Sorting
M269 Tutorial

Contents

Agenda

Adobe Connect

2.1 Interface L e e e e e e
2.2 Settings e e e e e e e e e e e e e e e e e
2.3 Sharing Screen & Applications L L e
2.4 EndingaMeeting. e e e
2.5 Invite Attendees e e e e e e e e e
2.6 Layouts e e e e e e e e e e e e e e
2.7 Chat Pods e e e e e e
2.8 Web Graphics o e e e e e e
2.9 Recordings i e e e e e e e e

Sorting: Motivation
3.1 Sortingas Dances i e e e e e e e e e e
3.2 Card Sorting EX i e e e e e e e e e e e e

Sorting Taxonomy
4.1 Sorting Classifications e

Recursion/Iteration

Split/Join Sorting

6.1 Insertion SOrt e e e e e e e e e
6.1.1 Insertion Sort — Abstract Algorithm
6.1.2 InsertionSort — Python,
6.1.3 Activity 2 — Insertion Sort: Trace an Evaluation
6.1.4 Insertion Sort — Non-recursive
6.1.5 Activity 3 — Insertion Sort Non-recursive Trace

6.2 Selection Sort e e e e e e
6.2.1 Selection Sort — Abstract Algorithm
6.2.2 SelectionSort —Python
6.2.3 Selection Sort — Non-recursive e
6.2.4 Activity 5 — Finding the Non-Recursive Algorithm

6.3 Merge Sort e e e e e e e e e e e e
6.3.1 Merge Sort — Abstract Algorithm
6.3.2 Merge Sort —Python
6.3.3 Merge Sort Diagram e e e
6.3.4 Merge Sort PythonIn-Place

6.4 QUICKSOIt ot e e e e e e e e e e e e e e e e e e e
6.4.1 Quicksort — Abstract Algorithm
6.4.2 List Comprehensions
6.4.3 Quicksort —Python
6.4.4 Quicksort PythoniIn-Place

2 Sorting 5 January 2025

6.5 Bubble Sort e e e 26
6.5.1 Bubble Sort — Abstract Algorithm 26

6.5.2 BubbleSort —Python, 26

7 Future Work 26
8 References 28
8.1 SortingWeb Links e e e 28
8.2 Python Web Links & References 28
8.3 Haskell Web Links & References 28
8.4 Demonstration 2 Sorting Algorithms as Dances 29
References e e e e e e 29
Python Code Index 32
Diagrams Index 33

1 M269 Tutorial Agenda — Sorting, Recursion

e Welcome & introductions

e Tutorial topics: Sorting Algorithms, Recursion

e Adobe Connect — if you or | get cut off, wait till we reconnect (or send you an email)
e Time: about 1.5 hours

e Do ask questions or raise points.

e Source: of slides, notes, programs and playing cards:

M269Tutorial20250105SortingPrsntn2024)/

www.pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269Tutorial20250105SortingPrsntn2024)/

Introductions — Phil
e Name Phil Molyneux
e Background
- Undergraduate: Physics and Maths (Sussex)

- Postgraduate: Physics (Sussex), Operational Research (Brunel), Computer Sci-
ence (University College, London)

- Worked in Operational Research, Business IT, Web technologies, Functional Pro-
gramming

e First programming languages Fortran, BASIC, Pascal
e Favourite Software
- Haskell — pure functional programming language
- Text editors TextMate, Sublime Text — previously Emacs

- Word processing in IATEX — all these slides and notes

https://www.pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269Tutorial20250105SortingPrsntn2024J/
https://www.pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269Tutorial20250105SortingPrsntn2024J/
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://www.haskell.org/
https://macromates.com
http://www.sublimetext.com
https://www.emacswiki.org/
https://www.latex-project.org/

Phil Molyneux M269 Tutorial 3

- Mac OS X

e Learning style — | read the manual before using the software

Introductions — You

e Name?

Favourite software/Programming language ?

Favourite text editor or integrated development environment (IDE)

List of text editors, Comparison of text editors and Comparison of integrated devel-
opment environments

Other OU courses ?

Anything else ?
Go to Table of Contents

2 Adobe Connect Interface and Settings

2.1 Adobe Connect Interface

Adobe Connect Interface — Host View

M250 Units 10, 11

Phil Molyneux

M250 Units 10, 11
Tutorial Agenda

Adobe Connect

Classes and
Interfaces

M250 Units 10, 11 sets

Collections, Arrays, Sets, Maps, Lists Haps

Lists

Collection
Implementations

TMAO3 Practice

Phil Molyneux Quiz
Common Mistakes

JShell

What Next ?

18 Apl’ll 2021 References

Adobe Connect Interface — Participant View

https://developer.apple.com/
https://en.wikipedia.org/wiki/Text_editor
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/List_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments

4 Sorting 5 January 2025

‘ece B Adobe Connect.app.

o a
. . M250 Units 10, 11
M250 Units 10, 11 Tutorial _
Phil Molyneux
Introductions
M250 Units 10, 11
. Tutorial Agenda
> Introductions AR TR
> Name Phil Molyneux Classes and
> Learning Style: Reads the manual ptegacss
> Learnt last month Framework for Teaching Recursion B -
and wrote notes on Recursion Teaching S
» YOU 7 Lists
Collection @
Implementations
TMAO3 Practice
Quiz
Common Mistakes
JShell
What Next ? o W] e
References

2.2 Adobe Connect Settings

Adobe Connect — Settings

Eve rybody [Menu bar>> Meeting>> Speaker & Microphone Setup}

{Menu bar>> Microphone>> Allow Participants to Use Microphone} v

Check Participants see the entire slide including slide numbers bottom right Workaround

- Disable Draw [Share p0d>> Menu bar>> Draw icon}

- Fit Width [Share pod>> Bottom bar>> Fit Width icon} v

° {Meeting>> Preferences>> General>> Host Cursor>> Show to all attendees

° {Menu bar>> Video>> Enable Webcam for Participants} v

e Do not Enable single speaker mode

e Cancel hand tool

e Do not enable green pointer

e Recording {Meeting>> Record Session} 4

e Documents Upload PDF with drag and drop to share pod

e Delete [Meeting>> Manage Meeting Information>> Uploaded Content} and [check ﬁlename>> click on delete

Adobe Connect — Access

e Tutor Access

{TutorHome>> M269 Website>> Tutorials}

{Cluster Tutorials>> M269 Online tutorial room}

{Tutor Groups>> M269 Online tutor group room}

Phil Molyneux M269 Tutorial 5

{Module-wide Tutorials>> M269 Online module-wide room}

Attendance

{TutorHome>> Students>> View your tutorial timetables}

Beamer Slide Scaling 440% (422 x 563 mm)

Clear Everyone’s Status

{Attendee Pod>> Menu>> Clear Everyone’s Status}

Grant Access and send link via email

{Meeting>> Manage Access & Entry>> Invite Participants. . . }

Presenter Only Area

[Meeting>> Enable/Disable Presenter Only Area}

Adobe Connect — Keystroke Shortcuts

2.3

2.4

Keyboard shortcuts in Adobe Connect

Toggle Mic %]+ M] (Mac), [cer)+(M] (win) (On/Disconnect)
Toggle Raise-Hand status [32])+E |

Close dialog box [®] (Mac), [Esc] (win)
End meeting [+ \]

