Functional
Programming

Phil Molyneux

Agenda

Adobe Connect
Haskell & GHC
Types & Type

Functional Programming Classes

. . Function Definitions
M269 Extension Tutorial — Styles

Higher-order
Functions

. User Defined Data
Phil Molyneux Types

Algebraic Data Type
Exercises

Tree Data Types
Tree Data Type

17 May 2020 Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

1/164

Extension Tutorial
Agenda

vV vyVvVvyy

vV VvV VVYy VvV VvVVY

Welcome & Introductions
Functional programming introduction
Programming environment and notation

Program construction with functions and expressions
rather than commands and statements

Functions are first-class citizens
Higher order functions

Powerful combining forms

Function composition

Lazy evaluation or non-strict semantics
Strong polymorphic type system
Recursion and recursion patterns
Efficiency and pragmatic issues

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

2/164

M269 Tutorial

Introductions — Me

>
>

Name Phil Molyneux

Background Physics and Maths, Operational Research,
Computer Science

First programming languages Fortran, BASIC, Pascal
Favourite Software

» Haskell — pure functional programming language

> Text editors TextMate, Sublime Text — previously Emacs
> Word processing in BTEX

> Mac OS X

Learning style — | read the manual before using the
software (really)

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

3/164

http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/BASIC
http://en.wikipedia.org/wiki/Pascal_(programming_language)
http://www.haskell.org/haskellwiki/Haskell
https://macromates.com
http://www.sublimetext.com
http://www.emacswiki.org
http://www.latex-project.org
https://developer.apple.com/devcenter/mac/index.action

M269 Tutorial

Introductions — You

>
>

Name?

Position in M269 ? Which part of which Units and/or
Reader have you read ?

Particular topics you want to look at?
Learning Syle ?

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

4/164

Adobe Connect

Interface — Student Quick Reference

Participant Quick Reference Guide

Speaker volume

. Adobe® Connect

Adobe Connect Help

Connection status

Video pod

|- Attendee pod

|- Chat pod

Functional
Programming

Phil Molyneux

Agenda

Adobe Connect

Settings
Student & Tutor Views

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work
5/164

Adobe Connect

Interface — Student View

000 14269173 M269-17J Online twiorial room London/SE (1,13) CG 12311 M289-17.J (1) - Adobe Comect

Al S«

M269 Overview
M269 Overview A

Phil Molyneux

15 October 2017

L] 2 &
verviewAAC3A besmer.pdf 32

M269 Overview

Pl Mol

Functional
Programming

Phil Molyneux

Agenda

Adobe Connect

Settings
Student & Tutor Views

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work
6/164

Functional

Adobe Connect Programming
Settings Phil Molyneux
. . Agenda
> Everybody: Audio Settings [Meeting)) Audio Setup Wizard.. . JPUATRSN
» Audio [Menu bar>> Audio>> Microphone rights for Participants] v EL:Z:SEV'EW
Student & Tutor Views
» Do not Enable single speaker mode Sharng creens
» Drawing Tools [Share pod menu bar)) Draw] (1 slide/screen) reing a Mesting
» |Share pod menu bar)) Menu icon)) Enable Participants to draw tavouts
[P >> >> B] v gray Haskell & GHC
> [Meeting >> Preferences>> Whiteboard >> Enable Participants to draw] v Types & Type
Classes
> Cancel hand tOOI Function Definitions
. — Styles
» Do not enable green pointer. .. e
> [Meeting >> Preferences>> Attendees Pod] Disable Raise Hand Functions
e . User Defined Data
notification Types
> Cursor [Meeting)) Preferences)) General tab)) Host Cursors) A R e
3 Show to all attendees] v (default Off) Tree Data Types
> [Meeting)) Preferences)) Screen Share)) Cursor)) Show Application Cursor| e SR e
» Webcam [Menu bar>> Webcam >> Enable Webcam for Participants] %4 Recursion Schemes
. Interactive
» Recording [Meeting>> Record Meeting. ..] v Programming

Future Work
7/164

Adobe Connect

Access

4
>
>
>
>
>

vy

v

Tutor Access

[TutorHome >> M269 Website >> Tutorials]

(Cluster Tutorials)) M269 Online tutorial room|

[Tutor Groups>> M269 Online tutor group room]

[Module—wide Tutorials>> M269 Online module-wide room]

Attendance

[TutorHome >> Students>> View your tutorial timetables]

Beamer Slide Scaling 440% (422 x 563 mm)
Clear Everyone’s Status

[Attendee Pod >> Menu >> Clear Everyone’s Status]

Grant Access

[Meeting >> Manage Access & Entry>> Invite Participants. ..] and send

link via email

Functional
Programming

Phil Molyneux

Agenda

Adobe Connect
Student View
Settings
Student & Tutor Views

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work
8/164

Adobe Connect

Keystroke Shortcuts

>
>
>
>
>

Keyboard shortcuts in Adobe Connect

Toggle Mic (5£]+(M] (Mac), [Ctrl)+[M] (win) (On/Disconnect)
Toggle Raise-Hand status [38)+E]

Close dialog box [©] (Mao), (Win)

End meeting (5¢)+

Functional
Programming

Phil Molyneux

Agenda

Adobe Connect
Student View
Settings
Student & Tutor Views

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work
9/164

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html

Adobe Connect Interface
Student View (default)

AL

FiE Help

M269 Overview
M269 Overview A

Phil Molyneux

15 October 2017

Functional
Programming

Phil Molyneux

Agenda

Adobe Connect
Student View
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work
10/164

Adobe Connect Interface

Tutor View

Host Quick Reference Guide

. Adobe® Connect

Status: raise hand, agree, disagree,
Control participant ~ step away, speak louder, speak

mics & audio softer, speed up, siow down,

conferencing laughter, applause
Manage meeting: audio
setup, recording, roles Speaker Webcam Adobe Connect Help

volume

Connection
status

Status View

Breakout
Room View

Layout panel

Functional
Programming

Phil Molyneux

Agenda

Adobe Connect
Student View
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work
11/164

Adobe Connect Interface
Tutor View

M269Prsnn2017 TutorsloverviewAACIA beamer pdf

M58 Overview

Pl Myna

M269 Overview
M269 Overview A

Phil Molyneux

15 October 2017

i liss | = 4 o [|88

Atendees ()
B0

[rree]

Functional
Programming

Phil Molyneux

Agenda

Adobe Connect
Student View
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work
12/164

Adobe Connect Interface

Sharing Screen & Applications

vy

[Share My Screen>> Application tab >> Terminal] for Terminal

[Share menu >> Change View>> Zoom in] for mismatch of screen
size/resolution (Participants)

(Presenter) Change to 75% and back to 100% (solves
participants with smaller screen image overlap)

Leave the application on the original display

Beware blued hatched rectangles — from other (hidden)
windows or contextual menus

Presenter screen pointer affects viewer display —
beware of moving the pointer away from the application

First time: [System Preferences>> Security & Privacy>> Privacy>

Accessibility

Functional
Programming

Phil Molyneux

Agenda

Adobe Connect
Student View
Settings
Student & Tutor Views

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work
13/164

https://en.wikipedia.org/wiki/Terminal_(macOS)

Adobe Connect

Ending a Meeting

vVVvyVvyVvyy

Notes for the tutor only
Student: [Meeting>> Exit Adobe Connect]

Tutor:

Recording [Meeting>> Stop Recording] v
Remove Participants [Meeting) End Meeting. .. | v/

> Dialog box allows for message with default message:
» The host has ended this meeting. Thank you for
attending.

Recording availability /n course Web site for joining
the room, click on the eye icon in the list of recordings
under your recording — edit description and name

Meeting Information [Meeting>> Manage Meeting Information] —
can access a range of information in Web page.

Attendance Report see course Web site for joining
room

Functional
Programming

Phil Molyneux

Agenda

Adobe Connect
Student View
Settings
Student & Tutor Views
Sharing Screen &
Applications
Ending a Meeting
Invite Attendees
Layouts

Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work
14/164

Adobe Connect

Invite Attendees

>

Provide Meeting URL [Menu>> Meeting>> Manage Access & Entry>
> Invite Participants. ..]

Allow Access without Dialog

J Manage Meeting Information| provides new browser window
with Meeting Information (Tab bar)) Edit Information|

Check Anyone who has the URL for the meeting can
enter the room

Default Only registered users and accepted guests may
enter the room

Reverts to default next session but URL is fixed

Guests have blue icon top, registered participants have
yellow icon top — same icon if URL is open

See Start, attend, and manage Adobe Connect meetings
and sessions

Functional
Programming

Phil Molyneux

Agenda

Adobe Connect
Student View
Settings
Student & Tutor Views

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work
15/164

https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html
https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html

Adobe Connect

Layouts

vy

v

Creating new layouts example Sharing layout

[Menu>> Layouts>> Create New Layout. ..] [Create a New Layout dialog>

) Create a new blank layout] and name it PMolyMain

New layout has no Pods but does have Layouts Bar open
(see Layouts menu)

Pods

(Menu)) Pods) Share)) Add New Share] and resize/position —
initial name is Share n

Rename Pod [Menu>> Pods>> Manage Pods. . . } [Manage Pods>
) Select)) Rename| or [Double-click & rename)

Add Video pod and resize/reposition
Add Attendance pod and resize/reposition

Add Chat pod — name it PMolyChat — and
resize/reposition

Functional
Programming

Phil Molyneux

Agenda

Adobe Connect
Student View
Settings
Student & Tutor Views

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work
16/164

Adobe Connect

Layouts

» Dimensions of Sharing layout (on 27-inch iMac)
Width of Video, Attendees, Chat column 14 cm
Height of Video pod 9 cm

Height of Attendees pod 12 cm

Height of Chat pod 8 cm

> Duplicating Layouts does not give new instances of
the Pods and is probably not a good idea (apart from
local use to avoid delay in reloading Pods)

vyvyy

v

Functional
Programming

Phil Molyneux

Agenda

Adobe Connect
Student View
Settings
Student & Tutor Views

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work
17/164

Haskell & GHC

Programming Environment

>
>

You can dofunctional programming in any language

To really see some of the ideas it is best to use a
language that directly implements these ideas

These notes use Haskell and the implementation GHC

We first set this file up as a Literate Haskell Script (this
page explains roughly how | do my notes)

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect

Haskell & GHC
GHCi Commands

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

18/164

https://www.haskell.org/
https://www.haskell.org/ghc/
https://wiki.haskell.org/Literate_programming

Haskell & GHC

Script Setup

1module M269TutorialExtension2019] where

2

import Data.List

» A Haskell script starts with a module header which
starts with the reserved identifier, module followed by
the module name, M269TutorialExtension2019]

» The module name must start with an upper case letter
and is the same as the file name (without its extension
of .lhs)

» Haskell uses layout (or the off-side rule) to determine
scope of definitions, similar to Python

» The body of the module follows the reserved identifier
where and starts with import declarations

» These import the built-in libraries

» We use the sort function from Data.List
» The Haskell standard library, Prelude, is always present

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect

Haskell & GHC
GHCi Commands

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

19/164

Haskell & GHC pranctional

GHC Session Phil Molyneux

> We start the GHC REPL (Read-eval-print loop) from a
command line with ghci

GHCi> :1 M269TutorialExtension2019]
[1 of 1] Compiling -- stuff removed
Ok, one module Toaded.

GHC1i>

> At the GHCi prompt we can evaluate expressions with
any builtin functions or in our script

GHCi> 6 = 7

42

GHCi> length [9,16,25]
3

GHCi>

» Tength is defined in the standard Prelude library

> It returns the size of its argument — in this case the
length of the list [9,16,25]

> Notice the quiet notation for function application

Agenda
Adobe Connect

Haskell & GHC
GHCi Commands

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

20/164

https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/

Haskell

Notation

> Function application is denoted by juxtaposition and is
more binding than (almost) anything else (remember
BODMAS ?)

» f x not f(x)
> We can define values at the GHC prompt

GHCi> let add x y = x + y
GHCi> add 2 3
5

» Function application is left associative
» So add 2 3 means (add 2) 3
» What could add x mean ?

» And what is the type of add ? You said this language is
strongly typed — where is the type specification (as in
Java, but not Python, which is weakly typed)

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect

Haskell & GHC
GHCi Commands

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

21/164

Haskell Notation
Types

» GHC can infer the most general type of a variable in the
Haskell type system

GHCi> :type add
add :: Num a => a -> a -> a

» This means add takes two arguments of type a as long
as that type is some sort of number, and it returns a
number of the same type a

» Num is the Type Class of all the type that implement the
behaviour of numbers

» This is similar to interfaces and generics in Java

> The type class Num is defined in the Prelude and
includes the usual integers and floating point numbers
and also arbitrary precision integers and rational
numbers

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect

Haskell & GHC
GHCi Commands

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

22/164

https://hackage.haskell.org/package/base-4.14.0.0/docs/Prelude.html

Haskell Notation

Types

»

What is the meaning of add x?

GHCi> :type (add 2)
(add 2) :: Num a => a -> a

>

This means add 2 is a function which takes a number
and adds 2 to the number

add x y means (add x) y — function application is
left associative

The type (a -> a -> a) meansa -> (a -> a)

The function type arrow (->) associates to the right to
be consistent with the left associativity of function
application

This means we get a notation for higher-order functions
and partial application for free (no need for a special
notation)

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect

Haskell & GHC
GHCi Commands

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

23/164

https://www.haskell.org/onlinereport/haskell2010/haskellch4.html#x10-630004.1

Haskell

GHCi Commands

>
>
>
>
>
| 4
>
>
>

v

:? display list of commands

GHC Manual GHC User Guide

:Toad, :1 load module(s)

:reload, :r reload current module set

1 type, :t show the type of an expression

:info, :1 display information about the given names
<statement> evaluate/run <statement>

:set editor <cmd> set the command used for :edit
:set +m allow multilevel commands — see Multiline

input

:set +s print timing/memory stats after each

evaluation

See also the .ghci and .haskeline files

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect

Haskell & GHC
GHCi Commands

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

24/164

https://downloads.haskell.org/ghc/latest/docs/html/users_guide/
https://downloads.haskell.org/ghc/latest/docs/html/users_guide/ghci.html#ghci-multiline
https://downloads.haskell.org/ghc/latest/docs/html/users_guide/ghci.html#ghci-multiline
https://downloads.haskell.org/ghc/latest/docs/html/users_guide/ghci.html#the-ghci-and-haskeline-files

Types & Type Classes

Overview

>
>

Types are collections of related values

Common primitive and built-in data types include
characters, numbers, Booleans, lists, strings, tuples and
function types

Type systems are syntactic methods for assigning a
type to each expression in the programming language
— the aim is to prove the absence of certain program
behaviours by answering the following:

Type checking — given a type signature for an
expression expr t, is expr an instance of type t ?

Type inference — given an expression expr what is its
most general type ?

