
M269 Sorting

Unit 3

Contents

1 M269 Tutorial Agenda 2
1.1 Motivation . 3
1.2 Demonstration 1 Sorting Algorithms as Dances 3
1.3 Activity 1 Card Sorting Exercise . 3

2 Adobe Connect 5
2.1 Student View . 5
2.2 Settings . 6
2.3 Student & Tutor Views . 8
2.4 Sharing Screen & Applications . 10
2.5 Ending a Meeting . 10
2.6 Invite Attendees . 10
2.7 Layouts . 11
2.8 Chat Pods . 11

3 Taxonomy of Sorting Algorithms 11
3.1 Other Classifications of Sorting Algorithms . 12

4 Recursion and Iteration 12

5 Some Split/Join Sorting Algorithms 15
5.1 Insertion Sort . 16

5.1.1 Insertion Sort — Abstract Algorithm . 16
5.1.2 Insertion Sort — Python . 16
5.1.3 Insertion Sort — Haskell . 17
5.1.4 Activity 2 — Insertion Sort: Trace an Evaluation 18
5.1.5 Insertion Sort — Non-recursive . 19
5.1.6 Activity 3 — Insertion Sort Non-recursive Trace 19

5.2 Selection Sort . 20
5.2.1 Selection Sort — Abstract Algorithm . 20
5.2.2 Selection Sort — Haskell . 20
5.2.3 Activity 4 — Selection Sort: Trace an Evaluation 21
5.2.4 Selection Sort — Python . 21
5.2.5 Selection Sort — Non-recursive . 22
5.2.6 Activity 5 — Finding the Non-Recursive Algorithm 23

5.3 Merge Sort . 23
5.3.1 Merge Sort — Abstract Algorithm . 23
5.3.2 Merge Sort — Haskell . 23
5.3.3 Merge Sort — Python . 24
5.3.4 Merge Sort Diagram . 25
5.3.5 Merge Sort Python In-Place . 25

5.4 Quicksort . 27
5.4.1 Quicksort — Abstract Algorithm . 27
5.4.2 Quicksort — Haskell . 28

1

2 M269 Sorting 5 December 2020

5.4.3 List Comprehensions . 28
5.4.4 Quicksort — Python . 29
5.4.5 Quicksort Python In-Place . 29

5.5 Bubble Sort . 30
5.5.1 Bubble Sort — Abstract Algorithm . 30
5.5.2 Bubble Sort — Haskell . 30
5.5.3 Bubble Sort — Python . 31

6 What Next ? 31

7 Sorting via a Data Structure — Tree Sort 32
7.1 Tree Sort — Abstract Algorithm . 32
7.2 Tree Sort — Python . 32
7.3 Example Tree Sort . 33
7.4 Tree Sort — Haskell . 34

8 Sorting via a Data Structure — Heap Sort 37
8.1 Heap Sort — Abstract Algorithm . 37

9 Web Sites & References 38
9.1 Sorting Web Links . 38
9.2 Python Web Links & References . 38
9.3 Haskell Web Links & References . 39
9.4 Demonstration 2 Sorting Algorithms as Dances 39

References 39

1 M269 Tutorial Agenda

• Welcome & introductions

• Tutorial topics: Unit 3 Sorting Algorithms

• Key point: many of the sorting algorithms can be seen as variations on an abstract
split/join algorithm

• Adobe Connect — if you or I get cut off, wait till we reconnect (or send you an email)

• Time: about 2 hours

• Do ask questions or raise points.

• Source: of slides, notes, programs and playing cards:

• www.pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269TutorialSorting

• Slides: M269Prsntn2020JTutorialSorting.beamer.pdf

• Notes: M269Prsntn2020JTutorialSorting.article.pdf

• Motivation for studying sorting algorithms

• Taxonomy of sorting — see Wikipedia Sorting Algorithm

• Abstract comparison sort — split/join algorithm

http://www.pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269TutorialSorting/
http://www.pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269TutorialSorting/M269Prsntn2020JTutorialSorting.beamer.pdf
http://www.pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269TutorialSorting/M269Prsntn2020JTutorialSorting.article.pdf
https://en.wikipedia.org/wiki/Sorting_algorithm

Phil Molyneux Unit 3 3

• Insertion sort and selection sort described with split/join algorithm diagram and
implemented in Python and Haskell

• Recursive and iterative versions

• Mergesort, Quicksort and Bubble sort in the same framework

• Sorting via a data structure — Tree sort

• Review of Web sites and sorting algorithms used in practice

1.1 Motivation

• From Knuth (1998, page v)

• . . . virtually every important aspect of programming arises somewhere in the con-
text of sorting or searching.

• How are good algorithms discovered ?

• How can given algorithms and programs be improved ?

• How can the efficiency of algorithms be analyzed mathematically ?

• How can a person choose rationally between different algorithms for the same task
?

• In what senses can algorithms be proved best possible ?

• How does the theory of computing interact with practical considerations ?

1.2 Demonstration 1 Sorting Algorithms as Dances

• Insertion Sort

• AlgoRythmics

• This is the folk music that inspired Bartók

• Compare the dance with the Python algorithm for Insertion Sort below

1.3 Activity 1 Card Sorting Exercise

• Almost everyone has played cards and, as part of any card game, will have sorted
cards in their hand

• This exercise is aimed at writing down how you sort you cards and giving these
instructions to another person to follow.

• Decide on your general ordering of playing cards — you are free to set any ordering
you like but here is the usual ordering for suits and values:� �
Clubs < Diamonds < Hearts < Spades

Two < Three < Four < Five < Six
< Seven < Eight < Nine < Ten
< Jack < Queen < King < Ace� �

https://www.youtube.com/user/AlgoRythmics

4 M269 Sorting 5 December 2020

• Write down your method for sorting cards — the method must specify how to choose
a card to move and where to move it to.

• Take the 6 cards given below — record the order of the cards

• Using your method, sort the cards — record the order of the cards after each move
of a card

• Now swap your written method and the cards in your original order with another
student.

• Follow the other student’s method to sort the cards and record your steps

Discussion

• Did both of you end up with the same sequence of steps?

• Did any of the instructions require human knowledge?

• General point: probably most people use some variation on Insertion sort or Selection
sort but would have steps that had multiple shifts of cards.

• Note: This activity may be done on the Whiteboard using cards from http://pmolyneux.
co.uk/OU/M269/M269TutorialNotes/M269TutorialSorting/Cards/

http://pmolyneux.co.uk/OU/M269/M269TutorialNotes/M269TutorialSorting/Cards/
http://pmolyneux.co.uk/OU/M269/M269TutorialNotes/M269TutorialSorting/Cards/

Phil Molyneux Unit 3 5

2 Adobe Connect Interface and Settings

2.1 Adobe Connect Interface — Student View

Adobe Connect Interface — Student Quick Reference

6 M269 Sorting 5 December 2020

Adobe Connect Interface — Student View

2.2 Adobe Connect Settings

Adobe Connect Settings

• Everybody: Audio Settings Meeting Audio Setup Wizard. . .

• Audio Menu bar Audio Microphone rights for Participants 4

• Do not Enable single speaker mode

• Drawing Tools Share pod menu bar Draw (1 slide/screen)

• Share pod menu bar Menu icon Enable Participants to draw 4 gray

• Meeting Preferences Whiteboard Enable Participants to draw 4

• Cancel hand tool . . . Do not enable green pointer. . .

• Meeting Preferences Attendees Pod 8 Raise Hand notification

• Meeting Preferences Display Name Display First & Last Name

• Cursor Meeting Preferences General tab Host Cursors Show to all attendees 4 (default Off)

• Meeting Preferences Screen Share Cursor Show Application Cursor

• Webcam Menu bar Webcam Enable Webcam for Participants 4

• Recording Meeting Record Meeting. . . 4

Phil Molyneux Unit 3 7

Adobe Connect — Access

• Tutor Access

TutorHome M269 Website Tutorials

Cluster Tutorials M269 Online tutorial room

Tutor Groups M269 Online tutor group room

Module-wide Tutorials M269 Online module-wide room

• Attendance

TutorHome Students View your tutorial timetables

• Beamer Slide Scaling 440% (422 x 563 mm)

• Clear Everyone’s Status

Attendee Pod Menu Clear Everyone’s Status

• Grant Access and send link via email

Meeting Manage Access & Entry Invite Participants. . .

• Presenter Only Area

Meeting Enable/Disable Presenter Only Area

Adobe Connect — Keystroke Shortcuts

• Keyboard shortcuts in Adobe Connect

• Toggle Mic + M (Mac), Ctrl + M (Win) (On/Disconnect)

• Toggle Raise-Hand status + E

• Close dialog box (Mac), Esc (Win)

• End meeting + \

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html

8 M269 Sorting 5 December 2020

2.3 Adobe Connect Interface — Student & Tutor Views

Adobe Connect Interface — Student View (default)

Phil Molyneux Unit 3 9

Adobe Connect Interface — Tutor Quick Reference

Adobe Connect Interface — Tutor View

10 M269 Sorting 5 December 2020

2.4 Adobe Connect — Sharing Screen & Applications

• Share My Screen Application tab Terminal for Terminal

• Share menu Change View Zoom in for mismatch of screen size/resolution (Participants)

• (Presenter) Change to 75% and back to 100% (solves participants with smaller screen
image overlap)

• Leave the application on the original display

• Beware blued hatched rectangles — from other (hidden) windows or contextual
menus

• Presenter screen pointer affects viewer display — beware of moving the pointer away
from the application

• First time: System Preferences Security & Privacy Privacy Accessibility

2.5 Adobe Connect — Ending a Meeting

• Notes for the tutor only

• Student: Meeting Exit Adobe Connect

• Tutor:

• Recording Meeting Stop Recording 4

• Remove Participants Meeting End Meeting. . . 4

– Dialog box allows for message with default message:

– The host has ended this meeting. Thank you for attending.

