Sorting
Phil Molyneux
Agenda
Adobe Connect

Sorting: Motivation

Sorting Taxonomy

SO rti n g Recursion/Iteration
Split/Join Sorting
M269 Tutorial

Future Work

References

Phil Molyneux

5 January 2025

1/87

Sorting

M269 Tutorial: Sorting, Recursion

Phil Molyneux
Agenda
Agenda
» Welcome & introductions Adobe Connect

> Tutorial topics: Sorting Algorithms, Recursion sorting: Morvation

Sorting Taxonomy

» Adobe Connect — if you or | get cut off, wait till we Recursion/Iteration
reconnect (or send you an email) Split/Join Sorting
» Time: about 1.5 hours Future Work

References

» Do ask questions or raise points.
> Source: of slides, notes, programs and playing cards:
M269Tutorial20250105SortingPrsntn2024)/

www.pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269Tutorial20250105SortingPrsntn2024)/

2/87

https://www.pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269Tutorial20250105SortingPrsntn2024J/
https://www.pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269Tutorial20250105SortingPrsntn2024J/

M269 Tutorial Sorting

Phil Molyneux

Introductions — Phil
Agenda

» Name Phil Molyneux Adobe Connect
> BaCkgrOMi’ld Sorting: Motivation

» Undergraduate: Physics and Maths (Sussex)

> Postgraduate: Physics (Sussex), Operational Research
(Brunel), Computer Science (University College, London)

> Worked in Operational Research, Business IT, Web
technologies, Functional Programming

Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
Future Work

References

> First programming languages Fortran, BASIC, Pascal
> Favourite Software

> Haskell — pure functional programming language

> Text editors TextMate, Sublime Text — previously Emacs
> Word processing in IKTeX — all these slides and notes
Mac OS X

> Learning style — | read the manual before using the
software

v

3/87

https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://www.haskell.org/
https://macromates.com
http://www.sublimetext.com
https://www.emacswiki.org/
https://www.latex-project.org/
https://developer.apple.com/

M250 Tutorial Sorting

Phil Molyneux
Introductions — You
Agenda
» Name? Adobe Connect

> Favourite software/Programming language ? erting: Metivation

Sorting Taxonomy

» Favourite text editor or integrated development Recursion/Iteration
environment (IDE) Split/Join Sorting

Future Work

> List of text editors, Comparison of text editors and
Comparison of integrated development environments

» Other OU courses?
> Anything else?

References

4/87

https://en.wikipedia.org/wiki/Text_editor
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/List_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments

Adobe Connect

Interface — Host View

M250 Units 10, 11

Collections, Arrays, Sets, Maps, Lists

Phil Molyneux

18 April 2021

M250 Units 10, 11
Phil Molyneux
M250 Units 10, 11
Tutorial Agenda
Adobe Connect

Classes and
Interfaces.

Sets
Maps
Uists

Collection
Implementations.

TMAO3 Practice
Quiz

Common Mistakes
sshell
What Next ?

References,

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings
Sharing Screen &
Applications
Ending a Meeting
Invite Attendees
Layouts
Chat Pods
Web Graphics
Recordings

Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
Future Work

References

5/87

Adobe Connect

Interface — Participant View

M250 Units 10, 11

M250 Units 10, 11 Tutorial

Introductions

Phil Molyneux

M250 Units 10, 11
Tutorial Agenda.

> Introductions P
> Name Phil Molyneux Classes and
> Learning Style: Reads the manual s
> Learnt last month Framework for Teaching Recursion
and wrote notes on Recursion Teaching
> You?

Sets

Maps

Uists

Collection
Implementations.

TMAO3 Practice
Quiz

Common Mistakes
Ishell
What Next ?

References

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
Future Work

References

6/87

Adobe Connect

Settings

>

v

Everybody [Menu bar>> Meeting>> Speaker & Microphone Setup]

[Menu bar>> Microphone>> Allow Participants to Use Microphone] 4

Check Participants see the entire slide Workaround

» Disable Draw [Share pod>> Menu bar>> Draw icon]
> Fit Width [Share p0d>> Bottom bar>> Fit Width icon] %4

[Meeting)) Preferences>> General >> Host Cursor>> Show to all attendees

[Menu bar>> Video>> Enable Webcam for Participants] 4

Do not Enable single speaker mode
Cancel hand tool
Do not enable green pointer

Recording [Meeting>> Record Session] v

Documents Upload PDF with drag and drop to share
pod

Delete [Meeting>> Manage Meeting Information>> Uploaded Content]
and [check ﬁlename>> click on delete]

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
Future Work

References

7/87

Adobe Connect

Access

> Tutor Access
[TutorHome)) M269 Website >> Tutorials]

[Cluster Tutorials>> M269 Online tutorial room]

[Tutor Groups>> M269 Online tutor group room}

[Module—wide Tutorials>> M269 Online module-wide room]

> Attendance

[TutorHome>> Students>> View your tutorial timetables]
Beamer Slide Scaling 440% (422 x 563 mm)
Clear Everyone’s Status

[Attendee Pod >> Menu >> Clear Everyone’s Status]

vy

v

Grant Access and send link via email

[Meeting >> Manage Access & Entry>> Invite Participants. ..]

> Presenter Only Area

[Meeting >> Enable/Disable Presenter Only Area

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
Future Work

References

8/87

Adobe Connect

Keystroke Shortcuts

v

vV vyVvyy

Keyboard shortcuts in Adobe Connect

Toggle Mic (58)+(M] (Mac), [Ctrl)+[M] win) (On/Disconnect)
Toggle Raise-Hand status [38)+E]

Close dialog box [®] (Mac), (Win)

End meeting (¢]+[\]

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
Future Work

References

9/87

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html

Adobe Connect Interface

Sharing Screen & Applications

>

v

[Share My Screen>> Application tab >> Terminal] for Terminal

[Share menu >> Change View>> Zoom in] for mismatch of screen
size/resolution (Participants)

(Presenter) Change to 75% and back to 100% (solves
participants with smaller screen image overlap)

Leave the application on the original display

Beware blued hatched rectangles — from other (hidden)
windows or contextual menus

Presenter screen pointer affects viewer display —
beware of moving the pointer away from the application

First time: [System Preferences)) Security & Privacy)) Privacy)

Accessibility

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
Future Work

References

10/87

https://en.wikipedia.org/wiki/Terminal_(macOS)

Adobe Connect

Ending a Meeting

>

>
>
>
>

Notes for the tutor only
Student: [Meeting>> Exit Adobe Connect]

Tutor:
Recording [Meeting)) Stop Recording] v/
Remove Participants Meeting)) End Meeting. .. | v
> Dialog box allows for message with default message:
» The host has ended this meeting. Thank you for
attending.
Recording availability In course Web site for joining
the room, click on the eye icon in the list of recordings
under your recording — edit description and name
Meeting Information [Meeting>> Manage Meeting Information] —
can access a range of information in Web page.
Delete File Upload [Meeting>> Manage Meeting Information>
2 Uploaded Content tab] select file(s) and click
Attendance Report see course Web site for joining
room

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
Future Work

References

11/87

Adobe Connect

Invite Attendees

>

Provide Meeting URL [Menu>> Meeting>> Manage Access & Entry>
Y Invite Participants. ... |

Allow Access without Dialog

9 Manage Meeting Information| provides new browser window
with Meeting Information (Tab bar)) Edit Information)

Check Anyone who has the URL for the meeting can
enter the room

Default Only registered users and accepted guests may
enter the room

Reverts to default next session but URL is fixed

Guests have blue icon top, registered participants have
yellow icon top — same icon if URL is open

See Start, attend, and manage Adobe Connect meetings
and sessions

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
Future Work

References

12/87

https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html
https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html

Adobe Connect

Entering a Room as a Guest (1)

» Click on the link sent in email from the Host
> Get the following on a Web page

> As Guest enter your hame and click on

m Adobe Connect

M269-21) Online tutorial room
London/SE (1,13) CG [2311] (M269-21J)
(1)

Guest Registered User

Name

Guest Name

By entering a Name & clicking "Enter Room’, you agree that
you have read and accept the Terms of Use & Privacy_Policy

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
Future Work

References

13/87

Adobe Connect

Entering a Room as a Guest (2)

> See the Waiting for Entry Access for Host to give
permission

4 Adobe Connect

Waiting for Entry Access

This is a private meeting. Your request to enter has

been sent to the host. Please wait for a response.

