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Extension Tutorial
Agenda

ñ Welcome & Introductions

ñ Functional programming introduction

ñ Programming environment and notation

ñ Program construction with functions and expressions
rather than commands and statements

ñ Functions are first-class citizens

ñ Higher order functions

ñ Powerful combining forms

ñ Function composition

ñ Lazy evaluation or non-strict semantics

ñ Strong polymorphic type system

ñ Recursion and recursion patterns

ñ Efficiency and pragmatic issues
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M269 Tutorial
Introductions — Me

ñ Name Phil Molyneux

ñ Background Physics and Maths, Operational Research,
Computer Science

ñ First programming languages Fortran, BASIC, Pascal
ñ Favourite Software

ñ Haskell — pure functional programming language
ñ Text editors TextMate, Sublime Text — previously Emacs
ñ Word processing in LATEX
ñ Mac OS X

ñ Learning style — I read the manual before using the
software (really)
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http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/BASIC
http://en.wikipedia.org/wiki/Pascal_(programming_language)
http://www.haskell.org/haskellwiki/Haskell
https://macromates.com
http://www.sublimetext.com
http://www.emacswiki.org
http://www.latex-project.org
https://developer.apple.com/devcenter/mac/index.action
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M269 Tutorial
Introductions — You

ñ Name ?

ñ Position in M269 ? Which part of which Units and/or
Reader have you read ?

ñ Particular topics you want to look at ?

ñ Learning Syle ?
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Adobe Connect
Interface — Student View
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Adobe Connect
Settings

ñ Everybody: Audio Settings Meeting Audio Setup Wizard. . .

ñ Audio Menu bar Audio Microphone rights for Participants 4

ñ Do not Enable single speaker mode

ñ Drawing Tools Share pod menu bar Draw (1 slide/screen)

ñ Share pod menu bar Menu icon Enable Participants to draw 4 gray

ñ Meeting Preferences Whiteboard Enable Participants to draw 4

ñ Cancel hand tool

ñ Do not enable green pointer. . .

ñ Meeting Preferences Attendees Pod Disable Raise Hand
notification

ñ Cursor Meeting Preferences General tab Host Cursors

Show to all attendees 4 (default Off)

ñ Meeting Preferences Screen Share Cursor Show Application Cursor

ñ Webcam Menu bar Webcam Enable Webcam for Participants 4

ñ Recording Meeting Record Meeting. . . 4
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Adobe Connect
Access

ñ Tutor Access

ñ TutorHome M269 Website Tutorials

ñ Cluster Tutorials M269 Online tutorial room

ñ Tutor Groups M269 Online tutor group room

ñ Module-wide Tutorials M269 Online module-wide room

ñ Attendance

TutorHome Students View your tutorial timetables

ñ Beamer Slide Scaling 440% (422 x 563 mm)

ñ Clear Everyone’s Status

Attendee Pod Menu Clear Everyone’s Status

ñ Grant Access

Meeting Manage Access & Entry Invite Participants. . . and send
link via email
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Adobe Connect
Keystroke Shortcuts

ñ Keyboard shortcuts in Adobe Connect

ñ Toggle Mic + M (Mac), Ctrl + M (Win) (On/Disconnect)

ñ Toggle Raise-Hand status + E

ñ Close dialog box (Mac), Esc (Win)

ñ End meeting + \
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Adobe Connect Interface
Student View (default)
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Adobe Connect Interface
Tutor View
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Tutor View
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Adobe Connect Interface
Sharing Screen & Applications

ñ Share My Screen Application tab Terminal for Terminal

ñ Share menu Change View Zoom in for mismatch of screen
size/resolution (Participants)

ñ (Presenter) Change to 75% and back to 100% (solves
participants with smaller screen image overlap)

ñ Leave the application on the original display

ñ Beware blued hatched rectangles — from other (hidden)
windows or contextual menus

ñ Presenter screen pointer affects viewer display —
beware of moving the pointer away from the application

ñ First time: System Preferences Security & Privacy Privacy

Accessibility
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Adobe Connect
Ending a Meeting

ñ Notes for the tutor only

ñ Student: Meeting Exit Adobe Connect

ñ Tutor:

ñ Recording Meeting Stop Recording 4

ñ Remove Participants Meeting End Meeting. . . 4

ñ Dialog box allows for message with default message:
ñ The host has ended this meeting. Thank you for

attending.

ñ Recording availability In course Web site for joining
the room, click on the eye icon in the list of recordings
under your recording — edit description and name

ñ Meeting Information Meeting Manage Meeting Information —
can access a range of information in Web page.

ñ Attendance Report see course Web site for joining
room
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Adobe Connect
Invite Attendees

ñ Provide Meeting URL Menu Meeting Manage Access & Entry

Invite Participants. . .

ñ Allow Access without Dialog Menu Meeting

Manage Meeting Information provides new browser window
with Meeting Information Tab bar Edit Information

ñ Check Anyone who has the URL for the meeting can
enter the room

ñ Default Only registered users and accepted guests may
enter the room

ñ Reverts to default next session but URL is fixed

ñ Guests have blue icon top, registered participants have
yellow icon top — same icon if URL is open

ñ See Start, attend, and manage Adobe Connect meetings
and sessions
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https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html
https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html


Functional
Programming

Phil Molyneux

Agenda

Adobe Connect
Student View

Settings

Student & Tutor Views

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

Adobe Connect
Layouts

ñ Creating new layouts example Sharing layout

ñ Menu Layouts Create New Layout. . . Create a New Layout dialog

Create a new blank layout and name it PMolyMain

ñ New layout has no Pods but does have Layouts Bar open
(see Layouts menu)

ñ Pods

ñ Menu Pods Share Add New Share and resize/position —
initial name is Share n

ñ Rename Pod Menu Pods Manage Pods. . . Manage Pods

Select Rename or Double-click & rename

ñ Add Video pod and resize/reposition

ñ Add Attendance pod and resize/reposition

ñ Add Chat pod — name it PMolyChat — and
resize/reposition
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Adobe Connect
Layouts

ñ Dimensions of Sharing layout (on 27-inch iMac)
ñ Width of Video, Attendees, Chat column 14 cm
ñ Height of Video pod 9 cm
ñ Height of Attendees pod 12 cm
ñ Height of Chat pod 8 cm

ñ Duplicating Layouts does not give new instances of
the Pods and is probably not a good idea (apart from
local use to avoid delay in reloading Pods)
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Haskell & GHC
Programming Environment

ñ You can dofunctional programming in any language

ñ To really see some of the ideas it is best to use a
language that directly implements these ideas

ñ These notes use Haskell and the implementation GHC

ñ We first set this file up as a Literate Haskell Script (this
page explains roughly how I do my notes)
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https://www.haskell.org/
https://www.haskell.org/ghc/
https://wiki.haskell.org/Literate_programming
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Haskell & GHC
Script Setup

1module M269TutorialExtension2019J where
2 import Data.List

ñ A Haskell script starts with a module header which
starts with the reserved identifier, module followed by
the module name, M269TutorialExtension2019J

ñ The module name must start with an upper case letter
and is the same as the file name (without its extension
of .lhs)

ñ Haskell uses layout (or the off-side rule) to determine
scope of definitions, similar to Python

ñ The body of the module follows the reserved identifier
where and starts with import declarations

ñ These import the built-in libraries

ñ We use the sort function from Data.List

ñ The Haskell standard library, Prelude, is always present
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Haskell & GHC
GHC Session

ñ We start the GHC REPL (Read-eval-print loop) from a
command line with ghci

GHCi> :l M269TutorialExtension2019J
[1 of 1] Compiling -- stuff removed
Ok, one module loaded.
GHCi>

ñ At the GHCi prompt we can evaluate expressions with
any builtin functions or in our script

GHCi> 6 * 7
42
GHCi> length [9,16,25]
3
GHCi>

ñ length is defined in the standard Prelude library
ñ It returns the size of its argument — in this case the

length of the list [9,16,25]
ñ Notice the quiet notation for function application
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https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/
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Haskell
Notation

ñ Function application is denoted by juxtaposition and is
more binding than (almost) anything else (remember
BODMAS ?)

ñ f x not f(x)

ñ We can define values at the GHC prompt

GHCi> let add x y = x + y
GHCi> add 2 3
5

ñ Function application is left associative

ñ So add 2 3 means (add 2) 3

ñ What could add x mean ?

ñ And what is the type of add ? You said this language is
strongly typed — where is the type specification (as in
Java, but not Python, which is weakly typed)
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Haskell Notation
Types

ñ GHC can infer the most general type of a variable in the
Haskell type system

GHCi> :type add
add :: Num a => a -> a -> a

ñ This means add takes two arguments of type a as long
as that type is some sort of number, and it returns a
number of the same type a

ñ Num is the Type Class of all the type that implement the
behaviour of numbers

ñ This is similar to interfaces and generics in Java

ñ The type class Num is defined in the Prelude and
includes the usual integers and floating point numbers
and also arbitrary precision integers and rational
numbers
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Haskell Notation
Types

ñ What is the meaning of add x ?

GHCi> :type (add 2)
(add 2) :: Num a => a -> a

ñ This means add 2 is a function which takes a number
and adds 2 to the number

ñ add x y means (add x) y — function application is
left associative

ñ The type (a -> a -> a) means a -> (a -> a)

ñ The function type arrow (->) associates to the right to
be consistent with the left associativity of function
application

ñ This means we get a notation for higher-order functions
and partial application for free (no need for a special
notation)
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Haskell
GHCi Commands

ñ :? display list of commands

ñ GHC Manual GHC User Guide

ñ :load, :l load module(s)

ñ :reload, :r reload current module set

ñ :type, :t show the type of an expression

ñ :info, :i display information about the given names

ñ <statement> evaluate/run <statement>

ñ :set editor <cmd> set the command used for :edit

ñ :set +m allow multilevel commands — see Multiline
input

ñ :set +s print timing/memory stats after each
evaluation

ñ See also the .ghci and .haskeline files
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Types & Type Classes
Overview

ñ Types are collections of related values

ñ Common primitive and built-in data types include
characters, numbers, Booleans, lists, strings, tuples and
function types

ñ Type systems are syntactic methods for assigning a
type to each expression in the programming language
— the aim is to prove the absence of certain program
behaviours by answering the following:

ñ Type checking — given a type signature for an
expression expr :: t, is expr an instance of type t ?

ñ Type inference — given an expression expr what is its
most general type ?

