary tree and returns
the mirror of the tree

Go to Answer

311/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises
Binary Tree Shapes

Isomorphic Binary
Trees

Generating Binary Trees

Catalan Numbers

Commentary 6

Future Work

References

Binary Tree Shapes
Answer 30 Shape Exercises — isSameShape(t1,t2)

▶ isSameShape(t1,t2) takes two binary trees and
returns True if they have the same shape

206def isSameShape(t1: ABTree,t2: ABTree) -> bool :
207 if isEmptyABT(t1) and isEmptyABT(t2) :
208 return True
209 elif isEmptyABT(t1) or isEmptyABT(t2) :
210 return False
211 else :
212 (t1L,k1,t1R) = exposeABT(t1)
213 (t2L,k2,t2R) = exposeABT(t2)
214 return (isSameShape(t1L,t2L)
215 and isSameShape(t1R,t2R))

▶ Answer 30 continued on next slide

Go to Activity

312/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises
Binary Tree Shapes

Isomorphic Binary
Trees

Generating Binary Trees

Catalan Numbers

Commentary 6

Future Work

References

Binary Tree Shapes
Answer 30 Shape Exercises — isMirrorShape(t1,t2)

▶ isMirrorShape(t1,t2) takes two binary trees and
returns True if they are a mirror of each other

217def isMirrorShape(t1: ABTree,t2: ABTree) -> bool :
218 if isEmptyABT(t1) and isEmptyABT(t2) :
219 return True
220 elif isEmptyABT(t1) or isEmptyABT(t2) :
221 return False
222 else :
223 (t1L,k1,t1R) = exposeABT(t1)
224 (t2L,k2,t2R) = exposeABT(t2)
225 return (isMirrorShape(t1L,t2R)
226 and isMirrorShape(t1R,t2L))

▶ Answer 30 continued on next slide

Go to Activity

313/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises
Binary Tree Shapes

Isomorphic Binary
Trees

Generating Binary Trees

Catalan Numbers

Commentary 6

Future Work

References

Binary Tree Shapes
Answer 30 Shape Exercises — isSymmetric(t)

▶ isSymmetric(t) takes a binary tree and returns True
if it is symmetric

228def isSymmetric(t: ABTree) -> bool :
229 return isMirrorShape(t,t)

▶ Answer 30 continued on next slide

Go to Activity

314/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises
Binary Tree Shapes

Isomorphic Binary
Trees

Generating Binary Trees

Catalan Numbers

Commentary 6

Future Work

References

Binary Tree Shapes
Answer 30 Shape Exercises — genMirrorShape(t)

▶ genMirrorShape(t) takes a binary tree and returns
the mirror of the tree

231def genMirrorShape(t: ABTree) -> ABTree :
232 if isEmptyABT(t) :
233 return mkEmptyABT()
234 else :
235 (tL,x,tR) = exposeABT(t)
236 return (mkNodeABT(x, genMirrorShape(tR),
237 genMirrorShape(tL)))

Go to Activity

315/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises
Binary Tree Shapes

Isomorphic Binary
Trees

Generating Binary Trees

Catalan Numbers

Commentary 6

Future Work

References

Binary Tree Shapes
Isomorphic Binary Trees (a)

▶ Two binary trees are isomorphic if one can be obtained
from the other by flipping the left and right subtrees.
Two empty trees are isomorphic

▶ See Tree isomorphism problem

▶ See Is the recursive approach to binary tree
isomorphism actually linear?