Adobe Connect — Sharing Screen & Applications

{Share My Screen>> Application tab>> Terminal} for Terminal

Share menu)) Change View)) Zoom in| for mismatch of screen size/resolution (Participants)

(Presenter) Change to 75% and back to 100% (solves participants with smaller screen
image overlap)

Leave the application on the original display

Beware blued hatched rectangles — from other (hidden) windows or contextual
menus

Presenter screen pointer affects viewer display — beware of moving the pointer away
from the application

First time: {System Preferences>> Security & Privacy>> Privacy>> Accessibility}

Adobe Connect — Ending a Meeting

Notes for the tutor only

Student: [Meeting>> Exit Adobe Connect]

Tutor:

Recording [Meeting)) Stop Recording| v/

Remove Participants [Meeting) End Meeting. .. | v/

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html
https://en.wikipedia.org/wiki/Terminal_(macOS)

6 Sorting 5 January 2025
- Dialog box allows for message with default message:
- The host has ended this meeting. Thank you for attending.
e Recording availability In course Web site for joining the room, click on the eye icon
in the list of recordings under your recording — edit description and name
e Meeting Information [Meeting)) Manage Meeting Information| — can access a range of informa-
tion in Web page.
e Delete File Upload {Meeting>> Manage Meeting Information>> Uploaded Content tab} select file(s) and
click
e Attendance Report see course Web site for joining room
2.5 Adobe Connect — Invite Attendees

Provide Meeting URL {Menu>> Meeting>> Manage Access & Entry>> Invite Participants. . . }

Allow Access without Dialog [Menu)) Meeting)) Manage Meeting Information| provides new browser
window with Meeting Information [Tab bar)) Edit Information|

Check Anyone who has the URL for the meeting can enter the room
Default Only registered users and accepted guests may enter the room
Reverts to default next session but URL is fixed

Guests have blue icon top, registered participants have yellow icon top — same icon
if URL is open

See Start, attend, and manage Adobe Connect meetings and sessions
Click on the link sent in email from the Host

Get the following on a Web page

As Guest enter your name and click on

https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html

Phil Molyneux M269 Tutorial 7

a Adobe Connect

M269-21) Online tutorial room
London/SE (1,13) CG [2311] (M269-21))

)

Guest Registered User
Name

Guest Name

By entering a Name & clicking "Enter Room'", you agree that
you have read and accept the Terms of Use & Privacy Policy,

e See the Waiting for Entry Access for Host to give permission

k74 Adobe Connect

Waiting for Entry Access

This is a private meeting. Your request to enter has

been sent to the host. Please wait for a response.

e Host sees the following dialog in Adobe Connect and grants access

! Guest entry o

1 guest would like to enter the room. Do you want
to allow or deny entry to incoming guests?

Guest Name (guest) 9 O ’Ave?

Allow everyone Deny everyone Close

2.6 Layouts

e Creating new layouts example Sharing layout

° [Menu>> Layouts>> Create New Layout. . } [Create a New Layout dialog>> Create a new blank Iayout} and name it
PMolyMain

e New layout has no Pods but does have Layouts Bar open (see Layouts menu)

e Pods

8 Sorting 5 January 2025

[Menu)) Pods) Share) Add New Share| and resize/position — initial name is Share n — rename
PMolyShare

e Rename Pod {Menu>> Pods>> Manage Pods. . } [Manage Pods>> Select>> Rename} or [Double-click & rename

e Add Video pod and resize/reposition
e Add Attendance pod and resize/reposition
e Add Chat pod — rename it PMolyChat — and resize/reposition

e Dimensions of Sharing layout (on 27-inch iMac)

Width of Video, Attendees, Chat column 14 cm

Height of Video pod 9 cm

Height of Attendees pod 12 cm

Height of Chat pod 8 cm

e Duplicating Layouts does not give new instances of the Pods and is probably not a
good idea (apart from local use to avoid delay in reloading Pods)

e Auxiliary Layouts name PMolyAux0On
- Create new Share pod
- Use existing Chat pod

- Use same Video and Attendance pods

2.7 Chat Pods

e Format Chat text

° {Chat Pod>> menu icon>> My Chat Color}

e Choices: Red, Orange, Green, Brown, Purple, Pink, Blue, Black

e Note: Color reverts to Black if you switch layouts

) {Chat Pod>> menu icon>> Show Timestamps}

2.8 Graphics Conversion for Web
e Conversion of the screen snaps for the installation of Anaconda on 1 May 2020

e Using GraphicConverter 11

° > Convert & Modify>> Conversion>> Convert}

e Select files to convert and destination folder

e Click on [Start selected Function] or +

2.9 Adobe Connect Recordings

° {Menu bar>> Meeting>> Preferences>> Video}

e [Aspect ratio)) Standard (4:3)] (not Wide screen (16:9) default)

Phil Molyneux M269 Tutorial 9

|Video quality)) Full HD| (1080p not High default 480p)

Recording {Menu bar>> Meeting>> Record Session} 4

Export Recording

{Menu bar>> Meeting>> Manage Meeting Information}

{New window>> Recordings>> check Tutorial>> Access Type button

{check Public>> check Allow viewers to download}

Download Recording

{New window>> Recordings>> check Tutorial>> Actions>> Download File

3 Sorting: Motivation

3.1

Motivation for studying sorting algorithms
Taxonomy of sorting — see Wikipedia Sorting Algorithm
Abstract comparison sort — split/join algorithm

Insertion sort and selection sort described with split/join algorithm diagram and
implemented in Python. (A previous edition also included optional Haskell code)

Recursive and iterative versions

Mergesort, Quicksort and Bubble sort in the same framework
Sorting via a data structure — Tree sort

Comparison sorts and Distribution sorts

Review of Web sites and sorting algorithms used in practice

From Knuth (1998, page v) The Art of Computer Programming Vol. 3: Sorting and
Searching

. virtually every important aspect of programming arises somewhere in the con-
text of sorting or searching.

How are good algorithms discovered ?
How can given algorithms and programs be improved ?
How can the efficiency of algorithms be analyzed mathematically ?

How can a person choose rationally between different algorithms for the same task
?

In what senses can algorithms be proved best possible ?

How does the theory of computing interact with practical considerations ?

Demonstration 1 Sorting Algorithms as Dances

AlgoRythmics

{Videos tab>> Insertion Sort}

https://en.wikipedia.org/wiki/Sorting_algorithm
https://www.youtube.com/user/AlgoRythmics

10

Sorting 5 January 2025

3.2

Insertion Sort
This is the Romanian folk music that inspired Bartok

Compare the dance with the Python algorithm for Insertion Sort below

Activity 1 Card Sorting Exercise

Almost everyone has played cards and, as part of any card game, will have sorted
cards in their hand

This exercise is aimed at writing down how you sort you cards and giving these
instructions to another person to follow.

Decide on your general ordering of playing cards — you are free to set any ordering
you like but here is the usual ordering for suits and values:

Clubs < Diamonds < Hearts < Spades

Two < Three < Four < Five < Six
< Seven < Eight < Nine < Ten
< Jack < Queen < King < Ace

Write down your method for sorting cards — the method must specify how to choose
a card to move and where to move it to.

Take the 6 cards given below — record the order of the cards

Using your method, sort the cards — record the order of the cards after each move
of a card

Now swap your written method and the cards in your original order with another
student.