• Recording availability In course Web site for joining the room, click on the eye icon
in the list of recordings under your recording — edit description and name

• Meeting Information Meeting Manage Meeting Information — can access a range of informa-
tion in Web page.

• Attendance Report see course Web site for joining room

2.6 Adobe Connect — Invite Attendees

• Provide Meeting URL Menu Meeting Manage Access & Entry Invite Participants. . .

• Allow Access without Dialog Menu Meeting Manage Meeting Information provides new browser
window with Meeting Information Tab bar Edit Information

• Check Anyone who has the URL for the meeting can enter the room

• Default Only registered users and accepted guests may enter the room

• Reverts to default next session but URL is fixed

• Guests have blue icon top, registered participants have yellow icon top — same icon
if URL is open

https://en.wikipedia.org/wiki/Terminal_(macOS)

Phil Molyneux Unit 3 11

• See Start, attend, and manage Adobe Connect meetings and sessions

2.7 Layouts

• Creating new layouts example Sharing layout

• Menu Layouts Create New Layout. . . Create a New Layout dialog Create a new blank layout and name it
PMolyMain

• New layout has no Pods but does have Layouts Bar open (see Layouts menu)

• Pods

• Menu Pods Share Add New Share and resize/position — initial name is Share n

• Rename Pod Menu Pods Manage Pods. . . Manage Pods Select Rename or Double-click & rename

• Add Video pod and resize/reposition

• Add Attendance pod and resize/reposition

• Add Chat pod — name it PMolyChat — and resize/reposition

• Dimensions of Sharing layout (on 27-inch iMac)

– Width of Video, Attendees, Chat column 14 cm

– Height of Video pod 9 cm

– Height of Attendees pod 12 cm

– Height of Chat pod 8 cm

• Duplicating Layouts does not give new instances of the Pods and is probably not a
good idea (apart from local use to avoid delay in reloading Pods)

2.8 Chat Pods

• Format Chat text

• Chat Pod menu icon My Chat Color

• Choices: Red, Orange, Green, Brown, Purple, Pink, Blue, Black

• Note: Color reverts to Black if you switch layouts

• Chat Pod menu icon Show Timestamps

Go to Table of Contents

3 Taxonomy of Sorting Algorithms

• Computational complexity — worst, best, average number of comparisons, exchanges
and other program contructs (but see http://www.softpanorama.org/Algorithms/
sorting.shtml for Slightly Skeptical View) — O(n2) bad, O(n log n) better

https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html
http://www.softpanorama.org/Algorithms/sorting.shtml
http://www.softpanorama.org/Algorithms/sorting.shtml

12 M269 Sorting 5 December 2020

• Other issues: space behaviour, performance on typical data sets, exchanges versus
shifts

• Abstract sorting algorithm — Following Merritt (1985); Merritt and Lau (1997) and
Azmoodeh (1990, chp 9), we classify the divide and conquer sorting algorithms by
easy/hard split/join

• see diagram below

Abstract Sorting Algorithm

unsorted list xs

if (length xs > 1) then
(xs1,xs2) = split xs

xs1 xs2

ys1 = sort xs1 ys2 = sort xs2

ys = join (ys1,ys2)

sorted list ys

3.1 Other Classifications of Sorting Algorithms

• See Wikipedia Sorting algorithm for big list

• Comparison Sorts

– Insertion sort, Selection sort, Merge sort, Quicksort, Bubble sort

– Sorting via a data structure: Tree sort, Heap sort

• Non-Comparison sorts — distribution sorts — bucket sort, radix sort

• Sorts used in Programming Language Libraries

– Timsort by Tim Peters — used in Python and Java — combination of merge and
insertion sorts

– Haskell — modified Mergesort by Ian Lynagh in GHC implementation

4 Recursion and Iteration

• Many functions are naturally defined using recursion

https://en.wikipedia.org/wiki/Sorting_algorithm
https://en.wikipedia.org/wiki/Timsort
https://www.haskell.org/onlinereport/haskell2010/
https://wiki.haskell.org/GHC
https://en.wikipedia.org/wiki/Recursion_(computer_science)

Phil Molyneux Unit 3 13

• A recursive function is defined in terms of calls to itself acting on smaller problem
instances along with a base case(s) that terminate the recursion

• Classic example: Factorial n! = n× (n – 1) · · ·2× 1� �
5 def fac(n) :
6 if n == 1 :
7 return 1
8 else :
9 return n * fac(n-1)� �

• We can evaluate fac(6) by using a substitution model (section 1.1.5) for function
application

• To evaluate a function applied to arguments, evaluate the body of the function with
each formal parameter replaced by the corresponding actual arguments.

Evaluation of fac(6)

Expression to Evaluate Reason

fac(6) Initial
→ 6 * fac(5) line 8
→ 6 * (5 * fac(4)) line 8
→ 6 * (5 * (4 * fac(3)) line 8
→ 6 * (5 * (4 * (3 * fac(2)))) line 8
→ 6 * (5 * (4 * (3 * (2 * fac(1))))) line 8
→ 6 * (5 * (4 * (3 * (2 * 1)))) line 6
→ 720 Arithmetic

• This occupies more space in the process of evaluation since we cannot do the multi-
plications until we reach the base case of fac()

• This is a recursive function and a linear recursive process

• Implemented in Python (and most imperative languages) with a stack of function
calls

• We can define an equivalent factorial function that produces a different process

Iterative Factorial� �
24 def facIter(n) :
25 return accProd(n,1)

27 def accProd(n,x) :
28 if n == 1 :
29 return x
30 else :
31 return accProd(n-1, n * x)� �

• facIter() use accProd() to maintain a running product and accumulate the final
result to return

• We can display the evaluation of facIter(6) using the substitution model

https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book-Z-H-10.html

14 M269 Sorting 5 December 2020

Evaluation of facIter(6)

Expression to Evaluate Reason

facIter(6) Initial
→ accProd(6,1) line 25
→ accProd(5, 6 * 1) line 30 & (*)
→ accProd(4, 5 * 6) line 30 & (*)
→ accProd(3, 4 * 30) line 30 & (*)
→ accProd(2, 3 * 120) line 30 & (*)
→ accProd(1, 2 * 360) line 30 & (*)
→ 720 line 28 & (*)

• This occupies constant space — at each stage all the variables describing the state
of the calculation are in the function call

• This is a recursive program and an iterative process

• We are assuming the multiplication is evaluated at each function call (strict or eager
evaluation)

• Also referred to as tail recursion — we need not build a stack of calls

Iterative Factorial Exercises

• Write a version of the factorial function using a while loop in Python

• Write a version of the factorial function using a for loop in Python

Iterative Factorial Exercises — Solutions

• Factorial function using a while loop in Python� �
46 def facWhile(n) :
47 x = 1

49 while n > 1 :
50 x = n * x
51 n = (n - 1)

53 return x� �
• Factorial function using a for loop in Python� �

57 def facFor(n) :
58 x = 1

60 for i in range(n,0,-1) :
61 x = i * x

63 return x� �
Tail Recursion and Iteration

• When the structured programming ideas emerged in the 1960s and 1970s the lan-
guages such as C and Pascal implemented recursion by always placing the calls on
the stack — Python follows this as well

https://en.wikipedia.org/wiki/Structured_programming

Phil Molyneux Unit 3 15

• This means the in those languages they have to have special constructs such as for
loops, while loops, to express iterative processes without recursion

• A for loop is syntactically way more complicated than a recursive definition

• Some language implementations (for example, Haskell) spot tail recursion and do
not build a stack of calls

• You still have to write your recursion in particular ways to allow the compiler to spot
such optimisations.

Structured Programming, GOTO and Recursion

• Böhm and Jacopini (1966) showed that structured programming with a combination
of sequence, selection, iteration and procedure calls was Turing complete (see Unit
7)

• In the late 1980s two books came out that were particularly influential:

• Abelson and Sussman (1984, 1996) Structure and Interpretation of Computer Pro-
grams (known as SICP) which was the programming course for the first year at MIT,

• Bird and Wadler (1988); Bird (1998, 2014) Introduction to Functional Programming
which was the the programming course for the first year at Oxford.

