M269

Programming & Efficiency Topics

Contents

1 Meeting Agenda

2 Exponentials and Logarithms
2.1 Exponentials and Logarithms — Definitions
2.2 Rulesof Indices e e
2.3 Logarithms — Motivation e
2.4 Exponentials and Logarithms — Graphs
2.5 Laws of Logarithms e
2.6 Arithmeticand Inverses e e e
2.7 Change of Base i i e e e e e

3 Before Calculators and Computers
3.1 LogTables e e e
3.2 Slide Rules e e e e e e e
3.3 Calculators e e e e e e
3.4 Example Calculation e e e e

4 Basic Computational Components
4.1 Writing Programs & Thinking

5 Divide and Conquer

6 String Search

6.1

7 Future Work

8 Web Sites & References

8.1 WebSites
References

Meeting Agenda

Revue of session on Binary Trees
Exponentials and Logarithms
Programming points

Height balanced (AVL) trees

Future topics

Sunday Quick Search Algorithm
6.2 Knuth-Morris-Pratt (KMP) Algorithm

11

12
12
13

15

M269 26 January 2016

2 Exponentials and Logarithms

2.1

2.2

2.3

Exponentials and Logarithms — Definitions

Exponential function y = a* or f(x) = aX
a"=axax---xa(naterms)

Logarithm reverses the operation of exponentiation

log,y = x means a*X =y

log,1=0

logga=1

Method of logarithms propounded by John Napier from 1614

Log Tables from 1617 by Henry Briggs

Slide Rule from about 1620-1630 by William Oughtred of Cambridge

Logarithm from Greek logos ratio, and arithmos number (Chanbers Dictionary 13th
edition 2014)

Rules of Indices

aM x gh = gMm+n
am=+at=am™"
1

-m b
a = m

L m
am = \/E
(am)n _ amn

n
am = Van
a%=1wherea#0

Exercise Justify the above rules
What should 0° evaluate to ?
See Wikipedia: Exponentiation

The justification above probably only worked for whole or rational numbers — see
later for exponents with real numbers (and the value of logarithms, calculus. . .)

Logarithms — Motivation

Make arithmetic easier — turns multiplication and division into addition and subtrac-
tion (see later)

Complete the range of elementary functions for differentiation and integration

https://en.wikipedia.org/wiki/Exponential_function
https://en.wikipedia.org/wiki/Logarithm
https://en.wikipedia.org/wiki/Mathematical_table#Tables_of_logarithms
https://en.wikipedia.org/wiki/Slide_rule
http://en.wikipedia.org/wiki/Exponentiation
https://en.wikipedia.org/wiki/Elementary_function

Phil Molyneux Programming & Efficiency Topics 3

e An elementary function is a function of one variable which is the composition of a
finite number of arithmetic operations ((+), (-), (X), (<)), exponentials, logarithms,
constants, and solutions of algebraic equations (a generalization of nth roots).

The elementary functions include the trigonometric and hyperbolic functions and
their inverses, as they are expressible with complex exponentials and logarithms.

See A Level FP2 for Euler’s relation e/ = cos @ +isin @

In A Level C3, C4 we get Jl =loge [X| +C
e is Euler’s number 2.71828...

2.4 Exponentials and Logarithms — Graphs

e See GeoGebra file explLog.ggb

2.5 Laws of Logarithms
e Multiplication law log, xy = logy x + log, ¥y
e Division law log, (%) =log, x - log,y

e Power law log, xk = klog, x

https://en.wikipedia.org/wiki/Elementary_function
https://en.wikipedia.org/wiki/E_(mathematical_constant)
expLog.ggb

4 M269 26 January 2016

e Proof of Multiplication Law

X = aIogax
y = alo%ay by definition of log
xy = al99aX3logay
= al09a x+l0g, Y by laws of indices
Hence log, xy = logy x +log,y by definition of log

2.6 Arithmetic and Inverses

e Notation helps or maybe not ?

e Addition add(b,x)=x+b

e Subtraction sub(b,x) =x-b

e Inverse sub(b,add(b,x)) =(x+b)-b =x
e Multiplication mul(b,x) =x x b

e Division div(b,x)=x + b = % =x/b

e Inverse div(b, mul(b, x)) = (x X b) + b = ¢~ =x
e Exponentiation exp(b, x) = b*

e Logarithm log(b, x) = logp x

e Inverse log(b, exp(b, x)) = logp(b*) = x

What properties do the operations have that work (or not) with the notation ?