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting

Layouts

Chat Pods
Web Graphics
Recordings

Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
Future Work

References

14/87

Adobe Connect

Entering a Room as a Guest (3)

> Host sees the following dialog in Adobe Connect and

grants access

Guest entry

Guest Name (guest)

Allow everyone

(]

1 guest would like to enter the room. Do you want
to allow or deny entry to incoming guests?

9 0 =

Denyeveryone Close

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting

Layouts

Chat Pods
Web Graphics
Recordings

Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
Future Work

References

15/87

Adobe Connect

Layouts

>

v

v

Creating new layouts example Sharing layout
[Menu>> Layouts>> Create New Layout. ..] [Create a New Layout dialog>
) Create a new blank layout] and name it PMolyMain

New layout has no Pods but does have Layouts Bar open
(see Layouts menu)

Pods

(Menu) Pods) Share)) Add New Share] and resize/position —
initial name is Share n — rename PMolyShare

Rename Pod [Menu>> Pods>> Manage Pods. . . } [Manage Pods>
> Select>> Rename] or [Double-click & rename]

Add Video pod and resize/reposition
Add Attendance pod and resize/reposition

Add Chat pod — rename it PMolyChat — and
resize/reposition

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
Future Work

References

16/87

Adobe Connect

Layouts

» Dimensions of Sharing layout (on 27-inch iMac)

» Width of Video, Attendees, Chat column 14 cm
> Height of Video pod 9 cm

> Height of Attendees pod 12 cm

> Height of Chat pod 8 cm

» Duplicating Layouts does not give new instances of
the Pods and is probably not a good idea (apart from
local use to avoid delay in reloading Pods)

» Auxiliary Layouts name PMolyAux0On

> Create new Share pod
> Use existing Chat pod
> Use same Video and Attendance pods

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings
Sharing Screen &
Applications
Ending a Meeting
Invite Attendees
Layouts
Chat Pods
Web Graphics
Recordings

Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
Future Work

References

17/87

Adobe Connect

Chat Pods
» Format Chat text
> [Chat Pod>> menu icon>> My Chat Color]
» Choices: Red, Orange, Green, Brown, Purple, Pink, Blue,
Black
> Note: Color reverts to Black if you switch layouts
> [Chat Pod>> menu icon>> Show Timestamps]

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings
Sharing Screen &
Applications
Ending a Meeting
Invite Attendees
Layouts
Chat Pods
Web Graphics
Recordings

Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
Future Work

References

18/87

Graphics Conversion
PDF to PNG/JPG

» Conversion of the screen snaps for the installation of
Anaconda on 1 May 2020

» Using GraphicConverter 11

> > Convert & Modify>> Conversion>> Convert]

> Select files to convert and destination folder

> Click on [Start selected Function] or [88]+(<)

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
Future Work

References

19/87

Adobe Connect Recordings

Exporting Recordings

v

VYV Vv VvV VvV VvV VvVYVYyy

[Menu bar>> Meeting>> Preferences >> Video]

(Aspect ratio)) Standard (4:3)] (not Wide screen (16:9) default)
(Video quality)) Full HD] (1080p not High default 480p)
Recording [Menu bar)) Meeting)) Record Session | v/

Export Recording

[Menu bar>> Meeting>> Manage Meeting Information]

[New window>> Recordings>> check Tutorial>> Access Type button

(check Public)) check Allow viewers to download|

Download Recording
[New window>> Recordings>> check Tutorial>> Actions>> Download File

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics
Recordings

Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
Future Work

References

20/87

Sorting

Motivation

>

>
>
>

Motivation for studying sorting algorithms
Taxonomy of sorting — see Wikipedia Sorting Algorithm
Abstract comparison sort — split/join algorithm

Insertion sort and selection sort described with
split/join algorithm diagram and implemented in
Python. (A previous edition also included optional
Haskell code)

Recursive and iterative versions

Mergesort, Quicksort and Bubble sort in the same
framework

Sorting via a data structure — Tree sort
Comparison sorts and Distribution sorts

Review of Web sites and sorting algorithms used in
practice

Sorting

Phil Molyneux

Agenda
Adobe Connect

Sorting: Motivation
Sorting as Dances
Card Sorting Ex

Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
Future Work

References

21/87

https://en.wikipedia.org/wiki/Sorting_algorithm

Sorting Algorithms

Motivation for Studying

>

From Knuth (1998, page v) The Art of Computer
Programming Vol. 3: Sorting and Searching

. virtually every important aspect of programming

arises somewhere in the context of sorting or searching.

How are good algorithms discovered ?
How can given algorithms and programs be improved ?

How can the efficiency of algorithms be analyzed
mathematically ?

How can a person choose rationally between different
algorithms for the same task ?

In what senses can algorithms be proved best possible ?

How does the theory of computing interact with
practical considerations ?

Sorting

Phil Molyneux

Agenda
Adobe Connect

Sorting: Motivation
Sorting as Dances
Card Sorting Ex

Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
Future Work

References

22/87

Sorting Algorithms

Demonstration 1 Sorting Algorithms as Dances

>

>
>
>
>

AlgoRythmics
[Videos tab >> Insertion Sort]

Insertion Sort
This is the Romanian folk music that inspired Bartok

Compare the dance with the Python algorithm for
Insertion Sort below

Sorting

Phil Molyneux

Agenda
Adobe Connect

Sorting: Motivation
Sorting as Dances
Card Sorting Ex

Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
Future Work

References

23/87

https://www.youtube.com/user/AlgoRythmics

Sorting

Sorting Algorithms

Phil Molyneux
Activity 1 Card Sorting Exercise (1)
Agenda
» Almost everyone has played cards and, as part of any Adobe Connect
card game, will have sorted cards in their hand Sorting: Motivation

Sorting as Dances

> This exercise is aimed at writing down how you sort you S
.. . . Sorting Taxonomy
cards and giving these instructions to another person to
follow.

Recursion/Iteration

Split/Join Sorting

» Decide on your general ordering of playing cards — you Future Work
are free to set any ordering you like but here is the References
usual ordering for suits and values:

Clubs < Diamonds < Hearts < Spades

Two < Three < Four < Five < Six
< Seven < Eight < Nine < Ten
< Jack < Queen < King < Ace

» Write down your method for sorting cards — the
method must specify how to choose a card to move and
where to move it to.

24/87

Sorting Algorithms

Activity 1 Card Sorting Exercise (2)

> Take the 6 cards given below — record the order of the

cards

‘e o] v v |8
%] o v |@
v ¥ Y

Using your method, sort the cards — record the order
of the cards after each move of a card

Now swap your written method and the cards in your
original order with another student.