• See SICP online and Section 1.2 Procedures and the Process They Generate

• Dijkstra (1968) Go To Statement Considered Harmful illustrates a debate on struc-
tured programming

• The von Neumann computer architecture takes the memory and state view of com-
putation as in Turing m/c

• Lambda calculus is equivalent in computational power to a Turing machine (Turing
showed this in 1930s) but efficient implementations did not arrive until 1980s

• Functional programming in Lisp or APL was slow

• Perlis (1982) Epigrams on Programming: [Functional programmers] know the value
of everything but the cost on nothing

• Meijer et al. (1991) Recursion is the GOTO of functional programming

• Leading to common patterns of higher order functions, map, filter, fold and poly-
morphic data types

5 Some Split/Join Sorting Algorithms

• Insertion Sort

• Selection Sort

• Merge Sort

• Quicksort

• Bubble Sort

https://en.wikipedia.org/wiki/Turing_completeness
https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book.html
https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book-Z-H-11.html
https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://en.wikipedia.org/wiki/Lambda_calculus
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/APL_(programming_language)

16 M269 Sorting 5 December 2020

• Implementations in Python, recursive and non-recursive

• Implementations in Haskell — for comparison, optional

• Sorting via data structure — Treesort, Heap Sort

5.1 Insertion Sort

5.1.1 Insertion Sort — Abstract Algorithm

• Insertion Split xs1 is the singleton list of the first item; xs2 is the rest of the list

• Insertion Join insert the item in the singleton list into the sorted result of the rest of
the list

Abstract Sorting Algorithm Diagram for Insertion Sort

[3,0,1,8,7,2,5,4,9,6]

(xs1, xs2) = insertionSplit xs

[3] [0,1,8,7,2,5,4,9,6]

[3] [0,1,2,4,5,6,7,8,9]

ys = insertionJoin (ys1,ys2)

[0,1,2,3,4,5,6,7,8,9]

xs
1 xs2

sort sort

ys1 ys2

5.1.2 Insertion Sort — Python� �
4 def insSort(xs) :
5 if len(xs) <= 1 :
6 return xs
7 else :
8 return ins(xs[0],insSort(xs[1:]))

10 def ins(x,xs) :
11 if xs == [] :
12 return [x]
13 elif x <= xs[0] :
14 return [x] + xs
15 else :
16 return [xs[0]] + ins(x,xs[1:])� �

Phil Molyneux Unit 3 17

Python Rewritten

• In the style of the abstract algorithm� �
20 def insSort01(xs) :
21 if len(xs) <= 1 :
22 return xs
23 else :
24 (xs1,xs2) = insertionSplit(xs)
25 ys1 = insSort01(xs1)
26 ys2 = insSort01(xs2)
27 ys = insertionJoin(ys1,ys2)
28 return ys

30 def insertionSplit(xs) :
31 (xs1,xs2) = (xs[0:1],xs[1:])
32 return (xs1,xs2)

34 def insertionJoin(ys1,ys2) :
35 if ys2 == [] :
36 return ys1
37 elif ys1[0] <= ys2[0] :
38 return ys1 + ys2
39 else :
40 return ys2[0:1] + insertionJoin(ys1,ys2[1:])� �

5.1.3 Insertion Sort — Haskell� �
1 module M269TutorialSorting where
2 import Data.List
3 import Data.Maybe� �

1. A Haskell script starts with a module header which starts with the reserved identifier,
module followed by the module name, M269TutorialSorting

2. The module name must start with an upper case letter and is the same as the file
name (without its extension of .lhs)

3. Haskell uses layout (or the off-side rule) to determine scope of definitions, similar to
Python

4. The body of the module follows the reserved identifier where and starts with two
import declarations

5. These import the built-in libraries Data.List and Data.Maybe

6. We use the sort function from Data.List.

7. The Maybe datatype from Data.Maybe will be used at the end of this script to imple-
ment the trees with data.� �

5 insSort [] = []
6 insSort [x] = [x]
7 insSort (x : xs) = ins x (insSort xs)

9 ins x [] = [x]
10 ins x (y:ys)
11 = if x <= y
12 then x:y:ys
13 else y : (ins x ys)� �

• For structured English, I have used a subset of Haskell (http://haskell.org) — in
the code above:

• insSort and ins are function defined by several equations

http://haskell.org

18 M269 Sorting 5 December 2020

• We use indentation to determine scope — see Landin (1966) and Python (see Python
Tutorial: Introduction: First Steps Towards Programming)

• Function application is denoted by juxtaposition and is more tightly binding than
(almost) anything else

– we write f x and not f (x)

– f x y means (f x) y

This notational convention has huge advantages — discuss and also see http://en.
wikipedia.org/wiki/Curried_function and http://slid.es/gsklee/functional-
programming-in-5-minutes (which does it in JavaScript, worth a look)

• Lists are denoted with brackets [1,2,3], the empty list is []

• (:) is the operator that prefixes an element to a list, 1:[2,3] == [1,2,3]

• Parentheses over-ride precedence

5.1.4 Activity 2 — Insertion Sort: Trace an Evaluation

Insertion Sort — Haskell Recursive

• Evaluation of insSort [3,0,1,8,7]

Expression to Evaluate Reason

insSort [3,0,1,8,7] Initial
→ ins 3 (insSort [0,1,8,7]) line 7
→ ins 3 (ins 0 (insSort [1,8,7])) line 7
→ ins 3 (ins 0 (ins 1 (insSort [8,7]))) line 7
→ ins 3 (ins 0 (ins 1 (ins 8 (insSort [7])))) line 7
→ ins 3 (ins 0 (ins 1 (ins 8 [7]))) line 6
→ ins 3 (ins 0 (ins 1 (7:(ins 8 [])))) line 13
→ ins 3 (ins 0 (ins 1 (7:[8]))) line 9
→ ins 3 (ins 0 (ins 1 [7,8])) (:) operator
→ ins 3 (ins 0 (1:7:[8])) line 12
→ ins 3 (ins 0 [1,7,8]) (:) operator
→ ins 3 (0:1:[7,8]) line 12
→ ins 3 [0,1,7,8] (:) operator
→ 0:(ins 3 [1,7,8]) line 13
→ 0:(1:(ins 3 [7,8])) line 13
→ 0:(1:(3:7:[8])) line 12
→ [0,1,3,7,8] (:) operator

• Note that the evaluation consumes more space in the process of evaluation;

• also note that you need to be careful with the brackets when doing an evaluation
like this by hand.

Insertion Sort — Python Recursive

• Evaluation of insSort([3,0,1,8,7])

https://docs.python.org/3/tutorial/introduction.html#first-steps-towards-programming
https://docs.python.org/3/tutorial/introduction.html#first-steps-towards-programming
http://en.wikipedia.org/wiki/Curried_function
http://en.wikipedia.org/wiki/Curried_function
http://slid.es/gsklee/functional-programming-in-5-minutes
http://slid.es/gsklee/functional-programming-in-5-minutes

Phil Molyneux Unit 3 19

Expression to Evaluate Reason

insSort([3,0,1,8,7]) Initial
→ ins(3, insSort([0,1,8,7])) line 7
→ ins(3, ins(0, insSort([1,8,7]))) line 7
→ ins(3, ins(0, ins(1, insSort([8,7])))) line 7
→ ins(3, ins(0, ins(1, ins(8, insSort([7]))))) line 7
→ ins(3, ins(0, ins(1, ins(8, [7])))) line 5
→ ins(3, ins(0, ins(1, ([7] + ins(8, []))))) line 15
→ ins(3, ins(0, ins(1, ([7] + [8])))) line 11
→ ins(3, ins(0, ins(1, [7,8]))) (+) operator
→ ins(3, ins(0, ([1] + [7,8]))) line 13
→ ins(3, ins(0, [1,7,8])) (+) operator
→ ins(3, ([0] + [1,7,8])) line 13
→ ins(3, [0,1,7,8]) (+) operator
→ [0] + (ins 3 [1,7,8]) line 15
→ [0] + ([1] + (ins 3 [7,8])) line 15
→ [0] + ([1] + ([3] + ([7,8]))) line 13
→ [0,1,3,7,8] (+) operator

• Note that the evaluation consumes more space in the process of evaluation;

• also note that you need to be careful with the brackets when doing an evaluation
like this by hand.

5.1.5 Insertion Sort — Non-recursive

• The non-recursive version of Insertion sort takes each element in turn and inserts it
in the ordered list of elements before it.� �

for index = 1 to (len(xs)-1) do
insert xs[index] in order in xs[0..index-1]� �
• Here is a Python implementation of the above (based on Miller and Ranum (2011,

page 215)).