Arithmetic Operations — Commutativity and Associativity
e Commutativity x®@y=y ® X
e Associativity (x@y)®z=x® (y ® 2)

e (+) and (Xx) are semantically commutative and associative — so we can leave the
brackets out

e (-) and (=) are not

e Evaluate 3-(2-1))and ((3-2)-1)

e Evaluate (3/(2/2)) and ((3/2)/2)

e We have the syntactic ideas of left (and right) associativity

e We choose (-) and (<) to be left associative

e 3-2-1means ((3-2)-1)

e 3/2/2 means ((3/2)/2)

e Operator precedence is also a choice (remember BIDMAS or BODMAS ?)

e If in doubt, put the brackets in

https://en.wikipedia.org/wiki/Addition
https://en.wikipedia.org/wiki/Subtraction
https://en.wikipedia.org/wiki/Multiplication
https://en.wikipedia.org/wiki/Division_(mathematics)
https://en.wikipedia.org/wiki/Exponentiation
https://en.wikipedia.org/wiki/Logarithm
https://en.wikipedia.org/wiki/Commutative_property
https://en.wikipedia.org/wiki/Associative_property
https://en.wikipedia.org/wiki/Order_of_operations

Phil Molyneux Programming & Efficiency Topics

Exponentials and Logarithm — Associativity

2.7

What should 23* mean ?

Let b A x = bX

Evaluate (2A3)A4 and 2A (3 A 4)

Evaluate c = logp(logp((b A b) A X))

Evaluate d = logp(logp(b A (b A X))

Beware spreadsheets Excel and LibreOffice here

(23)4 =212 and 23% = 28

Exponentiation is not semantically associative

We choose the syntactic left or right associativity to make the syntax nicer.
Evaluate c = logp(logp((b A b) A X))

¢ = logp(x logp (b)) = logp (x - (blogp b)) = logp(x - b - 1)
Hence c =logp x + logp b =logp x + 1

Not symmetrical (unless b and x are both 2)

Evaluate d = logp(logp(b A (b A X)))

d = logp((b A x)(logy b)) = logp((b A x) x 1)

Hence d = logp(b A x) = x(logp b) = x

Which is what we want — so exponentiation is chosen to be right associative

Change of Base

Change of base

_logp x
~ logpa
Proof: Let y = log, x

log, x

a¥ = x
logp a¥ = logy, x
ylogp a = logy X

_logp x
logp a

Given x, logp X, find the base b

6 M269 26 January 2016

3 Before Calculators and Computers

e We had computers before 1950 — they were humans with pencil, paper and some
further aids:

e Slide rule invented by William Oughtred in the 1620s — major calculating tool until
pocket calculators in 1970s

e Log tables in use from early 1600s — method of logarithms propounded by John
Napier

e Logarithm from Greek logos ratio, and arithmos number

3.1 Log Tables

Knott’s Four-Figure Mathematical Tables

KNOTT'S
FOUR-FIGURE
MATHEMATICAL
"ABLES

. REVISED AND EXTENDED
By EoECOMRLE, F. RS

W. & R. CHAMBERS, LTD.
LONDON AND EDINBURG

https://en.wikipedia.org/wiki/Slide_rule
https://en.wikipedia.org/wiki/William_Oughtred
https://en.wikipedia.org/wiki/Calculator
https://en.wikipedia.org/wiki/Mathematical_table
https://en.wikipedia.org/wiki/John_Napier
https://en.wikipedia.org/wiki/John_Napier
https://en.wikipedia.org/wiki/Logarithm

Phil Molyneux Programming & Efficiency Topics

3.2 Slide Rules

Pickett N 3-ES from 1967

-
e el i i Ji i
"““"I“'v'lx|suuh|\|4|\n|r|n\\5 1y
.