Follow the other student’s method to sort the cards and
record your steps

Sorting

Phil Molyneux

Agenda
Adobe Connect

Sorting: Motivation
Sorting as Dances
Card Sorting Ex

Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
Future Work

References

25/87

Sorting

Activity 1 Card Sorting Exercise

Working Space

Phil Molyneux

Agenda
Adobe Connect

Sorting: Motivation
Sorting as Dances

Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
Future Work

References

26/87

Activity 1 Card Sorting Exercise (3)

Discussion

>

Did both of you end up with the same sequence of
steps?
Did any of the instructions require human knowledge?

General point: probably most people use some variation
on Insertion sort or Selection sort but would have steps
that had multiple shifts of cards.

Note: This activity may be done on the Whiteboard
using cards from http://pmolyneux.co.uk/0U/M269/
M269TutorialNotes/M269TutorialSorting/Cards/

Sorting

Phil Molyneux

Agenda
Adobe Connect

Sorting: Motivation
Sorting as Dances
Card Sorting Ex

Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
Future Work

References

27/87

http://pmolyneux.co.uk/OU/M269/M269TutorialNotes/M269TutorialSorting/Cards/
http://pmolyneux.co.uk/OU/M269/M269TutorialNotes/M269TutorialSorting/Cards/

Sorting

Taxonomy of Sorting Algorithms

Phil Molyneux
Comparison Sorts
Agenda
» Computational complexity — worst, best, average Adobe Connect
number of comparisons, exchanges and other program Sorting: Motivation
contructs (but see http://www.softpanorama.org/ g ooy
Algorithms/sorting.shtml for Slightly Skeptical Recursion/lteration
View) — O(n?) bad, O(nlog n) better Split/Join Sorting
Future Work

> Other issues: space behaviour, performance on typical
data sets, exchanges versus shifts

> Abstract sorting algorithm — Following Merritt (1985,
1997) and Azmoodeh (1990, chp 9), we classify the
divide and conquer sorting algorithms by easy/hard
split/join

References

> see diagram below

28/87

http://www.softpanorama.org/Algorithms/sorting.shtml
http://www.softpanorama.org/Algorithms/sorting.shtml

Sorting

Taxonomy of Sorting Algorithms
Abstract Sorting Algorithm

Phil Molyneux

Agenda
(u nsorted list xs) Adobe Connect

Sorting: Motivation

Sorting Taxonomy

) Sorting Classifications
If (Iength XS >]) then Recursion/Iteration
(XS] ,XSZ) = Spl't XS Split/Join Sorting

Future Work
References

xs1 Xs2

[ys = join (ys1 ,ysZ)]

29/87

Sorting Algorithms

Other Classifications

> See Wikipedia Sorting algorithm for big list
» Comparison Sorts

> Insertion sort, Selection sort, Merge sort, Quicksort,
Bubble sort

> Sorting via a data structure: Tree sort, Heap sort
» Non-Comparison sorts — distribution sorts — bucket
sort, radix sort
» Sorts used in Programming Language Libraries
» Timsort by Tim Peters — used in Python and Java —
combination of merge and insertion sorts

> Haskell — modified Mergesort by lan Lynagh in GHC
implementation

Sorting

Phil Molyneux

Agenda
Adobe Connect
Sorting: Motivation

Sorting Taxonomy
Sorting Classifications

Recursion/Iteration
Split/Join Sorting
Future Work

References

30/87

https://en.wikipedia.org/wiki/Sorting_algorithm
https://en.wikipedia.org/wiki/Timsort
https://www.haskell.org/onlinereport/haskell2010/
https://wiki.haskell.org/GHC

R . Sorting
ecu rSIon Phil Molyneux
Recursion and Iteration
Agenda
» Many functions are naturally defined using recursion Adobe Connect

Sorting: Motivation

» A recursive function is defined in terms of calls to itself
acting on smaller problem instances along with a base
case(s) that terminate the recursion

Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
> Classic example: Factorial n'=nx(n-1)---2x1 Future Work

References

sdef fac(n) :
6 ifn==1:
7 return 1

8 else :

9 return n * fac(n-1)

» We can evaluate fac(6) by using a substitution model
(section 1.1.5) for function application

» To evaluate a function applied to arguments, evaluate
the body of the function with each formal parameter
replaced by the corresponding actual arguments.
Abelson and Sussman (1996, section 1.1.5) Structure
and Interpretation of Computer Programs

31/87

https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://mitp-content-server.mit.edu/books/content/sectbyfn/books_pres_0/6515/sicp.zip/full-text/book/book-Z-H-10.html
https://mitp-content-server.mit.edu/books/content/sectbyfn/books_pres_0/6515/sicp.zip/full-text/book/book-Z-H-10.html

R . Sorting
ec u rS I O n Phil Molyneux
Evaluation of fac(6)
- Agenda
Expression to Evaluate Reason
Adobe Connect
fac(6) Initial line 5 - o
~ 6« fac(s) line 8 Sorting: Motivation
—~ 6 % (5 % fac(4)) line 8 Sorting Taxonomy
- 6 % (5 % (4 = fac(3)) line 8 Recursion/Iteration
- 6 % (5% (4 = (3 * fac(2)))) line 8 o)
© 6% (5% (4% (3% 2 fac(D))) lines SR EeRE
- 6% (5x (4% 3% (2 1)) line 6 Future Work
- 720 Arithmetic

References

» This occupies more space in the process of evaluation
since we cannot do the multiplications until we reach
the base case of fac()

» This is a recursive function and a linear recursive
process

» Implemented in Python (and most imperative languages)
with a stack of function calls

» We can define an equivalent factorial function that
produces a different process

32/87

Recursion

Iterative Factorial

24def facIter(n) :
25 return accProd(n,1)

27def accProd(n,x) :

28 if n ==

29 return x

30 else :

31 return accProd(n-1, n * x)

» facIter() uses accProd() to maintain a running
product and accumulate the final result to return

» We can display the evaluation of facIter(6) using the
substitution model

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
Future Work

References

33/87

Sorting

Recursion "
il Molyneux
Evaluation of facIter(6)
Agenda
Expression to Evaluate Reason ey .
facIter(6) Initial line 24 Sorting: Motivation
— accProd(6,1) line 25 Sorting Taxonomy
e accProd(S y 6 * 1) line 30 & (*) Recursion/Iteration
e accProd (4, 5 % 6) line 30 & (*) Split/Join Sorting
— accProd(3, 4 * 30) line 30 & (%) Future Work
— accProd(2, 3 = 120) line 30 & (*) References
— accProd(1, 2 * 360) line 30 & (*)
- 720 line 28 & ()

» This occupies constant space — at each stage all the
variables describing the state of the calculation are in
the function call

» This is a recursive program and an iterative process

> We are assuming the multiplication is evaluated at each
function call (strict or eager evaluation)

» Also referred to as tail recursion — we need not build a
stack of calls

34/87

https://en.wikipedia.org/wiki/Tail_call

Recursion and Iteration

Iterative Factorial Exercises
> Write a version of the factorial function using awhile
loop in Python

> Write a version of the factorial function using a for
loop in Python

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
Future Work

References

35/87

Sorting

Recursion and Iteration

Phil Molyneux
Iterative Factorial Exercises — Solutions
Agenda
» Factorial function using a while loop in Python Adobe Connect
Sorting: Motivation
sedef facWhile(n) : Sorting Taxonomy
47 x =1 . -
Recursion/Iteration
49 whilen > 1 : Split/Join Sorting
50 X =n* X Future Work
51 n=(mn-1)

References

53 return x

» Factorial function using a for loop in Python

s7def facFor(n) :
58 x =1

60 for i 1in range(n,0,-1) :
61 X =1 % X

63 return Xx

36/87

R . Sorting
ecu rSIOn Phil Molyneux
Tail Recursion and lteration
Agenda
» When the structured programming ideas emerged in the Adobe Connect
1960s and 1970s the languages such as C and Pascal Selnoiictiaton
implemented recursion by always placing the calls on sorting Taxonomy
the stack — Python follows this as well Recursion/iteration
Split/Join Sorting
» This means that in those languages they have to have Future Work
special constructs such as for loops, while loops, to References

express iterative processes without recursion

» A for loop is syntactically way more complicated than a
recursive definition

» Some language implementations (for example, Haskell)
spot tail recursion and do not build a stack of calls

» You still have to write your recursion in particular ways
to allow the compiler to spot such optimisations.