Given a type t, is there any expression for it or does the
type have no values ? This is related to the
Curry-Howard isomorphism

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type

Classes
Expressions & Types
Type Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

25/164

https://en.wikipedia.org/wiki/Data_type
https://en.wikipedia.org/wiki/Type_system
https://www.haskell.org/onlinereport/haskell2010/haskellch4.html#x10-810004.4.1
https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence

Functional
Programming

Types & Type Classes

Expressions & Types Phil Molyneux

> A type is a collection of related values and operations

GHCi> :t (2 == 3)
(2 == 3) :: Bool
GHCi> (2 == 3)
False

> Basic types
» Booleans type name Bool values False, True

> Characters type name Char values ’a’, Unicode plus
ways of escaping special characters such as new line

> Strings type name String values "Hello" strings are
actually syntactic sugar for [Char]

» Numbers the usual Int, Float, DoubTe but also
arbitrary precision Integer, Ratio and also CompTex

Agenda
Adobe Connect
Haskell & GHC

Types & Type

Classes
Expressions & Types
Type Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

26/164

Functional

Expressions & Types Programming
Lists Phil Molyneux
. Agenda
> Lists are sequences of elements of the same type Py e—
Haskell & GHC
GHCi> :t [True,False, not (1 == 3)]]] Types & Type
[True,False, not (1 == 3)] :: [Bool] -- no evaluation is done Classes
GHCi> Tength [] -- [] is an empty Tist
0 Type Classes
GHCi> 5 : [3,4] -- (:) list constructor Function Definitions
[5,3’4] — Styles
GHCi> :t () Higher-order
(:) :: a -> [a] -> [a] Functions
GHCi> head [5,3,4] User Defined Data
5 Types
(E‘I;C;IE tail [5,3,4] Algebraic Data Type
o Exercises
GHCi> ["Athos","Porthos"] ++ ["Aramis","d’Artigan"] Tree Data Types
["Athos","Porthos","Aramis","d’Artigan"] -- (++) appends two lists
GHCi> [5,3,4] !! 2 -- (!!) indexes from 0 Ereepmwpe
4 xercises
GHCi> take 2 [5’3,4] Recursion Schemes
[5,3] Interactive
GHCi> drop 2 [5,3,4] Programming
[4] Future Work
References

27/164

Expressions & Types

List Comprehensions

> List Comprehensions provide a concise way of
performing calculations over lists

» Example: Square the even numbers between 0 and 9

GHCi> [xA2 | x <- [0..9], x ‘mod‘ 2 == 0]
[0,4,16,36,64]
GHCi>

> In general

[expr | quall, qual2,..., qualN]

» The qualifiers qual can be
> Generators pattern <- list
> Boolean guards — acting as filters
> Local declarations with Tet decls for use in expr and
later generators and boolean guards

> Note ‘mod°‘ is a function made into an infix operator

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type

Classes
Expressions & Types
Type Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

28/164

Expressions & Types

Arithmetic Sequences

» Arithmetic sequences provide a concise way of
generating a list of values from an enumerable type

GHCi> [1..10]
[1,2,3,4,5,6,7,8,9,10]
GHCi> [1,3..10]
[1,3,5,7,9]

» We can also denote an infinite list (as long as we only
consume a finite part) — lazy evaluation gives us this
but it is special in Python

GHCi> take 10 (drop 10 [100 ..1)
[110,111,112,113,114,115,116,117,118,119]

» And it works with any enumerable type

GHCi> [’A’, ’D’ .. ’Z’]
"ADGIMPSVY"

> Strings are just syntactic sugar for list of characters
[Char]

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type

Classes
Expressions & Types
Type Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

29/164

Type & Type Classes

Type Classes

vV vyVvVvyy

Types specify sets of elements or data constructors
Primitive: Numbers, characters
Builtin: Booleans, Lists, Tuples, and others

User defined types: algebraic data type (naming the
type constructor and data constructors — see LYAH chp
7), type synonyms, Datatype renamings

Bottom, L or undefined is the value of a program that
crashes or loops forever

Type Classes provide a structured way of overloading

For example, (+) works with Int, Integer, Float and
other types of numbers

Type Classes are specified by behaviour

For a type to be a member of a type class, we have to
provide an implementation of some functions

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type

Classes
Expressions & Types
Type Classes

Introduction to Haskell
Builtin Type Classes

Equality Class

Ordered Class
Enumeration Class
Bounded Class

Read and Show Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Entiire Wark 30/164

Type Classes

Haskell Builtin Type Classes

>

v

vV vyVvyy

Eq for equality — all basic data types are instances
except functions and 10

Ord for ordering — for types that have a total ordering

Enum for enumeration — defining operations on
sequentially ordered types

Bounded to name the upper and lower limits of a type
Numbers have a family of classes
Show and Read for printable and readable types

Further type classes express types which capture
common patterns of computation — see LYAH chp 7
(Functor), chp 11 (AppTlicative), chp 12 (Monoid,
FoldabTle), chp 13 (Monad), and Traversable

See Functors, Applicatives, And Monads In Pictures and
Typeclassopedia for good introductions to these

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type

Classes
Expressions & Types
Type Classes

Introduction to Haskell
Builtin Type Classes

Equality Class

Ordered Class
Enumeration Class
Bounded Class

Read and Show Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Entiire Wark 31/164

http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html
https://wiki.haskell.org/Typeclassopedia

Haskell Standard Classes

Equality Class

class Eq a where

=,

-- Minimal complete definition

/=

X
X ==

(==) or (/=)
y = not (x =
y = not (x /=

(/=) :: a -> a -> Bool

y)
y)

Functional
Programming

Phil Molyneux

Agenda

Adobe Connect
Haskell & GHC
Types & Type
Classes
Expressions & Types

Type Classes

Introduction to Haskell
Builtin Type Classes

Ordered Class
Enumeration Class
Bounded Class

Read and Show Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Entiire Wark 32/164

Haskell Standard Classes
Ordered Class

class (Eq a) => Ord a where

-- data Ordering = LT |
deriving (Eq,Ord, Enum,Read, Show, Bounded)

compare

(,(«=),6=),)

max, min

>

[V V)

->
->

a -> Ordering
a -> Bool
a > a

-- Minimal complete definition

-- (<=) or compare

compare X y

| x =y =EQ
| X <=y = LT
| otherwise = GT
X <=y = compare
X < y = compare
X >= y = compare
X > y = compare

X
X
X
X

y /= GT
y == LT
y /= LT
y == GT

EQ | GT

Functional
Programming

Phil Molyneux

Agenda

Adobe Connect
Haskell & GHC
Types & Type
Classes
Expressions & Types

Type Classes

Introduction to Haskell
Builtin Type Classes

Equality Class

Enumeration Class
Bounded Class
Read and Show Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Entiire Wark 33/164

Haskell Standard Classes
Ordered Class (contd)

max x y
| x <=y =y
| otherwise = x
min x y
| X <=y = X
| otherwise =y

-- note (min x y, max x y) = (x,y) or (y,x)

-- data Ordering = LT | EQ | GT
-- deriving (Eq,Ord, Enum,Read, Show, Bounded)

> Note that the Ordering algebraic data type is defined
elsewhere in the Haskell Prelude and is not part of the
Ord type class declaration

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type

Classes
Expressions & Types
Type Classes

Introduction to Haskell
Builtin Type Classes

Equality Class

Ordered Class
Enumeration Class
Bounded Class

Read and Show Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Entiire Wark 34/164

Haskell Standard Classes

Enumeration Class

class Enum a where

succ, pred i a ->a

toEnum :: Int > a

fromEnum i a -> Int

enumFrom :ta -> [a] -- [n..]
enumFromThen a ->a -> [a] -- [n,p..]
enumFromTo rra ->a -> [a] -- [n..m]
enumFromThenTo a->a->a->1[al -- [n,p..m]

-- Minimal complete definition
-- toEnum, fromEnum

» Class Enum defines operations on sequentially ordered
types

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type

Classes
Expressions & Types
Type Classes

Introduction to Haskell
Builtin Type Classes

Equality Class
Ordered Class

Bounded Class
Read and Show Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Entiire Wark 35/164

Haskell Standard Classes

Enumeration Class (contd)

succ = toEnum . (+1) . fromEnum
pred = toEnum . (subtract 1) . fromEum
enumFrom n = map toEnum [fromEnum n ..]

enumFromThen n p

= map toEnum [fromEnum n, fromEnum p ..]

enumFromTo n m

= map toEnum [fromEnum n .. fromEnum m]
enumFromThenTo n p m

= map toEnum [fromEnum n, fromEnum p ..

fromEnum m]

GHCi> enumFromThenTo ’a’ ’'c’ 'z’
"acegikmoqgsuwy"

GHCi> [’a’,’c’ .. 'z’]
"acegikmogsuwy"

> Note that the spaces either side of .

. are sometimes

required (to avoid misidentifying a qualified name)

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type

Classes
Expressions & Types
Type Classes

Introduction to Haskell
Builtin Type Classes

Equality Class

Ordered Class

Enumeration Class

Bounded Class

Read and Show Classes
Function Definitions
— Styles
Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Entiire Wark 36/164

Haskell Standard Classes Y

Bounded Class Phil Molyneux

Agenda
class Bounded a where Adobe Connect

minBound :: a
maxBound :: a Haskell & GHC
Types & Type
Classes

GHCi> minBound :: Bool Expressions & Tvpes
False ;i::fod:::.i to Haskell
GHCi> maxBound :: Bool Builtin Type Classes
Tr'ue Equality Class
GHCi> minBound :: Int S::::f'atcir:saass
6352_3353\236854775808 Bounded Class

1> Read and Show Classes
9223372036854775808 it B
GHCi> maxBound :: Int fgfi'@? enitions
9223372036854775807 T
GHCi> minBound :: Word Fu?,ctions
0)
GHCi> maxBound :: Word %S;Eeﬁned pata
18446744073709551615)
GHCi> 2A64 - 1 ATIRE DER TREE
18446744073709551615

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Entiire Warlk 37/164

Haskell Standard Classes Y

Phil Mol
Read and Show Classes DL

Agenda
class Read a where Adobe Connect

class Show a where Haskell & GHC
Types & Type
Classes

: . Expressions & Types

GHCi> :t read

. . Type Classes
read :: Read a => String -> a atrep—
GHCi> :t show Builtin Type Classes
show :: Show a => a -> String zq:a"‘zi'la“
GHCi> read "True" :: Bool B e elase
Tr'ue_ Bounded Class
GHCi> read "321" :: Int
321 . —

q Function Definitions
GHCi> read "Just__ . . True" :: Maybe Bool — Styles
Jus1§ True .,) . Higher-order
GHCi> read "(Nothing,_321)" :: (Maybe Bool, Int) Functions
(Nothing,321)

; Defined D
GHCi> show (Just True) $§§;f ned Data
"Just_True" -
GHCi> show "True" AL IO BLRA WS
"\"True\""

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Entiire Wark 38/164

Function Definitions
Styles

» Declaration vs. expression style

» Declaration style: you formulate an algorithm in terms
of several equations that shall be satisfied

> Expression style: you compose big expressions from
small expressions.

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

39/164

https://wiki.haskell.org/Declaration_vs._expression_style

Function Definitions

Declaration Style

» Declaration style:
> Function arguments on left hand side

4 treble0l x 3 % X

6 square0l x = x = X

» Pattern matching in function definitions

7 TlengthOl []

0
8 TlengthO0l (x : xs) 1

+ lengthOl xs

» Guards on function definitions

9 Tength02 xs
10 | null xs =0

11 | otherwise 1 + length02 (tail xs)

» where clause

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

40/164

Function Definitions
Expression Style (1)

> Expression style:
» Function composition (.)

12 trebleThenSquare x = (square0l . treble0l) x

14 squareThenTreble = treble0l . squareOl

» Where did the argument go ? Pointfree style — can
confuse beginners

» Do evaluations of:

16 test0l = trebleThenSquare 2

18 test02 = squareThenTreble 2

> if expression

20 length03 xs

21 = if null xs
22 then 0
23 else 1 + length03 (tail xs)

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

41/164

https://en.wikipedia.org/wiki/Function_composition
https://wiki.haskell.org/Pointfree

Function Definitions
Expression Style (2)

> Expression style:
» Lambda abstraction

25 square02 = \x -> X * X

> case expression

27 Tength04 xs = case xs of
28 [T >0
29 (y : ys) -> 1 + length04 ys

> Tet expression

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

42/164

https://wiki.haskell.org/Lambda_abstraction

Function Definitions

Let vs. Where

> Let expression

let
decll
decl2
declN

in
expr

» Where clause — declarations local to the right hand
side of a function definition (also used in top level
class and instance declarations)

> See example usage (and misuse) in M269 Graph
Algorithms tutorial notes

> See Let vs Where

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

43/164

http://www.pmolyneux.co.uk/OU/M269/M269TutorialNotes/M269TutorialGraphs/M269TutorialGraphs2017J.beamer.pdf
http://www.pmolyneux.co.uk/OU/M269/M269TutorialNotes/M269TutorialGraphs/M269TutorialGraphs2017J.beamer.pdf
https://wiki.haskell.org/Let_vs._Where

Evaluating Expressions

Applying a Function t Argumnents

> To evaluate a function applied to actual arguments,
substitute the actual arguments into the body of the
definition of the function where the corresponding
formal arguments occur

Tength0l1l []
lengthO1 (x : xs)

0 -- (A
1 + lengthOl xs -- (B)

» Evaluate Tength01 [6,8,3]

length01 [6,8,3]

-> 1 + length01l [8,3] -- by (B)
-> 1+ (1 + Tength [3]) -- by (B)
> 1+ (1 + (1 + 1ength [1)) -- by (B)
> 1+ @+ @+0) -- by (A
-> 3 -- by arithmetic

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

44/164

Higher-order Functions
Map, Filter

>

Instead of special syntactic constructs such as for,
while we capture common patterns with higher-order
functions

Higher order functions are functions that can take
functions as arguments and/or return functions as
results

In functional programming, functions are first class
citizens — they can be treated as data

You just can’t print a function or compare functions for
equality

This section looks at the most commonly used higher
order functions

map, filter, function composition (.), function
application ($) and the fold family

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions
Map, Filter
List Comprehensions
Fold Family

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

45/164

Higher Order Functions
Map

> map takes a function and a list and applies the function
to every element of the list

> map can be defined with recursion: (name change to
avoid Prelude clash)

31 map0l :: (a -> b) -> [a] -> [b]
32 map0l f [] = []
33 map0l f (x:xs) = f x : map0l f xs

> map can also be defined with a list comprehension:

35 map02 :: (a -> b) -> [a] -> [b]
36 map02 f xs = [f x | x <- xs]

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions
Map, Filter
List Comprehensions
Fold Family

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

46/164

Higher Order Functions

Filter

> filter takes a predicate (a function that returns a
Boolean) and a list and returns all the elements that

» filter can be defined with recursion: (name change to

» filter can also be defined with a list comprehension:

44
45

satisfy the predicate

avoid Prelude clash)

filter0l ::

(a -> Bool) -> [a] -> [a]

filter0l p [] = []
filter0l p (x:xs)

=1if p x

then x :

filter0l p xs

else filter0l p xs

filter02 ::

(a -> Bool) -> [a] -> [a]
filter02 p xs = [x | x <- xs, p x]

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions
Map, Filter
List Comprehensions
Fold Family

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

47/164

List Comprehensions
Python

> List Comprehensions provide a concise way of
performing calculations over lists (or other iterables)

» Example: Square the even numbers between 0 and 9

Python3>>> [x #* 2 for x in range(10) if x % 2 == 0]
[0, 4, 16, 36, 64]
Python3>>> [(x y) for x in range(4)
- for y in range(4)
ifx%2==0
e and y % 3 == 0]
[co, 0, (0, 3), (2, 0), (2, 3)]
Python3>>>

» In general

[expr for targetl in iterablel if condl
for target? in iterable2 if cond2 ...
for targetN in iterableN if condN]

> Lots example usage in the algorithms below

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

Map, Filter

List Comprehensions
Fold Family

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

48/164

List Comprehensions
Haskell

> List Comprehensions provide a concise way of
performing calculations over lists

» Example: Square the even numbers between 0 and 9

GHCi> [xA2 | x <- [0..9], x ‘mod‘ 2 == 0]
[0,4,16,36,64]
GHC1i>

> In general

[expr | quall, qual2,..., qualN]

» The qualifiers qual can be

> Generators pattern <- Tlist

> Boolean guards — acting as filters

> Local declarations with Tet decls for use in expr and
later generators and boolean guards

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

Map, Filter

List Comprehensions
Fold Family

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

49/164

List Comprehension Exercises
Activity 1 (a) Stop Words Filter

» Stop words are the most common words that most
search engines avoid: "a’,’an’,’the’, ’that’,...