K Lol i if
1

WMMMMW w.w.i.&\ay.lalwf rﬁ il |lﬁai\ww]| /‘Wﬂlﬁ\-\lﬁﬁw@\’” I vgfm \W’}WMMJ.LM.W.@I w&.lw#lvn HW\\ﬂw)wMﬁ) A&Akull@#w
i

e o A ; .
pu-:mcsmsunnss T (.9. .;A. ‘-u\-) '” ‘ By ““‘ ! ' ' i “‘ o
ol 3 A s i s)l
£0C L0G DUAL BASE. i ”
cIf|
c
G
e
[e R e e i e e
o e L A

!;th.';lli_lnhflmlm'm-hmrr " !'illl,l mf-ml‘ :

B PICRETT
ALL METAL
ST siioe nuees

wagl «nlge «zolre S
55 40 o
T

|im|!nlrllqu-mluiHnulnmf.u i .i Cl e

oo umgwﬁﬁm

i'lfl’!l!l‘ll!l]!fllfllIIérllIJll||||I| it |$] bi
il rlrrul;hfnhnrm P r e rnes paai g
3t e e

arns sse ere

e See Oughtred Society
e UKSRC

e Rod Lovett’s Slide Rules

e Slide Rule Museum

http://www.oughtred.org
http://www.uksrc.org.uk
http://sliderules.lovett.com
http://sliderulemuseum.com

8
M269 26 January 2016

Pickett loglog Slide Rules Manual 1953

D) o
THLL E o rNE o

SLIDE
RULES

by MAURICE L. HARTUNG
Associate Professor of the
Teaching of Mathematics
THE UNIVERSITY OF CHICAGO

Price 50 Cents

Phil Molyneux Programming & Efficiency Topics

3.3 Calculators

HP HP-21 Calculator from 1975 £69

Casio fx-85GT PLUS Calculator from 2013 £10

S5 E
3 9F+2dZ

10

M269 26 January 2016

Calculator links

3.4

4

HP Calculator Museum http://www.hpmuseum.org
HP Calculator Emulators http://nonpareil.brouhaha.com
HP Calculator Emulators for OS X http://www.bartosiak.org/nonpareil/

Vintage Calculators Web Museum http://www.vintagecalculators.com

Example Calculation

Evaluate 89.7 x 597

Knott’s Tables

log1989.7 =1.9528 and logy¢ 597 = 2.7760

Shows mantissa (decimal) & characteristic (integral)

Add 4.7288, take antilog to get 5346 + 10 = 5.356 x 104

HP-21 Calculator — set display to 4 decimal places

89.7 [log] = 1.9528 and 597 [log] = 2.7760
displays 4.7288
10 [ENTER|, and [y*] displays 53550.9000

Casio fx-85GT PLUS

89.7()] =1.952792443 597 ()] =2.775974331 [=]
4.728766774 [Ans)+[10X] gives 53550.9

Basic Computational Components

Computational Components — Imperative

Imperative or procedural programming has statements which can manipulate global mem-
ory — statements can be organised into procedures (or functions)

Sequence of statements

(stmnt ; stmnt

Iteration to repeat statements

while expr :
suite

for targetList in exprList :
suite

Selection choosing between statements

if expr : suite
elif expr : suite
else : suite

http://www.hpmuseum.org
http://nonpareil.brouhaha.com
http://www.bartosiak.org/nonpareil/
http://www.vintagecalculators.com

Phil Molyneux Programming & Efficiency Topics 11

Functional programming treats computation as the evaluation of expressions and the
definition of functions (in the mathematical sense)

e Function composition to combine the application of two or more functions — like
sequence but from right to left (notation accident of history)

[(f. g x=f (g% j

e Recursion — function definition defined in terms of calls to itself (with smaller ar-
guments) and base case(s) which do not call itself.

e Conditional expressions choosing between alternatives expressions

[if expr then expr else expr J

4.1 Writing Programs & Thinking

The Steps
1. Invent a name for the program (or function)

2. What is the type of the function ? What sort of input does it take and what sort of
output does it produce ?

3. Invent names for the input(s) to the function (formal parameters)

4. Think of the definition of the function body.

The Think Step
0. Think of an example or two — what should the program/function do ?

1. Don’t think too much at one go — break the problem down. Top down design, step-
wise refinement.

What are the inputs — describe all the cases.

Investigate choices. What data structures ? What algorithms ?

Use common tools — bottom up synthesis.

Spot common function application patterns — generalise & then specialise.

Look for good glue — to combine little programs to make bigger ones.

