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1 Agenda

• Welcome & Introductions

• Logic topics:

– Propositional and predicate logic

– Truth tables, logical equivalences and valid arguments

– Truth and interpretations in logic

– Justified arguments and Natural Deduction

• Exercises similar to CMAs and exam

• Key aim: Identify where people have problems and how to overcome them.

• Slides http://www.pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/
M269TutorialLogic/

• Adobe Connect — if you or I get cut off, wait till we reconnect (or send you an email)

Introductions — Me

• Name Phil Molyneux

• Background Physics and Maths, Operational Research, Computer Science

• First programming languages Fortran, BASIC, Pascal

• Favourite Software

– Haskell — pure functional programming language

– Text editors TextMate, Sublime Text — previously Emacs

– Word processing in LATEX

– Mac OS X

• Learning style — I read the manual before using the software (really)

Introductions — You

• Name ?

• Position in M269 ? Which part of which Units and/or Reader have you read ?

http://www.pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269TutorialLogic/
http://www.pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269TutorialLogic/
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/BASIC
http://en.wikipedia.org/wiki/Pascal_(programming_language)
http://www.haskell.org/haskellwiki/Haskell
https://macromates.com
http://www.sublimetext.com
http://www.emacswiki.org
http://www.latex-project.org
https://developer.apple.com/devcenter/mac/index.action
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• Particular topics you want to look at ?

• Learning Syle ?

M269 Logic References

• M269 Unit 6 Section 1.2 Reading 6.2 — Chapter 2 of Logic and the limits of comput-
ing, Propositional logic

• M269 Unit 6 Section 2 Reading 6.3 — Chapter 3 of Logic and the limits of computing,
Relations and predicate logic

• The above two introduce the idea of a valid argument

• M269 Unit 7 Section 2 Logic revisited — Section 2.3 A proof system introduces the
idea of justified arguments and Natural Deduction proofs

• Material based on Allan Grimley’s notes for M269 on Natural Deduction

• Calculating with logic — manipulating truth tables and finding equivalent proposi-
tions — logic puzzles (optional)

2 Adobe Connect Interface and Settings

2.1 Adobe Connect Interface — Student View

Adobe Connect Interface — Student Quick Reference
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Adobe Connect Interface — Student View

2.2 Adobe Connect Settings

Adobe Connect Settings

• Everybody: Audio Settings Meeting Audio Setup Wizard. . .

• Audio Menu bar Audio Microphone rights for Participants 4

• Do not Enable single speaker mode

• Drawing Tools Share pod menu bar Draw (1 slide/screen)

• Share pod menu bar Menu icon Enable Participants to draw 4 gray

• Meeting Preferences Whiteboard Enable Participants to draw 4

• Cancel hand tool . . . Do not enable green pointer. . .

• Meeting Preferences Attendees Pod 8 Raise Hand notification

• Meeting Preferences Display Name Display First & Last Name

• Cursor Meeting Preferences General tab Host Cursors Show to all attendees 4 (default Off )

• Meeting Preferences Screen Share Cursor Show Application Cursor

• Webcam Menu bar Webcam Enable Webcam for Participants 4

• Recording Meeting Record Meeting. . . 4
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Adobe Connect — Access

• Tutor Access

TutorHome M269 Website Tutorials

Cluster Tutorials M269 Online tutorial room

Tutor Groups M269 Online tutor group room

Module-wide Tutorials M269 Online module-wide room

• Attendance

TutorHome Students View your tutorial timetables

• Beamer Slide Scaling 440% (422 x 563 mm)

• Clear Everyone’s Status

Attendee Pod Menu Clear Everyone’s Status

• Grant Access and send link via email

Meeting Manage Access & Entry Invite Participants. . .

• Presenter Only Area

Meeting Enable/Disable Presenter Only Area

Adobe Connect — Keystroke Shortcuts

• Keyboard shortcuts in Adobe Connect

• Toggle Mic + M (Mac), Ctrl + M (Win) (On/Disconnect)

• Toggle Raise-Hand status + E

• Close dialog box (Mac), Esc (Win)

• End meeting + \

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html


6 Logic 11 April 2021

2.3 Adobe Connect Interface — Student & Tutor Views

Adobe Connect Interface — Student View (default)
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Adobe Connect Interface — Tutor Quick Reference

Adobe Connect Interface — Tutor View
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2.4 Adobe Connect — Sharing Screen & Applications

• Share My Screen Application tab Terminal for Terminal

• Share menu Change View Zoom in for mismatch of screen size/resolution (Participants)

• (Presenter) Change to 75% and back to 100% (solves participants with smaller screen
image overlap)

• Leave the application on the original display

• Beware blued hatched rectangles — from other (hidden) windows or contextual
menus

• Presenter screen pointer affects viewer display — beware of moving the pointer away
from the application

• First time: System Preferences Security & Privacy Privacy Accessibility

2.5 Adobe Connect — Ending a Meeting

• Notes for the tutor only

• Student: Meeting Exit Adobe Connect

• Tutor:

• Recording Meeting Stop Recording 4

• Remove Participants Meeting End Meeting. . . 4

– Dialog box allows for message with default message:

– The host has ended this meeting. Thank you for attending.

• Recording availability In course Web site for joining the room, click on the eye icon
in the list of recordings under your recording — edit description and name

• Meeting Information Meeting Manage Meeting Information — can access a range of informa-
tion in Web page.

• Attendance Report see course Web site for joining room

2.6 Adobe Connect — Invite Attendees

• Provide Meeting URL Menu Meeting Manage Access & Entry Invite Participants. . .

• Allow Access without Dialog Menu Meeting Manage Meeting Information provides new browser
window with Meeting Information Tab bar Edit Information

• Check Anyone who has the URL for the meeting can enter the room

• Default Only registered users and accepted guests may enter the room

• Reverts to default next session but URL is fixed

• Guests have blue icon top, registered participants have yellow icon top — same icon
if URL is open

https://en.wikipedia.org/wiki/Terminal_(macOS)
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• See Start, attend, and manage Adobe Connect meetings and sessions

2.7 Layouts

• Creating new layouts example Sharing layout

• Menu Layouts Create New Layout. . . Create a New Layout dialog Create a new blank layout and name it
PMolyMain

• New layout has no Pods but does have Layouts Bar open (see Layouts menu)

• Pods

• Menu Pods Share Add New Share and resize/position — initial name is Share n

• Rename Pod Menu Pods Manage Pods. . . Manage Pods Select Rename or Double-click & rename

• Add Video pod and resize/reposition

• Add Attendance pod and resize/reposition

• Add Chat pod — name it PMolyChat — and resize/reposition

• Dimensions of Sharing layout (on 27-inch iMac)

– Width of Video, Attendees, Chat column 14 cm

– Height of Video pod 9 cm

– Height of Attendees pod 12 cm

– Height of Chat pod 8 cm

• Duplicating Layouts does not give new instances of the Pods and is probably not a
good idea (apart from local use to avoid delay in reloading Pods)

2.8 Chat Pods

• Format Chat text

• Chat Pod menu icon My Chat Color

• Choices: Red, Orange, Green, Brown, Purple, Pink, Blue, Black

• Note: Color reverts to Black if you switch layouts

• Chat Pod menu icon Show Timestamps

Go to Table of Contents

3 Introduction

• A plethora of logics, proof systems, and different notations can be puzzling.

https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html


10 Logic 11 April 2021

• Martin Davis, Logician When I was a student, even the topologists regarded mathe-
matical logicians as living in outer space. Today the connections between logic and
computers are a matter of engineering practice at every level of computer organiza-
tion

Davis (1995, page 289)

• Various logics, proof systems , were developed well before programming languages
and with different motivations,

Mathematics and Notation

• Richard Feynman We could, of course, use any notation we want; do not laugh at
notations; invent them, they are powerful. In fact, mathematics is, to a large extent,
invention of better notations.

Feynman et al. (2011, The Feynman Lectures on Physics, 1963, Volume 1, chapter
17 Space-Time, section 17-5 Four-vector algebra)

• Alfred North Whitehead It is a profoundly erroneous truism, repeated by all copy-
books and by eminent people when they are making speeches, that we should cul-
tivate the habit of thinking of what we are doing. The precise opposite is the case.
Civilization advances by extending the number of important operations which we
can perform without thinking about them. Operations of thought are like cavalry
charges in a battle — they are strictly limited in number, they require fresh horses,
and must only be made at decisive moments.

Whitehead (1911, An Introduction to Mathematics, 1911, chapter 5)

Logic and Programming Languages

• Turing machines, Von Neumann architecture and procedural languages Fortran, C,
Java, Perl, Python, JavaScript — Hoare logic

• Resolution theorem proving and logic programming — Prolog

• Logic and database query languages — SQL (Structured Query Language) and QBE
(Query-By-Example) are syntactic sugar for first order logic

• Lambda calculus and functional programming with Miranda, Haskell, ML, Scala

• Programming languages are formal systems — that is, specialized logics

• Hindley-Milner type system a type system for the lambda calculus with parametric
polymorphism — type system of ML

• System F also known as the (Girard-Reynolds) polymorphic lambda calculus or the
second order lambda calculus — basis for languages such as Haskell and extensions
in GHC

Reference: Halpern et al. (2001)

http://en.wikipedia.org/wiki/Martin_Davis
http://en.wikipedia.org/wiki/Von_Neumann_architecture
https://en.wikipedia.org/wiki/Hoare_logic
https://en.wikipedia.org/wiki/Resolution_(logic)
https://en.wikipedia.org/wiki/Logic_programming
https://en.wikipedia.org/wiki/Prolog
http://en.wikipedia.org/wiki/Lambda_calculus
https://en.wikipedia.org/wiki/Formal_system
https://en.wikipedia.org/wiki/Hindley\T1\textendash Milner_type_system
https://en.wikipedia.org/wiki/Type_system
https://en.wikipedia.org/wiki/ML_(programming_language)
https://en.wikipedia.org/wiki/System_F
http://www.haskell.org
https://en.wikipedia.org/wiki/Glasgow_Haskell_Compiler
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3.1 Logic: Syntax, Semantics and Proof

• The syntax of a logic defines the acceptable strings in the language — well-formed
formulae (WFFs)

• The semantics of a logic associates meaning to a formula

• The proof theory is concerned with rules for manipulating formulae.

