Binary Trees
M269 Tutorial

Phil Molyneux

12 January 2025

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

1/338

Commentary 1
Agenda, Aims and Topics

1 Agenda, Aims a opics

vV vy v VY

Overview of aims of tutorial

Note selection of topics

Recursion is used throughout the topics

Points about my own background and preferences
Adobe Connect slides for reference

Binary Trees

Phil Molyneux

Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

2/338

M269 Tutorial

Agenda & Aims

A wWw N =~

Welcome and introductions
Material on Binary Trees and Searching
Implementation in Python

Learning themes:

> Evaluation of expressions
> Synthesising an algorithm from an initial idea

. To cover some of

> Binary Trees
> Binary Search Trees
> Height Balanced (AVL) Trees

. Questions & discussion (at any point)
. Adobe Connect — if you or | get cut off, wait till we

reconnect (or send you an email)

. Source: of slides, notes, programs:

pmolyneux.co.uk/OU/M269FolderSync/M269TutorialSamples2023/
M269TutorialBinaryTreesCmntry2023/

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

3/338

https://pmolyneux.co.uk/OU/M269FolderSync/M269TutorialSamples2023/
https://pmolyneux.co.uk/OU/M269FolderSync/M269TutorialSamples2023/M269TutorialBinaryTreesCmntry2023/

Binary Trees Tutorial
Agenda

>

(1)

(2)
(3)

>

(4)
(5)

There is a lot more material in these slides/notes than
we can cover in the available time, so | will cover:

Binary Tree terminology and representation — some
choices

Tree traversal — depth first recursive

Tree traversal — breadth first — recursive first,
transformed to the usual iterative version

These notes are as much about recursion as Binary
trees — the notes give several examples of evaluations
and what to do when you make a mistake

Binary search trees — deleting a node — choices
AVL or height balanced trees — brief introduction

Health Warning These notes contain some material
that is not part of M269 but is present for interest

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

4/338

Binary Trees Tutorial

Materials

» From the Web link to the folder containing the tutorial
materials you should find:

> File with name ending .beamer.pdf — the slides

> File with name ending .article.pdf — the notes
version

> Table of contents — in the slides this is a clickable
sidebar; in the notes it is an expanded list of sections
with links from the end of sections

> Indices — the notes version has an index of the Python
code and the diagrams

> References — the notes version has references which

have back references to the pages where the reference
is cited

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

5/338

M269 Tutorial

Introductions — Phil

>
>

vy

Name Phil Molyneux

Background

» Undergraduate: Physics and Maths (Sussex)

> Postgraduate: Physics (Sussex), Operational Research
(Brunel), Computer Science (University College, London)

> Worked in Operational Research, Business IT, Web
technologies, Functional Programming

First programming languages Fortran, BASIC, Pascal

Favourite Software

> Haskell — pure functional programming language

> Text editors TextMate, Sublime Text — previously Emacs
> Word processing in IKTeX — all these slides and notes
Mac OS X

Learning style — | read the manual before using the

v

software

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

6/338

https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://www.haskell.org/
https://macromates.com
http://www.sublimetext.com
https://www.emacswiki.org/
https://www.latex-project.org/
https://developer.apple.com/

M269 Tutorial

Introductions — You

>
>

Name?
Favourite software/Programming language ?

Favourite text editor or integrated development
environment (IDE)

List of text editors, Comparison of text editors and
Comparison of integrated development environments

Other OU courses ?
Anything else?

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

7/338

https://en.wikipedia.org/wiki/Text_editor
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/List_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments

Adobe Connect

Interface — Host View

M250 Units 10, 11

Collections, Arrays, Sets, Maps, Lists

Phil Molyneux

18 April 2021

M250 Units 10, 11
Phil Molyneux
M250 Units 10, 11
Tutorial Agenda
Adobe Connect

Classes and
Interfaces.

Sets
Maps
Uists

Collection
Implementations.

TMAO3 Practice
Quiz

Common Mistakes
sshel
What Next ?

References,

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References 8/338

Binary Trees

Adobe Connect

Interface — Participant View

Phil Molyneux

Commentary 1

Agenda
M250 Units 10, 11 Tutorial ot 16,11

Phil Molyneux

Adobe Connect

Introductions

S Interface
> Introductions Adobe Connect Settings
» Name Phil Molyneux Claases and Sharivng Screen &
> Learning Style: Reads the manual s Applications
> Learnt last month Framework for Teaching Recursion sets Ending a Meeting
and wrote notes on Recursion Teaching L= (i A aEs
> You? Lists
Collection - Layouts
Implementtions
TMAO3 Practice Chat Pods
e Web Graphics
Common Mistakes
Recordings

Ishell
What Next ?

References Commentary 2
Binary Trees
Iterative Traversals
Commentary 3

Binary Search Trees

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References 9/338

Adobe Connect

Settings

>

vy

Everybody [Menu bar>> Meeting>> Speaker & Microphone Setup]

[Menu bar>> Microphone>> Allow Participants to Use Microphone] 4

Check Participants see the entire slide Workaround

» Disable Draw [Share pod>> Menu bar>> Draw icon]
> Fit Width [Share p0d>> Bottom bar>> Fit Width icon] %4

[Meeting)) Preferences>> General >> Host Cursor>> Show to all attendees

[Menu bar>> Video>> Enable Webcam for Participants] 4

Do not Enable single speaker mode
Cancel hand tool
Do not enable green pointer

Recording [Meeting>> Record Session] v

Documents Upload PDF with drag and drop to share
pod

Delete [Meeting>> Manage Meeting Information>> Uploaded Content]
and [check ﬁlename>> click on delete]

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References 10/338

Adobe Connect

Access

> Tutor Access
[TutorHome)) M269 Website >> Tutorials]

[Cluster Tutorials>> M269 Online tutorial room]

[Tutor Groups>> M269 Online tutor group room}

[Module—wide Tutorials>> M269 Online module-wide room]
> Attendance
[TutorHome>> Students>> View your tutorial timetables]
Beamer Slide Scaling 440% (422 x 563 mm)
Clear Everyone’s Status

vy

[Attendee Pod >> Menu >> Clear Everyone’s Status]

v

Grant Access and send link via email

[Meeting >> Manage Access & Entry>> Invite Participants. .. }

> Presenter Only Area
[Meeting >> Enable/Disable Presenter Only Area

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References 11/338

Adobe Connect

Keystroke Shortcuts

v

vV vyVvyy

Keyboard shortcuts in Adobe Connect

Toggle Mic (58)+(M] (Mac), [Ctrl)+[M] win) (On/Disconnect)
Toggle Raise-Hand status [38)+E]

Close dialog box [®] (Mac), (Win)

End meeting (¢]+[\]

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References 12/338

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html

Adobe Connect Interface

Sharing Screen & Applications

vy

[Share My Screen>> Application tab >> Terminal] for Terminal

[Share menu >> Change View>> Zoom in] for mismatch of screen
size/resolution (Participants)

(Presenter) Change to 75% and back to 100% (solves
participants with smaller screen image overlap)

Leave the application on the original display

Beware blued hatched rectangles — from other (hidden)
windows or contextual menus

Presenter screen pointer affects viewer display —
beware of moving the pointer away from the application

First time: [System Preferences)) Security & Privacy)) Privacy)

Accessibility

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References 13/338

https://en.wikipedia.org/wiki/Terminal_(macOS)

Adobe Connect

Ending a Meeting

>

>
>
>
>

Notes for the tutor only
Student: [Meeting>> Exit Adobe Connect]

Tutor:
Recording [Meeting)) Stop Recording] v/
Remove Participants Meeting)) End Meeting. .. | v
> Dialog box allows for message with default message:
» The host has ended this meeting. Thank you for
attending.
Recording availability In course Web site for joining
the room, click on the eye icon in the list of recordings
under your recording — edit description and name

Meeting Information [Meeting>> Manage Meeting Information] —
can access a range of information in Web page.

Delete File Upload [Meeting>> Manage Meeting Information>

? Uploaded Content tab] select file(s) and click

Attendance Report see course Web site for joining
room

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References 14/338

Adobe Connect

Invite Attendees

>

Provide Meeting URL [Menu>> Meeting>> Manage Access & Entry>
Y Invite Participants. ... |

Allow Access without Dialog

9 Manage Meeting Information| provides new browser window
with Meeting Information (Tab bar)) Edit Information)

Check Anyone who has the URL for the meeting can
enter the room

Default Only registered users and accepted guests may
enter the room

Reverts to default next session but URL is fixed

Guests have blue icon top, registered participants have
yellow icon top — same icon if URL is open

See Start, attend, and manage Adobe Connect meetings
and sessions

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References 15/338

https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html
https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html

Binary Trees

Adobe Connect

Entering a Room as a Guest (1)

Phil Molyneux

Commentary 1

> Click on the link sent in email from the Host Agenda
. Adobe Ci t
> Get the following on a Web page e
. Settings
> As Guest enter your name and click on Sharing Sreen s
pplications
Ending a Meeting
m Adobe Connect Invite Attendees
Layouts
Chat Pods
Web Graphics
M269-21) Online tutorial room Recordings
London/SE (1,13) CG [2311] (M269-21)) Commentary 2
0]

Binary Trees

Iterative Traversals
Guest Registered User
Commentary 3

Name Binary Search Trees

Guest Name
Commentary 4

AVL Trees

By entering a Name & clicking "Enter Room’, you agree that
you have read and accept the Terms of Use & Privacy_Policy

AVL Trees: Sets

Binary Tree
Exercises

Commentary 6
Future Work

References 16/338

Binary Trees

Adobe Connect

Entering a Room as a Guest (2)

Phil Molyneux

Commentary 1

> See the Waiting for Entry Access for Host to give Agenda
permission /Ti:rt:ceconnea
4 Adobe Connect Settings
Sharing Screen &
Applications

Ending a Meeting

Waiting for Entry Access Layouts
Chat Pods
This is a private meeting. Your request to enter has Web Graphics
Recordings

been sent to the host. Please wait for a response.
Commentary 2

Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References 17/338

Adobe Connect

Entering a Room as a Guest (3)

> Host sees the following dialog in Adobe Connect and

grants access

Guest entry

Guest Name (guest)

Allow everyone

(]

1 guest would like to enter the room. Do you want
to allow or deny entry to incoming guests?

9 0 =

Denyeveryone Close

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting

Layouts

Chat Pods
Web Graphics
Recordings

Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References 18/338

Adobe Connect

Layouts

>

v

Creating new layouts example Sharing layout

[Menu>> Layouts>> Create New Layout. ..] [Create a New Layout dialog>
) Create a new blank layout] and name it PMolyMain

New layout has no Pods but does have Layouts Bar open
(see Layouts menu)

Pods

(Menu) Pods) Share)) Add New Share] and resize/position —
initial name is Share n — rename PMolyShare

Rename Pod [Menu>> Pods>> Manage Pods. . . } [Manage Pods>
> Select>> Rename] or [Double-click & rename]

Add Video pod and resize/reposition
Add Attendance pod and resize/reposition

Add Chat pod — rename it PMolyChat — and
resize/reposition

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References 19/338

Adobe Connect

Layouts

» Dimensions of Sharing layout (on 27-inch iMac)
» Width of Video, Attendees, Chat column 14 cm
> Height of Video pod 9 cm
> Height of Attendees pod 12 cm

Height of Chat pod 8 cm

» Duplicating Layouts does not give new instances of
the Pods and is probably not a good idea (apart from
local use to avoid delay in reloading Pods)

» Auxiliary Layouts name PMolyAux0On

> Create new Share pod
> Use existing Chat pod
> Use same Video and Attendance pods

v

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References 20/338

Adobe Connect

Chat Pods
» Format Chat text
> [Chat Pod>> menu icon>> My Chat Color]
» Choices: Red, Orange, Green, Brown, Purple, Pink, Blue,
Black
> Note: Color reverts to Black if you switch layouts
> [Chat Pod>> menu icon>> Show Timestamps]

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References 27/338

Graphics Conversion
PDF to PNG/JPG

» Conversion of the screen snaps for the installation of
Anaconda on 1 May 2020

» Using GraphicConverter 11

4 > Convert & Modify>> Conversion>> Convert]

> Select files to convert and destination folder

> Click on [Start selected Function] or [$8]+(<2)

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications
Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References 22/338

Adobe Connect Recordings

Exporting Recordings

v

VYV Vv VvV VvV VvV VvVYVYyy

[Menu bar>> Meeting>> Preferences >> Video]

(Aspect ratio)) Standard (4:3)] (not Wide screen (16:9) default)
(Video quality)) Full HD] (1080p not High default 480p)
Recording [Menu bar)) Meeting)) Record Session | v/

Export Recording

[Menu bar>> Meeting>> Manage Meeting Information]

[New window>> Recordings>> check Tutorial>> Access Type button

(check Public)) check Allow viewers to download|

Download Recording
[New window>> Recordings>> check Tutorial>> Actions>> Download File

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References 23/338

Commentary 2

Binary Trees

2 Binary Trees

vV VY vV VvV VYY

Usage, terminology, example trees
Representation, Abstract Data Types and notation
Tree traversals, Depth First and Breadth First
Recursive versions first

Iterative versions derived from recursive versions
Iterative depth first traversals for interest only
Points on performance

Binary Trees

Phil Molyneux

Commentary 1
Agenda
Adobe Connect
Commentary2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

24/338

Binary Trees

Introduction

>

The tree data structure is the most widely used
non-linear structure in many algorithms.

Almost all algorithms that take logarithmic time,
O(log n), do so because of an underlying tree structure.

Common examples

Binary search tree — this is used in many search
applications

Huffman coding tree — used in compression algorithms
in, for example, JPEG and MP3 files

Heaps — used to implement priority queues

B-trees — generalisation of Binary search trees used in
databases.

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation
Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

25/338

https://en.wikipedia.org/wiki/Binary_search_tree
https://en.wikipedia.org/wiki/Huffman_coding
https://en.wikipedia.org/wiki/Heap_(data_structure)
https://en.wikipedia.org/wiki/B-tree

Binary Trees

Terminology

» Binary Tree definition — a Binary tree is either

> an Empty Tree or

> aNode with an item and two subtrees

> One subtree is designated a left subtree and the other a
right subtree

» Note that this is a recursive or inductive definition —
this is very common in programming.

> Can also define trees as graphs without cycles — see
graph notes

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation
Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

26/338

https://en.wikipedia.org/wiki/Recursive_definition

Binary Trees

Other Recursive Data Structures

» Other examples of recursive or inductively defined data
structures we have seen include:
> A List is either
> an Empty Listor
» an Item followed by the rest of the 1ist
» A Stack is either
> an Empty Stack or
» the Top item followed by the rest of the stack
> In each case the recursive nature of the data structure
definition frequently gives a clue about how to write a
recursive program for a computational problem.

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation
Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

27/338

Binary Trees

Terminology

» Children — subtrees of a node that are not empty
» Leaves — nodes with two empty subtrees

» Full Binary Tree — every node other than the leaves

has two non empty subtrees

» Perfect Binary Tree — all leaves are at the same

level (or depth) children

» Complete Binary Tree — every level, except possibly
the last, is completely filled, and all nodes are as far left

as possible — used for Binary Heap

» Health Warning: the terminology varies from text to

text and between graph theory in mathematics and
computing.

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation
Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

28/338

Binary Trees
Example egBSTree

egBSTreeL

egBSTree

egBSTreeR

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees

Terminology

Representation
Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

29/338

Binary Trees
Example egBSTreel

egBSTreellL

egBSTreel

egBSTreelR

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees

Terminology

Representation
Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

30/338

Binary Trees
Example egBSTree?2

egBSTree2L

egBSTree2

egBSTree2R

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees

Terminology

Representation
Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

31/338

Binary Trees
Example egBSTree3

egBSTree3L

egBSTree3

egBSTree3R

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees

Terminology

Representation
Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

32/338

Binary Trees
Activity 1 Binary Tree Types

egBSTreel
egBSTree2
egBSTree3

What types of trees are the above example trees ?

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees

Terminology

Representation
Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

33/338

Binary Trees
Answer 1 Binary Tree Types (a)

> egBSTree — perfect

egBSTree

egBSTreeL egBSTreeR

P Answer 1 continued on next slide

» Go to Activity

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees

Terminology

Representation
Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

34/338

Binary Trees
Answer 1 Binary Tree Types (b)

> egBSTreel — full
egBSTreel

egBSTreellL egBSTreelR

P Answer 1 continued on next slide

» Go to Activity

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees

Terminology

Representation
Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

35/338

Binary Trees
Answer 1 Binary Tree Types (c)

> egBSTree2 — complete
egBSTree2

egBSTree2L egBSTree2R

P Answer 1 continued on next slide

» Go to Activity

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees

Terminology

Representation
Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

36/338

Binary Trees
Answer 1 Binary Tree Types (d)

> egBSTree3 — just a binary tree
egBSTree3

egBSTree3L egBSTree3R

» Go to Activity

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees

Terminology

Representation
Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

37/338

Binary Trees
Python Representation from 2021J (1)

» In 2021) M269 revision the Binary Tree Abstract Data
Type (ADT) is represented by the following Python Class

» The code is in the M269 Jupyter Notebooks and the
provided file m269_trees.py

» The code is reproduced in the file
M269BinaryTrees2021].py but, for brevity, without
the docstrings

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation

Python from 21J

Alternate
Representation

O

ioclass Tree :

12 def __init__(self) :

13 self.root = None

14 self.left = None

15 self.right = None

17def is_empty(tree: Tree) -> bool

18 return (tree.root == tree.left == tree.right
19 == None)

21def join(item: object, left: Tree, right: Tree) -> Tree :
22 tree = Tree()

23 tree.root = item

24 tree.left = left

25 tree.right = right

26 return tree

Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References 3g8/338

m269_trees.py
M269BinaryTrees2021J.py
https://www.python.org/dev/peps/pep-0257/

Binary Trees
Python Representation from 2021) (2)

» The functions is_leaf, size, height

28def is_leaf(tree: Tree) -> bool
29 return (not is_empty(tree)
30 and is_empty(tree.left) and is_empty(tree.right))

32def size(tree: Tree) -> 1int
33 if is_empty(tree)

34 return 0
35 else
36 return (size(tree.left) + size(tree.right) + 1)

3gdef height(tree: Tree) -> int

39 if is_empty(tree)

40 return 0

41 else :

42 return (max(height(tree.left), height(tree.right)) + 1)

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation

Python from 21J

Alternate
Representation

Operations
Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References 39/338

Binary Trees
Python Representation from 2021J (2)

» This representation works (see the M269 book) but has
the slight disadvantage in the it has no default print
representation that is useful

» For example, here is what happens when we attempt to
print a very small tree — threeBT is the same as THREE
in the chapter

Python3>>> threeBT = join(3,Tree(),Tree())
Python3>>> threeBT

<M269BinaryTrees2021].Tree object at 0x10095a0a0>
Python3>>>

> We could write a method to implement a print
representation of an instance of the class Tree() but
that might be a lot of code

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation

Python from 21J

Alternate
Representation

Operations
Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References 40/338

Binary Trees
Python Representation from 2021J (2)

» The main point of having an Abstract Data Type (ADT)
is we can swap out the underlying implementation for
another one

» This might be done for efficiency reasons but here we
do it to get an underlying type with a default print
representation

» All we have to do is keep operations which provide
access to the underlying representation

» This is called a learning opportunity!

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation

Python from 21J

Alternate
Representation

Operations
Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References 47/338

Binary Trees

Python Alternate Representation (1)

>

VYV VvVVvYy VvV VvVYyy

We first list the operations which will (or might) need to

have direct access to the underlying representation
Make an empty tree

Construct a new tree from an item and two trees
Query if a given tree is an empty tree

Given a tree, return the left sub tree

Given a tree, return the right sub tree

Find the height of a tree

Find the size of a tree

The last two do not need access to the underlying
representation (we can calculate the size and height
with just the other operations) but as we will see later,
we might give access for efficiency reasons

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation

Python from 21)

Alternate
Representation

Operations
Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References 42/338

Binary Trees

Binary Trees

Python Alternate Representation (2)

Phil Molyneux

Commentary 1

» To fully hide the ADT implementation we give common Agenda
function names to the operations Pt Comes
Commentary 2
Tree Class Common Name Category Binary Trees
Terminology
Examples
Tree() mkEmptyBT) Constructor Reprevenction

Python from 21)
join() mkNodeBT () Constructor Alternate

Representation

Operations

is_empty) isEmptyBT() Inspector Tree Traversals

Depth First

Breadth Firs
tree.root getDataBT() Destructor ['

Iterative Traversals
tree.left getLeftBT() Destructor COmTCERET 3

Binary Search Trees
tree.right getRightBT() Destructor Commentary 4
heigh heightBT 0 . AVL Trees
eight(Q) eightBT() peration AVL Treee. Seis
size() sizeBT(Q) Operation COmImEER 5

Binary Tree

Exercises

Commentary 6
Future Work

References 43/338

Binary Trees

Python Alternate Representation (3)

» The functions labelled Constructor, Inspector,
Destructor are operations that have direct access to the
underlying representation

» sizeBT() and heightBT() are just ordinary operations
in this version of the Tree ADT but for efficiency
reasons they may become Inspectors in a later version

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation

Python from 21)

Alternate
Representation

Operations
Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References 44/338

Binary Trees

Python Alternate Representation (4)

11
12

» We shall represent nodes by a named tuple — a quick
and dirty object recommended by Guido van Rossum
(author of the Python programming language).

» namedtuple() is a factory function for creating tuple
subclasses with named fields

> |t is imported from the colTlections module.
> It has a default print representation

from collections import namedtuple
EmptyBT = namedtuple(’EmptyBT’,[])

NodeBT = namedtuple(’NodeBT’
,[’dataBT’,’1eftBT’, ’ rightBT’])

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation

Python from 21)

Alternate
Representation

Operations
Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References 45/338

https://docs.python.org/3.3/library/collections.html#namedtuple-factory-function-for-tuples-with-named-fields
https://plus.google.com/115212051037621986145/posts/HajXHPGN752

Binary Trees

Python Alternate Representation (5)

>

vV VvyVvVvyy

The Python code above is in the file
Python/M269TutorialBinaryTrees2022.py

The line numbers in the margin correspond to the line
numbers in the file.

Notational convention:
Python reserved identifiers are shown in this color
Python buit-in functions in this color

User defined data constructors and functions such as
NodeBT and EmptyBT are shown in that color

Health Warning: these notes may not be totally
consistent with syntax colouring.

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation

Python from 21)

Alternate
Representation

Operations
Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References 46/338

http://www.pmolyneux.co.uk/OU/M269/M269TutorialResources/M269TutorialResourcesBinaryTrees/

Binary Trees

Python Alternate Representation (6)

18
19

» We declare the Python type for a Union type since a Tree
is either an empty tree or a hon-empty tree

> This is venturing into some of the areas of Python Type
Annotations that feel rather awkward but we shall use
them in a simple way

» Remember that the Python interpreter only checks the
type annotations for validity but not for correctness —
they just have to look like proper types but the
processor does not check them

Tree type
from typing import TypeVar,Union,NewType

T = TypeVar('T’)
Tree = NewType(’Tree’,Union[EmptyBT,NodeBT]).