» Using list comprehensions, write a function
filterStopWords that takes a list of words and filters
out the stop words

» Here is the initial code

11 sentence \
12 = "the_quick_brown_fox_jumps_over_the_lazy, dog"

14 words = sentence.split()

16 wordsTest \

17 = (words == [’the’, ’'quick’, ’brown’
18 , 'fox’, ’jumps’, ’over’
19 , 'the’, ’lazy’, ’dog’])

21 stopWords \
22 = [’a’,’an’,’ the’,’that’]

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

Map, Filter

List Comprehensions
Fold Family

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

50/164

https://en.wikipedia.org/wiki/Stop_words

List Comprehension Exercises
Activity 1 (a) Stop Words Filter

11 sentence \
12 = "the_quick_brown_fox_jumps_over_the_lazy dog"

14 words = sentence.split()

16 wordsTest \

17 = (words == [’the’, ’'quick’, ’brown’
18 , 'fox’, ’jumps’, ’over’
19 , 'the’, ’lazy’, ’dog’])

21 stopWords \
22 = [’a’,’an’,’ the’,’ that’]

> Notice the Python Explicit line joining with (\<n1>) and
Python Implicit line joining with ((...))

» The backslash (\) must be followed by an end of line
character (<n1>)

» The (') symbol represents a space (see Unicode
U+2423 Open Box)

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

Map, Filter

List Comprehensions
Fold Family

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

51/164

https://docs.python.org/3/reference/lexical_analysis.html#explicit-line-joining
https://docs.python.org/3/reference/lexical_analysis.html#implicit-line-joining
https://en.wikipedia.org/wiki/Backslash
https://en.wikipedia.org/wiki/Newline
https://en.wikipedia.org/wiki/Newline

List Comprehension Exercises
Activity 1 (b) Transpose Matrix

> A matrix can be represented as a list of rows of
numbers

» We transpose a matrix by swapping columns and rows
» Here is an example

38 matrixA \

39 = [[1, 2, 3, 4]

40 ,[5, 6, 7 ,8]

41 ,[9, 10, 11, 12]]
43 matATr \

44 = [[1, 5, 9]

45 ,[2, 6, 10]

46 ,[3, 7, 11]

47 ,[4, 8, 12]]

» Using list comprehensions, write a function transMat,
to transpose a matrix

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

Map, Filter

List Comprehensions
Fold Family

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

52/164

List Comprehension Exercises
Activity 1 (c) List Pairs in Fair Order

68
69
70
71
72
73
74

> Write a function which takes a pair of positive integers
and outputs a list of all possible pairs in those ranges

> If we do this in the simplest way we get a bias to one
argument

> Here is an example of a bias to the second argument

yBiasLstTest \
= (yBiasListing(5,5)
== [(0, 0), (O, 1), (0, 2), (0, 3), (0, 4
, (1, 0), (1, O, @, 2y, a, 3, 4, D
, 2, 00, 2, D, @2, 2), @, 3, @2, D
, 3, 00, 3, 1), 3, 2, 3, 3, G, D
, (4, 00, (4, D, (4, 2), (4, 3, (4, HD

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

Map, Filter

List Comprehensions
Fold Family

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

53/164

List Comprehension Exercises

Activity 1 (c) List Pairs in Fair Order

> Rewrite the function which takes a pair of positive
integers and outputs a list of all possible pairs in those
ranges

» The output should treat each argument fairly — any
initial prefix should have roughly the same number of
instances of each argument

> Here is an example output

81 fairLstTest \

82 = (fairListing(5,5)

83 == [(0, 0)

84 , (0, 1, (1, 0)

85 , (0, 2), (1, D, @, 0

86 , 0, 3), (1, 2, 2, D, 3, 0O

87 , (0, 4, @1, 3, 2, 2, G, D, (4, 0D

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

Map, Filter

List Comprehensions
Fold Family

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

54/164

List Comprehension Exercises

Activity 1 (c) List Pairs in Fair Order

95
96
97
98

100

> Rewrite the function which takes a pair of positive
integers and outputs a list of lists of all possible pairs in
those ranges

» The output should treat each argument fairly — any
initial prefix should have roughly the same number of
instances of each argument — further, the output
should be segment by each initial prefix (see example

below)

» Here is an example output

fairLstATest \

= (fairListingA(5,5)

== [[(0, O]
, [0, 1), (1,
, [C0, 2, (1,
, [C0, 3), (1,
, [0, 4, (1,

0)]

1, (2, 0]

2), (2, 1, G, 0]
3, @2, 2, G, D,

4, 001D

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions
Map, Filter
List Comprehensions
Fold Family

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

55/164

List Comprehension Exercises
Answer 1 (a) Stop Words Filter

> Answer 1 (a) Stop Words Filter
> Write here:

P Answer 1 continued on next slide

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions
Map, Filter
Fold Family

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

56/164

List Comprehension Exercises
Answer 1 (a) Stop Words Filter

> Answer 1 (a) Stop Words Filter

24 def filterStopWords(words)

25 nonStopWords \

26 = [word for word in words

27 if word not in stopWords]
28 return nonStopWords

31 filterStopWordsTest \

32 = filterStopWords(words) \
33 == [’quick’, ’brown’, ’fox’
34 , 'jumps’, ’over’, ’lazy’, ’dog’]

» Go to Activity

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions
Map, Filter

Fold Family

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

57/164

List Comprehension Exercises

Answer 1 (b) Transpose Matrix

» Answer 1 (b) Transpose Matrix
> Write here:

P Answer 1 continued on next slide

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions
Map, Filter
Fold Family

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

58/164

List Comprehension Exercises

Answer 1 (b) Transpose Matrix

» Answer 1 (b) Transpose Matrix

def transMat(mat)
rowLen = Ten(mat[0])
matTr \
= [[row[i] for row in mat] for i 1in range(rowlLen)]
return matTr

transMatTestA \
= (transMat(matrixA)
== matATr)

> Note that a list comprehension is a valid expression as
a target expression in a list comprehension

» The code assumes every row is of the same length

P Answer 1 continued on next slide

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

Map, Filter

List Comprehensions
Fold Family

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

59/164

List Comprehension Exercises

Answer 1 (b) Transpose Matrix

> Note the differences in the list comprehensions below

38 matrixA \

39 = [[1, 2, 3, 4]
40 ,[5, 6, 7 ,8]
41 ,[9, 10, 11, 12]]

Python3>>> [[row[i] for row in matrixA]
for i 1in range(4)]

({1, 5, 91, 2, 6, 10, [3, 7, 111, [4, 8, 121]

Python3>>> [row[i] for row in matrixA

Ce for i in range(4)]

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
Python3>>> [row[i] for i in range(4)

Ce for row in matrixA]

[1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8, 12]
Python3>>> [[row[i] for i 1in range(4)]

- for row in matrixA]

(1, 2, 3, 41, [5, 6, 7, 81, [9, 10, 11, 12]]

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

Map, Filter

List Comprehensions
Fold Family

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

60/164

List Comprehension Exercises

Answer 1 (b) Transpose Matrix

» Answer 1 (b) Transpose Matrix

» The Python NumPy package provides functions for

N-dimensional array objects

> For transpose see numpy.ndarray.transpose

Python3>>>
Python3>>>
Python3>>>
array([[1,

Python3>>>
Python3>>>
array([[1,

[2f
Python3>>>
array([[1,

[3,
Python3>>>
@, 2)

import numpy as np
ar = np.array([[1,2]1,[3,4]11)
ar

Al

41D

arT = ar.transpose()
arT

31,

411

ar

2],

411

ar.shape

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

Map, Filter

List Comprehensions
Fold Family

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

61/164

https://www.numpy.org/
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.transpose.html

Functional

List Comprehension Exercises Programming
Answer 1 (c) List Pairs in Fair Order Phil Molyneux
. Agenda
» Answer 1 (c) List Pairs in Fair Order — first version Adobe Connect
» Write here Haskell & GHC
E\I/pes&Type
asses
69 yBiasLstTest \) o
70 = (yBiasListing(5,5) e iz
71 == [(0, 0), (O, 1), (0, 2), (0, 3), (0, 4 o
72 , (1, 0, (1, L, @, 2, a, 3, a, H :;'L'.%cfi;g;de'
73 , @2, 00, 2, D, @, 2, @2, 3, 2,D e
74 o (3, 0), (3, 1), (3, 2), (3, 3), (3, 4) List Comprehensions
75 , (4, 00, (4, D, (4, 2), (4, 3, (4, HD Fold Family
User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

62/164

List Comprehension Exercises

Answer 1 (c) List Pairs in Fair Order

63
64
65
66
67

69
70
71
72
73
74
75

» Answer 1 (c) List Pairs in Fair Order
» This is the obvious but biased version

def yBiasListing(xRng,yRng) :
yBiasLst \
= [(x,y) for x 1in range(xRng)

for y 1in range(yRng)]

return yBiasLst

yBiasLstTest \
= (yBiasListing(5,5)
== [(0, 0), (O, 1), (0, 2), (0, 3), (0, ¥

a, 0, a, 1, a, 2, a,
@2, 0, 2, 1, @, 2), (@,
3,0, 3, D, G, 2, (G,
4, 00, (4, D, 4, 2, 4,

3, @Q, 9
3, @, 9
3), 3, 4
3, (4, HD

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

Map, Filter

List Comprehensions
Fold Family

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

63/164

List Comprehension Exercises

Answer 1 (c) List Pairs in Fair Order

83
84
85
86
87
88
89

» Answer 1 (c) List Pairs in Fair Order — second version
» Write here

fairLstTest \

= (fairListing(5,5)

== [(0, 0)
, (0, 1),
, (0, 2),
, (0, 3),
, (0, 4,

1,
1,
1,
1,

0)

D,
2),
3,

(2, 0)
(2, b, (3, 0

@, 2, 3, D,

4, 00D

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

Map, Filter

List Comprehensions
Fold Family

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

64/164

List Comprehension Exercises

Answer 1 (c) List Pairs in Fair Order

» Answer 1 (c) List Pairs in Fair Order — second version

» This works by making the sum of the coordinates the
same for each prefix

77 def fairListing(xRng,yRng) :
78 fairLst \

79 = [(x,d-x) for d in range(yRng)
80 for x 1in range(d+1)]
81 return fairlLst

83 fairLstTest \

84 = (fairListing(5,5)

85 == [(0, 0)

86 , (0, 1), (1, 0)

87 , (0, 2), (1, 1), (2, 0)

88 , (0, 3), (1, 2), 2, 1), 3, 0)

89 , (0, &, @, 3, @, 2, 3, 1, ¢, 0]

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

Map, Filter

List Comprehensions
Fold Family

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

65/164

Functional

List Comprehension Exercises Programming
Answer 1 (c) List Pairs in Fair Order Phil Molyneux
Agenda
» Answer 1 (c) List Pairs in Fair Order — third version Py a—
» Write here Haskell & GHC
E\I/pes&Type

97 fairLstATest \
98 = (fairListingA(5,5)

Function Definitions

— Styles
99 == [[(0, 0)] A
100 » [0, 1, A, 0] Functions
101 , [0, 25, (1, 1), (2, 0] Map, Fiter
102 ’ [(0, 3), (1, 2), (2, 1), (3, 0)] List Comprehensions
103 , [0, 4, (@@, 3), 2, 2, 3, D, (4, OID el ety
User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

66/164

List Comprehension Exercises

Answer 1 (c) List Pairs in Fair Order

» Answer 1 (c) List Pairs in Fair Order — third version
» The inner loop is placed into its own list comprehension

91 def fairListingA(xRng,yRng) :
92 fairLstA \

93 = [[(x,d-x) for x in range(d+1)]
94 for d in range(yRng)]
95 return fairlLstA

97 fairLstATest \

98 = (fairListingA(5,5)

99 == [[(0, 0)]

100 , [0, 1), (1, 0)]

101 , [0, 2, (1, 1), (2, 0)]

102 , [0, 3), (1, 2, (2, 1D, (3, 0]

103 , [0, 4, @@, 3, @2, 2), (3, D, 4, OID

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

Map, Filter

List Comprehensions
Fold Family

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

67/164

Higher Order Functions
Foldr

» foldr captures a common pattern of combining
elements of a list

» Consider sum and product

46 sumOl :: Num
47 sum01 []
48 sumO0l (x:xs)

= [a] -> a

e

X + sumOl xs

=z

50 productO0l :: Num
51 product0l []

52 product0l (x:xs)

= [a] -> a
1
X * product0l xs

nmnw

> We abstract out the common pattern:

53 foldr0l f v [] =V
54 foldr0l f v (x:xs) = f x (foldr0l f v xs)

» We now can define:

55 sum02 xs = foldr0l (+) 0 xs
s6 product02 xs = foldrOl (*) 1 xs

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions
Map, Filter
List Comprehensions
Fold Family

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

68/164

Functional
Programming

Higher Order Functions

Foldr (contd) Phil Molyneux

Agenda
» foldr takes an operator (®), a final value x and a list

Adobe Connect

XS

foldr (®) * [x1,x2,...,Xn]
=x1 ® (X2 ® (...(xp ® %)...))