ñ Given a type t, is there any expression for it or does the
type have no values ? This is related to the
Curry-Howard isomorphism
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Types & Type Classes
Expressions & Types

ñ A type is a collection of related values and operations

GHCi> :t (2 == 3)
(2 == 3) :: Bool
GHCi> (2 == 3)
False

ñ Basic types

ñ Booleans type name Bool values False, True

ñ Characters type name Char values ’a’, Unicode plus
ways of escaping special characters such as new line

ñ Strings type name String values "Hello" strings are
actually syntactic sugar for [Char]

ñ Numbers the usual Int, Float, Double but also
arbitrary precision Integer, Ratio and also Complex
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Expressions & Types
Lists

ñ Lists are sequences of elements of the same type

GHCi> :t [True,False, not (1 == 3)]
[True,False, not (1 == 3)] :: [Bool] -- no evaluation is done
GHCi> length [] -- [] is an empty list
0
GHCi> 5 : [3,4] -- (:) list constructor
[5,3,4]
GHCi> :t (:)
(:) :: a -> [a] -> [a]
GHCi> head [5,3,4]
5
GHCi> tail [5,3,4]
[3,4]
GHCi> ["Athos","Porthos"] ++ ["Aramis","d’Artigan"]
["Athos","Porthos","Aramis","d’Artigan"] -- (++) appends two lists
GHCi> [5,3,4] !! 2 -- (!!) indexes from 0
4
GHCi> take 2 [5,3,4]
[5,3]
GHCi> drop 2 [5,3,4]
[4]
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Expressions & Types
List Comprehensions

ñ List Comprehensions provide a concise way of
performing calculations over lists

ñ Example: Square the even numbers between 0 and 9

GHCi> [x^2 | x <- [0..9], x ‘mod‘ 2 == 0]
[0,4,16,36,64]
GHCi>

ñ In general

[expr | qual1, qual2,..., qualN]

ñ The qualifiers qual can be
ñ Generators pattern <- list
ñ Boolean guards — acting as filters
ñ Local declarations with let decls for use in expr and

later generators and boolean guards

ñ Note ‘mod‘ is a function made into an infix operator
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Expressions & Types
Arithmetic Sequences

ñ Arithmetic sequences provide a concise way of
generating a list of values from an enumerable type

GHCi> [1..10]
[1,2,3,4,5,6,7,8,9,10]
GHCi> [1,3..10]
[1,3,5,7,9]

ñ We can also denote an infinite list (as long as we only
consume a finite part) — lazy evaluation gives us this
but it is special in Python

GHCi> take 10 (drop 10 [100 ..])
[110,111,112,113,114,115,116,117,118,119]

ñ And it works with any enumerable type

GHCi> [’A’, ’D’ .. ’Z’]
"ADGJMPSVY"

ñ Strings are just syntactic sugar for list of characters
[Char]
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Type & Type Classes
Type Classes

ñ Types specify sets of elements or data constructors

ñ Primitive: Numbers, characters

ñ Builtin: Booleans, Lists, Tuples, and others

ñ User defined types: algebraic data type (naming the
type constructor and data constructors — see LYAH chp
7), type synonyms, Datatype renamings

ñ Bottom, ⊥ or undefined is the value of a program that
crashes or loops forever

ñ Type Classes provide a structured way of overloading

ñ For example, (+) works with Int, Integer, Float and
other types of numbers

ñ Type Classes are specified by behaviour

ñ For a type to be a member of a type class, we have to
provide an implementation of some functions
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Type Classes
Haskell Builtin Type Classes

ñ Eq for equality — all basic data types are instances
except functions and IO

ñ Ord for ordering — for types that have a total ordering

ñ Enum for enumeration — defining operations on
sequentially ordered types

ñ Bounded to name the upper and lower limits of a type

ñ Numbers have a family of classes

ñ Show and Read for printable and readable types

ñ Further type classes express types which capture
common patterns of computation — see LYAH chp 7
(Functor), chp 11 (Applicative), chp 12 (Monoid,
Foldable), chp 13 (Monad), and Traversable

ñ See Functors, Applicatives, And Monads In Pictures and
Typeclassopedia for good introductions to these
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Haskell Standard Classes
Equality Class

class Eq a where
(==), (/=) :: a -> a -> Bool

-- Minimal complete definition
-- (==) or (/=)

x /= y = not (x == y)
x == y = not (x /= y)
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Haskell Standard Classes
Ordered Class

class (Eq a) => Ord a where
compare :: a -> a -> Ordering
(<),(<=),(>=),(>) :: a -> a -> Bool
max, min :: a -> a -> a

-- Minimal complete definition
-- (<=) or compare

compare x y
| x == y = EQ
| x <= y = LT
| otherwise = GT

x <= y = compare x y /= GT
x < y = compare x y == LT
x >= y = compare x y /= LT
x > y = compare x y == GT

-- data Ordering = LT | EQ | GT
-- deriving (Eq,Ord,Enum,Read,Show,Bounded)
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Haskell Standard Classes
Ordered Class (contd)

max x y
| x <= y = y
| otherwise = x

min x y
| x <= y = x
| otherwise = y

-- note (min x y, max x y) = (x,y) or (y,x)

-- data Ordering = LT | EQ | GT
-- deriving (Eq,Ord,Enum,Read,Show,Bounded)

ñ Note that the Ordering algebraic data type is defined
elsewhere in the Haskell Prelude and is not part of the
Ord type class declaration
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Haskell Standard Classes
Enumeration Class

class Enum a where
succ, pred :: a -> a
toEnum :: Int -> a
fromEnum :: a -> Int
enumFrom :: a -> [a] -- [n..]
enumFromThen :: a -> a -> [a] -- [n,p..]
enumFromTo :: a -> a -> [a] -- [n..m]
enumFromThenTo :: a -> a-> a -> [a] -- [n,p..m]

-- Minimal complete definition
-- toEnum, fromEnum

ñ Class Enum defines operations on sequentially ordered
types
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Haskell Standard Classes
Enumeration Class (contd)

succ = toEnum . (+1) . fromEnum
pred = toEnum . (subtract 1) . fromEum
enumFrom n = map toEnum [fromEnum n ..]
enumFromThen n p
= map toEnum [fromEnum n, fromEnum p ..]
enumFromTo n m
= map toEnum [fromEnum n .. fromEnum m]
enumFromThenTo n p m
= map toEnum [fromEnum n, fromEnum p .. fromEnum m]

GHCi> enumFromThenTo ’a’ ’c’ ’z’
"acegikmoqsuwy"
GHCi> [’a’,’c’ .. ’z’]
"acegikmoqsuwy"

ñ Note that the spaces either side of .. are sometimes
required (to avoid misidentifying a qualified name)
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Haskell Standard Classes
Bounded Class

class Bounded a where
minBound :: a
maxBound :: a

GHCi> minBound :: Bool
False
GHCi> maxBound :: Bool
True
GHCi> minBound :: Int
-9223372036854775808
GHCi> 2^63
9223372036854775808
GHCi> maxBound :: Int
9223372036854775807
GHCi> minBound :: Word
0
GHCi> maxBound :: Word
18446744073709551615
GHCi> 2^64 - 1
18446744073709551615
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Haskell Standard Classes
Read and Show Classes

class Read a where

class Show a where

GHCi> :t read
read :: Read a => String -> a
GHCi> :t show
show :: Show a => a -> String
GHCi> read "True" :: Bool
True
GHCi> read "321" :: Int
321
GHCi> read "Just True" :: Maybe Bool
Just True
GHCi> read "(Nothing, 321)" :: (Maybe Bool, Int)
(Nothing,321)
GHCi> show (Just True)
"Just True"
GHCi> show "True"
"\"True\""
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Function Definitions
Styles

ñ Declaration vs. expression style

ñ Declaration style: you formulate an algorithm in terms
of several equations that shall be satisfied

ñ Expression style: you compose big expressions from
small expressions.
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Function Definitions
Declaration Style

ñ Declaration style:

ñ Function arguments on left hand side

4 treble01 x = 3 * x

6 square01 x = x * x

ñ Pattern matching in function definitions

7 length01 [] = 0
8 length01 (x : xs) = 1 + length01 xs

ñ Guards on function definitions

9 length02 xs
10 | null xs = 0
11 | otherwise = 1 + length02 (tail xs)

ñ where clause
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Function Definitions
Expression Style (1)

ñ Expression style:

ñ Function composition (.)

12 trebleThenSquare x = (square01 . treble01) x

14 squareThenTreble = treble01 . square01

ñ Where did the argument go ? Pointfree style — can
confuse beginners

ñ Do evaluations of:

16 test01 = trebleThenSquare 2

18 test02 = squareThenTreble 2

ñ if expression

20 length03 xs
21 = if null xs
22 then 0
23 else 1 + length03 (tail xs)
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Function Definitions
Expression Style (2)

ñ Expression style:

ñ Lambda abstraction

25 square02 = \x -> x * x

ñ case expression

27 length04 xs = case xs of
28 [] -> 0
29 (y : ys) -> 1 + length04 ys

ñ let expression
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Function Definitions
Let vs. Where

ñ Let expression

let
decl1
decl2
...
declN
in
expr

ñ Where clause — declarations local to the right hand
side of a function definition (also used in top level
class and instance declarations)

ñ See example usage (and misuse) in M269 Graph
Algorithms tutorial notes

ñ See Let vs Where
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Evaluating Expressions
Applying a Function t Argumnents

ñ To evaluate a function applied to actual arguments,
substitute the actual arguments into the body of the
definition of the function where the corresponding
formal arguments occur

length01 [] = 0 -- (A)
length01 (x : xs) = 1 + length01 xs -- (B)

ñ Evaluate length01 [6,8,3]

length01 [6,8,3]
-> 1 + length01 [8,3] -- by (B)
-> 1 + (1 + length [3]) -- by (B)
-> 1 + (1 + (1 + length [])) -- by (B)
-> 1 + (1 + (1 + 0)) -- by (A)
-> 3 -- by arithmetic
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Higher-order Functions
Map, Filter

ñ Instead of special syntactic constructs such as for,
while we capture common patterns with higher-order
functions

ñ Higher order functions are functions that can take
functions as arguments and/or return functions as
results

ñ In functional programming, functions are first class
citizens — they can be treated as data

ñ You just can’t print a function or compare functions for
equality

ñ This section looks at the most commonly used higher
order functions

ñ map, filter, function composition (.), function
application ($) and the fold family
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Higher Order Functions
Map

ñ map takes a function and a list and applies the function
to every element of the list

ñ map can be defined with recursion: (name change to
avoid Prelude clash)

31 map01 :: (a -> b) -> [a] -> [b]
32 map01 f [] = []
33 map01 f (x:xs) = f x : map01 f xs

ñ map can also be defined with a list comprehension:

35 map02 :: (a -> b) -> [a] -> [b]
36 map02 f xs = [f x | x <- xs]
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Higher Order Functions
Filter

ñ filter takes a predicate (a function that returns a
Boolean) and a list and returns all the elements that
satisfy the predicate

ñ filter can be defined with recursion: (name change to
avoid Prelude clash)