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation

Python from 21)

Alternate
Representation

Operations
Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References 47/338

Binary Trees

Python Alternate Representation (7)

>

Note that using namedtuple means that all items are
assumed to have Any types (see mypy: Named tuples)

You could use NamedTuple which is a typed version of
namedtuple but this would be getting a lot more
complicated than types as used in M269

in particular you would get involved in specifying
user-defined generic types and forward references
(since the Tree data type is recursive)

We could have avoided Union by just having NodeBT
and representing an empty tree by the Python None

This would be isomorphic to the Class version with
default printing

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation

Python from 21)

Alternate
Representation

Operations
Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References 48/338

https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/typing.html#the-any-type
https://mypy.readthedocs.io/en/stable/kinds_of_types.html#named-tuples
https://docs.python.org/3/library/typing.html#other-special-directives
https://docs.python.org/3/library/typing.html#user-defined-generic-types
https://peps.python.org/pep-0484/#forward-references

Binary Trees
Operations (1)

23
24

26
27

29
30

» We now provide functions to create, inspect and take
apart binary trees

» The code with the line numbers is the code for the
implementation using namedtuples

def mkEmptyBT() -> Tree :
return EmptyBT()

def mkNodeBT(x : T,tl : Tree,t2 : Tree) -> Tree :
return NodeBT(x,tl,t2)

def isEmptyBT(t : Tree) -> bool:
return t == EmptyBT(Q)

» mkEmptyBT, mkNodeBT are constructor functions — we
could have used the raw named tuples but the
discipline is good for you and it makes it easier to
refactor in future

> isEmptyBT uses the == operator for identity check (not
identity (is))

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation

Python from 21)

Alternate
Representation

Operations
Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References 49/338

https://stackoverflow.com/questions/3647692/when-is-the-operator-not-equivalent-to-the-is-operator-python
https://stackoverflow.com/questions/3647692/when-is-the-operator-not-equivalent-to-the-is-operator-python
https://stackoverflow.com/questions/14247373/python-none-comparison-should-i-use-is-or
https://stackoverflow.com/questions/14247373/python-none-comparison-should-i-use-is-or

Binary Trees
Operations (2)
» The code with no line numbers illustrates how the

previous implementation using Class Tree can be given
the same operations interface

def mkEmptyBT() -> Tree :
return Tree()

def mkNodeBT(x : T,tl :
return join(x,tl,t2)

Tree,t2 : Tree) -> Tree :

def isEmptyBT(t : Tree) -> bool:
return is_empty(t)

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation

Python from 21)

Alternate
Representation

Operations
Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References 50/338

Binary Trees
Operations (3)

32

34
35
36

38
39
40
41
42

44
45
46
47
48

» Here are the operations that access the parts of the tree

def getDataBT(t : Tree) -> T:
if isEmptyBT(t):
raise RuntimeError("getDataBT _applied_to_EmptyBT()")
else:
return t.dataBT
def getLeftBT(t : Tree) -> Tree :
if isEmptyBT(t):
raise RuntimeError("getLeftBT _applied_to EmptyBT()")
else:
return t.leftBT
def getRightBT(t : Tree) -> Tree :
if isEmptyBT(t):
raise RuntimeError("getRightBT_applied_to_ EmptyBT()")
else:
return t.rightBT

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation

Python from 21)

Alternate
Representation

Operations
Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References 57/338

Binary Trees
Operations (4)

» The Class Tree implementation of the above operations

def getDataBT(t : Tree) -> T:
if isEmptyBT(t):
raise RuntimeError("getDataBT _applied_to_empty_tree")
else:
return t.root

def getLeftBT(t : Tree) -> Tree :
if isEmptyBT(t):
raise RuntimeError("getLeftBT_applied_to_empty_tree")
else:
return t.left

def getRightBT(t : Tree) -> Tree :
if isEmptyBT(t):
raise RuntimeError("getRightBT _applied_to_empty_tree™)
else:
return t.right

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation

Python from 21)

Alternate
Representation

Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References 52/338

Binary Trees
Operations (5)

> Here are the operations heightBT() and sizeBT()
> Note that height of an empty tree is 0

sodef heightBT(t : Tree) -> int :
60 if isEmptyBT(t):

61 return 0

62 else:

63 return (1 + max(heightBT(getLeftBT(t))

64 ,heightBT(getRightBT(t))))

e66cdef sizeBT(t : Tree) -> int :
67 if isEmptyBT(t) :

68 return 0

69 else :

70 return (1 + sizeBT(getLeftBT(t))
71 + sizeBT(getRightBT(t)))

» The Class Tree implementation of the above operations
is exactly the same

> If we make height or size directly part of the data
structure this may change

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation

Python from 21)

Alternate
Representation

Operations
Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References 53,338

Binary Trees

Activity 2 Python Representation

>

vVYvyVvVYyy

Write Python implementations of the following trees
(from the diagrams above) using the named tuple
NodeBT and EmptyBT

egBSTree

egBSTreel
egBSTree2
egBSTree3

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation

Python from 21)

Alternate
Representation

Operations
Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References 54/338

Binary Trees

Answer 2 Python Representation — egBSTree

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

egBSTree = mkNodeBT('H’,
mkNodeBT(’D’,
mkNodeBT(’B’,

mkNodeBT (" A’ ,mkEmptyBT() ,mkEmptyBT(Q)),
mkNodeBT(’C’ ,mkEmptyBT () ,mkEmptyBT())

),
mkNodeBT('F’,

mkNodeBT(’E’ ,mkEmptyBT () ,mkEmptyBT()),
mkNodeBT(’G’ ,mkEmptyBT () ,mkEmptyBT())

D)

Do
mkNodeBT(’L’,
mkNodeBT(’J’,

mkNodeBT ("I’ ,mkEmptyBT() ,mkEmptyBT(Q)),
mkNodeBT ('K’ ,mkEmptyBT() ,mkEmptyBT())

Do
mkNodeBT(’N’,

mkNodeBT ("M’ ,mkEmptyBT() ,mkEmptyBT(Q)),
mkNodeBT (0’ ,mkEmptyBT () ,mkEmptyBT())

D)
)

P Answer 2 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation

Python from 21)

Alternate
Representation

Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References 55,338

Binary Trees

Answer 2 Python Representation — egBSTreel

195egBSTreel = mkNodeBT('H’,
mkNodeBT(’D’ ,mkEmptyBT () ,mkEmptyBT()),
mkNodeBT(’L”,
mkNodeBT(’ 1’ ,mkEmptyBT() ,mkEmptyBT()),
mkNodeBT(’N’,
mkNodeBT (’M’ ,mkEmptyBT () ,mkEmptyBT()),
mkNodeBT(’0’ ,mkEmptyBT () ,mkEmptyBT())

196
197
198
199
200
201
202
203
204

P Answer 2 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation

Python from 21)

Alternate
Representation

Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References 56/338

Binary Trees

Answer 2 Python Representation — egBSTree2

221egBSTree2 =
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

mkNodeBT('H’,

mkNodeBT(’D”,
mkNodeBT(’B’,

mkNodeBT (" A’ ,mkEmptyBT() ,mkEmptyBT(Q)),
mkNodeBT(’C’ ,mkEmptyBT () ,mkEmptyBT())

),
mkNodeBT(’F’,

mkNodeBT(’E’ ,mkEmptyBT () ,mkEmptyBT()),
mkNodeBT (G’ ,mkEmptyBT () ,mkEmptyBT())

D)

Do
mkNodeBT(’L”,
mkNodeBT(’J’,

mkNodeBT ("I’ ,mkEmptyBT() ,mkEmptyBT(Q)),

mkEmptyBT ()

m&NodeBT(’N’,mkEmptyBT(),mkEmptyBT())

P Answer 2 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation

Python from 21)

Alternate
Representation

Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References 57,338

Binary Trees

Answer 2 Python Representation — egBSTree3

265egBSTree3 =
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

mkNodeBT('H’,

mkNodeBT(’D’,
mkNodeBT(’B’,

mkNodeBT (" A’ ,mkEmptyBT() ,mkEmptyBT(Q)),
mkNodeBT(’C’ ,mkEmptyBT () ,mkEmptyBT())

),
mkNodeBT('F’,
mkEmptyBT(Q),

mkNodeBT(’G’ ,mkEmptyBT () ,mkEmptyBT())

D)

Do

mkNodeBT(’L’,
mkEmptyBT(Q),
mkNodeBT(’N’,

mkNodeBT(’M’ ,mkEmptyBT() ,mkEmptyBT()),
mkNodeBT (0’ ,mkEmptyBT () ,mkEmptyBT())

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation

Python from 21)

Alternate
Representation

Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References 5g/338

Binary Trees

Answer 2 Python Representation — egBSTreelL

122egBSTreeL = mkNodeBT(’D’,

123
124
125
126
127
128
129
130
131

mkNodeBT(’B’,
mkNodeBT (A’ ,mkEmptyBT () ,mkEmptyBT()),
mkNodeBT(’C’ ,mkEmptyBT () ,mkEmptyBT())

e
mkNodeBT(’F’
mkNodeBT(’E’ ,mkEmptyBT () ,mkEmptyBT()),
mkNodeBT (G’ ,mkEmptyBT () ,mkEmptyBT())
)

» Go to Activity

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation

Python from 21)

Alternate
Representation

Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References 59/338

Binary Trees

Answer 2 Python Representation — egBSTreelLL

146egBSTreeLL = mkNodeBT(’B’,

147 mkNodeBT (A’ ,mkEmptyBT () ,mkEmptyBT()),
148 mkNodeBT(’C” ,mkEmptyBT () ,mkEmptyBT())
149)

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation

Python from 21)

Alternate
Representation

Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References g0/338

Binary Trees

Tree Traversals

» Many applications require visiting each node in a binary
tree and doing some processing.

» This could be adding quantities to find a total,
identifying the number of nodes with a particular
property and so on.

» There are several common patterns of visiting each
node or traversing a tree

> Depth first where the search tree is deepened as much
as possible on each child before visiting the next sibling

> Breadth first where we visit every node on a level before
visiting the next level

» Each traversal takes a tree and returns a list of items at
the nodes of the tree

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation
Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

61/338

https://en.wikipedia.org/wiki/Tree_traversal
https://en.wikipedia.org/wiki/Depth-first_search
https://en.wikipedia.org/wiki/Breadth-first_search

Binary Trees

Tree Traversals

Phil Molyneux
Depth First
Commentary 1
» In-Order traversal of tree t Agenda
1. If tis an empty tree then return the empty list aecelConrect
2. Otherwise do an In Order traversal of the left subtree of CCrTmRER 2
t then append a list just containing the data item at the BT'”am'VTIr:jS
root of t followed by an In Order traversal of the right Examples
subtree of t e
> Pre-Order traversal of tree t o
» As In-Order but output a list with the item at the root of Iterative Traversals
t before traversing the two subtrees Commentary 3

Binary Search Trees

> Post-Order traversal of tree t
> As Pre-Order but output a list with the item at the root of

Commentary 4

AVL Trees

t after traversing the two subtrees LT Seis

» [n-Order, Pre-Order and Post-Order traversals are Commentary 5
collectively termed Depth First Traversals ElETy e

> We first provide the usual recursive implementations — Commentary 6
in a later section we translate the recursive versions ReTrD T

References

into iterative versions

62/338

Depth First Traversal

Example

> Tree egBSTreeLL Python code at line 146 on slide 60

» The Depth first traversals are implemented in Python by
inOrderBT(), preOrderBT() and postOrderBT()

egBSTreelL

Python3>>>

LA,

Python3>>>

[’'s’,

Python3>>>

LA,

B’
A7,

cr,

inOrderBT(egBSTreelLL)
Tl

preOrderBT (egBSTreelLL)
]
postOrderBT(egBSTreelLl)
"B

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation
Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

63/338

Depth First Traversals

Python

311 def inOrderBT(t)

312 if isEmptyBT(t)

313 return []

314 else :

315 return (inOrderBT(getLeftBT(t)) + [getDataBT(t)]
316 + inOrderBT(getRightBT(t)))

318 def preOrderBT(t)

319 if isEmptyBT(t)

320 return []

321 else :

322 return ([getDataBT(t)] + preOrderBT(getLeftBT(t))
323 + preOrderBT(getRightBT(t)))

325 def postOrderBT(t)

326 if isEmptyBT(t)

327 return []

328 else :

329 return (postOrderBT(getLeftBT(t))

330 + postOrderBT(getRightBT(t)) + [getDataBT(t)])

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation
Tree Traversals

Breadth First
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

64/338

Binary Tree Exercises
Activity 3 Depth First Traversals

>

Give the lists of items in an in-order traversal of
egBSTree, egBSTreel, egBSTree2, egBSTree3

Give the lists of items in a pre-order traversal of
egBSTree, egBSTreel, egBSTree2, egBSTree3

Give the lists of items in a post-order traversal of
egBSTree, egBSTreel, egBSTree2, egBSTree3

Depth first traversal code is from line 311 on slide 64
(Python)

Binary tree code is from line 70 on slide 64 (Python)

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation
Tree Traversals
Depth First
Breadth First

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

65/338

Binary Tree Exercises

Answer 3 Depth First Traversals — In-Order

Python3>>> inOrderBT(egBSTree)
LA, ’B’, °C’, ’D’, B, UFY, G,
WL L 30 KL LY, ML N, °0°]
Python3>>> inOrderBT(egBSTreel)
[’o’, ’H, ’3’, ’L’, 'M’, ’N’, ’0’]
Python3>>> inOrderBT(egBSTree2)
r’a, ’s’, ’C’, ’'D’, ’E’, 'F’, ’G’,
WL T, 37, LY, N’
Python3>>> inOrderBT(egBSTree3)
[’a’, ’s’, ’C’, ’D’, ’F’, ’G’, 'H’,
LY, M, ’N’, ’0’]

> (Line breaks introduced for layout)

P Answer 3 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation
Tree Traversals

Breadth First
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

66/338

Binary Tree Exercises

Answer 3 Depth First Traversals — Pre-Order

Python3>>> preOrderBT(egBSTree)
CH, °D’, "B, "A’, C, UFY, B,
Gl LT, 30, T KL N, MY, 00’]
Python3>>> preOrderBT(egBSTreel)
[’H, ’D’, ’L’, ’3’, ’N’, 'M’, ’0’]
Python3>>> preOrderBT(egBSTree2)
[’H’, 'D’, 'B’, 'A’, 'C’, 'F’, 'E’,
6L L, 3T, T, N
Python3>>> preOrderBT(egBSTree3)
[’w, ’D’, ’B’, 'A’, ’C’, ’F’, ’G’,
L’, °N’, 'M’, ’0’]

P Answer 3 continued on next slide

» Go to Activity

Binary Trees

Phil Molyneux

Commentary 1
Agenda
Adobe Connect
Commentary 2
Binary Trees
Terminology
Examples
Representation
Tree Traversals
Breadth First
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

67/338

Binary Tree Exercises

Answer 3 Depth First Traversals — Post-Order

Python3>>>
LA, C,
T K,
Python3>>>
(o, '3,
Python3>>>
[°A°y €y
SRR
Python3>>>
LA, ’c,
07, 'N’7,

postOrderBT(egBSTree)

F?,
N,

L,

F?,

D,

D,
L,

]

D,

M,

'B’, 'E’, 'C’,
3w, 07,
postOrderBT(egBSTreel)
'M’, '0’, 'N’,
postOrderBT(egBSTree2)
'B’, 'E’, 'C’,

INTL UL H]
postOrderBT(egBSTree3)
'B’, °G’, 'F’,

L, CH]

W

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation
Tree Traversals

Breadth First
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

68/338

Tree Traversals
Breadth First

> The M269 book section 16.3.5 gives an iterative version
of a breadth first traversal but only mentions a
recursive version briefly

» We shall start with a recursive version and transform
that by stages into the iterative version in the book

> | find it easier to think of the recursive version first —
you should observe how people think they think about
programming

> First we do some exercises

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation
Tree Traversals
Depth First
Breadth First
Breadth First VO1
Breadth First V02
Breadth First VO3
Breadth First V04
Breadth First VOS5

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work €9/338

Binary Tree Exercises
Activity 4 Breadth First Traversals

>

vV VvV VvV VvVvyVvyy

A level order traversal of a binary tree takes a tree and
returns the list of levels

Each level is the list of items at that level
Give the list of levels for:

egBSTree

egBSTreelL

egBSTreel

egBSTree2

egBSTree3

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation
Tree Traversals
Depth First
Breadth First
Breadth First VO1
Breadth First V02
Breadth First VO3
Breadth First V04
Breadth First VOS5

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work -0/338

Binary Tree Exercises

Answer 4 Breadth First Traversals

» Answer 4 Breadth First Traversals

Python3>>> TevelOrderBT(egBSTree)

(c’w1, r’o’, ’L’1, [’87, ’F’, ’3°, °N’1,
ra, v, e, G, I, K, M7, ’0°]]

Python3>>> TlevelOrderBT(egBSTreel)

(c’o’1, [’8’, ’F’1, [’A’, ’C’, ’E’, ’G’]]

Python3>>> TlevelOrderBT(egBSTreel)

(w1, o, ’L’1, 3, °N’1, [°M, °0’1]

Python3>>> levelOrderBT(egBSTree2)

(w1, ’o’, ’L’1, 8’7, ’F’, 37, °N’],
[’A”. ’C’, ’E’, 'G’, 'T°'1]

Python3>>> TlevelOrderBT(egBSTree3)

(C’wi1, r’o’, ’L’1, ’8’, ’F’, °N’1, [’A’, ’C’, °G’, M7, ’0’]]

Python3>>>

» Go to Activity

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation
Tree Traversals
Depth First

Breadth First VO1
Breadth First V02
Breadth First VO3
Breadth First V04
Breadth First VOS5

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work -1/338

Binary Tree Exercises

Answer 4 Breadth First Traversals (c)

» Answer 4 Breadth First Traversals

Python3>>> TlevelOrderBT(egBSTreel)
te'o’1, °8’, ’F’1, [’A’, ’C’, B, °G’]]

egBSTreelL

LL LR

P Answer 4 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation
Tree Traversals
Depth First

Breadth First VO1
Breadth First V02
Breadth First VO3
Breadth First V04
Breadth First VOS5

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work 22/338

Breadth First Traversal

Version 01 (a)

> The first version will be recursive and driven by the
structure of trees and will start by writing
TevelOrder () which takes a binary tree and returns a
list of levels — a Tevel is a list of items at the level
(1) An empty tree has an empty list of levels (level zero)
(2) A non-empty tree has the list of the root item followed
by combining the two lists of the levels for the two
sub-trees
» We will call the function that combines the two lists of
levels TongZipMerge() since it is similar to the Python
library zip() function

428 def TevelOrderBT(t : Tree) -> [[T]] :
429 if isEmptyBT(t)

430 return []

431 else :

432 X = getDataBT(t)

433 left = getlLeftBT(t)

434 right = getRightBT(t)

435 return ([[x]] +

436 longZipMerge(levelOrderBT(Teft),levelOrderBT(right)))

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation
Tree Traversals
Depth First
Breadth First
Breadth First VO1
Breadth First V02
Breadth First VO3
Breadth First V04
Breadth First VOS5

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work 237338

https://docs.python.org/3/library/functions.html#zip

Breadth First Traversal
Version 01 (b)

438
439
440
441

442
443
444

» TongZipMerge() is a variant on the Python library
function zip()

> zip() iterates over several iterables in parallel,
producing tuples with an item from each one.

» TongZipMerge() takes two lists and returns a new list
with merged pairs of items from each list which is a
level order traverse of the subtrees

» The two lists do not need to be of the same length —
any excess is just appended to the merged result so far

def 1ongZ1pMerge(xss : [[T1],yss : [[T11) -> [I[T]1]
if xss == []
return yss
elif yss == []
return xss
else :

return ([xss[0] + yss[0]] + TongZipMerge(xss[1l:],yss[1:]1))

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation
Tree Traversals
Depth First
Breadth First
Breadth First VO1
Breadth First V02
Breadth First VO3
Breadth First V04
Breadth First VOS5

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work -4/338

https://docs.python.org/3/library/functions.html#zip
https://docs.python.org/3/library/functions.html#zip

Breadth First Traversal
Version 01 (c)

» Evaluation of TevelOrderBT(egBSTreel)

levelOrderBT (egBSTreelLl)
= [[’B’]1]

by line 431
+ longZipMerge(levelOrderBT(egBSTreelLLL),
TlevelOrderBT (egBSTreelLLR))

= [['B’]] # by lines 431,439
+ TongZipMerge([['A’1],[[’C’ 1D
= [[’B’1]1 + [[’A’,’C’]] # by line 441
= [[’B’]1,[’A”,’C’]]
TlevelOrderBT (egBSTreelLR)
= [[’F’],[’E’,’G’]] # as above
levelOrderBT (egBSTreel)
= [['D’]1] # by Tine 431
+ longZipMerge(levelOrderBT(egBSTreell),
levelOrderBT(egBSTreelLR))
= [['D’]] # as above
+ longZipMerge([[’B’],['A’, C’'1],
[C’F1,[’E’,’G’1D
= [[’D’]1] # by Tine 441
+ [[’B’,’F'1,[’A”,’C’,’E”, "G]]
= [['D’],[’B’,’F’],[’A’,’C’,’E’,’G’]] # correct - check the steps

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation
Tree Traversals
Depth First
Breadth First

Breadth First V02
Breadth First VO3
Breadth First V04
Breadth First VOS5

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work e /338

Breadth First Traversal
Version 01 (d)

» Testing can only show the presence of bugs but not the
absence of bugs (Edsger W Dijkstra Quotes)

» We shall now investigate a similar program with a subtle
error

465 def levelOrderBTO1l(t : Tree) -> [[T]]
466 if isEmptyBT(t)

467 return []

468 else :

469 X = getDataBT(t)

470 left = getlLeftBT(t)

471 right = getRightBT(t)

472 return ([x] +

473 TongZipMerge0l(levelOrderBT01(Teft),levelOrderBT01(right)))

475 def TongZipMergeOl(xss : [[T11,yss : [[T11) -> [[T]]
476 if xss == [] :

477 return yss

478 elif yss == []

479 return xss

480 else :

481 return ([xss[0],yss[0]] + longZipMergeOl(xss[1l:],yss[1:]1))

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation
Tree Traversals
Depth First
Breadth First
Breadth First VO1
Breadth First V02
Breadth First VO3
Breadth First V04
Breadth First VOS5

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work -6/338

https://en.wikiquote.org/wiki/Edsger_W._Dijkstra

Breadth First Traversal

Version 01 (e)

> We first do a few tests

Python3>>> TevelOrderBT(egBSTreelLL)

[(r’s’1, [’A’, 'C11

Python3>>> levelOrderBT01(egBSTreelL)

[’B’, ’A’, ’C’]

Python3>>> levelOrderBT(egBSTreel)

(C’w1, ’D’, ’L’1, [’3°, ’N’1, [’M’, ’0’11
Python3>>> levelOrderBT01(egBSTreel)

[’H’, 'D’, ’L’, 37, °'N’, ’M’, '0’]

» Correct order but a list of items not a list of levels

Python3>>> levelOrderBT(egBSTreel)
[('D'1, ['B”, 'F'], ['A’, 'C’, "E’, "G']]
Python3>>> TlevelOrderBT01(egBSTreel)
[°D’, ’B’, 'F’, ’A’, 'E’, 'C’, 'G’]

» Wrong order — we now do an evaluation to see where
the error is

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation
Tree Traversals
Depth First
Breadth First
Breadth First VO1
Breadth First V02
Breadth First VO3
Breadth First V04
Breadth First VOS5

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work 221338

Breadth First Traversal
Version 01 (f)

» Evaluation of TevelOrderBT01(egBSTreel)

levelOrderBT01(egBSTreelL)
= ['B’] # by line 468

+ longZipMergeO0l(levelOrderBT01(egBSTreeLLL),

TevelOrderBT01(egBSTreelLLR))

= ['B’] # by lines 468,476
+ longZipMergeO1([’A’]1,['C’])
[’B’]1 + [’A’,’C’]
[

by line 478
B',’A’,’C’]

levelOrderBT01(egBSTreelLR)
=['F’,’E’,’G’] # as above

levelOrderBT01(egBSTreel)
= ['D’] # by Tine 468
+ longZipMergeO0l(levelOrderBT01(egBSTreell),
TevelOrderBT01(egBSTreelLR)))

= ['D’] # as above
+ 'IongZ1pMerge01([B’, ’A’ C’'],
B e e]
= D] # by line 478

+ [’B’,’F’,’A’,’E’,’C",’G’]
[’D’,’B’,’F’,’A’,’E’,’C’,’G’]

notice the error ?