• It uses the Python Style Guide PEP 8 http://www.python.org/dev/peps/pep-0008/
(Python Enhancement Proposals) — I must admit I prefer indenting with 2 spaces but
I imagine the M269 module will have its own guidelines.� �

42 def insertionSort(xs) :
43 for index in range(1, len(xs)) :
44 currentValue = xs[index]
45 position = index
46 while (position > 0) and xs[position - 1] > currentValue :
47 xs[position] = xs[position - 1]
48 position = position - 1

50 xs[position] = currentValue� �
5.1.6 Activity 3 — Insertion Sort Non-recursive Trace

Insertion Sort — Python Non-recursive

• Evaluation of insertionSort([3,0,1,8,7])

http://www.python.org/dev/peps/pep-0008/

20 M269 Sorting 5 December 2020

• Showing just the outer for index loop

•
3 0 1 8 7 start array

3 0 1 8 7

0 3 1 8 7

0 1 3 8 7

0 1 3 8 7

0 1 3 7 8

index = 1

index = 2

index = 3

index = 4

end

5.2 Selection Sort

5.2.1 Selection Sort — Abstract Algorithm

• Selection Split xs1 is the singleton list of the minimum item; xs2 is the original list
with the minimum item taken out

• Selection Join just put the minimum item and the sorted xs2 together as the output
list

Abstract Sorting Algorithm Diagram for Selection Sort

[3,0,1,8,7,2,5,4,9,6]

(xs1, xs2) = selectionSplit xs

[0] [3,1,8,7,2,5,4,9,6]

[0] [1,2,3,4,5,6,7,8,9]

ys = selectionJoin (ys1,ys2)

[0,1,2,3,4,5,6,7,8,9]

xs1 xs2

sort sort

ys1 ys2

5.2.2 Selection Sort — Haskell

Phil Molyneux Unit 3 21

� �
15 selSort [] = []
16 selSort [x] = [x]
17 selSort xs = minItem : selSort (xs \\ [minItem])
18 where
19 minItem = minimum xs� �

• Explanation of the above:

• (\\) is the list difference operator

• [2,1,3,1] \\ [1] == [2,3,1]

• minimum is the Haskell built in function that takes a list a returns the smallest item.

• See the Data.List library

• Exercise: produce your own implementation of minimum — remember to give it a
different name

5.2.3 Activity 4 — Selection Sort: Trace an Evaluation

Selection Sort — Haskell Recursive

• Evaluation of selSort [3,0,1,8,7]

Expression to Evaluate Reason

selSort [3,0,1,8,7] Initial
→ 0 : (selSort [3,1,8,7]) line 17
→ 0 : (1 : (selSort [3,8,7])) line 17
→ 0 : (1 : (3 : (selSort [8,7]))) line 17
→ 0 : (1 : (3 : (7 : (selSort [8])))) line 17
→ 0:(1:(3:(7:[8]))) line 16
→ [0,1,3,7,8] (:) operator

• Note that the evaluation consumes more space in the process of evaluation;

• also note that you need to be careful with the brackets when doing an evaluation
like this by hand.

5.2.4 Selection Sort — Python� �
54 def selSort(xs) :
55 if len(xs) <= 1 :
56 return xs
57 else :
58 minElmnt = min(xs)
59 minIndex = xs.index(minElmnt)
60 xsWithoutMin = xs[:minIndex] + xs[minIndex+1:]
61 return [minElmnt] + selSort(xsWithoutMin)� �

• Why do we not use xs.remove(min(xs)) ?

22 M269 Sorting 5 December 2020

5.2.5 Selection Sort — Non-recursive

• The non-recursive version of Selection sort takes each position of the list in turn and
swaps the element at that position with the minimum element in the rest of the list
from that position to the end of the list.� �

for fillSlot = 0 to (len(xs) - 2) do
find the minimum of
xs[fillSlot+1]..xs[len(xs) - 1]

and swap with xs[fillSlot]� �
Selection Sort — Python Non-recursive Implementation

• Here is a Python implementation of the above (based on Miller and Ranum (2011,
page 211) but selecting the smallest first not largest, influenced by http://rosettacode.
org/wiki/Sorting_algorithms/Selection_sort#PureBasic).

• Note that here we indent by 2 spaces and use the Python idiomatic simultaneous
assignment to do the swap in line 71� �

63 def selectionSort(xs) :
64 for fillSlot in range(0,len(xs)-1) :
65 minIndex = fillSlot
66 for index in range(fillSlot+1,len(xs)) :
67 if xs[index] < xs[minIndex] :
68 minIndex = index

70 # if fillSlot != minIndex: # only swap if different
71 xs[fillSlot],xs[minIndex] = xs[minIndex],xs[fillSlot]� �

M & R Non-recursive Selection SOrt

• The non-recursive version of Selection sort in Miller & Ranum sorts in ascending
order but takes each position of the list in turn from the right end and swaps the
element at that position with the maximum element in the rest of the list from the
beginning of the list to that position. (Miller and Ranum, 2011, page 211)� �

for fillSlot = len(xs) - 1 down to 1 do
find the maximum of
xs[0] .. xs[fillSlot]

and swap with xs[fillSlot]� �
Selection Sort — Python Non-recursive Implementation

• Here is a Python implementation of the above (based on Miller and Ranum (2011,
page 211) selecting the largest first.� �

73 def selSortAscByMax(xs) :
74 for fillSlot in range(len(xs) - 1, 0, -1) :
75 maxIndex = 0
76 for index in range(1, fillSlot + 1) :
77 if xs[index] > xs[maxIndex] :
78 maxIndex = index

80 temp = xs[fillSlot]
81 xs[fillSlot] = xs[maxIndex]
82 xs[maxIndex] = temp� �

• Note that both Python non-recursive versions work by side-effect on the input list —
they do not return new lists.

http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort#PureBasic
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort#PureBasic

Phil Molyneux Unit 3 23

5.2.6 Activity 5 — Finding the Non-Recursive Algorithm

• For Insertion Sort and Selection Sort discuss how the non-recursive case can be found
by considering the recursive case and doing the algorithm in place.

5.3 Merge Sort

5.3.1 Merge Sort — Abstract Algorithm

• Merge Split xs1 is half the list; xs2 is the other half of the list.

• Merge Join Merge the sorted xs1 and the sorted xs2 together as the output list

Abstract Sorting Algorithm Diagram for Merge Sort

[3,0,1,8,7,2,5,4,9,6]

(xs1, xs2) = mergeSplit xs

[3,0,1,8,7] [2,5,4,9,6]

[0,1,3,7,8] [2,4,5,6,9]

ys = mergeJoin (ys1,ys2)

[0,1,2,3,4,5,6,7,8,9]

xs1 xs2

sort sort

ys1 ys2

5.3.2 Merge Sort — Haskell� �
21 mergeSort [] = []
22 mergeSort [x] = [x]
23 mergeSort xs
24 = mergeJoin (mergeSort as) (mergeSort bs)
25 where
26 (as,bs) = mergeSplit xs

28 mergeSplit = mergeSplit2

30 mergeSplit2 xs = (take half xs, drop half xs)
31 where
32 half = (length xs) ‘div‘ 2

34 mergeJoin [] ys = ys
35 mergeJoin xs [] = xs
36 mergeJoin (x:xs) (y:ys)
37 | x <= y = x : mergeJoin xs (y:ys)
38 | otherwise = y : mergeJoin (x:xs) ys� �

24 M269 Sorting 5 December 2020

Haskell Code Description

• Reserved words and built in function are in blue

• take n xs returns the first n of xs as a new list

• div is the integer division function, the back quotes make it an infix operator

• 3 ‘div‘ 2 == div 3 2 == 1

• In mergeJoin, if the boolean expression following a vertical bar (|) evaluates to True
then the value of the left hand side is given by the expression on the right of the
following “=” — the lines are known as guards and are evaluated in turn until one is
found to be true (otherwise is a nickname for True)

• We have mergeSplit1 and mergeSplit2 to illustrate choices.

• The code for mergeSplit1 is given below — it splits the list with just one traversal
of the list� �

40 mergeSplit1 [] = ([],[])
41 mergeSplit1 [x] = ([x],[])
42 mergeSplit1 (x:y:zs)
43 = (x:xs, y:ys)
44 where
45 (xs,ys) = mergeSplit1 zs� �

• mergeSplit1 recursively splits the list by adding alternate elements to the two parts
of the result pair

• The code in Python would look similar

5.3.3 Merge Sort — Python� �
86 def mergeSort(xs) :
87 if len(xs) <= 1 :
88 return xs
89 else :
90 (aList,bList) = mergeSplit(xs)
91 return mergeJoin(mergeSort(aList),mergeSort(bList))

93 def mergeSplit(xs) :
94 return mergeSplit2(xs)

96 def mergeSplit2(xs) :
97 half = len(xs)//2
98 return (xs[:half],xs[half:])

100 def mergeJoin(xs,ys) :
101 if xs == [] :
102 return ys
103 elif ys == [] :
104 return xs
105 elif xs[0] <= ys[0] :
106 return [xs[0]] + mergeJoin(xs[1:],ys)
107 else :
108 return [ys[0]] + mergeJoin(xs,ys[1:])� �

Python mergeSplit1� �
110 def mergeSplit1(xs) :
111 if len(xs) == 0 :
112 return ([],[])
113 elif len(xs) == 1 :
114 return (xs,[])

Phil Molyneux Unit 3 25

115 else :
116 (aList,bList) = mergeSplit1(xs[2:])
117 return ([xs[0]] + aList, [xs[1]] + bList)� �

5.3.4 Merge Sort Diagram

Merge Sort Split Phase

3 0 1 8 7 2 5 4 9 6

3 0 1 8 7

3 0

3 0

1 8 7

1

8 7

8 7

2 5 4 9 6

2 5

2 5

4 9 6

4

9 6

9 6

Merge Sort Join Phase

0 1 2 3 4 5 6 7 8 9

0 1 3 7 8

0 3

3 0

1 7 8

1

7 8

8 7

2 4 5 6 9

2 5

2 5

4 6 9

4

6 9

9 6

5.3.5 Merge Sort Python In-Place

• Here is a Python implementation of the above

26 M269 Sorting 5 December 2020

• From Miller and Ranum (2011, page 218–221)

• This is also recursive but works in place by changing the array.