37/87

https://en.wikipedia.org/wiki/Structured_programming

Sorting

Recursion »
il Molyneux
Structured Programming, GOTO and Recursion
Agenda
» Bohm & Jacopini (1966) showed that structured Adobe Connect
programming with a combination of sequence, Sorting: Motivation

Sorting Taxonomy

selection, iteration and procedure calls was Turing
complete (see Unit 7)

Recursion/Iteration

Split/Join Sorting
» In the late 1980s two books came out that were Future Work

particularly influential: References

» Abelson and Sussman (1984, 1996) Structure and
Interpretation of Computer Programs (known as SICP)
which was the programming course for the first year at
MIT,

» Bird and Wadler (1988, 1998, 2014) Introduction to
Functional Programming which was the the
programming course for the first year at Oxford.

» See SICP online and Section 1.2 Procedures and the
Process They Generate

38/87

https://en.wikipedia.org/wiki/Turing_completeness
https://en.wikipedia.org/wiki/Turing_completeness
https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book.html
https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book-Z-H-11.html
https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book-Z-H-11.html

Sorting

Recursion »
il Molyneux
Structured Programming, GOTO and Recursion (2)
Agenda
> Dijkstra (1968) Go To Statement Considered Harmful Adobe Connect
illustrates a debate on structured programming SORING) (N

Sorting Taxonomy

» The von Neumann computer architecture takes the
memory and state view of computation as in Turing m/c

Recursion/Iteration

Split/Join Sorting

» Lambda calculus is equivalent in computational power Future Work
to a Turing machine (Turing showed this in 1930s) but References
efficient implementations did not arrive until 1980s

» Functional programming in Lisp or APL was slow

» Alan Perlis (1982) Epigrams on Programming:
[Functional programmers] know the value of everything
but the cost on nothing

> Erik Meijer (1991) Recursion is the GOTO of functional
programming

> Leading to common patterns of higher order functions,
map, filter, fold and polymorphic data types

39/87

https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://en.wikipedia.org/wiki/Lambda_calculus
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/APL_(programming_language)

Split/Join Sorting Algorithms

Example Algorithms & Implementation

Insertion Sort
Selection Sort

Merge Sort
Quicksort
Bubble Sort

Implementations in Python, recursive and non-recursive

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort
Quicksort
Bubble Sort

Future Work

References

40/87

Insertion Sort
Abstract Algorithm

» Insertion Split xs1 is the singleton list of the first item;
xs2 is the rest of the list

> [nsertion Join insert the item in the singleton list into
the sorted result of the rest of the list

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort

Insertion Sort —
Abstract Algorithm

Insertion Sort — Python

Activity 2 — Insertion
Sort: Trace an
Evaluation

Insertion Sort —
Non-recursive

Activity 3 — Insertion
Sort Non-recursive
Trace

Selection Sort
Merge Sort
Quicksort
Bubble Sort

Future Work

References

41/87

Insertion Sort
Abstract Sorting Algorithm Diagram

(13,0,1,8,7,2,5,4,9,61)

[(xs] , Xs2) = insertionSplit xs]

3] (10,1,8,7,2,5,4,9,6])

sort isort

3] (10,1,2,4,5,6,7,8,9])

}“\/
{

ys = insertionjoin (ys1 ,ysZ)]

(10,1,2,3,4,5,6,7,8,9])

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort

Insertion Sort —
Abstract Algorithm

Insertion Sort — Python

Activity 2 — Insertion
Sort: Trace an
Evaluation

Insertion Sort —
Non-recursive

Activity 3 — Insertion
Sort Non-recursive
Trace

Selection Sort
Merge Sort
Quicksort
Bubble Sort

Future Work

References

42/87

Insertion Sort

Python Implementation

4def insSort(xs)
if len(xs) <=1
return xs

5
6
7
8

1odef ins(x,xs)

11
12
13
14
15
16

else :

return ins(xs[0],insSort(xs[1:]1))

if xs == []

return [x]
elif x <= xs[0]

return [x] + xs

else :

return [xs[0]] + ins(x,xs[1:])

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort

Insertion Sort —
Abstract Algorithm
Insertion Sort — Python
Activity 2 — Insertion
Sort: Trace an
Evaluation

Insertion Sort —
Non-recursive

Activity 3 — Insertion
Sort Non-recursive
Trace

Selection Sort
Merge Sort
Quicksort
Bubble Sort

Future Work

References

43/87

Insertion Sort
Python Rewritten

> In the style of the abstract algorithm

20def insSort01(xs)
if Ten(xs) <=1 :

21
22
23
24
25
26
27
28

return xs
else :

(xsl,xs2) = insertionSplit(xs)
ysl = insSort01(xsl)

ys2 = insSort01(xs2)

ys = insertionJoin(ysl,ys2)

return ys

3odef insertionSplit(xs)
(xsl,xs2) = (xs[0:1],xs[1:1)
return (xsl,xs2)

31
32

35 if ys2 == []
36 return ysl
37 elif ys1[0] <=
38 return ysl +
39 else :

40 return ys2[0

3adef insertionJoin(ysl,ys2)

ys2[0]
ys2

:1] + insertionJoin(ysl,ys2[1:])

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort

Insertion Sort —
Abstract Algorithm

Insertion Sort — Python

Activity 2 — Insertion
Sort: Trace an
Evaluation

Insertion Sort —
Non-recursive

Activity 3 — Insertion
Sort Non-recursive
Trace

Selection Sort
Merge Sort
Quicksort
Bubble Sort

Future Work

References

44/87

Activity 2 Trace an Evaluation

Insertion Sort — Python Recursive
» Evaluation of insSort([3,0,1,8,7])

» Answer goes here

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort

Insertion Sort —
Abstract Algorithm

Insertion Sort — Python

Insertion Sort —
Non-recursive

Activity 3 — Insertion
Sort Non-recursive
Trace

Selection Sort
Merge Sort
Quicksort
Bubble Sort

Future Work

References

45/87

Sorting

Activity 2 Trace an Evaluation

Phil Molyneux
Insertion Sort — Python Recursive
Agenda
» Evaluation of insSort([3,0,1,8,7]) Adobe Connect
Expression to Evaluate Reason Eelnaiictiaticn
insSort([3,0,1,8,71) Initial line 4 SN VS
— 1ins(3, insSort([0,1,8,7])) line 7 Recursion/Iteration
- 1ins(3, 1ins(0, insSort([1,8,71))) line 7 N :
Spl N
~ ins@3, ins(0, ins(1, insSort([8,71)))) line 7 plitloin sorting
— 1ins(3, ins(0, ins(1, ins(8, insSort([71))))) line7 S ——
— 1ins(3, ins(0, ins(1, ins(8, [71)))) line 5 Abstract Algorithm
— 1ins(3, ins(0, ins(1, ([7] + ins(8, [1))))) line 15 Insertion Sort — Python
— 1ins(3, ins(0, ins(1, ([7]1 + [81)))) line 11 /s\c:ivi_tryz—lnsertion
. . . LT n
— 1ins(3, ins(0, ins(1, [7,81))) (+) operator Bl
~ dns@3, ins(0, ([1] + [7,81))) line 13 T
- 1ins(3, 1ins(0, [1,7,8])) (+) operator Non-recursive
- ins(3, ([0] + [1,7,81)) line 13 ég;iv:\‘tznﬁr;lllnr:iev:ion
- 1ins(3, [0,1,7,8D (+) operator Trace
- [0] + (ins 3 [1,7,8D) line 15 Selection Sort
- [0] + ([1] + (ins 3 [7,81)) line 15 Merge Sort
- [0] + ([11 + C[31 + C[7,81D))) line 13 Quicksort
- [0,1,3,7,8] (+) operator Bubble Sort

Future Work

» Note that the evaluation consumes more space in the
process of evaluation;

References

» also note that you need to be careful with the brackets
when doing an evaluation like this by hand.