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation
Tree Traversals
Depth First
Breadth First
Breadth First VO1
Breadth First V02
Breadth First VO3
Breadth First V04
Breadth First VOS5

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work -8/338

Breadth First Traversal
Version 01 (g)

454
455

457
458

» TlevelOrderBTO1() is not only of the wrong type but

produces the wrong order except for a limited number
of trees

» The Python type annotations are only checked for
syntax but not for correctness

> We get the final breadthBT01() by flattening the list of
levels

» This uses a list comprehension as a shorthand for
nested loops — see explanation below

def flattenLevels(levels : [[T]1]) -> [T] :
return ([elem for level in Tevels for elem 1in level])

def breadthBT01(t : Tree) -> [T] :
return flattenLevels(levelOrderBT(t))

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation
Tree Traversals
Depth First
Breadth First
Breadth First VO1
Breadth First V02
Breadth First VO3
Breadth First V04
Breadth First VOS5

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work 20/338

Breadth First Traversal

Version 01 (h) List Comprehensions

» Python List comprehensions (tutorial), List
comprehensions (reference) — a neat way of expressing
iterations over a list

» Example (a) Square the even numbers between 0 and 9

> Example (b) Generate a list of pairs which satisfy some
condition

Python3>>> [x #* 2 for x in range(10) if x % 2 == 0]
[0, 4, 16, 36, 64]
Python3>>> [(x y) for x 1in range(4)
- for y in range(4)
if x % 2 ==
v and y % 3 == 0]
[C0, 0, (0, 3), (2, 0), (2, 3]
Python3>>>

> In general

[expr for targetl in iterablel if condl
for target2 in iterable2 if cond2
for targetN in iterableN if condN]

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation
Tree Traversals
Depth First
Breadth First
Breadth First VO1
Breadth First V02
Breadth First VO3
Breadth First V04
Breadth First VOS5

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work 20/338

https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/reference/expressions.html#displays-for-lists-sets-and-dictionaries
https://docs.python.org/3/reference/expressions.html#displays-for-lists-sets-and-dictionaries

Breadth First Traversal

Version 01 (i) List Comprehensions

» Instead of the list comprehension, flattenLevels()

could be defined with an accumulating list and nested
loops.

» M269 does not mention list comprehensions so you
would have to decide whether they are worth
mentioning

490def flattenLevelsA(levels : [[T]]) -> [T]
491 accumList = []

492 for Tevel in Tlevels :

493 for elem in Tlevel

494 accumList = accumList + [elem]

495 return accumlList

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation
Tree Traversals
Depth First
Breadth First
Breadth First VO1
Breadth First V02
Breadth First VO3
Breadth First V04
Breadth First VOS5

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work 21/338

Breadth First Traversal
Version 02 (a)

» We now have a correct program breadthBT01() but
this does lots of (how many?) traversals of the data —
we may want a more efficient version and hence we
transform our program

» Version 02 uses a helper function bfTraverse(vs, ts)
which takes a list of item seen, vs, and a list (or queue)
of trees to be visited, ts

» As we visit a node, we add its subtree to the queue, ts

501 def breadthBT02(t : Tree) -> [T]
502 return bfTraverse([],[t])

soadef bfTraverse(vs : [T],ts : [Treel) -> [T]

so5 if ts == []:

506 return vs

507 elif isEmptyBT(ts[0]):

508 return bfTraverse(vs,ts[1:])

509 else:

510 return (bfTraverse(vs + [getDataBT(ts[0])],

511 ts[1l:] + [getLeftBT(ts[0]),getRightBT(ts[0])]))

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation
Tree Traversals
Depth First
Breadth First
Breadth First VO1
Breadth First V02
Breadth First VO3
Breadth First V04
Breadth First VOS5

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work 22/338

Breadth First Traversal
Version 03 (a)

> Version 02 removed some of the recursion by
enqueueing trees to be visited

» This version has the disadvantage that no output until
all the nodes are visited, which could mean a long wait
or never if the tree is infinite

» Version 03 enables a lazier approach — Python could
use a Generator expression or augment the code with
Yield expressions (both not used in M269) but other

languages, such as Haskell use lazy evaluation by
default

s13def breadthBTO3(t : Tree) -> [T]
514 return TbfBT([t])

sicdef 1bfBT(ts : [Tree]) -> [T]
517 if ts == []:

518 return []

519 elif isEmptyBT(ts[0]):

520 return TbfBT(ts[1:])

521 else:
522 return ([getDataBT(ts[0])]
523 + TbfBT(ts[1:] + [getLeftBT(ts[0]),getRightBT(ts[0]1)]1))

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation
Tree Traversals
Depth First
Breadth First
Breadth First VO1
Breadth First V02
Breadth First VO3
Breadth First V04
Breadth First VOS5

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work 23/338

https://docs.python.org/3/reference/expressions.html#generator-expressions
https://docs.python.org/3/reference/expressions.html#yield-expressions
https://www.haskell.org

Breadth First Traversal
Version 04 (a)

> Version 03 has the only recursive call as (almost) the
last thing

> So we can implement this with a whiTe loop

s27def breadthBT04(t : Tree) -> [T]
528 ts = [t] # Trees to visit

529 vs = [] # Values seen

530 while (ts != []) :

531 if not (isEmptyBT(ts[0])) :

532 vs = vs + [getDataBT(ts[0])]

533 ts = ts[1:] + [getLeftBT(ts[0]),getRightBT(ts[0])]
534 else :

535 ts = ts[1:]

536 return vs

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation
Tree Traversals
Depth First
Breadth First
Breadth First VO1
Breadth First V02
Breadth First VO3
Breadth First V04
Breadth First VOS5

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work 24/338

Breadth First Traversal
Activity 5 Breadth First Error

» There is an error in the following version — what is the
error?

» Why would the print statements not help ?
» Why don’t the Python type annotations help ?

s43def breadthBTO4A(t : Tree) -> [T]

544
545
546
547
548
549
550
551

552
553
554
555

556

ts = [t] # Trees to visit
vs = [] # Values seen
while not (isEmptyBT(ts))
print(’ts_=_",ts)
if not (isEmptyBT(ts[0]))
print(’Ten(ts) _=_",Ten(ts))
print(’getDataBT(ts[0]) _=",getDataBT(ts[0]))
vs = vs + [getDataBT(ts[0])]
ts = ts[1:] + [getLeftBT(ts[0]),getRightBT(ts[0])]
else :
print(’ts[0]_is_empty’,’len(ts) _=_",Tlen(ts))
ts = ts[1:]
return vs

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation
Tree Traversals
Depth First
Breadth First
Breadth First VO1
Breadth First V02
Breadth First VO3
Breadth First V04
Breadth First VOS5

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work 2c/338

Breadth First Traversal

Answer 5 Breadth First Error

>
>

The error is the while condition at line 546

isEmptyBT(ts) will never return True since ts is a list
of trees

The article version of these notes contains an output of
the print statements and the error report

The error is reported at line 548 as IndexError: list
index out of range

So the print statements do not show the real error

The Python interpreter does not check the type
annotations for correctness, just the syntax

Remember that Python is a weakly typed language

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation
Tree Traversals
Depth First
Breadth First
Breadth First VO1
Breadth First V02
Breadth First VO3
Breadth First V04
Breadth First VOS5

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work 26/338

Breadth First Traversal
Version 05 (a)

> There is one disadvantage of version 01

> The program traverses the entire left subtree before
traversing the right subtree

> Bad news for large trees and very bad for infinite trees
» This version produces the traversal level by level

sesdef TabelsAtDepth(d : int, t : Tree) -> [T]

564
565
566
567
568
569
570
571

572
573

if isEmptyBT(t)
return []
else :
x = getDataBT(t)
left = getLeftBT(t)
right = getRightBT(t)

if d == 0 :
return [x]
else :

return (TabelsAtDepth((d-1),Teft) + TabelsAtDepth((d-1),right))

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2

Binary Trees
Terminology
Examples
Representation
Tree Traversals
Depth First
Breadth First
Breadth First VO1
Breadth First V02
Breadth First VO3
Breadth First V04
Breadth First VOS5

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work 27/338

Breadth First Traversal
Version 05 (b)

» Breadth first traversal with TabelsAtDepth

> Version based on Sannella et al (2022, page 261)
Introduction to Computation: Haskell, Logic and

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2

Binary Trees

Automata Teminclogy
Examples
Repr
s77def bfTraverseBylLevels(t : Tree) -> [T] Tree Traversals
578 return bfTbyL(0,t) Depth First

sgodef bfTbyL(d : int, t : Tree) -> [T]
581 xS = labelsAtDepth(d,t)

582 if xs == [] :

583 return []

584 else :

585 return (xs + bfTbyL((d+1),t))

Breadth First
Breadth First VO1
Breadth First V02
Breadth First VO3
Breadth First V04
Breadth First VOS5

Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work 28/338

Iterative Tree Traversals

Recursion Removal

>

We have used recursion in our implementation of
algorithms on binary trees

This has made it easier to produce correct and fairly
simple implementations

This is mainly because the binary tree data structure is
itself defined recursively

A binary tree is either an empty tree or a node with a
data item and two subtrees.

However the efficiency of this approach will depend on
how the chosen programming language is
implemented.

We are using Python and, while Python permits
recursion, it does not do some of the optimisations
available in other languages, especially pure functional
languages (such as Haskell).

Hence you may find some Python texts down play the
use of recursion.

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals

Iterative InOrder
Traversal

Iterative PreOrder
Traversal

Iterative PostOrder
Traversal
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

89/338

https://www.haskell.org/

Iterative Tree Traversals

Recursion Removal

> It is always possible to convert a recursive program into
one that just uses iteration with while loops or
(possibly) for loops

> We give below examples of the depth first tree
traversals translated from their recursive forms to
non-recursive.

» Note that this subsection is for illustration only and you
would not be expected to be able to reproduce the code
or convert other recursive code.

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals

Iterative InOrder
Traversal

Iterative PreOrder
Traversal

Iterative PostOrder
Traversal
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

90/338

Iterative Tree Traversals

inOrder Traversal (1)

» Here is the original recursive version (from line 311 on

slide 64)

311def inOrderBT(t)

312
313
314
315
316

if isEmptyBT(t)
return []
else :
return (inOrderBT(getLeftBT(t)) + [getDataBT(t)]
+ inOrderBT(getRightBT(t)))

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees

Iterative Traversals

Iterative PreOrder
Traversal

Iterative PostOrder
Traversal
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

91/338

Iterative Tree Traversals

inOrder Traversal (2)

> We start with the recursive version but with an
accumulating result.

335def inOrderBTO(t)

336 result = []

337 if not isEmptyBT(t) :

338 result = result + (inOrderBTO(getLeftBT(t)))
339 result.append(getDataBT(t))

340 result = result + (inOrderBTO(getRightBT(t)))
341 return result

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees

Iterative Traversals

Iterative PreOrder
Traversal

Iterative PostOrder
Traversal
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

92/338

Iterative Tree Traversals

inOrder Traversal (3)

» Turn the final (almost tail recursive) call into a while
loop

343def inOrderIterBT1(t)

344 result = []

345 while not isEmptyBT(t)

346 result = result + (inOrderIterBT1(getLeftBT(t)))
347 result.append(getDataBT(t))

348 t = getRightBT(t)

349 return result

» The term almost since the last operation is the addition
(+) but that could be wrapped into the last call

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees

Iterative Traversals

Iterative InOrder
Traversal

Iterative PreOrder
Traversal

Iterative PostOrder
Traversal
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

93/338

Iterative Tree Traversals

inOrder Traversal (4)

» There is now one recursive call.
> Create a stack to store the function call context.

> In the loop have a conditional to determine whether to
store a new context and make the left sub tree the
current node or if we are returning, with the
appropriate code.

351def inOrderIterBT2(t) :

352
353
354
355
356
357
358
359
360
361
362

result = []
stack = []
while (not (stack == []) or not isEmptyBT(t)) :
if not isEmptyBT(t)
stack.append(t)
t = getLeftBT(t)
else:
t = stack.pop()
result.append(getDataBT(t))
t = getRightBT(t)
return result

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals

Iterative InOrder
Traversal

Iterative PreOrder
Traversal

Iterative PostOrder
Traversal
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

94/338

Iterative Tree Traversals

inOrder Traversal (5)

Algorithm Description

» inOrderIterBT2 takes a tree t and returns a list of
items at the nodes, depth first from left to right

1. Initialise result to an empty list, and stack, for the
stack of trees to visit, to an empty list
2. While stack is not empty or t is not the empty tree
2.1 If tis not empty, append t to stack and assign t to be
its left sub tree — this is the left recursion
2.2 Otherwise make t the top of the stack (and remove it),
append the item at its node to result and make t to be
its right sub tree

3. Finally return result

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect
Commentary 2

Binary Trees

Iterative Traversals

Iterative InOrder
Traversal

Iterative PreOrder
Traversal

Iterative PostOrder
Traversal
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

95/338

Iterative Tree Traversals

preOrder Traversal (1)

> Here is the original recursive version (from line 318 on

slide 64)

318def preOrderBT(t)

319
320
321
322
323

if isEmptyBT(t)
return []
else :

return ([getDataBT(t)] + preOrderBT(getLeftBT(t))
+ preOrderBT(getRightBT(t)))

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals

Iterative InOrder
Traversal

Iterative PostOrder
Traversal

Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

96/338

Iterative Tree Traversals
preOrder Traversal (2)

364def preOrderBTO(t)

365
366
367
368
369
370

> Start with recursive version with accumulating result.

result = []

if not isEmptyBT(t)
result.append(getDataBT(t))
result = result + (preOrderBTO(getLeftBT(t)))
result = result + (preOrderBTO(getRightBT(t)))

return result

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals

Iterative InOrder
Traversal

Iterative PostOrder
Traversal

Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

97/338

Iterative Tree Traversals
preOrder Traversal (3)

» Turn the final (almost tail recursive) call into a while
loop.

372def preOrderIterBT1(t)

373 result = []

374 while not isEmptyBT(t) :

375 result.append(getDataBT(t))

376 result = result + (preOrderIterBT1(getLeftBT(t)))
377 t = getRightBT(t)

378 return result

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals

Iterative InOrder
Traversal

Iterative PostOrder
Traversal

Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

98/338

Iterative Tree Traversals

preOrder Traversal (4)

» There is now one recursive call.
> Create a stack to store the function call context.

> In the loop have a conditional to determine whether to
store a new context and make the left sub tree the
current node or if we are returning, with the
appropriate code

3godef preOrderIterBT2(t)

381
382
383
384
385
386
387
388
389
390
391

result = []
stack = []
while (not (stack == []) or not isEmptyBT(t))
if not isEmptyBT(t) :
result.append(getDataBT(t))
stack.append(t)
t = getLeftBT(t)

else :
t = stack.pop(Q)
t = getRightBT(t)

return result

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals

Iterative InOrder
Traversal

Iterative PreOrder
Traversal

Iterative PostOrder
Traversal
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

99/338

Iterative Tree Traversals

postOrder Traversal (1)

» Here is the original recursive version (from line 325 on

slide 64)

325def postOrderBT(t):

326
327
328
329
330

if isEmptyBT(t):
return []
else:
return (postOrderBT(getLeftBT(t))
+ postOrderBT(getRightBT(t)) + [getDataBT(t)])

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals

Iterative InOrder
Traversal

Iterative PreOrder
Traversal

Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

100/338

Iterative Tree Traversals

postOrder Traversal (2)

> Start with recursive version with accumulating result.

393def postOrderBTO(t)

394 result = []

395 if not isEmptyBT(t)

396 result = result + (postOrderIterBT1(getLeftBT(t)))
397 result = result + (postOrderIterBT1(getRightBT(t)))
398 result.append(getDataBT(t))

399 return result

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals

Iterative InOrder
Traversal

Iterative PreOrder
Traversal

Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

101/338

Iterative Tree Traversals

postOrder Traversal (3)

» There is now no final (tail recursive) call.

401 def postOrderIterBT1(t)

402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421

result = []
if isEmptyBT(t)
return result
stack = []
while not (stack == []) or (not isEmptyBT(t))
while not isEmptyBT(t)
if not isEmptyBT(getRightBT(t))
stack.append(getRightBT(t))
stack.append(t)
t = getLeftBT(t)
t = stack.pop(Q)
if ((not isEmptyBT(getRightBT(t)))
and (stack != [] and stack[-1] is getRightBT(t)))
tr = stack.pop(Q)
stack.append(t)
t = getRightBT(t)
else :
result.append(getDataBT(t))
t = mkEmptyBT() # To avoid infinite loop - it is t.rightBT
return result

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals

Iterative InOrder
Traversal

Iterative PreOrder
Traversal

Iterative PostOrder
Traversal
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

102/338

Iterative Tree Traversals

postOrder Traversal (4) — Algorithm Description

1.
2.

Initialise result to an empty list.
If t is empty then return result (not really needed
since the loop would take care of this)

. Initialise stack, for the stack of trees to visit, to an

empty list

. While stack is not empty or t is not the empty tree

4.1 While t is not the empty tree
> If the right sub tree of t is not empty, push it on to stack
> Append t to stack
> Assign t its left sub tree

4.2 Pop a node from stack and setitas t
4.3 If the popped node has a non empty right child and the
right child is at the top of stack
> Remove the right child from the stack
> Push the current node t on to stack
> Set t to be t’s right child
4.4 Otherwise

> Append the data at the root of t to result
> Set t to Empty () — marking t as visited, prevents infinite
looping (it is t.rightBT)

. Finally return result

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals

Iterative InOrder
Traversal

Iterative PreOrder
Traversal

Iterative PostOrder
Traversal
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

103/338

Iterative Tree Traversals

Concluding Points

> Recursive versions are easier to get right.

> [terative versions mimic the stack of recursive function
calls.

» Other non-recursive versions use different data
structures with pointers to parent nodes. The code is
still more complex (and error prone) compared to the
recursive versions.

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals

Iterative InOrder
Traversal

Iterative PreOrder
Traversal

Iterative PostOrder
Traversal
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

104/338

Commentary 3

Binary Search Trees

3 Binary Search Trees

> Binary trees with the binary search tree property
> Inserting a node

> Other BST operations

> Deletion — investigating choices

Binary Trees

Phil Molyneux

Commentary 1
Agenda
Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
[Commentary3
Binary Search Trees
Commentary 4
AVL Trees
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

105/338

Binary Search Trees

Definition

» A binary search tree (BST) is a binary tree with the
binary search tree property:

1.

4.
5.
6.

The left sub tree contains nodes with keys less than the
root node

. The right sub tree contains nodes with keys greater than

the root node

. The left and right sub trees must also be binary search

trees

No nodes with duplicate keys

An empty tree is a binary search tree
Nothing else is a binary search tree

» The data at each node is to contain a key and any
values. The operations required for a BST will include:
insertBST(), inBST(), isBSTree(),
insertListBST(), buiTldBST(), deleteBST()

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3

Binary Search Trees
Definition
Inserting a Node
BST Operations
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

106/338

https://en.wikipedia.org/wiki/Binary_search_tree

Binary Search Trees

Motivation

> A perfect binary tree of height h will have 2" -1 nodes

» This means that there will be at most log,(n+ 1) steps
from the root of the tree to any node in the tree.

> This provides the basis for efficient searching if we give
an appropriate structure to the tree — a Binary Search
Tree (BST)

» However we have to keep the BST as near to a perfect
tree otherwise we lose the advantage

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3

Binary Search Trees
Definition
Inserting a Node
BST Operations
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

107/338

Perfect Trees
Activity 6 Nodes of Perfect Tree

> Justify the statement that a perfect binary tree of height

h will have 2 -1 nodes

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Inserting a Node

BST Operations
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

108/338

Perfect Trees

Answer 6 Nodes of Perfect Tree

>

vV vyVvVvyy

There are many ways of showing that a perfect binary
tree of height h will have 2" -1 nodes — here is one way

Let Ny be the number of nodes in a perfect tree and Ly
be the number of leaves in the same tree.

Then we have Lg=0, L1 =1,L,=2,L3=4,... and in
general L, =2"" h>1

Now Np=Ly+Lp+---+Lp=204214... 421
2Np =21 4224 ... 421 4 2h
Subtract the Ny from 2Nj, and we get Ny =2h-1

Notice that N, =1+ 2 X Nj_1 — when we consider the
performance we will use similar recurrence relations

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

109/338

Inserting a Node

Description

» The function that takes a item (key and payload) and an
existing BST has to return a new binary tree with the
item inserted and the new tree must be a BST. We deal
with each possible binary tree: an empty tree and a
non-empty tree:

> To insert an item into an empty tree, we return a new
tree which is a singleton node with the item and two
empty sub-trees.