• Classical logic includes Propositional logic and Predicate logic

• Propositional logic has statements (or propositional constants) which can be True or
False

– It is raining

– The assignment is due on Thursday

– The exam is three hours long

• The statements (propositions) can be combined with logical connectives (functions
of the propositions)

– ¬ negation (¬p)

– ∧ conjunction, AND (p∧ q)

– ∨ disjunction, OR (p∨ q)

– ⇒ logical implication, IF. . . THEN. . . (p⇒ q)

– Only expressions built from the rules are WFFs

• Proof systems including Truth Tables and Natural Deduction

• Note that there was a choice of connectives — see Truth function — the set given is
Functionally Complete but is not minimal — see later

• Predicate logic uses quantified variables over sets and predicates indicating relations
between objects.

• ∀x.P(x) for all x, P(x) is True

• ∃x.Q(x) for some x, Q(x) is True (or, there exists at least one x)

• Also called first order logic

• Higher-order logic quantifies over predicates, sets of sets, . . . semantics more ex-
pressive but proof theories more complicated.

Go to Table of Contents

Go to Table of Contents

4 Using Logical Equivalences

• Unit 6 and chapters 2 and 3 of Logic and the limits of computing introduce propo-
sitional and predicate logic and some of the equivalences used in reasoning about
statements.

https://en.wikipedia.org/wiki/Propositional_calculus
https://en.wikipedia.org/wiki/First-order_logic
https://en.wikipedia.org/wiki/Propositional_calculus
https://en.wikipedia.org/wiki/Truth_table
https://en.wikipedia.org/wiki/Natural_deduction
https://en.wikipedia.org/wiki/Truth_function
https://en.wikipedia.org/wiki/Functional_completeness
https://en.wikipedia.org/wiki/First-order_logic
https://en.wikipedia.org/wiki/Higher-order_logic
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• The following exercises ask you to prove the equivalence of some logic statements
and the later exercises ask you to negate statements

• You can either think about them in English or translate them to statements in predi-
cate logic and use the equivalences

• Which is the easiest ?

• And which is more reliable ?

Notation and Logical Equivalences

• We could define the notation for predicate calculus in a formal way and it is useful
to eventually see we can make many of our definitions mechanical.

• At the start a formal definition can be intimidating until you have seen the usefulness
of a formal approach.

Reference: See for example Huth and Ryan (2004, page 100)

It will be convenient to drop the set in the binding term of a quantifier when the set is
obvious or irrelevant and we want to make an expression less cluttered. So most of this
note will have∀x[p] and ∃x[p] — the square brackets still denote the scope of the meaning
of the variable name introduced by the quantifier.

If we were defining the language formally, we would also have to specify operator prece-
dence and associativity (as in plain ordinary arithmetic: multiplication before addition and
subtraction is left associative).

Formula

P(t1, t2, . . . , tn) Predicate with arguments
¬p Negation of formula p
∀x in X[p] Universal quantification
∃x in X[p] Existential quantification

p∧ q Logical AND, conjunction
p∨ q Logical OR, disjunction

p⇒ q Logical implication

(p) Brackets

• Truth tables define the meaning of ¬, ∧, ∨, ⇒

Truth Tables for ¬, ∧, ∨, ⇒

p q p∧ q

T T T
T F F
F T F
F F F

p q p∨ q

T T T
T F T
F T T
F F F

p ¬p

T F
F T
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p q p⇒ q

T T T
T F F
F T T
F F T

• Exercise Justify the truth table for ⇒

Justification of Truth Table for ⇒

p q p⇒ q

T T T
T F F
F T T
F F T

• The True values in the last two rows give students a lot of trouble

• What is going on ? This is a negative definition

• p⇒ q holds unless we have evidence to the contrary

• ⇒ is one of the 16 possible truth functions of two boolean inputs

• In a typed programming language

• ⇒:: (B,B)→ B

Logical Equivalences

Reference: Tunnicliffe (1991), http://en.wikipedia.org/wiki/Logical_equivalence

Negation and De Morgan

Negation

p∨¬p ≡ True

p∧¬p ≡ False

¬¬p ≡ p

De Morgan

¬(p∨ q) ≡ ¬p∧¬q

¬(p∧ q) ≡ ¬p∨¬q

¬∀x[P(x)] ≡ ∃x[¬P(x)]

¬∃x[P(x)] ≡ ∀x[¬P(x)]

• Question Why has the author put the equivalence symbol (≡) in a different colour ?

• The equivalence symbol (≡) is not a symbol in Propositional or Predicate Logic (in
our notation)

http://en.wikipedia.org/wiki/Logical_equivalence
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• It is important to realise we have some notation to refer to notation in Logic

• This is common when we have proofs about logical statements

• Sadly most texts just use black and white

• And I haven’t had time to do consistent colour coding (and would have to hack the
package used for the proof tree layout)

De Morgan in Alice in Wonderland

• White King . . . Just look along the road, and tell me if you can see either of them.

• Alice I can see nobody on the road

• White King . . . To be able to see Nobody! And at that distance too!

• Through the Looking Glass and What Alice Found There Chp 7 The Lion and the
Unicorn

• What was the day job of Lewis Carroll ?

Logical Equivalences

Rewriting ⇒

Rewriting ⇒

p⇒ q ≡ ¬p∨ q

p a q ≡ (p⇒ q)∧ (q⇒ p)

• Exercise Use a truth table to prove p⇒ q ≡ ¬p∨ q

p q p⇒ q ¬p∨ q

T T T T
T F F F
F T T T
F F T T

Logical Equivalences

∨,∧ Laws

Distributive Laws

p∨ (q∧ r) ≡ (p∨ q)∧ (p∨ r)

p∧ (q∨ r) ≡ (p∧ q)∨ (p∧ r)
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Associative Laws

p∨ (q∨ r) ≡ (p∨ q)∨ r

p∧ (q∧ r) ≡ (p∧ q)∧ r

Commutative Laws

p∨ q ≡ q∨ p

p∧ q ≡ q∧ p

Logical Equivalences

Extended Commutativity

Extended Commutativity

∀x[∀y[P(x, y)]] ≡ ∀y[∀x[P(x, y)]] often written ∀x,∀y[P(x, y)]

∃x[∃y[P(x, y)]] ≡ ∃y[∃x[P(x, y)]] often written ∃x,∃y[P(x, y)]

4.1 Logic Exs Quantifiers Q 1

• Is it the case that ∃x[∀y[P(x, y)]] ≡ ∀y[∃x[P(x, y)]] ?

• If not, give counter examples.

• Does ∀y[∃x[P(x, y)]]⇒ ∃x[∀y[P(x, y)]]

• or does ∃x[∀y[P(x, y)]]⇒ ∀y[∃x[P(x, y)]]

Go to Quantifiers Soln 1

Go to Table of Contents

4.2 Logic Exs Quantifiers Soln 1

• It is a common error to think they are equivalent

• See Maths Stack Exchange: Is ∀x∃yQ(x, y) the same as ∃y∀xQ(x, y) ?

• See Maths Stack Exchange: What does ∀x∃y(x + y = 0) mean ?

• Let P(x, y) be x + y = 0

• Then ∀x[∃y[Px, y]] is true — say this in English

• but ∃y[∀x[P(x, y)]] is not true

Go to Quantifiers Q 1

Go to Table of Contents

http://math.stackexchange.com/questions/304217/is-forall-x-exists-y-qx-y-the-same-as-exists-y-forall-x-qx-y
http://math.stackexchange.com/questions/304172/what-does-forall-x-exists-yx-y-0-mean
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Logical Equivalences

Other Equivalences

Identity Laws

p∨ False ≡ p

p∧ True ≡ p

p∨ True ≡ True

p∧ False ≡ False

Idempotent Laws

p∨ p ≡ p

p∧ p ≡ p

Absorption Laws

p∨ (p∧ q) ≡ p

p∧ (p∨ q) ≡ p

4.3 Logic Exs Absorption Laws Q 1

• Prove the Absorption Laws using truth tables

• Prove the Absorption Laws using other equivalences

Go to Absorption Laws Soln 1

Go to Table of Contents

4.4 Logic Exs Absorption Laws Soln 1

• Truth table for p∨ (p∧ q) ≡ p

p q p∧ q p∨ (p∧ q)

T T T T
T F F T
F T F F
F F F F

Go to Absorption Laws Q 1

• Equivalences proof for p∨ (p∧ q) ≡ p

• p∨ (p∧ q)

• → (p∨ p)∧ (p∨ q) by Distributive laws

• → p∧ (p∨ q) by Idempotent laws

• This could go round in circles — start again.
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Go to Absorption Laws Q 1

• Equivalences proof for p∨ (p∧ q) ≡ p

• p∨ (p∧ q)

• → (p∧ T)∨ (p∧ q) by Identity laws Eureka step

• → p∧ (T∨ q) by Distributive laws

• → p∧ T by Identity & Commutative laws

• → p by Identity laws

Go to Absorption Laws Q 1

Go to Table of Contents

Go to Table of Contents

5 Truth Function

• The following notes illustrate the 16 binary functions of two Boolean variables