38 filter01 :: (a -> Bool) -> [a] -> [a]
39 filter01 p [] = []
40 filter01 p (x:xs)
41 = if p x
42 then x : filter01 p xs
43 else filter01 p xs

ñ filter can also be defined with a list comprehension:

44 filter02 :: (a -> Bool) -> [a] -> [a]
45 filter02 p xs = [x | x <- xs, p x]
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List Comprehensions
Python

ñ List Comprehensions provide a concise way of
performing calculations over lists (or other iterables)

ñ Example: Square the even numbers between 0 and 9

Python3>>> [x ** 2 for x in range(10) if x % 2 == 0]
[0, 4, 16, 36, 64]
Python3>>> [(x,y) for x in range(4)
... for y in range(4)
... if x % 2 == 0
... and y % 3 == 0]
[(0, 0), (0, 3), (2, 0), (2, 3)]
Python3>>>

ñ In general

[expr for target1 in iterable1 if cond1
for target2 in iterable2 if cond2 ...
for targetN in iterableN if condN ]

ñ Lots example usage in the algorithms below
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List Comprehensions
Haskell

ñ List Comprehensions provide a concise way of
performing calculations over lists

ñ Example: Square the even numbers between 0 and 9

GHCi> [x^2 | x <- [0..9], x ‘mod‘ 2 == 0]
[0,4,16,36,64]
GHCi>

ñ In general

[expr | qual1, qual2,..., qualN]

ñ The qualifiers qual can be
ñ Generators pattern <- list
ñ Boolean guards — acting as filters
ñ Local declarations with let decls for use in expr and

later generators and boolean guards
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List Comprehension Exercises
Activity 1 (a) Stop Words Filter

ñ Stop words are the most common words that most
search engines avoid: ’a’,’an’,’the’,’that’,...

ñ Using list comprehensions, write a function
filterStopWords that takes a list of words and filters
out the stop words

ñ Here is the initial code

11 sentence \
12 = "the quick brown fox jumps over the lazy dog"

14 words = sentence.split()

16 wordsTest \
17 = (words == [’the’, ’quick’, ’brown’
18 , ’fox’, ’jumps’, ’over’
19 , ’the’, ’lazy’, ’dog’])

21 stopWords \
22 = [’a’,’an’,’the’,’that’]

Go to Answer
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List Comprehension Exercises
Activity 1 (a) Stop Words Filter

11 sentence \
12 = "the quick brown fox jumps over the lazy dog"

14 words = sentence.split()

16 wordsTest \
17 = (words == [’the’, ’quick’, ’brown’
18 , ’fox’, ’jumps’, ’over’
19 , ’the’, ’lazy’, ’dog’])

21 stopWords \
22 = [’a’,’an’,’the’,’that’]

ñ Notice the Python Explicit line joining with (\<nl>) and
Python Implicit line joining with ((...))

ñ The backslash (\) must be followed by an end of line
character (<nl>)

ñ The (’ ’) symbol represents a space (see Unicode
U+2423 Open Box)

Go to Answer
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List Comprehension Exercises
Activity 1 (b) Transpose Matrix

ñ A matrix can be represented as a list of rows of
numbers

ñ We transpose a matrix by swapping columns and rows

ñ Here is an example

38 matrixA \
39 = [[1, 2, 3, 4]
40 ,[5, 6, 7 ,8]
41 ,[9, 10, 11, 12]]

43 matATr \
44 = [[1, 5, 9]
45 ,[2, 6, 10]
46 ,[3, 7, 11]
47 ,[4, 8, 12]]

ñ Using list comprehensions, write a function transMat,
to transpose a matrix

Go to Answer
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List Comprehension Exercises
Activity 1 (c) List Pairs in Fair Order

ñ Write a function which takes a pair of positive integers
and outputs a list of all possible pairs in those ranges

ñ If we do this in the simplest way we get a bias to one
argument

ñ Here is an example of a bias to the second argument

68 yBiasLstTest \
69 = (yBiasListing(5,5)
70 == [(0, 0), (0, 1), (0, 2), (0, 3), (0, 4)
71 , (1, 0), (1, 1), (1, 2), (1, 3), (1, 4)
72 , (2, 0), (2, 1), (2, 2), (2, 3), (2, 4)
73 , (3, 0), (3, 1), (3, 2), (3, 3), (3, 4)
74 , (4, 0), (4, 1), (4, 2), (4, 3), (4, 4)])

Go to Answer

53/164



Functional
Programming

Phil Molyneux

Agenda

Adobe Connect

Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions
Map, Filter

List Comprehensions

Fold Family

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

List Comprehension Exercises
Activity 1 (c) List Pairs in Fair Order

ñ Rewrite the function which takes a pair of positive
integers and outputs a list of all possible pairs in those
ranges

ñ The output should treat each argument fairly — any
initial prefix should have roughly the same number of
instances of each argument

ñ Here is an example output

81 fairLstTest \
82 = (fairListing(5,5)
83 == [(0, 0)
84 , (0, 1), (1, 0)
85 , (0, 2), (1, 1), (2, 0)
86 , (0, 3), (1, 2), (2, 1), (3, 0)
87 , (0, 4), (1, 3), (2, 2), (3, 1), (4, 0)])

Go to Answer
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List Comprehension Exercises
Activity 1 (c) List Pairs in Fair Order

ñ Rewrite the function which takes a pair of positive
integers and outputs a list of lists of all possible pairs in
those ranges

ñ The output should treat each argument fairly — any
initial prefix should have roughly the same number of
instances of each argument — further, the output
should be segment by each initial prefix (see example
below)

ñ Here is an example output

94 fairLstATest \
95 = (fairListingA(5,5)
96 == [[(0, 0)]
97 , [(0, 1), (1, 0)]
98 , [(0, 2), (1, 1), (2, 0)]
99 , [(0, 3), (1, 2), (2, 1), (3, 0)]

100 , [(0, 4), (1, 3), (2, 2), (3, 1), (4, 0)]])

Go to Answer
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Answer 1 (a) Stop Words Filter

ñ Answer 1 (a) Stop Words Filter

ñ Write here:

ñ Answer 1 continued on next slide

Go to Activity
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List Comprehension Exercises
Answer 1 (a) Stop Words Filter

ñ Answer 1 (a) Stop Words Filter

24 def filterStopWords(words) :
25 nonStopWords \
26 = [word for word in words
27 if word not in stopWords]
28 return nonStopWords

31 filterStopWordsTest \
32 = filterStopWords(words) \
33 == [’quick’, ’brown’, ’fox’
34 , ’jumps’, ’over’, ’lazy’, ’dog’]

Go to Activity
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List Comprehension Exercises
Answer 1 (b) Transpose Matrix

ñ Answer 1 (b) Transpose Matrix

ñ Write here:

ñ Answer 1 continued on next slide

Go to Activity
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List Comprehension Exercises
Answer 1 (b) Transpose Matrix

ñ Answer 1 (b) Transpose Matrix

49 def transMat(mat) :
50 rowLen = len(mat[0])
51 matTr \
52 = [[row[i] for row in mat] for i in range(rowLen)]
53 return matTr

55 transMatTestA \
56 = (transMat(matrixA)
57 == matATr)

ñ Note that a list comprehension is a valid expression as
a target expression in a list comprehension

ñ The code assumes every row is of the same length

ñ Answer 1 continued on next slide

Go to Activity
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List Comprehension Exercises
Answer 1 (b) Transpose Matrix

ñ Note the differences in the list comprehensions below

38 matrixA \
39 = [[1, 2, 3, 4]
40 ,[5, 6, 7 ,8]
41 ,[9, 10, 11, 12]]

Python3>>> [[row[i] for row in matrixA]
... for i in range(4)]
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]
Python3>>> [row[i] for row in matrixA
... for i in range(4)]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
Python3>>> [row[i] for i in range(4)
... for row in matrixA]
[1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8, 12]
Python3>>> [[row[i] for i in range(4)]
... for row in matrixA]
[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]

Go to Activity
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List Comprehension Exercises
Answer 1 (b) Transpose Matrix

ñ Answer 1 (b) Transpose Matrix

ñ The Python NumPy package provides functions for
N-dimensional array objects

ñ For transpose see numpy.ndarray.transpose

Python3>>> import numpy as np
Python3>>> ar = np.array([[1,2],[3,4]])
Python3>>> ar
array([[1, 2],

[3, 4]])
Python3>>> arT = ar.transpose()
Python3>>> arT
array([[1, 3],

[2, 4]])
Python3>>> ar
array([[1, 2],

[3, 4]])
Python3>>> ar.shape
(2, 2)

Go to Activity
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List Comprehension Exercises
Answer 1 (c) List Pairs in Fair Order

ñ Answer 1 (c) List Pairs in Fair Order — first version

ñ Write here

69 yBiasLstTest \
70 = (yBiasListing(5,5)
71 == [(0, 0), (0, 1), (0, 2), (0, 3), (0, 4)
72 , (1, 0), (1, 1), (1, 2), (1, 3), (1, 4)
73 , (2, 0), (2, 1), (2, 2), (2, 3), (2, 4)
74 , (3, 0), (3, 1), (3, 2), (3, 3), (3, 4)
75 , (4, 0), (4, 1), (4, 2), (4, 3), (4, 4)])

Go to Activity
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List Comprehension Exercises
Answer 1 (c) List Pairs in Fair Order

ñ Answer 1 (c) List Pairs in Fair Order

ñ This is the obvious but biased version

63 def yBiasListing(xRng,yRng) :
64 yBiasLst \
65 = [(x,y) for x in range(xRng)
66 for y in range(yRng)]
67 return yBiasLst

69 yBiasLstTest \
70 = (yBiasListing(5,5)
71 == [(0, 0), (0, 1), (0, 2), (0, 3), (0, 4)
72 , (1, 0), (1, 1), (1, 2), (1, 3), (1, 4)
73 , (2, 0), (2, 1), (2, 2), (2, 3), (2, 4)
74 , (3, 0), (3, 1), (3, 2), (3, 3), (3, 4)
75 , (4, 0), (4, 1), (4, 2), (4, 3), (4, 4)])

Go to Activity
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List Comprehension Exercises
Answer 1 (c) List Pairs in Fair Order

ñ Answer 1 (c) List Pairs in Fair Order — second version

ñ Write here

83 fairLstTest \
84 = (fairListing(5,5)
85 == [(0, 0)
86 , (0, 1), (1, 0)
87 , (0, 2), (1, 1), (2, 0)
88 , (0, 3), (1, 2), (2, 1), (3, 0)
89 , (0, 4), (1, 3), (2, 2), (3, 1), (4, 0)])

Go to Activity
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List Comprehension Exercises
Answer 1 (c) List Pairs in Fair Order