» To insert an item, with key k, into a tree which is a node
with an item with key p and two sub-trees then we have
two possibilities

> If k is less than p then insert the item in the left sub-tree
> If k is greater than p then insert the item in the right
sub-tree

> We are going to assume duplicate keys are not allowed

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3

Binary Search Trees
Definition
Inserting a Node
BST Operations
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

110/338

Binary Search Tree

Inserting a Node

seadef insertBST(x,t):

565
566
567
568
569
570
571

572
573
574

if isEmptyBT(t):
return mkNodeBT (x,mkEmptyBT() ,mkEmptyBT())

else:
y = getDataBT(t)
if x < vy:

return mkNodeBT(y,insertBST(x,getLeftBT(t)),getRightBT(t))
elif x > y:

return mkNodeBT(y,getLeftBT(t),insertBST(x,getRightBT(t)))
else:

return t

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3

Binary Search Trees
Definition

BST Operations
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

111/338

Binary Search Tree

Activity 7 Inserting an Item

» Draw diagrams of the binary search trees that result
from inserting an item with key 28 into each of the
three BSTs in the diagrams below of insBSTreeA,
insBSTreeB, insBSTreeC

insBSTreeA
insBSTreeA

&)

P Activity 7 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Definition

Inserting a Node

BST Operations
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

112/338

Binary Search Tree

Activity 7 Inserting an Item — insBSTreeB

insBSTreeB
insBSTreeB

P Activity 7 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3

Binary Search Trees
Definition

BST Operations
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

113/338

Binary Search Tree

Activity 7 Inserting an Item — insBSTreeC

insBSTreeC
insBSTreeC

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3

Binary Search Trees
Definition

BST Operations
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

114/338

Binary Search Tree

Answer 7 Inserting an Item — insBSTreeA

insBSTreeAa

insBSTreeAa

P Answer 7 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3

Binary Search Trees
Definition

BST Operations
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

115/338

Binary Search Tree

Answer 7 Inserting an Item — insBSTreeB

insB§TreeBa

.

insBSTreeBa

P Answer 7 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3

Binary Search Trees
Definition

BST Operations
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

116/338

Binary Search Tree

Answer 7 Inserting an Item — insBSTreeC

in;BSTreeCa

insBSTreeCa

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3

Binary Search Trees
Definition

BST Operations
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

117/338

Binary Search Tree
Activity 8 Membership

» Write Python code for a function, inBST(k, t) which
take a key, k, and a BST, t and returns True if an item
with key k is in the tree and False otherwise

Binary Trees

Phil Molyneux

Commentary 1
Agenda
Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Definition

Inserting a Node

BST Operations

Testing a BST

List to BST
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

118/338

Binary Search Tree

Answer 8 Membership

s7z6def inBST(k,t):

577
578
579
580
581

582
583
584
585
586

if isEmptyBT():
return False

else:
p = getDataBT(t)
if k < p:

return inBST(k,getLeftBT(t))
elif k > p:

return inBST(k,getRightBT(t))
else:

return True

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3

Binary Search Trees
Definition
Inserting a Node

Testing a BST
List to BST
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

119/338

Binary Search Tree Operations
Testing if a Binary Tree is a BST

> One strategy for this might be to do an in-order
traversal of the tree and check that the list returned was
an ordered list.

» The ordering relation is (<) for strict ordering and no
duplicates

sggdef isBSTree(t):
589 return orderedList(inOrderBT(t))

591 def orderedList(xs):
592 return (len(xs) <= 1
593 or (xs[0] < xs[1] and orderedList(xs[1:]1)))

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations
Testing a BST

List to BST
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

120/338

Binary Search Tree Operations

Building a Binary Search Tree from a list of items

» We could insert a list of items one by one from the list
in turn — here is the Python code:

sosdef insertListBST(xs,t)
596 if xs == [] :

597 return t

508 else :

599 return insertListBST (xs[1:], insertBST(xs[0],t))

» However, see what happens when we insert various lists
— how compact is the resulting tree ?

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations
Testing a BST

List to BST
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

121/338

Binary Search Trees

Activity 9 Insert List

» For the following lists of keys, draw the diagrams of the
trees produced when insertListBST() is used to
produce the trees from the lists inserting the keys into
an initially empty tree

> keysl = [10, 4, 32, 12, 9, 55, 92, 97, 36, 41, 34]

keys2 = [4, 9, 10, 12, 32, 97, 92, 55, 41, 34, 32]

> keys3 = [34, 10, 9, 4, 32, 12, 55, 41, 36, 97, 92]

v

Binary Trees

Phil Molyneux

Commentary 1
Agenda
Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Definition
Inserting a Node
BST Operations
Testing a BST

List to BST
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

122/338

Binary Search Trees

Answer 9 Insert List tKeysl = insertListBST(keysl, mkEmptyBT())

r

-

tKeys1

~

J

P Answer 9 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3

Binary Search Trees
Definition
Inserting a Node
BST Operations
Testing a BST
BST Deletion
Commentary 4
AVL Trees
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

123/338

Binary Search Trees
Answer 9 Insert List tKeysl = insertListBST(keysl, mkEmptyBT())

tKeysl = mkNodeBT(10,
mkNodeBT (4,
mkEmptyBT(Q),
mkNodeBT (9, mkEmptyBT(), mkEmptyBT())),
mkNodeBT (32,
mkNodeBT (12, mkEmptyBT(), mkEmptyBT()),
mkNodeBT (55,
mkNodeBT (36,
mkNodeBT (34, mkEmptyBT(), mkEmptyBT(Q)),
mkNodeBT (41, mkEmptyBT(), mkEmptyBT())),
mkNodeBT (92,
mkEmptyBT(Q),
mkNodeBT (97, mkEmptyBT(), mkEmptyBT())))))

tKeyslTest = (tKeysl
== insertListBST(keysl, mkEmptyBT()))

> Note that when the Python interpreter prints tKeys1 it

includes field names and values and has no line breaks.

P Answer 9 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda
Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Definition
Inserting a Node
BST Operations
Testing a BST

List to BST
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

124/338

Binary Search Trees

Answer 9 Insert List tKeys2 = insertListBST(keys2, mkEmptyBT())

tkeys2

P Answer 9 continued on next slide

» Go to Activity

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3

Binary Search Trees
Definition
Inserting a Node
BST Operations
Testing a BST
BST Deletion
Commentary 4
AVL Trees
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

125/338

Binary Search Trees
Answer 9 Insert List tKeys2 = insertListBST(keys2, mkEmptyBT())

tKeys2 = mkNodeBT (4, mkEmptyBT(),
mkNodeBT (9, mkEmptyBT(Q),
mkNodeBT (10, mkEmptyBT(),
mkNodeBT (12, mkEmptyBT(Q),
mkNodeBT (32, mkEmptyBT(),
mkNodeBT (97,
mkNodeBT (92,
mkNodeBT (55,
mkNodeBT (41,
mkNodeBT (36,
mkNodeBT (34, mkEmptyBT(),
mkEmptyBT()),
mkEmptyBT(Q)),
mkEmptyBT()),
mkEmptyBT(Q)),
mkEmptyBT()),
mkEmptyBT()))))))

tKeys2Test = (tKeys2
== insertListBST(keys2, mkEmptyBT()))

P> Answer 9 continued on next slide

» Go to Activity

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3

Binary Search Trees
Definition
Inserting a Node
BST Operations
Testing a BST
BST Deletion
Commentary 4
AVL Trees
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

126/338

Binary Search Trees
Answer 9 Insert List tKeys3 = insertListBST(keys3, mkEmptyBT())

r

tKeys3

. J

~

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3

Binary Search Trees
Definition
Inserting a Node
BST Operations
Testing a BST
BST Deletion
Commentary 4
AVL Trees
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

127/338

Binary Search Trees

Answer 9 Insert List tKeys3 = insertListBST(keys3, mkEmptyBT())

tKeys3 = mkNodeBT(34,
mkNodeBT (10,
mkNodeBT (9,
mkNodeBT (4, mkEmptyBT(), mkEmptyBT()),
mkEmptyBT()),
mkNodeBT (32,
mkNodeBT (12, mkEmptyBT(), mkEmptyBT()),
mkEmptyBT())),
mkNodeBT (55,
mkNodeBT (41,
mkNodeBT (36, mkEmptyBT(), mkEmptyBT(Q)),
mkEmptyBT()),
mkNodeBT (97,
mkNodeBT (92, mkEmptyBT(), mkEmptyBT(Q)),
mkEmptyBT())))

tKeys3Test = (tKeys3
== insertListBST(keys3, mkEmptyBT()))

P Answer 9 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3

Binary Search Trees
Definition
Inserting a Node
BST Operations
Testing a BST
BST Deletion
Commentary 4
AVL Trees
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

128/338

Binary Search Trees

Answer 9 Insert List

>

Notice that tree tKeys2 has height equal to the number
of items 11

The structure might as well be a list

In this case the tree structure would not be more
efficient than a list for searching.

The height of tKeys3 is 4 which is as compact a tree
with the number of items between 8 and 15.

tKeys?2 shows inserting a list in even partly sorted
order results in the worst case for efficiency.

If a binary search tree is built from insertion of a list of
random data then it can be shown that the expected
height of the tree is O(log n)

The proof of this requires knowledge of statistics

outside the remit of this course — if interested, a proof
is in Cormen et al. (2009, page 300)

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3

Binary Search Trees
Definition
Inserting a Node
BST Operations
Testing a BST
List to BST
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

129/338

Binary Search Trees
Building a Compact BST

>

To produce as compact a tree as possible, we could we
could do the following:

Sort the list
Find the middle item in the sorted list

Construct a binary tree node with the middle item as
the data

The left and right sub-trees should be formed by
recursively building binary trees from the front and
back parts of the sorted list

Below is an implementation in Python

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations
Testing a BST

List to BST
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

130/338

Binary Search Trees
Building a Compact BST

604def buildBST(xs) :
605 return bBST(mkEmptyBT(), sorted(xs))

cosdef bBST(t,xs) :

609 1if xs == [] :

610 return t

611 else :

612 half = Ten(xs) // 2
613 x = xs[half]

614 frontxs = xs[:half]
615 backxs = xs[half+1:]
616 if isEmptyBT(t)

617 return (mkNodeBT(x,

618 bBST (mkEmptyBT(), frontxs),

619 bBST (mkEmptyBT () ,backxs)))

620 else :

621 errMsg = ("bBST:_Trying_to_insert" + str(xs)
622 + "_into_nonempty_tree" + str(t))
623 raise RuntimeError(errMsg)

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3

Binary Search Trees
Definition
Inserting a Node
BST Operations
Testing a BST
BST Deletion
Commentary 4
AVL Trees
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

131/338

Binary Search Trees
Building a Compact BST — Example

Python3>>> xs = [1, 9, 2, 8, 3, 7, 4, 6, 5]
Python3>>> buildBST(xs)
NodeBT (dataBT=5,
leftBT=NodeBT(dataBT=3,
leftBT=NodeBT(dataBT=2,
TeftBT=NodeBT (dataBT=1,
TleftBT=EmptyBTQ),
rightBT=EmptyBT(Q)),
rightBT=EmptyBT()),
rightBT=NodeBT(dataBT=4,
TeftBT=EmptyBT(),
rightBT=EmptyBT()),
rightBT=NodeBT(dataBT=8,
TeftBT=NodeBT(dataBT=7,
TeftBT=NodeBT(dataBT=6,
TeftBT=EmptyBT(),
rightBT=EmptyBTQ),
rightBT=EmptyBT(Q)),
rightBT=NodeBT(dataBT=9,
TeftBT=EmptyBT(),
rightBT=EmptyBT())))
Python3>>>

» Note that when the Python interpreter prints a
namedtuple it includes field names and values and has
no line breaks

Binary Trees

Phil Molyneux

Commentary 1

Agenda

Adobe Connect

Commentary 2

Binary Trees

Iterative Traversals

Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations
Testing a BST

List to BST
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

132/338

Binary Search Trees
Deleting a Node

>

>

Deleting an item from a binary search tree involves
more choices than insertion
Initial insight
> Find the node with the item (key) by following left or
right sub trees
> Delete the item by joining the two sub trees of the node
> If the item is not in the tree, just return mkEmptyBT()

The tricky bit is deciding how to join the two sub trees
while keeping the binary search tree property and
keeping the tree compact (otherwise we lose the
advantage of a binary search tree).

The following presents three alternatives which each
use some information about binary search trees — each
version is correct but the later versions produce a more
compact tree.

Below is the initial insight implemented in Python:

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3

Binary Search Trees
Definition
Inserting a Node
BST Operations
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

133/338

Deleting an Item from a BST
Python

627def deleteBST(x, t):

628
629
630
631
632
633
634
635
636
637
638
639

if isEmptyBT(t):
return mkEmptyBT ()
else:
y = getDataBT(t)
leftT = getlLeftBT(t)
rightT = getRightBT(t)
if x <y:
return mkNodeBT(y, (deleteBST(x,leftT)), rightT)
elif x > y:
return mkNodeBT(y, leftT, (deleteBST(x,rightT)))
else:
return joinBST(1eftT, rightT)

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3

Binary Search Trees
Definition
Inserting a Node
BST Operations

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

134/338

Binary Trees

Deleting an Item from a BST

Phil Molyneux
Example BST
Commentary 1
> We now investigate different ways of joining two Agenda
subtrees with the function joinBST(leftT, rightT) Adobe Connect

Commentary 2

> We shall use the small tree egBSTreel to illustrate the
choices deleting the node with key D

Binary Trees

Iterative Traversals
egBSTreeL Commentary 3

Binary Search Trees
Definition
Inserting a Node

BST Operations
BST Deletion

Commentary 4
AVL Trees: Sets

Commentary 5

Binary Tree
Exercises
Commentary 6

Future Work

References

135/338

Example BST

Python

> Here is a Python implementation of the tree egBSTreelL

122egBSTreeL = mkNodeBT(’D’,

123 mkNodeBT(’B’,

124 mkNodeBT (A’ ,mkEmptyBT () ,mkEmptyBT()),
125 mkNodeBT(’C’ ,mkEmptyBT () ,mkEmptyBT())
126),

127 mkNodeBT(’F’,

128 mkNodeBT(’E’ ,mkEmptyBT() ,mkEmptyBT()),
129 mkNodeBT (G’ ,mkEmptyBT () ,mkEmptyBT())
130))

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3

Binary Search Trees
Definition
Inserting a Node
BST Operations

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

136/338

joinBST
Version 1
» joinBST1 lists out all the elements of the left sub tree
and inserts them in the right subtree.

> [t does an in-order traversal of the left sub tree and then
inserts the resulting list of items in the right subtree.

643def joinBST1(leftT, rightT):

644 if isEmptyBT(leftT):

645 return rightT

646 else:

647 return (insertListBST(inOrderBT(1eftT), rightT))

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Definition

Inserting a Node

BST Operations
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

137/338

Deleting an Item from a BST
Activity 10 joinBST Version 1

» Draw the diagram of the tree resulting from deleting D
with joinBST1

» Why is joinBST1 not a good strategy ?

» Go to Answer

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3

Binary Search Trees
Definition
Inserting a Node
BST Operations

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

138/338

joinBST

Answer 10 joinBST Version 1 (a)

P Answer 10 continued on next slide

» Go to Activity

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3

Binary Search Trees
Definition
Inserting a Node
BST Operations

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

139/338

joinBST

Answer 10 joinBST Version 1 (b)

651de1BSTreeJoinl = joinBST1(egBSTreelLl,egBSTreelLR)

653de1BSTreeJoinlans = \
654 NodeBT(dataBT="F’,
655 leftBT=NodeBT(dataBT="E’,

656 leftBT=NodeBT(dataBT="A",

657 TeftBT=EmptyBT(Q),

658 rightBT=NodeBT(dataBT="B",

659 TeftBT=EmptyBT(Q),

660 rightBT=NodeBT(dataBT="C",
661 leftBT=EmptyBT(),
662 rightBT=EmptyBT()))),
663 rightBT=EmptyBT(Q)),

664 rightBT=NodeBT(dataBT="G’,

665 leftBT=EmptyBTQ),

666 rightBT=EmptyBT()))

668de1BSTreeJoinltest = delBSTreeJoinl == delBSTreeJoinlans

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Definition

Inserting a Node

BST Operations
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

140/338

joinBST

Version 2

» joinBST1 results in a near linear structure and is not as

>

compact as it could be.

The first definition made no use of our knowledge of
binary search trees.

We know that:

maxKey TeftT < minKey rightT

since they were subtrees of the original Binary Search
tree, egBSTreelL

In particular we therefore know that the root of the left
subtree is less than any item in the right subtree.

So we attach the left subtree under the smallest
element in the right sub tree.

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Definition

Inserting a Node

BST Operations
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

141/338

joinBST

Version 2

672def joinBST2(leftT, rightT):
673 if isEmptyBT(rightT):

676 return (mkNodeBT(getDataBT(rightT),

674 return TeftT
675 else:

677

678

joinBST2(1eftT, getLeftBT(rightT)),
getRightBT(rightT)))

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3

Binary Search Trees
Definition
Inserting a Node
BST Operations

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

142/338

Deleting an Item from a BST
Activity 11 joinBST Version 2

» Draw the diagram of the tree resulting fron deleting D
with joinBST2

» Can you see how we can improve on joinBST2 ?

» Go to Answer

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3

Binary Search Trees
Definition
Inserting a Node
BST Operations

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

143/338

Deleting an Item from a BST

Answer 11 joinBST Version 2

P Answer 11 continued on next slide

» Go to Activity

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3

Binary Search Trees
Definition
Inserting a Node
BST Operations

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

144/338

Deleting an Item from a BST
Answer 11 joinBST Version 2

681de1BSTreeJoin2 = joinBST2(egBSTreelLlL,egBSTreelLR)

683de1BSTreeJoin2ans = NodeBT('F’,

684 NodeBT(’E’,

685 NodeBT(’B’,

686 NodeBT(’A’, EmptyBT(), EmptyBTQ)),
687 NodeBT(’C’, EmptyBT(), EmptyBT(Q))),
688 EmptyBT(Q)),

689 NodeBT(’G’, EmptyBT(), EmptyBT()))

691 de1BSTreeJoin2test = (delBSTreeloin2 == delBSTreeloin2ans)

» To see how this works we shall do a step by step
evaluation

> Follow the function code for joinBST2 from line 672 on
slide 142

» Note from the definitions of de1BSTreeJoinltest
(from line 668 on slide 140) and de1BSTreeJoin2test
(from line 691 on slide 145) we can use the field names
or leave them out

P Answer 11 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Definition

Inserting a Node

BST Operations
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

145/338

Deleting an Item from a BST

Answer 11 joinBST Version 2
> Step 1 In the first call to joinBST2 the TeftT is the tree
rooted at B and the rightT is the tree rooted at F

> Line 673 tests if the second argument to joinBST2 is
an empty tree

> Since it is not empty, joinBST2 evaluates to the value
at line 676

» Hence we have

mkNodeBT('F’,
joinBST2(1eftT, getLeftBT(rightT)),
getRightBT(rightT))

P Answer 11 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Definition

Inserting a Node

BST Operations
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

146/338

Deleting an Item from a BST

Answer 11 joinBST Version 2

>

>

Step 2 Since the return value has a recursive call to
joinBST2 we need to evaluate that.

Its second argument is rightT.TeftBT which is the
tree rooted at E

Line 673 tests if the first argument to joinBST2 is an
empty tree

Since it is not empty, joinBST2 evaluates to the value
at line 676

Hence we have

mkNodeBT(’'F’,

mkNodeBT('E’,
joinBST2(1eftT, getLeftBT(getLeftBT(rightT))),
getRightBT(getLeftBT(rightT))),
getRightBT(rightT))

>

Answer 11 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Definition

Inserting a Node

BST Operations
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

147/338

Deleting an Item from a BST

Answer 11 joinBST Version 2

> Step 3 We have to evaluate a further recursive call

» The second argument to the recursive call to joinBST2
is rightT.1eftBT.TeftBT which is EmptyBT(), so the
recursive call to joinBST2 evaluates to TeftT

> rightT.leftBT.rightBT evaluates to EmptyBT()
» Hence we have

mkNodeBT(’F’,
mkNodeBT('E’,
TeftT,
mkEmptyBT()),
getRightBT(rightT))

P Answer 11 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Definition

Inserting a Node

BST Operations
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

148/338

Deleting an Item from a BST

Answer 11 joinBST Version 2

» Hence the final value is

NodeBT(’'F’,
NodeBT(’E’,
NodeBT(’B’,
NodeBT(’A’, EmptyBT(), EmptyBTQ)),
NodeBT(’C’, EmptyBT(), EmptyBT(Q))),
EmptyBT(Q)),
NodeBT(’G’, EmptyBT(), EmptyBT()))

> Doing a step by step evaluation of recursive function
calls should help you get a better feel for recursive
thinking.

> We can do better than this — see the following.

Binary Trees

Phil Molyneux

Commentary 1
Agenda
Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Definition
Inserting a Node

BST Operations
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

149/338

joinBST

Final Version

» We can make better use of our knowledge of Binary
Search trees

» We know that:

maxKey TeftT < root key < minKey rightT

» Hence we can promote the minimum item in the right
subtree to be the new root and delete it from its
original position.

> Note we could equally well promote the maximum item
in the left subtree to be the new root (and delete it from
its original position).

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Definition

Inserting a Node

BST Operations
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

150/338

joinBST

Final Version

move

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

151/338

joinBST

Final Version

> Here is Python code for the above diagram:

696def joinBST(leftT, rightT):
697 if isEmptyBT(rightT):

698 return leftT

699 else:

700 (y,t) = splitBST(rightT)

701 return mkNodeBT(y, leftT, t)

> sp1itBST will take the right subtree and return a pair of
minimum item and the subtree with that item removed.

» This preserves much of the compact nature of the
binary search tree.

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Definition

Inserting a Node

BST Operations
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

152/338

splitBST
Version 1
> We still have choices in defining sp1itBST

> We could define sp11itBST by finding the minimum item
and then deleting that from the subtree.

706 def spTitBST1(t):

707 if isEmptyBT(t):

708 raise RuntimeError("sp1itBST1_applied_to_EmptyBT(O™")
709 elif isEmptyBT(getLeftBT(t)):

710 return (getDataBT(t), getRightBT(t))

711 else:

712 y = minItemBST(getLeftBT(t))

713 return (y, mkNodeBT(getDataBT(t),

714 deleteBST(y, getLeftBT(t)),

715 getRightBT(t)))

717def minItemBST(t):

718 if isEmptyBT(t):

719 raise RuntimeError("minItemBST_applied _to_EmptyBT(")
720 elif isEmptyBT(getLeftBT(t)):

721 return (getDataBT(t))

722 else:

723 return (minItemBST(getLeftBT(t)))

Binary Trees

Phil Molyneux

Commentary 1
Agenda
Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Definition
Inserting a Node

BST Operations
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

153/338

splitBST
Final Version
» We can do better than sp1itBST1

> It is possible to define sp11itBST using only one
traversal of the tree.