• See Truth function

• See Functional completeness

• See Sheffer stroke

• See Logical NOR

Table of Binary Truth Functions

p q > p
∨

q

p
⇐

q

p p
⇒

q

q p
a

q

p
∧

q

T T T T T T T T T T
T F T T T T F F F F
F T T T F F T T F F
F F T F T F T F T F

p q ⊥ p
∨

q

p
f

q

¬
p

p
h

q

¬
q

p
g

q

p
ö

q

T T F F F F F F F F
T F F F F F T T T T
F T F F T T F F T T
F F F T F T F T F T

• Tautology True, >, Top

https://en.wikipedia.org/wiki/Truth_function
https://en.wikipedia.org/wiki/Functional_completeness
https://en.wikipedia.org/wiki/Sheffer_stroke
https://en.wikipedia.org/wiki/Logical_NOR
https://en.wikipedia.org/wiki/Tautology_(logic)
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U

p q p q >
T T T
T F T
F T T
F F T

• Contradiction False, ⊥, Bottom

U

p q p q ⊥
T T F
T F F
F T F
F F F

• Disjunction OR, p∨ q

U

p q p q p∨ q

T T T
T F T
F T T
F F F

• Joint Denial NOR, p∨ q, p ↓ q, Pierce’s arrow

U

p q p q p ↓ q

T T F
T F F
F T F
F F T

• Converse Implication p⇐ q

U

p q p q p⇐ q

T T T
T F T
F T F
F F T

• Converse Nonimplication p f q

https://en.wikipedia.org/wiki/Contradiction
https://en.wikipedia.org/wiki/Logical_disjunction
https://en.wikipedia.org/wiki/Logical_NOR
https://en.wikipedia.org/wiki/Converse_implication
https://en.wikipedia.org/wiki/Converse_nonimplication
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U

p q p q pf q

T T F
T F F
F T T
F F F

• Proposition p p

U

p q p q p

T T T
T F T
F T F
F F F

• Negation of p ¬p

U

p q p q ¬p

T T F
T F F
F T T
F F T

• Material Implication p⇒ q

U

p q p q p⇒ q

T T T
T F F
F T T
F F T

• Material Nonimplication p h q

U

p q p q ph q

T T F
T F T
F T F
F F F

• Proposition q q

https://en.wikipedia.org/wiki/Proposition
https://en.wikipedia.org/wiki/Negation
https://en.wikipedia.org/wiki/Material_conditional
https://en.wikipedia.org/wiki/Material_nonimplication
https://en.wikipedia.org/wiki/Proposition
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U

p q p q q

T T T
T F F
F T T
F F F

• Negation of q ¬q

U

p q p q ¬q

T T F
T F T
F T F
F F T

• Biconditional If and only if, IFF, p a q

U

p q p q pa q

T T T
T F F
F T F
F F T

• Exclusive disjunction XOR, p g q, pÒ q

U

p q p q pg q

T T F
T F T
F T T
F F F

• Conjunction AND, p∧ q

U

p q p q p∧ q

T T T
T F F
F T F
F F F

• Alternative denial NAND, pö q, p ↑ q, Sheffer stroke

https://en.wikipedia.org/wiki/Negation
https://en.wikipedia.org/wiki/Logical_biconditional
https://en.wikipedia.org/wiki/Exclusive_or
https://en.wikipedia.org/wiki/Logical_conjunction
https://en.wikipedia.org/wiki/Sheffer_stroke
https://en.wikipedia.org/wiki/Sheffer_stroke
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U

p q p q p ↑ q

T T F
T F T
F T T
F F T

• Functionally complete set of connectives is one which can be used to express all
possible connectives

• p⇒ q ≡ ¬p∨ q so we could just use {¬,∧,∨}

• Boolean programming — we have to have a functionally complete set but choose
more to make the programming easier

• Expressiveness is an issue in programming language design

• NAND pö q, p ↑ q, Sheffer stroke

• NOR p∨ q, p ↓ q, Pierce’s arrow

• Both {↑}, {↓} are functionally complete — verify:

¬p ≡ p ↑ p

p∧ q ≡ ¬(p ↑ q) ≡ (p ↑ q) ↑ (p ↑ q)

p∨ q ≡ (p ↑ p) ↑ (q ↑ q)

p⇒ q ≡ ((p ↑ p) ↑ (p ↑ p)) ↑ (q ↑ q)

¬p ≡ p ↓ p

p∧ q ≡ (p ↓ p) ↓ (q ↓ q)

p∨ q ≡ ¬(p ↓ q) ≡ (p ↓ q) ↓ (p ↓ q)

p⇒ q ≡ ((p ↓ p) ↓ q) ↓ ((p ↓ p) ↓ q)

• Not a novelty — the Apollo Guidance Computer was implemented in NOR gates alone.

Go to Table of Contents

6 Using Logical Equivalences — Negation Exercises

6.1 Logic Exs Negation Qs

• In each of the following questions P(x, y, . . . ) denotes a statement involving objects
x, y, . . . . Construct the negation of each of the following propositions.

1. P(x) is true for all x.

2. P(x, y) is true for all x and all y.

3. There is at least one x such that P(x, y) is true for all y.

4. Given any x there is at least one y such that P(x, y) is false.

https://en.wikipedia.org/wiki/Functional_completeness
https://en.wikipedia.org/wiki/Sheffer_stroke
https://en.wikipedia.org/wiki/Logical_NOR
https://en.wikipedia.org/wiki/Apollo_Guidance_Computer
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5. Given any x there is at least one y such that P(x, y, z) is true for all z.

6. Given any x there is precisely one y such that P(x, y, z) is true for at least one z.

7. Given any x there is at least one y such that P(x, y, z) is true for at most one z.

Go to Negation Solns

Go to Table of Contents

6.2 Logic Exs Negation Solns

• Our strategy:

• Translate the English statements into our formal language

• Use the equivalence rules to simplify the negation

• Finally translate back into English

Go to Negation Qs

Using Logical Equivalences — Answers

Using Logical Equivalences — Answer 1

• Our strategy is to translate the English statements into our formal language, use the
equivalence rules to simplify the negation and finally translate back to English

• P(x) is true for all x.

• Translate ∀x[P(x)]

• Negation ¬(∀x[P(x)])

• Simplify ∃x[¬P(x)]

• Translate P(x) is false for at least one x

Go to Negation Qs

Using Logical Equivalences — Answer 2

• P(x, y) is true for all x and all y.

• Translate ∀x,∀y[P(x, y)]

• Negation ¬(∀x,∀y[P(x, y)])

• Simplify ∃x,∃y[¬P(x, y)]

• Translate P(x, y) is false for at least one x and one y

Go to Negation Qs
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Using Logical Equivalences — Answer 3

• There is at least one x such that P(x, y) is true for all y.

• Translate ∃x[∀y[P(x, y)]]

• Negation ¬(∃x[∀y[P(x, y)]])

• Simplify ∀x[∃y[¬P(x, y)]]

• Translate Given any x there is at least one y (possibly depending on x) such that
P(x, y) is false

Go to Negation Qs

Using Logical Equivalences — Answer 4

• Given any x there is at least one y such that P(x, y) is false.

• Translate ∀x[∃y[¬P(x, y)]]

• Negation ¬(∀x[∃y[¬P(x, y)]])

• Simplify ∃x[∀y[P(x, y)]]

• Translate There is at least one x such that for all y, P(x, y) is true.

Go to Negation Qs

Using Logical Equivalences — Answer 5

• Given any x there is at least one y such that P(x, y, z) is true for all z.

• Translate ∀x[∃y[∀z[P(x, y, z)]]]

• Negation ¬(∀x[∃y[∀z[P(x, y, z)]]])

• Simplify ∃x[∀y[∃z[¬[P(x, y, z)]]]]

• Translate There is at least one x such that for all y there is at least one z (possibly
depending on y) such that P(x, y, z) is false.

Go to Negation Qs

Using Logical Equivalences — Answer 6

• Given any x there is at precisely one y such that P(x, y, z) is true for at least one z.

• Translate ∀x[∃!y[∃z[P(x, y, z)]]] Note ∃! for exactly one

• Eureka Step Exactly one means At least one and not two or more

• Expand ∀x[∃y[∃z[P(x, y, z)]]
∧
¬(∃y1,∃y2[y1 ≠ y2 ∧ ∃z[P(x, y1, z)]∧ ∃z[P(x, y2, z)]])]

• Negation ¬(∀x[∃y[∃z[P(x, y, z)]]
∧
¬(∃y1,∃y2[y1 ≠ y2 ∧ ∃z[P(x, y1, z)]∧ ∃z[P(x, y2, z)]])])
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• Simplify ∃x[∀y[∀z[¬P(x, y, z)]]
∨
(∃y1,∃y2[y1 ≠ y2 ∧ ∃z[P(x, y1, z)]∧ ∃z[P(x, y2, z)]])]

• Translate For at least one x there is either no y and z such that P(x, y, z) is true or
there are at least two y such that there exists a z (possible depending on the y) such
that P(x, y, z) is true.

Go to Negation Qs

Using Logical Equivalences — Answer 7

• Given any x there is at least one y such that P(x, y, z) is true for at most one z.

