M269

Phil Molyneux

M269
Programming & Efficiency Topics

Phil Molyneux

26 January 2016

1/39 (1/48)

M269 e

. Phil Molyneux
Meeting Agenda 26 January 2016
Meeting Agenda
» Revue of session on Binary Trees

» Exponentials and Logarithms
» Programming points

Height balanced (AVL) trees
Future topics

v

v

2/39 (2/48)

M269

Exponentials and Logarithms

C Phil Mol
Definitions il Molyneux

» Exponential function y = a* or f(x) = a*

» a"=axax---xa(naterms) S

» Logarithm reverses the operation of exponentiation
> log,y = x means a¥ =y

> log,1=0

» log,a=1

» Method of logarithms propounded by John Napier from
1614

> Log Tables from 1617 by Henry Briggs

» Slide Rule from about 1620-1630 by William Oughtred
of Cambridge

» Logarithm from Greek logos ratio, and arithmos number
(Chanbers Dictionary 13th edition 2014)

3/39 (3/48)

https://en.wikipedia.org/wiki/Exponential_function
https://en.wikipedia.org/wiki/Logarithm
https://en.wikipedia.org/wiki/Mathematical_table#Tables_of_logarithms
https://en.wikipedia.org/wiki/Slide_rule

Exponentiation

M269

Phil Molyneux

Rules of Indices

No o se W o=

vV V. v VY

am x a"
am+a"

—m Rules of Indices

a =

5| =

a
v a

n__

1
m

m mn

a

~~
~—

a

m

% an
0 =1 where a # 0

L L

Exercise Justify the above rules

What should 0° evaluate to ?

See Wikipedia: Exponentiation

The justification above probably only worked for whole
or rational numbers — see later for exponents with real
numbers (and the value of logarithms, calculus. . .)

4/39 (4/48)

http://en.wikipedia.org/wiki/Exponentiation

Logarithms

Motivation

>

v

Make arithmetic easier — turns multiplication and
division into addition and subtraction (see later)
Complete the range of elementary functions for
differentiation and integration

An elementary function is a function of one variable
which is the composition of a finite number of
arithmetic operations ((+), (=), (x), (%)),
exponentials, logarithms, constants, and solutions of
algebraic equations (a generalization of nth roots).

The elementary functions include the trigonometric and
hyperbolic functions and their inverses, as they are
expressible with complex exponentials and logarithms.
See A Level FP2 for Euler's relation e’ = cosé + isin 6

1

In A Level C3, C4 we get /— =log, |x| + C
X

e is Euler's number 2.71828. ..

M269

Phil Molyneux

Logarithms — Motivation

5/39 (5/48)

https://en.wikipedia.org/wiki/Elementary_function
https://en.wikipedia.org/wiki/Elementary_function
https://en.wikipedia.org/wiki/E_(mathematical_constant)

Exponentials and Logarithms

Graphs

> See GeoGebra file expLog.ggb

-2

W(z) = g(f(x))

M269

Phil Molyneux

E

Logarithms
Rules of Indices
Logarithms L

Exponentials and
Logarithms — Graphs

Laws of Logarithm:
and Inverses

6/39 (6/48)

expLog.ggb

M269

Exponentials and Logarithms

Laws of Logarithms piit Melynex
» Multiplication law log, xy = log, x + log, y
» Division law log,, (;{) =log,x —log,y
» Power law log, x* = klog, x
» Proof of Multiplication Law T
x — alogax
y = a'°8ay by definition of log

xy = 51082 % log,y

= glogaxtlog,y by laws of indices

Hence log, xy = log,x + log, ¥ by definition of log

7/39 (7/48)

Arithmetic Operations

M269

Phil Molyneux

Inverse Operations

>

>

Notation helps or maybe not 7

Addition add(b,x) = x+ b

Subtraction sub(b,x) = x — b

Inverse sub(b,add(b, x)) = (x + b) — b= x
Multiplication mul(b, x) = x x b

Division div(b,x) = x +b =% = x/b

Inverse div(b, mul(b,x)) = (x x b) + b= (Xzb = X

Exponentiation exp(b, x) = b*

Arithmetic and Inverses

—

Logarithm log(b, x) = log,, x

Inverse log(b, exp(b, x)) = log,(b*) = x

What properties do the operations have that work (or
not) with the notation ?