727def spTitBST(t):

728 if isEmptyBT(t):

729 raise RuntimeError("sp1itBST_applied_to_EmptyBT(O")
730 else:

731 X = getDataBT(t)

732 tl = getLeftBT(t)

733 t2 = getRightBT(t)

734 if isEmptyBT(tl):

735 return (x,t2)

736 else:

737 (y,t3) = splitBST(tl)

738 return (y, mkNodeBT(x, t3, t2))

Binary Trees

Phil Molyneux

Commentary 1
Agenda
Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Definition
Inserting a Node

BST Operations
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

154/338

Binary Search Tree
Activity 12 Split Trace

> Trace an evaluation of sp1itBST(egBSTreelLR)

sp1itBST(egBSTreeLR)

160egBSTreelLR = mkNodeBT('F’,

161 mkNodeBT(’E’ ,mkEmptyBT () ,mkEmptyBT()),
162 mkNodeBT (G’ ,mkEmptyBT () ,mkEmptyBT())
163)

» egBSTreelLR is defined at line 160 on slide 155,
sp1itBST is defined at line 727 on slide 154

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Definition

Inserting a Node

BST Operations
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

155/338

Binary Search Tree

Answer 12 Split Trace

> Evaluation of| sp1itBST(egBSTreelLR)

Step 1

getLeftBT(egBSTreelLR) is not empty so the else
clause at line 736 is executed

Step 2

A recursive call is made to sp11itBST with argument
getLeftBT(egBSTreelLR)

getLeftBT(getLeftBT(egBSTreelLR)) is empty so the
if at line 734 returns

(’E’,getRightBT(getLeftBT(egBSTreelLR))) which
is (’E’ ,EmptyBT())

P Answer 12 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Definition

Inserting a Node

BST Operations
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

156/338

Binary Search Tree
Answer 12 Split Trace
Step 3
The calling function then returns

(C’E’, makeBT('F’, EmptyBT(),
getRightBT(egBSTreelLR)))

(’E’,NodeBT(’F’,
EmptyBTQ),
NodeBT(’G’ ,EmptyBT(),EmptyBT())))

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3

Binary Search Trees
Definition
Inserting a Node
BST Operations

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

157/338

Binary Trees

Binary Search Tree

Activity 13 Join Trace

Phil Molyneux

Commentary 1

» Trace an evaluation of Agenda
Adobe Connect
joinBST(egBSTreelLl,egBSTreelLR) Commentary 2

Binary Trees

» egBSTreelL is defined at line 146 on slide 60, joinBST Iterative Traversals
is defined at line 696 on slide 152 Commentary 3

Binary Search Trees
Definition

Inserting a Node

BST Operations

BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

158/338

Binary Search Tree

Answer 13 Join Trace

> Evaluation of
joinBST(egBSTreellL,egBSTreelLR)

Step 1

The second argument to joinBST is not the empty tree
so the else clause at line 699 — this invokes
sp1itBST(egBSTreelLR)

Step 2

From the previous activity, sp1itBST(egBSTreelLR)
returns

(C’E’, makeBT('F’, EmptyBT(Q),
getRightBT(egBSTreelLR)))

P Answer 13 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Definition

Inserting a Node

BST Operations
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

159/338

Binary Search Tree
Answer 13 Join Trace
Step 3
Finally, the return statement returns

NodeBT('E’,
NodeBT(’B’,
NodeBT(’A’, EmptyBT(), EmptyBTQ)),
NodeBT(’C’, EmptyBT(), EmptyBT(Q))),
NodeBT(’F’
EmptyBTQ,
NodeBT(’G’, EmptyBT(), EmptyBT())))

» Go to Activity

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3

Binary Search Trees
Definition
Inserting a Node
BST Operations

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

160/338

Binary Search Tree
Activity 14 Delete Trace

» Trace an evaluation of

deleteBST(’D’,egBSTreel)

» egBSTreel is defined at line 122 on page 59,
deleteBST is defined at line 627 on page 134

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Definition

Inserting a Node

BST Operations
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

161/338

Binary Search Tree

Answer 14 Delete Trace

> Evaluation of| deleteBST(’D’,egBSTreel)

Step 1

The second argument of deTeteBST is not the empty
tree so the else clause at line 630 is executed.

Step 2

The first argument of deTeteBST is D’ which is equal
to the item at the root of the tree which is the second
argument, so the else clause at line 638 is executed
Step 3

This evaluates to joinBST(egBSTreelLL,egBSTreelLR)
— see previous activity

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Definition

Inserting a Node

BST Operations
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

162/338

Binary Search Trees

Performance

> As we noted earlier, on average the height of a binary
search tree is O(log n) where n is the number of nodes
in the tree.

» However in the worst case the height is O(n) and this
will affect the performance of searches.

» However it is possible to construct variants of binary
search trees which have O(log n) performance in both
average and worst cases

» In the next section we will consider one approach.

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Definition

Inserting a Node

BST Operations
BST Deletion

Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

163/338

Commentary 4
Height Balanced Trees (AVL Trees)

4 Height Balanced Trees

vV VY VY VY VvVY

Binary search trees with the height balanced property
Also called AVL trees

Inserting a node

AVL transformations

Local changes preserve global AVL property

Deletion

AVL trees application: representing sets (advanced topic)

Note: Haskell uses the same ideas but with size balanced
trees

Python uses something like dictionaries to implement sets
using hashtables

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

164/338

Height Balanced Trees

Introduction

>

Binary search trees have the problem that in the worst
case the complexity of a search could be O(n) and
maintaining a complete tree during insertions and
deletions involves too much restructuring.

A solution is to keep the tree balanced so that access
time is still O(log n) in both the average and worst
cases.

The essential approach is to have some local
transformations involving only a few nodes to keep the
tree height balanced.

We shall consider one approach called AVL Trees,
named after the Russian inventors G M Adelson-Velskii
and E M Landis

AVL Trees are Binary Search Trees with the property
that for every subtree the heights of the trees differs by
at most 1 (the balance factor).

AVL trees require an extra couple of functions to
maintain the AVL property on each insertion or deletion.

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

165/338

AVL Trees

Data Type

» As with the Binary Search Tree, we shall use a union of
named tuples to represent the data type for an AVL
Tree.

> Note that we store the height of a tree in the node

» This is essential to avoid lots of tree traversals to
re-calculate balance factors

743# AVL Tree Data Type
745# from collections import namedtuple
747 EmptyABT = namedtuple(’EmptyABT’, [])

749NodeABT = (namedtuple(’NodeABT’,
750 [’heightABT’,’dataABT’,’ 1eftABT’, ’rightABT’]))

752# Tree type --- Augmented Binary Tree
754# from typing import TypeVar,Union,NewType

756 # T = TypeVar(’T’)
757ABTree = NewType(’ABTree’,Union[EmptyABT,NodeABT]).

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

166/338

AVL Trees

Operations(1)

759# AVL Tree Operations

761def mkEmptyABT() -> ABTree
762 return EmptyABT()

764def mkNodeABT(x: T,tl: ABTree,t2: ABTree) -> ABTree
765 h = 1 + max(getHeightABT(tl),getHeightABT(t2))
766 return NodeABT(h,x,tl,t2)

768def isEmptyABT(t: ABTree) -> bool
769 return t == EmptyABT()

Binary Trees

Phil Molyneux

Commentary 1
Agenda
Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees
Example AVL Trees
AVL Transformations
makeAVLTree Function

Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

167/338

AVL Trees

Operations (2)

771def getHeightABT(t: ABTree) -> int
772 if isEmptyABT(t)

773 return 0
774 else:
775 return t.heightABT

777def getDataABT(t: ABTree) -> T :

778 if isEmptyABT(t)

779 raise RuntimeError("getDataABT_applied_to_EmptyABT(")
780 else:

781 return t.dataABT

783def getLeftABT(t: ABTree) -> ABTree

784 if isEmptyABT(t)

785 raise RuntimeError("getLeftABT_applied_to EmptyABT(")
786 else:

787 return t.leftABT

789def getRightABT(t: ABTree) -> ABTree :

790 if isEmptyABT(t)

791 raise RuntimeError("getRightABT_applied_to_EmptyABT()")
792 else:

793 return t.rightABT

Binary Trees

Phil Molyneux

Commentary 1
Agenda
Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees
Example AVL Trees
AVL Transformations
makeAVLTree Function

Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

168/338

AVL Trees

Property Functions (1)

797def isBSABTree(t):
798 return orderedList(inOrderABT(t))

goodef inOrderABT(t):
801 if isEmptyABT(t):

802 return []

803 else:

804 return (inOrderABT(getLeftABT(t)) + [getDataABT(t)]
805 + inOrderABT(getRightABT(t)))

832def convertBTtoABT(t):

833 if isEmptyBT(t):

834 return mkEmptyABT()

835 else:

836 1eftABT = convertBTtoABT(getLeftBT(t))

837 rightABT = convertBTtoABT(getRightBT(t))

838 return mkNodeABT (getDataBT(t), 1eftABT, rightABT)

Binary Trees

Phil Molyneux

Commentary 1
Agenda
Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees
Example AVL Trees
AVL Transformations
makeAVLTree Function

Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

169/338

AVL Trees

Property Functions (2)

gogdef balFactorABT(t):
g0 if isEmptyABT(t):

811 return 0

812 else:

813 return (getHeightABT(getLeftABT(t))

814 - getHeightABT (getRightABT(t)))

g1gdef hasAVLpropABT(t):
819 if isEmptyABT(t):

820 return True

821 else:

822 return (abs(balFactorABT(t)) <=1

823 and hasAVLpropABT (getLeftABT(t))
824 and hasAVLpropABT(getRightABT(t)))

827def isAVLABTree(t):
828 return (isBSABTree(t) and hasAVLpropABT(t))

Binary Trees

Phil Molyneux

Commentary 1
Agenda
Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees
Example AVL Trees
AVL Transformations
makeAVLTree Function

Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

170/338

AVL Trees

Health Warning

>

Some texts define the height of a singleton node to be
zero — just subtract one from the height as defined
here.

Some texts do not use empty trees — so where these
notes might say a singleton nodes has an element and
two empty subtrees, some texts might say a singleton
node has no subtrees

Some texts define the height of a subtree differently to
the height of a tree or define a subtree differently to
here.

Some texts define the balance factor as the absolute
value or the height of the right sub tree minus the
height of the left sub tree

In all cases be aware that you have choices in the exact

definition of some terms but the ideas will be the same.

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

171/338

Binary Search Tree

Activity 15 Heights and Balance Factors

» For the following diagram of a binary search tree,
egBSTree04, add the height and balance factor for each
node.

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

172/338

Binary Search Tree

Answer 15 Heights and Balance Factors
egBSTreeO4a

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees and Functions

AVL Transformations

makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

173/338

Heights and Balance Factors
Activity 16 Add Item LL

> Add the item with key 7 to the tree, egNSTree04, and
recalculate the heights and balance factors

> Identify the lowest node in the tree which is out of
balance.

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

174/338

Heights and Balance Factors
Answer 16 Add Item LL
egBSTree04b = insertBST(7,egBSTree04)

> Lowest node which is out of balance is node with key 15

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

175/338

AVL Tree Transformations

Sample Tree

> Since the subtree of egBSTree04b =
insertBST(7,egBSTree04) at node with key 15 is the
part of the tree out of balance we shall focus on that

NodeABT (4, 15,
NodeABT(3, 11,
NodeABT(2, 5,
EmptyABT(Q),
NodeABT(1, 7, EmptyABT(), EmptyABT())),
NodeABT (1, 13, EmptyABT(), EmptyABT())),
NodeABT(1, 18, EmptyABT(), EmptyABT()))

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

176/338

AVL Tree Transformation

Sample Tree

egBSTree04bLL

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees

makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

177/338

AVL Tree Transformations

Example Transformation

>

vV vV VY

>

We can make this tree balanced by

Make the subtree with root 15 the right child of 11
Make the subtree with root 13 the left child of 15
Leave the subtree with root 5 as the left child of 11

Make the new subtree with root 11 the child of
wherever the original subtree with root 15 was (the left
child of 21)

This results in the following tree.

NodeABT(3, 11,

NodeABT(2, 5,

EmptyABT(),
NodeABT(1, 7, EmptyABT(), EmptyABT())),

NodeABT(2, 15,

NodeABT(1, 13, EmptyABT(), EmptyABT(Q)),
NodeABT(1, 18, EmptyABT(), EmptyABT())))

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

178/338

AVL Tree Transformation

Sample Tree — Transformed

egBSTree04bLLb

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees

makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

179/338

AVL Tree Transformations
Python

» This transformation is an instance of what is called a
right rotation

> Here is Python code that implements it.

ga3def rotr(t):

844 k = getDataABT(t)

845 kL = getDataABT(getLeftABT(t))

846 leftLeftT = getLeftABT(getLeftABT(t))

847 leftRightT = getRightABT(getLeftABT(t))

848 rightT = getRightABT(t)

849 return (mkNodeABT(kL,

850 TeftLeftT,

851 mkNodeABT (k, leftRightT, rightT)))

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

180/338

Binary Trees

Right Rotation

Diagram tree t to tree rotr(t)
treeBeforeR t treeAfterR = rotr(t)

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3

Binary Search Trees

Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees

tLL \h+1 tLR \h

makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

181/338

Height and Balance Factors
Activity 17 Add Item RR

> Consider egBSTree04 again (defined in Activity 15 on
slide 172) — now add node with key 96 and recalculate
the heights and balance factors

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

182/338

Binary Trees

Height and Balance Factors

Answer 17 Add Item RR
egBSTree04c = insertBST(96,egBSTree04)

Phil Molyneux

Commentary 1

Agenda

bf=1 h=5 Adobe Connect

Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees

makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6

Future Work

References

183/338

AVL Tree Transformations
Example Tree RR

» The subtree at node 41 is now unbalanced with the
addition of the node with key 96 to the right subtree of
the right subtree.

egBSTree04cRR

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

184/338

AVL Tree Transformations
Activity 18 Rebalance RR

» This is similar to the previous example but on the right

side

» Describe how this can be rebalanced using a mirror
image local transformation.

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

185/338

AVL Tree Transformations

Answer 18 Rebalance RR

» We can make this tree balanced by:

Make the subtree with root 41 the left child of 92
Make the subtree with root 55 the right child of 41
Leave the subtree with root 97 as the right child of 92

Make the new subtree with root 92 the child of
wherever the original subtree with root 41 was (the
right child of 34)

vV vV VY

NodeABT(3, 92,
NodeABT (2, 41,
NodeABT(1, 36, EmptyABT(), EmptyABT()),
NodeABT(1, 55, EmptyABT(), EmptyABT())),
NodeABT (2, 97,
NodeABT(1, 96, EmptyABT(), EmptyABT()),
EmptyABT()))

P Answer 18 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

186/338

AVL Tree Transformations

Answer 18 Rebalance RR

> The transformation is called a left rotation

egBSTree04cRRb

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees

makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

187/338

AVL Tree Transformations

Left Rotation — Python

» The transformation (given in the answer) is an instance

of what is called a left rotation
> Here is the Python code that implements it.

gs3def rotl(t):

854
855
856
857
858
859
860
861

k = getDataABT(t)

kR = getDataABT(getRightABT(t))

rightLeftT = getLeftABT(getRightABT(t))

rightRightT = getRightABT(getRightABT(t))

TeftT = t.leftABT

return (mkNodeABT(kR,
mkNodeABT (k, leftT, rightLeftT),
rightRightT))

» This is a mirror image of the right rotation as you can
see from the two diagrams describing it below.

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

188/338

AVL Tree Transformations

Left Rotation

treeBeforel t

treeAfterL = rotl(t)

Ah Ahﬂ

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees

makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

189/338

AVL Tree Transformations
Insight

>

>

The functions for insertion and deletion of an item in an
AVL tree will be the same as a Binary Search tree except

When we construct a new tree we must maintain the

AVL property via a function makeAVLTree (line 865 on
slide 210) not just makeABTree (line 764 on slide 167).
(some texts call this rebalancing or something similar)

What we know is that the original tree must be a
properly formed AVL tree and that the insertion or
deletion of one item can alter the height of any subtree
by at most 1.

Hence we can implement makeAVLTree(x, leftT,
rightT) assuming that TeftT and rightT are both
AVL trees whose heights differ by at most 2.

We proceed by analysing each possible case and
provide a manipulation of the tree for each case.
Consider the diagram below:

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

190/338

AVL Tree Transformations

Cases Diagram

treeCaseDiag t

> Our right and left rotation functions, rotr and rot]
have dealt with the cases where the subsubtrees LL and
RR had increased by one caused the balance to go
outside the permitted range.

» We now have to investigate cases where the
subsubtrees LR or RL become heavy.

> Below is an example, egBSTree05

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

191/338

AVL Tree Transformations

Tree egBSTree05

egBSTree05

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees

makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

192/338

AVL Tree Transformations
Activity 19 egBSTree05 Add Item LR 1

» Add the item with key 20 to the tree and recalculate the
heights and balance factors

> Identify the lowest node in the tree which is out of
balance.

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

193/338

AVL Tree Transformations
Answer 19 egBSTree05 Add Item LR 1

egBSTree05b

» The node with key 21 has balance factor 2 and is the
lowest node out of balance.

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

194/338

AVL Tree Transformations
Activity 20 Add Item LR 2

> Given the resulting tree from Self-assessment
activity 19, does a right rotation around the lowest
node which is out of balance bring it back to balance ?

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

195/338

AVL Tree Transformations
Answer 20 Add Item LR 2

> Here is the result of a right rotation around node with

key 21

egBSTreeO5bRotr

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees

makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

196/338

AVL Tree Transformations
LR Heavy

» This has just switched the balance factor of the root of
the tree from 2 to -2 so we have to do something else.

» The Eureka step is realising that we can break up the
problematic subtree under node 18 by doing a left
rotation around node 15 — this produces the following
tree.

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

197/338

AVL Tree Transformations
LR Heavy

egBSTreeO5bLRotl

> Notice that this has converted a tree which was LR heavy
to one where it is LL heavy — so we can now use a right
rotation on the tree rooted at 21 to get the following:

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

198/338

AVL Tree Transformations
LR Heavy

egBSTreeO5bLRotIRotr

» We now have a balanced tree — but were we just lucky
or have we found a general rule ? Here are diagrams of
the double rotation to show it works in general:

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

199/338

AVL Tree Transformations

Case LR subsubtree heavy
treeCaselR t

balance factor 2 height h+3

h-1orh

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees

makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

200/338

AVL Tree Transformations

Case LR — Step (A) Rotate Left about kL

balance factor 2

treeCaseLRLRotl

height h+3

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees

makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

201/338

Binary Trees

AVL Tree Transformations
Case LR — Step (B) Rotate Right about k
treeCaseLRLRotIRotr

Phil Molyneux

Commentary 1

Agenda
balance factor 0 height h+2 Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees

makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

202/338

AVL Tree Transformations
Activity 21 Case RL Heavy

» Draw the equivalent diagram for the final case where
subsubtree tRL is heavy

> Note that this must be the mirror image of the tLR case

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

203/338

AVL Tree Transformations

Answer 21 Case RL Heavy
treeCaseRL t

balance factor -2 height h+3

>

h-1
orh
P Answer 21 continued on next slide

» Go to Activity

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees

makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

204/338

AVL Tree Transformations
Answer 21 Case RL Heavy — Step (A) Rotate Right about kR
treeCaseRLRRotr

balance factor -2 height h+3

P Answer 21 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees

makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

205/338

Binary Trees

AVL Tree Transformations

Answer 21 Case RL Heavy — Step (B) Rotate Left about k
treeCaseRLRRotrRotl

Phil Molyneux

Commentary 1

Agenda
balance factor 0 height h+2 Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees

makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets

Commentary 5

Binary Tree
Exercises

Commentary 6
» Go to Activity AT W

References

206/338

AVL Trees

The makeAVLTree Function

>

The makeAVLTree takes an item, X, two subtrees,
TeftT, rightT and returns a new augmented binary
tree

It would be the same as makeABTree except it has to do
the appropriate transformation if the new tree would be
out of balance.

We will only ever use makeAVLTree when inserting or
deleting an item in a valid AVL tree

So we know from our insight above that the heights of
TeftT and rightT can differ by at most 2 after
insertion/deletion

Hence we consider each case in turn using the
transformations we have developed above.

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function

Comparison with
Storing Balance Factors

Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

207/338

AVL Trees

The makeAVLTree Function

Case 1 LL Heavy

(getHeightABT(1eftT) - getHeightABT(rightT) = 2
and balFactorABT(leftT) >= 0)

> Do a right rotation of the tree formed from
makeABTree(x, leftT, rightT)

Case 2 LR Heavy

(getHeightABT(leftL) - getHeightABT(rightT) = 2
and balFactorABT(leftT) == -1)

» Do a left rotation of TeftT

» Do a right rotation of the tree formed from
makeABTree(x, rotl(leftT), rightT)

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function

Comparison with
Storing Balance Factors

Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

208/338

AVL Trees

The makeAVLTree Function

Case 3 RL Heavy

(getHeightABT(TeftL) - getHeightABT(rightT) = -2
and balFactorABT(rightT) == 1)

» Do aright rotation of rightT

» Do a left rotation of the tree formed from
makeABTree(x, leftT, rotr(rightT))

Case 4 RR Heavy

(getHeightABT(leftL) - getHeightABT(rightT) = -2
and balFactorABT(rightT) <= 0)

» Do a left rotation of the tree formed from
makeABTree(x, leftT, rightT)

Case 5 Otherwise
> Just use makeABTree(x, leftT, rightT)
» No transformations required

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function

Comparison with
Storing Balance Factors

Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

209/338

makeAVLTree Function
Python

gesdef makeAVLTree(x, leftT, rightT):
hL = getHeightABT(TeftT)
hR = getHeightABT(rightT)

866
867
868
869
870
871

872
873
874
875
876
877

if (hR +
return
elif (hR
return
elif (hL
return
elif (hL
return
else:
return

1 < hL) and (balFactorABT(leftT) >= 0):
rotr(mkNodeABT(x, leftT, rightT))

+ 1 < hL):

rotr(mkNodeABT(x, (rot1(leftT)),rightT))

+ 1 < hR) and (balFactorABT(rightT) > 0):

rot1(mkNodeABT(x, leftT, rotr(rightT)))
+ 1 < hR):
rot1(mkNodeABT(x, leftT, rightT))

mkNodeABT (x, leftT, rightT)

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function

Comparison with
Storing Balance Factors

Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

210/338

AVL Tree Transformations

Conclusions

> This section has been quite long but most of the space
has been occupied with diagrams

> Some implementations can look quite tricky since they
may be trying to avoid recursion or manipulate the data
structures

» We will discuss efficiency and recursion removal in a
later section.

> Here are diagrams of the two rotate functions to
emphasise that they are really quite simple.