• Translate ∀x[∃y[ for at most one z[P(x, y, z)]]]

• Note lack of notation here

• Eureka Step At most one means none or exactly one (we will have a lot of code here)

• Expand ∀x[∃y[¬∃z[P(x, y, z)]
∨
(∃z[P(x, y, z)]
∧
¬(∃z1,∃z2[z1 ≠ z2 ∧ P(x, y, z1)∧ P(x, y, z2)]))]]

• Negation ¬(∀x[∃y[¬∃z[P(x, y, z)]
∨
(∃z[P(x, y, z)]
∧¬(∃z1,∃z2[z1 ≠ z2 ∧ P(x, y, z1)∧ P(x, y, z2)]))]])

• Simplify ∃x[∀y[∃z[P(x, y, z)]
∧
(∀z[¬P(x, y, z)]
∨ (∃z1,∃z2[z1 ≠ z2 ∧ P(x, y, z1)∧ P(x, y, z2)]))]]

• Simplify back up ∃x[∀y[∃z[P(x, y, z)]
∧
(¬∃z[P(x, y, z)]
∨ (∃z1,∃z2[z1 ≠ z2 ∧ P(x, y, z1)∧ P(x, y, z2)]))]]

• Now use the Distributive Law

• Distributive Law ∃x[∀y[
(∃z[P(x, y, z)]∧¬∃z[P(x, y, z)])
∨
(∃z[P(x, y, z)]
∧ (∃z1,∃z2[z1 ≠ z2 ∧ P(x, y, z1)∧ P(x, y, z2)]))]]

• Now use the Negation Law

• Negation Law ∃x[∀y[
(False)
∨
(∃z[P(x, y, z)]
∧ (∃z1,∃z2[z1 ≠ z2 ∧ P(x, y, z1)∧ P(x, y, z2)]))]]
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• Absorption Law ∃x[∀y[∃z[P(x, y, z)]
∧ (∃z1,∃z2[z1 ≠ z2 ∧ P(x, y, z1)∧ P(x, y, z2)])]]

• Translate There exists at least one x such that for all y, P(x, y, z) is true for more
than one z

Go to Negation Qs

Logical Equivalences — Comments on Exercises

• Plain English is never that plain

• Consider: Fruit flies like a banana

• A good notation should help clarify thought — see Whitehead quote

• Note how the ordering of clauses in English can lead to ambiguity — does a z de-
pend on a previous y, for example — hence we need a precisely defined notation to
determine scope of variables

• Using a formal language can help the manipulation but there is no free lunch

• You need a decent editor to check your syntax and bracket matching — software
exists to help this — see Wikipedia Proof Assistant

Go to Negation Qs

Go to Table of Contents

6.3 Negation Exercises — Further Points

• The above exercises were just about the only instruction on Propositional and Predi-
cate Logic I had as an undergraduate (in Physics and Maths, Sussex University)

• Below are copies of the original question sheet and my answers with markers com-
ments.

• Notice that my mistakes mainly involved getting the order of the English clauses
wrong — in English, it is harder to see the scope of names.

• I also confused the colloquial at least one x or at least one y for at least one x and
at least one y

https://en.wikipedia.org/wiki/Proof_assistant
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Negation Exercises — Further Points Exs (1)

1 

_/ OCT 

ANALYSIS (Mathematics subjeot k&) 

IMtfJMTlCKS 

1* If P and Q are propositions (whioh nay be true or fa lse) we say that 

•P implies Q' ( in symbols P •> Q) if the truth of P ensures the truth of Q. 

Alternatively we have, a priori , the four pos s ib i l i t i e s : 

( i ) P and Q are both true 

( i i ) P and Q are both false 

( i i i ) P i s false and Q i s true 

( I T ) P i s true and Q i s fa l se 

'P implies Q' means that the fourth alternative, but only the fourth, i s 

exoluded. 

The point here i s that i f P i s false *P implies Q* provides no information 

whatever about (or imposes no restriction on) Q. 

I I . If *P •> Q» and »Q *> P1 we say that •P i s equivalent to Q* and write 

P <«> Q. 

I I I . The statement •The proposition Q i s false9 i s oalled the negation of the 

statement 'The proposition Q i s true' . 

Reference 

Scott, D.B; and Tims, S.R. Mathematical Analysisi An introduction 
§0.2 p3 - 9, C.U.P 60/ -

(alao recommended for the Analysis (ita) course) 
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Negation Exercises — Further Points Exs (2)

gxeroieea (to be attempted In Registration week) 

In eaoh of the following questions two conditions are given* Dsoide in each 

ease whether condition (a) is nsoessary or suffioient (or both) or neither, for (b)» 

and then answer the same question with (a) snd (b) interchanged* The usual notation 

for a* triangle is employed in questions 1, 2. 3 snd 0* 

le (a) The angle A is obtuse 

b) a exoeeds eaoh of b and o* 

2. (a) A exceeds v/3 
b) a exoeeds eaoh of b and o* 

a) a2 exoeeds b*+o* 
b) A i s obtuse* 

a) x*-Jx+2 « 0 
b) x«1. 

a) J . • -2 « - 1 and. x«x.x_ 4 0* x1 x2 x- = = 1 2 3 r 

b) the three points (x^y^) , {^y^, (x--y.) are oollinear. 

In each of the preoeding five and the next three following questions does (a) imply {bj 
or conversely does (b) imply (a)? 

6. (a) x exoeeds 2 
(b) x exoeeds 1* 

(a) x4-5x»44 • 0 
(b) x«1 or x«2. 

8. (a) a > b+o 
(b) A is obtuse* 
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Negation Exercises — Further Points Exs (3)

- 2 -

III eaeh of the following questions P(x9y9 »••) denotes e statement involving objects 

x9y9 . . . • Construot the negation of each of the following propositions. 

9« P(x) i s true for all x. 

10* P(x,j) is true for all x and all y. 

11* There is at least one x suoh that P(x9y) is true for al l y. 

12. GiTen any x there is at least one y suoh that P(x9y) i s false. 

• 13** Given any x there is at least one y suoh that P(x9y9s) i s true for e l l !• 

e 14. Given any x($hers is precisely one j^suoh that P(x9y9s) i s true ibr 

i) 
e 

at least one s, 

15» Given any xvthere i s at least one yWoh that P(x9y9s) i s true for at 
most one s Ji —J—— 

( * more difficult question) 
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Negation Exercises — Further Points Answers (1)



30 Logic 11 April 2021

Negation Exercises — Further Points Answers (2)
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Negation Exercises — Further Points Answers (3)
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Negation Exercises — Further Points Answers (4)

Go to Table of Contents

Go to Table of Contents

7 Interpretations for Predicate Logic

• An interpretation is an assignment of meaning to the symbols of a formal language

• An interpretation often (but not always) provides a way to determine the truth values
of a sentence in a formal language.

• If an interpretation assigns the value True to a sentence or theory, the interpretation
is called a model of that sentence or theory.

• The domain is the set of all the objects being discussed.

• An interpretation assigns an object in the domain to each of the constants in the
logic, and an n-ary relation on the domain to each n-ary predicate

https://en.wikipedia.org/wiki/Interpretation_(logic)
https://en.wikipedia.org/wiki/Formal_language
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• See Definition 12 in the Unit 6, 7 Reader

7.1 Logic Exs Interpretations Q 1

• Given the domain D = {Adam, Milton, Joan}

• Consider ∀X.((banker(X)∧ inHedgeFund(X))⇒ sellingShort(X))

• In which of the following interpretations is the formula True ?

(a)

– I(banker) = {Adam, Milton, Joan}

– I(inHedgeFund) = {Milton, Joan}

– I(sellingShort) = {Milton, Joan}

(b)

– I(banker) = {Adam, Milton, Joan}

– I(inHedgeFund) = � (� denotes the empty set)

– I(sellingShort) = �

(c)

– I(banker) = {Adam}

– I(inHedgeFund) = {Adam}

– I(sellingShort) = {Joan}

(d)

– I(banker) = {Milton}

– I(inHedgeFund) = {Adam}

– I(sellingShort) = {Joan}

Go to Interpretations Soln 1

Go to Table of Contents

7.2 Logic Exs Interpretations Soln 1

(a) is True

(b) is True

(c) is False

(d) is True

• Give reasons for each of the above answers
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Go to Interpretations Q 1

Go to Table of Contents

Go to Table of Contents

8 Logical Arguments

Validity and Justification

• There are two ways to model what counts as a logically good argument:

– the semantic view

– the syntactic view

• The notion of a valid argument in propositional logic is rooted in the semantic view.

• It is based on the semantic idea of interpretations: assignments of truth values to
the propositional variables in the sentences under discussion.

• A valid argument is defined as one that preserves truth from the premises to the
conclusions

• The syntactic view focuses on the syntactic form of arguments.

• Arguments which are correct according to this view are called justified arguments.

Proof Systems, Soundness, Completeness

• Semantic validity and syntactic justification are different ways of modelling the same
intuitive property: whether an argument is logically good.

• A proof system is sound if any statement we can prove (justify) is also valid (true)

• A proof system is adequate if any valid (true) statement has a proof (justification)

• A proof system that is sound and adequate is said to be complete

• Propositional and predicate logic are complete — arguments that are valid are also
justifiable and vice versa

• Unit 7 section 2.4 describes another logic where there are valid arguments that are
not justifiable (provable)

Reference: Chiswell and Hodges (2007, page 86)

Valid arguments

• Unit 6 defines valid arguments with the notation

P1
...