316/338

https://www.geeksforgeeks.org/tree-isomorphism-problem/
https://stackoverflow.com/questions/79075798/is-the-recursive-approach-to-binary-tree-isomorphism-actually-linear
https://stackoverflow.com/questions/79075798/is-the-recursive-approach-to-binary-tree-isomorphism-actually-linear

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises
Binary Tree Shapes

Isomorphic Binary
Trees

Generating Binary Trees

Catalan Numbers

Commentary 6

Future Work

References

Binary Trees
Isomorphic Binary Trees (b) isoBTree1, isoBTree2

1

isoBTree1

2

4 5

7 8

3

6

1

isoBTree2

3

6

2

4 5

8 7

▶ isoBTree1, isoBTree2 are isomorphic with the
following flips:

(2,3), (EmptyBTree, 6), (7,8)

317/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises
Binary Tree Shapes

Isomorphic Binary
Trees

Generating Binary Trees

Catalan Numbers

Commentary 6

Future Work

References

Binary Tree Shapes
Isomorphic Binary Trees (c) Python Code

def isIsomorphic(t1 : ABTree, t2 : ABTree) -> bool :
if isEmptyABT(t1) and isEmptyABT(t2) :
return True

elif isEmptyABT(t1) or isEmptyABT(t2) :
return False

else :
(t1L,k1,t1R) = exposeABT(t1)
(t2L,k2,t2R) = exposeABT(t2)
if (k1 != k2) :
return False

else :
return ((isIsomorphic(t1L, t2L) and isIsomorphic(t1R,t2R))

or
(isIsomorphic(t1L, t2R) and isIsomorphic(t1R,t2L))
)

318/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises
Binary Tree Shapes

Generating Binary Trees

Catalan Numbers

Commentary 6

Future Work

References

Generating Binary Trees
Exercises

▶ The aim is to generate the shapes of all possible trees
given a number of nodes

▶ First sketch a few trees to spot any pattern

▶ Write down a recurrence relation for the number of
binary tree shapes with n nodes based on the number
of tree shapes for less than n nodes

▶ Write a function genBTs(x,n) given a value x and an
integer n generates the Python representation of all
shapes of binary trees with n nodes with x at each node

319/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises
Binary Tree Shapes

Generating Binary Trees

Catalan Numbers

Commentary 6

Future Work

References

Generating Binary Trees
Simple Recursive Version (1)

▶ We first sketch a few trees to spot the pattern

▶ 0 nodes have 1 tree, EmptyBT, 1 node has 1 tree

▶ 2 nodes have 2 trees

X

2 nodes (0)

X

X

2 nodes (1)

X

▶ 3 nodes have 5 trees

X

3 nodes (0)

X

X

X

3 nodes (1)

X

X

X

3 nodes (2)

X X

X

3 nodes (3)

X

X

X

3 nodes (4)

X

X

320/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises
Binary Tree Shapes

Generating Binary Trees

Catalan Numbers

Commentary 6

Future Work

References

Generating Binary Trees
Simple Recursive Version (2)

▶ Let Cn be the number of binary tree shapes with n
nodes then from the above diagrams we have:

▶ C0 = 1

▶ C1 = 1

▶ C2 = 2

▶ C3 = 5

▶ Eureka insight for a tree with n nodes if the left subtree
has i nodes then the right subtree must have n – i – 1
nodes and i can range over 0 to n – 1

▶ The left and right subtrees must have Ci and Cn–i–1
different possible shapes

▶ and there are n possible values for i from 0 to n – 1

▶ Hence Cn =
n–1∑
i=0

CiCn–i–1

321/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises
Binary Tree Shapes

Generating Binary Trees

Catalan Numbers

Commentary 6

Future Work

References

Generating Binary Trees
Simple Recursive Version (3)

▶ Cn =
n–1∑
i=0

CiCn–i–1 =
n∑

i=1

Ci–1Cn–i

▶ Alternatively Cn+1 =
n∑

i=0

CiCn–i

▶ Check C1 = C0C0 = 1× 1 = 1

▶ C2 = C0C1 + C1C0 = 1× 1 + 1× 1 = 2

▶ C3 = C0C2 + C1C1 + C2C0 = 1× 2 + 1× 1 + 2× 1 = 5

▶ C4 = C0C3 + C1C2 + C2C1 + C3C0

= 1× 5 + 1× 2 + 2× 1 + 5× 1 = 14

▶ The Cn are known as the Catalan numbers

322/338

https://en.wikipedia.org/wiki/Catalan_number

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises
Binary Tree Shapes

Generating Binary Trees

Catalan Numbers

Commentary 6

Future Work

References

Generating Binary Trees
Simple Recursive Version (4)