Follow the other student’s method to sort the cards and record your steps

Discussion

Did both of you end up with the same sequence of steps?
Did any of the instructions require human knowledge?

General point: probably most people use some variation on Insertion sort or Selection
sort but would have steps that had multiple shifts of cards.

Note: This activity may be done on the Whiteboard using cards from http://pmolyneux.
co.uk/0U/M269/M269TutorialNotes/M269TutorialSorting/Cards/

ToC

http://pmolyneux.co.uk/OU/M269/M269TutorialNotes/M269TutorialSorting/Cards/
http://pmolyneux.co.uk/OU/M269/M269TutorialNotes/M269TutorialSorting/Cards/

Phil Molyneux M269 Tutorial 11

4 Taxonomy of Sorting Algorithms

e Computational complexity — worst, best, average number of comparisons, exchanges
and other program contructs (but see http://www.softpanorama.org/Algorithms/
sorting.shtml for Slightly Skeptical View) — O(n?) bad, O(nlog n) better

e Other issues: space behaviour, performance on typical data sets, exchanges versus
shifts

e Abstract sorting algorithm — Following Merritt (1985); Merritt and Lau (1997) and
Azmoodeh (1990, chp 9), we classify the divide and conquer sorting algorithms by
easy/hard split/join

e see diagram below

Abstract Sorting Algorithm

(unsorted list xs)

if (length xs > 1) then
(xs1,xs2) = split xs

o .

xs1 XS2

[ys] = sort xsl] [ysZ = sort xsZ]

N /

[ys = join (ys1 ,ysZ)]

!

[sorted list ys]

4.1 Other Classifications of Sorting Algorithms
e See Wikipedia Sorting algorithm for big list
e Comparison Sorts
- Insertion sort, Selection sort, Merge sort, Quicksort, Bubble sort
- Sorting via a data structure: Tree sort, Heap sort
e Non-Comparison sorts — distribution sorts — bucket sort, radix sort
e Sorts used in Programming Language Libraries

- Timsort by Tim Peters — used in Python and Java — combination of merge and
insertion sorts

- Haskell — modified Mergesort by lan Lynagh in GHC implementation

http://www.softpanorama.org/Algorithms/sorting.shtml
http://www.softpanorama.org/Algorithms/sorting.shtml
https://en.wikipedia.org/wiki/Sorting_algorithm
https://en.wikipedia.org/wiki/Timsort
https://www.haskell.org/onlinereport/haskell2010/
https://wiki.haskell.org/GHC

O 00 N O wv

24
25

27
28
29
30
31

12 Sorting 5 January 2025

5 Recursion and Iteration

e Many functions are naturally defined using recursion

e A recursive function is defined in terms of calls to itself acting on smaller problem
instances along with a base case(s) that terminate the recursion

e Classic example: Factorial n'=nx(n-1)---2 x 1

def fac(n) :
ifn==1":
return 1
else :
return n * fac(n-1)

e We can evaluate fac(6) by using a substitution model (section 1.1.5) for function
application

e To evaluate a function applied to arguments, evaluate the body of the function with
each formal parameter replaced by the corresponding actual arguments.

Abelson and Sussman (1996, sec 1.1.5) Structure and Interpretation of Computer
Programs

Evaluation of fac(6)

Expression to Evaluate Reason

fac(6) Initial line 5
- 6 = fac(5) line 8
- 6 % (5 * fac(4)) line 8
- 6 % (5 % (4 » fac(3)) line 8
—- 6 % (5 % (4 = (3 = fac(2)))) line 8
- 6 % (5% (4 % (3 %= (2 = fac(1))))) line8
- 6% (5@ * (3= 2 ==1)))) line 6

- 720 Arithmetic

This occupies more space in the process of evaluation since we cannot do the multi-
plications until we reach the base case of fac()

This is a recursive function and a linear recursive process

Implemented in Python (and most imperative languages) with a stack of function
calls

We can define an equivalent factorial function that produces a different process

Iterative Factorial

def facIter(n) :
return accProd(n,1)

def accProd(n,x) :
if n == 2
return x
else :
return accProd(n-1, n * x)

e facIter() uses accProd() to maintain a running product and accumulate the final
result to return

https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://mitp-content-server.mit.edu/books/content/sectbyfn/books_pres_0/6515/sicp.zip/full-text/book/book-Z-H-10.html

Phil Molyneux M269 Tutorial 13

We can display the evaluation of facIter(6) using the substitution model

Evaluation of facIter(6)

Expression to Evaluate Reason

facIter(6) Initial line 24
— accProd(6,1) line 25
— accProd(5, 6 = 1) line 30 & (*)
— accProd(4, 5 * 6) line 30 & (*)
— accProd(3, 4 = 30) line 30 & (*¥)
— accProd(2, 3 = 120) line 30 & (*)
— accProd(1, 2 = 360) line 30 & (%)
— 720 line 28 & (*)

This occupies constant space — at each stage all the variables describing the state
of the calculation are in the function call

This is a recursive program and an iterative process

We are assuming the multiplication is evaluated at each function call (strict or eager
evaluation)

Also referred to as tail recursion — we need not build a stack of calls

Iterative Factorial Exercises

Write a version of the factorial function using a while loop in Python

Write a version of the factorial function using a for loop in Python

Iterative Factorial Exercises — Solutions

46
47

49
50
51

53

57
58

60
61

63

Factorial function using a while loop in Python

def facWhile(n) :
x =1

while n > 1 :
X =h % X
n (n - 1)

return x

Factorial function using a for loop in Python

def facFor(n) :
x =1

for i 1in range(n,0,-1) :
X =1 % X

return x

Tail Recursion and Iteration

When the structured programming ideas emerged in the 1960s and 1970s the lan-
guages such as C and Pascal implemented recursion by always placing the calls on
the stack — Python follows this as well

https://en.wikipedia.org/wiki/Tail_call
https://en.wikipedia.org/wiki/Structured_programming

14

Sorting 5 January 2025

This means that in those languages they have to have special constructs such as for
loops, while loops, to express iterative processes without recursion

A for loop is syntactically way more complicated than a recursive definition

Some language implementations (for example, Haskell) spot tail recursion and do
not build a stack of calls

You still have to write your recursion in particular ways to allow the compiler to spot
such optimisations.

Structured Programming, GOTO and Recursion

Bohm and Jacopini (1966) showed that structured programming with a combination
of sequence, selection, iteration and procedure calls was Turing complete (see Unit
7)

In the late 1980s two books came out that were particularly influential:

Abelson and Sussman (1984, 1996) Structure and Interpretation of Computer Pro-
grams (known as SICP) which was the programming course for the first year at MIT,

Bird and Wadler (1988); Bird (1998, 2014) Introduction to Functional Programming
which was the the programming course for the first year at Oxford.