46/87

Insertion Sort

Non-recursive Implementation

» The non-recursive version of Insertion sort takes each
element in turn and inserts it in the ordered list of
elements before it.

for index = 1 to (len(xs)-1) do
insert xs[index] in order in xs[0..index-1]

» Here is a Python implementation of the above (based on
Miller and Ranum (2011, page 215)).

42def insertionSort(xs)

43
44
45
46
47
48

50

for index in range(1l, Tlen(xs))
currentValue = xs[index]
position = index
while (position > 0) and xs[position - 1] > currentValue :
xs[position] = xs[position - 1]
position = position - 1

xs[position] = currentValue

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort

Insertion Sort —
Abstract Algorithm

Insertion Sort — Python

Activity 2 — Insertion
Sort: Trace an
Evaluation

Insertion Sort —
Non-recursive

Activity 3 — Insertion
Sort Non-recursive
Trace

Selection Sort
Merge Sort
Quicksort
Bubble Sort

Future Work

References

47/87

Activity 3

Trace an Evaluation — Python Non-recursive
» Evaluation of insertionSort([3,0,1,8,7])
» Showing just the outer for index loop

start arra
»alofr|e]7|seramay

» Answer goes here

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Insertion Sort —
Abstract Algorithm
Insertion Sort — Python
Activity 2 — Insertion
Sort: Trace an
Evaluation
Insertion Sort —
Non-recursive

Selection Sort
Merge Sort
Quicksort
Bubble Sort

Future Work

References

48/87

Activity 3

Trace an Evaluation — Python Non-recursive

» Evaluation of insertionSort([3,0,1,8,7])
» Showing just the outer for index loop

tart
>‘3|0|]|8|7‘saratrray

elef]s]7]
Lofs]ve]7]
Lol [s]e]7]
ODEBDR
Lol s]7]e]

index =1
index = 2
index =3
index = 4
end

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting

Insertion Sort

Insertion Sort —
Abstract Algorithm
Insertion Sort — Python
Activity 2 — Insertion
Sort: Trace an
Evaluation

Insertion Sort —
Non-recursive

Selection Sort
Merge Sort
Quicksort
Bubble Sort

Future Work

References

49/87

Selection Sort
Abstract Algorithm

> Selection Split xs1 is the singleton list of the minimum
item; xs2 is the original list with the minimum item
taken out

» Selection Join just put the minimum item and the sorted
xs2 together as the output list

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Selection Sort —
Abstract Algorithm
Selection Sort — Python

Selection Sort —
Non-recursive

Activity 5 — Finding
the Non-Recursive
Algorithm

Merge Sort
Quicksort
Bubble Sort

Future Work

References

50/87

Selection Sort

Abstract Sorting Algorithm Diagram

(13,0,1,8,7,2,5,4,9,61)

[(xs] , Xs2) = selectionSplit xsj

xs1 s2

(13,1,8,7,2,5,4,9,6])

sort isort

(11,2,3,4,5,6,7,8,9])

ys1 M

[ys = selectionjoin (ys1 ,ysZ)J

(10,1,2,3,4,5,6,7,8,9])

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort

Selection Sort —
Abstract Algorithm
Selection Sort — Python

Selection Sort —
Non-recursive

Activity 5 — Finding
the Non-Recursive
Algorithm

Merge Sort
Quicksort
Bubble Sort

Future Work

References

51/87

Selection Sort

Python Implementation

s4def selSort(xs)
s5 if len(xs) <=1

56 return xs

57 else

58 minEIlmnt = min(xs)

59 minIndex = xs.index(minElmnt)

60 xsWithoutMin = xs[:minIndex] + xs[minIndex+1:]
61 return [minETmnt] + selSort(xsWithoutMin)

» Why do we not use xs.remove(min(xs)) ?

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort

Selection Sort —
Abstract Algorithm

Selection Sort — Python

Selection Sort —
Non-recursive
Activity 5 — Finding
the Non-Recursive
Algorithm

Merge Sort
Quicksort
Bubble Sort

Future Work

References

52/87

Selection Sort

Python Implementation — Question

» Why do we not use xs.remove(min(xs)) ?

> remove () has the side effect of changing the original
argument

> If we want selSort() to be a function, with no side
effects then we should use something else

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort

Selection Sort —
Abstract Algorithm

Selection Sort — Python

Selection Sort —
Non-recursive
Activity 5 — Finding
the Non-Recursive
Algorithm

Merge Sort
Quicksort
Bubble Sort

Future Work

References

53/87

Selection Sort

Non-recursive Implementation

» The non-recursive version of Selection sort takes each
position of the list in turn and swaps the element at
that position with the minimum element in the rest of
the list from that position to the end of the list.

for fi11STot = 0 to (len(xs) - 2) do
find the minimum of
xs[fi11STot+1]..xs[Ten(xs) - 1]
and swap with xs[fi11STot]

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort

Selection Sort —
Abstract Algorithm

Selection Sort — Python

Selection Sort —
Non-recursive
Activity 5 — Finding
the Non-Recursive
Algorithm

Merge Sort
Quicksort
Bubble Sort

Future Work

References

54/87

Selection Sort

Python Non-recursive Implementation

» Here is a Python implementation of the above (based on
Miller and Ranum (2011, page 211) but selecting the
smallest first not largest, influenced by
http://rosettacode.org/wiki/Sorting_
algorithms/Selection_sort#PureBasic).

» Note that here we indent by 2 spaces and use the
Python idiomatic simultaneous assignment to do the
swap in line 71

63def selectionSort(xs) :
64 for fil1Slot in range(0,len(xs)-1) :
65 minIndex = fillSTlot

66 for index in range(fill1Slot+1,len(xs))
67 if xs[index] < xs[minIndex]
68 minIndex = index

70 # if fillSlot != minIndex: # only swap if different
71 xs[fi11STot],xs[minIndex] = xs[minIndex],xs[fi11Slot]

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort

Selection Sort —
Abstract Algorithm

Selection Sort — Python

Selection Sort —
Non-recursive

Activity 5 — Finding
the Non-Recursive
Algorithm

Merge Sort
Quicksort
Bubble Sort

Future Work

References

55/87

http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort#PureBasic
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort#PureBasic

Selection Sort

Non-recursive Implementation

» The non-recursive version of Selection sort in Miller &
Ranum sorts in ascending order but takes each position
of the list in turn from the right end and swaps the
element at that position with the maximum element in
the rest of the list from the beginning of the list to that
position. (Miller and Ranum (2011, page 211))

for fi11S1ot = Ten(xs) - 1 down to 1 do
find the maximum of
xs[0] .. xs[fi11STot]
and swap with xs[fil1STot]

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort
Selection Sort —
Abstract Algorithm
Selection Sort — Python

Selection Sort —
Non-recursive

Activity 5 — Finding
the Non-Recursive
Algorithm

Merge Sort
Quicksort
Bubble Sort

Future Work

References

56/87

Selection Sort

Python Non-recursive Implementation

» Here is a Python implementation of the above (based on
Miller and Ranum (2011, page 211) selecting the largest
first.