Pn
C

• The argument is valid if and only if the value of C is True in each interpretation for
which the value of each premise Pi is True for 1 ≤ i ≤ n
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• In some texts you see the notation {P1, . . . , Pn} |= C

• The expression denotes a semantic sequent or semantic entailment

• The |= symbol is called the double turnstile and is often read as entails or models

• In LaTeX î and |= are produced from \vDash and \models — see also the turnstile
package

• In Unicode |= is called TRUE and is U+22A8, HTML &#8872;

• The argument {} |= C is valid if and only if C is True in all interpretations

• That is, if and only if C is a tautology

• Beware different notations that mean the same thing

– Alternate symbol for empty set: � |= C

– Null symbol for empty set: |= C

– Original M269 notation with null axiom above the line:

C

Go to Table of Contents

9 Justified Arguments and Natural Deduction

• Definition 7.1 An argument {P1, P2, . . . , Pn} ` C is a justified argument if and only if
either the argument is an instance of an axiom or it can be derived by means of an
inference rule from one or more other justified arguments.

• Axioms Γ ∪ {A} ` A (axiom schema)

• This can be read as: any formula A can be derived from the assumption (premise) of
{A} itself

• The ` symbol is called the turnstile and is often read as proves, denoting syntactic
entailment

• In LaTeX ` is produced from \vdash

• In Unicode ` is called RIGHT TACK and is U+22A2, HTML &#8866;

See (Thompson, 1991, Chp 1)

Justified Arguments — Question 1

• Show that the argument {P ∧ Q, S, T} ` P ∧ Q s justified, by showing that it is an
instantiation of the axiom schema.
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Justified Arguments — Answer 1

• Suppose that, in the axiom schema Γ ∪ {A} ` A, we instantiate Γ with {S, T} and A with
P∧Q

• Then we get the axiom {S, T}∪ {P∧Q} ` P∧Q

• Since the union {S, T} ∪ {P ∧ Q} is equal to {P ∧ Q, S, T} the axiom can be written
{P∧Q, S, T} ` P∧Q

• We use the following single line to record that the argument is justified because it is
an instantiation of the axiom schema:

1. {P∧Q, S, T} ` P∧Q [Axiom]

• Discussion We could equally well have instantiated Γ with {S, T, P∧Q} since {S, T, P∧
Q}∪ {P∧Q} is equal to {P∧Q, S, T}

• That is, a union does not produce duplicate elements.

• Notice that we begin the instantiation with a straightforward textual substitution,
then simplify an expression involving sets and set operators.

• Section 2.3 of Unit 7 (not the Unit 6, 7 Reader) gives the inference rules for →, ∧,
and ∨— only dealing with positive propositional logic so not making use of negation
— see List of logic systems

• Usually (Classical logic) have a functionally complete set of logical connectives —
that is, every binary Boolean function can be expressed in terms the functions in the
set

Inference Rules — Notation

• Inference rule notation:

Argument1 . . . Argumentn
(label)

Argument

Inference Rules — Conjunction

• Γ ` A Γ ` B
(∧-introduction)Γ ` A∧ B

• Γ ` A∧ B
(∧-elimination left)Γ ` A

• Γ ` A∧ B (∧-elimination right)Γ ` B

Inference Rules — Conjunction — Example

• Show that the argument {P, Q} ` P∧Q is justified.

• Answer

1. {P, Q} ` P [Axiom]
2. {P, Q} ` Q [Axiom]
3. {P, Q} ` P∧Q [1,2, ∧-I]

http://en.wikipedia.org/wiki/List_of_logic_systems
http://en.wikipedia.org/wiki/Functional_completeness
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• Discussion Each line consists of a number, an argument, and a justification. The
axiom schema is the justification for line 1 and line 2, while line 3 is justified by
applying ∧-introduction to lines 1 and 2

• The order is 1 then 2 rather than 2 then 1, corresponding to reading the first line of
the rule from left to right.

• The lines above are called a proof of the argument {P, Q} ` P∧Q

• They are a step-by-step trace of how the argument in the final line is justified.

Justified Arguments — Question 2

• Give a proof of the argument {P, Q, R∨ S} ` P∧Q

Justified Arguments — Answer 2

1. {P, Q, R∨ S} ` P [Axiom]
2. {P, Q, R∨ S} ` Q [Axiom]
3. {P, Q, R∨ S} ` P∧Q [1,2,∧-I]

• Discussion There was no need need to write down an axiom deriving the premise
R∨ S, because we only needed the premises P and Q in order to derive P∧Q

• It would not have been wrong to begin by deriving each of the three premises in
turn, though, as in the following lines:

1. {P, Q, R∨ S} ` P [Axiom]
2. {P, Q, R∨ S} ` Q [Axiom]
3. {P, Q, R∨ S} ` R∨ S [Axiom]
4. {P, Q, R∨ S} ` P∧Q [1,2,∧-I]

• One possible strategy for constructing proofs is to begin by writing down an axiom
for each premise, since this gives us a way of getting started: we can always remove
any unnecessary lines later.

• Of course, this might involve revising the line numbers and references to line num-
bers. (there are packages in LaTeX that automate this)

Justified Arguments — Question 3

• Complete the following proof to justify {P∧Q} ` Q∧ P

1. {P∧Q} ` P∧Q [Axiom]
2. {P∧Q} ` P [1, ∧-E Left]
3. {P∧Q} ` Q [??]
4. {P, Q} ` Q∧ P [??]

Justified Arguments — Answer 3

• Complete the following proof to justify {P∧Q} ` Q∧ P
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1. {P∧Q} ` P∧Q [Axiom]
2. {P∧Q} ` P [1, ∧-E Left]
3. {P∧Q} ` Q [1, ∧-E Right]
4. {P, Q} ` Q∧ P [3,2,∧-I]

Inference Rules — Implication

• Γ ∪ {A} ` B
(→-introduction)Γ ` A→ B

• The above should be read as: If there is a proof (justification, inference) for B un-
der the set of premises, Γ , augmented with A, then we have a proof (justification,
inference) of A→ B, under the unaugmented set of premises, Γ .
The unaugmented set of premises, Γ may have contained A already so we cannot
assume

(Γ ∪ {A}) – {A} is equal to Γ
• Γ ` A Γ ` A→ B

(→-elimination)Γ ` B

Justified Arguments — Question 4

• Complete the following incomplete proof that the argument {P ∧ (P → Q)} ` Q is
justified

1. {P∧ (P→ Q)} ` P∧ (P→ Q) [??]
2. {P∧ (P→ Q)} ` P [1, ∧-E Left]
3. {P∧ (P→ Q)} ` P→ Q [1, ??]
4. {P∧ (P→ Q)} ` Q [??]

Justified Arguments — Answer 4

• Complete the following incomplete proof that the argument {P ∧ (P → Q)} ` Q is
justified

1. {P∧ (P→ Q)} ` P∧ (P→ Q) [Axiom]
2. {P∧ (P→ Q)} ` P [1, ∧-E left]
3. {P∧ (P→ Q)} ` P→ Q [1, ∧-E right]
4. {P∧ (P→ Q)} ` Q [2,3, →-E]

Justified Arguments — Question 5

• Complete the following incomplete proof that the argument {(P∧Q)→ R} ` P→ (Q→
R) is justified

1. {P, Q, (P∧Q)→ R} ` P [Axiom]
2. {P, Q, (P∧Q)→ R} ` Q [??]
3. {P, Q, (P∧Q)→ R} ` (P∧Q)→ R [Axiom]
4. {P, Q, (P∧Q)→ R} ` P∧Q [??]
5. {P, Q, (P∧Q)→ R} ` R [4, 3, →-E]
6. {P, (P∧Q)→ R} ` Q→ R [5, →-I]
7. {(P∧Q)→ R} ` P→ (Q→ R) [6, ??]
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Justified Arguments — Answer 5

• Complete the following incomplete proof that the argument {(P∧Q)→ R} ` P→ (Q→
R) is justified

1. {P, Q, (P∧Q)→ R} ` P [Axiom]
2. {P, Q, (P∧Q)→ R} ` Q [Axiom]
3. {P, Q, (P∧Q)→ R} ` (P∧Q)→ R [Axiom]
4. {P, Q, (P∧Q)→ R} ` P∧Q [1, 2, ∧-I]
5. {P, Q, (P∧Q)→ R} ` R [4, 3, →-E]
6. {P, (P∧Q)→ R} ` Q→ R [5, →-I]
7. {(P∧Q)→ R} ` P→ (Q→ R) [6, →-I]

Inference Rules — Disjunction

• Γ ` A
(∨-introduction left)Γ ` A∨ B

• Γ ` B (∨-introduction right)Γ ` A∨ B

• Disjunction elimination

Γ ` A∨ B Γ ∪ {A} ` C Γ ∪ {B} ` C
(∨-elimination)Γ ` C

• The above should be read: if a set of premises Γ justifies the conclusion A∨ B and Γ
augmented with each of A or B separately justifies C, then Γ justifies C

• Disjunction elimination is a formal version of proof by case analysis

Reference: O’Donnell et al. (2006, page 137)

Disjunction — Example 1

• Show that the argument {P} ` P∨Q is justified.

• Answer

1. {P} ` P [Axiom]
2. {P} ` P∨Q [1, ∨-I left]

Justified Arguments — Question 6

• Show that the argument {Q} ` P∨Q is justified

Justified Arguments — Answer 6

1. {Q} ` Q [Axiom]
2. {Q} ` P∨Q [1, ∨-I right]
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Disjunction — Example 2

• Show that the argument {P∨Q} ` Q∨ P is justified.