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function

Comparison with
Storing Balance Factors

Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

211/338

AVL Tree Transformations

Rotate Right

tLL

treeBeforeRotr

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations

Comparison with
Storing Balance Factors

Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

212/338

AVL Tree Transformations
Rotate Left

treeBeforeRotl

tRL tRR

treeAfterRotl

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations

Comparison with
Storing Balance Factors

Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

213/338

AVL Trees

Comparison with Storing Balance Factors

> Some texts implement AVL Trees by storing balance
factors at the nodes rather than the heights (Miller and
Ranum, 2011, Section 6.8.2, page 290)

» The Miller and Ranum explanation of updating the
balance factors after a right or left rotation refer to
diagrams similar to rotate right on slide 212 and rotate
left on slide 213

» This note translates the Miller & Ranum notation to the
notation used in these diagrams

» Both approaches have performance O(log n) but have
differences in detail

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function

Comparison with
Storing Balance Factors

Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

214/338

Comparison with Storing Balance Factors
Right Rotation (1)

» New and old balance factors of node k
» Using pseudo-code:

newBal (k)
oldBal (k)

height(tLR) - height(tR)
oldHeight(kL) - height(tR)

(1 + max(Cheight(tLL), height(tLR)))
- height(tR)

newBal(k) - oldBal(k)
= (height(tLR) - height(tR))
- (1 + max(Cheight(tLL), height(tLR)))
- height(tR))
= height(tLR)
- 1 - max(height(tLL), height(tLR))
= height(tLR)
- 1 + min(-height(tLL), -height(tLR))
= minCheight(tLR) - height(tLL)
, height(tLR) - height(tLR)) - 1
= min(-oldBal(kL), 0) - 1
since -max(a, b) = min(-a,-b)
min(a,b) + ¢ = min(a+c, b+c)

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function

Comparison with
Storing Balance Factors

Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

215/338

Comparison with Storing Balance Factors
Right Rotation (2)

» New and old balance factors of node kL

newBal (kL)

oldBal (kL)

newBal (kL)

height(tLL) - newHeight(k)

height(tLL)

- (1 + maxCheight(tLR), height(tR)))
height(tLL) - height(tLR)

oldBal (kL)

= (height(tLL)

- (1 + max(height(tLR), height(tR))))
- (height(tLL) - height(tLR))

= height(tLR)

- 1 - max(height(tLR), height(tR))

= height(tLR)

- 1 + min(-height(tLR), -height(tR))
minCheight(tLR) - height(tLR)

, height(tLR) - height(tR)) - 1
= min(0, newBal(k)) - 1

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function

Comparison with
Storing Balance Factors

Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

216/338

Comparison with Storing Balance Factors
Right Rotation (3)

> Right rotation: New and old balance factors of nodes k

and kR

newBal (k)

= oldBal(k) + min(-oldBal(kL), 0) - 1

newBal (kL)

= oldBal(kL) + min(0, newBal(k)) - 1

> This fits with the right rotation diagrams annotated with
heights and balance factors on slide 181,

oldBal(k)
oldBal(kL)
newBal (k)
newBal (kL)

+2
+1
0
0

+2 + min(-1, 0) - 1
+1 + min(0, 0) - 1

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function

Comparison with
Storing Balance Factors

Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

217/338

Comparison with Storing Balance Factors
Left Rotation (1)

» New and old balance factors of node k
» Using pseudo-code:

newBal (k)
oldBal (k)

height(tL) - height(tRL)

height(tL) - oldHeight(kR)

height(tL)

- (1 + max(Cheight(tRL), height(tRR)))

newBal(k) - oldBal(k)
= (height(tL) - height(tRL))
- (height(tL)
- (1 + max(height(tRL), height(tRR))))
1 + max(Cheight(tRL), height(tRR)) - height(tRL)
1 + max(height(tRL) - height(tRL)
, height(tRR) - height(tRL))

1 + max(0, -oldBal(kR))
1 - min(0, oldBal(kR))
since max(-a, -b) -min(a,b)

max(a,b) - c max(a-c, b-c)

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function

Comparison with
Storing Balance Factors

Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

218/338

Comparison with Storing Balance Factors

Left Rotation (2)

» New and old balance factors of node kR

newBal(kR)

oldBal(kR)

newBal(kR)

= ((1 + max(height(tL), height(tRL)))

newHeight(k) - height(tRR)
(1 + max(Cheight(tL), height(tRL)))

- height(tRR)

height(tRL) - height(tRR)

oldBal(kR)

- height(tRR))

- (height(tRL) - height(tRR))
1 + max(height(tL), height(tRL)) - height(tRL)
1 + max(height(tL) - height(tRL)
, height(tRL) - height(tRL))
1 + max(newBal(k), 0)

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function

Comparison with
Storing Balance Factors

Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

219/338

Comparison with Storing Balance Factors
Left Rotation (3)

> Left rotation: New and old balance factors of nodes k
and kR

newBal (k)
= oldBal(k) + 1 - min(0, oldBal(kR))

newBal (kR)
= oldBal(kR) + 1 + max(newBal(k), 0)

» This fits with the left rotation diagrams annotated with
heights and balance factors on slide 189,

oldBal(k) = -2
oldBal(kR) = -1
newBal(k) = 0 =-2 +1 - min(0,-1)
newBal(kR) = 0 = -1 + 1 + max(0, 0)

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function

Comparison with
Storing Balance Factors

Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

220/338

AVL Trees

Insertion and Deletion

» The insertion and deletion functions are the same as for

Binary Search Trees except we have to use

makeAVLTree to make a tree unless we really know that

the AVL property will be preserved.

8s1def insertAVLT(x,t):

882 if isEmptyABT(t):

883 return mkNodeABT(x, mkEmptyABT(), mkEmptyABT())
884 else:

885 y = getDataABT(t)

886 leftT = getlLeftABT(t)

887 rightT = getRightABT(t)

888 if x < y:

889 return makeAVLTree(y, insertAVLT(x, leftT), rightT)
890 elif x > y:

891 return makeAVLTree(y, TeftT, insertAVLT(x, rightT))
892 else:

893 return t

g8osdef insertListAVLT(xs,t):

896 if xs == []:
897 return t
898 else:

899 return insertListAVLT(xs[1:], (insertAVLT(xs[0],t)))

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

221/338

AVL Trees

Insertion and Deletion

901 def deleteAVLT(x,t):

902
903
904
905
906
907
908
909
910
911
912
913

if isEmptyABT(t):
return mkEmptyABT()
else:
y = getDataABT(t)
leftT = getlLeftABT(t)
rightT = getRightABT(t)
if x <y:
return makeAVLTree(y, deleteAVLT(x, leftT), rightT)
elif x > y:
return makeAVLTree(y, TeftT, deleteAVLT(x, rightT))
else:
return joinAVLT(TeftT, rightT)

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
AVL Tree Performance
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

222/338

AVL Trees

Insertion and Deletion

o17def joinAVLT(leftT, rightT):

918
919
920
921
922

if isEmptyABT(rightT):
return TeftT

else:
(y,t) = splitAVLT(rightT)
return makeAVLTree(y, leftT, t)

926def spTitAVLT(t):

927
928
929
930
931

932
933
934
935
936
937

if isEmptyABT(t):
raise RuntimeError("splitAVLT_applied_to_EmptyABT(")
else:
X = getDataABT(t)
tl = getLeftABT(t)
t2 = getRightABT(t)
if isEmptyABT(tl):
return (x,t2)
else:
(y,t3) = splitAVLT(tl)
return (y, makeAVLTree(x, t3, t2))

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
AVL Tree Performance
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

223/338

AVL Trees

Activity 22 Insert Lists and Delete Items

>

>

>

Draw the AVL Trees resulting from inserting the
following lists of items into an empty tree one by one in
order given — do the insertions by hand following the
AVL insertion algorithm — you can use the Python code
to check your answers

1. [1,2,3,4,5,6,7,8,9,10]

2. [10,9,8,7,6,5,4,3,2,1]

3. [68,88,61,89,94,50,4,76,66,82,99]
For each of the previous trees, show the result when the
fourth item inserted is deleted
The insertAVLT function is defined at line 881,
slide 221 (Python), the deleteAVLT function is defined
at line 901, slide 222 (Python),

insertListAVLT is defined at line 895, slide 221
(Python),

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

224/338

AVL Trees

Answer 22 Insert Lists and Delete Items

1istQla = [1,2,3,4,5,6,7,8,9,10]
exsAVLInsDelQla = insertListAVLT(1listQla, EmptyABT())

exsAVLInsDelQla

P Answer 22 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
AVL Tree Performance
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

225/338

AVL Trees

Answer 22 Insert Lists and Delete Items

> Here is the Python representation of the resulting AVL
tree

exsAVLInsDe1QlaAns \
= (NodeABT(4, 4,
NodeABT(2, 2,
NodeABT(1, 1, EmptyABT(), EmptyABTQ)),
NodeABT(1, 3, EmptyABT(), EmptyABT())),
NodeABT(3, 8,
NodeABT(2, 6,
NodeABT(1, 5, EmptyABT(), EmptyABT(Q)),
NodeABT(1, 7, EmptyABT(), EmptyABT())),
NodeABT (2, 9,
EmptyABTQ),
NodeABT(1, 10, EmptyABT(), EmptyABT())))))

P Answer 22 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
AVL Tree Performance
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

226/338

AVL Trees

Answer 22 Insert Lists and Delete Items

» Here are the insertions done one by one with separate
diagrams

exsAVLInsDe1Qla01 \
= insertListAVLT(1listQla[:1], EmptyABT())

exsAVLInsDe1Qla01

P Answer 22 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

227/338

AVL Trees

Answer 22 Insert Lists and Delete Items

exsAVLInsDe1Qla02 \
= insertListAVLT(1listQla[:2], EmptyABT())

exsAVLInsDe1Qla02

2

P Answer 22 continued on next slide

» Go to Activity

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
AVL Tree Performance
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

228/338

AVL Trees

Answer 22 Insert Lists and Delete Items

exsAVLInsDe1Qla03 \
= insertListAVLT(1istQla[:3], EmptyABT())

Left rotation about 1
exsAVLInsDe1Qla03

P Answer 22 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
AVL Tree Performance
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

229/338

AVL Trees

Answer 22 Insert Lists and Delete Items

exsAVLInsDe1Qla04 \
= insertListAVLT(1listQla[:4], EmptyABT())

exsAVLInsDe1Qla04

P Answer 22 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
AVL Tree Performance
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

230/338

AVL Trees

Answer 22 Insert Lists and Delete Items

exsAVLInsDe1Qla05 \
= insertListAVLT(1listQla[:5], EmptyABT())

Left rotation about 3
exsAVLInsDe1Qla05

P Answer 22 continued on next slide

» Go to Activity

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
AVL Tree Performance
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

231/338

AVL Trees

Answer 22 Insert Lists and Delete Items

exsAVLInsDe1Qla06 \
= insertListAVLT(1istQla[:6], EmptyABT())

Left rotation about 2

exsAVLInsDe1Qla06

P Answer 22 continued on next slide

» Go to Activity

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
AVL Tree Performance
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

232/338

AVL Trees

Answer 22 Insert Lists and Delete Items

exsAVLInsDe1Qla07 \
= insertListAVLT(1istQla[:7], EmptyABT())

Left rotation about 5

exsAVLInsDe1Qla07

P Answer 22 continued on next slide

» Go to Activity

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
AVL Tree Performance
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

233/338

AVL Trees

Answer 22 Insert Lists and Delete Items

exsAVLInsDe1Q1la08 \
= insertListAVLT(1istQla[:8], EmptyABT())

exsAVLInsDe1Q1la08

P Answer 22 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
AVL Tree Performance
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

234/338

AVL Trees

Answer 22 Insert Lists and Delete Items

exsAVLInsDe1Qla09 \
= insertListAVLT(1istQla[:9], EmptyABT())

Left rotation about 7
exsAVLInsDe1Qla09

P Answer 22 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
AVL Tree Performance
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

235/338

AVL Trees

Answer 22 Insert Lists and Delete Items

exsAVLInsDe1Qlall \
= insertListAVLT(1istQla[:10], EmptyABT())

Left rotation around 6
exsAVLInsDe1Qlal0

P Answer 22 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
AVL Tree Performance
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

236/338

AVL Trees

Answer 22 Insert Lists and Delete Items

TistQlb = [10,9,8,7,6,5,4,3,2,1]
exsAVLInsDe1Qlb = insertListAVLT(1istQlb, EmptyABT())

exsAVLInsDel1Qlb

P Answer 22 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
AVL Tree Performance
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

237/338

AVL Trees

Answer 22 Insert Lists and Delete Items

1istQlc = [68,88,61,89,94,50,4,76,66,82,99]
exsAVLInsDe1Qlb = insertListAVLT(1listQlc, EmptyABT())

exsAVLInsDelQlc

P Answer 22 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

238/338

AVL Trees

Answer 22 Q2(a) Delete 4th Item

TistQla =

[1,2,3,4,5,6,7,8,9,10]
exsAVLInsDelQ2a \
= deleteAVLT(1istQla[3], exsAVLInsDelQla)

P Answer 22 continued on next slide

exsAVLInsDel1Q2a

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
AVL Tree Performance
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

239/338

AVL Trees

Answer 22 Q2(b) Delete 4th Item

1istQlb = [10,9,8,7,6,5,4,3,2,1]
exsAVLInsDe1Q2b \
= deleteAVLT(1istQlb[3], exsAVLInsDelQlb)

exsAVLInsDe1Q2b

P Answer 22 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
AVL Tree Performance
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

240/338

AVL Trees

Answer 22 Insert Lists and Delete Items

TistQlc = [68,88,61,89,94,50,4,76,66,82,99]
exsAVLInsDe1Q2c \
= deleteAVLT(1istQlc[3], exsAVLInsDelQlc)

exsAVLInsDel1Q2c

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
AVL Tree Performance
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

241/338

AVL Tree Delete Insertion
Activity 23 Deleting Inserted List

> Using TistQla show that deleting the elements of the
list from the tree one by one in reverse order does not
result in the reverse sequence of AVL trees

1istQla = [1,2,3,4,5,6,7,8,9,10]
exsAVLInsDelQla = insertListAVLT(1listQla, EmptyABT())

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

242/338

AVL Tree Delete Insertion

Answer 23 Deleting Inserted List

1istQla = [1,2,3,4,5,6,7,8,9,10]
exsAVLInsDelQla = insertListAVLT(listQla, EmptyABT())
delete TistQla[-1]

exsAVLInsDelQla

P Answer 23 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
AVL Tree Performance
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

243/338

AVL Tree Delete Insertion

Answer 23 Deleting Inserted List

exsAVLDelListQla01l \
= deleteAVLT(1listQla[-1], exsAVLInsDelQla)
delete TistQla[-2]

exsAVLDelListQla01

P Answer 23 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
AVL Tree Performance
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

244/338

AVL Tree Delete Insertion

Answer 23 Deleting Inserted List

exsAVLDelListQla02 \
= deleteAVLT(1listQla[-2], exsAVLDelListQla0l)
Right rotation about node 8

exsAVLDelL1istQla02

P Answer 23 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
AVL Tree Performance
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

245/338

AVL Tree Delete Insertion

Answer 23 Deleting Inserted List

exsAVLDelListQla01l \
= deleteAVLT(1listQla[-1], exsAVLInsDelQla)
delete 5 first followed by 9

exsAVLDelL1istQla01A

del second

del first

P Answer 23 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
AVL Tree Performance
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

246/338

AVL Tree Delete Insertion

Answer 23 Deleting Inserted List

exsAVLDelListQla02a \
= deleteAVLT(listQla[-6], exsAVLDelListQla0l)
exsAVLDelListQla02b \
= deleteAVLT(1listQla[-2], exsAVLDelListQla02a)
Double rotation: left about 6, right about 8

exsAVLDelL1istQla02b

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
AVL Tree Performance
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

247/338

AVL Tree Delete Example

Activity 24 Delete with Rebalance

» Example from Specimen Exam (2016) Q 8
» Redraw the tree with node 34 deleted and tree
rebalanced. Note here we have height of empty tree as
0 and singleton node as 1
exsAVLTdelEG

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

248/338

AVL Tree Delete Example

Answer 24 Delete with Rebalance (1)

» Here is the tree with node 34 deleted but not
rebalanced
» The new balance factor for the root is -2 so two
possible transformations — RR heavy or RL heavy
exsAVLTdelEGa

P Answer 24 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

249/338

AVL Tree Delete Example
Answer 24 Delete with Rebalance (2)
tree RR heavy tree RL heavy

P Answer 24 continued on next slide

» Go to Activity

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
AVL Tree Performance
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

250/338

AVL Tree Delete Example

Answer 24 Delete with Rebalance (3)

> Exercise: Identify the parts of the tree given in the
question with the names given for key nodes and
subtrees given in the above diagrams

» Which of the two cases is the given tree an instance of ?

P Answer 24 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

251/338

AVL Tree Delete Example

Answer 24 Delete with Rebalance (4)

v

VYV VvV VvV VvV VvV VvVYVYyy

Key k is 55

Key kR is 68

Key kRL is 59

Subtree tL is rooted at 29

Subtree tRL is rooted at 59

Subtree RR is rooted at 86

Subtree tRLL is an empty tree

Subtree tRLR is rooted at 65

The given tree is an instance of RL heavy
This requires a double rotation to rebalance

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

252/338

AVL Tree Delete Example
Answer 24 Delete with Rebalance (5)

tree RL hea
vy exsAVLTdelEGa

P Answer 24 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
AVL Tree Performance
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

253/338

AVL Tree Delete Example
Answer 24 Delete with Rebalance (6) — Right Inner Rotation
tree RL heavy inner rotr

P Answer 24 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
AVL Tree Performance
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

254/338

AVL Tree Delete Example
Answer 24 Delete with Rebalance (7) — Right Inner Rotation on EGa
tree EGa inner rotr

P Answer 24 continued on next slide

» Go to Activity

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
AVL Tree Performance
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

255/338

AVL Tree Delete Example
Answer 24 Delete with Rebalance (8) — Left Outer Rotation
tree RL heavy outer rotl

P Answer 24 continued on next slide

» Go to Activity

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
AVL Tree Performance
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

256/338

AVL Tree Delete Example
Answer 24 Delete with Rebalance (9) — Left Outer Rotation on EGa
tree EGa outer rotl

P Answer 24 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
AVL Tree Performance
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

257/338

AVL Tree Delete Example

Answer 24 Delete with Rebalance (10) — Wrong Rotation

> Exercise: what would have happened if we had chosen

only to do a left rotation around the root ?

» Go to Activity

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
AVL Tree Performance
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

258/338

AVL Tree Delete Example
Answer 24 Delete with Rebalance (11) — Left Rotation Only
tree RL heavy rotl only

=

h-1

tRLL A\

P Answer 24 continued on next slide

» Go to Activity

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
AVL Tree Performance
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

259/338

AVL Tree Delete Example

Answer 24 Delete with Rebalance (12) — Left Outer Rotation on EGa
tree EGa rotl only

» This tree is LR heavy and could be rebalanced via a
further double rotation but obviously this would be
extra work compared to getting the correct double
rotation in the first place

P Answer 24 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

260/338

AVL Tree Delete Example

Answer 24 Delete with Rebalance (13)

>

vV vVvyyvyy

Key point when performing a rebalance, check which
case applies

LL heavy right rotation

LR heavy inner left rotation, right outer rotation
RL heavy inner right rotation, left outer rotation
RR heavy left rotation

See the notes for the details

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

261/338

AVL Trees

Performance (1)

>

While a height balanced tree may not always have the
minimum possible height, it has the advantage that it
will always be reasonably small

For a tree with n items we shall show that the maximum
number of steps to insert, delete or retrieve an item is
O(log n)

Finding the maximum height of a tree with n items is
equivalent to finding the minimum number of items, Tj,
in a tree of height h

For h =0 we have an empty tree so To =0
For T7 we have a singleton item so Ty =1
In general for h > 2 we have T, =1+ Ty 1 + Ty

since the tree must be balanced and each subtree must
have a minimum number of items

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance
Proof of Euler-Binet
Formula
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

262/338

AVL Trees

Performance (2)

>

The sequence Ty, looks very similar to the Fibonacci
sequence

Fo=0, F =1

Fi=Fg1+Fp, k=2

The Fibonacci sequence appeared in a work by
Leonardo Fibonacci Pisano, who also popularized the

Hindu-Arabic numeral system via his 1202 book Liber
Abaci (Book of Calculations).

The sequence also appeared in Indian mathematics
much earlier.

The Fibonacci numbers have lots of interesting
properties and turn up in many places in nature

In our case we have Ty = Fpyo - 1

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance
Proof of Euler-Binet
Formula
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

263/338

https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Fibonacci
http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fib.html
http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fib.html

AVL Trees

Performance (2a)

>

>
>
>

v

Deriving T = Fpip - 1

LetRp=Tp-Tp1=14+Tpo

Then Ry =1+ Tp=1+4+1+Tp 1+ Tp2=Rgse1 +Ry
Rpb=1+Tg=1+0=1=F and
R3=1+Th1=141=2=F3

Hence Ry =Fp, Vh=2

Hence Tp=Fpi2-1, Vh=0

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance
Proof of Euler-Binet
Formula
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

264/338

AVL Trees

Performance (2b)

>
>

vV vyVvVvyy

vy

Miller & Ranum approach
Level number of edges from root to node

Height maximum level of any node in the tree — this is
one less than my definition

Ny, is the minimum number of nodes in an AVL tree of
height h

Ng = 1 since tree of one node has no edges

Ny =2

Np=1+Np1+Npp, h=2

Let Sp=Np-Np-1 =1+ Npys

Then Sy =T+ Np=1+1+Np1 +Np2 =S441 +54
S5=1+Ng=1+1=2=F3and
S3=1+N1=1+2=3=F4

Hence Sy = Fpey, Vh=2

Hence Np=Fp3-1, Vh=0

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance
Proof of Euler-Binet
Formula
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

265/338

AVL Trees

Performance (2¢)

>

vV vVvyyy

P(h) : Ty = Fpep - 1 proof by induction
Basis P(0), P(1)
To=land F,b-1=1-1=0
Tiy=land F3-1=2-1=1
Inductive step VkP(k) = P(k+ 1)
Tk=1+Tg1+ Ti-2

=1+ Fks1 - D+ (Fe-1)

=Frs2 -1
Hence Ty =Fp2 -1, Vh=0

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance
Proof of Euler-Binet
Formula
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

266/338

AVL Trees

Performance (3)

» There is a closed-form solution for the Fibonacci
sequence known as the Euler-Binet Formula (see also A
formula for Fib(n))

_ k-0 -)k

v

Fk

v

-

> Hence Ty =
>
| 4 Th=nm

O(log n)

V5

2

¢h+2 -(1- ¢)h+2)

¢ is the Golden mean
_1+4/5
b-1

~ 1.61803...

¢h+2
V5

1

V5

Since (1 - ¢) < 1 then for large h we have

-1 - log(+/5(n+1)) = (h+2)log ¢

> Hence in the worst case, the height of a AVL tree is

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance
Proof of Euler-Binet
Formula
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

267/338

https://proofwiki.org/wiki/Euler-Binet_Formula
http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibFormula.html
http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibFormula.html
https://proofwiki.org/wiki/Definition:Golden_Mean

Fibonacci Euler-Binet Formula

Proof (1a)
» Proof of the Euler-Binet Formula is not required for
M269 but here is a brief summary
> Proof by Induction
n_ a-)n
> Let P(n) = Fy = %
> Basis for Induction
»> P(0) is true since
0_¢(1-4)0 _
V5 V5
> P(1) is true since
1+/5) _ 1- 1+/5
¢ -a-¢) |2 2
V5 V5
> =1==FH

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance
Proof of Euler-Binet
Formula
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

268/338

https://proofwiki.org/wiki/Euler-Binet_Formula

Binary Trees

Fibonacci Euler-Binet Formula
Proof (1b)

Phil Molyneux

Commentary 1

> Induction Hypothesis Step Agenda

Adobe Connect

» Show P(j) :0<j< k+1=Pk+2) Commentary 2
> K2 - (1 - p)k*t2 = p2pk - (1 - $)?(1 - p)k and Binary Trees
2 Iterative Traversals
> ¢2 — <]+2\/§) = l(] +2\/§+ 5): 1 +(l) Commentary 3
42' Binary Search Trees
- Commentary 4
g (] B qS)z - (%> -] +(] - (b) hence AVLTreets '
AVL Trees and Functions
> -1 -)2 =1+ Pl -1+ (1 - -) o
> = (K- - k) + (kT - (1 - k) e rsoser
> =./5(Fk + Fi+1) by inductive hypothesis Formua
» = ./5F2 by Fibonacci definition OV e B
n_ _I _ n Commentary 5
» Hence Vne N : F,= ¢7-0-¢)" Binary Tree

\/g Exercises

Commentary 6
Future Work

References

269/338

Fibonacci Euler-Binet Formula
Proof (2a)

>

The above proof confirms the formula but here is a
derivation

Define T(x,y)=(y,x+Vy)

Then T"(0, 1) = (Fn, Fp+1) (proof by induction)
Now find A1, A and (x7, y1), (X2, ¥2)

so T(x1,y1) =A1(x1, y1) and T(xz, y2) = A2(x2, y2)
and (0, 1) = p1(x1, y1) + p2(x2, ¥2)

T, y) =y, x+y)=Alx,y)

—x+y=Axand x=Ay - A2-A-1=0
—Ar=¢andA,=1-¢

and T(1,) =(p, 1 + P) = $(1, ¢P)
TO,1-)=0-d,1+(0-P)=>0-P)1,1-¢)

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance
Proof of Euler-Binet
Formula
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

270/338

Fibonacci Euler-Binet Formula
Proof (2b)
> (0,1)= %(1 ,P) - %(1 , 1 - ¢) confirm by inspection
> (Fn,Fn+1)= Tn(o])
T"(] P) - T"(] 1-¢)
ﬁdﬂ'(],d))— ﬁ(l -P)",1-4¢)
= 5" ™) - (-)" (1 -)™

¢n_(] _¢)H
V5

> Hence F, =

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4

AVL Trees
AVL Trees and Functions
Example AVL Trees
AVL Transformations
makeAVLTree Function
Insertion and Deletion
AVL Tree Performance
Proof of Euler-Binet
Formula
AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

271/338

AVL Tree Application

Sets

>

Ordered sets and ordered maps are important data
types in programming

Some programming languages have them as builtin
types (Python) or supply them as standard libraries
(C++, C#, Java, Scala, Haskell, ML)

This section describes an example implementation
based on Blelloch et al (2016) Just Join for Parallel
Ordered Sets and Adams (1993) Functional Pearls
Efficient sets — a balancing act

Note that this example also shows the use of recursive
thinking in practice

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets

Set Representation

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

272/338

AVL Tree Application

Documentation

>

In Python the documentation for Sets is at Set Types
and for Dictionaries (Maps) at Mapping Types — dict

The Python implementation can be found at the Python
Developer’s Guide and the source code for Sets is at
setobject.c — the implementation is in C using hash
tables — see How is set() implemented?