See SICP online and Section 1.2 Procedures and the Process They Generate

Dijkstra (1968) Go To Statement Considered Harmful illustrates a debate on struc-
tured programming

The von Neumann computer architecture takes the memory and state view of com-
putation as in Turing m/c

Lambda calculus is equivalent in computational power to a Turing machine (Turing
showed this in 1930s) but efficient implementations did not arrive until 1980s

Functional programming in Lisp or APL was slow

Perlis (1982) Epigrams on Programming: [Functional programmers] know the value
of everything but the cost on nothing

Meijer et al. (1991) Recursion is the GOTO of functional programming

Leading to common patterns of higher order functions, map, filter, fold and poly-
morphic data types

ToC

Some Split/Join Sorting Algorithms

Insertion Sort
Selection Sort
Merge Sort
Quicksort
Bubble Sort

https://en.wikipedia.org/wiki/Turing_completeness
https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book.html
https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book-Z-H-11.html
https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://en.wikipedia.org/wiki/Lambda_calculus
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/APL_(programming_language)

0 N O v b

11
12
13
14
15
16

20

22
23

Phil Molyneux M269 Tutorial 15

e Implementations in Python, recursive and non-recursive

6.1 Insertion Sort
6.1.1 Insertion Sort — Abstract Algorithm

e Insertion Split xs1 is the singleton list of the first item; xs2 is the rest of the list

e Insertion Join insert the item in the singleton list into the sorted result of the rest of
the list

Abstract Sorting Algorithm Diagram for Insertion Sort

(13,0,1,8,7,2,5,4,9,61)

)

[(xs], xs2) = insertionSplit xs] Xg

7 e

[3] (10,1,8,7,2,5,4,9,6]]
sort iSOH
[3] (10,1,2,4,5,6,7,8,9]]

Jﬁ:’
(

ys = insertionJoin (ys1 ,ysZ)]

)

(10,1,2,3,4,5,6,7,8,9])

6.1.2 Insertion Sort — Python

def insSort(xs) :
if Ten(xs) <=1 :
return xs
else :
return ins(xs[0],insSort(xs[1:]))

def ins(x,xs) :
if xs == [] :
return [x]
elif x <= xs[0] :
return [x] + xs
else :
return [xs[0]] + ins(x,xs[1:])

Python Rewritten

e In the style of the abstract algorithm

def insSort01(xs) :
if len(xs) <=1 :
return xs
else :

24
25
26
27
28

30
31
32

34
35
36
37
38
39
40

16 Sorting 5 January 2025

(xsl1l,xs2) = insertionSplit(xs)
ysl = insSort01l(xsl)

ys2 = insSort01(xs2)

ys = insertionJoin(ysl,ys2)
return ys

def insertionSplit(xs) :
(xs1,xs2) = (xs[0:1],xs[1:]1)
return (xsl,xs2)

def insertionJoin(ysl,ys2) :
if ys2 == [] :
return ysl
elif ys1[0] <= ys2[0] :
return ysl + ys2
else :
return ys2[0:1] + insertionJoin(ysl,ys2[1:])

6.1.3 Activity 2 — Insertion Sort: Trace an Evaluation

Insertion Sort — Python Recursive

e Evaluation of insSort([3,0,1,8,7])

Expression to Evaluate Reason
insSort([3,0,1,8,7]) Initial line 4
— 1ins(3, 1insSort([0,1,8,7])) line 7
— 1ins(3, ins(0, insSort([1,8,7]))) line 7
— 1ins(3, ins(0, ins(1l, insSort([8,7]1)))) line 7
— 1ins(3, ins(0, ins(1, ins(8, insSort([7]))))) line?7
— 1ins(3, ins(0, ins(1, ins(8, [71)))) line 5
— 1ins(3, ins(0, ins(1, ([7] + ins(8, [1))))) line 15
— 1ins(3, ins(0, ins(1, ([7] + [81)))) line 11
— 1ins(3, ins(0, ins(1, [7,81))) (+) operator
— 1ins(3, ins(0, ([1]1 + [7,81))) line 13
— 1ins(3, 1ins(0, [1,7,8]1)) (+) operator
- 1ins(3, ([0] + [1,7,8])) line 13
- 1ins(3, [0,1,7,8]) (+) operator
- [0] + (ins 3 [1,7,8]) line 15
— [0] + ([1] + (ins 3 [7,8]1)) line 15
- [0] + ([1] + ([3]1 + ([7,81))) line 13
- [0,1,3,7,8] (+) operator

e Note that the evaluation consumes more space in the process of evaluation;

e also note that you need to be careful with the brackets when doing an evaluation
like this by hand.

6.1.4 Insertion Sort — Non-recursive

e The non-recursive version of Insertion sort takes each element in turn and inserts it
in the ordered list of elements before it.

for index = 1 to (len(xs)-1) do
insert xs[index] in order in xs[0..index-1]

42
43
44
45
46
47
48

50

Phil Molyneux

M269 Tutorial 17

e Here is a Python implementation of the above (based on Miller and Ranum (2011,

page 215)).

e It uses the Python Style Guide PEP 8 http://www.python.org/dev/peps/pep-0008/
(Python Enhancement Proposals) — | must admit | prefer indenting with 2 spaces but
| imagine the M269 module will have its own guidelines.

def insertionSort(xs) :

for index in range(l, len(xs)) :
currentValue = xs[index]

position = index

while (position > 0) and xs[position - 1] > currentValue :
xs[position] = xs[position - 1]
position = position - 1

xs[position] = currentValue

ToC
6.1.5 Activity 3 — Insertion Sort Non-recursive Trace
Insertion Sort — Python Non-recursive
e Evaluation of insertionSort([3,0,1,8,7])
e Showing just the outer for index loop
3101 8 | 7 | startarray
[J
3101 8 | 7 | index =1
0| 3 1 8 | 7 | index =2
0|1 3| 8| 7 | index=3
0 |1 3| 8| 7 | index=4
0|1 3|7 | 8 | end
ToC

6.2 Selection Sort

6.2.1 Selection Sort — Abstract Algorithm

e Selection Split xs1 is the singleton list of the minimum item; xs2 is the original list
with the minimum item taken out

e Selection Join just put the minimum item and the sorted xs2 together as the output

list

Abstract Sorting Algorithm Diagram for Selection Sort

http://www.python.org/dev/peps/pep-0008/

54
55
56
57
58
59
60
61

18 Sorting 5 January 2025

(13,0,1,8,7,2,5,4,9,6])

!

[(xsl, xs2) = selectionSplit xs]

S

(13,1,8,7,2,5,4,9,61]

Bk
(%]

sort ison
(11,2,3,4,5,6,7,8,9]]

ys1 ys2

[ys = selectionjoin (ys1 ,ysZ)]

l

(10,1,2,3,4,5,6,7,8,9])

6.2.2 Selection Sort — Python

def selSort(xs) :

if Ten(xs) <=1 :
return xs

else :
minElmnt = min(xs)
minIndex = xs.index(minETmnt)
xsWithoutMin = xs[:minIndex] + xs[minIndex+1:]
return [minElmnt] + selSort(xsWithoutMin)

e Why do we not use xs.remove(min(xs)) ?
e Why do we not use xs.remove(min(xs)) ?
e remove () has the side effect of changing the original argument

e If we want selSort() to be a function, with no side effects then we should use
something else

6.2.3 Selection Sort — Non-recursive

e The non-recursive version of Selection sort takes each position of the list in turn and
swaps the element at that position with the minimum element in the rest of the list
from that position to the end of the list.

for fi11Slot = 0 to (len(xs) - 2) do
find the minimum of
xs[fi11STot+1]..xs[len(xs) - 1]
and swap with xs[fi11STot]

Selection Sort — Python Non-recursive Implementation

63
64
65
66
67
68

70
71

73
74
75
76
77
78

80
81
82

Phil Molyneux M269 Tutorial 19

e Here is a Python implementation of the above (based on Miller and Ranum (2011,
page 211) but selecting the smallest first not largest, influenced by http://rosettacode.
org/wiki/Sorting_algorithms/Selection_sort#PureBasic).