• Answer

1. {P∨Q} ` P∨Q [Axiom]
2. {P∨Q, P} ` P [Axiom]
3. {P∨Q, P} ` Q∨ P [2, ∨-I right]
4. {P∨Q, Q} ` Q [Axiom]
5. {P∨Q, Q} ` Q∨ P [4, ∨-I left]
6. {P∨Q} ` Q∨ P [1, 3, 5, ∨-E]

Justified Arguments — Question 7

• Complete the following incomplete proof that the argument {Q→ R} ` (P∨Q)→ (P∨R)
is justified

1. {Q→ R, P∨Q, Q} ` Q→ R [Axiom]
2. {Q→ R, P∨Q} ` P∨Q [??]
3. {Q→ R, P∨Q, P} ` P [??]
4. {Q→ R, P∨Q, P} ` P∨ R [?? ∨-I left]
5. {Q→ R, P∨Q, Q} ` Q [Axiom]
6. {Q→ R, P∨Q, Q} ` R [5, 1, →-E]
7. {Q→ R, P∨Q, Q} ` P∨ R [6, ??]
8. {Q→ R, P∨Q} ` P∨ R [2, 4, 7, ∨-E]
9. {Q→ R} ` (P∨Q)→ (P∨ R) [?? →-I]

Justified Arguments — Answer 7

• Complete the following incomplete proof that the argument {Q→ R} ` (P∨Q)→ (P∨R)
is justified

1. {Q→ R, P∨Q, Q} ` Q→ R [Axiom]
2. {Q→ R, P∨Q} ` P∨Q [Axiom]
3. {Q→ R, P∨Q, P} ` P [Axiom]
4. {Q→ R, P∨Q, P} ` P∨ R [3, ∨-I left]
5. {Q→ R, P∨Q, Q} ` Q [Axiom]
6. {Q→ R, P∨Q, Q} ` R [5, 1, →-E]
7. {Q→ R, P∨Q, Q} ` P∨ R [6, ∨-I right]
8. {Q→ R, P∨Q} ` P∨ R [2, 4, 7, ∨-E]
9. {Q→ R} ` (P∨Q)→ (P∨ R) [8, →-I]

9.1 Proofs in Tree Form

• The syntax of proofs is recursive:

• A proof is either an axiom, or the result of applying a rule of inference to one, two
or three proofs.

• We can therefore represent a proof by a tree diagram in which each node have one,
two or three children
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• For example, the proof of {P∧ (P → Q)} ` Q in Question 4 can be represented by the
following diagram:

{P∧ (P→ Q)} ` P∧ (P→ Q)
(∧-E left)

{P∧ (P→ Q)} ` P
{P∧ (P→ Q)} ` P∧ (P→ Q)

(∧-E right)
{P∧ (P→ Q)} ` P→ Q

(→-E)
{P∧ (P→ Q)} ` Q

Justified Arguments — Question 8

• Draw a diagram to represent the following proof:

1. {P, R} ` P [Axiom]
2. {P, R} ` R [Axiom]
2. {P, R} ` P∧ R [1, 2, ∧-I]

Justified Arguments — Answer 8

{P, R} ` P {P, R} ` R
(∧-I)

{P, R} ` P∧ R

Go to Table of Contents

9.2 Self-Assessment activity 7.4

• Is the following a justified argument ?

• {P→ R, Q→ R, P∨Q} ` R

• First of all, prove

– {P→ R, Q→ R, P∨Q} ` P∨Q

– {P→ R, Q→ R, P∨Q}∪ {P} ` R

– {P→ R, Q→ R, P∨Q}∪ {Q} ` R

Self-Assessment activity 7.4 — Tree layout

• Let Γ = {P→ R, Q→ R, P∨Q}

• Γ ` P∨Q Γ ∪ {P} ` R Γ ∪ {Q} ` R
(∨-elimination)Γ ` R

• Γ ∪ {P} ` P Γ ∪ {P} ` P→ R
(→-elimination)Γ ∪ {P} ` R

• Γ ∪ {Q} ` Q Γ ∪ {Q} ` Q→ R
(→-elimination)Γ ∪ {Q} ` R

• Complete tree layout

• Γ ` P∨Q

Γ ∪ {P}
` P

Γ ∪ {P}
` P→ R

(→-E)Γ ∪ {P} ` R

Γ ∪ {Q}
` Q

Γ ∪ {Q}
` Q→ R

(→-E)Γ ∪ {Q} ` R
(∨-E)Γ ` R
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Self-assessment activity 7.4 — Linear Layout

1. {P→ R, Q→ R, P∨Q} ` P∨Q [Axiom]
2. {P→ R, Q→ R, P∨Q}∪ {P} ` P [Axiom]
3. {P→ R, Q→ R, P∨Q}∪ {P} ` P→ R [Axiom]
4. {P→ R, Q→ R, P∨Q}∪ {Q} ` Q [Axiom]
5. {P→ R, Q→ R, P∨Q}∪ {Q} ` Q→ R [Axiom]
6. {P→ R, Q→ R, P∨Q}∪ {P} ` R [2, 3, →-E]
7. {P→ R, Q→ R, P∨Q}∪ {Q} ` R [4, 5, →-E]
8. {P→ R, Q→ R, P∨Q} ` R [1, 6, 7, ∨-E]

Go to Table of Contents

Go to Table of Contents

10 Calculating with Logic

10.1 Logic Puzzles — Introduction

• The following puzzles are usually given as exercises in verbal reasoning — however
you can use your knowledge of propositional logic to calculate the answers.

• The answers below (in the notes version) give references to the sources of the puz-
zles and solutions.

Go to Table of Contents

10.2 Knights and Knaves

• There is a wide variety of puzzles about an island in which certain inhabitants called
knights always tell the truth, and others called knaves always lie.

• It is assumed that every inhabitant of the island is either a knight or a knave.

• The following puzzles can be solved by verbal reasoning or by using truth tables

1. Three inhabitants of this island — A, B and C — are standing together in a garden.
You pass by and ask A Are you a knight or a knave ? A answers but rather indistinctly
so you cannot hear. You then ask B What did A say ? B replies A said that he is a
knave At this point C says Don’t believe B; he is lying

What are B and C ?

2. Suppose instead of asking A what he is, you asked A How many knights are among
you ? Again you cannot hear A’s reply. So you ask B What did A say ? B replies A said
there is only one knight among us Then C says Don’t believe B; he is lying

Now what are B and C ?

3. In this problem there are only two people A and B each of whom is either a knight or
knave. A makes the following statement At least one of us is a knave

What are A and B ?
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4. Suppose A says Either I am a knave or B is a knight

What are A and B ?

5. Suppose A says Either I am a knave or else 2 + 2 = 5

What would you conclude ?

6. Again we have 3 people A B C each either a knave or a knight. A and B say the
following:

A: All of us are knaves
B: Exactly one of us is a knight

What are A B C ?

7. Again three inhabitants A B C each of whom is either a knight or knave. Two people
are said to be of the same type if they are both knights or both knaves. A and B make
the following statements:

A: B is a knave
B: A and C are of the same type

What is C ?

8. Again three people A B C. A says B and C are of the same type Someone then asks C
Are A and B of the same type ?

What does C answer ?

Go to Table of Contents

10.3 Knights and Knaves — Variant

• A variation on the above type of problems deals with three types of people: knights
and knaves as before and normal people who sometimes lie and sometimes tell the
truth.

9. We are given three people A B C one of whom is a knight, one a knave and one
normal (but maybe not in that order). They make the following statements:

A: I am normal
B: That is true
C: Exactly one of us is a knave

What are A B C ?

10. Two people A and B each of whom is either a knight, or knave or normal make the
following statements:

A: B is a knight
B: A is not a knight

Prove that at least one of them is telling the truth but is not a knight.

11. This time A and B say the following:
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A: B is a knight
B: A is a knave

Prove that either one of them is telling the truth but is not a knight or one of them
is lying but is not a knave.

Go to Table of Contents

10.4 Harder Logic Puzzles

• Here are several logic puzzles which involve liars, truth-tellers and those who speak
the truth or lie at random.

• The later puzzles are actually extensions of the first (so if you have really solved the
first, the rest might be easier).

1.

• A tourist is enjoying an afternoon refreshment in a local pub in England when
the bartender says to him: “Do you see those three men over there ? One is Mr.
X, who always tells the truth, another is Mr. Y, who always lies, and the third is
Mr. Z, who sometimes tells the truth and sometimes lies (that is, Mr. Z answers
yes or no at random without regard for the question). You may ask them three
yes/no questions, always indicating which man should answer. If, after asking
these three questions, you correctly identify Mr. X, Mr. Y, and Mr. Z, they will
buy you a drink.”

• What yes/no questions should the thirsty tourist ask ?

• Hint: Use the first question to find some person of the three who is not Mr. Z.
Ask him the other two questions.

2.

• In a certain country, there are three kinds of people: workers (who always tell
the truth), capitalists (who never tell the truth), and students (who sometimes
tell the truth and sometimes lie).

• At a fork in the road, one branch leads to the capital. A worker, a capitalist, and
a student are standing at the side of the road but are not identifiable in any
obvious way.

• By asking two yes or no questions, find out which fork leads to the capital. (Each
question may be addressed to any of the three.)

3.

• Three gods A, B, and C are called, in some order, True, False, and Random. True
always speaks truly, False always speaks falsely, but whether Random speaks
truly or falsely is a completely random matter.

• Your task is to determine the identities of A, B, and C by asking three questions;
each question must be put to exactly one god.

• The gods understand English, but will answer all questions in their own lan-
guage, in which the words for “yes” and “no” are “da” and “ja”, in some order.
You do not know which word means which.
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10.5 Knights and Knaves — Answers

This set of exercises (and the answers) all come from Smullyan (1981). Without assuming
any prior knowledge of logic, Smullyan takes the reader through a logic course using ver-
bal reasoning. More conventional books on logic and computing (such as Manna (1974),
Mendelson (1987), Backhouse (1986), Backhouse (2003)) use some of these puzzles as
part of their sections on logic. Other puzzle books by Smullyan include an introduction
to Gödel’s Incompleteness Theorem, combinatory logic and Turing machines — see the
references at the end.