8/39 (8/48)

https://en.wikipedia.org/wiki/Addition
https://en.wikipedia.org/wiki/Subtraction
https://en.wikipedia.org/wiki/Multiplication
https://en.wikipedia.org/wiki/Division_(mathematics)
https://en.wikipedia.org/wiki/Exponentiation
https://en.wikipedia.org/wiki/Logarithm

Arithmetic Operations

M269

Phil Molyneux

Commutativity and Associativity

» Commutativity x® y =y ® x
> Associativity (x®y)®z=x® (y ® z)
» (+) and (x) are semantically commutative and

vV v.vyYy

vV vVv.VvYy

associative — so we can leave the brackets out
(—) and (=) are not

Evaluate (3—(2—1)) and ((3—2) —1)
Evaluate (3/(2/2)) and ((3/2)/2)

We have the syntactic ideas of left (and right)
associativity

We choose (—) and (<) to be left associative
3—2—1means (3—2)-1)

3/2/2 means ((3/2)/2)

Operator precedence is also a choice (remember
BIDMAS or BODMAS ?)

If in doubt, put the brackets in

Arithmetic and Inverses

9/39 (9/48)

https://en.wikipedia.org/wiki/Commutative_property
https://en.wikipedia.org/wiki/Associative_property
https://en.wikipedia.org/wiki/Order_of_operations

M269

Exponentials and Logarithms

L. Phil Molyneux
Associativity

What should 23 mean ?

Let b~ x = b¥

Evaluate (273) "4 and 27 (37 4)

Evaluate ¢ = log,(log,((b~ b) ™ x))

Evaluate d = log,(log, (b~ (b~ x))) ridimetc and nverss
Beware spreadsheets Excel and LibreOffice here

v

v

v

v

v

v

10/39 (10/48)

Exponentials and Logarithms

M269

Associativity

v

Phil Molyneux
(23)4 — 212 jpq 23* — 981

Exponentiation is not semantically associative

We choose the syntactic left or right associativity to

make the syntax nicer.

Evaluate ¢ = log,(log,((b~ b) ™ x)) At nd nverses

¢ = logy(x log,(b?)) = log,(x-(blog, b)) = log,(x-b-1)
Hence ¢ = log, x + log, b = log, x + 1

Not symmetrical (unless b and x are both 2)

Evaluate d = log,(log,(b ™ (b~ x)))

d = log,,((b™ x)(logy, b)) = log,,((b™ x) x 1)

Hence d = log, (b~ x) = x(logy, b) = x

Which is what we want — so exponentiation is chosen
to be right associative

11/39 (11/48)

Exponentials and Logarithms

Change of Base

» Change of base

logy, x

log, x = @

Proof: Let y = log, x
@ =x

log, @ = logy, x

ylog, a = logy, x

log,, x

- logy, a

» Given x, logy, x, find the base b

1
> b = xlogpx

> log, b= log, 2

M269

Phil Molyneux

Change of Base

12/39 (12/48)

M269

Before Calculators and Computers

Phil Molyneux
» We had computers before 1950 — they were humans
with pencil, paper and some further aids:
> Slide rule invented by William Oughtred in the 1620s et Eeflaiiar
— major calculating tool until pocket calculators in and Computers

1970s

» Log tables in use from early 1600s — method of
logarithms propounded by John Napier

» Logarithm from Greek logos ratio, and arithmos
number

13/39 (13/48)

https://en.wikipedia.org/wiki/Slide_rule
https://en.wikipedia.org/wiki/William_Oughtred
https://en.wikipedia.org/wiki/Calculator
https://en.wikipedia.org/wiki/Mathematical_table
https://en.wikipedia.org/wiki/John_Napier
https://en.wikipedia.org/wiki/Logarithm

Log Tables

Knott's Four-Figure Mathematical Tables

KNOTT’S
FOUR-FIGURE
MATHEMATICAL
TABLES

W. & R. CHAMBERS, LTD.
LONDON AND EDIN

M269

Phil Molyneux

Log Tables
Slide Rules
Call

14 /39 (14/48)