e Note that here we indent by 2 spaces and use the Python idiomatic simultaneous
assignment to do the swap in line 71

def selectionSort(xs) :
for fill1Slot 1in range(0,len(xs)-1) :
minIndex = fi11Slot
for index in range(fillSlot+1,len(xs)) :
if xs[index] < xs[minIndex] :
minIndex = index

if fillSlot != minIndex: # only swap if different
xs[fi11S1ot],xs[minIndex] = xs[minIndex],xs[fi11STot]

M & R Non-recursive Selection SOrt

e The non-recursive version of Selection sort in Miller & Ranum sorts in ascending
order but takes each position of the list in turn from the right end and swaps the
element at that position with the maximum element in the rest of the list from the
beginning of the list to that position. (Miller and Ranum, 2011, page 211)

for fi11S1lot = len(xs) - 1 down to 1 do
find the maximum of
xs[0] .. xs[fil11STlot]
and swap with xs[fil11Slot]

Selection Sort — Python Non-recursive Implementation

e Here is a Python implementation of the above (based on Miller and Ranum (2011,
page 211) selecting the largest first.

def selSortAscByMax(xs) :
for fil1Slot in range(len(xs) - 1, 0, -1) :
maxIndex = 0
for index 1in range(l, fi11Slot + 1) :
if xs[index] > xs[maxIndex] :
maxIndex = index

temp = xs[fi11STot]
xs[fi11STot] = xs[maxIndex]
xs[maxIndex] = temp

e Note that both Python non-recursive versions work by side-effect on the input list —
they do not return new lists.

ToC

6.2.4 Activity 5 — Finding the Non-Recursive Algorithm

e For Insertion Sort and Selection Sort discuss how the non-recursive case can be found
by considering the recursive case and doing the algorithm in place.

ToC

6.3 Merge Sort
6.3.1 Merge Sort — Abstract Algorithm

e Merge Split xs1 is half the list; xs2 is the other half of the list.

http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort#PureBasic
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort#PureBasic

86
87
88
89
90
91

93
94

96
97
98

100
101
102
103
104
105
106
107
108

110
111
112
113
114
115
116
117

20

Sorting

5 January 2025

e Merge Join Merge the sorted xs1 and the sorted xs2 together as the output list

Abstract Sorting Algorithm Diagram for Merge Sort

(13,0,1,8,7,2,5,4,9,6])

)

[(xsl , Xs2) = mergeSplit xs]

XS‘l/

(3,0,1,8,7]

sort

[ys = mergejoin (ys1 ,ysZ)]

)

(10,1,2,3,4,5,6,7,8,9])

6.3.2 Merge Sort — Python

\52

[2,5,4,9,6]

def mergeSort(xs) :
if Ten(xs) <=1 :
return xs
else :
(aList,bList) = mergeSplit(xs)

return mergeJoin(mergeSort(aList),mergeSort(bList))

def mergeSplit(xs) :
return mergeSplit2(xs)

def mergeSplit2(xs) :
half = Ten(xs)//2
return (xs[:half],xs[half:])

def mergeloin(xs,ys) :
if xs == [] :
return ys
elif ys == [] :
return xs
elif xs[0] <= ys[0] :
return [xs[0]] + mergeJoin(xs[1l:],ys)
else :
return [ys[0]] + mergeloin(xs,ys[1:])

Python mergeSplitl

def mergeSplitl(xs) :

if Ten(xs) == :
return ([]1,[D

elif len(xs) == :
return (xs,[])

else :
(aList,bList) = mergeSplitl(xs[2:])
return ([xs[0]] + aList, [xs[1]] + bList)

Phil Molyneux M269 Tutorial 21

6.3.3 Merge Sort Diagram
Merge Sort Split Phase
3[o]1]8[7|2]5[4]|9]6]

3]0]1]8]7] 2]5]4]9]6]

v v
3]0] 8 [2]5] 49

e o
PYEANSE

Merge Sort Join Phase

ol =

3 o] D18 7] [2] [s] [4] [of [6]
7]8] 6]9]

6.3.4 Merge Sort Python In-Place

e Here is a Python implementation of the above
e From Miller and Ranum (2011, page 218-221)

e This is also recursive but works in place by changing the array.

119
120
121
122
123

125
126
127

129
130

132
133
134
135
136
137
138
139
140

142
143
144
145

147
148
149
150

152
153
154
155

22 Sorting 5 January 2025

e Code fromhttp://interactivepython.org/courselib/static/pythonds/SortSearch/
TheMergeSort.html

def mergeSortInPlace(xs) :
if len(xs) > 1 :
print("Splitting_", xs)
else :
print("Singleton

"

, XS)

if len(xs) > 1 :
half = len(xs)//2
(aList, bList) = (xs[:half],xs[half:])

mergeSortInPlace(aList)
mergeSortInPlace(bList)

i,j,k = 0,0,0
while i < Ten(aList) and j < Ten(bList) :
if alList[i] < bList[j] :
xs[k] = aList[i]
i=1+1
else :
xs [k]
=13
k = k +

bList[j]
1

=+

len(alList) :
aList[i]

1

1

-
+ + I A

len(bList) :
bList[j]
1

()

o
()

+ + I A

1

e Here is the code that reports the merging of the lists

if len(xs) > 1 :

print("Merging ", alList, ",", bList, "to", xs)
else :

print("Merged_", xs)

_ is how the Tistings package shows spaces in strings by default (read the manual)

// is the Python integer division operator

e alist[start:stop:step] is a slice of a list — see Python Sequence Types — slice
operations return a new list (van Rossum and Drake, 2011a, page 19) so xs[:]
returns a copy (or clone) of xs — if any of the indices are missing or negative than
you have to think a bit (or read the manual)

e In Python you really do need to be aware when you are working with values or refer-
ences to objects.

e A listing of the output of mergeSortInPlace(xsc) below is given in the article
version of these notes

>>> from SortingPython import =

>>> xs = [3,0,1,8,7,2,5,4,9,6]

>>> XSc = xs[:]

>>> mergeSortInPTace(xsc)

Splitting [3, 0, 1, 8, 7, 2, 5, 4, 9, 6]
#

Tines removed

#

Merging [0, 1, 3, 7, 8] , [2, 4, 5, 6, 9]
to [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

http://interactivepython.org/courselib/static/pythonds/SortSearch/TheMergeSort.html
http://interactivepython.org/courselib/static/pythonds/SortSearch/TheMergeSort.html
https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range

Phil Molyneux M269 Tutorial 23

Complete listing of output of mergeSortInPlace(xsc)

Python3>>> from SortingPython import =
Python3>>> xs = [3,0,1,8,7,2,5,4,9,6]
Python3>>> xsc = xs[:]

Python3>>> mergeSortInPlace(xsc)
Splitting [3, O, 1, 8, 7, 2, 5, 4, 9, 6]
Splitting [3, 0, 1, 8, 7]

Splitting [3, 0]

Singleton [3]

Merged [3]

Singleton [0]

Merged [0]

Merging [3] , [0] to [0, 3]

Splitting [1, 8, 7]

Singleton [1]

Merged [1]

Splitting [8, 7]

Singleton [8]

Merged [8]