The operator (®) is substituted for each list
constructor (:)

The final value x is substituted for the empty list []

The function is called fold right because of the direction
of the bracketing

Beware operator associativity

Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

Map, Filter

List Comprehensions
Fold Family

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

69/164

Foldr

Further Foldr Examples

> or takes a list of Booleans and finds the disjunction of
all the values

> Recursive version followed by foldr version

57 or0l :: [Bool] -> Bool
58 or0Ol [] = False
59 or0l (x:xs) = x || or0l xs

61 or02 xs = foldr (||) False xs

> and takes a list of Booleans and finds the conjunction of
all the values

» Recursive version followed by foldr version

63 and0l :: [Bool] -> Bool
64 and0l [] = True
65 and0l (x:xs) = x & & and0l xs

67 and02 xs = foldr (&&) True xs

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions
Map, Filter
List Comprehensions
Fold Family

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

70/164

Foldr

Further Foldr Examples (2)

» foldr is more general than you might expect
» Tength takes a list and returns its length

69
70
71

~

3

Health warning: Tength is more general than shown here

Recursive version followed by foldr version

lengthO5 ::
Tlength05 []

Tength05 (x:xs)

[a] -> Int
=0
=1

+ length05 xs

Tength06 xs

= foldr0l (\x n -=> 1 + n) 0 xs

> reverse takes a list and returns the reverse
Recursive version followed by foldr version

reverseQOl ::
reverse0l []

reverse0l (x:xs)

[a] -> [a]
[1

reverse0l xs ++ [x]

reverse02 xs = foldr0l snoc [] xs

where snoc x xs = xs ++ [x]

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions
Map, Filter
List Comprehensions
Fold Family

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

71/164

Foldr

Type of foldr0O1

> As we have defined foldrO1 it has the type

g2 foldr0l :: (@ ->b ->b) b -> [a] > b

> Without the later examples you may have thought it was

foldr0l :: (a -> a ->a) ->a -> [a] -> a

» The GHC Prelude has a more general version since this
pattern of computation can be performed over more
data types than just lists — see later

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions
Map, Filter
List Comprehensions
Fold Family

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

72/164

User Defined Types and Classes

Algebraic Datatypes

> Haskell provides a way of providing new concrete data
types by declaring the names of a type and names of
the elements of the type

» The names of a type is called a type constructor

» The names of elements of a type is called a data
constructor

» Example: Day for days of the week

83 data Day

84 = Monday | Tuesday | Wednesday | Thursday
85 | Friday | Saturday | Sunday
86 deriving (Show, Read, Eq, Ord, Enum, Bounded)

» Names of type constructors start with upper case letters

» Names of data constructors start with upper case letters
but symbolic infix constructors can be formed

» The deriving clause creates automatic instances of the
type classes Show, Read, Eq, Ord, Enum, Bounded

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data

Types

Algebraic Datatypes
Standard Haskell Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

73/164

Algebraic Datatypes

Example: Days

> tomorrow takes a Day and returns the next

88 tomorrow dy
89 = if dy == Sunday then Monday else succ dy

91 tomorrow0l :: Day -> Day
92 tomorrow0l dy
93 = toEnum ((fromEnum dy + 1) ‘mod‘ 7)

> Note that tomorrow0Q1 requires the type signature (or
type annotation) otherwise toEnum and fromEnum
would not know which type

» The brackets are required since ‘mod‘ has precedence
7, the same as (*),(/)

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data

Types

Algebraic Datatypes
Standard Haskell Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

74/164

Algebraic Datatypes

Example: Bool

> Several provided types are defined this way

data Bool = False | True
deriving (Show, Read, Eq, Ord, Enum, Bounded)

» Note that Day has 8 elements, Bool has 3 elements
since undefined (bottom, 1) is a member of every type

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data

Types

Algebraic Datatypes
Standard Haskell Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

75/164

Algebraic Data Types

Standard Haskell Types

» We have already met characters, strings, numbers and
Bool

> Lists are an algebraic data type with a special syntax —
it is as if it had the following declaration

data [a] =[] | a : [a]
deriving (Eq, Ord)

» Tuples are an algebraic data type with special syntax —
for pairs the single constructor is (,)

GHCi> (3,5) == (,) 3 5
True

GHGCi> :t (,)

G) ::a->b -> (a, b)

» The Unit datatype () has only one non-1L member, the
nullary constructor ()

data O = O
deriving (Eq,Ord,Bounded, Enum,Read, Show)

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types
Algebraic Datatypes
Standard Haskell Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

76/164

Algebraic Data Types

Standard Haskell Types (contd)

> Function types — functions are an abstract type — no
constructors directly create functional values.

» The Maybe datatype provides a simple optional value —
useful for error handling — here is the declaration and
the maybe function as an example usage

data Maybe a = Nothing | Just a
deriving (Eq,O0rd)

maybe :: b -> (a -> b) -> Maybe a -> b
maybe n f Nothing
maybe n f (Just x)

n
f x

» The Either datatype provides for richer error handling

data Either a b = Left a | Right b
deriving (Eq, Ord, Read, Show)

either :: (a -> ¢c) -> (b -> ¢) -> Either a b -> ¢
either f g (Left x)
either f g (Right y)

f x
gy

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types
Algebraic Datatypes
Standard Haskell Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

77/164

Algebraic Data Type Exercises S0607

Q1

»

94
95
96

>
>

Here is an algebraic data type representing temperature

data Temperature
= Celsius Float | Fahrenheit Float | Kelvin Float
deriving (Eq,Show,Read)

Write the following functions

tempToCelsius takes a temperature and converts it to
Celsius

tempToFahrenheit takes a temperature and converts it
to Fahrenheit

tempToKeTvin takes a temperature and converts it to
Kelvin

The formulas are at Conversion of units of temerature

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

AlgQ1

Alg A1

Alg Q2

Alg A2

Alg Q3

Alg A3

Alg Q4

Alg A 4

AlgQs

AlgAS

Alg Q6

Alg A6

Laws for return and bind

Tree Data Types

Tree Data Type
Exercises

. «..78/164

B

https://en.wikipedia.org/wiki/Conversion_of_units_of_temperature

Algebraic Data Type Exercises S0607

Answers
Al

97 tempToCelsius (Celsius x) = Celsius x
98 tempToCelsius (Fahrenheit x) = Celsius ((x - 32)%5/9)
99 tempToCelsius (Kelvin x) = Celsius (x - 273.15)

101 tempToFahrenheit (Celsius x) = Fahrenheit (x*9/5 + 32)
102 tempToFahrenheit (Fahrenheit x)

103 = Fahrenheit x
104 tempToFahrenheit (Kelvin x) = Fahrenheit (x%*9/5 - 459.67)
105 -- 459.67 = -273.15%9/5 + 32

107 tempToKelvin (Celsius x) = Kelvin (x + 273.15)
108 tempToKelvin (Fahrenheit x)

109 = Kelvin ((x + 459.672)%5/9)

110 tempToKelvin (Kelvin x) = Kelvin x

P Soln 1 continued on next slide

» Go to Algebraic Data Type Exercises S0607 Q 1

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises
AlgQ1

Alg Q 2
AlgA2
AlgQ3
AlgA3
Alg Q 4
Alg A4
AlgQs
AlgA 5
Alg Q 6
Alg A 6
Laws for return and bind

Tree Data Types

Tree Data Type
Exercises

o . «.79/164

Algebraic Data Type Exercises S0607

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type

AIgQZ
AlgA2
AlgQ3
AlgA3
Alg Q 4
Alg A 4
AlgQs
AlgA 5
Alg Q6

Answers
A 1 (contd)
112 tempOl = Celsius 0O
113 temp02 = Kelvin 0
114 temp03 = Fahrenheit 0
115 temp04 = Celsius 100
117 temps = [tempO0l,temp02,temp03,temp04]
118 tempConvs = [tempToCelsius,tempToFahrenheit,tempToKelvin]
120 test03 = [f x | f <- tempConvs, x <- temps]
121 test03out
122 = [Celsius 0.0,Celsius (-273.15),Celsius (-17.777779),Celsius 100.0 Exercises
123 ,Fahrenheit 32.0,Fahrenheit (-459.67),Fahrenheit 0.0,Fahrenheit 21?%?‘
124 ,Kelvin 273.15,Kelvin 0.0,Kelvin 255.37332,Kelvin 373.15]
127 test04 = [[f x | f <- tempConvs] | x <- temps]
128 testO4out
129 = [[Celsius 0.0,Fahrenheit 32.0,Kelvin 273.15]
130 ,[Celsius (-273.15),Fahrenheit (-459.67),Kelvin 0.0]
131 ,[Celsius (-17.777779) ,Fahrenheit 0.0,Kelvin 255.37332]
132 ,[Celsius 100.0,Fahrenheit 212.0,Kelvin 373.15]]

Alg A 6
Laws for return and bind

Tree Data Types

Tree Data Type
Exercises

. <. .80/164

B

Algebraic Data Type Exercises S0607

Q2

134
135
136
137

139
140
141
142
143
144
145
146
147
148
149
150
151

> Here is a (very) simple family database

data Person = Person {name :: String
,father :: Maybe Person
,mother :: Maybe Person}

deriving (Eq,Show,Read)

phil = Person
bery1l = Person
ron = Person
hilda = Person
dora = Person
joe = Person
jane = Person
sam = Person
florrie = Person
arthur = Person
hannah = Person

"Phi1" (Just ron) (Just hilda)
"Bery1" Nothing (Just dora)

"Ron" (Just joe) (Just jane)
"Hilda" (Just sam) (Just florrie)
"Dora" (Just arthur) (Just hannah)
"Joseph" Nothing Nothing

"Jane" Nothing Nothing

"Sam" Nothing Nothing

"Florence" Nothing Nothing
"Arthur" Nothing Nothing

"Hannah" Nothing Nothing

people = [phil,beryl,ron,hilda,dora
,joe,jane,sam,florrie,arthur,hannah]

P> Q2 continued on next slide

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

AlgQ1

Alg A1l

Alg Q2

AlgA2

Alg Q3

Alg A3

Alg Q4

Alg A 4

AlgQs

AlgAS

Alg Q6

Alg A6

Laws for return and bind

Tree Data Types

Tree Data Type
Exercises

o . < ..81/164

. . Functional
Algebraic Data Type Exercises S0607 Programming
Q 2 (contd) Phil Molyneux
) i i Agenda
> |n the data, Nothing represents a missing value Py —
> Write a function nameStr which takes a Maybe Person HaskelllsdGHE
and returns the name if present otherwise the string RS BRTpe
“UnknOWn" Function Definitions
. — Styles
> Use the standard Prelude function maybe — see GHC Higher-order
Prelude — note you can search quickly by typing s — Functions
try it, it’s neat (it is part of Hackage) el
153 nameStr :: Maybe Person -> String éL%?f,EﬁE PETR W
AlgQ1
. . . Alg A1l
> Write a function nameMbe which takes a Maybe Person Auqz
. . Alg A2
and returns the name (if known) as a Maybe String Mo Q3
AlgA3
154 nameMbe :: Maybe Person -> Maybe String 2::2:
AlgQs
AlgAS
Alg Q 6
AlgA6

Laws for return and bind
Tree Data Types

Tree Data Type
Exercises

. «..82/164

B

http://hackage.haskell.org/package/base-4.11.1.0/docs/Prelude.html
http://hackage.haskell.org/package/base-4.11.1.0/docs/Prelude.html

Algebraic Data Type Exercises S0607

Answers

» nameStr

155 nameStr mPers = maybe "Unknown" name mPers

» nameMbe

156 nameMbe (Just pers)
157 nameMbe Nothing

Just (name pers)
Nothing

» Go to Algebraic Data Type Exercises S0607 Q 2

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

AlgQ1

AlgA 1

Alg Q2

AlgQ3
AlgA3
Alg Q4
Alg A4
AlgQs
AlgA 5
Alg Q 6
Alg A 6
Laws for return and bind

Tree Data Types

Tree Data Type
Exercises

 «..83/164

.

Algebraic Data Type Exercises S0607
Q3

> Write a function maternalGrandfather01l that takes a
Person and returns their maternal grandfather (if
known)

158 maternalGrandfatherQl :: Person -> Maybe Person

> Write a function paternalGrandfather01l that takes a
Person and returns their maternal grandfather (if
known)

160 paternalGrandfatherQl :: Person -> Maybe Person

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

AlgQ1

Alg A1

Alg Q2

Alg A2

AlgQ3

Alg A3

Alg Q4

Alg A 4

AlgQs

AlgAS

Alg Q6

Alg A6

Laws for return and bind

Tree Data Types

Tree Data Type
Exercises

. «..B84/164

B

Functional

Algebraic Data Type Exercises S0607 i

Phil Molyneux
Answers
A3 Agenda
Adobe Connect
Haskell & GHC
> maternalGrandfather0l o
Types & Type
|
161 maternalGrandfather0l p Classes
162 = case mother p of Function Definitions
163 Nothing -> Nothing =il
164 Just mum -> Higher-order
165 case father mum of REEIEE
166 Nothing -> Nothing User Defined Data
167 Just mgf —> TS
168 Just mgf Algebraic Data Type
Exercises
AlgQ1
» paternalGrandfather0l o
Alg A2
169 paternalGrandfather0l p AlgQ3
170 = case father p of
171 Nothing -> Nothing Hp@a
172 Just dad -> 2::3:
173 case father dad of AlgAs
174 Nothing -> Nothing Alg Q6
175 Just pgf -> Alg A6
176 Just pgf Laws for return and bind

Tree Data Types

" " Tree Data Type
» Go to Algebraic Data Type Exercises S0607 Q 3 Exercises

o .« .85/164

Functional

Algebraic Data Type Exercises S0607 Programming

Q 4 Phil Molyneux

Agenda
> Write a function bothGrandfathers01 that takes a Py e—

Person and returns a pair of grandfathers, if they both Haskell & GHC
exist Types & Type
Classes
177 bothGrandfathers0l :: Person Function Definitions
178 -> Maybe (Person,Person) — Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

AlgQ1l

Alg Al

AlgQ2

Alg A2

AlgQ3

Alg A 3
» Go to Algebraic Data Type Exercises S0607 A 4 o

Alg A4
AlgQs
AlgA 5
Alg Q 6
Alg A 6
Laws for return and bind

Tree Data Types

Tree Data Type
Exercises

o . < .806/164

Functional

Algebraic Data Type Exercises S0607 Programming

Phil Molyneux
Answers
Agenda
A4
Adobe Connect
Haskell & GHC
» bothGrandfathers01l
Types & Type
Classes
179 bothGrandfathers01 p Function Definitions
180 = case father p of — Styles
181 Nothing -> Nothing Higher-order
182 Just dad -> Functions
183 case father dad of Vs e B
184 Nothing -> Nothing Types
185 Just gfl = Algebraic Data Type
186 case mother p of Exercises
187 Nothing -> Nothing AlgQl
188 Just mum -> Alg Al
189 case father mum of HAp@z
] . Alg A2
190 Nothing -> Nothing AlgQ3
191 Just gf2 -> AlgA3
192 Just (gfl, gf2) Alg Q 4
AlgQs
. . AlgAS5
> Soln 4 continued on next slide AlgQs
Alg A6

Laws for return and bind

» Go to Algebraic Data Type Exercises S0607 Q 4 Tree Data Types

Tree Data Type
Exercises

 «..87/164

B

Algebraic Data Type Exercises S0607

Answers
A 4 (contd)
» |In each of the last three examples we had a common
pattern:
> If a computation fails at any point we return Nothing
> If it succeeds we pass the value on to the next stage
» Finally we return a value wrapped in a Maybe value
» Haskell captures this pattern with two functions
(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
Nothing >>= g = Nothing
Just x >>=g¢ =g X
-- (>>=) 1s spoken as \emph{bind}
return :: a -> Maybe a
return x = Just x
P Soln 4 continued on next slide

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

AlgQ1

Alg A1

Alg Q2

Alg A2

Alg Q3

Alg A3

Alg Q 4

Alg A 4

AlgQs

AlgAS

Alg Q6

Alg A6

Laws for return and bind

Tree Data Types

Tree Data Type
Exercises

. < _.BR/164

B

Functional

Algebraic Data Type Exercises S0607 i

Phil Molyneux
Answers !