73def selSortAscByMax(xs)
74 for fil1Slot in range(len(xs) - 1, 0, -1) :

75 maxIndex = 0

76 for index in range(1l, fil1Slot + 1)
77 if xs[index] > xs[maxIndex]

78 maxIndex = index

80 temp = xs[fil11Slot]
81 xs[fi11STot] xs [maxIndex]
82 xs [maxIndex] temp

> Note that both Python non-recursive versions work by
side-effect on the input list — they do not return new
lists.

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort
Selection Sort —
Abstract Algorithm
Selection Sort — Python

Selection Sort —
Non-recursive

Activity 5 — Finding
the Non-Recursive
Algorithm

Merge Sort
Quicksort
Bubble Sort

Future Work

References

57/87

Activity 5
Finding the Non-Recursive Algorithm
> For Insertion Sort and Selection Sort discuss how the

non-recursive case can be found by considering the
recursive case and doing the algorithm in place.

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort

Selection Sort —
Abstract Algorithm
Selection Sort — Python

Selection Sort —
Non-recursive
Activity 5 — Finding
the Non-Recursive
Algorithm

Merge Sort
Quicksort
Bubble Sort

Future Work

References

58/87

Merge Sort

Abstract Algorithm
» Merge Split xs1 is half the list; xs2 is the other half of
the list.

> Merge Join Merge the sorted xs1 and the sorted xs2
together as the output list

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Python
Merge Sort Diagram

Merge Sort Python
In-Place

Quicksort
Bubble Sort

Future Work

References

59/87

Merge Sort

Abstract Sorting Algorithm Diagram

(13,0,1,8,7,2,5,4,9,6])

ysl

[(xs], xs2) = mergeSplit XSJ

X S/

[0,1,3,7,8]

[ys = mergeJoin (ys] ,ysZ)]

(10,1,2,3,4,5,6,7,8,9])

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Python
Merge Sort Diagram

Merge Sort Python
In-Place

Quicksort
Bubble Sort

Future Work

References

60/87

Merge Sort

Python Implementation

gedef mergeSort(xs)
g7 if len(xs) <=1 :

88 return xs

89 else :

90 (aList,bList) = mergeSplit(xs)

91 return mergeJoin(mergeSort(aList),mergeSort(bList))

93def mergeSplit(xs)
94 return mergeSplit2(xs)

96 def mergeSplit2(xs)
97 half = Ten(xs)//2
98 return (xs[:half],xs[half:])

100def mergeloin(xs,ys)

101 if xs == []

102 return ys

103 elif ys == []

104 return xs

105 elif xs[0] <= ys[0]

106 return [xs[0]] + mergeJoin(xs[1l:],ys)
107 else :

108 return [ys[0]] + mergeJoin(xs,ys[1:])

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Python
Merge Sort Diagram

Merge Sort Python
In-Place

Quicksort
Bubble Sort

Future Work

References

61/87

Merge Sort

Python mergeSplitl

11odef mergeSplitl(xs)

1M1 if len(xs) == :

112 return ([]1,[D)

113 elif Ten(xs) ==

114 return (xs,[])

115 else :

116 (aList,bList) = mergeSplitl(xs[2:])

117 return ([xs[0]] + aList, [xs[1]] + bList)

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Python
Merge Sort Diagram

Merge Sort Python
In-Place

Quicksort
Bubble Sort

Future Work

References

62/87

Sorting

Merge Sort Diagram
Merge Sort Split Phase

3]o]1]8]7|2[s[4]o]6]

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

4 EE Split/Join Sorting
Insertion Sort

Selection Sort
Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Python

v v
Blo] 0Dl [2[5] [eelg] e

In-Place
Quicksort
Bubble Sort

T W Future Work
EZI EE References

1] (8]

63/87

Merge Sort Diagram

Merge Sort Join Phase

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Python
Merge Sort Diagram

Merge Sort Python
In-Place

Quicksort
Bubble Sort

Future Work

References

64/87

Merge Sort

Python In-Place (1)

»
>

Here is a Python implementation of the above

From Miller and Ranum (2011, page 218-221)

This is also recursive but works in place by changing
the array.

Code from
http://interactivepython.org/courselib/
static/pythonds/SortSearch/TheMergeSort.html

119def mergeSortInPlace(xs) :
if Ten(xs) > 1 :

120
121
122
123

125
126
127

129
130

print("Splitting", xs)

else :

print("Singleton_ ", xs)

if len(xs) > 1 :

half = len(xs)//2
(aList, bList) = (xs[:half],xs[half:])

mergeSortInPlace(alList)
mergeSortInPlace(bList)

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Python
Merge Sort Diagram

Merge Sort Python
In-Place

Quicksort
Bubble Sort

Future Work

References

65/87

http://interactivepython.org/courselib/static/pythonds/SortSearch/TheMergeSort.html
http://interactivepython.org/courselib/static/pythonds/SortSearch/TheMergeSort.html

Merge Sort

Python In-Place (2)

132
133
134
135
136
137
138
139
140

142
143
144
145

147
148
149
150

i,j,k =0,
while i < len(aList) and j < Ten(bList)
if alList[i] < bList[j]

xs[k]
i =1
else :
xs[k]

]
k =k +

=
I
-

+ + I A

[an}
]
[an}

+ + I A

0,0

= alList[i]
+ 1

= bList[j]
+ 1

1
len(aList)
aList[i]

1

1

Ten(bList)
bList[j]
1

1

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Python
Merge Sort Diagram

Merge Sort Python
In-Place

Quicksort
Bubble Sort

Future Work

References

66/87

Merge Sort

Python In-Place (3)

152
153
154
155

> Here is the code that reports the merging of the lists

if len(xs) > 1 :
print("Merging_", alList, ",", bList, "to",

else :

print("Merged_", xs)

XS)

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Python
Merge Sort Diagram

Quicksort
Bubble Sort

Future Work

References

67/87

Merge Sort

Python Code Description

>

>
>

., is how the Tistings package shows spaces in strings
by default (read the manual)

// is the Python integer division operator

aList[start:stop:step] is a slice of a list — see
Python Sequence Types — slice operations return a new
list (van Rossum and Drake, 2011a, page 19) so xs[:]
returns a copy (or clone) of xs — if any of the indices
are missing or negative than you have to think a bit (or
read the manual)

In Python you really do need to be aware when you are
working with values or references to objects.

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Python
Merge Sort Diagram

Merge Sort Python
In-Place

Quicksort
Bubble Sort

Future Work

References

68/87

https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range

Merge Sort

Python In-Place (3)

> A listing of the output of mergeSortInPlace(xsc)
below is given in the article version of these notes

>>> from SortingPython import =

>>> xs = [3,0,1,8,7,2,5,4,9,6]

>>> XSCc = xs[:]

>>> mergeSortInPlace(xsc)

Splitting [3, O, 1, 8, 7, 2, 5, 4, 9, 6]
#

lines removed
#

Merging [0, 1, 3, 7, 8] , [2, 4, 5, 6, 9]
to [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Python
Merge Sort Diagram

Merge Sort Python
In-Place

Quicksort
Bubble Sort

Future Work

References

69/87

Quicksort

Abstract Algorithm

> Quicksort Split Choose an item in the list to be the pivot
item; xs1 comprises items in the list less than the pivot
plus the pivot; xs2 comprises items in the list greater
than or equal to the pivot.