• Code from http://interactivepython.org/courselib/static/pythonds/SortSearch/
TheMergeSort.html� �

119 def mergeSortInPlace(xs) :
120 if len(xs) > 1 :
121 print("Splitting ", xs)
122 else :
123 print("Singleton ", xs)

125 if len(xs) > 1 :
126 half = len(xs)//2
127 (aList, bList) = (xs[:half],xs[half:])

129 mergeSortInPlace(aList)
130 mergeSortInPlace(bList)� �� �
132 i,j,k = 0,0,0
133 while i < len(aList) and j < len(bList) :
134 if aList[i] < bList[j] :
135 xs[k] = aList[i]
136 i = i + 1
137 else :
138 xs[k] = bList[j]
139 j = j + 1
140 k = k + 1

142 while i < len(aList) :
143 xs[k] = aList[i]
144 i = i + 1
145 k = k + 1

147 while j < len(bList) :
148 xs[k] = bList[j]
149 j = j + 1
150 k = k + 1� �

• Here is the code that reports the merging of the lists� �
152 if len(xs) > 1 :
153 print("Merging ", aList, ",", bList, "to", xs)
154 else :
155 print("Merged ", xs)� �

• is how the listings package shows spaces in strings by default (read the manual)

• // is the Python integer division operator

• aList[start:stop:step] is a slice of a list — see Python Sequence Types — slice
operations return a new list (van Rossum and Drake, 2011a, page 19) so xs[:]
returns a copy (or clone) of xs — if any of the indices are missing or negative than
you have to think a bit (or read the manual)

• In Python you really do need to be aware when you are working with values or refer-
ences to objects.

• A listing of the output of mergeSortInPlace(xsc) below is given in the article
version of these notes� �

>>> from SortingPython import *
>>> xs = [3,0,1,8,7,2,5,4,9,6]
>>> xsc = xs[:]
>>> mergeSortInPlace(xsc)
Splitting [3, 0, 1, 8, 7, 2, 5, 4, 9, 6]
#
lines removed

http://interactivepython.org/courselib/static/pythonds/SortSearch/TheMergeSort.html
http://interactivepython.org/courselib/static/pythonds/SortSearch/TheMergeSort.html
https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range

Phil Molyneux Unit 3 27

#
Merging [0, 1, 3, 7, 8] , [2, 4, 5, 6, 9]
to [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]� �

Complete listing of output of mergeSortInPlace(xsc)� �
Python3>>> from SortingPython import *
Python3>>> xs = [3,0,1,8,7,2,5,4,9,6]
Python3>>> xsc = xs[:]
Python3>>> mergeSortInPlace(xsc)
Splitting [3, 0, 1, 8, 7, 2, 5, 4, 9, 6]
Splitting [3, 0, 1, 8, 7]
Splitting [3, 0]
Singleton [3]
Merged [3]
Singleton [0]
Merged [0]
Merging [3] , [0] to [0, 3]
Splitting [1, 8, 7]
Singleton [1]
Merged [1]
Splitting [8, 7]
Singleton [8]
Merged [8]
Singleton [7]
Merged [7]
Merging [8] , [7] to [7, 8]
Merging [1] , [7, 8] to [1, 7, 8]
Merging [0, 3] , [1, 7, 8] to [0, 1, 3, 7, 8]
Splitting [2, 5, 4, 9, 6]
Splitting [2, 5]
Singleton [2]
Merged [2]
Singleton [5]
Merged [5]
Merging [2] , [5] to [2, 5]
Splitting [4, 9, 6]
Singleton [4]
Merged [4]
Splitting [9, 6]
Singleton [9]
Merged [9]
Singleton [6]
Merged [6]
Merging [9] , [6] to [6, 9]
Merging [4] , [6, 9] to [4, 6, 9]
Merging [2, 5] , [4, 6, 9] to [2, 4, 5, 6, 9]
Merging [0, 1, 3, 7, 8] , [2, 4, 5, 6, 9] to [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]� �
5.4 Quicksort

5.4.1 Quicksort — Abstract Algorithm

• Quicksort Split Choose an item in the list to be the pivot item; xs1 comprises items
in the list less than the pivot plus the pivot; xs2 comprises items in the list greater
than or equal to the pivot.

• Quicksort Join just append the sorted xs1 and the sorted xs2 together as the output
list

28 M269 Sorting 5 December 2020

Abstract Sorting Algorithm Diagram for Quicksort

[3,0,1,8,7,2,5,4,9,6]

(xs1, xs2) = quickSplit xs

[0,1,2] ⊕ [3] [8,7,5,4,9,6]

[0,1,2,3] [4,5,6,7,8,9]

ys = quickJoin (ys1,ys2)

[0,1,2,3,4,5,6,7,8,9]

xs1 xs2

sort sort

ys1 ys2

Note: the diagram use ⊕ as the list append operator — this is used in various courses and
texts

5.4.2 Quicksort — Haskell� �
47 quickSort1 [] = []
48 quickSort1 (x:xs)
49 = quickSort1 [y | y <- xs, y < x]
50 ++ [x]
51 ++ quickSort1 [y | y <- xs, y >= x]� �

• This uses the Haskell version of the list comprehension notation

• Based on classical set notation and originally implemented in Miranda out of David
Turner in 1983–6 (see http://miranda.org.uk)

• This idea is available in Python but in a slightly different syntax

• ++ is the list append operator — denoted ⊕ in various courses and texts

5.4.3 List Comprehensions

• Haskell 2010 Language Report section 3.11 List Comprehensions

• [e | q1, . . . , qn], n ≥ 1 where qi qualifiers are either

– generators of the form p <- e where p is a pattern of type t and e is an expres-
sion of type [t]

– local bindings that provide new definitions for use in the generated expression
e or subsequent boolean guards and generators

– boolean guards which are expressions of type Bool

https://en.wikipedia.org/wiki/List_comprehension
http://miranda.org.uk

Phil Molyneux Unit 3 29

• Python Language Reference section 6.2.4 Displays for lists, sets and dictionaries and
section 6.2.5 List displays

• [expr for target in list] — simple comprehension

• [expr for target in list if condition] — filters

• [expr for target1 in list1 for target2 in list2] — multiple generators

5.4.4 Quicksort — Python� �
159 def qsort(xs) :
160 if not xs :
161 return []
162 else :
163 pivot = xs[0]
164 less = [x for x in xs if x < pivot]
165 more = [x for x in xs[1:] if x >= pivot]
166 return qsort(less) + [pivot] + qsort(more)� �

• The if test shows that Python is weakly typed (and the author of this code comes
from JavaScript)

5.4.5 Quicksort Python In-Place

• The in-place version of Quick sort works by partitioning a list in place about a value
pivotvalue: (Azmoodeh, 1990, page 259–266)

(1) Scan from the left until

– alist[leftmark] >= pivotvalue

(2) Scan from the right until

– alist[rightmark] < pivotvalue

(3) Swap alist[leftmark] and alist[rightmark]

(4) Repeat (1) to (3) until scans meet

• Here is an in place version of Quick Sort from Miller and Ranum (2011, pages 221–
226)

• Code based on http://interactivepython.org/courselib/static/pythonds/
SortSearch/TheQuickSort.html� �

168 def quickSort(xs) :
169 quickSortHelper(xs, 0, len(xs) - 1)

171 def quickSortHelper(xs, fst, lst) :
172 if fst < lst :

174 splitPoint = partition(xs,fst,lst)

176 quickSortHelper(xs, fst, splitPoint - 1)
177 quickSortHelper(xs, splitPoint + 1, lst)� �� �
179 def partition(xs,fst,lst) :
180 pivotValue = xs[fst]
181 leftMk = fst + 1
182 rightMk = lst
183 done = False

http://interactivepython.org/courselib/static/pythonds/SortSearch/TheQuickSort.html
http://interactivepython.org/courselib/static/pythonds/SortSearch/TheQuickSort.html

30 M269 Sorting 5 December 2020

185 while not done :
186 while leftMk <= rightMk and \
187 xs[leftMk] <= pivotValue :
188 leftMk = leftMk + 1
189 while xs[rightMk] >= pivotValue and \
190 rightMk >= leftMk :
191 rightMk = rightMk - 1

193 if rightMk < leftMk :
194 done = True
195 else :
196 xs[leftMk], xs[rightMk] = xs[rightMk], xs[leftMk]

198 xs[fst], xs[rightMk] = xs[rightMk], xs[fst]
199 return rightMk� �

• The (\) is enabling a statement to span multiple lines — see Lutz (2009, page 317),
Lutz (2013, page 378)

• for a language that uses the offside rule why do we need to do this?

• Note that using (\) to create continuations is frowned on (Lutz, 2009, page 318),
Lutz (2013, page 379)

• the authors should have put the entire boolean expression inside parentheses () so
that we get implicit continuation.