1. Problem 26 in Smullyan (1981)

It is impossible for either a knight or a knave to say, I’m a knave, because a knight
wouldn’t make the false statement that he is a knave, and a knave wouldn’t make
the true statement that he is a knave. Therefore A never did say that he was a knave.
So B lied when he said that A said that he was a knave. Hence B is a knave. Since C
said that B was lying and B was indeed lying, then C spoke the truth, hence he is a
knight. Thus B is a knave and C is a knight. (It is impossible to know what A is.)

2. Problem 27 in Smullyan (1981)

The answer is the same as that of the preceding problem, though the reasoning is a
bit different.

The first thing to observe is that B and C must be of opposite types, since B con-
tradicts C. So of these two, one is a knight and the other a knave. Now, if A were a
knight,then there would be two knights present, hence A would not have lied and
said there was only one. On the other hand, if A were a knave, then it would be true
that there was exactly one knight present; but then A, being a knave, couldn’t have
made that true statement. Therefore A could not have said that there was one knight
among them. So B falsely reported A’s statement, and thus B is a knave and C is a
knight.

3. Problem 28 in Smullyan (1981)

Suppose A were a knave. Then the statement At least one of us is a knave would be
false (since knaves make false statements); hence they would be both knights. Thus
if A were a knave he would also have to be a knight, which is impossible. Therefore
A is not a knave; he is a knight. Therefore his statement must be true, so at least
one of them really is a knave. Since A is a knight, then B must be the knave. So A is
a knight and B is a knave.

4. Problem 29 in Smullyan (1981)

This problem is a good introduction to the logic of disjunction. Given any two state-
ments P, Q, the statement either P or Q means that at least one (and possibly both)of
the statements P, Q are true. If the statement either P or Q should be false, then both
the statements P, Q are false. For example, if I should say, Either it is raining or it is
snowing, then if my statement is incorrect, it is both false that it is raining and false
that it is snowing.
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This is the way either/or is used in logic. . . In daily life it is sometimes used this way
(allowing the possibility that both alternatives hold) and sometimes in the exclusive
sense — that one and only one of the conditions holds. As an example of the exclu-
sive use, if I say, I will marry Betty or I will marry Jane, it is understood that the two
possibilities are mutually exclusive — that is I will not marry both girls. On the other
hand if a college catalogue states that an entering student is required to have had
either a year of mathematics or a year of a foreign language, the college is certainly
not going to exclude you if you had both ! This is the inclusive use of either/or and
is the one we will constantly employ.

Another important property of the disjunction relation either this or that is this. Con-
sider the statement P or Q (which is short for either P or Q). Suppose the statement
happens to be true. Then if P is false, Q must be true (because at least one of them
is true, so if P is false, Q must be the true one). For example, suppose it is true that
it is either raining or snowing, but it is false that it is raining. Then it must be true
that it is snowing.

We apply these two principles as follows. A made a statement of the disjunctive
type: Either I am a knave or B is a knight. Suppose A to be a knave. Then the above
statement must be false. This means that it is neither true that A is a knave nor that
B is a knight. So if A were a knave then it would follow that he is not a knave — which
would be a contradiction. Therefore A must be a knight.

We have thus established that A is a knight. Therefore his statement is true that at
least one of the possibilities holds: (1) A is a knave; (2) B is a knight. Since possibility
(1) is false (since A is a knight) then possibility (2) must be the correct one, i.e. B is
a knight. Hence A, B are both knights.

5. Problem 30 in Smullyan (1981)

The only valid conclusion is that the author of this problem is not a knight. The fact
is that neither a knight nor a knave could possibly make such a statement. If A were
a knight then the statement that either A is a knave or that 2 + 2 = 5 would be false,
since it is neither the case that A is a knave nor that 2 + 2 = 5. Thus A, a knight,
would have made a false statement, which is impossible. On the other hand, if A
were a knave then the statement that either A is a knave or that 2 + 2 = 5 would
be true, since the first clause that A is a knave is true. Thus A, a knave, would have
made a true statement, which is equally impossible.

Therefore the conditions of the problem are contradictory. (Sneaky !)

6. Problem 31 in Smullyan (1981)

To begin with, A must be a knave, for if he were a knight, then it would be true that
all three are knaves and hence that A too is a knave. If A were a knight he would
have to be a knave, which is impossible. So A is a knave. Hence his statement was
false, so in fact there is at least one knight among them.

Now, suppose B were a knave. Then A and B would both be knaves, so C would be a
knight (since there is at least one knight among them). This would mean that there
was exactly one knight among them, hence B’s statement would be true. We would
thus have the impossibility of a knave making a true statement. Therefore B must be
a knight.

We now now that A is a knave and that B is a knight. Since B is a knight, his statement
is true, so there is exactly one knight among them. This knight must be B, hence C
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must be a knave.

7. Problem 34 in Smullyan (1981)

Suppose A is a knight. Then his statement that B is a knave must be true, so B is
then a knave. Hence B’s statement that A and C are of the same type is false, so A
and C are of different types. Hence C must be a knave (since A is a knight). Thus if A
is a knight, then C is a knave.

On the other hand, suppose A is a knave. Then his statement that B is a knave is
false , hence B is a knight. Hence B’s statement is true that A and C are of the same
type. This means that C must be a knave (since A is)

We have shown that regardless of whether A is a knight or a knave, C must be a
knave. Hence C is a knave.

8. Problem 35 in Smullyan (1981)

This is solved by an analysis into cases.

CASE ONE: A is a knight. Then B, C really are of the same type. If C is a knight, then
B is also a knight, hence is of the same type as A, so C being truthful must answer
yes. If C is a knave, then B is also a knave (since he is of the same type as C), hence
is of different type to A. So C, being a knave, must lie and say yes.

CASE TWO: A is a knave. Then B, C are of different types. If C is a knight, then B is
a knave, hence he is of the same type as A. So C, being a knight must answer yes. If
C is a knave, then B, being of different type than C, is a knight, hence is of different
type than A. Then C, being a knave, must lie about A and B being of different types,
so he will answer yes.

Thus in both cases C answers yes

A variation on the above type of problems deals with three types of people: knights and
knaves as before and normal people who sometimes lie and sometimes tell the truth.

9. Problem 39 in Smullyan (1981)

To begin with, A cannot be a knight, because a knight would never say that he is
normal. So A is a knave or is normal. Suppose A were normal. Then B’s statement
would be true, hence B is a knight or a normal, but B can’t be normal (since A is), so B
is a knight. This leaves C a knave. But a knave cannot say he is not normal (because a
knave really isn’t normal), so we have a contradiction. Therefore A cannot be normal.
Hence A is a knave. Then B’s statement is false, so B must be normal (he can’t be a
knave since A is). Thus A is the knave, B is the normal, hence C is the knight.

10. Problem 40 in Smullyan (1981)

The interesting thing about this problem is that it is impossible to know whether it is
A who is telling the truth but isn’t a knight or whether it is B who is telling the truth
but isn’t a knight; all we can prove is that at least one of them has that property.

Either A is telling the truth or he isn’t. We shall prove: (1) If he is, then A is telling the
truth but isn’t a knight; (2) If he isn’t, then B is telling the truth but isn’t a knight.

(1) Suppose A is telling the truth. Then B really is a knight. Hence B is telling the
truth, so A isn’t a knight. Thus if A is telling the truth then A is a person who is
telling the truth but isn’t a knight.
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(2) Suppose A is not telling the truth. Then B isn’t a knight. But B must be telling the
truth, since A can’t be a knight (because A is not telling the truth). So in this case B
is telling the truth but isn’t a knight.

11. Problem 41 in Smullyan (1981)

We shall show that if B is telling the truth then he isn’t a knight, and if he isn’t telling
the truth then A is lying but isn’t a knave.

(1) Suppose B is telling the truth. Then A is a knave, hence A is certainly not telling
the truth, hence B is not a knight. So in this case B is telling the truth but isn’t a
knight.

(2) Suppose B is not telling the truth. Then A is not really a knave. But A is certainly
lying about B, because B cannot be a knight if he isn’t telling the truth. So in this
case A is lying but isn’t a knave.
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10.6 Knights and Knaves — Truth Table Answers

This set of exercises (and the answers) all come from Smullyan (1981). Without assuming
any prior knowledge of logic, Smullyan takes the reader through a logic course using ver-
bal reasoning. More conventional books on logic and computing (such as Manna (1974),
Mendelson (1987), Backhouse (1986), Backhouse (2003)) use some of these puzzles as
part of their sections on logic.

The set of solutions below use the truth table approach outlined in Backhouse (1986) —
though any good book with a section on logic would contain details (see, for example,
Devlin (1992, page 13))

• We will use the following notation

– A stands for A is a Knight

– not A stands for A is a Knave

– SA stands for The statement by A is True

– not SA stands for The statement by A is False

• Hence, in this world of truth tellers and liars we know:

– (A⇒ SA) and (not A⇒ not SA)

• The above is equivalent to:

– A ⇐⇒ SA

• This gives us a way of solving the puzzles using truth tables

Q 1 (Problem 26 in Smullyan (1981))

• We have the following from the statements of B and C:

– B ⇐⇒ (A ⇐⇒ not A)

– C ⇐⇒ not B
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• We now construct a truth table for the conjunction of the two propositions and see
which entries are True.

B C B ⇐⇒ (A ⇐⇒ not A) and C ⇐⇒ not B

True True False False False False
True False False False False True
False True True False True True
False False True False False False

• The True tells us that B is a knave and C is a knight — it is the only entry in the truth
table for the proposition which is True.