» Quicksort Join just append the sorted xs1 and the
sorted xs2 together as the output list

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort
Quicksort

Quicksort — Abstract
Algorithm

List Comprehensions
Quicksort — Python
Quicksort Python
In-Place
Bubble Sort
Future Work

References

70/87

Quicksort

Abstract Sorting Algorithm Diagram

(13,0,1,8,7,2,5,4,9,61)

[(xs], xs2) = quickSplit xs]

xs1

[0,1,2] ® [3]

[817,514,9)6]

sort sort

[415’617!8!9]

[ys = quickjoin (ys1 ,ysZ)J

(10,1,2,3,4,5,6,7,8,9])

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort
Quicksort

Quicksort — Abstract
Algorithm

List Comprehensions
Quicksort — Python
Quicksort Python
In-Place
Bubble Sort
Future Work

References

71/87

List Comprehensions

In Haskell and Python

» Haskell 2010 Language Report section 3.11 List
Comprehensions
> [e|lq1,...,q9n], n = 1 where g; qualifiers are either
> generators of the form p <- e where p is a pattern of
type t and e is an expression of type [t]
> Jlocal bindings that provide new definitions for use in the

generated expression e or subsequent boolean guards
and generators

> boolean guards which are expressions of type Bool
» Python Language Reference section 6.2.4 Displays for
lists, sets and dictionaries and section 6.2.5 List
displays
» [expr for target in 1list] — simple
comprehension

» [expr for target in 1list if condition] —
filters

» [expr for targetl in 1listl for target2 in
Tist2] — multiple generators

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort
Quicksort

Quicksort — Abstract
Algorithm

List Comprehensions
Quicksort — Python
Quicksort Python
In-Place
Bubble Sort
Future Work

References

72/87

Quicksort

Python

150def gsort(xs)

160
161
162
163
164
165
166

if not xs :
return []

else :
pivot = xs[0]
less = [x for x in xs if x < pivot]
more = [x for x in xs[1:] if x >= pivot]
return gsort(less) + [pivot] + gsort(more)

» The if test at line 160 shows that Python is weakly
typed (and the author of this code comes from
JavaScript)

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort
Quicksort

Quicksort — Abstract
Algorithm

List Comprehensions
Quicksort — Python
Quicksort Python
In-Place
Bubble Sort
Future Work

References

73/87

Quicksort

Python In-Place (1)

> The in-place version of Quick sort works by partitioning
a list in place about a value pivotvalue: (Azmoodeh,

1990, page 259-266)
(1) Scan from the left until
> alist[Teftmark] >=
(2) Scan from the right until

pivotvalue

> alist[rightmark] < pivotvalue

(3) Swap alist[leftmark] and alist[rightmark]

(4) Repeat (1) to (3) until scans meet

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort
Quicksort

Quicksort — Abstract
Algorithm

List Comprehensions
Quicksort — Python
Quicksort Python
In-Place
Bubble Sort
Future Work

References

74/87

Quicksort

Python In-Place (2)

> Here is an in place version of Quick Sort from Miller and
Ranum (2011, pages 221-226)

» Code based on
http://interactivepython.org/courselib/
static/pythonds/SortSearch/TheQuickSort.html

168def quickSort(xs) :
169 quickSortHelper(xs, 0, Ten(xs) - 1)

171def quickSortHelper(xs, fst, Tst) :
172 if fst < 1st :

174 splitPoint = partition(xs,fst,1st)

176 quickSortHelper(xs, fst, splitPoint - 1)
177 quickSortHelper(xs, splitPoint + 1, Tst)

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort
Quicksort

Quicksort — Abstract
Algorithm

List Comprehensions
Quicksort — Python
Quicksort Python
In-Place
Bubble Sort
Future Work

References

75/87

http://interactivepython.org/courselib/static/pythonds/SortSearch/TheQuickSort.html
http://interactivepython.org/courselib/static/pythonds/SortSearch/TheQuickSort.html

Quicksort

Python In-Place (3)

179def partition(xs,fst,lIst)

180 pivotValue = xs[fst]
181 leftMk =fst +1
182 rightMk = Ist

183 done = False

185 while not done :
186 while leftMk <= rightMk and \

187 xs[leftMk] <= pivotValue :

188 TeftMk = leftMk + 1

189 while xs[rightMk] >= pivotValue and \

190 rightMk >= leftMk :

191 rightMk = rightMk - 1

193 if rightMk < TleftMk :

194 done = True

195 else :

196 xs[TeftMk], xs[rightMk] = xs[rightMk], xs[leftMk]

198 xs[fst], xs[rightMk] = xs[rightMk], xs[fst]
199 return rightMk

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort
Quicksort

Quicksort — Abstract
Algorithm

List Comprehensions
Quicksort — Python
Quicksort Python
In-Place
Bubble Sort
Future Work

References

76/87

Quicksort

Python In-Place (4)

>

>

The (\) is enabling a statement to span multiple lines
— see Lutz (2009, page 317), Lutz (2013, page 378)

for a language that uses the offside rule why do we
need to do this?

Note that using (\) to create continuations is frowned
on Lutz (2009, page 318), Lutz (2013, page 379)
the authors should have put the entire boolean

expression inside parentheses () so that we get implicit
continuation.

This is not mentioned explicitly in the Style Guide for
Python Code
http://www.python.org/dev/peps/pep-0008/ but it
does explicitly mention using Python’s implicit line
joining with layout guidelines.

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort
Quicksort

Quicksort — Abstract
Algorithm

List Comprehensions
Quicksort — Python
Quicksort Python
In-Place
Bubble Sort
Future Work

References

77/87

http://www.python.org/dev/peps/pep-0008/

Bubble Sort

Abstract Algorithm

> Bubble sort is rather like the Hello World program of

sorting algorithms — we have to include it even it isn’t
very useful in practice.

> It can be thought of as an in-place version of Selection
sort

> In the implementations below, in each pass through the

list, the next highest item is moved (bubbled) to its
proper place.

> OK, | should have written it to bubble the smallest the
other way to be consistent with the implementations of
Selection sort above.

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort
Quicksort
Bubble Sort
Bubble Sort — Abstract
Algorithm
Bubble Sort — Python
Future Work

References

78/87

Bubble Sort

Python

» Here is a Python implementation from Miller and Ranum
(2011, pages 207-210)

> it does not test if there have been no swaps but does
use some knowledge of the algorithm by reducing the

pass length by one each time (which the Haskell one did
not do)

203def bubbleSort(xs) :
204 for passNum in range(len(xs) - 1, 0, -1) :

205 for i 1in range(passNum) :
206 if xs[i] > xs[i+1] :
207 xs[i], xs[i+1] = xs[i+1], xs[i]

> Note that range() is a built-in function to Python that
is used a lot

» Read the documentation at Section 4.6.6 Ranges

» Remember that range(5) means [0,1,2,3,4] (not
[0’1!213!4’5] or [1’2!3’415])

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort
Quicksort
Bubble Sort

Bubble Sort — Abstract
Algorithm

Bubble Sort — Python
Future Work

References

79/87

https://docs.python.org/3.3/library/stdtypes.html#typesseq-range

What Next ? Sorting

Phil Molyneux
Programming, Debugging, Psychology
Agenda

Although programming techniques have improved

Adobe Connect

immensely since the early days, the process of finding and Sorting: Motivation
correcting errors in programming — known graphically if Sorting Taxonomy
inelegantly as debugging — still remains a most difficult, Recursion/lteration
confused and unsatisfactory operation. The chief impact of Sy Seriding

Future Work

this state of affairs is psychological. Although we are happy
to pay lip-service to the adage that to err is human, most of
us like to make a small private reservation about our own
performance on special occasions when we really try. It is
somewhat deflating to be shown publicly and
incontrovertibly by a machine that even when we do try, we
in fact make just as many mistakes as other people. If your
pride cannot recover from this blow, you will never make a
programmer.