N OO v~ WN

Try out your first examples when you have written the program

5 Divide and Conquer

Binary Search — Exercise

Given the Python definition of binarySearchRec from the slides for the Unit 1 tutorial,
trace an evaluation of binarySearchRec(xs, 25) where xs is

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]

12

M269

26 January 2016

Binary Search Recursive

def binarySearchRec(xs,val,lo=0,hi=-1):

if (hi == -1):
hi = len(xs) -1

mid = (lo + hi) // 2

if hi < lo:
return None
else:
guess = xs[mid]
if val == guess:
return mid
elif val < guess:
return binarySearchRec(xs,val,lo,mid-1)
else:
return binarySearchRec(xs,val,mid+1,hi)

Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs, 25)
xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,14) by 7Tine 15
= [27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,10) by 7ine 15

XS

XS

- I 27,31,37,

binarySearchRec(xs,25,8,8) by 7ine 13

XS

- 27,

binarySearchRec(xs,25,8,7) by 7ine 13
Return value: None by Tine 7

6

6.1

String Search

e Sunday Quick Search algorithm
e Knuth-Morris-Pratt (KMP) algorithm

e Exact String Matching Algorithms — animations in Java

Sunday Quick Search Algorithm

Example

e Sunday Quick Search example from M269 2014) TMAO02

]
]

e Consider the alphabet C, G, A, T and a target string CGTACTCGTAGT.

e Calculate the shift table for this search, explaining in detail how you used the part
of the algorithm that builds the table to derive your results.

e Given the target string CGTACTCGTAGT, the search string CGTACTCGGCGTAAAGT-

GCGTCTT and the shift table calculated above

http://www-igm.univ-mlv.fr/~lecroq/string/index.html

Phil Molyneux Programming & Efficiency Topics 13

e describe, with diagrams if necessary, how the first attempt to match the target string
against the search string fails

e and how the target string slides along the search string for the second matching
attempt.

Sunday Quick Search Shift Table
e The shift table for the Sunday Quick Search algorithm:

- If the character does not appear in the target string T, the shift distance is one
more than the length of T

- If the character does appear in T the shift distance is the first position at which
it appears, counting from right to left and starting at 1

C G T

e Shift table: 3 6 2 1

e See the example at Quick Search algorithm

Calculating the Shift
e Given the following alignment of Search and Target strings

Search string

clelT]a[c[Tc[c[c]clc[T[AlA[A[c|T]c[c[c|T|[c[T|T]

clalT[alc|T[c[c[T|A[c][T]
Target string

e The next character in the Search string after the Target string is A so the shift will
be 3 places

Search string

clelt]alc|Tc]c[cclc[T[Alal[a[c]|T]c[c[c|T|[c[T|T]

cla[T[alc|T[c[c[T]A[c][T]
Target string

6.2 Knuth-Morris-Pratt (KMP) Algorithm

Example
e Knuth-Morris-Pratt (KMP) algorithm example from M269 2014) TMAO02
e Consider the alphabet C, G, A, T and a target string CGTACTCGTAGT.

e Calculate the prefix table for this target string,

http://www-igm.univ-mlv.fr/~lecroq/string/node19.html

14

M269 26 January 2016

explaining in detail how you derived the sixth, seventh and eighth entries in your
table.

KMP Prefix Table

The KMP prefix table takes the target string, t, and a position, p, in t and returns an
integer k

k is the length of the maximum proper prefix of t up to position p that is a suffix of
t up position p

We define a prefix function to take a target string, t, and a number k > 0, which is
the number of items off the front of t

Formally, if our position index is 0 based we have:
prefixTable(t,0) =0
prefixTable(t, p) = max{k : k < p A prefix(t, k) O prefix(t,p + 1)}

Here O means proper suffix — that is a suffix that does not include the whole string

KMP Shift Function

M269 does not give the KMP shift function (or table) — we give it here for interest

The shift function takes the target string, t, and the number of characters in the
target string that have been matched, g and returns the shift.

shift(t,0) = 1
shift(t, q) = g - prefixTable(t,q- 1)
This assumes 0 based list indexing

The notation here comes from Cormen et al. (2009, 2009, section 32.4, page 1004)
— this uses 1 based list indexing and also provides code.