Q 2 (Problem 27 in Smullyan (1981))

• The answer is the same as that of the preceding problem, though the reasoning is a
bit different.

• We have the following from the statements of B and C:

– B ⇐⇒ (A ⇐⇒ 1 knight)

– C ⇐⇒ not B

A B C B ⇐⇒ (A ⇐⇒ 1 knight) and C ⇐⇒ not B

True True True False False False False
True True False False False False True
True False True True False True True
True False False False True False False
False True True True True False False
False True False False False False True
False False True True False True True
False False False False True False False

Q 3 (Problem 28 in Smullyan (1981))

• We have the following from the statement of A:

– A ⇐⇒ 1 or more knaves

A B A ⇐⇒ 1 or more knaves

True True False False
True False True True
False True False True
False False False True

• So A is a knight and B is a knave.

Q 4 (Problem 29 in Smullyan (1981))

• We have the following from the statement of A:

– A ⇐⇒ (not A or B)
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A B A ⇐⇒ (not A or B)

True True True True
True False False False
False True False True
False False False True

• So we have A and B are both knights.

Q 5 (Problem 30 in Smullyan (1981))

• We have the following from the statement of A:

– A ⇐⇒ (not A or 2 + 2 = 5)

A ⇐⇒ (not A or 2 + 2 = 5)

True False False
False False True

• So here there is no solution for any possible assignment of truth values — we call
this a contradiction.

Q 6 (Problem 31 in Smullyan (1981))

• We have the following statements:

– SA: All Knaves

– SB: Exactly 1 knave

A B C (A ⇐⇒ SA) and (B ⇐⇒ SB)

True True True False False False
True True False False False True
True False True False False False
True False False False False True
False True True True True True
False True False True False False
False False True True False False
False False False False False True

• So we have A knave and B and C knights.

Q 7 (Problem 34 in Smullyan (1981))

• We have the following statements:

– SA: not B

– SB: A & C are the same
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A B C (A ⇐⇒ SA) and (B ⇐⇒ SB)

True True True False False True
True True False False False False
True False True True False False
True False False True True True
False True True False False False
False True False True True True
False False True False False True
False False False True False False

• So C must be a knave.

Q 8 (Problem 35 in Smullyan (1981))

• We have the following statement:

– SA: B & C are same

• We now construct a truth table including the response of C to the question Is it True
that A and B are the same ?

A B C (A ⇐⇒ SA) and (C ⇐⇒ A = B)

True True True True True True yes
True True False False False False no
True False True False False False no
True False False True True True yes
False True True False False False no
False True False True True True yes
False False True True True True yes
False False False False False False no

• Thus in both cases C answers yes

Go to Table of Contents

10.7 Harder Logic Puzzles — Solutions

• The approach to finding a solution is based on the answer to exercise 1.22 in Back-
house (1986, pages 43,233)

• The source of the problems is as follows:

– Q 1 is Problem 2-7(b) in Manna (1974)

– Q 2 is exercise 1.46(b) in Mendelson (1997, page 24)

– Q 3 is from chapter 29 of Boolos (1998)

This problem was originally in an article by George Boolos in The Harvard Re-
view of Philosophy 6 (1996): 62–65
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Q 1 (Problem 2-7(b) in Manna (1974))

• A tourist is enjoying an afternoon refreshment in a local pub in England when the
bartender says to him: “Do you see those three men over there ? One is Mr. X, who
always tells the truth, another is Mr. Y, who always lies, and the third is Mr. Z, who
sometimes tells the truth and sometimes lies (that is, Mr. Z answers yes or no at
random without regard for the question). You may ask them three yes/no questions,
always indicating which man should answer. If, after asking these three questions,
you correctly identify Mr. X, Mr. Y, and Mr. Z, they will buy you a drink.”

• What yes/no questions should the thirsty tourist ask ?

• Hint: Use the first question to find some person of the three who is not Mr. Z. Ask
him the other two questions.

Q 1 Solution (a)

• We can label the people (say by distance from us) as A, B and C.

• With no prior knowledge we may as well ask the first question to A.

• A could be a knight, a knave or a normal (that’s what we call people who lie or tell
the truth at random).

• The hint tells us that if should use the first question to identify someone who is not
normal.

• Once we have done that the rest is easy: ask a knight or a knave if 2 + 2 = 5 and you
immediately know what they are and can then use them to tell you who the rest are
with one question.

Q 1 Solution (b)

• The Eureka step is to realise that you can calculate the first question by working out
what properties it must have and then rearranging a description of the properties as
propositions into the form:

• Q ⇐⇒ some proposition not involving Q

• where Q stands for a question of the form “Is it True that . . . ” where the question is
trying to identify whether B is normal or not.

Q 1 Solution (c)

• In this case our first question (to A) should satisfy the following:

1. If A is a knight and A says Q is True then B is normal.

2. If A is a knave and A says Q is True then B is normal.

3. If A is a knight and A says Q is False then B is not normal.

4. If A is a knave and A says Q is False then B is not normal.
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Q 1 Solution (d)

• We can represent the above statements as a compound proposition.

• We use “BN” to represent “B is normal”; “Q” stands for “Q is True”.

• Remember that is a knave says “Q is True” that “not Q” is really the case (and vice-
versa).

(A and Q)⇒ BN

and

(not A and not Q)⇒ BN

and

(A and not Q)⇒ not BN

and

(not A and Q)⇒ not BN

Q 1 Solution (e)

• We now use the following identity (use a truth table to prove the identity):

• (p and q)⇒ r ≡ q⇒ (p⇒ r)

• This gives us:

Q⇒ (A⇒ BN)

and

not Q⇒ (not A⇒ BN)

and

not Q⇒ (A⇒ not BN)

and

Q⇒ (not A⇒ not BN)

Q 1 Solution (f)

• We now use the following identity (again prove that this is an identity):

• (p⇒ q) and (p⇒ r) ≡ p⇒ (q and r)

• This gives us:

Q⇒ ((A⇒ BN) and (not A⇒ not BN))

and

not Q⇒ ((not A⇒ BN) and (A⇒ not BN))
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Q 1 Solution (g)

• We now use the following identity (again prove that this is an identity):

• (not p⇒ not q) ≡ p⇒ q

• This gives us:

Q⇒ ((A⇒ BN) and (BN⇒ A))

and

not Q⇒ ((not A⇒ BN) and (BN⇒ not A))

• Use the definition of ⇐⇒

Q⇒ (A ⇐⇒ BN)

and

not Q⇒ (not A ⇐⇒ BN)

Q 1 Solution (h)

• We finally use the definition of ⇐⇒ and the identity:

• not p ⇐⇒ q ≡ not(p ⇐⇒ q)

• This gives us:

Q ⇐⇒ (A ⇐⇒ BN)

• So in English our first question (to A) would be:

– Is it true that the statement that you are a truth teller is equivalent to the
statement that B is normal ?

• This gives a general approach to similar puzzles

Q 1 (f) to (g) steps

• From step (f) using not p⇒ not q ≡ q⇒ p

Q⇒ ((A⇒ BN) and (BN⇒ A))

and

not Q⇒ ((not A⇒ BN) and (BN⇒ not A))
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• Using the definition of ⇐⇒

Q⇒ (A ⇐⇒ BN)

and

not Q⇒ (not A ⇐⇒ BN)

• Using not p ⇐⇒ q ≡ not(p ⇐⇒ q)

Q⇒ (A ⇐⇒ BN)

and

not Q⇒ not(A ⇐⇒ BN)

• Using not p⇒ not q ≡ q⇒ p

Q⇒ (A ⇐⇒ BN)

and

(A ⇐⇒ BN)⇒ Q

• Using the definition of ⇐⇒ then gives us step (g)

Go to Table of Contents
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11 Logic and Programming

• Curry-Howard isomorphism is the direct relationship between computer programs
and mathematical proofs

• A proof is a program

• The formula it proves is the type for the program

• A logic corresponds to a programming language

• For example, at the level of formulas and types:

• Implication ↔ function type

• Conjunction (AND) ↔ product type

• Disjunction (OR) ↔ sum type

• Haskell/The Curry-Howard isomorphism — article on CH and the functional program-
ming language Haskell

• Curry-Howard isomorphism — overview article

Go to Table of Contents

https://en.wikipedia.org/wiki/Curry-Howard_correspondence
https://en.wikibooks.org/wiki/Haskell/The_Curry-Howard_isomorphism
https://www.rocq.inria.fr/semdoc/Presentations/20150217_PierreMariePedrot.pdf
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12 Future Work

• Wednesday 28 April 2021 iCMA46 due

• Sunday, 2 May 2021 online tutorial Unit 7 Computability, Complexity

• Sunday, 16 May 2021 online tutorial exam revision

• Saturday, 22 May 2021 online tutorial exam revision

• Tuesday 25 May 2021 iCMA47 due

• Tuesday 8 June 2021 Exam

• Please email me with any requests for particular topics

13 Web Sites & References

13.1 Web Sites

• Truth function — the sixteen possible truth functions of two boolean inputs

• Logical connective — some historical context

• Functional completeness — what subsets of the truth functions could you use

• Sheffer stroke — also known as NAND (not and) and alternative denial — {NAND} is
a functionally complete set — you can construct all elements of {AND, OR, NOT} —
you could do all your propositional logic just using this

• Logical NOR — also known as Pierce’s arrow — also functionally complete — the
Apollo Guidance Computer was implemented in NOR gates alone. See also Engineer-
ing & Technology Magazine article on AGC, tales from the Lunar Module Guidance
Computer

• List of Logic Symbols

Go to Table of Contents
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