• This is not mentioned explicitly in the Style Guide for Python Code http://www.
python.org/dev/peps/pep-0008/ but it does explicitly mention using Python’s
implicit line joining with layout guidelines.

5.5 Bubble Sort

5.5.1 Bubble Sort — Abstract Algorithm

• Bubble sort is rather like the Hello World program of sorting algorithms — we have
to include it even it isn’t very useful in practice.

• It can be thought of as an in-place version of Selection sort

• In the implementations below, in each pass through the list, the next highest item is
moved (bubbled) to its proper place.

• OK, I should have written it to bubble the smallest the other way to be consistent
with the implementations of Selection sort above.

5.5.2 Bubble Sort — Haskell

• Here is a naive version (based on http://rosettacode.org/wiki/Sorting_algorithms/
Bubble_sort#Haskell

• it is naive because it does the check for changes in a simple way.

• See the above Web site for more sophisticated versions� �
53 bubbleSort xs
54 = if (ts == xs) then ts else (bubble ts)
55 where
56 ts = bubble xs

http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort#Haskell
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort#Haskell

Phil Molyneux Unit 3 31

58 bubble [] = []
59 bubble [x] = [x]
60 bubble (x1:x2:xs)
61 | x1 > x2 = x2 : (bubble (x1 : xs))
62 | otherwise = x1 : (bubble (x2 : xs))� �

• The expression (x1:x2:xs) denotes a list of at least two items whose first two items
are x1 and x2 and the rest of the list is xs

• The third equation defining bubble uses boolean guards starting with (|) rather than
a conditional expression (if ... then ... else ...)

• it could be written the other way and remove the need to understand this style of
function declaration but this is a frequently used style in Haskell

5.5.3 Bubble Sort — Python

• Here is a Python implementation from Miller and Ranum (2011, pages 207–210)

• it does not test if there have been no swaps but does use some knowledge of the
algorithm by reducing the pass length by one each time (which the Haskell one did
not do)� �

203 def bubbleSort(xs) :
204 for passNum in range(len(xs) - 1, 0, -1) :
205 for i in range(passNum) :
206 if xs[i] > xs[i+1] :
207 xs[i], xs[i+1] = xs[i+1], xs[i]� �

• Note that range() is a built-in function to Python that is used a lot

• Read the documentation at Section 4.6.6 Ranges

• Remember that range(5) means [0,1,2,3,4] (not [0,1,2,3,4,5] or [1,2,3,4,5])

6 What Next ?

Topics in Units 3 and 4

• Binary trees, Binary heaps and Heap sort

• Searching — searching for patterns, string searches

• Hashing and hash tables

• Binary search trees, height balanced binary search trees, AVL trees

• Following this section, there are some slides on Binary Trees and tree sort

https://docs.python.org/3.3/library/stdtypes.html#typesseq-range

32 M269 Sorting 5 December 2020

7 Sorting via a Data Structure — Tree Sort

7.1 Tree Sort — Abstract Algorithm

• Build Binary Search Tree — build a binary search tree from the list of keys to be
sorted

• Traverse Tree In-Order — traverse the tree in-order to output the keys in sorted
order

7.2 Tree Sort — Python� �
211 from collections import namedtuple

213 EmptyTreeBT = None

215 NodeBT = namedtuple(’NodeBT’
216 ,[’dataBT’,’leftBT’,’rightBT’])

218 # Binary Tree Operations

220 def makeEmptyBT() :
221 return EmptyTreeBT

223 def makeBT(x,t1,t2) :
224 return NodeBT(x,t1,t2)

226 def isEmptyBT(t) :
227 return t is EmptyTreeBT� �

• This is from SortingPython.py

• Reserved identifiers are shown in this color

• User defined data constructors such as NodeBT and EmptyTreeBT are shown in that
color

• NodeBT is a named tuple with named fields — a quick and dirty object

• makeEmptyBT, makeBT are constructor functions — we could have used the raw
named tuple and None but the discipline is good for you

• isEmptyBT uses the is operator for identity check (not (==))

• Health Warning: these notes may not be totally consistent with syntax colouring.

• insertListBST and insertBST insert a list of items into a Binary Search Tree

• To be consistent, we should have used the constructor functions to hide the imple-
mentation.� �

274 def insertBST(x,t) :
275 if isEmptyBT(t) :
276 return NodeBT(x,EmptyTreeBT,EmptyTreeBT)
277 else :
278 y = t.dataBT
279 if x < y :
280 return NodeBT(y, insertBST(x,t.leftBT),t.rightBT)
281 elif x > y :
282 return NodeBT(y, t.leftBT, insertBST(x,t.rightBT))
283 else :
284 return t

286 def insertListBST(t,xs) :

Phil Molyneux Unit 3 33

287 if xs == [] :
288 return t
289 else :
290 return insertListBST(insertBST(xs[0],t),xs[1:])� �

• inOrderBT takes a Binary Tree and does an in-order traversal

• treeSort combines insertListBST and inOrderBT� �
251 def inOrderBT(t) :
252 if isEmptyBT(t) :
253 return []
254 else :
255 return (inOrderBT(t.leftBT) + [t.dataBT]
256 + inOrderBT(t.rightBT))� �� �
292 def treeSort(xs) :
293 return inOrderBT(insertListBST(makeEmptyBT(),xs))� �

• Example list and tree� �
297 xs = [3,0,1,8,7,2,5,4,9,6]

299 egTree = insertListBST(makeEmptyBT(),xs)

301 egTreeTest = NodeBT(3,
302 NodeBT(0,
303 EmptyTreeBT,
304 NodeBT(1,
305 EmptyTreeBT,
306 NodeBT(2, EmptyTreeBT, EmptyTreeBT))),
307 NodeBT(8,
308 NodeBT(7,
309 NodeBT(5,
310 NodeBT(4, EmptyTreeBT, EmptyTreeBT),
311 NodeBT(6, EmptyTreeBT, EmptyTreeBT)),
312 EmptyTreeBT),
313 NodeBT(9, EmptyTreeBT, EmptyTreeBT)))� �

7.3 Example Tree Sort

3

egTreeTest

0

1

2

8

7

5

4 6

9

• The in-order traversal of egTreeTest outputs

• [0,1,2,3,4,5,6,7,8,9]

34 M269 Sorting 5 December 2020

7.4 Tree Sort — Haskell� �
64 data BinTree a = EmptyTreeBT
65 | NodeBT a (BinTree a) (BinTree a)
66 deriving (Eq,Ord,Show,Read)

68 -- BSTree is an alias for BinTree,
69 -- we have to enforce the Binary Search Tree property

71 type BSTree a = BinTree a� �
• The code starting with data (line 64) is an Algebraic Datatype declaration. Algebraic

datatypes allow you just to name things and use them in your program

• Meta-magic and avoids ever needing to use pointers

• For a description see Algebraic data type and Marlow and Peyton Jones (2010, section
4.2.1)

• -- comments out a line

• BinTree is the name of the type and EmptyTreeBT, NodeBT are the two data con-
structors

• a is a type variable — that is, a variable that ranges over types (not values). It could
be any type (subject to any restrictions we place on it): primitive types such as Int,
Bool, built-in structured types such as tuples or list, or other user defined types

• The constructor EmptyTreeBT is to represent an empty tree (took ages to think of
that name)

• The constructor Node takes three arguments: the first is of type a and is meant to
represent the data stored at a node, the second and third are of type BinTree a and
indicate the left and right sub trees

• Here is a sample tree with 51 at the root and left and right subtree with 26 and 69
at their roots� �

NodeBT 51
(NodeBT 26 EmptyTreeBT EmptyTreeBT)
(NodeBT 69 EmptyTreeBT EmptyTreeBT)� �

Here is the usual diagram of this tree (with the empty trees labelled as E):

51

26

E E

69

E E

• The deriving (Eq,Ord,Show,Read) part of the declaration produces derived in-
stances for BinTree is the type classes for equality (Eq), ordering (Ord), printing
(Show) and reading from files (or standard input) (Read)

• Equality as a derived instance is just lexicographic — that is, two trees are equal if
and only if they look the same

• Show and Read do the fairly obvious thing — the above example would be printed
or read as you see it above.

http://en.wikipedia.org/wiki/Algebraic_data_type

Phil Molyneux Unit 3 35

• Other details can be found in chapter 11 of the Haskell Report http://www.haskell.
org/haskellwiki/Language_and_library_specification (I’m avoiding talking
about ordering since you probably don’t want that on trees)

• The (|) is just the syntax separating the two constructors

• The line starting type (line 71) is a type synonym declaration — this is not needed
apart from making the code a bit more readable (to distinguish Binary Search Trees
from other Binary Trees)� �

72 insertBST :: (Ord a) => BSTree a -> a -> BSTree a

74 insertBST EmptyTreeBT x
75 = NodeBT x EmptyTreeBT EmptyTreeBT

77 -- Note that insertBST does not accept duplicate keys,
78 -- see \citet[page 271]{millar:2011python}

80 insertBST (NodeBT y leftT rightT) x
81 | x < y = NodeBT y (insertBST leftT x) rightT
82 | x > y = NodeBT y leftT (insertBST rightT x)
83 | x == y = NodeBT y leftT rightT

85 insertListBST :: (Ord a) => BSTree a -> [a] -> BSTree a
86 insertListBST t [] = t
87 insertListBST t (x:xs)
88 = insertListBST (insertBST t x) xs� �

• The line starting insertBST :: (line 72) is a Type Signature which specifies the type
of the function insertBST

• This is usually not required since Haskell uses a traditional Hindley-Milner polymor-
phic type system to provide a static type semantics but the type system has been
extended with type classes (or just classes) that provide a structured way to intro-
duce overloaded functions. (Marlow and Peyton Jones, 2010, section 4.1) (this is
definitely not part of the M269 tutorial)

• Ord a is a context for the type following => with one class assertion — it restricts
the type variable a to be a member of the Ord type class

• BSTree a -> a -> BSTree a says that insertBST takes a binary tree and an item
and returns a binary tree.