In Haskell the documentation and implementation of
Sets is at Containers: Data.Set and for Maps at
Containers: Data.Map.Strict — both of these are from
the package containers: Assorted concrete container
types

The Haskell implementation uses size balanced trees —
this is similar to AVL balanced trees

For an introduction see containers - Introduction and
Tutorial

For an overview of Sets see Containers: Sets

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Set Representation
Set Operations
Sets — Implementation
Points
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

273/338

https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset
https://docs.python.org/3/library/stdtypes.html#mapping-types-dict
https://devguide.python.org/
https://devguide.python.org/
https://github.com/python/cpython/blob/master/Objects/setobject.c
https://stackoverflow.com/questions/3949310/how-is-set-implemented
http://hackage.haskell.org/package/containers-0.6.0.1/docs/Data-Set.html
http://hackage.haskell.org/package/containers-0.6.0.1/docs/Data-Map-Strict.html
http://hackage.haskell.org/package/containers
http://hackage.haskell.org/package/containers
https://haskell-containers.readthedocs.io/en/latest/
https://haskell-containers.readthedocs.io/en/latest/
https://haskell-containers.readthedocs.io/en/latest/set.html

AVL Tree Application

Sets

» M269 Unit 5 has representation of graphs for various
algorithms — here are some references for that topic
for future notes

» For Haskell graph libraries see

» fgl: Martin Erwig’s Functional Graph Library

> graphs: A simple monadic graph library by Edward Kmett

> Data.Graph based on King and Launchbury (1995)
Structuring depth-first search algorithms in Haskell

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets

Set Representation

Set Operations

Sets — Implementation
Points
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

274/338

http://hackage.haskell.org/package/fgl
http://hackage.haskell.org/package/graphs
http://hackage.haskell.org/package/containers-0.6.0.1/docs/Data-Graph.html

AVL Trees

Set Representation — Split, Join (1)

» The representation of sets uses the ABTree data type
but with generalised versions of the sp1it and join
functions

» While implementing sets in AVL trees is not directly part
of M269, it gives good examples of recursive thinking
in an important application

» Note that the data item is used as the key for a node in
the tree — in practice there would be separate key and
data

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets

Set Representation
Split, Join

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

275/338

Binary Trees

AVL Trees Phil Molyneux
Set Representation — Split, Join (2)
Commentary 1
» spTitAVLS takes a key k and an AVL tree t and returns Agenda

two trees tL and tR and a boolean b — tL and tR have
elements less than and greater than k respectively and
b indicates if k was in t

splitLastAVLS, splitFirstAVLS take an AVL tree t
and return the largest, smallest elemeent k respectively
and the rest of the tree — sp1itFirstAVLS is similar to
spTitAVLT at line 926 on slide 223

join2AVLS, joinAVLS take two AVL trees, tL, tR where
all elements of tL are less than all elements of tR and
returns a new AVL tree — joinAVLS also takes a key k
with a value in between the elements of the two trees —
join2AVLS is similar to joinAVLT at line 917 on

slide 223

exposeABT takes apart an augmented tree, t to give
(tL, k, tR)

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets

Set Representation
Split, Join

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

276/338

AVL Trees

Set Representation — Split, Join (3)

» Here is a reminder of some of the ABTree constructors
and inspectors from file
M269TutorialBinaryTrees2022.py

761def mkEmptyABT() -> ABTree :
762 return EmptyABT()

764def mkNodeABT(x: T,tl: ABTree,t2: ABTree) -> ABTree :
765 h = 1 + max(getHeightABT(tl),getHeightABT(t2))
766 return NodeABT(h,x,tl,t2)

768def isEmptyABT(t: ABTree) -> bool
769 return t == EmptyABT()

» And here is the additional inspector expose in
M269TutorialBinaryTrees2022AVLSets.py

11def exposeABT(t: ABTree) -> (ABTree, T, ABTree)

12 if isEmptyABT(t)

13 raise RuntimeError("exposeABT _applied_to EmptyABT()")
14 else :

15 tL getLeftABT(t)

16 k getDataABT(t)

17 tR = getRightABT(t)

18 return (tL,k,tR)

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets

Set Representation
Split, Join

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

277/338

M269TutorialBinaryTrees2022.py
M269TutorialBinaryTrees2022AVLSets.py

AVL Trees

Set Representation — Split, Join (4)

> joinAVLS take a key, k, two AVL trees, tL, tR where all
elements of tL are less than k which is less than all
elements of tR and returns a new AVL tree

20def joinAVLS(k: T, tL: ABTree, tR: ABTree) -> ABTree :
21 if getHeightABT(tL) > getHeightABT(tR) + 1 :

22 return joinRightAVLS(k,tL,tR)

23 elif getHeightABT(tR) > getHeightABT(tL) + 1 :

24 return joinLeftAVLS(k,tL,tR)

25 else :

26 return mkNodeABT(k, tL,tR)

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets

Set Representation
Split, Join

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

278/338

AVL Trees

Set Representation — Split, Join (5)

28def joinRightAVLS(k: T, tL: ABTree, tR: ABTree) -> ABTree :

> joinRightAVLS description is in the following diagrams

(tLL,kL,tLR) = exposeABT(tL)
if getHeightABT(tLR) <= getHeightABT(tR) + 1 :
tl = mkNodeABT(k,tLR,tR)

if getHeightABT(tl) <= getHeightABT(tLL) + 1 :

return mkNodeABT(kL,tLL,t1)
else :
return rotl(mkNodeABT(kL,tLL, Crotr(tl))))

ct
N
|1l

joinRightAVLS(k, tLR, tR)
t3 = mkNodeABT(kL,tLL,t2)

if getHeightABT(t2) <= getHeightABT(tLL) + 1 :

return t3
else :
return rotl(t3)

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets

Set Representation
Split, Join

Set Operations
Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

279/338

AVL Trees

Set Representation — Split, Join (7)

h or
h+1 h+1 h

> The base case (line 30 on slide 279) of joinRightAVLS
follows the right spine of t to a node kL for which

getHeightABT(tL) > getHeightABT(tR) + 1
getHeightABT(tLR) <= getHeightABT(tR) + 1

» We then connect tL, k and tR

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets

Set Representation
Split, Join

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

280/338

AVL Trees

Set Representation — Split, Join (8)

h+1 or
h+2

h or
h+1 Ah

» Needs double rotation if

getHeightABT(tl) > getHeightABT(tLL) + 1

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets

Set Representation

Set Operations

Sets — Implementation
Points
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

281/338

AVL Trees

Set Representation — Split, Join (9)

t

tLRL

h or
h-1

tLRR

h or
h-1

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets

Set Representation

Set Operations

Sets — Implementation
Points
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

282/338

AVL Trees

Set Representation — Split, Join (10)

» The recursive case (line 36 on slide 279) of
joinRightAVLS follows the right spine further

getHeightABT(tLR) > getHeightABT(tR) + 1

h+1

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets

Set Representation
Split, Join

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

283/338

AVL Trees

Set Representation — Split, Join (11)

> A single left rotation is needed if

getHeightABT(t2) > getHeightABT(tLL) + 1

h+1

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Set Representation

Set Operations

Sets — Implementation
Points
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

284/338

AVL Trees

Set Representation — Split, Join (12)

s4def joinLeftAVLS(k: T, tL: ABTree, tR: ABTree) -> ABTree :

45
46
47

(tRL, kR, tRR) = exposeABT(tR)
if getHeightABT(tRL) <= getHeightABT(tL) + 1 :
tl = mkNodeABT(k,tL,tRL)
if getHeightABT(tl) <= getHeightABT(tRR) + 1 :
return mkNodeABT(kR,tl,tRR)
else :
return rotr(mkNodeABT(kR, (rot1(tl)),tRR))
else :
t2 joinLeftAVLS(k,tL,tRL)
t3 = mkNodeABT(kR,t2,tRR)
if getHeightABT(t2) <= getHeightABT(tRR) + 1 :
return t3
else :
return rotr(t3)

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Set Representation

Set Operations
Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

285/338

AVL Trees

Activity 25 joinLeftAVLS Diagrams

> joinLeftAVLS is the mirror image of joinRightAVLS

> Produce the equivalent diagrams describing the
function

» Go to Answer

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Set Representation

Set Operations

Sets — Implementation
Points
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

286/338

AVL Trees

Answer 25 joinLeftAVLS Diagrams

» TODO: Answer 25 joinLeftAVLS Diagrams

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets

Set Representation

Set Operations

Sets — Implementation
Points
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

287/338

AVL Trees

Activity 26 joinLeftAVLS Bug

> A previous version of joinLeftAVLS had a bug (beware
copy/paste) — see below

» What would happen if the elements of [10,9,8,7,6] were
given as input ?

def joinLeftAVLS(k: T, tL: ABTree, tR: ABTree) -> ABTree :
(tRL, kR, tRR) = exposeABT(tR)
if getHeightABT(tRL) <= getHeightABT(tL) + 1 :
tl = mkNodeABT(k,tL,tRL)
if getHeightABT(tl) <= getHeightABT(tRR) + 1 :
return mkNodeABT(kR,t1,tRR)
else :
return rotr(mkNodeABT(kR, (rot1(tl)),tRR))
else :
t2 joinRightAVLS(k,tL, tRL)
t3 = mkNodeABT(kR,t2,tRR)
if getHeightABT(t2) <= getHeightABT(tRR) + 1 :
return t3
else :
return rotr(t3)

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets

Set Representation
Split, Join

Set Operations

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

288/338

AVL Trees

Answer 26 joinLeftAVLS Bug

> TODO: Answer 26 joinLeftAVLS Bug

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets

Set Representation

Set Operations

Sets — Implementation
Points
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

289/338

AVL Trees

Set Representation — Split, Join (13)

6odef splitLastAVLS(t: ABTree) -> (ABTree,T)
61 (tL,k,tR) = exposeABT(t)

62 if isEmptyABT(tR)

63 return (tL,k)

64 else :

65 (tR1,k1) = splitLastAVLS(tR)

66 return (joinAVLS(k,tL,tR),k1)

6sdef splitFirstAVLS(t: ABTree) -> (ABTree,T)
69 (tL, k, tR) = exposeABT(t)

70 if isEmptyABT(tL)

71 return (tR,k)

72 else :

73 (tL1l,k1) = splitFirstAVLS(tL)

74 return (joinAVLS(k,tL1,tR),k1)

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets

Set Representation

Set Operations

Sets — Implementation

Points
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

290/338

AVL Trees

Set Representation — Split, Join (14)

76def splitAVLS(k: T,t: ABTree) -> (ABTree,bool,ABTree)
77 if isEmptyABT(t) :

78 return (mkEmptyABT(),False,mkEmptyABT())

79 else :

80 (tL, k1, tR) = exposeABT(t)

81 if k == k1 :

82 return (tL,True,tR)

83 elif k < k1 :

84 (tLL, b, tLR) = splitAVLS(k,tL)

85 return (tLL, b, (joinAVLS(k1,tLR,tR)))
86 else :

87 (tRL, b, tRR) = splitAVLS(k,tR)

88 return ((joinAVLS(k1,tL,tRL)), b, tRR)

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Set Representation

Set Operations

Sets — Implementation
Points
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

291/338

AVL Trees

Set Representation — Split, Join (15)

sodef join2AVLS(tL: ABTree,tR: ABTree) -> ABTree
91 if isEmptyABT(tL)

92 return tR

93 else :

94 (tL1l, k) = splitLastAVLS(tL)

95 return joinAVLS(k,tL1,tR)

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets

Set Representation

Set Operations

Sets — Implementation
Points
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

292/338

AVL Trees

Set Operations (1)

>
>
>

Set Operations

insertAVLS(t, k) inserts a key, k, into a tree, t
deleteAVLS(t,k) deletes key, k, from a tree, t, if it is
in the tree

unionAVLS(tl,t2) takes two AVL trees whose values
may overlap, and returns the union as a tree
intersectAVLS(tl, t2) takes two AVL trees and
returns the intersection as a tree

disjoint(tl,t2) takes two AVL trees and returns
True if and only if they have no members in common
differenceAVLS t1 t2 takes two AVL trees and
returns the elements that are in t1 but not t2

subsetAVLS(tl,t2) takes two AVL trees and returns
True if and only if every member of t1 is a member of
t2

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Set Representation
Set Operations
Sets — Implementation
Points
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

293/338

AVL Trees

Set Operations (2)

g7def insertAVLS(t: ABTree,k: T) -> ABTree :
98 (tL, found, tR) = splitAVLS(k,t)
99 return joinAVLS(k,tL,tR)

101def deleteAVLS(t: ABTree,k: T) -> ABTree :
102 (tL, found, tR) = splitAVLS(k,t)
103 return join2AVLS(tL,tR)

105def insertListAVLS(t: ABTree,xs: [T]) -> ABTree :

106 1if xs == [] :

107 return t

108 else :

109 return insertListAVLS(insertAVLS(t,xs[0]),xs[1:])

111def setFromListAVLS(xs: [T])-> ABTree :
112 return insertListAVLS(mkEmptyABT(),xs)

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Set Representation

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

294/338

AVL Trees

Set Operations (3)

114def unionAVLS(tl: ABTree,t2: ABTree) -> ABTree :

115
116
117
118
119
120
121
122
123
124

if isEmptyABT (t1)
return t2
elif isEmptyABT(t2)
return tl
else :
(t2L, k2, t2R) = exposeABT(t2)
(tlL, found, tl1R) = splitAVLS(k2,tl)
tL = unionAVLS(tlL,t2L)
tR = unionAVLS(tlR,t2R)
return joinAVLS(k2,tL,tR)

> unionAVLS(tl,t2) returns the set of all members of
t1 or t2 (or both)

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Set Representation
Set Operations
Sets — Implementation
Points
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

295/338

AVL Trees

Set Operations (4)

126def intersectAVLS(tl: ABTree,t2: ABTree) -> ABTree :

127
128
129
130
131

132
133
134
135
136
137
138
139

if isEmptyABT (t1)
return mkEmptyABT()
elif isEmptyABT(t2)
return mkEmptyABT()
else :
(t2L, k2, t2R) = exposeABT(t2)
(tlL, found, tl1R) = splitAVLS(k2,tl)
tL = intersectAVLS(tlL,t2L)
tR = intersectAVLS(tl1R, t2R)
if found :
return joinAVLS(k2,tL,tR)
else :
return join2AVLS(tL,tR)

> intersectAVLS(tl,t2) returns the set of all members
of both t1 and t2

> Notice it needs the if statement to check that a
member of t2 is a member of t1

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Set Representation
Set Operations
Sets — Implementation
Points
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

296/338

AVL Trees

Set Operations (5)

141def disjointAVLS(tl: ABTree,t2: ABTree) -> ABTree :
142 if isEmptyABT (t1)

143 return True

144 elif isEmptyABT(t2)
145 return True

146 else :

147 (t2L, k2, t2R) = exposeABT(t2)
148 (tlL, found, tl1R) = splitAVLS(k2,tl)

149 return (not found
150 and disjointAVLS(tlL,t2L)
151 and disjointAVLS(t1R,t2R))

» disjoint(tl, t2) returns True if there are no
elements in common

» |f an element in common is found then False is
returned

> Note that the behaviour of sp1itAVLS() ensures the
search space is reduced at each recursive call

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets

Set Representation

Set Operations

Sets — Implementation
Points
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

297/338

AVL Trees

Set Operations (6)

153def differenceAVLS(tl: ABTree,t2: ABTree) -> ABTree :
154 if isEmptyABT (t1)

155 return mkEmptyABT()

156 elif isEmptyABT(t2)

157 return tl

158 else :

159 (t2L, k2, t2R) = exposeABT(t2)

160 (tlL, found, tl1R) = splitAVLS(k2,tl)
161 tL = differenceAVLS(tlL,t2L)

162 tR = differenceAVLS(t1R,t2R)

163 return join2AVLS(tL,tR)

» differenceAVLS(tl,t2) returns the set of members
of t1 that are not in t2

> On first reading it may be surprising there is no if
statement

» Remember the behaviour of sp1itAVLS()

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Set Representation
Set Operations
Sets — Implementation
Points
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

298/338

Further Set Operations
Activity 27 Set to Ascending List

» Write a function setToAscL1ist which takes a set and

returns the contents as an ascending list

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets

Set Representation

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

299/338

Set to Ascending List

Answer 27 Set to Ascending List (1)

> Probably the simplest solution at this stage is to use
inOrderABT()

181def setToAscList(t)
182 return inOrderABT(t)

Python3>>> 1ist3 = [2,1,4,3,6,5,8,7,10,9]
Python3>>> t10 = setFromListAVLS(1ist3)
Python3>>> type(tl1l0)

<class 'M269TutorialBinaryTrees2022.NodeABT’ >
Python3>>> 1ist4 = setToAscList(t10)
Python3>>> 1list4

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Python3>>>

P Answer 27 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Set Representation

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

300/338

Set to Ascending List

Answer 27 Set to Ascending List (2)

» Of course, someone from the pure functional
programming world would define a higher order
function to capture the recursion pattern with
setFoldr () (this is not part of M269)

184def setFoldr(f,z,t)
185 def go(y,t) :
186 if isEmptyABT(t) :

187 return y

188 else :

189 (tL,x,tR) = exposeABT(t)

190 return (go(f(x,(go(y,tR))),tL))

191 return go(z,t)

193def setToAscListA(t) :

194 def cons(x,xs)

195 return ([x] + xs)

196 return setFoldr(cons,[],t)

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Set Representation
Set Operations
Sets — Implementation
Points
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

301/338

Further Set Operations
Activity 28 Set Equality

» Write a function setEquality which takes two sets, tl
and t2 and returns True if they are equal and False
otherwise

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Set Representation

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

302/338

Further Set Operations
Answer 28 Set Equality

198
199
200
201
202

> Answer 28 Set Equality

def setEquality(tl,t2)
Tistl = setToAscList(tl)
Tist2 = setToAscList(t2)
return (len(listl) == len(list2)
and 1listl == 1ist2)

Python3>>> 1istl

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
Python3>>> tl = setFromListAVLS(1listl)
Python3>>> Tist10

[2, 1, 4, 3, 6, 5, 8, 7, 10, 9]
Python3>>> t10 = setFromListAVLS(1ist10)
Python3>>> tl1 == t10

False

Python3>>> setEquality(tl,t10)

True

Python3>>>

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Set Representation

Sets — Implementation
Points

Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

303/338

Further Set Operations
Activity 29 Subset

» Write a function subsetAVLS that takes two sets t1, t2
and returns True if tlis a subset of t2 and False
otherwise

> t1is a subset of t2 if every element of tlis a member

of t2

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets

Set Representation

Set Operations

Sets — Implementation
Points
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

304/338

Further Set Operations

Answer 29 Subset

165def subsetAVLS(tl: ABTree,t2: ABTree) -> bool

166
167
168
169
170
171
172
173
174
175

if isEmptyABT(tl) :
return True
elif isEmptyABT(t2) :
return False
else :
(tlL, k1, tlR) = exposeABT(tl)
(t2L, found, t2R) = splitAVLS(kl,t2)
return (found
and subsetAVLS(tlL,t2L)
and subsetAVLS(tlR,t2R))

» How does this work ?

» The recursive case at line 170 checks that the key at the
root of tlis in t2 and recursively checks the sub-trees

» spTitAVLS(Q) ensures that the subtrees are the correct
ones to be checked

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Set Representation
Set Operations
Sets — Implementation
Points
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

305/338

Sets, Maps

Implementation Points

» The only tree specific functions are joinAVLS,
joinRightAVLS and joinLeftAVLS — AVL trees could
be changed to size balanced or Red-Black trees with
little to be changed

» The various sets operations use sp1itAVLS and
joinAVLS or join2AVLS to avoid more complex
algorithms — some implementations may inline the
functions for efficiency

» The diagrams for joinRightAVLS are essential for the
understanding of the base and recursive cases

» The unionAVLS, intersectAVLS and differenceAVLS
functions are very similar in their usage of sp1it and
join

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Set Representation
Set Operations
Sets — Implementation
Points
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

306/338

Sets, Maps

Implementation Points

>

>

>

From O’Sullivan Real World Haskell (2008) see Data
Structures

Maps give us the same capabilities as hash tables do in
other languages. Internally, a map is implemented as a
balanced binary tree. Compared to a hash table, this is
a much more efficient representation in a language with
immutable data. This is the most visible example of how
deeply pure functional programming affects how we
write code: we choose data structures and algorithms
that we can express cleanly and that perform efficiently,
but our choices for specific tasks are often different
[from] their counterparts in imperative languages.