ñ Answer 1 (c) List Pairs in Fair Order — second version

ñ This works by making the sum of the coordinates the
same for each prefix

77 def fairListing(xRng,yRng) :
78 fairLst \
79 = [(x,d-x) for d in range(yRng)
80 for x in range(d+1)]
81 return fairLst

83 fairLstTest \
84 = (fairListing(5,5)
85 == [(0, 0)
86 , (0, 1), (1, 0)
87 , (0, 2), (1, 1), (2, 0)
88 , (0, 3), (1, 2), (2, 1), (3, 0)
89 , (0, 4), (1, 3), (2, 2), (3, 1), (4, 0)]

Go to Activity
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List Comprehension Exercises
Answer 1 (c) List Pairs in Fair Order

ñ Answer 1 (c) List Pairs in Fair Order — third version

ñ Write here

97 fairLstATest \
98 = (fairListingA(5,5)
99 == [[(0, 0)]

100 , [(0, 1), (1, 0)]
101 , [(0, 2), (1, 1), (2, 0)]
102 , [(0, 3), (1, 2), (2, 1), (3, 0)]
103 , [(0, 4), (1, 3), (2, 2), (3, 1), (4, 0)]])

Go to Activity
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List Comprehension Exercises
Answer 1 (c) List Pairs in Fair Order

ñ Answer 1 (c) List Pairs in Fair Order — third version

ñ The inner loop is placed into its own list comprehension

91 def fairListingA(xRng,yRng) :
92 fairLstA \
93 = [[(x,d-x) for x in range(d+1)]
94 for d in range(yRng)]
95 return fairLstA

97 fairLstATest \
98 = (fairListingA(5,5)
99 == [[(0, 0)]

100 , [(0, 1), (1, 0)]
101 , [(0, 2), (1, 1), (2, 0)]
102 , [(0, 3), (1, 2), (2, 1), (3, 0)]
103 , [(0, 4), (1, 3), (2, 2), (3, 1), (4, 0)]])

Go to Activity
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Higher Order Functions
Foldr

ñ foldr captures a common pattern of combining
elements of a list

ñ Consider sum and product

46 sum01 :: Num a => [a] -> a
47 sum01 [] = 0
48 sum01 (x:xs) = x + sum01 xs

50 product01 :: Num a => [a] -> a
51 product01 [] = 1
52 product01 (x:xs) = x * product01 xs

ñ We abstract out the common pattern:

53 foldr01 f v [] = v
54 foldr01 f v (x:xs) = f x (foldr01 f v xs)

ñ We now can define:

55 sum02 xs = foldr01 (+) 0 xs
56 product02 xs = foldr01 (*) 1 xs
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Higher Order Functions
Foldr (contd)

ñ foldr takes an operator (⊗), a final value « and a list
xs

foldr (⊗) « [x1,x2,. . .,xn]
= x1 ⊗ (x2 ⊗ (. . .(xn ⊗ «). . .))

ñ The operator (⊗) is substituted for each list
constructor (:)

ñ The final value « is substituted for the empty list []

ñ The function is called fold right because of the direction
of the bracketing

ñ Beware operator associativity
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Foldr
Further Foldr Examples

ñ or takes a list of Booleans and finds the disjunction of
all the values

ñ Recursive version followed by foldr version

57 or01 :: [Bool] -> Bool
58 or01 [] = False
59 or01 (x:xs) = x || or01 xs

61 or02 xs = foldr (||) False xs

ñ and takes a list of Booleans and finds the conjunction of
all the values

ñ Recursive version followed by foldr version

63 and01 :: [Bool] -> Bool
64 and01 [] = True
65 and01 (x:xs) = x && and01 xs

67 and02 xs = foldr (&&) True xs
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Foldr
Further Foldr Examples (2)

ñ foldr is more general than you might expect
ñ length takes a list and returns its length

Health warning: length is more general than shown here

Recursive version followed by foldr version

69 length05 :: [a] -> Int
70 length05 [] = 0
71 length05 (x:xs) = 1 + length05 xs

73 length06 xs = foldr01 (\x n -> 1 + n) 0 xs

ñ reverse takes a list and returns the reverse

Recursive version followed by foldr version

75 reverse01 :: [a] -> [a]
76 reverse01 [] = []
77 reverse01 (x:xs) = reverse01 xs ++ [x]

79 reverse02 xs = foldr01 snoc [] xs
80 where snoc x xs = xs ++ [x]
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Foldr
Type of foldr01

ñ As we have defined foldr01 it has the type

82 foldr01 :: (a -> b -> b) -> b -> [a] -> b

ñ Without the later examples you may have thought it was

foldr01 :: (a -> a -> a) -> a -> [a] -> a

ñ The GHC Prelude has a more general version since this
pattern of computation can be performed over more
data types than just lists — see later
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User Defined Types and Classes
Algebraic Datatypes

ñ Haskell provides a way of providing new concrete data
types by declaring the names of a type and names of
the elements of the type

ñ The names of a type is called a type constructor

ñ The names of elements of a type is called a data
constructor

ñ Example: Day for days of the week

83 data Day
84 = Monday | Tuesday | Wednesday | Thursday
85 | Friday | Saturday | Sunday
86 deriving (Show, Read, Eq, Ord, Enum, Bounded)

ñ Names of type constructors start with upper case letters

ñ Names of data constructors start with upper case letters
but symbolic infix constructors can be formed

ñ The deriving clause creates automatic instances of the
type classes Show, Read, Eq, Ord, Enum, Bounded
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Algebraic Datatypes
Example: Days

ñ tomorrow takes a Day and returns the next

88 tomorrow dy
89 = if dy == Sunday then Monday else succ dy

91 tomorrow01 :: Day -> Day
92 tomorrow01 dy
93 = toEnum ((fromEnum dy + 1) ‘mod‘ 7)

ñ Note that tomorrow01 requires the type signature (or
type annotation) otherwise toEnum and fromEnum
would not know which type

ñ The brackets are required since ‘mod‘ has precedence
7, the same as (*),(/)
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Algebraic Datatypes
Example: Bool

ñ Several provided types are defined this way

data Bool = False | True
deriving (Show, Read, Eq, Ord, Enum, Bounded)

ñ Note that Day has 8 elements, Bool has 3 elements
since undefined (bottom, ⊥) is a member of every type
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Algebraic Data Types
Standard Haskell Types

ñ We have already met characters, strings, numbers and
Bool

ñ Lists are an algebraic data type with a special syntax —
it is as if it had the following declaration

data [a] = [] | a : [a]
deriving (Eq, Ord)

ñ Tuples are an algebraic data type with special syntax —
for pairs the single constructor is (,)

GHCi> (3,5) == (,) 3 5
True
GHCi> :t (,)
(,) :: a -> b -> (a, b)

ñ The Unit datatype () has only one non-⊥ member, the
nullary constructor ()

data () = ()
deriving (Eq,Ord,Bounded,Enum,Read,Show)
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Algebraic Data Types
Standard Haskell Types (contd)

ñ Function types — functions are an abstract type — no
constructors directly create functional values.

ñ The Maybe datatype provides a simple optional value —
useful for error handling — here is the declaration and
the maybe function as an example usage

data Maybe a = Nothing | Just a
deriving (Eq,Ord)

maybe :: b -> (a -> b) -> Maybe a -> b
maybe n f Nothing = n
maybe n f (Just x) = f x

ñ The Either datatype provides for richer error handling

data Either a b = Left a | Right b
deriving (Eq, Ord, Read, Show)

either :: (a -> c) -> (b -> c) -> Either a b -> c
either f g (Left x) = f x
either f g (Right y) = g y
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Algebraic Data Type Exercises S0607
Q 1

ñ Here is an algebraic data type representing temperature

94 data Temperature
95 = Celsius Float | Fahrenheit Float | Kelvin Float
96 deriving (Eq,Show,Read)

ñ Write the following functions

ñ tempToCelsius takes a temperature and converts it to
Celsius

ñ tempToFahrenheit takes a temperature and converts it
to Fahrenheit

ñ tempToKelvin takes a temperature and converts it to
Kelvin

ñ The formulas are at Conversion of units of temerature

Go to Algebraic Data Type Exercises S0607 A 1
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Algebraic Data Type Exercises S0607
Answers
A 1

97 tempToCelsius (Celsius x) = Celsius x
98 tempToCelsius (Fahrenheit x) = Celsius ((x - 32)*5/9)
99 tempToCelsius (Kelvin x) = Celsius (x - 273.15)

101 tempToFahrenheit (Celsius x) = Fahrenheit (x*9/5 + 32)
102 tempToFahrenheit (Fahrenheit x)
103 = Fahrenheit x
104 tempToFahrenheit (Kelvin x) = Fahrenheit (x*9/5 - 459.67)
105 -- 459.67 = -273.15*9/5 + 32

107 tempToKelvin (Celsius x) = Kelvin (x + 273.15)
108 tempToKelvin (Fahrenheit x)
109 = Kelvin ((x + 459.672)*5/9)
110 tempToKelvin (Kelvin x) = Kelvin x

ñ Soln 1 continued on next slide

Go to Algebraic Data Type Exercises S0607 Q 1
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Algebraic Data Type Exercises S0607
Answers
A 1 (contd)

112 temp01 = Celsius 0
113 temp02 = Kelvin 0
114 temp03 = Fahrenheit 0
115 temp04 = Celsius 100

117 temps = [temp01,temp02,temp03,temp04]
118 tempConvs = [tempToCelsius,tempToFahrenheit,tempToKelvin]

120 test03 = [f x | f <- tempConvs, x <- temps]
121 test03out
122 = [Celsius 0.0,Celsius (-273.15),Celsius (-17.777779),Celsius 100.0
123 ,Fahrenheit 32.0,Fahrenheit (-459.67),Fahrenheit 0.0,Fahrenheit 212.0
124 ,Kelvin 273.15,Kelvin 0.0,Kelvin 255.37332,Kelvin 373.15]

127 test04 = [[f x | f <- tempConvs] | x <- temps]
128 test04out
129 = [[Celsius 0.0,Fahrenheit 32.0,Kelvin 273.15]
130 ,[Celsius (-273.15),Fahrenheit (-459.67),Kelvin 0.0]
131 ,[Celsius (-17.777779),Fahrenheit 0.0,Kelvin 255.37332]
132 ,[Celsius 100.0,Fahrenheit 212.0,Kelvin 373.15]]

Go to Algebraic Data Type Exercises S0607 Q 1
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ñ Here is a (very) simple family database

134 data Person = Person {name :: String
135 ,father :: Maybe Person
136 ,mother :: Maybe Person}
137 deriving (Eq,Show,Read)