Agend
A 4 (contd) genda

Adobe Connect
Haskell & GHC

> We now rewrite the previous three functions:
Types & Type

cl
194 maternalGrandfather02 p 45568
195 = mother p >>= father Function Definitions
— Styles
197 paternalGrandfather02 p l;ighff-order
198 = father p >>= father ELCUCDS
User Defined Data
200 bothGrandfathers02 p Types
201 = father p >>= Algebraic Data Type
202 (\dad -> father dad >>= Exercises
203 (\gfl -> mother p >>= ::::]1
204 (\mum -> father mum >>= @
205 (\gf2 -> return (gfl,gf2) AlgA 2
206 D)) AlgQ3
AlgA3
Alg Q 4
> Soln 4 continued on next slide 2:22:
Alg Q 6
Alg A6

Laws for return and bind
» Go to Algebraic Data Type Exercises S0607 Q 4 Tree Data Types

Tree Data Type
Exercises

o . <« .89/164

. . Functional
Algebraic Data Type Exercises S0607 Programming
A Phil Molyneux
nswers
Agenda
A 4 (contd)
Adobe Connect
» Haskell further provides the do notation to reduce RELEIGEHE
syntactic clutter O VP
do {p} =p Function Definitions
do {p;stmnts} = p >> do {stmnts} iswles
do {x <- p;stmnts} = p >>= \x -> do {stmnts} Higher-order
User Defined Data
(>>) :: Maybe a -> Maybe b -> Maybe b Types
m>> n=m>>=\X ->n Algebraic Data Type
-- (>>) 1is spoken then Exercises
AlgQ1
. i . AlgA 1
» (>>) is a convenience function that sequences two A
computational contexts where the second does not Mo 3
involve the value carried in the first s
> We can now give the brief form of bothGrandfathers oY
> Note that the offside rule means we can dispense with s
(;) or choose not to ADAG

Laws for return and bind
P Soln 4 continued on next slide Tree Data Types

Tree Data Type
Exercises

. «..90/164

B

Functional

Algebraic Data Type Exercises S0607 Programming

A Phil Molyneux
nswers
Agenda
A 4 (contd)
Adobe Connect
. Haskell & GHC
> Without (;) aske
Types & Type
cl
208 bothGrandfathers03 p = do a”és -
209 dad <- father p Function Definitions
210 gfl <- father dad = Sl
211 mum <- mother p Flighgr-order
212 gf2 <- father mum Cpctons
213 return (gfl,gf2) _lIJ_ser Defined Data
ypes
. . . Algeb.raic Data Type
> With (;) — what does it look like ? Exercises
AlgQ1
215 bothGrandfathers04 p = do { i::g‘z
216 dad <- father p ; AgA2
217 gfl <- father dad ; AlgQ3
218 mum <- mother p ; Alg A3
219 gf2 <- father mum ; Alg Q 4
220 return (gfl,gf2) ; TS
221 3 AlgA S
Alg Q 6
Alg A6

Laws for return and bind

P Soln 4 continued on next slide Tree Data Types

» Go to Algebraic Data Type Exercises S0607 Q 4 ge;c?sf? Type

N . «.91/164

Algebraic Data Type Exercises S0607

Answers
A 4 (contd)

» The last two examples look like code snippets from an
imperative language

» The expression father p which has type Maybe
Person is interpreted as a statement in an imperative
language that returns a Person as a result or fails

» Under this interpretation, the then, (>>) operator is an
an implementation of the semicolon

» The bind, (>>=) operator is an an implementation of
the semicolon and assignment (binding) of the result of
a previous computational step

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

AlgQ1

AlgA 1

Alg Q 2

Alg A2

AlgQ3

AlgA3

Alg Q 4

Alg A 4

AlgQs

AlgA 5

AlgQ 6

Alg A6

Laws for return and bind

Tree Data Types

Tree Data Type
Exercises

. «..92/164

B

Algebraic Data Type Exercises S0607
Q5

» Write a function bothGFNames that takes a Person and

returns the names of both grandfathers, if they both are
known

222 bothGFNames :: Person
223 -> Maybe (String, String)

» Go to Algebraic Data Type Exercises S0607 A 5

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

AlgQ1

Alg A1

Alg Q2

AlgA2

AlgQ3

AlgA3

Alg Q4

Alg A 4

LAgQs

AlgAS

Alg Q 6

Alg A6

Laws for return and bind

Tree Data Types

Tree Data Type
Exercises

o . <.93/164

Functional

Algebraic Data Type Exercises S0607 Programming

Phil Molyneux
Answers
Agenda
AS Adobe Connect
Haskell & GHC

» bothGFNames long version e
ypes & Type

225 bothGFNames p Classes
226 = case father p of Function Definitions
227 Nothing -> Nothing =il
228 Just dad -> Higher-order
229 case father dad of REEIEE
230 Nothing -> Nothing User Defined Data
231 Just gfl —> Types
232 case mother p of Algebraic Data Type
233 Nothing -> Nothing Exercises
234 Just mum -> :::‘:]‘
235 case father mum of Ao @z
236 Nothing -> Nothing Alg A2
237 Just gf2 -> AlgQ3
238 Just (name gfl, name gf2) Alg A3
Alg Q4
Alg A4
Alg Q5
> Soln 5 continued on next slide AlgQ6
Alg A6

Laws for return and bind

» Go to Algebraic Data Type Exercises S0607 Q 5 Tree Data Types

Tree Data Type
Exercises

 «..94/164

B

Functional

Algebraic Data Type Exercises S0607 Programming

Phil Molyneux
Answers
AS Agenda

Adobe Connect
» bothGFNames with return and bind, (>>=) RELEIGEHE

Types & Type
240 bothGFNamesOl :: Person Classes
241 -> Maybe (String,String) Fugctilon Definitions
242 bothGFNames01 p =SS
243 = father p >>= Higher-order
244 (\dad -> father dad >>= Runctions
245 (\gfl -> mother p >>= User Defined Data
246 (\mum -> father mum >>= Types
247 (\gf2 -> return (name gfl,name gf2) Algebraic Data Type
248 NN Exercises

AlgQ1

AlgA 1

Alg Q2
P Soln 5 continued on next slide 2:33?

AlgA3

AlgQ 4

Alg A 4

AlgQs

Alg Q6
» Go to Algebraic Data Type Exercises S0607 Q 5 Alg A6

Laws for return and bind
Tree Data Types

Tree Data Type
Exercises

.~ ..95/164

B

Functional

Algebraic Data Type Exercises S0607 Programming

Phil Molyneux
Answers
Agenda
A5
Adobe Connect
. . Haskell & GHC
» bothGFNames with do notation
Types & Type
Classes
250 bothGFNames02 :: Person) -
251 -> Maybe (String,String) F_'-”;i;'lzg Definitions
252 bothGFNames02 p = do
253 dad <- father p :;Ilgh?r-order
254 gfl <- father dad unctions
255 mum <- mother p User Defined Data
256 gf2 <- father mum Types
257 return (name gfl,name gf2) Algebraic Data Type
Exercises
AlgQ1
AlgA 1
P Soln 5 continued on next slide 2::2;
AlgQ3
AlgA3
Alg Q 4
Alg A4
AlgQs
sas
Alg A

Laws for return and bind
Tree Data Types

Tree Data Type
Exercises

<. .96/164

B

Functional

Algebraic Data Type Exercises S0607 Programming

Phil Molyneux
Answers
AS Agenda
Adobe Connect
. . .. Haskell & GHC
» bothGFNames with do notation and explicit (;), ({),
Types & Type
(}) Classes
Function Definitions
259 bothGFNames03 :: Person — Styles
260 -> Maybe (String,String) iglharetn
261 bothGFNames03 p = do { Functions
262 dad <- father p ; User Defined Dat
263 gfl <- father dad ; Tf,ﬁgse e
264 mum <- mother p ;)
: Al Data T
265 gf2 <- father mum ; Exiifi’fef EEUES
266 return (name gfl,name gf2) ; AlgQl
267 } AlgA 1
Alg Q2
Alg A2
AlgQ3
AlgA3
AlgQ 4
Alg A 4
Alg Q5
AlgA6

Laws for return and bind
Tree Data Types

Tree Data Type
Exercises

o . «.97/164

Algebraic Data Type Exercises S0607
Q6

> Write eitherGFNames which takes a Person and returns
a pair of names if either or both or none are known

269 eitherGrandfather
270 :: Person -> (Maybe String, Maybe String)

» Go to Algebraic Data Type Exercises S0607 A 6

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises
AlgQ1l
Alg Al
AlgQ2
Alg A2
AlgQ3
AlgA3
AlgQ4
AlgA 4
AlgQs
AlgA S

Alg A6
Laws for return and bind
Tree Data Types

Tree Data Type
Exercises

o . «.98/164

Algebraic Data Type Exercises S0607
Answers

A6

» Posible answer

272
273
274
275
276

278
279
280
281

282

284
285
286
287
288

maternalGrandfather :: Person -> Maybe Person
maternalGrandfather p = do

mum <- mother p

gfm <- father mum

return gfm

paternalGrandfather :: Person -> Maybe Person
paternalGrandfather p = do

dad <- father p

gfp <- father dad

return gfp

-- eitherGrandfather
- :: Person -> (Maybe Person,Maybe Person)
eitherGrandfather p
= (nameMbe (maternalGrandfather p)
,hameMbe (paternalGrandfather p))

» Go to Algebraic Data Type Exercises S0607 Q 6

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises
AlgQ1
Alg Al
Alg Q2
Alg A2
AlgQ3
AlgA3
AlgQ4
AlgA 4
AlgQs
AlgAS
Alg Q6

Laws for return and bind
Tree Data Types

Tree Data Type
Exercises

 «..99/164

B

. Functional
Return and Bind Programming
Phil Molyneux
Laws
. i . Agenda
» The return and bind, (>>=) functions are provided by Py —
Haskell since they are much more general than just Haskell & GHC
being used for the Maybe a datatype Types & Type
asses
> They are provided by a type class Function Definitions
— Styles
> Any instance must obey the following laws Higher-order
Functions
1 return x >>=f = f x -- Jeft unit User Defined Data
2 m >>= return =m -- right unit Types
3 (m 2= f) >>.= .g =0 ees (\X -> fx >>= g) Algebraic Data Type
4 -- associativity Exercises
AlgQ1
. . AlgA1l
» These laws ensure that the instance of this type class A
. . . 9
works as expected and fits with other instances (and Alg Q3
other type classes) Noas
. . . - AlgA 4
> Exercise: verify the laws for the definitions of return Ag Qs
. I
and bind, (>>=) for the Maybe a type Pl
Alg A 6

Laws for return and bind
Tree Data Types

Tree Data Type
Exercises

. <.100/164

B

Return and Bind

Laws (contd)

» The return and bind, (>>=) — verification of laws

1
2
3

10
11

13
14
15

17

return x >>= f
— Just x >>= f
- f x

m >>= return
Nothing >>= return — Nothing (= m)
Just X >>= return — return x — Just x (= m)

(m>>=f) >>=g¢g
(Nothing >>= f) >>= g — Nothing >>= g — Nothing
(Just x >>=f) >>=g - f x >>=¢

m>>= (\x -> f x >>= g)

Nothing >>= (\x -> f x >>= g) — Nothing
Just x >>= (\x -> f x >>= @)

- (\x > f x >>= g) x

- fx>=9

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

AlgQ1

Alg A1

Alg Q2

Alg A2

Alg Q3

Alg A3

Alg Q4

Alg A 4

AlgQs

AlgAS

Alg Q 6

Alg A 6

Laws for return and bind

Tree Data Types

Tree Data Type
Exercises

- <.101/164

B

Return and Bind

Laws (contd)

>

>

The examples above come from Haskell Wikibook:
Understanding Monads

We are being a bit premature and introducing the Maybe
a instance of the Monad type class as a motivating
example (it is meant to look useful)

This pattern of computation is very common (it
encapsulates just about all imperative programming)

Return as a neutral element — the behaviour of
return is specified by the left and right unit laws —
return does not perform computation, it just collects
values

Associativity of bind — this makes sure that the bind
operator (like the semicolon) only cares about the order
of computations not about their nesting

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

AlgQ1

Alg A1

Alg Q 2

Alg A2

AlgQ3

AlgA3

Alg Q 4

Alg A 4

AlgQs

AlgA S

Alg Q 6

Alg A 6

Laws for return and bind

Tree Data Types

Tree Data Type
Exercises

. <.102/164

B

https://en.wikibooks.org/wiki/Haskell/Understanding_monads
https://en.wikibooks.org/wiki/Haskell/Understanding_monads

Tree Data Types

Binary Trees and Recursion Schemes

> Binary trees appear in lots of applications and have
common patterns of recursive definitions fr many
functions

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Binary Trees: Data
Types and Examples
Alternative Tree Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

103/164

Tree Data Types

Binary Trees and Recursion Schemes

>

In imperative, procedural programming, common
patterns of control flow with GOTOs were astracted out
with structured programming in the 1970s — sequence,
selection and iteration — which required new language
constructs

In functional programming, we can often express new
constructions and abstractions as higher-order
functions

This decouples how a function recurses over data from
what the function actually does

Whilst it takes some effort to learn about the common
patterns and their higher-order functions, there are
several advantages (as there are for any abstraction)
We can discover general properties of the abstraction
and hence infer properties of specific instances for free.
We can also use the general properties to calculate
functions

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Binary Trees and
Recursion Schemes

Binary Trees: Data
Types and Examples
Alternative Tree Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

104/164

Binary Trees

Data Types and Examples

291
292
293

295
296
297

» We shall (mainly) use the following algebraic data type
for binary trees

data BinTree a
= EmptyBT | NodeBT a (BinTree a) (BinTree a)
deriving (Eq, Show, Read)