Slide Rules e

Phil Molyneux
Pickett N 3-ES from 1967

Log Table:
Slide Rules
lator

Example Calculation

|
oo o

» See Oughtred Society
UKSRC

Rod Lovett's Slide Rules
Slide Rule Museum

v

v

v

15/39 (15/48)

http://www.oughtred.org
http://www.uksrc.org.uk
http://sliderules.lovett.com
http://sliderulemuseum.com

Slide Rules e

Phil Molyneux
Pickett loglog Slide Rules Manual 1953

Slide Rules

16/39 (16/48)

Calculators
HP HP-21 Calculator from 1975 £69

M269

Phil Molyneux

Log Tables
Slide Rules
Calculators

Example Calculation

17/39 (17/48)

M269

Calculators
Casio fx-85GT PLUS Calculator from 2013 £10

Phil Molyneux

Calculators

18/39 (18/48)

M269

Calculators

Calculator Links

Phil Molyneux

» HP Calculator Museum http://www.hpmuseun. org

» HP Calculator Emulators
http://nonpareil.brouhaha.com

» HP Calculator Emulators for OS X o
http://www.bartosiak.org/nonpareil/

» Vintage Calculators Web Museum
http://www.vintagecalculators.com

19/39 (19/48)

http://www.hpmuseum.org
http://nonpareil.brouhaha.com
http://www.bartosiak.org/nonpareil/
http://www.vintagecalculators.com

M269

Example Calculation

Phil Molyneux
Log Tables, Slide Rule and Calculator

» Evaluate 89.7 x 597

» Knott’s Tables

> logy089.7 = 1.9528 and log;(597 = 2.7760

» Shows mantissa (decimal) & characteristic (integral)
» Add 4.7288, take antilog to get 5346 + 10 = 5.356 x 10*
» HP-21 Calculator — set display to 4 decimal places
> 89.7 [log] = 1.9528 and 597 (log] = 2.7760

> displays 4.7288

» 10 , and displays 53550.9000

» Casio fx-85GT PLUS

> 89.7 = 1.952792443 597 = 2.775974331 =
> 4.728766774 +(104] gives 53550.9

Example Calculation

20/39 (20/48)

M269

Computational Components

. . Phil Molyneux
Imperative, Procedural Programming

Imperative or procedural programming has statements which

can manipulate global memory — statements can be

organised into procedures (or functions)

» Sequence of statements Basic
Computational
stmnt ; stmnt Components

» lIteration to repeat statements

while expr
suite

for targetlList in exprlist
suite

» Selection choosing between statements

if expr : suite
elif expr : suite
else : suite

21/39 (21/48)

Computational Components

Functional Programming

Functional programming treats computation as the
evaluation of expressions and the definition of functions (in
the mathematical sense)

» Function composition to combine the application of
two or more functions — like sequence but from right
to left (notation accident of history)

(f . g) x=1f (g x)

» Recursion — function definition defined in terms of
calls to itself (with smaller arguments) and base case(s)
which do not call itself.

» Conditional expressions choosing between alternatives
expressions

if expr then expr else expr

M269

Phil Molyneux

Basic
Computational
Components

22/39 (22/48)

M269

Writing Programs & Thinking

The Steps

Phil Molyneux

1. Invent a name for the program (or function)

2. What is the type of the function ? What sort of input
does it take and what sort of output does it produce ?

3. Invent names for the input(s) to the function (formal
parameters) Wikting Progeams &

4. Think of the definition of the function body. o

23/39 (23/48)

M269

Writing Programs & Thinking

The Think Step

Phil Molyneux

0. Think of an example or two — what should the
program /function do ?

1. Don't think too much at one go — break the problem
down. Top down design, step-wise refinement.

2. What are the inputs — describe all the cases.

Writing Programs &
Thinking

3. Investigate choices. What data structures 7 What
algorithms 7

4. Use common tools — bottom up synthesis.

5. Spot common function application patterns —
generalise & then specialise.

6. Look for good glue — to combine little programs to
make bigger ones.

7. Try out your first examples when you have written the
program

24/39 (24/48)

M269

Divide and Conquer

Phil Molyneux
Binary Search — Exercise
Given the Python definition of binarySearchRec from the
slides for the Unit 1 tutorial, trace an evaluation of
binarySearchRec(xs, 25) where xs is
xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
Divide and
Conquer