139 phil = Person "Phil" (Just ron) (Just hilda)
140 beryl = Person "Beryl" Nothing (Just dora)
141 ron = Person "Ron" (Just joe) (Just jane)
142 hilda = Person "Hilda" (Just sam) (Just florrie)
143 dora = Person "Dora" (Just arthur) (Just hannah)
144 joe = Person "Joseph" Nothing Nothing
145 jane = Person "Jane" Nothing Nothing
146 sam = Person "Sam" Nothing Nothing
147 florrie = Person "Florence" Nothing Nothing
148 arthur = Person "Arthur" Nothing Nothing
149 hannah = Person "Hannah" Nothing Nothing
150 people = [phil,beryl,ron,hilda,dora
151 ,joe,jane,sam,florrie,arthur,hannah]

ñ Q 2 continued on next slide

Go to Algebraic Data Type Exercises S0607 A 2
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Algebraic Data Type Exercises S0607
Q 2 (contd)

ñ In the data, Nothing represents a missing value

ñ Write a function nameStr which takes a Maybe Person
and returns the name if present otherwise the string
“Unknown”

ñ Use the standard Prelude function maybe — see GHC
Prelude — note you can search quickly by typing s —
try it, it’s neat (it is part of Hackage)

153 nameStr :: Maybe Person -> String

ñ Write a function nameMbe which takes a Maybe Person
and returns the name (if known) as a Maybe String

154 nameMbe :: Maybe Person -> Maybe String

Go to Algebraic Data Type Exercises S0607 A 2
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Algebraic Data Type Exercises S0607
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ñ nameStr

155 nameStr mPers = maybe "Unknown" name mPers

ñ nameMbe

156 nameMbe (Just pers) = Just (name pers)
157 nameMbe Nothing = Nothing

Go to Algebraic Data Type Exercises S0607 Q 2
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Algebraic Data Type Exercises S0607
Q 3

ñ Write a function maternalGrandfather01 that takes a
Person and returns their maternal grandfather (if
known)

158 maternalGrandfather01 :: Person -> Maybe Person

ñ Write a function paternalGrandfather01 that takes a
Person and returns their maternal grandfather (if
known)

160 paternalGrandfather01 :: Person -> Maybe Person

Go to Algebraic Data Type Exercises S0607 A 3

84/164



Functional
Programming

Phil Molyneux

Agenda

Adobe Connect

Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises
Alg Q 1

Alg A 1

Alg Q 2

Alg A 2

Alg Q 3

Alg A 3

Alg Q 4

Alg A 4

Alg Q 5

Alg A 5

Alg Q 6

Alg A 6

Laws for return and bind

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

Algebraic Data Type Exercises S0607
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ñ maternalGrandfather01

161 maternalGrandfather01 p
162 = case mother p of
163 Nothing -> Nothing
164 Just mum ->
165 case father mum of
166 Nothing -> Nothing
167 Just mgf ->
168 Just mgf

ñ paternalGrandfather01

169 paternalGrandfather01 p
170 = case father p of
171 Nothing -> Nothing
172 Just dad ->
173 case father dad of
174 Nothing -> Nothing
175 Just pgf ->
176 Just pgf

Go to Algebraic Data Type Exercises S0607 Q 3
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ñ Write a function bothGrandfathers01 that takes a
Person and returns a pair of grandfathers, if they both
exist

177 bothGrandfathers01 :: Person
178 -> Maybe (Person,Person)

Go to Algebraic Data Type Exercises S0607 A 4
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ñ bothGrandfathers01

179 bothGrandfathers01 p
180 = case father p of
181 Nothing -> Nothing
182 Just dad ->
183 case father dad of
184 Nothing -> Nothing
185 Just gf1 ->
186 case mother p of
187 Nothing -> Nothing
188 Just mum ->
189 case father mum of
190 Nothing -> Nothing
191 Just gf2 ->
192 Just (gf1, gf2)

ñ Soln 4 continued on next slide

Go to Algebraic Data Type Exercises S0607 Q 4
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Algebraic Data Type Exercises S0607
Answers
A 4 (contd)

ñ In each of the last three examples we had a common
pattern:

ñ If a computation fails at any point we return Nothing

ñ If it succeeds we pass the value on to the next stage

ñ Finally we return a value wrapped in a Maybe value

ñ Haskell captures this pattern with two functions

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
Nothing >>= g = Nothing
Just x >>= g = g x
-- (>>=) is spoken as \emph{bind}
return :: a -> Maybe a
return x = Just x

ñ Soln 4 continued on next slide

Go to Algebraic Data Type Exercises S0607 Q 4

88/164



Functional
Programming

Phil Molyneux

Agenda

Adobe Connect

Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises
Alg Q 1

Alg A 1

Alg Q 2

Alg A 2

Alg Q 3

Alg A 3

Alg Q 4

Alg A 4

Alg Q 5

Alg A 5

Alg Q 6

Alg A 6

Laws for return and bind

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

Algebraic Data Type Exercises S0607
Answers
A 4 (contd)

ñ We now rewrite the previous three functions:

194 maternalGrandfather02 p
195 = mother p >>= father

197 paternalGrandfather02 p
198 = father p >>= father

200 bothGrandfathers02 p
201 = father p >>=
202 (\dad -> father dad >>=
203 (\gf1 -> mother p >>=
204 (\mum -> father mum >>=
205 (\gf2 -> return (gf1,gf2)
206 ))))

ñ Soln 4 continued on next slide

Go to Algebraic Data Type Exercises S0607 Q 4
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Algebraic Data Type Exercises S0607
Answers
A 4 (contd)

ñ Haskell further provides the do notation to reduce
syntactic clutter

do {p} = p
do {p;stmnts} = p >> do {stmnts}
do {x <- p;stmnts} = p >>= \x -> do {stmnts}

(>>) :: Maybe a -> Maybe b -> Maybe b
m >> n = m >>= \x -> n
-- (>>) is spoken then

ñ (>>) is a convenience function that sequences two
computational contexts where the second does not
involve the value carried in the first

ñ We can now give the brief form of bothGrandfathers
ñ Note that the offside rule means we can dispense with

(;) or choose not to

ñ Soln 4 continued on next slide

Go to Algebraic Data Type Exercises S0607 Q 4
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Algebraic Data Type Exercises S0607
Answers
A 4 (contd)

ñ Without (;)

208 bothGrandfathers03 p = do
209 dad <- father p
210 gf1 <- father dad
211 mum <- mother p
212 gf2 <- father mum
213 return (gf1,gf2)

ñ With (;) — what does it look like ?

215 bothGrandfathers04 p = do {
216 dad <- father p ;
217 gf1 <- father dad ;
218 mum <- mother p ;
219 gf2 <- father mum ;
220 return (gf1,gf2) ;
221 }

ñ Soln 4 continued on next slide

Go to Algebraic Data Type Exercises S0607 Q 4
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Algebraic Data Type Exercises S0607
Answers
A 4 (contd)

ñ The last two examples look like code snippets from an
imperative language

ñ The expression father p which has type Maybe
Person is interpreted as a statement in an imperative
language that returns a Person as a result or fails

ñ Under this interpretation, the then, (>>) operator is an
an implementation of the semicolon

ñ The bind, (>>=) operator is an an implementation of
the semicolon and assignment (binding) of the result of
a previous computational step

Go to Algebraic Data Type Exercises S0607 Q 4
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ñ Write a function bothGFNames that takes a Person and
returns the names of both grandfathers, if they both are
known

222 bothGFNames :: Person
223 -> Maybe (String, String)

Go to Algebraic Data Type Exercises S0607 A 5

93/164



Functional
Programming

Phil Molyneux

Agenda

Adobe Connect

Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises
Alg Q 1

Alg A 1

Alg Q 2

Alg A 2

Alg Q 3

Alg A 3

Alg Q 4

Alg A 4

Alg Q 5

Alg A 5

Alg Q 6

Alg A 6

Laws for return and bind

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

Algebraic Data Type Exercises S0607
Answers
A 5

ñ bothGFNames long version

225 bothGFNames p
226 = case father p of
227 Nothing -> Nothing
228 Just dad ->
229 case father dad of
230 Nothing -> Nothing
231 Just gf1 ->
232 case mother p of
233 Nothing -> Nothing
234 Just mum ->
235 case father mum of
236 Nothing -> Nothing
237 Just gf2 ->
238 Just (name gf1, name gf2)

ñ Soln 5 continued on next slide

Go to Algebraic Data Type Exercises S0607 Q 5
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ñ bothGFNames with return and bind, (>>=)

240 bothGFNames01 :: Person
241 -> Maybe (String,String)
242 bothGFNames01 p
243 = father p >>=
244 (\dad -> father dad >>=
245 (\gf1 -> mother p >>=
246 (\mum -> father mum >>=
247 (\gf2 -> return (name gf1,name gf2)
248 ))))

ñ Soln 5 continued on next slide

Go to Algebraic Data Type Exercises S0607 Q 5
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ñ bothGFNames with do notation

250 bothGFNames02 :: Person
251 -> Maybe (String,String)
252 bothGFNames02 p = do
253 dad <- father p
254 gf1 <- father dad
255 mum <- mother p
256 gf2 <- father mum
257 return (name gf1,name gf2)

ñ Soln 5 continued on next slide

Go to Algebraic Data Type Exercises S0607 Q 5
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ñ bothGFNames with do notation and explicit (;), ({),
(})

259 bothGFNames03 :: Person
260 -> Maybe (String,String)
261 bothGFNames03 p = do {
262 dad <- father p ;
263 gf1 <- father dad ;
264 mum <- mother p ;
265 gf2 <- father mum ;
266 return (name gf1,name gf2) ;
267 }

Go to Algebraic Data Type Exercises S0607 Q 5

97/164



Functional
Programming

Phil Molyneux

Agenda

Adobe Connect

Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises
Alg Q 1

Alg A 1

Alg Q 2

Alg A 2

Alg Q 3

Alg A 3

Alg Q 4

Alg A 4

Alg Q 5

Alg A 5

Alg Q 6

Alg A 6

Laws for return and bind

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

Algebraic Data Type Exercises S0607
Q 6

ñ Write eitherGFNames which takes a Person and returns
a pair of names if either or both or none are known

269 eitherGrandfather
270 :: Person -> (Maybe String, Maybe String)

Go to Algebraic Data Type Exercises S0607 A 6
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ñ Posible answer

272 maternalGrandfather :: Person -> Maybe Person
273 maternalGrandfather p = do
274 mum <- mother p
275 gfm <- father mum
276 return gfm

278 paternalGrandfather :: Person -> Maybe Person
279 paternalGrandfather p = do
280 dad <- father p
281 gfp <- father dad
282 return gfp

284 -- eitherGrandfather
285 -- :: Person -> (Maybe Person,Maybe Person)
286 eitherGrandfather p
287 = (nameMbe (maternalGrandfather p)
288 ,nameMbe (paternalGrandfather p))

Go to Algebraic Data Type Exercises S0607 Q 6
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Return and Bind
Laws