> We also declare a Letter algebraic data type for

convenience

data Letter
= A|B|CIDIEIFIGIHII|J|K|ILIM|N|O
deriving (Eq, Ord, Enum, Bounded, Show, Read)

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Binary Trees and
Recursion Schemes

Binary Trees: Data
Types and Examples
egBSTree
egBSTreel
egBSTree2
egBSTree3
Alternative Tree Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work 105/164

Binary Trees

Example egBSTree diagram

egBSTree

egBSTreeR

egBSTreeL

» Name convention: variables must start with lower case
so we have eg (for example, exempli gratia), BSTree
indicates this is not just a Binary Tree but also a Binary
Search Tree

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Binary Trees and
Recursion Schemes

Binary Trees: Data
Types and Examples

egBSTree

egBSTreel

egBSTree2
egBSTree3
Alternative Tree Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work 106/164

Binary Trees

Example egBSTree code

299
300
301

302
303
304
305
306
307
308
309
310
311

312
313
314
315
316
317

egBSTree ::

egBSTree

BinTree Letter

= NodeBT H

(NodeBT D
(NodeBT B
(NodeBT
(NodeBT
(NodeBT F
(NodeBT
(NodeBT

)
(NodeBT L

(NodeBT J
(NodeBT
(NodeBT

(NodeBT N
(NodeBT
(NodeBT

N>

G

0

EmptyBT
EmptyBT

EmptyBT
EmptyBT

EmptyBT
EmptyBT

EmptyBT
EmptyBT

EmptyBT)
EmptyBT))

EmptyBT)
EmptyBT))

EmptyBT)
EmptyBT))

EmptyBT)
EmptyBT))

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Binary Trees and
Recursion Schemes

Binary Trees: Data
Types and Examples

egBSTreel

egBSTree2

egBSTree3
Alternative Tree Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work 107/164

Binary Trees

Example egBSTreel diagram

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Binary Trees and
Recursion Schemes

Binary Trees: Data
Types and Examples

egBSTree

egBSTree2
egBSTree3
Alternative Tree Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work 108/164

Binary Trees

Example egBSTreel code

319
320
321

322
323
324
325
326
327

egBSTreel
egBSTreel
= NodeBT H

(NodeBT D EmptyBT EmptyBT)

BinTree Letter

(NodeBT L

(NodeBT J EmptyBT EmptyBT)

(NodeBT N

(NodeBT M EmptyBT EmptyBT)
(NodeBT O EmptyBT EmptyBT)))

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Binary Trees and
Recursion Schemes

Binary Trees: Data
Types and Examples

egBSTree

egBSTree2
egBSTree3
Alternative Tree Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work 109/164

Binary Trees
Example egBSTree?2

egBSTree2L

egBSTree2

egBSTree2R

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Binary Trees and
Recursion Schemes

Binary Trees: Data
Types and Examples

egBSTree
egBSTreel

egBSTree3
Alternative Tree Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work 110/164

Binary Trees

Example egBSTree2 code

329
330
331

332
333
334
335
336
337
338
339
340
341

342
343

egBSTree2
egBSTree2
= NodeBT H

:: BinTree Letter

(NodeBT D
(NodeBT B

(NodeBT A EmptyBT EmptyBT)
(NodeBT C EmptyBT EmptyBT))

(NodeBT F

(NodeBT E EmptyBT EmptyBT)
(NodeBT G EmptyBT EmptyBT)))

(NodeBT L
(NodeBT 1]

(NodeBT N EmptyBT EmptyBT))

(NodeBT I EmptyBT EmptyBT)

EmptyBT)

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Binary Trees and
Recursion Schemes

Binary Trees: Data
Types and Examples

egBSTree
egBSTreel

egBSTree3
Alternative Tree Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work111/164

Binary Trees
Example egBSTree3

egBSTree3L

egBSTree3

egBSTree3R

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Binary Trees and
Recursion Schemes

Binary Trees: Data
Types and Examples

egBSTree
egBSTreel
egBSTree2

Alternative Tree Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work 112/164

Binary Trees

Example egBSTree3 code

345
346
347
348
349
350
351

352
353
354
355
356
357
358
359

egBSTree3 ::
egBSTree3
= NodeBT H

BinTree Letter

(NodeBT D
(NodeBT B

(NodeBT A EmptyBT EmptyBT)
(NodeBT C EmptyBT EmptyBT))

(NodeBT F
EmptyBT

(NodeBT G EmptyBT EmptyBT)))

(NodeBT L
EmptyBT
(NodeBT N

(NodeBT M EmptyBT EmptyBT)
(NodeBT O EmptyBT EmptyBT)))

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Binary Trees and
Recursion Schemes

Binary Trees: Data
Types and Examples

egBSTree
egBSTreel
egBSTree2

Alternative Tree Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work 113/164

Tree Types

Alternative Trees

361
362
363
364
365
366
367
368
369
370
371

> In computing, trees can come in many forms. There can
be trees with data only at the leaves, data only in the
internal nodes, data of different types in alternate levels
(useful for game trees), or multiway trees

data LeafTree a = LeaflT a
| NodelLT a (LeafTree a) (LeafTree a)
deriving (Eq, Show, Read)

data IntlTree a = LeafIT a
| NodeIT a (IntlTree a) (IntlTree a)
deriving (Eq, Show, Read)

data DualTree a b = LeafDT a
| NodeDT a (DualTree b a) (DualTree b a)
deriving (Eq, Show, Read)

data RoseTree a = LeafRT a [RoseTree a]
deriving (Eq, Show, Read)

> Exercise: give an example of DualTree Letter
Integer

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Binary Trees and
Recursion Schemes

Binary Trees: Data
Types and Examples
Alternative Tree Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

114/164

Alternative Trees

Dual Trees Examples

373
374

376
377
378
379
380
381

383
384
385
386
387
388

» Examples of DualTree Letter Integer

egDualTree0l
= LeafDT H

egDualTree02
= NodeDT H
(NodeDT 4 (NodeDT B (LeafDT 1) (LeafDT 3))
(LeafDT F))
(NodeDT 12 (LeafDT 13J)
(NodeDT N (LeafDT 13) (LeafDT 15)))

egDualTree03
= NodeDT 8
(NodeDT D (NodeDT 2 (LeafDT A) (LeafDT C))
(LeafDT 6))
(NodeDT L (LeafDT 10)
(NodeDT 14 (LeafDT M) (LeafDT 0)))

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Binary Trees and
Recursion Schemes

Binary Trees: Data
Types and Examples

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

115/164

Functional

Dual TreeS Programming

Example egDualTree02 Phil Molyneux

egDualTree02 Agenda
Adobe Connect

Haskell & GHC

Types & Type
Classes

egDualTree02R

egDualTree02L
Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Binary Trees and
Recursion Schemes

Binary Trees: Data
Types and Examples

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

116/164

Tree Data Type Exercises programming
Introduction Phil Molyneux
Agenda
» These exercises or short topics are aimed at illustrating Py —
common patterns of recursion in tree structures and Haskell & GHC
showing how the fold family of functions naturally Types & Type

. Classes
extends to tree structures (or any algebraic data type) Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises
Tree Q1
Tree A1
Tree Q2
Tree A2
Tree Q3
Tree A3
Tree Q4
Tree A4
Tree Q 5
Tree AS
Tree Q6
Tree A6

Recursion Schemes
117/164

Tree Data Type Exercises S0607
Q1

> Write functions inOrderBT01, preOrderBT01,
postOrderBT01 which tak a BinTree a and returns in
order, pre order, post order traversals of the tree

390 inOrderBTO1 :: BinTree a -> [a]
392 preOrderBT01 :: BinTree a -> [a]

394 postOrderBTO1l :: BinTree a -> [a]

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises
TreeQ 1
Tree A1
Tree Q2
Tree A2
Tree Q3
Tree A3
Tree Q 4
Tree A4
Tree Q5
Tree AS
Tree Q6
Tree A6

Recursion Schemes
118/164

Tree Data Type Exercises SO607 Answers

Al

395
396
397
398

401
402
403

405
406
407
408

» Here are the usual recursive definitions

inOrderBTO1l EmptyBT = []
inOrderBTO01 (NodeBT x T1eftBT rightBT)
= (inOrderBT01 leftBT)

++ [x] ++ (inOrderBTOl rightBT)

preOrderBT01 EmptyBT = []
preOrderBT01 (NodeBT x 1eftBT rightBT)
= [x]
++ (preOrderBT01 TeftBT) ++ (preOrderBTO0l rightBT)

postOrderBT01 EmptyBT = []
postOrderBT01 (NodeBT x leftBT rightBT)
= (postOrderBT01 1eftBT)

++ (postOrderBTO1l rightBT) ++ [x]

P Soln 1 continued on next slide

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises
Tree Q1
Tree A1
Tree Q2
Tree A2
Tree Q3
Tree A3
Tree Q 4
Tree A4
Tree Q5
Tree AS
Tree Q6
Tree A6

Recursion Schemes
119/164

Tree Data Type Exercises SO607 Answers

A 1 (contd)

410
411

413
414
415
416

> Each of the functions has a common pattern

» The constructors of the algebraic data type are replaced
by functions (or a value) that consume or transform the
data structure

> This is a generalisation of the fold function given in
S0405 for lists

foldBinTree
:(@->b->b->b) ->b ->BinTree a -> b

foldBinTree fNodeBT fEmptyBT EmptyBT = fEmptyBT
foldBinTree fNodeBT fEmptyBT (NodeBT x leftT rightT)
= fNodeBT x (foldBinTree fNodeBT fEmptyBT leftT)
(foldBinTree fNodeBT fEmptyBT rightT)

» Soln 1 continued on next slide

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises
Tree Q1
Tree A1
Tree Q2
Tree A2
Tree Q3
Tree A3
Tree Q 4
Tree A4
TreeQ5
Tree AS
Tree Q6
Tree A6

Recursion Schemes
120/164

Tree Data Type Exercises SO607 Answers

A 1 (contd)

418
419
420
421

423
424
425

» We now define the traversal functions in terms of the
fold function

inOrderFo1dBT :: BinTree a -> [a]
inOrderFol1dBT t
= foldBinTree
fNodeBTToInOrderList fEmptyBTToInOrderList t

fEmptyBTToInOrderList = []
fNodeBTToInOrderList x leftTList rightTList
= leftTList ++ [x] ++ rightTList

» Soln 1 continued on next slide

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises
Tree Q1
Tree A1
Tree Q2
Tree A2
Tree Q3
Tree A3
Tree Q 4
Tree A4
Tree Q5
Tree AS
Tree Q6
Tree A6

Recursion Schemes
121/164

Tree Data Type Exercises SO607 Answers

A 1 (contd)

427
428
429
430

432
433
434

436
437
438
439

441
442
443

preOrderFoldBT :: BinTree a -> [a]
preOrderFoldBT t
= foldBinTree
fNodeBTToPreOrderList fEmptyBTToPreOrderList t

fEmptyBTToPreOrderList = []
fNodeBTToPreOrderList x leftTList rightTList
= [x] ++ leftTList ++ rightTList

postOrderFoldBT :: BinTree a -> [a]
postOrderFoldBT t
= foldBinTree
fNodeBTToPostOrderList fEmptyBTToPostOrderList t

fEmptyBTToPostOrderList = []
fNodeBTToPostOrderList x leftTList rightTList
= leftTList ++ rightTList ++ [x]

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises
Tree Q1
Tree A1
Tree Q2
Tree A2
Tree Q3
Tree A3
Tree Q 4
Tree A4
Tree Q5
Tree AS
Tree Q6
Tree A6

Recursion Schemes
122/164

Tree Data Type Exercises S0607
Q2

» A level order traversal takes a tree and returns the list
of lists of items at each level

> In the Binary Trees notes, the final functional definition:

445 levelOrderBT :: BinTree a -> [[a]]
446 levelOrderBT EmptyBT = []
447 levelOrderBT (NodeBT x leftT rightT)

448 = [x] : longZipWith (++)
449 (TevelOrderBT TeftT)
450 (TevelOrderBT rightT)

452 longZipWith :: (a -> a -> a) -> [a] -> [a] -> [a]

453 TlongZipWith f [] ys =ys

454 JlongZipWith f (a:xs) []1 = (a:xs)
455 longZipWith f (a:xs) (b:ys)

456 = (f a b) : (longZipWith f xs ys)

» Define level order as a fold

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises
Tree Q1
Tree A1
Tree Q2
Tree A2
Tree Q3
Tree A3
Tree Q 4
Tree A4
TreeQ5
Tree AS
Tree Q6
Tree A6

Recursion Schemes
123/164

Tree Data Type Exercises SO607 Answers

A2

458
459
460
461

463

465
466
467
468

levelOrderFoldBT :: BinTree a -> [[a]]
levelOrderFoldBT t
= foldBinTree

fNodeBTToLevelOrder fEmptyBTToLevelOrder t

fEmptyBTToLevelOrder = []

fNodeBTToLevelOrder :: a -> [[a]l] -> [[al] -> [[al]
fNodeBTToLevelOrder x leftTOrder rightTOrder
= [x] : longZipWith (++)

TeftTOrder rightTOrder

GHCi> levelOrderFoldBT egBSTree
([H1,(D,L],[B,F,J,N], [A,C,E,G,I,K,M,0]]
GHCi> levelOrderFoldBT egBSTreel
[[H1,[D,L],[3,N],[M,01]

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises
Tree Q1
Tree A1
Tree Q2
Tree A2
Tree Q3
Tree A3
Tree Q 4
Tree A4
Tree Q5
Tree AS
Tree Q6
Tree A6

Recursion Schemes
124/164

Tree Data Type Exercises S0607

Q3

471
472
473

» Using a fold, define heightBT which returns the height
of a tree

» here is the usual recursive definition

heightBT :: BinTree a -> Int

heightBT EmptyBT = 0
heightBT (NodeBT x leftT rightT)
= 1 + max (heightBT leftT) (heightBT rightT)

» Go to Tree Exs S0607 A 3

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Tree Q1

Tree Al

Tree Q2

Tree A2

Tree A3
Tree Q 4
Tree A4
Tree QS
Tree AS
Tree Q6
Tree A6

Recursion Schemes
125/164

Tree Data Type Exercises SO607 Answers

A3

474
475
476

478
479
480

heightFoldBT t
= foldBinTree
fNodeBTToHeight fEmptyBTToHeight t

fEmptyBTToHeight = 0
fNodeBTToHeight x leftTHeight rightTHeight
= 1 + max leftTHeight rightTHeight

GHCi> heightBT egBSTree
4

GHCi> heightFoldBT egBSTree
4

» Go to Tree Exs S0607 Q 3

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Tree Q1

Tree A1

Tree Q2

Tree A2

Tree Q3

Tree Q 4
Tree A4
Tree QS
Tree AS
Tree Q6
Tree A6

Recursion Schemes
126/164

Tree Data Type Exercises S0607

Q4

481

483
484
485

> Using a fold, define sizeBT which returns the size of a
tree

» Here is the usual recursive definition

sizeBT :: BinTree a -> Int

sizeBT EmptyBT = 0
sizeBT (NodeBT x leftT rightT)
=1 + (sizeBT leftT) + (sizeBT rightT)