25/39 (25/48)

Divide and Conquer

M269

Binary Search Recursive Fhil Molyneu
1 def binarySearchRec(xs,val,h lo=0,hi=-1):

2 if (hi = —1):

3 hi = len(xs) — 1

5 mid = (lo + hi) // 2

7 if hi < lo:

8 return None Divide and
9 else : Conquer
10 guess = xs[mid]

11 if val =— guess:

12 return mid

13 elif val < guess:

14 return binarySearchRec(xs,val,lo, mid—1)

15 else:

16 return binarySearchRec(xs,val,mid+1,hi)

26/39 (26/48)

M269

Divide and Conquer

Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs, 25)

Phil Molyneux

XS = Highlight the mid value and search range
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range
binarySearchRec(xs,25,77,77) Divide and
XS = Highlight the mid value and search range Comgprar
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range
binarySearchRec(xs,25,77,77)

Return wvalue: 77

27/39 (27/48)

M269

Divide and Conquer

Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs, 25)

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range
binarySearchRec(xs,25,77,77) Divide and
XS = Highlight the mid value and search range Comgprar
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range
binarySearchRec(xs,25,77,77)

Return wvalue: 77

Phil Molyneux

27/39 (28/48)

M269

Divide and Conquer

X . Phil Molyneux
Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs, 25)

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,14) by tine 15

XS = Highlight the mid value and search range
binarySearchRec(xs,25,77,77) Divide and
XS = Highlight the mid value and search range Comgprar
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range
binarySearchRec(xs,25,77,77)

Return value: 77

27/39 (29/48)

M269

Divide and Conquer

X . Phil Molyneux
Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs, 25)

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,14) by tine 15

xs = [27,31,37,48,57,87,95]
binarySearchRec(xs,25,77,77) Divide and
XS = Highlight the mid value and search range Comgprar
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range
binarySearchRec(xs,25,77,77)

Return value: 77

27/39 (30/48)

M269

Divide and Conquer

X . Phil Molyneux
Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs, 25)

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,14) by tine 15

xs = [27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,10) by line 15

Divide and
XS = Highlight the mid value and search range Conquer

binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range
binarySearchRec(xs,25,77,77)
Return value: 77

27/39 (31/48)

M269

Divide and Conquer

Binary Search — Solution Pl Hobymeux
xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs, 25)
xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,14) by tine 15
xs = [27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,10) by line 15 Divide and
xs = [27,31,37,] Sondiey

binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range
binarySearchRec(xs,25,77,77)
Return value: 77

27/39 (32/48)

M269

Divide and Conquer

Binary Search — Solution Pl Hobymeux
xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs, 25)
xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,14) by tine 15
xs = [27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,10) by line 15 Divide and
xs = [27,31,37,] Sondiey

binarySearchRec(xs,25,8,8) by line 13
XS = Highlight the mid value and search range
binarySearchRec(xs,25,77,77)
Return value: 77

27/39 (33/48)

Divide and Conquer

Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs, 25)

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,14) by tine 15

xs = [27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,10) by line 15
xs = [27,31,37,]
binarySearchRec(xs,25,8,8) by line 13
xs = [27,]

binarySearchRec(xs,25,77,77)
Return wvalue: 77

M269

Phil Molyneux

Divide and
Conquer

27/39 (34/48)

M269

Divide and Conquer

Binary Search — Solution Pl Hobymeux
xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs, 25)
xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,14) by tine 15
xs = [27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,10) by line 15 Divide and
xs = [27,31,37,] Sondiey
binarySearchRec(xs,25,8,8) by line 13
xs = [27,]

binarySearchRec(xs,25,8,7) by line 13
Return value: 77

27/39 (35/48)

M269

Divide and Conquer

Binary Search — Solution Pl Hobymeux
xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs, 25)
xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,14) by tine 15
xs = [27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,10) by line 15 Divide and
xs = [27,31,37,] Sondiey
binarySearchRec(xs,25,8,8) by line 13
xs = [27,]

binarySearchRec(xs,25,8,7) by line 13
Return value: None by line 7

27/39 (36/48)

String Search e

Phil Molyneux
» Sunday Quick Search algorithm
» Knuth-Morris-Pratt (KMP) algorithm

» Exact String Matching Algorithms — animations in
Java

String Search

28/39 (37/48)

http://www-igm.univ-mlv.fr/~lecroq/string/index.html

M269

Sunday Quick Search Algorithm

Phil Molyneux
Example

» Sunday Quick Search example

» Consider the alphabet C, G, A, T and a target string
CGTACTCGTAGT.