See Curious about the HashTable performance issues

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Set Representation
Set Operations
Sets — Implementation
Points
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

307/338

http://book.realworldhaskell.org/read/data-structures.html
http://book.realworldhaskell.org/read/data-structures.html
https://stackoverflow.com/questions/3058529/curious-about-the-hashtable-performance-issues

Sets, Maps
Implementation Points
Python Haskell

Operation Average Worst Worst
Member o(1) O(n) O(log n)
Union O(m + n) O(mlog(;5 + 1))
Intersection O(min(m, n)) O(mxn) O(mlog(y; +1))
Difference O(m) O(mlog(s5 + 1))
Insert o(1) O(n) O(log n)
Delete o(1) O(n) O(log n)

> Python: Time Complexity
» Haskell: Data.Set and Data.Map.Strict

» Remember that actual behaviour will depend on the
data and compiler settings

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets

Set Representation

Set Operations

Sets — Implementation
Points
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

308/338

https://wiki.python.org/moin/TimeComplexity
http://hackage.haskell.org/package/containers-0.6.0.1/docs/Data-Set.html
http://hackage.haskell.org/package/containers-0.6.0.1/docs/Data-Map-Strict.html

Commentary 5

Binary Tree Further Exercises

5 Binary Tree Exercises

> Binary Tree shapes
> Generating Binary Trees
> Catalan Numbers (advanced)

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets

Binary Tree
Exercises

Commentary 6
Future Work

References

309/338

Binary Tree Common Exercises

Interview Questions and Practice Problems
» This section contains some common exercises used in
Google Interview Questions

> See the References section for Web sites with more
examples

> Note that this section is not directly part of M269 and is
here for interest and practice using recursion

» Further questions may be added to this section

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Binary Tree Shapes
Generating Binary Trees
Catalan Numbers

Commentary 6
Future Work

References

310/338

Binary Tree Shapes

Activity 30 Shape Exercises
» isSameShape(tl,t2) takes two binary trees and
returns True if they have the same shape

» 1isMirrorShape(tl,t2) takes two binary trees and
returns True if they are a mirror of each other

> isSymmetric(t) takes a binary tree and returns True
if it is symmetric

» genMirrorShape(t) takes a binary tree and returns
the mirror of the tree

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises
Binary Tree Shapes

Isomorphic Binary
Trees

Generating Binary Trees
Catalan Numbers

Commentary 6
Future Work

References

311/338

Binary Tree Shapes

Answer 30 Shape Exercises — isSameShape(tl,t2)

» isSameShape(tl,t2) takes two binary trees and
returns True if they have the same shape

206def isSameShape(tl: ABTree,t2: ABTree) -> bool
207 if isEmptyABT(tl) and isEmptyABT(t2)

208 return True
209 elif isEmptyABT(tl) or isEmptyABT(t2)
210 return False

211 else :

212 (tlL,k1,t1R) exposeABT(tl)

213 (t2L,k2,t2R) exposeABT(t2)

214 return (isSameShape(tlL,t2L)

215 and isSameShape(tlR,t2R))

P Answer 30 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises
Binary Tree Shapes

Isomorphic Binary
Trees

Generating Binary Trees
Catalan Numbers

Commentary 6
Future Work

References

312/338

Binary Tree Shapes

Answer 30 Shape Exercises — isMirrorShape(tl,t2)

» isMirrorShape(tl,t2) takes two binary trees and
returns True if they are a mirror of each other

217def isMirrorShape(tl: ABTree,t2: ABTree) -> bool
218 if isEmptyABT(tl) and isEmptyABT(t2)

219 return True
220 elif isEmptyABT(tl) or isEmptyABT(t2)
221 return False

222 else :

223 (tlL,k1,t1R) exposeABT(tl)

224 (t2L,k2,t2R) exposeABT(t2)

225 return (isMirrorShape(tlL,t2R)

226 and isMirrorShape(tlR,t2L))

P Answer 30 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises
Binary Tree Shapes

Isomorphic Binary
Trees

Generating Binary Trees
Catalan Numbers

Commentary 6
Future Work

References

313/338

Binary Tree Shapes

Answer 30 Shape Exercises — isSymmetric(t)

> isSymmetric(t) takes a binary tree and returns True
if it is symmetric

228def isSymmetric(t: ABTree) -> bool
return isMirrorShape(t,t)

P Answer 30 continued on next slide

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Isomorphic Binary
Trees

Generating Binary Trees
Catalan Numbers

Commentary 6
Future Work

References

314/338

Binary Tree Shapes

Answer 30 Shape Exercises — genMirrorShape(t)

231def genMirrorShape(t: ABTree) -> ABTree :
if isEmptyABT(t)
return mkEmptyABT()

232
233
234
235
236
237

> genMirrorShape(t) takes a binary tree and returns
the mirror of the tree

exposeABT(t)
return (mkNodeABT(x, genMirrorShape(tR),
genMirrorShape(tL)))

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Isomorphic Binary
Trees

Generating Binary Trees
Catalan Numbers

Commentary 6
Future Work

References

315/338

Binary Tree Shapes

Isomorphic Binary Trees (a)

» Two binary trees are isomorphic if one can be obtained
from the other by flipping the left and right subtrees.
Two empty trees are isomorphic

» See Tree isomorphism problem

> See Is the recursive approach to binary tree
isomorphism actually linear?

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises
Binary Tree Shapes

Isomorphic Binary
Trees

Generating Binary Trees
Catalan Numbers

Commentary 6
Future Work

References

316/338

https://www.geeksforgeeks.org/tree-isomorphism-problem/
https://stackoverflow.com/questions/79075798/is-the-recursive-approach-to-binary-tree-isomorphism-actually-linear
https://stackoverflow.com/questions/79075798/is-the-recursive-approach-to-binary-tree-isomorphism-actually-linear

Binary Trees
Isomorphic Binary Trees (b) isoBTreel, isoBTree2

isoBTreel isoBTree2

> isoBTreel, isoBTree2 are isomorphic with the
following flips:

(2,3), (EmptyBTree, 6), (7,8)

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises
Binary Tree Shapes

Generating Binary Trees
Catalan Numbers

Commentary 6
Future Work

References

317/338

Binary Trees

Binary Tree Shapes

Isomorphic Binary Trees (c) Python Code

Phil Molyneux

Commentary 1

def isIsomorphic(tl : ABTree, t2 : ABTree) - > bool : Agenda
if isEmptyABT(tl) and isEmptyABT(t2) : Adobe Connect
return True
elif isEmptyABT(tl) or isEmptyABT(t2)

Commentary 2

return False ARy Tres
else : Iterative Traversals
(tlL,k1,t1R) = exposeABT(tl) TRy
(t2L,k2,t2R) = exposeABT(t2))
if (k1 !'= k2) : Binary Search Trees
return False Commentary 4
else : AVL Trees
return ((isIsomorphic(tlL, t2L) and isIsomorphic(tlR,t2R))
or AVL Trees: Sets
(isIsomorphic(tlL, t2R) and isIsomorphic(tlR,t2L)) Commentary 5
Binary Tree
Exercises

Binary Tree Shapes

Generating Binary Trees
Catalan Numbers

Commentary 6
Future Work

References

318/338

Generating Binary Trees

Exercises

» The aim is to generate the shapes of all possible trees
given a number of nodes

> First sketch a few trees to spot any pattern

> Write down a recurrence relation for the number of
binary tree shapes with n nodes based on the number
of tree shapes for less than n nodes

> Write a function genBTs(x,n) given a value x and an
integer n generates the Python representation of all
shapes of binary trees with n nodes with x at each node

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Binary Tree Shapes
Generating Binary Trees
Catalan Numbers

Commentary 6
Future Work

References

319/338

Generating Binary Trees

Simple Recursive Version (1)

> We first sketch a few trees to spot the pattern
» 0 nodes have 1 tree, EmptyBT, 1 node has 1 tree
» 2 nodes have 2 trees

2 nodes (0 2 nodes (1)

b

> 3 nodes have 5 trees
3 nodes (0) 3 nodes (1) 3 nodes (2) 3 nodes (3) 3 nodes (4)

P98, o

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Binary Tree Shapes
Generating Binary Trees
Catalan Numbers

Commentary 6
Future Work

References

320/338

Generating Binary Trees

Simple Recursive Version (2)

>

vV vVvyyvyy

Let Cy be the number of binary tree shapes with n
nodes then from the above diagrams we have:

Co=1
G =1
=2
C3=5

Eureka insight for a tree with n nodes if the left subtree
has i nodes then the right subtree must have n-j-1
nodes and i can range over 0 to n-1
The left and right subtrees must have C; and Cp-j-1
different possible shapes
and there are n possible values for i from 0 to n-1

n-1
Hence C, = z CiCp-i—

i=0

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Binary Tree Shapes
Generating Binary Trees
Catalan Numbers

Commentary 6
Future Work

References

321/338

Generating Binary Trees

Simple Recursive Version (3)

n-1 n
> Cn= > CiCnit = >, Ci1Cnei
i=0 i=1

n
> Alternatively Cpi1 = > GiCp-j
i=0
» Check G4 =CpCGp=1x1=1
> OHO=0C0GC+GCG=1x1+1x1=2
> GG=0C0GC+0G+GHR=1%X2+T1x1+2x1=5
> =G+ G+0G+CGG
=1 X5+1X2+2X1+5x1=14
» The Cj are known as the Catalan numbers

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Binary Tree Shapes
Generating Binary Trees
Catalan Numbers

Commentary 6
Future Work

References

322/338

https://en.wikipedia.org/wiki/Catalan_number

Generating Binary Trees

Simple Recursive Version (4)

> The simple recursive definition of genBTs follows from
the recurrence relation directly

> Uses Python List Comprehensions see below

This repeats the calculation of subtrees

» This is similar to the definition in
Math.Combinat.Trees.Binary which is based on Knuth
(2011, section 7.2.1.6), Knuth (1997, section 2.3.4.4)

\ 4

239def genABTs(x: T,n: int) -> [ABTree]

240
241
242
243
244
245
246
247
248
249

if n==0 :
return [mkEmptyABT()]
elif n ==
return [mkNodeABT(x,mkEmptyABT(),mkEmptyABT())]
else :
= ([mkNodeABT(x,1eftT, rightT)
for (nu,nv) 1in splitsInt(n)
for TleftT in genABTs(x,nu)
for rightT 1in genABTs(x,nv)])
return ts

2s1def splitsInt(n: int) -> [(int,int)]

252
253

prns = [(i, n - i - 1) for i 1in range(n)]
return prns

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Binary Tree Shapes
Generating Binary Trees
Catalan Numbers

Commentary 6
Future Work

References

323/338

https://docs.python.org/3/reference/expressions.html#displays-for-lists-sets-and-dictionaries
http://hackage.haskell.org/package/combinat-0.2.9.0/docs/Math-Combinat-Trees-Binary.html

Generating Binary Trees

List Comprehensions

> List comprehensions (tutorial), List comprehensions
(reference) — a neat way of expressing iterations over a
list, came from Miranda (see Wikipedia: List
comprehension)

» Example: Square the even numbers between 0 and 9

Python3>>> [x #* 2 for x in range(10) if x % 2 == 0]
[0, 4, 16, 36, 64]
Python3>>> [(x y) for x in range(4)
for y 1in range(4)
if x % 2 ==
ce and y % 3 == 0]
[Co, 0, (0, 3), (2, 0), (2, 3]
Python3>>>

> In general

[expr for targetl 1in iterablel if condl
for target2 in iterable2 if cond2 ...
for targetN in iterableN if condN]

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Binary Tree Shapes
Generating Binary Trees
Catalan Numbers

Commentary 6
Future Work

References

324/338

https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/3/reference/expressions.html#displays-for-lists-sets-and-dictionaries
http://www.miranda.org.uk
https://en.wikipedia.org/wiki/List_comprehension
https://en.wikipedia.org/wiki/List_comprehension

Catalan Numbers

Efficient Calculation

» As with many other problems, it may be easier to find a
recursive relation or recurrence for a problem and
harder to find an efficient calculation.

» For the Catalan numbers it is possible to find a closed
(non-recursive) expression for the Catalan numbers

» Below is a derivation of a closed expression — this is
not part of M269 and is included for interest — the
derivation uses a bit more Maths than the rest of these
notes but it is explained as we progress

» This derivation is from Spivey (2019, page 208) The Art
of Proving Binomial Identities and Wilf (1994, page 44)
generatingfunctionology

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises
Binary Tree Shapes
Generating Binary Trees
Catalan Numbers
Cauchy Product
Catalan Recurrence
Sample Catalan

Numbers
Commentary 6
Future Work

References

325/338

https://en.wikipedia.org/wiki/Catalan_number

Binary Trees

Cauchy Product

Products of Infinite Series or Power Series (1)

Phil Molyneux

Commentary 1

© ; o . ad " Agenda
> z ajx Z bJXJ = z CnX Adobe Connect
i=0 j=0 n=0

Commentary 2

n Binary Trees
where Cn = Z ak bl’l—k Iterative Traversals
k=0 Commentary 3

Binary Search Trees

» The product forms a two-dimensional array — however
we can arrange a sequence that goes through the array
— see below and Spivak (2008, p486, p493, p513)

Commentary 4
AVL Trees
AVL Trees: Sets

@ tary 5
aobo » aoby aob; » dob3 emmentary
Binary Tree
A/ / A/ Exercises
a bO a b] a bZ - Binary Tree Shapes
Generating Binary Trees
* / / Catalan Numbers
Cauchy Product
az bo az b] az bz e Catalan Recurrence
/ Sample Catalan
Numbers
azbo T e Commentary 6
¢ Future Work
References

326/338

Cauchy Product

Products of Infinite Series or Power Series (2)

o0 . 00 .
> z aix' z bjxj
i=0 j=0

2

=(@g+ar1x+axx +---)(b0+b1x+bzx2+---)

= agbg + (agpb1 + a1 bg)x + (agby + a1 by + azbo)x2 +--

> See Wikipedia: Cauchy product

o0
> If we have c(x) = > cix!
i=0

(o] i o0 .
> (0 = D x| [D ¥
i=0 Jj=0
00 n
= > | > ekenk | x"
n=0 \k=0

» This result is used in finding a closed form for the
Catalan numbers

» Based on Mike Spivey 2013

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises
Binary Tree Shapes
Generating Binary Trees
Catalan Numbers
Cauchy Product
Catalan Recurrence
Sample Catalan
Numbers
Commentary 6
Future Work

References

327/338

https://en.wikipedia.org/wiki/Cauchy_product
https://en.wikipedia.org/wiki/Catalan_number
https://mikespivey.wordpress.com/2013/03/19/the-catalan-numbers-from-their-generating-function/

Catalan Numbers

Catalan Recurrence (1)

>

>

Co=1

n
Cn1 = z CkCn-k
k=0
Define c(x) to be the generating function of the infinite
sequence of the Catalan numbers

cx)= > Cpx"
n=0

Hence we can multiply both sides of the recurrence by
x" and sum

oo

%) n
Z Cn1 x" = Z Z CkCnk | X"
n=0 n=0 \k=0

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises
Binary Tree Shapes
Generating Binary Trees
Catalan Numbers
Cauchy Product
Catalan Recurrence
Sample Catalan

Numbers
Commentary 6
Future Work

References

328/338

https://en.wikipedia.org/wiki/Generating_function

Catalan Numbers

Catalan Recurrence (2)

00 00 n
> Z Cni1x" = Z Z CkCh-k | X"
n=0 n=0 \k=0
.I o0
> — > Cpx™! = (c(x))? by Cauchy product
X n=0
.l o
> | 2 Gx"-Go | = (c)?

n=0
> Leko-1) = ()2
X

> x(c(x)2-c(x)+1=0

1+£+/1-4x

> b= 2x

» We know c¢(0) = Cy =1

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree

Exercises

Binary Tree Shapes
Generating Binary Trees
Catalan Numbers
Cauchy Product
Catalan Recurrence
Sample Catalan

Numbers
Commentary 6
Future Work

References

329/338

Catalan Numbers Binary Trees

Phil Molyneux
Catalan Recurrence (3)

1+v1-4x

Commentary 1

— Agenda
C(X) - 2X Adobe Connect
» We know C(O) = CO =1 Commentary 2

Binary Trees

> Applylng L’H6pita|'s rUIe Iterative Traversals
|| f() Im f (X) Commentary 3

X—C Q(X) X—C g' (X) Binary Search Trees

Commentary 4

1- V] -4x . (4X) j AVL Trees

» |im —— = lim —————— =1
x—0* 2X x—0* 2 AVL Trees: Sets
Commentary 5
1-+1-4x
> Hence C(X) = Binary Tree
2X Exercises
. . . Binary Tree Shapes
» We now use the generalised Binomial theorem to Generating Binary Trees
P i Catalan Numbers
expand this expression '

Cauchy Product
Catalan Recurrence
Sample Catalan
Numbers
Commentary 6
Future Work

References

330/338

https://en.wikipedia.org/wiki/L'H%C3%B4pital's_rule
https://en.wikipedia.org/wiki/Binomial_theorem

Catalan Numbers
Catalan Recurrence (4)
» The generalised Binomial theorem has
If x| > |yl and r is any complex number then
) =3 (7 Jxrkyk
k-0 k

ry _rlr=-1)---(r-k+1)
k)~ k!

where (

> c(x)=%(1 -M)=1— 1-> <]f’2)<-4x)"

2X frur
» The coefficient of x" expands to
1(1 1
sl3-1)---(5-n+1
n!
10 -2)---(01-2n+2)
B n!

(-1)2"

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises
Binary Tree Shapes
Generating Binary Trees
Catalan Numbers
Cauchy Product
Catalan Recurrence
Sample Catalan

Numbers
Commentary 6
Future Work

References

331/338

https://en.wikipedia.org/wiki/Binomial_theorem

Catalan Numbers

Catalan Recurrence (5)

» The coefficient of x" expands to

_ 10-2)---(1-2n+2)

B+ @n-3)1)]

_(MB)---@n- 3)(-1)!

D"2mER2n-2)---(Q2)

m2R2n-1)

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises
Binary Tree Shapes
Generating Binary Trees
Catalan Numbers
Cauchy Product
Catalan Recurrence
Sample Catalan
Numbers
Commentary 6
Future Work

References

332/338

Catalan Numbers

Catalan Recurrence (6)
1 > (2n) 1
> H =— 1] _ ' yn
ence c(x) > x +n=§o<n>2n_]x

1 S (2n\ 1
o _ - yhn
=55 1+(1)+Z(>2n_]x

n

1 (2n\ 1 .,
_2§(n>2n—1
n=1
Sl (2n+)) 1,
"zz(n+1 >2n+1
n=0
1 & (2n+2)(2n+1)<2n> 1 n
_ 1y lentoentDiem) 1,
2
2n=0 (n+1) nj)2n+1
_i 1 (2n\ ,
_n=0n+1 n
» Hence Cy = 1(2n>
n+1\n

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree

Exercises

Binary Tree Shapes
Generating Binary Trees
Catalan Numbers
Cauchy Product
Catalan Recurrence
Sample Catalan

Numbers
Commentary 6
Future Work

References

333/338

Sample Catalan Numbers

Mathematica code

In[1]:= Series[(1 - Sqrt[1-4x])/(2x),{x,0,12}]
Out[1l]= SeriesData[x, 0, {1, 1, 2, 5, 14, 42, 132, 429, 1430, \
4862, 16796, 58786, 208012}, 0, 13, 1]

» Generating function form

> 14+ x+2x2+5x3 +14x% +42x> +132x°
+429x7 +1430x8 + 4862x% + 16796x'0
+58786x" +208012x'2 + 0 (x'3)

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises
Binary Tree Shapes
Generating Binary Trees
Catalan Numbers
Cauchy Product
Catalan Recurrence
Sample Catalan
Numbers
Commentary 6
Future Work

References

334/338

Commentary 6

Tutorial End, References and Colophon

6 Tutorial End, References and Colophon

vV v v Y

vV v vy VY

Future work and dates
References to other Python texts or documentation
References to other computing material

Article version has the full references and bibliography with
back references

Colophon

LaTeX with Beamer, Listings and other packages
Index of Python code and diagrams

PGF/TikZ for the diagrams

External copies of the diagrams as PDF with tight bounding
boxes are available

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

335/338

Future Work

Graph algorithms, Greed, Logic, Computability

>
>

vV vyVvyy

Hashing and hash tables

Binary search trees, height balanced binary search
trees, AVL trees

Graph algorithms

Greedy algorithms

Logic, Computability

Future dates for tutorials and TMAs

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work

References

336/338

Python

Web Links & References

>

>

Lutz (2013) Learning Python — one of the best
introductory books

Lutz (2011) Programming Python — a more advanced
book

Martelli et al (2023) Python in a Nutshell

Ramalho (2022) Fluent Python a more advanced book
Python 3 Documentation
https://docs.python.org/3/

Python Style Guide PEP 8

https://www.python.org/dev/peps/pep-0008/
(Python Enhancement Proposals)

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work
References

Python Web Links &
References

Haskell Web Links &
References

337/338

https://docs.python.org/3/
https://www.python.org/dev/peps/pep-0008/

Haskell

Web Links & References

>
>
>

Haskell Language https://www.haskell.org
HaskellWiki https://wiki.haskell.org/Haskell
Learn You a Haskell for Great Good!
http://learnyouahaskell.com — very readable
introduction to Haskell

Bird and Wadler (1988); Bird (1998, 2014) — one of
the best introductions but tough in parts, requires
some mathematical maturity — the three books are in
effect different editions

Bird, Gibbons (2020) Algorithm Design with Haskell —
developing the algorithms in a purely functional way
Functors, Applicatives, and Monads in Pictures
http://adit.io/posts/2013-04-17-functors,
_applicatives,_and_monads_in_pictures.htm]l —
a very good outline with cartoons

Haskell Wikibook
https://en.wikibooks.org/wiki/Haskell

Binary Trees

Phil Molyneux

Commentary 1
Agenda

Adobe Connect
Commentary 2
Binary Trees
Iterative Traversals
Commentary 3
Binary Search Trees
Commentary 4
AVL Trees

AVL Trees: Sets
Commentary 5

Binary Tree
Exercises

Commentary 6
Future Work
References

Python Web Links &
References

Haskell Web Links &
References

338/338

https://www.haskell.org
https://wiki.haskell.org/Haskell
http://learnyouahaskell.com
http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html
http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html
https://en.wikibooks.org/wiki/Haskell

	Commentary 1
	M269 Tutorial Agenda — Binary Trees, Recursion, Searching
	Adobe Connect Interface and Settings
	Adobe Connect Interface
	Adobe Connect Settings
	Adobe Connect — Sharing Screen & Applications
	Adobe Connect — Ending a Meeting
	Adobe Connect — Invite Attendees
	Layouts
	Chat Pods
	Graphics Conversion for Web
	Adobe Connect Recordings

	Commentary 2
	Binary Trees — Introduction
	Binary Trees — Terminology
	Binary Tree Examples
	Representation of Binary Trees
	Binary Tree Traversals
	Tree Traversals — Depth First
	Tree Traversals — Breadth First

	Iterative Tree Traversals
	Iterative InOrder Traversal
	Iterative PreOrder Traversal
	Iterative PostOrder Traversal

	Commentary 3
	Binary Search Trees
	Binary Search Trees — Definition
	Inserting a Node
	BST Operations
	BST Deleting a Node

	Commentary 4
	Height Balanced Trees
	AVL Trees and Functions
	Example AVL Trees
	AVL Tree Transformations
	AVL Trees — The makeAVLTree Function
	AVL Tree Insertion and Deletion
	AVL Tree Performance

	AVL Tree Application — Sets
	Set Representation
	Set Operations
	Sets — Implementation Points

	Commentary 5
	Binary Tree Common Exercises
	Binary Tree Shapes
	Generating Binary Trees
	Catalan Numbers

	Commentary 6
	Future Work
	Web Sites & References
	Python Web Links & References
	Haskell Web Links & References