• The function type operator -> is right associative (to match left association of func-
tion application) — see Lee (2013).� �

89 inorderBST :: BSTree a -> [a]
90 inorderBST EmptyTreeBT = []
91 inorderBST (NodeBT x leftT rightT)
92 = (inorderBST leftT) ++ [x] ++ (inorderBST rightT)

94 treeSort :: Ord a => [a] -> [a]
95 treeSort xs = inorderBST (insertListBST EmptyTreeBT xs)� �

• The ++ is the list append operator

• treeSort takes a list xs and uses insertListBST to insert the list into EmptyTreeBT
and then inorderBST to traverse the tree

Haskell — Alternative Definitions

• Alternative tree building bracketing from the right

http://www.haskell.org/haskellwiki/Language_and_library_specification
http://www.haskell.org/haskellwiki/Language_and_library_specification

36 M269 Sorting 5 December 2020

� �
96 insertBST01 :: (Ord a) => a -> BSTree a -> BSTree a

98 insertBST01 x EmptyTreeBT
99 = NodeBT x EmptyTreeBT EmptyTreeBT

101 -- Note that insertBST01 does not accept duplicate keys,
102 -- see \citet[page 271]{millar:2011python}

104 insertBST01 x (NodeBT y leftT rightT)
105 | x < y = NodeBT y (insertBST01 x leftT) rightT
106 | x > y = NodeBT y leftT (insertBST01 x rightT)
107 | x == y = NodeBT y leftT rightT

109 insertListBST01 :: (Ord a) => BSTree a -> [a] -> BSTree a
110 insertListBST01 t [] = t
111 insertListBST01 t (x:xs)
112 = insertBST01 x (insertListBST01 t xs)� �

Haskell — Alternative Definitions

• Some more idiomatic Haskell using higher order functions

• (.) is the function composition operator

• (f . g) x = f (g x)

• foldl and foldr capture common patterns of recursion on lists� �
113 treeSort01 :: Ord a => [a] -> [a]
114 treeSort01 = inorderBST . (insertListBST EmptyTreeBT)
115 -- point free style requires explicit type signature
116 -- because of the monomorphism restriction

118 insertListBSTa :: (Ord a) => [a] -> BSTree a
119 insertListBSTa xs = foldl insertBST EmptyTreeBT xs

121 insertListBST01a :: (Ord a) => [a] -> BSTree a
122 insertListBST01a xs = foldr insertBST01 EmptyTreeBT xs� �

The fold functions

foldl (⊕) z [x1,x2,...,xn]
→ (...((z ⊕ x1) ⊕ x2) ⊕...)⊕ xn

foldr (⊕) z [x1,x2,...,xn]
→ x1 ⊕ (x2 ⊕...⊕ (xn ⊕ z)...)

• Examples

• sum xs = foldr (+) 0 xs

• product xs = foldr (*) 1 xs

• concat xss = foldr (++) [] xss

• Higher order functions tend to get used a lot in idiomatic functional programming

• Higher order functions take functions as arguments and/or return functions as re-
sults� �

124 xs = [3,0,1,8,7,2,5,4,9,6]

126 egTreeTesta = insertListBSTa xs

128 testA
129 = egTreeTesta

Phil Molyneux Unit 3 37

130 == NodeBT 3
131 (NodeBT 0
132 EmptyTreeBT
133 (NodeBT 1
134 EmptyTreeBT
135 (NodeBT 2 EmptyTreeBT EmptyTreeBT)))
136 (NodeBT 8
137 (NodeBT 7
138 (NodeBT 5
139 (NodeBT 4 EmptyTreeBT EmptyTreeBT)
140 (NodeBT 6 EmptyTreeBT EmptyTreeBT))
141 EmptyTreeBT)
142 (NodeBT 9 EmptyTreeBT EmptyTreeBT))� �� �
143 -- xs = [3,0,1,8,7,2,5,4,9,6]

145 egTreeTest01a = insertListBST01a xs

147 test01A
148 = egTreeTest01a
149 == NodeBT 6
150 (NodeBT 4
151 (NodeBT 2
152 (NodeBT 1
153 (NodeBT 0 EmptyTreeBT EmptyTreeBT)
154 EmptyTreeBT)
155 (NodeBT 3 EmptyTreeBT EmptyTreeBT))
156 (NodeBT 5 EmptyTreeBT EmptyTreeBT))
157 (NodeBT 9
158 (NodeBT 7
159 EmptyTreeBT
160 (NodeBT 8 EmptyTreeBT EmptyTreeBT))
161 EmptyTreeBT)� �

6

egTreeTest01a

4

5 2

3 1

0

9

7

8

• egTreeTest01a is built with foldr

• The in-order traversal of egTreeTest01a outputs

• [0,1,2,3,4,5,6,7,8,9]

8 Sorting via a Data Structure — Heap Sort

8.1 Heap Sort — Abstract Algorithm

• A Binary Heap is a Heap using a binary tree with two additional properties:

https://en.wikipedia.org/wiki/Binary_heap
https://en.wikipedia.org/wiki/Heap_(data_structure)

38 M269 Sorting 5 December 2020

– Compact shape A binary heap is a complete binary tree — every level, except
possibly the last, is completely filled and all nodes in the last level are as for left
as possible.

– Heap property All nodes are either greater than or equal to or less than or equal
to each of its children.

• In many implementations, the Binary Heap is implemented as an implicit data struc-
ture using an array

• The array is a breadth first listing of the nodes

• New nodes can be added in the next position in the implicit tree and then percolated
or sifted up the tree to its (or a) correct position.

• If the root of the tree is deleted then the last node is promoted to the root and
percolated or sifted down the tree to a correct place

Heaps — Implementations and Applications

• There are lots of varieties of heaps

• Used later in M269 for Priority queues

• As well as Miller and Ranum and the M269 material, see

– Comparison of Priority Queue implementations in Haskell

– Louis Wasserman: Playing with Priority Queues

• TODO: typeset the Python and Haskell for this

9 Web Sites & References

9.1 Sorting Web Links

• Rosetta Code Sorting Algorithms http://rosettacode.org/wiki/Sorting_algorithms
— sorting algorithms implemented n lots of programming languages

• Sorting Algorithm Animations http://www.sorting-algorithms.com — visual
display of the performance of various sorting algorithms for several classes of data:
random, nearly sorted, reversed, few unique — worth browsing to.

• Sorting Algorithms as Dances https://www.youtube.com/user/AlgoRythmics
— inspired!

9.2 Python Web Links & References

• Miller and Ranum (2011) http://interactivepython.org/courselib/static/
pythonds/index.html — the entire book online with a nice way of running the
code.

• Lutz (2013) — one of the best introductory books

https://en.wikipedia.org/wiki/Binary_tree
https://en.wikipedia.org/wiki/Heap_(data_structure)
https://en.wikipedia.org/wiki/Priority_queue
http://stackoverflow.com/questions/6976559/comparison-of-priority-queue-implementations-in-haskell
https://themonadreader.files.wordpress.com/2010/05/issue16.pdf
http://rosettacode.org/wiki/Sorting_algorithms
http://www.sorting-algorithms.com
https://www.youtube.com/user/AlgoRythmics
http://interactivepython.org/courselib/static/pythonds/index.html
http://interactivepython.org/courselib/static/pythonds/index.html

Phil Molyneux Unit 3 39

• Lutz (2011) — a more advanced book — earlier editions of these books are still
relevant — you can also obtain electronic versions from the O’Reilly Web site http:
//oreilly.com

• Python 3 Documentation https://docs.python.org/3/

• Python Style Guide PEP 8 https://www.python.org/dev/peps/pep-0008/ (Python
Enhancement Proposals)

9.3 Haskell Web Links & References

• Haskell Language https://www.haskell.org

• HaskellWiki https://wiki.haskell.org/Haskell

• Learn You a Haskell for Great Good! http://learnyouahaskell.com — very read-
able introduction to Haskell

• Real World Haskell http://book.realworldhaskell.org — more advanced

• Thompson (2011) — a good text for functional programming for beginners

• Bird and Wadler (1988); Bird (1998, 2014) — one of the best introductions but
tough in parts, requires some mathematical maturity — the three books are in effect
different editions

• Functors, Applicatives, and Monads in Pictures http://adit.io/posts/2013-
04-17-functors,_applicatives,_and_monads_in_pictures.html — a very good
outline with cartoons

• Typeclassopedia https://wiki.haskell.org/Typeclassopedia — a more for-
mal introduction to Functors, Applicatives and Monads

• Haskell Wikibook https://en.wikibooks.org/wiki/Haskell

9.4 Demonstration 2 Sorting Algorithms as Dances

• Quicksort

• https://www.youtube.com/user/AlgoRythmics

• the hats make the point(!)