» Calculate the shift table for this search, explaining in
detail how you used the part of the algorithm that
builds the table to derive your results.

» Given the target string CGTACTCGTAGT, the search oo ot oo
string CGTACTCGGCGTAAAGTGCGTCTT and the Slexn
shift table calculated above

» describe, with diagrams if necessary, how the first
attempt to match the target string against the search
string fails

» and how the target string slides along the search string
for the second matching attempt.

20/39 (38/48)

Sunday Quick Search Algorithm 269

Phil Molyneux
Sunday Quick Search Shift Table

> The shift table for the Sunday Quick Search algorithm:
> If the character does not appear in the target string T,
the shift distance is one more than the length of T
> If the character does appear in T the shift distance is
the first position at which it appears, counting from
right to left and starting at 1

. A C G T
i Shlft table. 3 6 2 1 Sunday Quick Search
> See the example at Quick Search algorithm et

30/39 (39/48)

http://www-igm.univ-mlv.fr/~lecroq/string/node19.html

Sunday Quick Search Algorithm

Calculating the Shift

» Given the following alignment of Search and Target
strings

Search string

[clelTlalclT[c[s[c[c[c][T[a]alalc[T[c[c[c[T[c[T[T]

[cle]T[alc[T]c[c[T]A[G]T]
Target string

» The next character in the Search string after the Target
string is A so the shift will be 3 places

Search string

[cle[T]alc[T[c[e[c[c[c[T[a]alalc[T[e[c[e[T[c[T[T]

[cle[T[alc[T]c[c[T]A[G]T]
Target string

M269

Phil Molyneux

Sunday Quick Search
Algorithm

31/39 (40/48)

Knuth-Morris-Pratt (KMP) Algorithm

Example

>

>

Knuth-Morris-Pratt (KMP) algorithm example

Consider the alphabet C, G, A, T and a target string
CGTACTCGTAGT.

Calculate the prefix table for this target string,

explaining in detail how you derived the sixth, seventh
and eighth entries in your table.

M269

Phil Molyneux

Knuth-Morris-Pratt (KMP)
Algorithm

32/39 (41/48)

Knuth-Morris-Pratt (KMP) Algorithm

KMP Prefix Table

» The KMP prefix table takes the target string, t, and a
position, p, in t and returns an integer k

> k is the length of the maximum proper prefix of t up to
position p that is a suffix of t up position p

» We define a prefix function to take a target string, t,
and a number k > 0, which is the number of items off
the front of t

» Formally, if our position index is O based we have:

» prefixTable(t,0) =0

» prefixTable(t, p) = max{k : k < p A prefix(t, k) 3
prefix(t,p+ 1)}

» Here 1 means proper suffix — that is a suffix that does
not include the whole string

M269

Phil Molyneux

Knuth-Morris-Pratt (KMP)
Algorithm

33/39 (42/48)

Knuth-Morris-Pratt (KMP) Algorithm e

Phil Molyneux
KMP Shift Function

» M269 does not give the KMP shift function (or table)
— we give it here for interest

> The shift function takes the target string, t, and the
number of characters in the target string that have been
matched, g and returns the shift.

» shift(t,0) =1

» shift(t,q) = g — prefixTable(t,q — 1)

» This assumes 0 based list indexing K MarrisPrate (KMP)

» The notation here comes from Cormen et al (2009,
section 32.4, page 1004) — this uses 1 based list
indexing and also provides code.