ñ The return and bind, (>>=) functions are provided by
Haskell since they are much more general than just
being used for the Maybe a datatype

ñ They are provided by a type class

ñ Any instance must obey the following laws

1 return x >>= f = f x -- left unit
2 m >>= return = m -- right unit
3 (m >>= f) >>= g = m >>= (\x -> f x >>= g)
4 -- associativity

ñ These laws ensure that the instance of this type class
works as expected and fits with other instances (and
other type classes)

ñ Exercise: verify the laws for the definitions of return
and bind, (>>=) for the Maybe a type
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Return and Bind
Laws (contd)

ñ The return and bind, (>>=) — verification of laws

1 return x >>= f
2 → Just x >>= f
3 → f x

5 m >>= return
6 Nothing >>= return → Nothing (= m)
7 Just x >>= return → return x → Just x (= m)

9 (m >>= f) >>= g
10 (Nothing >>= f) >>= g → Nothing >>= g → Nothing
11 (Just x >>= f) >>= g → f x >>= g

13 m >>= (\x -> f x >>= g)
14 Nothing >>= (\x -> f x >>= g) → Nothing
15 Just x >>= (\x -> f x >>= g)
16 → (\x -> f x >>= g) x
17 → f x >>= g
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Return and Bind
Laws (contd)

ñ The examples above come from Haskell Wikibook:
Understanding Monads

ñ We are being a bit premature and introducing the Maybe
a instance of the Monad type class as a motivating
example (it is meant to look useful)

ñ This pattern of computation is very common (it
encapsulates just about all imperative programming)

ñ Return as a neutral element — the behaviour of
return is specified by the left and right unit laws —
return does not perform computation, it just collects
values

ñ Associativity of bind — this makes sure that the bind
operator (like the semicolon) only cares about the order
of computations not about their nesting
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Binary Trees and Recursion Schemes

ñ Binary trees appear in lots of applications and have
common patterns of recursive definitions fr many
functions
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Tree Data Types
Binary Trees and Recursion Schemes

ñ In imperative, procedural programming, common
patterns of control flow with GOTOs were astracted out
with structured programming in the 1970s — sequence,
selection and iteration — which required new language
constructs

ñ In functional programming, we can often express new
constructions and abstractions as higher-order
functions

ñ This decouples how a function recurses over data from
what the function actually does

ñ Whilst it takes some effort to learn about the common
patterns and their higher-order functions, there are
several advantages (as there are for any abstraction)

ñ We can discover general properties of the abstraction
and hence infer properties of specific instances for free.

ñ We can also use the general properties to calculate
functions
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ñ We shall (mainly) use the following algebraic data type
for binary trees

291 data BinTree a
292 = EmptyBT | NodeBT a (BinTree a) (BinTree a)
293 deriving (Eq, Show, Read)

ñ We also declare a Letter algebraic data type for
convenience

295 data Letter
296 = A|B|C|D|E|F|G|H|I|J|K|L|M|N|O
297 deriving (Eq, Ord, Enum, Bounded, Show, Read)
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Binary Trees
Example egBSTree diagram

H

egBSTree

D

egBSTreeL

B

LL

A C

F

LR

E G

L

egBSTreeR

J

RL

I K

N

RR

M O

ñ Name convention: variables must start with lower case
so we have eg (for example, exempli gratia), BSTree
indicates this is not just a Binary Tree but also a Binary
Search Tree
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Binary Trees
Example egBSTree code

299 egBSTree :: BinTree Letter
300 egBSTree
301 = NodeBT H
302 (NodeBT D
303 (NodeBT B
304 (NodeBT A EmptyBT EmptyBT)
305 (NodeBT C EmptyBT EmptyBT))
306 (NodeBT F
307 (NodeBT E EmptyBT EmptyBT)
308 (NodeBT G EmptyBT EmptyBT))
309 )
310 (NodeBT L
311 (NodeBT J
312 (NodeBT I EmptyBT EmptyBT)
313 (NodeBT K EmptyBT EmptyBT))
314 (NodeBT N
315 (NodeBT M EmptyBT EmptyBT)
316 (NodeBT O EmptyBT EmptyBT))
317 )

107/164



Functional
Programming

Phil Molyneux

Agenda

Adobe Connect

Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types
Binary Trees and
Recursion Schemes

Binary Trees: Data
Types and Examples

egBSTree

egBSTree1

egBSTree2

egBSTree3

Alternative Tree Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

Binary Trees
Example egBSTree1 diagram
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egBSTree1
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N
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M O
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Binary Trees
Example egBSTree1 code

319 egBSTree1 :: BinTree Letter
320 egBSTree1
321 = NodeBT H
322 (NodeBT D EmptyBT EmptyBT)
323 (NodeBT L
324 (NodeBT J EmptyBT EmptyBT)
325 (NodeBT N
326 (NodeBT M EmptyBT EmptyBT)
327 (NodeBT O EmptyBT EmptyBT)))
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Binary Trees
Example egBSTree2

H

egBSTree2

D

egBSTree2L

B

LL
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F
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E G
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egBSTree2R

J

RL

I

N

RR
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Binary Trees
Example egBSTree2 code

329 egBSTree2 :: BinTree Letter
330 egBSTree2
331 = NodeBT H
332 (NodeBT D
333 (NodeBT B
334 (NodeBT A EmptyBT EmptyBT)
335 (NodeBT C EmptyBT EmptyBT))
336 (NodeBT F
337 (NodeBT E EmptyBT EmptyBT)
338 (NodeBT G EmptyBT EmptyBT)))
339 (NodeBT L
340 (NodeBT J
341 (NodeBT I EmptyBT EmptyBT)
342 EmptyBT)
343 (NodeBT N EmptyBT EmptyBT))
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Binary Trees
Example egBSTree3
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M O

112/164



Functional
Programming

Phil Molyneux

Agenda

Adobe Connect

Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types
Binary Trees and
Recursion Schemes

Binary Trees: Data
Types and Examples

egBSTree

egBSTree1

egBSTree2

egBSTree3

Alternative Tree Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

Binary Trees
Example egBSTree3 code

345 egBSTree3 :: BinTree Letter
346 egBSTree3
347 = NodeBT H
348 (NodeBT D
349 (NodeBT B
350 (NodeBT A EmptyBT EmptyBT)
351 (NodeBT C EmptyBT EmptyBT))
352 (NodeBT F
353 EmptyBT
354 (NodeBT G EmptyBT EmptyBT)))
355 (NodeBT L
356 EmptyBT
357 (NodeBT N
358 (NodeBT M EmptyBT EmptyBT)
359 (NodeBT O EmptyBT EmptyBT)))
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Tree Types
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ñ In computing, trees can come in many forms. There can
be trees with data only at the leaves, data only in the
internal nodes, data of different types in alternate levels
(useful for game trees), or multiway trees

361 data LeafTree a = LeafLT a
362 | NodeLT a (LeafTree a) (LeafTree a)
363 deriving (Eq, Show, Read)
364 data IntlTree a = LeafIT a
365 | NodeIT a (IntlTree a) (IntlTree a)
366 deriving (Eq, Show, Read)
367 data DualTree a b = LeafDT a
368 | NodeDT a (DualTree b a) (DualTree b a)
369 deriving (Eq, Show, Read)
370 data RoseTree a = LeafRT a [RoseTree a]
371 deriving (Eq, Show, Read)

ñ Exercise: give an example of DualTree Letter
Integer
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Alternative Trees
Dual Trees Examples

ñ Examples of DualTree Letter Integer

373 egDualTree01
374 = LeafDT H

376 egDualTree02
377 = NodeDT H
378 (NodeDT 4 (NodeDT B (LeafDT 1) (LeafDT 3))
379 (LeafDT F))
380 (NodeDT 12 (LeafDT J)
381 (NodeDT N (LeafDT 13) (LeafDT 15)))

383 egDualTree03
384 = NodeDT 8
385 (NodeDT D (NodeDT 2 (LeafDT A) (LeafDT C))
386 (LeafDT 6))
387 (NodeDT L (LeafDT 10)
388 (NodeDT 14 (LeafDT M) (LeafDT O)))
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Dual Trees
Example egDualTree02
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egDualTree02
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egDualTree02L
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LL

1 3
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egDualTree02R
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RL

N

RR

13 15
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Tree Data Type Exercises
Introduction

ñ These exercises or short topics are aimed at illustrating
common patterns of recursion in tree structures and
showing how the fold family of functions naturally
extends to tree structures (or any algebraic data type)
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Tree Data Type Exercises S0607
Q 1

ñ Write functions inOrderBT01, preOrderBT01,
postOrderBT01 which tak a BinTree a and returns in
order, pre order, post order traversals of the tree

390 inOrderBT01 :: BinTree a -> [a]

392 preOrderBT01 :: BinTree a -> [a]

394 postOrderBT01 :: BinTree a -> [a]

Go to Tree Exs S0607 A 1
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ñ Here are the usual recursive definitions

395 inOrderBT01 EmptyBT = []
396 inOrderBT01 (NodeBT x leftBT rightBT)
397 = (inOrderBT01 leftBT)
398 ++ [x] ++ (inOrderBT01 rightBT)

400 preOrderBT01 EmptyBT = []
401 preOrderBT01 (NodeBT x leftBT rightBT)
402 = [x]
403 ++ (preOrderBT01 leftBT) ++ (preOrderBT01 rightBT)

405 postOrderBT01 EmptyBT = []
406 postOrderBT01 (NodeBT x leftBT rightBT)
407 = (postOrderBT01 leftBT)
408 ++ (postOrderBT01 rightBT) ++ [x]

ñ Soln 1 continued on next slide

Go to Tree Exs S0607 Q 1
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Tree Data Type Exercises S0607 Answers
A 1 (contd)

ñ Each of the functions has a common pattern

ñ The constructors of the algebraic data type are replaced
by functions (or a value) that consume or transform the
data structure

ñ This is a generalisation of the fold function given in
S0405 for lists

410 foldBinTree
411 :: (a -> b -> b -> b) -> b -> BinTree a -> b

413 foldBinTree fNodeBT fEmptyBT EmptyBT = fEmptyBT
414 foldBinTree fNodeBT fEmptyBT (NodeBT x leftT rightT)
415 = fNodeBT x (foldBinTree fNodeBT fEmptyBT leftT)
416 (foldBinTree fNodeBT fEmptyBT rightT)

ñ Soln 1 continued on next slide

Go to Tree Exs S0607 Q 1
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Tree Data Type Exercises S0607 Answers
A 1 (contd)

ñ We now define the traversal functions in terms of the
fold function

418 inOrderFoldBT :: BinTree a -> [a]
419 inOrderFoldBT t
420 = foldBinTree
421 fNodeBTToInOrderList fEmptyBTToInOrderList t