Cormen uses the terminology Text for Search string and Pattern for Target string

KMP Prefix and Shift Table

C|G|T|A|C|T|C|G|T|A|G]| T | Targetstring

O|1 |23 |4 |5|6]|7]|8]| 9/ 10]|11] Position (Index), p

1 2 (3|4 |5|6|7]|8|9]10|11]|12] Match,q

olo|o|o|1T|O|1]|2]|3]| 4] 0] 0| prefixTable(t,p)

112|344 |6|6]|6]|6]|6 |11|12] shiftt,q)

Phil Molyneux Programming & Efficiency Topics 15

7 Future Work

e Reflections on today’s topics — what were the important points ?
e Dates for next meeting: (7?)
e Next topics

- Unit 5 Optimisation

- Graph algorithms

- Critique of Phil’s notes

8 Web Sites & References

8.1 Web Sites

e Python Documentation https://docs.python.org/3/ (26 January 2016)

e Wikipedia Category: Python Libraries https://en.wikipedia.org/wiki/Category:
Python_Tlibraries (26 January 2016)

e Python Wiki: Useful Modules https://wiki.python.org/moin/UsefulModules (26
January 2016)

e Python Packaging User Guide http://python-packaging-user-guide.readthedocs.org/e
(26 January 2016)

e Python Packaging Authority https://www.pypa.io/en/latest/ (26 January 2016)
e PyPl Python Package Index https://pypi.python.org/pypi (26 January 2016)

e Top 100 Tools for Learning 2015 http://c41pt.co.uk/directory/top-100-tools/
(26 January 2016)

e Pygal Python charting http://www.pygal.org/en/latest/ (26 January 2016)

e 21 Ridiculously Impressive HTML5 Canvas Experiments http://code.tutsplus.com/article
ridiculously-impressive-html5-canvas-experiments--net-14210 (26 January
2016)

e graph-tool Efficient network analysis https://graph-tool.skewed.de (26 January
2016)

e Python Patterns — Implementing Graphs https://www.python.org/doc/essays/graphs/(2¢€
January 2016)

e Graphs in Python http://www.python-course.eu/graphs_python.php

e Stackoverflow Python Graph Library http://stackoverflow.com/questions/606516/pythc
graph-Tibrary (26 January 2016)

e Dijkstra’s algorithm for shortest paths http://code.activestate.com/recipes/119466-
dijkstras-algorithm-for-shortest-paths/

https://docs.python.org/3/
https://en.wikipedia.org/wiki/Category:Python_libraries
https://en.wikipedia.org/wiki/Category:Python_libraries
https://wiki.python.org/moin/UsefulModules
http://python-packaging-user-guide.readthedocs.org/en/latest/
https://www.pypa.io/en/latest/
https://pypi.python.org/pypi
http://c4lpt.co.uk/directory/top-100-tools/
http://www.pygal.org/en/latest/
http://code.tutsplus.com/articles/21-ridiculously-impressive-html5-canvas-experiments--net-14210
http://code.tutsplus.com/articles/21-ridiculously-impressive-html5-canvas-experiments--net-14210
https://graph-tool.skewed.de
https://www.python.org/doc/essays/graphs/
http://www.python-course.eu/graphs_python.php
http://stackoverflow.com/questions/606516/python-graph-library
http://stackoverflow.com/questions/606516/python-graph-library
http://code.activestate.com/recipes/119466-dijkstras-algorithm-for-shortest-paths/
http://code.activestate.com/recipes/119466-dijkstras-algorithm-for-shortest-paths/

16 M269 26 January 2016

References

Adelson-Velskii, G M and E M Landis (1962). An algorithm for the organization of informa-
tion. In Doklady Akademia Nauk SSSR, volume 146, pages 263-266. Translated from
Soviet Mathematics — Doklady; 3(5), 1259-1263.

Bird, Richard (1998). Introduction to Functional Programming using Haskell. Prentice Hall,
second edition. ISBN 0-13-484346-0.

Bird, Richard (2014). Thinking Functionally with Haskell. Cambridge University Press. ISBN
1107452643. URL http://www.cs.ox.ac.uk/publications/books/functional/.

Bird, Richard and Phil Wadler (1988). Introduction to Functional Programming. Prentice
Hall, first edition. ISBN 0-13-484197-2.