▶ The simple recursive definition of genBTs follows from
the recurrence relation directly

▶ Uses Python List Comprehensions see below
▶ This repeats the calculation of subtrees
▶ This is similar to the definition in

Math.Combinat.Trees.Binary which is based on Knuth
(2011, section 7.2.1.6), Knuth (1997, section 2.3.4.4)

239def genABTs(x: T,n: int) -> [ABTree] :
240 if n == 0 :
241 return [mkEmptyABT()]
242 elif n == 1 :
243 return [mkNodeABT(x,mkEmptyABT(),mkEmptyABT())]
244 else :
245 ts = ([mkNodeABT(x,leftT,rightT)
246 for (nu,nv) in splitsInt(n)
247 for leftT in genABTs(x,nu)
248 for rightT in genABTs(x,nv)])
249 return ts

251def splitsInt(n: int) -> [(int,int)] :
252 prns = [(i, n - i - 1) for i in range(n)]
253 return prns

323/338

https://docs.python.org/3/reference/expressions.html#displays-for-lists-sets-and-dictionaries
http://hackage.haskell.org/package/combinat-0.2.9.0/docs/Math-Combinat-Trees-Binary.html

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises
Binary Tree Shapes

Generating Binary Trees

Catalan Numbers

Commentary 6

Future Work

References

Generating Binary Trees
List Comprehensions

▶ List comprehensions (tutorial), List comprehensions
(reference) — a neat way of expressing iterations over a
list, came from Miranda (see Wikipedia: List
comprehension)

▶ Example: Square the even numbers between 0 and 9

Python3>>> [x ** 2 for x in range(10) if x % 2 == 0]
[0, 4, 16, 36, 64]
Python3>>> [(x,y) for x in range(4)
... for y in range(4)
... if x % 2 == 0
... and y % 3 == 0]
[(0, 0), (0, 3), (2, 0), (2, 3)]
Python3>>>

▶ In general

[expr for target1 in iterable1 if cond1
for target2 in iterable2 if cond2 ...
for targetN in iterableN if condN]

324/338

https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/reference/expressions.html#displays-for-lists-sets-and-dictionaries
http://www.miranda.org.uk
https://en.wikipedia.org/wiki/List_comprehension
https://en.wikipedia.org/wiki/List_comprehension

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises
Binary Tree Shapes

Generating Binary Trees

Catalan Numbers

Cauchy Product

Catalan Recurrence

Sample Catalan
Numbers

Commentary 6

Future Work

References

Catalan Numbers
Efficient Calculation

▶ As with many other problems, it may be easier to find a
recursive relation or recurrence for a problem and
harder to find an efficient calculation.

▶ For the Catalan numbers it is possible to find a closed
(non-recursive) expression for the Catalan numbers

▶ Below is a derivation of a closed expression — this is
not part of M269 and is included for interest — the
derivation uses a bit more Maths than the rest of these
notes but it is explained as we progress

▶ This derivation is from Spivey (2019, page 208) The Art
of Proving Binomial Identities and Wilf (1994, page 44)
generatingfunctionology

325/338

https://en.wikipedia.org/wiki/Catalan_number

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises
Binary Tree Shapes

Generating Binary Trees

Catalan Numbers

Cauchy Product

Catalan Recurrence

Sample Catalan
Numbers

Commentary 6

Future Work

References

Cauchy Product
Products of Infinite Series or Power Series (1)