Singleton [7]

Merged [7]

Merging [8] , [7] to [7, 8]

Merging [1] , [7, 8] to [1, 7, 8]
Merging [O, 3] , [1, 7, 8] to [O, 1, 3, 7, 8]
Splitting [2, 5, 4, 9, 6]

Splitting [2, 5]

Singleton [2]

Merged [2]

Singleton [5]

Merged [5]

Merging [2] , [5] to [2, 5]

Splitting [4, 9, 6]

Singleton [4]

Merged [4]

Splitting [9, 6]

Singleton [9]

Merged [9]

Singleton [6]

Merged [6]

Merging [9] , [6] to [6, 9]

Merging [4] , [6, 9] to [4, 6, 9]
Merging [2, 5] , [4, 6, 9] to [2, 4, 5, 6, 9]
Merging [0, 1, 3, 7, 8] , [2, 4, 5, 6, 9] to [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

6.4 Quicksort
6.4.1 Quicksort — Abstract Algorithm

e Quicksort Split Choose an item in the list to be the pivot item; xs1 comprises items
in the list less than the pivot plus the pivot; xs2 comprises items in the list greater
than or equal to the pivot.

e Quicksort Join just append the sorted xs1 and the sorted xs2 together as the output
list

Abstract Sorting Algorithm Diagram for Quicksort

159
160
161
162
163
164
165
166

24 Sorting

5 January 2025

(13,0,1,8,7,2,5,4,9,6])

!

[(xsl, xs2) = quickSplit xs]

Xs1

[0,1,2] ® [3]

[8’7’5’4’9’6]

sort sort

[4’5’6’7’8’9]

[ys = quickjoin (ys1 ,ysZ)]

}

(10,1,2,3,4,5,6,7,8,9])

Note: the diagram use @ as the list append operator — this is used in various courses and

texts

6.4.2 List Comprehensions

e Haskell 2010 Language Report section 3.11 List Comprehensions

lel g1,...,9nl,n = 1 where g; qualifiers are either

ToC

- generators of the form p <- e where pis a pattern of type t and e is an expres-

sion of type [t]

- local bindings that provide new definitions for use in the generated expression

e or subsequent boolean guards and generators

- boolean guards which are expressions of type Bool

section 6.2.5 List displays

[expr for target in 1list] — simple comprehension

[expr for target in Tist if condition] — filters

6.4.3 Quicksort — Python

Python Language Reference section 6.2.4 Displays for lists, sets and dictionaries and

[expr for targetl in Tistl for target2 in Tist2] — multiple generators

ToC

def gsort(xs) :

if not xs :
return []

else :
pivot = xs[0]
less = [x for x 1in xs if x < pivot]
more = [x for x in xs[1l:] if x >= pivot]
return gsort(less) + [pivot] + gsort(more)

168
169

171
172

174

176
177

179
180
181
182
183

185
186
187
188
189
190
191

193
194
195
196

198
199

Phil Molyneux M269 Tutorial 25

e The if test at line 160 shows that Python is weakly typed (and the author of this
code comes from JavaScript)

ToC

6.4.4 Quicksort Python In-Place

e The in-place version of Quick sort works by partitioning a list in place about a value
pivotvalue: (Azmoodeh, 1990, page 259-266)

(1) Scan from the left until
- alist[leftmark] >= pivotvalue
(2) Scan from the right until
- alist[rightmark] < pivotvalue
(3) Swap alist[Teftmark] and alist[rightmark]
(4) Repeat (1) to (3) until scans meet

e Here is an in place version of Quick Sort from Miller and Ranum (2011, pages 221-
226)

e Code based on http://interactivepython.org/courselib/static/pythonds/
SortSearch/TheQuickSort.html

def quickSort(xs) :
quickSortHelper(xs, 0, len(xs) - 1)

def quickSortHelper(xs, fst, Ist) :
if fst < Ist :

splitPoint = partition(xs,fst,1st)

quickSortHelper(xs, fst, splitPoint - 1)
quickSortHelper(xs, splitPoint + 1, 1st)

def partition(xs,fst,1st) :

pivotValue = xs[fst]
TeftMk = fst +1
rightMk = 1Ist
done = False

while not done :
while leftMk <= rightMk and \
xs[leftMk] <= pivotValue :
TeftMk = leftMk + 1
while xs[rightMk] >= pivotValue and \
rightMk >= leftMk :
rightMk = rightMk - 1

if rightMk < leftMk :
done = True
else :
xs[leftMk], xs[rightMk] = xs[rightMk], xs[leftMk]

xs[fst], xs[rightMk] = xs[rightMk], xs[fst]
return rightMk

e The (\) is enabling a statement to span multiple lines — see Lutz (2009, page 317),
Lutz (2013, page 378)

e for a language that uses the offside rule why do we need to do this?

http://interactivepython.org/courselib/static/pythonds/SortSearch/TheQuickSort.html
http://interactivepython.org/courselib/static/pythonds/SortSearch/TheQuickSort.html

203
204
205
206
207

26 Sorting 5 January 2025

e Note that using (\) to create continuations is frowned on (Lutz, 2009, page 318),
Lutz (2013, page 379)

e the authors should have put the entire boolean expression inside parentheses () so
that we get implicit continuation.

e This is not mentioned explicitly in the Style Guide for Python Code http://www.
python.org/dev/peps/pep-0008/ but it does explicitly mention using Python’s
implicit line joining with layout guidelines.

ToC

6.5 Bubble Sort
6.5.1 Bubble Sort — Abstract Algorithm

e Bubble sort is rather like the Hello World program of sorting algorithms — we have
to include it even it isn’t very useful in practice.

e It can be thought of as an in-place version of Selection sort

e In the implementations below, in each pass through the list, the next highest item is
moved (bubbled) to its proper place.

e OK, | should have written it to bubble the smallest the other way to be consistent
with the implementations of Selection sort above.

ToC

6.5.2 Bubble Sort — Python
e Here is a Python implementation from Miller and Ranum (2011, pages 207-210)

e it does not test if there have been no swaps but does use some knowledge of the
algorithm by reducing the pass length by one each time (which the Haskell one did
not do)

def bubbleSort(xs) :
for passNum 1in range(len(xs) - 1, 0, -1) :
for i 1in range(passNum) :
if xs[i] > xs[i+1] :
xs[i], xs[i+1l] = xs[i+1], xs[i]

e Note that range() is a built-in function to Python that is used a lot
e Read the documentation at Section 4.6.6 Ranges
e Remember that range(5) means [0,1,2,3,4] (not[0,1,2,3,4,5]or [1,2,3,4,5])

ToC

7 Future Work

Programming, Debugging, Psychology

Although programming techniques have improved immensely since the early days, the
process of finding and correcting errors in programming — known graphically if inele-
gantly as debugging — still remains a most difficult, confused and unsatisfactory opera-

http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
https://docs.python.org/3.3/library/stdtypes.html#typesseq-range

Phil Molyneux M269 Tutorial 27

tion. The chief impact of this state of affairs is psychological. Although we are happy to
pay lip-service to the adage that to err is human, most of us like to make a small pri-
vate reservation about our own performance on special occasions when we really try. It
is somewhat deflating to be shown publicly and incontrovertibly by a machine that even
when we do try, we in fact make just as many mistakes as other people. If your pride
cannot recover from this blow, you will never make a programmer.