Cormen, Thomas H.; Charles E. Leiserson; Ronald L. Rivest; and Clifford Stein (2009).
Introduction to Algorithms. MIT Press, third edition. ISBN 0262533057. URL http:
//mitpress.mit.edu/books/introduction-algorithms.

Hudak, Paul; John Hughes; Simon Peyton Jones; and Phil Wadler (2007). A History of
Haskell: Being Lazy with Class. In Proceedings of the third ACM SIGPLAN conference on
History of programming languages, pages 12-1-12-55. ACM New York, NY, USA.

Lee, Gias Kay (2013). Functional Programming in 5 Minutes. Web. http://gsklee.im,
URL http://slid.es/gsklee/functional-programming-in-5-minutes.

Lutz, Mark (2011). Programming Python. O’Reilly, fourth edition. ISBN 0596158106. URL
http://learning-python.com/books/about-pp4e.html.

Lutz, Mark (2013). Learning Python. O’Reilly, fifth edition. ISBN 1449355730. URL
http://learning-python.com/books/about-Tp5e.html.

Marlow, Simon and Simon Peyton Jones (2010). Haskell Language and Library Specifi-
cation. Web. URL http://www.haskell.org/haskellwiki/Language_and_library_
specification.

Miller, Bradley W. and David L. Ranum (2011). Problem Solving
with Algorithms and Data Structures Using Python. Franklin, Bee-
dle Associates Inc, second edition. ISBN 1590282574. URL http:

//interactivepython.org/courselib/static/pythonds/index.html.

O’Donnell, John; Cordelia Hall; and Rex Page (2006). Discrete Mathematics Us-
ing a Computer. Springer, second edition. ISBN 1846282411. URL http:
//www.dcs.gla.ac.uk/~jtod/discrete-mathematics/.

Okasaki, Chris (1998). Purely Functional Data Structures. Cambridge University Press.
ISBN 0-521-63124-6.

O’Sullivan, Bryan; John Goerzen; and Donald Stewart (2008). Real World Haskell. O’Reilly,
first edition. ISBN 0596514980. URL http://book.realworldhaskell.org/.

Thompson, Simon (2011). Haskell the Craft of Functional Program-
ming. Addison Wesley, third edition. ISBN 0201882957. URL http:
//www.haskellcraft.com/craft3e/Home.html.

van Rossum, Guido and Fred Drake (2011a). An Introduction to Python. Network Theory
Limited, revised edition. ISBN 1906966133.

http://www.cs.ox.ac.uk/publications/books/functional/
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
http://gsklee.im
http://slid.es/gsklee/functional-programming-in-5-minutes
http://learning-python.com/books/about-pp4e.html
http://learning-python.com/books/about-lp5e.html
http://www.haskell.org/haskellwiki/Language_and_library_specification
http://www.haskell.org/haskellwiki/Language_and_library_specification
http://interactivepython.org/courselib/static/pythonds/index.html
http://interactivepython.org/courselib/static/pythonds/index.html
http://www.dcs.gla.ac.uk/~jtod/discrete-mathematics/
http://www.dcs.gla.ac.uk/~jtod/discrete-mathematics/
http://book.realworldhaskell.org/
http://www.haskellcraft.com/craft3e/Home.html
http://www.haskellcraft.com/craft3e/Home.html

Phil Molyneux Programming & Efficiency Topics 17

van Rossum, Guido and Fred Drake (2011b). The Python Language Reference Manual.
Network Theory Limited, revised edition. ISBN 1906966141.

Author Phil Molyneux Written 26 January 2016 Printed 27th January 2016
Subject dir: (baseURL)/0U/M269/M269TutorialNotes
Topic path: /M269TutorialVar/M269TutorialVar2015JA/M269TutorialVar2015JA. pdf

	Meeting Agenda
	Exponentials and Logarithms
	Exponentials and Logarithms — Definitions
	Rules of Indices
	Logarithms — Motivation
	Exponentials and Logarithms — Graphs
	Laws of Logarithms
	Arithmetic and Inverses
	Change of Base

	Before Calculators and Computers
	Log Tables
	Slide Rules
	Calculators
	Example Calculation

	Basic Computational Components
	Writing Programs & Thinking

	Divide and Conquer
	String Search
	Sunday Quick Search Algorithm
	Knuth-Morris-Pratt (KMP) Algorithm

	Future Work
	Web Sites & References
	Web Sites
	References