» Cormen uses the terminology Text for Search string and
Pattern for Target string

34/39 (43/48)

Knuth-Morris-Pratt (KMP) Algorithm e

) Phil Molyneux
KMP Prefix and Shift Table

’C|G|T|A|C|T|C|G|T|A|G|T‘Targetstring

’0|1|2|3|4|5|6|7|8|9|10|11‘Position(|ndex),p

’0|1|2|3|4|5|6|7|8|9|10|11|12‘Match,q

’O|0|0|0|1|0|1|2|3|4|O|O‘prefixTabIe(t,p)

’1|1|2|3|4|4|6|6|6|6|6|11|12‘shift(t,q)

Knuth-Morris-Pratt (KMP)
Algorithm

35/39 (44/48)

M269

M269, Computing and Programming

Phil Molyneux
Future Work

» Reflections on today's topics — what were the
important points ?
» Dates for next meeting: (?7)
» Next topics
» Unit 5 Optimisation
» Graph algorithms
» Critique of Phil's notes

Future Work

36/39 (45/48)

Web Sites & References M269

Web Sites 1

>

>

Phil Molyneux

Python Documentation https://docs.python.org/3/ (26 January
2016)

Wikipedia Category: Python Libraries
https://en.wikipedia.org/wiki/Category:Python_libraries (26
January 2016)

Python Wiki: Useful Modules
https://wiki.python.org/moin/UsefulModules (26 January 2016)

Python Packaging User Guide http:
//python-packaging-user-guide.readthedocs.org/en/latest/ (26
January 2016)

Python Packaging Authority https://www.pypa.io/en/latest/ (26
January 2016)

PyPl Python Package Index https://pypi.python.org/pypi (26 Web Sites
January 2016)

37/39 (46/48)

https://docs.python.org/3/
https://en.wikipedia.org/wiki/Category:Python_libraries
https://wiki.python.org/moin/UsefulModules
http://python-packaging-user-guide.readthedocs.org/en/latest/
http://python-packaging-user-guide.readthedocs.org/en/latest/
https://www.pypa.io/en/latest/
https://pypi.python.org/pypi

M269

Web Sites & References

Web Sites 2

Phil Molyneux

» Top 100 Tools for Learning 2015
http://c4lpt.co.uk/directory/top-100-tools/ (26 January 2016)

» Pygal Python charting http://www.pygal.org/en/latest/ (26
January 2016)

» 21 Ridiculously Impressive HTML5 Canvas Experiments

http://code.tutsplus.com/articles/
21-ridiculously-impressive-html5-canvas-experiments--net-14210

(26 January 2016)

» graph-tool Efficient network analysis https://graph-tool.skewed.de
(26 January 2016)

Web Sites

38/39 (47/48)

http://c4lpt.co.uk/directory/top-100-tools/
http://www.pygal.org/en/latest/
http://code.tutsplus.com/articles/21-ridiculously-impressive-html5-canvas-experiments--net-14210
http://code.tutsplus.com/articles/21-ridiculously-impressive-html5-canvas-experiments--net-14210
https://graph-tool.skewed.de

Web Sites & References M269

Web Sites 3

>

>

Phil Molyneux

Python Patterns — Implementing Graphs
https://www.python.org/doc/essays/graphs/(26 January 2016)

Graphs in Python http://wuw.python-course.eu/graphs_python.php

Stackoverflow Python Graph Library http:
//stackoverflow.com/questions/606516/python-graph-library
(26 January 2016)

Dijkstra’s algorithm for shortest paths http://code.activestate.com/
recipes/119466-dijkstras-algorithm-for-shortest-paths/

Web Sites

39/39 (48/48)

https://www.python.org/doc/essays/graphs/
http://www.python-course.eu/graphs_python.php
http://stackoverflow.com/questions/606516/python-graph-library
http://stackoverflow.com/questions/606516/python-graph-library
http://code.activestate.com/recipes/119466-dijkstras-algorithm-for-shortest-paths/
http://code.activestate.com/recipes/119466-dijkstras-algorithm-for-shortest-paths/

	Meeting Agenda
	Exponentials and Logarithms
	Exponentials and Logarithms — Definitions
	Rules of Indices
	Logarithms — Motivation
	Exponentials and Logarithms — Graphs
	Laws of Logarithms
	Arithmetic and Inverses
	Change of Base

	Before Calculators and Computers
	Log Tables
	Slide Rules
	Calculators
	Example Calculation

	Basic Computational Components
	Writing Programs & Thinking

	Divide and Conquer
	String Search
	Sunday Quick Search Algorithm
	Knuth-Morris-Pratt (KMP) Algorithm

	Future Work
	Web Sites & References
	Web Sites