» Go to Tree Exs S0607 A 4

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Tree Q1

Tree A1

Tree Q2

Tree A2

Tree Q3

Tree A3

Tree A4
Tree QS
Tree AS
Tree Q6
Tree A6

Recursion Schemes
127/164

Tree Data Type Exercises SO607 Answers

A4

486
487
488

490
491
492

sizeFoldBT t
= foldBinTree
fNodeBTToSize fEmptyBTToSize t

fEmptyBTToSize = 0
fNodeBTToSize x leftTSize rightTSize
=1 + leftTSize + rightTSize

GHCi> sizeBT egBSTree

15

GHCi> sizeFoldBT egBSTree
15

» Go to Tree Exs

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Tree Q1

Tree A1

Tree Q2

Tree A2

Tree Q3

Tree A3

Tree Q 4

Tree QS
Tree AS
Tree Q6
Tree A6

Recursion Schemes
128/164

Functional

Tree Data Type Exercises S0607 Programming

Q 5 Phil Molyneux
. . . Agenda
> Write a function numLeavesBT which takes a tree and Adobe Connect
returns the number of leaves Haskell & GHC
a leaf is a node with two empty subtrees RS BRTpe
Function Definitions
493 isEmptyBT EmptyBT = True = Styles
494 isEmptyBT (NodeBT x leftT rightT) = False Higher-order
Functions
496 isBothEmptyBT t1 t2 User Defined Data
497 = isEmptyBT tl && isEmptyBT t2 Types
Algebraic Data Type
499 numLeavesBT EmptyBT = 0 Exercises
500 numLeavesBT (NodeBT x TeftT rightT) Tree Data Types
501 = if isBothEmptyBT TeftT rightT
502 then 1 R e e
503 else numLeavesBT leftT Tree Q1
504 + numLeavesBT rightT Tree A1
Tree Q 2
Tree A2
» Write numLeavesFol1dBT which uses foldBinTree Treeas
Tree Q 4
Tree A4
Tree Q5
Tree AS
Tree Q6

Tree A6

Recursion Schemes
129/164

Tree Data Type Exercises SO607 Answers programming

AS Phil Molyneux

Agenda
> We calculate the function using the Universal Property

Adobe Connect
Haskell & GHC

numLeaves t = fold f v t
numLeaves EmptyBT = v

numLeaves (NodeBT x leftT rightT)
= f x TeftTNL rightTNL

Types & Type
Classes

Function Definitions

— Styles
-- defn of numlLeaves T ——
= if isBothEmptyBT TeftT rightT Fuglctions
then 1)
else (numLeavesBT TleftT) %ﬁ:;?emed bata
+ (numLeaves righT) _
-- Eureka step to get rid of isolated leftT, righT Algebraic Data Type
= if isBothZero (numLeavesBT leftT) (numLeaves righT)
then 1 Tree Data Types
else (numLeavesBT TleftT) Tree Data Type
+ (numLeaves righT) Exercises
-- this gives us the required definition Teen
Tree Q2
Tree A2
P Soln 5 continued on next slide Tree Q3
Tree A3
Tree Q 4
Tree A4
Tree Q5
Tree AS
Tree Q6
Tree A6

Recursion Schemes
130/164

Tree Data Type Exercises SO607 Answers

A5 (contd)
505 isBothZero x y
506 =x=08& y =0
508 numLeavesFoldBT t
509 = foldBinTree
510 fNodeBTToNumL fEmptyBTToNumL t
512 fEmptyBTToNumL = 0
513 fNodeBTToNumL x TeftTNL rightTNL
514 = if isBothZero TeftTNL rightTNL
515 then 1
516 else TeftTNL + rightTNL

» Go to Tree Exs S0607 Q 5

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises
Tree Q1
Tree A1
Tree Q2
Tree A2
Tree Q3
Tree A3
Tree Q 4
Tree A4
Tree QS

Tree Q6
Tree A6

Recursion Schemes
131/164

Tree Data Type Exercises S0607 Programming

Phil Molyneux
Q6 y:

Agenda
» The function minDepthBT can be defined recursively as .

Adobe Connect

Haskell & GHC
517 minDepthBT EmptyBT = 0 TS & TRyae
518 minDepthBT (NodeBT x leftT rightT) Classes
519 =1 + min (minDepthBT TeftT) (minDepthBT rightT) Function Definitions
— Styles
. T . Higher-ord
> This will visit every node in the tree but the Privararon
computation can stop earlier Yser Defined Data
> See egBSTreel — we can stop when we meet node D Algebraic Data Type
Exercises

> Suggest ways of making this more efficient — this may
or may not use fold

Tree Data Types

Tree Data Type
Exercises
Tree Q1
Tree A1
Tree Q2
Tree A2
Tree Q3
Tree A3
Tree Q 4
Tree A4
Tree Q 5
Tree AS
Tree Q6
Tree A6

Recursion Schemes
132/164

. Functional
Tree Data Type Exercises SO607 Answers Programming
A6 Phil Molyneux
. i i Agenda
> We can do this by keeping track of the depth in the tree Py —
and the minimum depth so far Haskell & GHC
Types & Type
520 minDepthBTO1 :: BinTree a -> Int Ghssee
521 minDepthBTO1l t Function Definitions
522 = minD t 0 maxBound = Siaits
523 -- here maxBound is regarded as infinity Higher-order
524 minD :: BinTree a -> Int -> Int -> Int Runctions
525 minD EmptyBT d m = min d m User Defined Data
526 minD (NodeBT x TeftT rightT) d m Types
527 =1ifd+ 1>=m Algebraic Data Type
528 then m Exercises
529 else minD leftT (d + 1) (minD rightT (d + 1) m) Tree Data Types
Tree Data Type
. . . Exercises
> We can do better than this if we consider the tree level Tree Q1
by level Ry
Tree A2
» TODO: complete A 6 Tree Q3
Tree A3
Tree Q 4
Tree A4
Tree Q5
Tree AS
Tree Q 6
Tree A6

Recursion Schemes
133/164

Recursion Schemes

References (1)

>

Get Height of Tree (20 August 2018) StackExchange
Code Review — uses catamorphism

Practical Recursion Schemes (20 August 2018) — Jared
Tobin 5 September 2015

Haskell WikiBook: Category theory (20 August 2018)
Recursion schemes for dummies? (21 August 2018)
Wikipedia: Recursion schemes (21 August 2018)

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

134/164

https://codereview.stackexchange.com/questions/64724/get-height-of-tree
https://medium.com/@jaredtobin/practical-recursion-schemes-c10648ec1c29
https://en.wikibooks.org/wiki/Haskell/Category_theory
https://stackoverflow.com/questions/6941904/recursion-schemes-for-dummies
https://en.wikipedia.org/wiki/Category:Recursion_schemes

Recursion Schemes

References (2)

>

An Introduction to Recursion Scheme — Patrick
Thomson 15 February 2014

Recursion Schemes, Part Il: A Mob of Morphisms — 21
August 2015

Recursion Schemes, Part lll: Folds in Context — 20 July
2016

Recursion Schemes, Part IV: Time is of the Essence —
11 October 2017

Recursion Schemes, Part 4 1/2: Better Living Through
Base Functors — 24 January 2018

Recursion Schemes, Part V: Hello, Hylomorphisms — 17
April 2018 Patrick Thomson

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

135/164

https://blog.sumtypeofway.com/an-introduction-to-recursion-schemes/
https://blog.sumtypeofway.com/recursion-schemes-part-2/
https://blog.sumtypeofway.com/recursion-schemes-part-iii-folds-in-context/
https://blog.sumtypeofway.com/recursion-schemes-part-iv-time-is-of-the-essence/
https://blog.sumtypeofway.com/recursion-schemes-part-41-2-better-living-through-base-functors/
https://blog.sumtypeofway.com/recursion-schemes-part-41-2-better-living-through-base-functors/
https://blog.sumtypeofway.com/recursion-schemes-part-v/

Input and Output

The Problem

> Calculating values in the language and performing
actions outside the language are different

> Actions have to be performed in the correct order

> Call-by-value (or strict) functional languages take the
approach of imperative languages

> 1/0 is treated as a function (even though it is a side
effect)

» The language design has to specify the order of
evaluation of expressions

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

1/0 The Problem

1/0 Solution (1)
Monadic I/0

do Notation

Control Structures
Interaction Exercises
S0809 Q1
Interaction Exercises
50809 Al

Monadic I/O Review

136/164

Input and Output

The Problem (2)

» Suppose we have a function printChar that takes a
character, prints it to standard output and returns
nothing

In imperative languages and strict functional languages,
the programmer has to ensure that calls to printChar
happen in the correct order

Consider

xs = [printChar ’a’, printChar ’b’]

Call-by-need (or lazy) languages (such as Haskell) do
not specify order of evaluation

The printChar calls are only performed if the elements
of the list are evaluated

Tength xs would return 2 but does not need to
evaluate the elements of xs

Laziness and side effects appear incompatible

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

1/0 The Problem

1/0 Solution (1)
Monadic I/0

do Notation

Control Structures
Interaction Exercises
S0809 Q1
Interaction Exercises
50809 Al

Monadic I/O Review

137/164

Input and Output

Initial Solution (1)

> First version of Haskell:

> View of Program — Top level program is a function
from a (lazy) list (stream) of system responses returning
a (lazy) list of system requests.

main :: [Response] -> [Request]

» Request and Response are both ordinary algebraic
data types

type FilePath = String

data Request = ReadFile FilePath
| WriteFile FilePath String
| ...

data Response = RequestFailed
| ReadSucceeded String
| WriteSucceeded

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

1/0 The Problem

1/0 Solution (1)
Monadic I/0

do Notation

Control Structures
Interaction Exercises
S0809 Q1
Interaction Exercises
50809 Al

Monadic I/O Review

138/164

Input and Output

Initial Solution (2)

>
>

This was used in the first version of Haskell

but it has problems:

Hard to extend since it can only be extended by
changing the Request and Response types

There is no close connection between a request and its
corresponding response — hence easy to write a
program that gets out of step

Even if not out of step, it is too easy to evaluate the

response stream too eagerly and hence block emitting a
request

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

1/0 The Problem

1/0 Solution (1)
Monadic I/0

do Notation

Control Structures
Interaction Exercises
S0809 Q1
Interaction Exercises
50809 Al

Monadic I/O Review

139/164

Functional
Input and Output Programming
Monadic |/O (]) Phil Molyneux
Agenda
» Need an abstract data type that allows us to calculate Py —
programs that have side effects in a purely functional Haskell & GHC
way Types & Type
Classes
> A value of type I0 a is an action that, when performed, Function Definitions
may do some input/output, before delivering a value of ;:;Z'f;der
type a Functions
> We distinguish between evaluating an expression and e]
performing an action Algebraic Data Type

Exercises

> Sometimes actions are referred to as computations Tree Data Types

i i . Tree Data T
> Itis as if we have: lssibataies
type I0 a = World -> (a,World) Recursion Schemes
Interactive
Programming
» A value of I0 ais a function that takes an argument of /0 The ralen
type World and delivers a new World together with a Monadic 1/0
do Notation
result of type a ol S
Isrggaagcgc;n Exercises

Interaction Exercises
50809 Al
Monadic I/O Review

140/164

Input and Output

Monadic I/0 (2)

»

»

We then provide some primitive operations and a small
number of ways of combining the primitive operations

The top level program is of type I0 ()

getChar ::
putChar ::

I0 Char
Char -> I0 OO

getChar, when performed, reads a character from the
standard input and returns it

putChar takes a character and returns an action which,

when performed, prints the character on the standard
output

An action is a first class value

Evaluating an action has no effect; performing an action
has an effect

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

1/0 The Problem

1/0 Solution (1)
Monadic I/0

do Notation

Control Structures
Interaction Exercises
S0809 Q1
Interaction Exercises
50809 Al

Monadic I/O Review

141/164

Input and Output

Monadic I/0 (3)

» To combine actions, (>>=) (spoken bind) is provided

(>>=) ::

echo :: 10 O
echo = getChar >>= putChar

I0a > (a->I0b) ->I00Db

» echo, when performed, reads a character from the
standard input and prints it to the standard output.

» When a >>= fis performed, it performs action a, takes
the result, applies f to it to get a new action and then
performs the new action

> In the echo example, we first perform the action

getChar, yielding a character c and then we perform
putChar c

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

1/0 The Problem

1/0 Solution (1)
Monadic I/0

do Notation

Control Structures
Interaction Exercises
S0809 Q1
Interaction Exercises
50809 Al

Monadic I/O Review

142/164

Input and Output

Monadic I/0 (4)

» To combine two actions without using the result of the
first, we construct (>>) (spoken then)

(>>) :: I0a->I0b ->1I0b
(>>) al a2 = al >>= (_ -> a2)

echoTwice :: I0 O
echo = echo >> echo

» (>>) is analogous to the semicolon (;) in (some)
imperative programming languages

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

1/0 The Problem

1/0 Solution (1)
Monadic I/0

do Notation

Control Structures
Interaction Exercises
S0809 Q1
Interaction Exercises
50809 Al

Monadic I/O Review

143/164

Input and Output

Monadic I/0 (5)

> It is common for the second argument of (>>=) to be
an explicit lambda abstraction

» Example: echoDup reads a character and prints it twice

echoDup :: I0 O
echoDup = getChar >>= (\c ->
(putChar c >> putChar c))

» All the parentheses above are optional, since a lambda
abstraction extends as far to the right as possible — so

echoDup :: I0 O

echoDup = getChar >>= \c ->
putChar c >>
putChar c

> This looks like a sequence of imperative actions and
that is no coincidence — the do notation (see later)
mirrors an imperative program more closely

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

1/0 The Problem

1/0 Solution (1)
Monadic I/0

do Notation

Control Structures
Interaction Exercises
S0809 Q1
Interaction Exercises
50809 Al

Monadic I/O Review

144/164

Input and Output

Monadic I/0 (6)

» We need one more primitive to allow us to combine
several values

getTwoChars :: I0 (Char,Char)

getTwoChars = getChar >>= \cl ->
getChar >>= \c2 ->
return (cl,c2)

» The action (return v) is an action that does no 1/0O
and immediately returns v without any side effects

return :: a -> I0 a

» (return v) lifts a value of type a into the I0 a data
type and does nothing else

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

1/0 The Problem

1/0 Solution (1)
Monadic I/0

do Notation

Control Structures
Interaction Exercises
S0809 Q1
Interaction Exercises
50809 Al

Monadic I/O Review

145/164

Input and Output

Monadic I/0 (7)

» getlLineO01l reads a whole line of input

getLine0l :: IO [Char]
getLine0l = getChar >>= \c ->
if ¢ == ’\n’ then
return []
else

getLine0l >>= \cs ->
return (c : cs)