Christopher Strachey, Scientific American 1966 vol 215 (3) September pp112-124

e To err is human, to really foul things up requires a computer.

Attributed to Paul R. Ehrlich in 101 Great Programming Quotes

Attributed to Bill Vaughn in Quote Investigator

Derived from Alexander Pope (1711, An Essay on Criticism)

To Err is Humane;, to Forgive, Divine

This also contains

A little learning is a dangerous thing;

Drink deep, or taste not the Pierian Spring

In programming, this means you have to read the fabulous manual (RTFM)

Sorting, Searching, Binary Trees
e Recursive function definitions
e Inductive data type definitions
- A list is either an empty list or a first item followed by the rest of the list

- A binary tree is either an empty tree or a node with an item and two sub-trees

Recursive definitions often easier to find than iterative

Sorting

Searching

e Both use binary tree structure — either implicitly or explicitly

Future Work — Dates
e Sunday 5 January 2025 Tutorial Online Sorting, Recursion
e Sunday 12 January 2025 Tutorial Online Binary Trees, Recursion
e Sunday 9 February 2025 (Module wide) Tutorial Online Binary Trees, Recursion
e Thursday, 13 March 2025 TMAO02
e Sunday, 9 March 2025 Tutorial (Online): Graphs, Greedy Algorithms
e Sunday, 6 April 2025 Tutorial (Online): (Module wide) Dynamic Programming
e Sunday, 27 April 2025 Tutorial (Online): (Module wide) Computability, Complexity
e Sunday, 4 May 2025 Tutorial (Online): Review of course material for TMAO3

https://en.wikipedia.org/wiki/Christopher_Strachey
https://en.wikipedia.org/wiki/Paul_R._Ehrlich
http://www.devtopics.com/101-great-computer-programming-quotes/
https://en.wikipedia.org/wiki/William_E._Vaughan
http://quoteinvestigator.com/2010/12/07/foul-computer/
https://en.wikipedia.org/wiki/Alexander_Pope
https://en.wikipedia.org/wiki/An_Essay_on_Criticism
https://en.wikipedia.org/wiki/Pierian_Spring
https://lmgtfy.com/?q=rtfm

28 Sorting 5 January 2025

e Thursday, 8 May 2025 TMAO3

8 Web Sites & References

8.1 Sorting Web Links

e Rosetta Code Sorting Algorithms http://rosettacode.org/wiki/Sorting_algorithms
— sorting algorithms implemented n lots of programming languages

e Sorting Algorithm Animations https://www. toptal.com/developers/sorting-
algorithms — visual display of the performance of various sorting algorithms for
several classes of data: random, nearly sorted, reversed, few unique — worth brows-
ing to.

e Sorting Algorithms as Dances https://www.youtube.com/user/AlgoRythmics
— inspired!

8.2 Python Web Links & References

e Miller and Ranum (2011) http://interactivepython.org/courselib/static/
pythonds/index.html — the entire book online with a nice way of running the
code.

e Lutz (2013) — one of the best introductory books

e Lutz (2011) — a more advanced book — earlier editions of these books are still
relevant — you can also obtain electronic versions from the O’Reilly Web site http:
//oreilly.com

e Python 3 Documentation https://docs.python.org/3/

e Python Style Guide PEP 8 https://www.python.org/dev/peps/pep-0008/ (Python
Enhancement Proposals)

ToC

8.3 Haskell Web Links & References
e Haskell Language https://www.haskell.org
e HaskellWiki https://wiki.haskell.org/Haskell
e Learn You a Haskell for Great Good! — very readable introduction to Haskell
e Real World Haskell http://book.realworldhaskell.org — more advanced
e Thompson (2011) — a good text for functional programming for beginners

e Bird and Wadler (1988); Bird (1998, 2014) — one of the best introductions but
tough in parts, requires some mathematical maturity — the three books are in effect
different editions

http://rosettacode.org/wiki/Sorting_algorithms
https://www.toptal.com/developers/sorting-algorithms
https://www.toptal.com/developers/sorting-algorithms
https://www.youtube.com/user/AlgoRythmics
http://interactivepython.org/courselib/static/pythonds/index.html
http://interactivepython.org/courselib/static/pythonds/index.html
http://oreilly.com
http://oreilly.com
https://docs.python.org/3/
https://www.python.org/dev/peps/pep-0008/
https://www.haskell.org
https://wiki.haskell.org/Haskell
http://learnyouahaskell.com
http://book.realworldhaskell.org

Phil Molyneux M269 Tutorial 29

e Bird and Gibbons (2020) — the descriptions of five main principles of algorithm
design: divide and conquer, greedy algorithms, thinning, dynamic programming,
and exhaustive search, are mainly language neutral

e Functors, Applicatives, and Monads in Pictures — a very good outline with car-
toons

e Typeclassopedia https://wiki.haskell.org/Typeclassopedia — a more for-
mal introduction to Functors, Applicatives and Monads

e Haskell Wikibook

ToC
8.4 Demonstration 2 Sorting Algorithms as Dances
e Quicksort
e https://www.youtube.com/user/AlgoRythmics
e the hats make the point(!)
ToC

References

Abelson, Harold and Gerald Jay Sussman (1984). Structure and Interpretation of Computer
Programs. MIT Press, first edition. URL http://mitpress.mit.edu/sicp/. 14

Abelson, Harold and Gerald Jay Sussman (1996). Structure and Interpretation of Computer
Programs. MIT Press, second edition. ISBN 0262510871. URL http://mitpress.mit.
edu/sicp/. 12, 14

Azmoodeh, Manoochehr (1990). Abstract Data Types and Algorithms. Palgrave Macmillan,
second edition. ISBN 0333512103. 11, 25

Bird, Richard (1998). Introduction to Functional Programming using Haskell. Prentice Hall,
second edition. ISBN 0134843460. 14, 28

Bird, Richard (2014). Thinking Functionally with Haskell. Cambridge University Press. ISBN
1107452643. URL https://www.cs.ox.ac.uk/publications/books/functional/.
14, 28

Bird, Richard and Jeremy Gibbons (2020). Algorithm Design with Haskell. Cambridge Uni-
versity Press. ISBN 9781108869041. URL https://www.cs.ox.ac.uk/publications/
books/adwh/. 29

Bird, Richard and Phil Wadler (1988). Introduction to Functional Programming. Prentice
Hall, first edition. ISBN 0134841972. 14, 28

Bohm, Corrado and Giuseppe Jacopini (1966). Flow diagrams, Turing Machines and Lan-
guages with Only Two Formation Rules. Communications of the ACM, 9(5):366-371.
14

Dijkstra, Edsger W (1968). Letters to the editor: Go To Statement Considered Harmful.
Communications of the ACM, 11(3):147-148. 14

Dromey, R.Geoff (1982). How to Solve it by Computer. Prentice-Hall. ISBN 01343400109.

http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html
https://wiki.haskell.org/Typeclassopedia
https://en.wikibooks.org/wiki/Haskell
https://www.youtube.com/user/AlgoRythmics
http://mitpress.mit.edu/sicp/
http://mitpress.mit.edu/sicp/
http://mitpress.mit.edu/sicp/
https://www.cs.ox.ac.uk/publications/books/functional/
https://www.cs.ox.ac.uk/publications/books/adwh/
https://www.cs.ox.ac.uk/publications/books/adwh/

30 Sorting 5 January 2025

Dromey, R.Geoff (1989). Program Derivation: The Development of Programs from Speci-
fications. Addison Wesley. ISBN 0201416247.