423 fEmptyBTToInOrderList = []
424 fNodeBTToInOrderList x leftTList rightTList
425 = leftTList ++ [x] ++ rightTList

ñ Soln 1 continued on next slide

Go to Tree Exs S0607 Q 1
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Tree Data Type Exercises S0607 Answers
A 1 (contd)

427 preOrderFoldBT :: BinTree a -> [a]
428 preOrderFoldBT t
429 = foldBinTree
430 fNodeBTToPreOrderList fEmptyBTToPreOrderList t

432 fEmptyBTToPreOrderList = []
433 fNodeBTToPreOrderList x leftTList rightTList
434 = [x] ++ leftTList ++ rightTList

436 postOrderFoldBT :: BinTree a -> [a]
437 postOrderFoldBT t
438 = foldBinTree
439 fNodeBTToPostOrderList fEmptyBTToPostOrderList t

441 fEmptyBTToPostOrderList = []
442 fNodeBTToPostOrderList x leftTList rightTList
443 = leftTList ++ rightTList ++ [x]

Go to Tree Exs S0607 Q 1
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ñ A level order traversal takes a tree and returns the list
of lists of items at each level

ñ In the Binary Trees notes, the final functional definition:

445 levelOrderBT :: BinTree a -> [[a]]
446 levelOrderBT EmptyBT = []
447 levelOrderBT (NodeBT x leftT rightT)
448 = [x] : longZipWith (++)
449 (levelOrderBT leftT)
450 (levelOrderBT rightT)

452 longZipWith :: (a -> a -> a) -> [a] -> [a] -> [a]
453 longZipWith f [] ys = ys
454 longZipWith f (a:xs) [] = (a:xs)
455 longZipWith f (a:xs) (b:ys)
456 = (f a b) : (longZipWith f xs ys)

ñ Define level order as a fold

Go to Tree Exs S0607 A 2
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458 levelOrderFoldBT :: BinTree a -> [[a]]
459 levelOrderFoldBT t
460 = foldBinTree
461 fNodeBTToLevelOrder fEmptyBTToLevelOrder t

463 fEmptyBTToLevelOrder = []

465 fNodeBTToLevelOrder :: a -> [[a]] -> [[a]] -> [[a]]
466 fNodeBTToLevelOrder x leftTOrder rightTOrder
467 = [x] : longZipWith (++)
468 leftTOrder rightTOrder

GHCi> levelOrderFoldBT egBSTree
[[H],[D,L],[B,F,J,N],[A,C,E,G,I,K,M,O]]
GHCi> levelOrderFoldBT egBSTree1
[[H],[D,L],[J,N],[M,O]]

Go to Tree Exs S0607 Q 2
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Q 3

ñ Using a fold, define heightBT which returns the height
of a tree

ñ here is the usual recursive definition

469 heightBT :: BinTree a -> Int

471 heightBT EmptyBT = 0
472 heightBT (NodeBT x leftT rightT)
473 = 1 + max (heightBT leftT) (heightBT rightT)

Go to Tree Exs S0607 A 3
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474 heightFoldBT t
475 = foldBinTree
476 fNodeBTToHeight fEmptyBTToHeight t

478 fEmptyBTToHeight = 0
479 fNodeBTToHeight x leftTHeight rightTHeight
480 = 1 + max leftTHeight rightTHeight

GHCi> heightBT egBSTree
4
GHCi> heightFoldBT egBSTree
4

Go to Tree Exs S0607 Q 3
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ñ Using a fold, define sizeBT which returns the size of a
tree

ñ Here is the usual recursive definition

481 sizeBT :: BinTree a -> Int

483 sizeBT EmptyBT = 0
484 sizeBT (NodeBT x leftT rightT)
485 = 1 + (sizeBT leftT) + (sizeBT rightT)

Go to Tree Exs S0607 A 4
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486 sizeFoldBT t
487 = foldBinTree
488 fNodeBTToSize fEmptyBTToSize t

490 fEmptyBTToSize = 0
491 fNodeBTToSize x leftTSize rightTSize
492 = 1 + leftTSize + rightTSize

GHCi> sizeBT egBSTree
15
GHCi> sizeFoldBT egBSTree
15

Go to Tree Exs S0607 Q 4
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ñ Write a function numLeavesBT which takes a tree and
returns the number of leaves

a leaf is a node with two empty subtrees

493 isEmptyBT EmptyBT = True
494 isEmptyBT (NodeBT x leftT rightT) = False

496 isBothEmptyBT t1 t2
497 = isEmptyBT t1 && isEmptyBT t2

499 numLeavesBT EmptyBT = 0
500 numLeavesBT (NodeBT x leftT rightT)
501 = if isBothEmptyBT leftT rightT
502 then 1
503 else numLeavesBT leftT
504 + numLeavesBT rightT

ñ Write numLeavesFoldBT which uses foldBinTree

Go to Tree Exs S0607 A 5
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ñ We calculate the function using the Universal Property

numLeaves t = fold f v t
numLeaves EmptyBT = v
numLeaves (NodeBT x leftT rightT)
= f x leftTNL rightTNL
-- defn of numLeaves
= if isBothEmptyBT leftT rightT
then 1
else (numLeavesBT leftT)

+ (numLeaves righT)
-- Eureka step to get rid of isolated leftT, righT
= if isBothZero (numLeavesBT leftT) (numLeaves righT)
then 1
else (numLeavesBT leftT)

+ (numLeaves righT)
-- this gives us the required definition

ñ Soln 5 continued on next slide

Go to Tree Exs S0607 Q 5
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A 5 (contd)

505 isBothZero x y
506 = x == 0 && y == 0

508 numLeavesFoldBT t
509 = foldBinTree
510 fNodeBTToNumL fEmptyBTToNumL t

512 fEmptyBTToNumL = 0
513 fNodeBTToNumL x leftTNL rightTNL
514 = if isBothZero leftTNL rightTNL
515 then 1
516 else leftTNL + rightTNL

Go to Tree Exs S0607 Q 5
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ñ The function minDepthBT can be defined recursively as

517 minDepthBT EmptyBT = 0
518 minDepthBT (NodeBT x leftT rightT)
519 = 1 + min (minDepthBT leftT) (minDepthBT rightT)

ñ This will visit every node in the tree but the
computation can stop earlier

ñ See egBSTree1 — we can stop when we meet node D

ñ Suggest ways of making this more efficient — this may
or may not use fold

Go to Tree Exs S0607 A 6
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ñ We can do this by keeping track of the depth in the tree
and the minimum depth so far

520 minDepthBT01 :: BinTree a -> Int
521 minDepthBT01 t
522 = minD t 0 maxBound
523 -- here maxBound is regarded as infinity
524 minD :: BinTree a -> Int -> Int -> Int
525 minD EmptyBT d m = min d m
526 minD (NodeBT x leftT rightT) d m
527 = if d + 1 >= m
528 then m
529 else minD leftT (d + 1) (minD rightT (d + 1) m)

ñ We can do better than this if we consider the tree level
by level

ñ TODO: complete A 6

Go to Tree Exs S0607 Q 6
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References (1)

ñ Get Height of Tree (20 August 2018) StackExchange
Code Review — uses catamorphism

ñ Practical Recursion Schemes (20 August 2018) — Jared
Tobin 5 September 2015

ñ Haskell WikiBook: Category theory (20 August 2018)

ñ Recursion schemes for dummies? (21 August 2018)

ñ Wikipedia: Recursion schemes (21 August 2018)
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Recursion Schemes
References (2)

ñ An Introduction to Recursion Scheme — Patrick
Thomson 15 February 2014

ñ Recursion Schemes, Part II: A Mob of Morphisms — 21
August 2015

ñ Recursion Schemes, Part III: Folds in Context — 20 July
2016

ñ Recursion Schemes, Part IV: Time is of the Essence —
11 October 2017

ñ Recursion Schemes, Part 4 1/2: Better Living Through
Base Functors — 24 January 2018

ñ Recursion Schemes, Part V: Hello, Hylomorphisms — 17
April 2018 Patrick Thomson
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Input and Output
The Problem

ñ Calculating values in the language and performing
actions outside the language are different

ñ Actions have to be performed in the correct order

ñ Call-by-value (or strict) functional languages take the
approach of imperative languages

ñ I/O is treated as a function (even though it is a side
effect)

ñ The language design has to specify the order of
evaluation of expressions
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The Problem (2)

ñ Suppose we have a function printChar that takes a
character, prints it to standard output and returns
nothing

ñ In imperative languages and strict functional languages,
the programmer has to ensure that calls to printChar
happen in the correct order

ñ Consider

xs = [printChar ’a’, printChar ’b’]

ñ Call-by-need (or lazy) languages (such as Haskell) do
not specify order of evaluation

ñ The printChar calls are only performed if the elements
of the list are evaluated

ñ length xs would return 2 but does not need to
evaluate the elements of xs

ñ Laziness and side effects appear incompatible
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Initial Solution (1)

ñ First version of Haskell:

ñ View of Program — Top level program is a function
from a (lazy) list (stream) of system responses returning
a (lazy) list of system requests.

main :: [Response] -> [Request]

ñ Request and Response are both ordinary algebraic
data types

type FilePath = String

data Request = ReadFile FilePath
| WriteFile FilePath String
| ...

data Response = RequestFailed
| ReadSucceeded String
| WriteSucceeded
| ...
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Initial Solution (2)

ñ This was used in the first version of Haskell

ñ but it has problems:

ñ Hard to extend since it can only be extended by
changing the Request and Response types

ñ There is no close connection between a request and its
corresponding response — hence easy to write a
program that gets out of step

ñ Even if not out of step, it is too easy to evaluate the
response stream too eagerly and hence block emitting a
request
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Monadic I/O (1)

ñ Need an abstract data type that allows us to calculate
programs that have side effects in a purely functional
way

ñ A value of type IO a is an action that, when performed,
may do some input/output, before delivering a value of
type a

ñ We distinguish between evaluating an expression and
performing an action

ñ Sometimes actions are referred to as computations

ñ It is as if we have:

type IO a = World -> (a,World)

ñ A value of IO a is a function that takes an argument of
type World and delivers a new World together with a
result of type a
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Monadic I/O (2)

ñ We then provide some primitive operations and a small
number of ways of combining the primitive operations

ñ The top level program is of type IO ()

getChar :: IO Char
putChar :: Char -> IO ()

ñ getChar, when performed, reads a character from the
standard input and returns it

ñ putChar takes a character and returns an action which,
when performed, prints the character on the standard
output

ñ An action is a first class value

ñ Evaluating an action has no effect; performing an action
has an effect
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Monadic I/O (3)

ñ To combine actions, (>>=) (spoken bind) is provided

(>>=) :: IO a -> (a -> IO b) -> IO b

echo :: IO ()
echo = getChar >>= putChar

ñ echo, when performed, reads a character from the
standard input and prints it to the standard output.