> We use the name getLineOl to not conflict with the
builtin getLine which is defined as

getLine :: IO String
getLine = hGetLine stdin

hGetLine :: Handle -> IO String

» hGetLine is more general and efficient — it also does
some error checking - see System.lO

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

1/0 The Problem

1/0 Solution (1)
Monadic I/0

do Notation

Control Structures
Interaction Exercises
S0809 Q1
Interaction Exercises
50809 Al

Monadic I/O Review

146/164

http://hackage.haskell.org/package/base-4.12.0.0/docs/System-IO.html

Input and Output

Monadic 1/0 (8)

> A complete Haskell program defines a single I/0 action
of type I0 O

» The program is executed by performing the action

» The following example reads a line, reverses it and
prints the result

main :: I0 O
main = getLine >>= \Ccs ->
putLine (reverse cs)

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

1/0 The Problem

1/0 Solution (1)
Monadic I/0

do Notation

Control Structures
Interaction Exercises
S0809 Q1
Interaction Exercises
50809 Al

Monadic I/O Review

147/164

Input and Output

Monadic I/0 (9)

>

>

Monadlic 1/0 can be thought of as composable action
descriptions

The essence of this style is the separation of the
composition calculations from the composed action’s
execution timeline

Note that (>>=) is the only (primitive) operation that
combines or composes I/O actions

There is no operator of the type I0 a -> a — all we
can do is feed the result of an action into another action

This prevents the programmer bypassing the
sequencing of actions

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

1/0 The Problem

1/0 Solution (1)
Monadic I/0

do Notation

Control Structures
Interaction Exercises
S0809 Q1
Interaction Exercises
50809 Al

Monadic I/O Review

148/164

Monadic I/O

do Notation

» Haskell provides the do notation to re-write long chains
of (>>) and (>>=)

do {e; stmnts} = e >> do {stmnts}

do {x <- e; stmnts} = e >>= \x -> do {stmnts}
do {e} = e

do {let decls; stmnts}

= let decls in do {stmnts}

> Layout can be used to get rid of the braces ({), (})
and semicolons (;)

» This gives monadic computations an imperative feel

> Note that x <- e binds the variable x — it is not an
assignment as in an imperative language

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

1/0 The Problem

1/0 Solution (1)
Monadic I/0

do Notation

Control Structures
Interaction Exercises
S0809 Q1
Interaction Exercises
50809 Al

Monadic I/O Review

149/164

Monadic I/O

Control Structures

» Control structures such as for and whiTe loops were
invented in the 1960s as part of structured
programming for imperative languages

> These required modifying the language

» However in functional programming we can build
control structures out of functions in the language

» See Control.Monad

> See examples in monad-loops: avoiding writing
recursive functions by refactoring

» See Control.Monad.Loops

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

1/0 The Problem

1/0 Solution (1)
Monadic I/0

do Notation

Control Structures
Interaction Exercises
S0809 Q1
Interaction Exercises
50809 Al

Monadic I/O Review

150/164

http://hackage.haskell.org/package/base-4.12.0.0/docs/Control-Monad.html
https://conscientiousprogrammer.com/blog/2015/12/11/24-days-of-hackage-2015-day-11-monad-loops-avoiding-writing-recursive-functions-by-refactoring/
https://conscientiousprogrammer.com/blog/2015/12/11/24-days-of-hackage-2015-day-11-monad-loops-avoiding-writing-recursive-functions-by-refactoring/
https://hackage.haskell.org/package/monad-loops-0.4.3/docs/Control-Monad-Loops.html

Monadic I/O

Control Structures (2)

> An infinite loop

forever :: 10 O -> I0 O
forever a = a >> forever a

» Repeat an action a number of times

repeatN :: Int -> I0 a -> I0 O
repeatN 0 a = return
repeatN n a = a >> repeatN (n-1) a

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

1/0 The Problem

1/0 Solution (1)
Monadic I/0

do Notation

Control Structures
Interaction Exercises
S0809 Q1
Interaction Exercises
50809 Al

Monadic I/0 Review

151/164

Monadic I/O

Control Structures (3)

> A for loop
for :: [a] -> (@ ->1I0 Q) ->I0 O
for [] f = return O
for (n:ns) f = f n>> for ns f

> Instead of having a fixed collection of contol structures
provided by the language designer, we are free to

invent new ones
> This is a very powerful technique

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

1/0 The Problem
1/0 Solution (1)
Monadic I/0

do Notation

Control Structures
Interaction Exercises
S0809 Q1
Interaction Exercises
50809 Al

Monadic I/O Review

152/164

Monadic I/O

Control Structures (4)

» Another definition of for

for ns f = sequence_ (map f ns)

sequence_ :: [I0 a] -> I0 O
sequence_ as = foldr (>>) (return ()) as

» The (_) in the name sequence_ reminds us that it
throws away the results of the sub-actions

sequence :: [I0 a] -> IO [a]
sequence [] = return []
sequence (a:as)
=dor <- a
rs <- sequence as
return (r:rs)

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

1/0 The Problem

1/0 Solution (1)
Monadic I/0

do Notation

Control Structures
Interaction Exercises
S0809 Q1
Interaction Exercises
50809 Al

Monadic I/0 Review

153/164

Interaction Exercises SO809
Q1

» Define putLine01 which takes a String and prints the
string with a new line at the end

531 putLine0l :: String -> I0 (O

» Go to Interaction Exercises S0809 A 1

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming
1/0 The Problem
1/0 Solution (1)
Monadic I/0

do Notation
Control Structures

Interaction Exercises
50809 Al

Monadic I/O Review

154/164

Interaction Exercises SO809 Answers

Al

> We first define putStr0l

533
534
535
536
537

>

539
540
541

putStrol
putStrol [] =
putStrol (x

String -> I0 O

return ()
XS)

= putChar x >>

putStr0l xs

...and just add a newline

putLine0l xs
= putStr0l xs
putChar ’\n

>>
’

» Go to Interaction Exercises S0809 Q 1

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming
1/0 The Problem
1/0 Solution (1)
Monadic I/0

do Notation
Control Structures

Interaction Exercises
50809 Q1

Monadic I/O Review

155/164

Monadic I/0O

Review

>

>

A complete Haskell program is a single I0 () action
called main

Note that GHCi allows various expressions at the
prompt (see the GHC User Guide)

Larger I/O actions are constructed by gluing together
smaller actions with (>>=) and return

An 1/0 action is a first-class value: it can be passed to a
function as an argument or returned as the result of a
function call; it can be stored in a data structure

Because I/0 actions are first-class values, it is easy to
define new combinators in terms of existing ones.

The Monadic data structure for 1/0 allows us to separate
calculating values in the language from calculating
effects to be performed outside the language

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

1/0 The Problem

1/0 Solution (1)
Monadic I/0

do Notation

Control Structures
Interaction Exercises
S0809 Q1
Interaction Exercises
S0809 Al

ic 1/0 Review
T 156/164

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/

Monads

Monadic Data Structure

» The Monad data structure is more generally useful and
we will return to discuss its other uses in a later section

» A monad is a triple of a type constructor, m and two
function return and (>>=) with types

(>>=) :: Monadm=>ma ->(a->mb) ->mb
return :: Monad m => a -> m a

» These must also satisfy the following laws

return x >>= f == f x -- Tleft unit

m >>= return ==m -- right unit

ml >>= (\x -> m2 >>= (\y -> m3)) -- assoc.
== (Ml >>= (\x -> m2)) >>= (\y -> m3)

» The above laws can also be expressed in do notation
which may their meaning more obvious

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

1/0 The Problem

1/0 Solution (1)
Monadic I/0

do Notation

Control Structures
Interaction Exercises
S0809 Q1
Interaction Exercises
50809 Al

Monadic I/O Review

- 157/164

Monads

Monadic Data Structure (2)

» The

monad laws in do notation

do

do

do

do
do

do

do

x0 <- return x
f x0

f x -- left unit

X <-m
return x

m -- right unit

X <- ml
doy <- m2 x
m3 y

y <- do x <- ml
m2 X
m3 y
-- associativity
X <- ml
y <- m2 x
m3 y

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

1/0 The Problem

1/0 Solution (1)
Monadic I/0

do Notation

Control Structures
Interaction Exercises
S0809 Q1
Interaction Exercises
50809 Al

Monadic I/0 Review

. 158/164

Monads

Monadic Data Structure (3)

» The monad laws just describe how we expect
imperative code to behave

skipAndGetA

= do unused <- getLine
Tline <- getLine
return line

skipAndGetB
= do unused <- getLine
getLine

> We expect the above two to have the same behaviour

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

1/0 The Problem

1/0 Solution (1)
Monadic I/0

do Notation

Control Structures
Interaction Exercises
S0809 Q1
Interaction Exercises
50809 Al

Monadic I/O Review

" 159/164

Monads

Monadic Data Structure (4)

» Now use skipAndGet

main
= do answer <- skipAndGet
putStrLn answer

> We expect this to be the same as

main
= do answer <- do unused <- getLine
getLine
putStrLn answer

» and applying associativity

main

= do unused <- getLine
answer <- getLine
putStrLn answer

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

1/0 The Problem

1/0 Solution (1)
Monadic I/0

do Notation

Control Structures
Interaction Exercises
S0809 Q1
Interaction Exercises
50809 Al

Monadic I/O Review

o 160/164

Future Work

Topics

>

VVvyVVVvyVvVVvVYVvYyYyYy v

v

Functional programming is having a significant impact
on the mainstream

Program construction with functions and expressions
rather than commands and statements

Functions are first-class citizens

Higher order functions

Powerful combining forms

Function composition

Lazy evaluation or non-strict semantics

Strong polymorphic type system

Recursion and recursion patterns

Efficiency and pragmatic issues

Languages such as Scala, Kotlin, Rust, Julia and others
have many of these features

Notice the interplay between ideas and particular
languages and technoloies

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

161/164

Haskell References

Textbooks

> Miran Lipovaca: Learn You a Haskell (LYAH) (Lipovaca,

2011) written when he was a student in Ljubljana,
Slovenia, well written but has no exercises. Online
version

Graham Hutton: Programming in Haskell (Hutton, 2016)
— aimed at beginners — does have sections on Monoid,
Foldable, Traversable, Functor, Applicative,
Monad without being mathematical in the formal sense.
See also Erik Meijer: C9 Lectures — Functional
Programming Fundamentals

Richard Bird: Thinking Functionally with Haskell (Bird,
2014) — third edition of a classic text — concentrates
on derivation and transformation of functions

Richard Bird & Jeremy Gibbons: Algorithm Design with
Haskell (Bird, 2020) — sequel to the previous book

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

162/164

http://learnyouahaskell.com/
http://learnyouahaskell.com/
https://channel9.msdn.com/Series/C9-Lectures-Erik-Meijer-Functional-Programming-Fundamentals/Lecture-Series-Erik-Meijer-Functional-Programming-Fundamentals-Chapter-1
https://channel9.msdn.com/Series/C9-Lectures-Erik-Meijer-Functional-Programming-Fundamentals/Lecture-Series-Erik-Meijer-Functional-Programming-Fundamentals-Chapter-1

Haskell References
Textbooks (2)

» Simon Thompson: Haskell The Craft of Functional
Programming (Thompson, 2011) — a lot more examples
and sections on coping with error messages from GHC

» Christopher Allen & Julie Moronuki: Haskell
Programming (Allen and Moronuki, 2016) Web site —
more formal than LYAH and does have exercises

» O’Sullivan et al: Real World Haskell (O’Sullivan et al,
2008) Web site — practitioners book

» Hudak: The Haskell School of Expression (Hudak, 2008)

— learning Haskell through multimedia and music
(Hudak was a jazz musician)

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

163/164

http://haskellbook.com
http://book.realworldhaskell.org/

Haskell References

Functional Programming Papers & Reference

vVVvyVvVvyVvyYyvyy

Haskell

Haskell Documentation

Haskell 2010 Language Report

Glasgow Haskell Compiler

GHC User Guide

GHC Prelude

A History of Haskell: Being Lazy with Class (Hudak et al,
2007)

Conception, Evolution, and Application of Functional
Programming Languages (Hudak, 1989)

Haskell vs. Ada vs. C++ vs. awk vs.... an experiment in
software prototyping productivity (Hudak and Jones,
1994)

Why Functional Programming Matters (Hughes, 1989)

Haskore music notation -an algebra of music- (Hudak,
1996)

Functional
Programming

Phil Molyneux

Agenda
Adobe Connect
Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

164/164

https://www.haskell.org/
https://www.haskell.org/documentation
https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/ghc/
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/
http://hackage.haskell.org/package/base-4.11.1.0/docs/Prelude.html

	Agenda
	Adobe Connect Interface and Settings
	Adobe Connect Interface — Student View
	Adobe Connect Settings
	Adobe Connect Interface — Student & Tutor Views
	Adobe Connect — Sharing Screen & Applications
	Adobe Connect — Ending a Meeting
	Adobe Connect — Invite Attendees
	Layouts

	Haskell & GHC
	GHCi Commands

	Types & Type Classes
	Expressions & Types
	Type Classes

	Function Definitions — Styles
	Higher-order Functions
	Map, Filter
	List Comprehensions
	Fold Family

	User Defined Data Types
	Algebraic Datatypes

	Algebraic Data Type Exercises
	Algebraic Data Type Exercises S0607 Q1
	Algebraic Data Type Exercises S0607 A1
	Algebraic Data Type Exercises S0607 Q2
	Algebraic Data Type Exercises S0607 A2
	Algebraic Data Type Exercises S0607 Q3
	Algebraic Data Type Exercises S0607 A3
	Algebraic Data Type Exercises S0607 Q4
	Algebraic Data Type Exercises S0607 A4
	Algebraic Data Type Exercises S0607 Q5
	Algebraic Data Type Exercises S0607 A5
	Algebraic Data Type Exercises S0607 Q6
	Algebraic Data Type Exercises S0607 A6
	Laws for return and bind

	Tree Data Types
	Binary Trees and Recursion Schemes
	Binary Trees: Data Types and Examples
	Alternative Tree Types

	Tree Data Type Exercises
	Tree Data Type Exercises S0607 Q1
	Tree Data Type Exercises S0607 A1
	Tree Data Type Exercises S0607 Q2
	Tree Data Type Exercises S0607 A2
	Tree Data Type Exercises S0607 Q3
	Tree Data Type Exercises S0607 A3
	Tree Data Type Exercises S0607 Q4
	Tree Data Type Exercises S0607 A4
	Tree Data Type Exercises S0607 Q5
	Tree Data Type Exercises S0607 A5
	Tree Data Type Exercises S0607 Q6
	Tree Data Type Exercises S0607 A6

	Recursion Schemes
	Interactive Programming
	I/O The Problem
	I/O Solution (1)
	Monadic I/O
	do Notation
	Control Structures
	Interaction Exercises S0809 Q1
	Interaction Exercises S0809 A1
	Monadic I/O Review

	Future Work
	Web Sites & References