Hudak, Paul; John Hughes; Simon Peyton Jones; and Phil Wadler (2007). A History of
Haskell: Being Lazy with Class. In Proceedings of the third ACM SIGPLAN conference on
History of programming languages, pages 12-1-12-55. ACM New York, NY, USA.

Knuth, D.E. (1998). The Art of Computer Programming Vol. 3: Sorting and Searching. The
Art of Computer Programming: Sorting and Searching. Adddison Wesley, second edition.
ISBN 0201896850. URL http://books.google.co.uk/books?id=sXa_mwEACAAJ. 9

Lee, Gias Kay (2013). Functional Programming in 5 Minutes. Web. http://gsklee.im,
URL http://slid.es/gsklee/functional-programming-in-5-minutes.

Lutz, Mark (2009). Learning Python. O’Reilly, fourth edition. ISBN 0596158068. 25, 26

Lutz, Mark (2011). Programming Python. O’Reilly, fourth edition. ISBN 0596158106. URL
http://learning-python.com/books/about-pp4e.html. 28

Lutz, Mark (2013). Learning Python. O’Reilly, fifth edition. ISBN 1449355730. URL
http://learning-python.com/books/about-T1p5e.html. 25, 26, 28

Marlow, Simon and Simon Peyton Jones (2010). Haskell Language and Library Specifi-
cation. Web. URL http://www.haskell.org/haskellwiki/Language_and_1library_
specification.

Meijer, Erik; Maarten Fokkinga; and Ross Paterson (1991). Functional programming with
bananas, lenses, envelopes and barbed wire. In Functional Programming Languages
and Computer Architecture, pages 124-144. Springer. 14

Merritt, SM and KK Lau (1997). A logical inverted taxonomy of sorting algorithms. In
Proceedings of the Twelfth International Symposium on Computer and Information Sci-
ences, pages 576-583. Citeseer. 11

Merritt, Susan M (1985). An inverted taxonomy of sorting algorithms. Communications of
the ACM, 28(1):96-99. 11

Miller, Bradley W. and David L. Ranum (2011). Problem Solving with Algorithms and
Data Structures Using Python. Franklin, Beedle Associates Inc, second edition. ISBN
1590282574. URL http://interactivepython.org/courselib/static/pythonds/
index.html. 17,19, 21, 25, 26, 28

Perlis, Alan J. (1982). Epigrams on Programming. SIGPLAN Notices, 17(9):7-13. 14

Sussman, Julie (1985a). Instructor’s Manual to Accompany Structure and Interpretation
of Computer Programs. MIT Press. ISBN 0262 691019. URL http://mitpress.mit.
edu/sites/default/files/sicp/index.html.

Sussman, Julie (1985b). Instructor’s Manual to Accompany Structure and Interpretation
of Computer Programs. MIT Press, second edition. ISBN 0262 692201. URL http:
//mitpress.mit.edu/sites/default/files/sicp/index.html.

Thompson, Simon (2011). Haskell the Craft of Functional Programming. Addison Wes-
ley, third edition. ISBN 0201882957. URL http://www.haskellcraft.com/craft3e/
Home.html. 28

van Rossum, Guido and Fred Drake (2011a). An Introduction to Python. Network Theory
Limited, revised edition. ISBN 1906966133. 22

http://books.google.co.uk/books?id=sXa_mwEACAAJ
http://gsklee.im
http://slid.es/gsklee/functional-programming-in-5-minutes
http://learning-python.com/books/about-pp4e.html
http://learning-python.com/books/about-lp5e.html
http://www.haskell.org/haskellwiki/Language_and_library_specification
http://www.haskell.org/haskellwiki/Language_and_library_specification
http://interactivepython.org/courselib/static/pythonds/index.html
http://interactivepython.org/courselib/static/pythonds/index.html
http://mitpress.mit.edu/sites/default/files/sicp/index.html
http://mitpress.mit.edu/sites/default/files/sicp/index.html
http://mitpress.mit.edu/sites/default/files/sicp/index.html
http://mitpress.mit.edu/sites/default/files/sicp/index.html
http://www.haskellcraft.com/craft3e/Home.html
http://www.haskellcraft.com/craft3e/Home.html

Phil Molyneux M269 Tutorial 31

van Rossum, Guido and Fred Drake (2011b). The Python Language Reference Manual.
Network Theory Limited, revised edition. ISBN 1906966141.

ToC

Python Code Index

Index for some (but not all) of the python code. Note that the index commands are placed
after any listings environment containing the code to be indexed.

accProd, 12

bubbleSort, 26

fac, 12
facFor, 13
faclter, 12

facWhile, 13

ins, 15
insertionJoin, 16
insertionSort, 17
insertionSplit, 16
insSort, 15
insSort01, 16

mergeJoin, 20
mergeSort, 20
mergeSortInPlace, 22
mergeSplit, 20
mergeSplitl, 21
mergeSplit2, 20

partition, 25

gsort, 25
quickSort, 25
quickSortHelper, 25

selectionSort, 19
selSort, 18
selSortAscByMax, 19

32

Diagrams Index

Index for some of the PGF/TikZ diagrams. Note that the indexing commands are placed
after the diagram code

absSortAlg, 11 mergeSortSplit, 21
insertsortAlg, 15 quicksortSortAlg, 24
mergeSortAlg, 20

mergeSortjoin, 21 selectSortAlg, 18

Author Phil Molyneux Written 5 January 2025 Printed 5th January 2025

Subject dir: (baseURL)/0U/Courses/Computing/M269/M269Presentations/M269Prsntn2024]

Topic path:
/M269Prsntn2024]Tutorials/M269Tutorial20250105SortingPrsntn2024]/M269Tutorial20250105SortingPrsntn2024].pdf

33

	Agenda
	Adobe Connect
	Interface
	Settings
	Sharing Screen & Applications
	Ending a Meeting
	Invite Attendees
	Layouts
	Chat Pods
	Web Graphics
	Recordings

	Sorting: Motivation
	Sorting as Dances
	Card Sorting Ex

	Sorting Taxonomy
	Sorting Classifications

	Recursion/Iteration
	Split/Join Sorting
	Insertion Sort
	Insertion Sort — Abstract Algorithm
	Insertion Sort — Python
	Activity 2 — Insertion Sort: Trace an Evaluation
	Insertion Sort — Non-recursive
	Activity 3 — Insertion Sort Non-recursive Trace

	Selection Sort
	Selection Sort — Abstract Algorithm
	Selection Sort — Python
	Selection Sort — Non-recursive
	Activity 5 — Finding the Non-Recursive Algorithm

	Merge Sort
	Merge Sort — Abstract Algorithm
	Merge Sort — Python
	Merge Sort Diagram
	Merge Sort Python In-Place

	Quicksort
	Quicksort — Abstract Algorithm
	List Comprehensions
	Quicksort — Python
	Quicksort Python In-Place

	Bubble Sort
	Bubble Sort — Abstract Algorithm
	Bubble Sort — Python

	Future Work
	References
	Sorting Web Links
	Python Web Links & References
	Haskell Web Links & References
	Demonstration 2 Sorting Algorithms as Dances
	References

	Python Code Index
	Diagrams Index