ñ When a >>= f is performed, it performs action a, takes
the result, applies f to it to get a new action and then
performs the new action

ñ In the echo example, we first perform the action
getChar, yielding a character c and then we perform
putChar c
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ñ To combine two actions without using the result of the
first, we construct (>>) (spoken then)

(>>) :: IO a -> IO b -> IO b
(>>) a1 a2 = a1 >>= (\_ -> a2)

echoTwice :: IO ()
echo = echo >> echo

ñ (>>) is analogous to the semicolon (;) in (some)
imperative programming languages
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Monadic I/O (5)

ñ It is common for the second argument of (>>=) to be
an explicit lambda abstraction

ñ Example: echoDup reads a character and prints it twice

echoDup :: IO ()
echoDup = getChar >>= (\c ->

(putChar c >> putChar c))

ñ All the parentheses above are optional, since a lambda
abstraction extends as far to the right as possible — so

echoDup :: IO ()
echoDup = getChar >>= \c ->

putChar c >>
putChar c

ñ This looks like a sequence of imperative actions and
that is no coincidence — the do notation (see later)
mirrors an imperative program more closely
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Monadic I/O (6)

ñ We need one more primitive to allow us to combine
several values

getTwoChars :: IO (Char,Char)
getTwoChars = getChar >>= \c1 ->

getChar >>= \c2 ->
return (c1,c2)

ñ The action (return v) is an action that does no I/O
and immediately returns v without any side effects

return :: a -> IO a

ñ (return v) lifts a value of type a into the IO a data
type and does nothing else
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Monadic I/O (7)

ñ getLine01 reads a whole line of input

getLine01 :: IO [Char]
getLine01 = getChar >>= \c ->

if c == ’\n’ then
return []

else
getLine01 >>= \cs ->
return (c : cs)

ñ We use the name getLine01 to not conflict with the
builtin getLine which is defined as

getLine :: IO String
getLine = hGetLine stdin

hGetLine :: Handle -> IO String

ñ hGetLine is more general and efficient — it also does
some error checking – see System.IO
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Monadic I/O (8)

ñ A complete Haskell program defines a single I/O action
of type IO ()

ñ The program is executed by performing the action

ñ The following example reads a line, reverses it and
prints the result

main :: IO ()
main = getLine >>= \cs ->

putLine (reverse cs)
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Monadic I/O (9)

ñ Monadic I/O can be thought of as composable action
descriptions

ñ The essence of this style is the separation of the
composition calculations from the composed action’s
execution timeline

ñ Note that (>>=) is the only (primitive) operation that
combines or composes I/O actions

ñ There is no operator of the type IO a -> a — all we
can do is feed the result of an action into another action

ñ This prevents the programmer bypassing the
sequencing of actions
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do Notation

ñ Haskell provides the do notation to re-write long chains
of (>>) and (>>=)

do {e; stmnts} = e >> do {stmnts}
do {x <- e; stmnts} = e >>= \x -> do {stmnts}
do {e} = e
do {let decls; stmnts}
= let decls in do {stmnts}

ñ Layout can be used to get rid of the braces ({),(})
and semicolons (;)

ñ This gives monadic computations an imperative feel

ñ Note that x <- e binds the variable x — it is not an
assignment as in an imperative language
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Control Structures

ñ Control structures such as for and while loops were
invented in the 1960s as part of structured
programming for imperative languages

ñ These required modifying the language

ñ However in functional programming we can build
control structures out of functions in the language

ñ See Control.Monad

ñ See examples in monad-loops: avoiding writing
recursive functions by refactoring

ñ See Control.Monad.Loops
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Control Structures (2)

ñ An infinite loop

forever :: IO () -> IO ()
forever a = a >> forever a

ñ Repeat an action a number of times

repeatN :: Int -> IO a -> IO ()
repeatN 0 a = return ()
repeatN n a = a >> repeatN (n-1) a

151/164



Functional
Programming

Phil Molyneux

Agenda

Adobe Connect

Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming
I/O The Problem

I/O Solution (1)

Monadic I/O

do Notation

Control Structures

Interaction Exercises
S0809 Q1

Interaction Exercises
S0809 A1

Monadic I/O Review

Future Work

References

Monadic I/O
Control Structures (3)

ñ A for loop

for :: [a] -> (a -> IO ()) -> IO ()
for [] f = return ()
for (n:ns) f = f n >> for ns f

ñ Instead of having a fixed collection of contol structures
provided by the language designer, we are free to
invent new ones

ñ This is a very powerful technique
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Control Structures (4)

ñ Another definition of for

for ns f = sequence_ (map f ns)

sequence_ :: [IO a] -> IO ()
sequence_ as = foldr (>>) (return ()) as

ñ The (_) in the name sequence_ reminds us that it
throws away the results of the sub-actions

sequence :: [IO a] -> IO [a]
sequence [] = return []
sequence (a:as)
= do r <- a

rs <- sequence as
return (r:rs)
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Interaction Exercises S0809
Q 1

ñ Define putLine01 which takes a String and prints the
string with a new line at the end

531 putLine01 :: String -> IO ()

Go to Interaction Exercises S0809 A 1
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Interaction Exercises S0809 Answers
A 1

ñ We first define putStr01

533 putStr01 :: String -> IO ()
534 putStr01 [] = return ()
535 putStr01 (x : xs)
536 = putChar x >>
537 putStr01 xs

ñ . . . and just add a newline

539 putLine01 xs
540 = putStr01 xs >>
541 putChar ’\n’

Go to Interaction Exercises S0809 Q 1
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Monadic I/O
Review

ñ A complete Haskell program is a single IO () action
called main

ñ Note that GHCi allows various expressions at the
prompt (see the GHC User Guide)

ñ Larger I/O actions are constructed by gluing together
smaller actions with (>>=) and return

ñ An I/O action is a first-class value: it can be passed to a
function as an argument or returned as the result of a
function call; it can be stored in a data structure

ñ Because I/O actions are first-class values, it is easy to
define new combinators in terms of existing ones.

ñ The Monadic data structure for I/O allows us to separate
calculating values in the language from calculating
effects to be performed outside the language
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Monads
Monadic Data Structure

ñ The Monad data structure is more generally useful and
we will return to discuss its other uses in a later section

ñ A monad is a triple of a type constructor, m and two
function return and (>>=) with types

(>>=) :: Monad m => m a -> (a -> m b) -> m b
return :: Monad m => a -> m a

ñ These must also satisfy the following laws

return x >>= f == f x -- left unit
m >>= return == m -- right unit
m1 >>= (\x -> m2 >>= (\y -> m3)) -- assoc.
== (m1 >>= (\x -> m2)) >>= (\y -> m3)

ñ The above laws can also be expressed in do notation
which may their meaning more obvious
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Monads
Monadic Data Structure (2)

ñ The monad laws in do notation

do x0 <- return x
f x0

==
do f x -- left unit

do x <- m
return x

==
do m -- right unit

do x <- m1
do y <- m2 x

m3 y
==
do y <- do x <- m1

m2 x
m3 y

== -- associativity
do x <- m1

y <- m2 x
m3 y
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Monads
Monadic Data Structure (3)

ñ The monad laws just describe how we expect
imperative code to behave

skipAndGetA
= do unused <- getLine

line <- getLine
return line

skipAndGetB
= do unused <- getLine

getLine

ñ We expect the above two to have the same behaviour
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Monads
Monadic Data Structure (4)

ñ Now use skipAndGet

main
= do answer <- skipAndGet

putStrLn answer

ñ We expect this to be the same as

main
= do answer <- do unused <- getLine

getLine
putStrLn answer

ñ and applying associativity

main
= do unused <- getLine

answer <- getLine
putStrLn answer

160/164



Functional
Programming

Phil Molyneux

Agenda

Adobe Connect

Haskell & GHC

Types & Type
Classes

Function Definitions
— Styles

Higher-order
Functions

User Defined Data
Types

Algebraic Data Type
Exercises

Tree Data Types

Tree Data Type
Exercises

Recursion Schemes

Interactive
Programming

Future Work

References

Future Work
Topics

ñ Functional programming is having a significant impact
on the mainstream

ñ Program construction with functions and expressions
rather than commands and statements

ñ Functions are first-class citizens
ñ Higher order functions
ñ Powerful combining forms
ñ Function composition
ñ Lazy evaluation or non-strict semantics
ñ Strong polymorphic type system
ñ Recursion and recursion patterns
ñ Efficiency and pragmatic issues
ñ Languages such as Scala, Kotlin, Rust, Julia and others

have many of these features
ñ Notice the interplay between ideas and particular

languages and technoloies
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Haskell References
Textbooks

ñ Miran Lipovača: Learn You a Haskell (LYAH) (Lipovaca,
2011) written when he was a student in Ljubljana,
Slovenia, well written but has no exercises. Online
version

ñ Graham Hutton: Programming in Haskell (Hutton, 2016)
— aimed at beginners — does have sections on Monoid,
Foldable, Traversable, Functor, Applicative,
Monad without being mathematical in the formal sense.
See also Erik Meijer: C9 Lectures — Functional
Programming Fundamentals

ñ Richard Bird: Thinking Functionally with Haskell (Bird,
2014) — third edition of a classic text — concentrates
on derivation and transformation of functions

ñ Richard Bird & Jeremy Gibbons: Algorithm Design with
Haskell (Bird, 2020) — sequel to the previous book
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Haskell References
Textbooks (2)

ñ Simon Thompson: Haskell The Craft of Functional
Programming (Thompson, 2011) — a lot more examples
and sections on coping with error messages from GHC

ñ Christopher Allen & Julie Moronuki: Haskell
Programming (Allen and Moronuki, 2016) Web site —
more formal than LYAH and does have exercises

ñ O’Sullivan et al: Real World Haskell (O’Sullivan et al,
2008) Web site — practitioners book

ñ Hudak: The Haskell School of Expression (Hudak, 2008)
— learning Haskell through multimedia and music
(Hudak was a jazz musician)
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Haskell References
Functional Programming Papers & Reference

ñ Haskell
ñ Haskell Documentation
ñ Haskell 2010 Language Report
ñ Glasgow Haskell Compiler
ñ GHC User Guide
ñ GHC Prelude
ñ A History of Haskell: Being Lazy with Class (Hudak et al,

2007)
ñ Conception, Evolution, and Application of Functional

Programming Languages (Hudak, 1989)
ñ Haskell vs. Ada vs. C++ vs. awk vs.... an experiment in

software prototyping productivity (Hudak and Jones,
1994)

ñ Why Functional Programming Matters (Hughes, 1989)
ñ Haskore music notation –an algebra of music– (Hudak,

1996)
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https://www.haskell.org/onlinereport/haskell2010/
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