Christopher Strachey, Scientific American 1966 vol 215 (3) September
ppl12-124

References

80/87

https://en.wikipedia.org/wiki/Christopher_Strachey

What Next ?

To err is human ?

>

>

To err is human, to really foul things up requires a
computer.

Attributed to Paul R. Ehrlich in 101 Great Programming
Quotes

Attributed to Bill Vaughn in Quote Investigator
Derived from Alexander Pope (1711, An Essay on
Criticism)
To Err is Humane; to Forgive, Divine
This also contains

A little learning is a dangerous thing;

Drink deep, or taste not the Pierian Spring

In programming, this means you have to read the
fabulous manual (RTFM)

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
Future Work

References

81/87

https://en.wikipedia.org/wiki/Paul_R._Ehrlich
http://www.devtopics.com/101-great-computer-programming-quotes/
http://www.devtopics.com/101-great-computer-programming-quotes/
https://en.wikipedia.org/wiki/William_E._Vaughan
http://quoteinvestigator.com/2010/12/07/foul-computer/
https://en.wikipedia.org/wiki/Alexander_Pope
https://en.wikipedia.org/wiki/An_Essay_on_Criticism
https://en.wikipedia.org/wiki/An_Essay_on_Criticism
https://en.wikipedia.org/wiki/Pierian_Spring
https://lmgtfy.com/?q=rtfm

Sorting

Future Work

Phil Molyneux
Sorting, Searching — very brief summary
Agenda
» Recursive function definitions Adobe Connect

Sorting: Motivation

> Inductive data type definitions
> A list is either an empty list or a first item followed by
the rest of the list
> A binary tree is either an empty tree or a node with an
item and two sub-trees

Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
Future Work

References

> Recursive definitions often easier to find than iterative
> Sorting

» Searching

> Both use binary tree structure — either implicitly or
explicitly

82/87

Sorting

Future Work

Phil Molyneux
Dates
Agenda
» Sunday 5 January 2025 Tutorial Online Sorting, Adobe Connect
Recursion Sorting: Motivation

Sorting Taxonomy

» Sunday 12 January 2025 Tutorial Online Binary Trees,
Recursion

Recursion/Iteration
Split/Join Sorting
» Sunday 9 February 2025 (Module wide) Tutorial Online Future Work
Binary Trees, Recursion Refeiences
» Thursday, 13 March 2025 TMAQ02
» Sunday, 9 March 2025 Tutorial (Online): Graphs, Greedy
Algorithms
» Sunday, 6 April 2025 Tutorial (Online): (Module wide)
Dynamic Programming
» Sunday, 27 April 2025 Tutorial (Online): (Module wide)
Computability, Complexity
» Sunday, 4 May 2025 Tutorial (Online): Review of course
material for TMAO3

» Thursday, 8 May 2025 TMAO3

83/87

Sorting

Web Links

> Rosetta Code Sorting Algorithms http:
//rosettacode.org/wiki/Sorting_algorithms —
sorting algorithms implemented n lots of programming
languages

> Sorting Algorithm Animations https://www.toptal.
com/developers/sorting-algorithms — visual
display of the performance of various sorting
algorithms for several classes of data: random, nearly
sorted, reversed, few unique — worth browsing to.

> Sorting Algorithms as Dances

https://www.youtube.com/user/AlTgoRythmics —
inspired!

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
Future Work

References
Sorting Web Links
Python Web Links &
References
Haskell Web Links &
References

Demonstration 2 Sorting
Algorithms as Dances

84/87

http://rosettacode.org/wiki/Sorting_algorithms
http://rosettacode.org/wiki/Sorting_algorithms
https://www.toptal.com/developers/sorting-algorithms
https://www.toptal.com/developers/sorting-algorithms
https://www.youtube.com/user/AlgoRythmics

Sorting

Python

Phil Molyneux
Web Links & References
Agenda
> Miller and Ranum (2011) Adobe Connect
http://interactivepython.org/courselib/ Sorting: Motivation
static/pythonds/index.html — the entire book sorting Taxonomy
online with a nice way of running the code. Recursion/leeration
Split/Join Sorting
» Lutz (2013) — one of the best introductory books Ptz (s
> Lutz (2011) — a more advanced book — earlier s ke
editions of these books are still relevant — you can also Python Web Links &
obtain electronic versions from the O’Reilly Web site el e
http . //0 r-e-i '| '| y .com Demonstration 2 Sorting

Algorithms as Dances

» Python 3 Documentation
https://docs.python.org/3/
» Python Style Guide PEP 8

https://www.python.org/dev/peps/pep-0008/
(Python Enhancement Proposals)

85/87

http://interactivepython.org/courselib/static/pythonds/index.html
http://interactivepython.org/courselib/static/pythonds/index.html
http://oreilly.com
https://docs.python.org/3/
https://www.python.org/dev/peps/pep-0008/

Haskell

Web Links & References

>
>
>

Haskell Language https://www.haskell.org
HaskellWiki https://wiki.haskell.org/Haskell

Learn You a Haskell for Great Good! — very readable
introduction to Haskell

Bird and Wadler (1988); Bird (1998, 2014) — one of
the best introductions but tough in parts, requires
some mathematical maturity — the three books are in
effect different editions

Bird and Gibbons (2020) Algorithm Design with
Haskell — the descriptions of five main principles of
algorithm design: divide and conquer, greedy
algorithms, thinning, dynamic programming, and
exhaustive search, are mainly language neutral
Functors, Applicatives, and Monads in Pictures — a
very good outline with cartoons

Haskell Wikibook

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
Future Work

References
Sorting Web Links
Python Web Links &
References
Haskell Web Links &
References

Demonstration 2 Sorting
Algorithms as Dances

86/87

https://www.haskell.org
https://wiki.haskell.org/Haskell
http://learnyouahaskell.com
http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html
https://en.wikibooks.org/wiki/Haskell

Sorting Algorithms

Demonstration 2 Sorting Algorithms as Dances
> Quicksort

> https://www.youtube.com/user/AlgoRythmics
» the hats make the point(!)

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
Future Work

References
Sorting Web Links
Python Web Links &
References
Haskell Web Links &
References

87/87

https://www.youtube.com/user/AlgoRythmics

	M269 Tutorial Agenda — Sorting, Recursion
	Adobe Connect Interface and Settings
	Adobe Connect Interface
	Adobe Connect Settings
	Adobe Connect — Sharing Screen & Applications
	Adobe Connect — Ending a Meeting
	Adobe Connect — Invite Attendees
	Layouts
	Chat Pods
	Graphics Conversion for Web
	Adobe Connect Recordings

	Sorting: Motivation
	Demonstration 1 Sorting Algorithms as Dances
	Activity 1 Card Sorting Exercise

	Taxonomy of Sorting Algorithms
	Other Classifications of Sorting Algorithms

	Recursion and Iteration
	Some Split/Join Sorting Algorithms
	Insertion Sort
	Selection Sort
	Merge Sort
	Quicksort
	Bubble Sort

	Future Work
	Web Sites & References
	Sorting Web Links
	Python Web Links & References
	Haskell Web Links & References
	Demonstration 2 Sorting Algorithms as Dances