References

Abelson, Harold and Gerald Jay Sussman (1984). Structure and Interpretation of Computer
Programs. MIT Press, first edition. URL http://mitpress.mit.edu/sicp/.

Abelson, Harold and Gerald Jay Sussman (1996). Structure and Interpretation of Computer
Programs. MIT Press, second edition. URL http://mitpress.mit.edu/sicp/.

Azmoodeh, Manoochehr (1990). Abstract Data Types and Algorithms. Palgrave Macmillan,
second edition. ISBN 0333512103.

http://oreilly.com
http://oreilly.com
https://docs.python.org/3/
https://www.python.org/dev/peps/pep-0008/
https://www.haskell.org
https://wiki.haskell.org/Haskell
http://learnyouahaskell.com
http://book.realworldhaskell.org
http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html
http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html
https://wiki.haskell.org/Typeclassopedia
https://en.wikibooks.org/wiki/Haskell
https://www.youtube.com/user/AlgoRythmics
http://mitpress.mit.edu/sicp/
http://mitpress.mit.edu/sicp/

40 M269 Sorting 5 December 2020

Bird, Richard (1998). Introduction to Functional Programming using Haskell. Prentice Hall,
second edition. ISBN 0134843460.

Bird, Richard (2014). Thinking Functionally with Haskell. Cambridge University Press. ISBN
1107452643. URL http://www.cs.ox.ac.uk/publications/books/functional/.

Bird, Richard and Phil Wadler (1988). Introduction to Functional Programming. Prentice
Hall, first edition. ISBN 0134841972.

Böhm, Corrado and Giuseppe Jacopini (1966). Flow diagrams, Turing Machines and Lan-
guages with Only Two Formation Rules. Communications of the ACM, 9(5):366–371.

Dijkstra, Edsger W (1968). Letters to the editor: Go To Statement Considered Harmful.
Communications of the ACM, 11(3):147–148.

Dromey, R.Geoff (1982). How to Solve it by Computer. Prentice-Hall. ISBN 0134340019.

Dromey, R.Geoff (1989). Program Derivation: The Development of Programs from Speci-
fications. Addison Wesley. ISBN 0201416247.

Hudak, Paul; John Hughes; Simon Peyton Jones; and Phil Wadler (2007). A History of
Haskell: Being Lazy with Class. In Proceedings of the third ACM SIGPLAN conference on
History of programming languages, pages 12–1–12–55. ACM New York, NY, USA.

Knuth, D.E. (1998). The Art of Computer Programming Vol. 3: Sorting and Searching. The
Art of Computer Programming: Sorting and Searching. Adddison Wesley, second edition.
ISBN 0201896850. URL http://books.google.co.uk/books?id=sXa_mwEACAAJ.

Landin, Peter J. (1966). The next 700 programming languages. Communications of the
Association for Computing Machinery, 9:157–166.

Lee, Gias Kay (2013). Functional Programming in 5 Minutes. Web. http://gsklee.im,
URL http://slid.es/gsklee/functional-programming-in-5-minutes.

Lutz, Mark (2009). Learning Python. O’Reilly, fourth edition. ISBN 0596158068.

Lutz, Mark (2011). Programming Python. O’Reilly, fourth edition. ISBN 0596158106. URL
http://learning-python.com/books/about-pp4e.html.

Lutz, Mark (2013). Learning Python. O’Reilly, fifth edition. ISBN 1449355730. URL
http://learning-python.com/books/about-lp5e.html.

Marlow, Simon and Simon Peyton Jones (2010). Haskell Language and Library Specifi-
cation. Web. URL http://www.haskell.org/haskellwiki/Language_and_library_
specification.

Meijer, Erik; Maarten Fokkinga; and Ross Paterson (1991). Functional programming with
bananas, lenses, envelopes and barbed wire. In Functional Programming Languages
and Computer Architecture, pages 124–144. Springer.

Merritt, SM and KK Lau (1997). A logical inverted taxonomy of sorting algorithms. In
Proceedings of the Twelfth International Symposium on Computer and Information Sci-
ences, pages 576–583. Citeseer.

Merritt, Susan M (1985). An inverted taxonomy of sorting algorithms. Communications of
the ACM, 28(1):96–99.

Miller, Bradley W. and David L. Ranum (2011). Problem Solving with Algorithms and
Data Structures Using Python. Franklin, Beedle Associates Inc, second edition. ISBN

http://www.cs.ox.ac.uk/publications/books/functional/
http://books.google.co.uk/books?id=sXa_mwEACAAJ
http://gsklee.im
http://slid.es/gsklee/functional-programming-in-5-minutes
http://learning-python.com/books/about-pp4e.html
http://learning-python.com/books/about-lp5e.html
http://www.haskell.org/haskellwiki/Language_and_library_specification
http://www.haskell.org/haskellwiki/Language_and_library_specification

Phil Molyneux Unit 3 41

1590282574. URL http://interactivepython.org/courselib/static/pythonds/
index.html.

Perlis, Alan J. (1982). Epigrams on Programming. SIGPLAN Notices, 17(9):7–13.

Sussman, Julie (1985a). Instructor’s Manual to Accompany Structure and Interpretation
of Computer Programs. MIT Press. ISBN 0262 691019. URL http://mitpress.mit.
edu/sites/default/files/sicp/index.html.

Sussman, Julie (1985b). Instructor’s Manual to Accompany Structure and Interpretation
of Computer Programs. MIT Press, second edition. ISBN 0262 692201. URL http:
//mitpress.mit.edu/sites/default/files/sicp/index.html.

Thompson, Simon (2011). Haskell the Craft of Functional Programming. Addison Wes-
ley, third edition. ISBN 0201882957. URL http://www.haskellcraft.com/craft3e/
Home.html.

van Rossum, Guido and Fred Drake (2011a). An Introduction to Python. Network Theory
Limited, revised edition. ISBN 1906966133.

van Rossum, Guido and Fred Drake (2011b). The Python Language Reference Manual.
Network Theory Limited, revised edition. ISBN 1906966141.

Author Phil Molyneux Written 5 December 2020 Printed 5th December 2020
Subject dir: 〈baseURL〉/OU/Courses/Computing/M269/M269TutorialNotes
Topic path: /M269TutorialSorting/M269Prsntn2020JTutorialSorting/M269Prsntn2020JTutorialSorting.pdf

http://interactivepython.org/courselib/static/pythonds/index.html
http://interactivepython.org/courselib/static/pythonds/index.html
http://mitpress.mit.edu/sites/default/files/sicp/index.html
http://mitpress.mit.edu/sites/default/files/sicp/index.html
http://mitpress.mit.edu/sites/default/files/sicp/index.html
http://mitpress.mit.edu/sites/default/files/sicp/index.html
http://www.haskellcraft.com/craft3e/Home.html
http://www.haskellcraft.com/craft3e/Home.html

	M269 Tutorial Agenda
	Motivation
	Demonstration 1 Sorting Algorithms as Dances
	Activity 1 Card Sorting Exercise

	Adobe Connect
	Student View
	Settings
	Student & Tutor Views
	Sharing Screen & Applications
	Ending a Meeting
	Invite Attendees
	Layouts
	Chat Pods

	Taxonomy of Sorting Algorithms
	Other Classifications of Sorting Algorithms

	Recursion and Iteration
	Some Split/Join Sorting Algorithms
	Insertion Sort
	Insertion Sort — Abstract Algorithm
	Insertion Sort — Python
	Insertion Sort — Haskell
	Activity 2 — Insertion Sort: Trace an Evaluation
	Insertion Sort — Non-recursive
	Activity 3 — Insertion Sort Non-recursive Trace

	Selection Sort
	Selection Sort — Abstract Algorithm
	Selection Sort — Haskell
	Activity 4 — Selection Sort: Trace an Evaluation
	Selection Sort — Python
	Selection Sort — Non-recursive
	Activity 5 — Finding the Non-Recursive Algorithm

	Merge Sort
	Merge Sort — Abstract Algorithm
	Merge Sort — Haskell
	Merge Sort — Python
	Merge Sort Diagram
	Merge Sort Python In-Place

	Quicksort
	Quicksort — Abstract Algorithm
	Quicksort — Haskell
	List Comprehensions
	Quicksort — Python
	Quicksort Python In-Place

	Bubble Sort
	Bubble Sort — Abstract Algorithm
	Bubble Sort — Haskell
	Bubble Sort — Python

	What Next ?
	Sorting via a Data Structure — Tree Sort
	Tree Sort — Abstract Algorithm
	Tree Sort — Python
	Example Tree Sort
	Tree Sort — Haskell

	Sorting via a Data Structure — Heap Sort
	Heap Sort — Abstract Algorithm

	Web Sites & References
	Sorting Web Links
	Python Web Links & References
	Haskell Web Links & References
	Demonstration 2 Sorting Algorithms as Dances

	References