▶

 ∞∑
i=0

aix
i

 ∞∑
j=0

bjx
j

 =
∞∑

n=0

cnxn

where cn =
n∑

k=0

akbn–k

▶ The product forms a two-dimensional array — however
we can arrange a sequence that goes through the array
— see below and Spivak (2008, p486, p493, p513)

a0b0 a0b1 a0b2 a0b3

a1b0 a1b1 a1b2 · · ·

a2b0 a2b1 a2b2 · · ·

a3b0 · · · · · ·

· · · · · · · · ·

326/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises
Binary Tree Shapes

Generating Binary Trees

Catalan Numbers

Cauchy Product

Catalan Recurrence

Sample Catalan
Numbers

Commentary 6

Future Work

References

Cauchy Product
Products of Infinite Series or Power Series (2)

▶

 ∞∑
i=0

aix
i

 ∞∑
j=0

bjx
j


= (a0 + a1x + a2x2 + · · ·)(b0 + b1x + b2x2 + · · ·)

= a0b0 + (a0b1 + a1b0)x + (a0b2 + a1b1 + a2b0)x2 + · · ·
▶ See Wikipedia: Cauchy product

▶ If we have c(x) =
∞∑

i=0

cix
i

▶ (c(x))2 =

 ∞∑
i=0

cix
i

 ∞∑
j=0

cjx
j


=
∞∑

n=0

 n∑
k=0

ckcn–k

 xn

▶ This result is used in finding a closed form for the
Catalan numbers

▶ Based on Mike Spivey 2013
327/338

https://en.wikipedia.org/wiki/Cauchy_product
https://en.wikipedia.org/wiki/Catalan_number
https://mikespivey.wordpress.com/2013/03/19/the-catalan-numbers-from-their-generating-function/

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises
Binary Tree Shapes

Generating Binary Trees

Catalan Numbers

Cauchy Product

Catalan Recurrence

Sample Catalan
Numbers

Commentary 6

Future Work

References

Catalan Numbers
Catalan Recurrence (1)

▶ C0 = 1

▶ Cn+1 =
n∑

k=0

CkCn–k

▶ Define c(x) to be the generating function of the infinite
sequence of the Catalan numbers

▶ c(x) =
∞∑

n=0

Cnxn

▶ Hence we can multiply both sides of the recurrence by
xn and sum

▶
∞∑

n=0

Cn+1xn =
∞∑

n=0

 n∑
k=0

CkCn–k

 xn

328/338

https://en.wikipedia.org/wiki/Generating_function

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises
Binary Tree Shapes

Generating Binary Trees

Catalan Numbers

Cauchy Product

Catalan Recurrence

Sample Catalan
Numbers

Commentary 6

Future Work

References

Catalan Numbers
Catalan Recurrence (2)

▶
∞∑

n=0

Cn+1xn =
∞∑

n=0

 n∑
k=0

CkCn–k

 xn

▶ 1
x

∞∑
n=0

Cn+1xn+1 = (c(x))2 by Cauchy product

▶ 1
x

 ∞∑
n=0

Cnxn – C0

 = (c(x))2

▶ 1
x

(c(x) – 1) = (c(x))2

▶ x(c(x))2 – c(x) + 1 = 0

▶ c(x) =
1±

√
1 – 4x

2x
▶ We know c(0) = C0 = 1

329/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises
Binary Tree Shapes

Generating Binary Trees

Catalan Numbers

Cauchy Product

Catalan Recurrence

Sample Catalan
Numbers

Commentary 6

Future Work

References

Catalan Numbers
Catalan Recurrence (3)

▶ c(x) =
1±

√
1 – 4x

2x
▶ We know c(0) = C0 = 1

▶ Applying L’Hôpital’s rule

lim
x→c

f (x)
g(x)

= lim
x→c

f ′(x)
g′(x)

▶ lim
x→0+

1 –
√

1 – 4x
2x

= lim
x→0+

2(1 – 4x)–
1
2

2
= 1

▶ Hence c(x) =
1 –
√

1 – 4x
2x

▶ We now use the generalised Binomial theorem to
expand this expression

330/338

https://en.wikipedia.org/wiki/L'H%C3%B4pital's_rule
https://en.wikipedia.org/wiki/Binomial_theorem

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises
Binary Tree Shapes

Generating Binary Trees

Catalan Numbers

Cauchy Product

Catalan Recurrence

Sample Catalan
Numbers

Commentary 6

Future Work

References

Catalan Numbers
Catalan Recurrence (4)

▶ The generalised Binomial theorem has

If |x| > |y | and r is any complex number then

(x + y)r =
∞∑

k–0

(
r
k

)
xr–kyk

where

(
r
k

)
=

r(r – 1) · · · (r – k + 1)
k!

▶ c(x) =
1
2x

(1 –
√

1 – 4x) =
1
2x

1 –
∞∑

n=0

(
1/2
n

)
(–4x)n


▶ The coefficient of xn expands to

1
2

(
1
2 – 1

)
· · ·

(
1
2 – n + 1

)
n!

(–4)n

=
1(1 – 2) · · · (1 – 2n + 2)

n!
(–1)n2n

331/338

https://en.wikipedia.org/wiki/Binomial_theorem

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises
Binary Tree Shapes

Generating Binary Trees

Catalan Numbers

Cauchy Product

Catalan Recurrence

Sample Catalan
Numbers

Commentary 6

Future Work

References

Catalan Numbers
Catalan Recurrence (5)

▶ The coefficient of xn expands to
1
2

(
1
2 – 1

)
· · ·

(
1
2 – n + 1

)
n!

(–4)n

=
1(1 – 2) · · · (1 – 2n + 2)

n!
(–1)n2n

=
(1)(3) · · · (2n – 3)(–1)n–1

(n!)2
(–1)n2n(n!)

=
(1)(3) · · · (2n – 3)(–1)n–1

(n!)2
(–1)n(2n)(2n – 2) · · · (2)

= –
(2n)!

(n!)2(2n – 1)

= –

(
2n
n

)
1

2n – 1

332/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises
Binary Tree Shapes

Generating Binary Trees

Catalan Numbers

Cauchy Product

Catalan Recurrence

Sample Catalan
Numbers

Commentary 6

Future Work

References

Catalan Numbers
Catalan Recurrence (6)

▶ Hence c(x) =
1
2x

1 +
∞∑

n=0

(
2n
n

)
1

2n – 1
xn


=

1
2x

1 + (–1) +
∞∑

n=1

(
2n
n

)
1

2n – 1
xn


=

1
2

∞∑
n=1

(
2n
n

)
1

2n – 1
xn–1

=
1
2

∞∑
n=0

(
2(n + 1)

n + 1

)
1

2n + 1
xn

=
1
2

∞∑
n=0

(2n + 2)(2n + 1)

(n + 1)2

(
2n
n

)
1

2n + 1
xn

=
∞∑

n=0

1
n + 1

(
2n
n

)
xn

▶ Hence Cn =
1

n + 1

(
2n
n

)
333/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises
Binary Tree Shapes

Generating Binary Trees

Catalan Numbers

Cauchy Product

Catalan Recurrence

Sample Catalan
Numbers

Commentary 6

Future Work

References

Sample Catalan Numbers
Mathematica code

In[1]:= Series[(1 - Sqrt[1-4x])/(2x),{x,0,12}]
Out[1]= SeriesData[x, 0, {1, 1, 2, 5, 14, 42, 132, 429, 1430, \

4862, 16796, 58786, 208012}, 0, 13, 1]

▶ Generating function form

▶ 1 + x + 2x2 + 5x3 + 14x4 + 42x5 + 132x6

+ 429x7 + 1430x8 + 4862x9 + 16796x10

+ 58786x11 + 208012x12 + O
(
x13

)

334/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Commentary 6
Tutorial End, References and Colophon

6 Tutorial End, References and Colophon

▶ Future work and dates

▶ References to other Python texts or documentation

▶ References to other computing material

▶ Article version has the full references and bibliography with
back references

▶ Colophon

▶ LaTeX with Beamer, Listings and other packages

▶ Index of Python code and diagrams

▶ PGF/TikZ for the diagrams

▶ External copies of the diagrams as PDF with tight bounding
boxes are available

335/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

Future Work
Graph algorithms, Greed, Logic, Computability

▶ Hashing and hash tables

▶ Binary search trees, height balanced binary search
trees, AVL trees

▶ Graph algorithms

▶ Greedy algorithms

▶ Logic, Computability

▶ Future dates for tutorials and TMAs

336/338

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References
Python Web Links &
References

Haskell Web Links &
References

Python
Web Links & References

▶ Lutz (2013) Learning Python — one of the best
introductory books

▶ Lutz (2011) Programming Python — a more advanced
book

▶ Martelli et al (2023) Python in a Nutshell

▶ Ramalho (2022) Fluent Python a more advanced book

▶ Python 3 Documentation
https://docs.python.org/3/

▶ Python Style Guide PEP 8
https://www.python.org/dev/peps/pep-0008/
(Python Enhancement Proposals)

337/338

https://docs.python.org/3/
https://www.python.org/dev/peps/pep-0008/

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees

Commentary 4

AVL Trees

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References
Python Web Links &
References

Haskell Web Links &
References

Haskell
Web Links & References

▶ Haskell Language https://www.haskell.org
▶ HaskellWiki https://wiki.haskell.org/Haskell
▶ Learn You a Haskell for Great Good!

http://learnyouahaskell.com — very readable
introduction to Haskell

▶ Bird and Wadler (1988); Bird (1998, 2014) — one of
the best introductions but tough in parts, requires
some mathematical maturity — the three books are in
effect different editions

▶ Bird, Gibbons (2020) Algorithm Design with Haskell —
developing the algorithms in a purely functional way

▶ Functors, Applicatives, and Monads in Pictures
http://adit.io/posts/2013-04-17-functors,
_applicatives,_and_monads_in_pictures.html —
a very good outline with cartoons

▶ Haskell Wikibook
https://en.wikibooks.org/wiki/Haskell

338/338

https://www.haskell.org
https://wiki.haskell.org/Haskell
http://learnyouahaskell.com
http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html
http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html
https://en.wikibooks.org/wiki/Haskell

	Commentary 1
	M269 Tutorial Agenda — Binary Trees, Recursion, Searching
	Adobe Connect Interface and Settings
	Adobe Connect Interface
	Adobe Connect Settings
	Adobe Connect — Sharing Screen & Applications
	Adobe Connect — Ending a Meeting
	Adobe Connect — Invite Attendees
	Layouts
	Chat Pods
	Graphics Conversion for Web
	Adobe Connect Recordings

	Commentary 2
	Binary Trees — Introduction
	Binary Trees — Terminology
	Binary Tree Examples
	Representation of Binary Trees
	Binary Tree Traversals
	Tree Traversals — Depth First
	Tree Traversals — Breadth First

	Iterative Tree Traversals
	Iterative InOrder Traversal
	Iterative PreOrder Traversal
	Iterative PostOrder Traversal

	Commentary 3
	Binary Search Trees
	Binary Search Trees — Definition
	Inserting a Node
	BST Operations
	BST Deleting a Node

	Commentary 4
	Height Balanced Trees
	AVL Trees and Functions
	Example AVL Trees
	AVL Tree Transformations
	AVL Trees — The makeAVLTree Function
	AVL Tree Insertion and Deletion
	AVL Tree Performance

	AVL Tree Application — Sets
	Set Representation
	Set Operations
	Sets — Implementation Points

	Commentary 5
	Binary Tree Common Exercises
	Binary Tree Shapes
	Generating Binary Trees
	Catalan Numbers

	Commentary 6
	Future Work
	Web Sites & References
	Python Web Links & References
	Haskell Web Links & References

