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1 Agenda

e Welcome & Introductions
e Functional programming introduction
e Programming environment and notation

e Program construction with functions and expressions rather than commands and
statements

e Functions are first-class citizens

e Higher order functions

e Powerful combining forms

e Function composition

e Lazy evaluation or non-strict semantics
e Strong polymorphic type system

e Recursion and recursion patterns

e Efficiency and pragmatic issues

Introductions — Me

e Name Phil Molyneux

Background Physics and Maths, Operational Research, Computer Science

First programming languages Fortran, BASIC, Pascal

Favourite Software

Haskell — pure functional programming language

Text editors TextMate, Sublime Text — previously Emacs

Word processing in IATEX
Mac OS X

Learning style — | read the manual before using the software (really)

Introductions — You
e Name?
e Position in M269 ? Which part of which Units and/or Reader have you read ?
e Particular topics you want to look at ?

e Learning Syle?


http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/BASIC
http://en.wikipedia.org/wiki/Pascal_(programming_language)
http://www.haskell.org/haskellwiki/Haskell
https://macromates.com
http://www.sublimetext.com
http://www.emacswiki.org
http://www.latex-project.org
https://developer.apple.com/devcenter/mac/index.action
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2 Adobe Connect Interface and Settings

2.1 Adobe Connect Interface — Student View

Adobe Connect Interface — Student Quick Reference

Participant Quick Reference Guide

Speaker volume
Audio set up Webcam

Video pod

~ Attendee pod

— Chat pod
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Adobe Connect Interface — Student View

* ® M269-17J M269-17J Online tutorial room London/SE (1,13) CG [2311] M269-17J (1) - Adobe Connect

[\! Meeting 4 - & - e - ¥~ Help
N ————y—— &

Start My Webcam

M269 Overview

Phil Molyneux

Attendees (1)

M269 Overview
M269 Overview A

» Presenters (0)
* Participants (1)
8 Phit motyneux ]

Phil Molyneux

15 October 2017

Chat (Everyone)

Everyone

2.2 Adobe Connect Settings

Adobe Connect Settings

e Everybody: Audio Settings [Meeting )) Audio Setup Wizard. .. |

o Audio {Menu bar>> Audio>> Microphone rights for Participants} v

e Do not Enable single speaker mode

Drawing Tools [Share pod menu bar )) Draw| (1 slide/screen)

[Share pod menu bar>> Menu icon>> Enable Participants to draw] v gray

{Meeting>> Preferences>> Whiteboard>> Enable Participants to draw} v

Cancel hand tool

Do not enable green pointer...

{Meeting>> Preferences>> Attendees Pod} Disable Raise Hand notification

Cursor {Meeting>> Preferences>> General tab>> Host Cursors>> Show to all attendees} v (default Off)

[Meeting>> Preferences>> Screen Share>> Cursor>> Show Application Cursor}

Webcam {Menu bar>> Webcam>> Enable Webcam for Participants} v

Recording [Meeting>> Record Meeting. . } v
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Adobe Connect — Access

e Tutor Access

) TutorHome>> M269 Website>> Tutorials}

e |Tutor Groups>> M269 Online tutor group room}

{

) {Cluster Tutorials>> M269 Online tutorial room}
{
{

® |Module-wide Tutorials>> M269 Online module-wide room}

e Attendance

{TutorHome>> Students>> View your tutorial timetables}

e Beamer Slide Scaling 440% (422 x 563 mm)

e Clear Everyone’s Status

{Attendee Pod>> Menu>> Clear Everyone’s Status}

e Grant Access

{Meeting>> Manage Access & Entry>> Invite Participants. . } and send link via email

Adobe Connect — Keystroke Shortcuts
e Keyboard shortcuts in Adobe Connect
Toggle Mic [8])+M] (Mac), [ceri)+(M] (Win) (On/Disconnect)
Toggle Raise-Hand status [32])+E
Close dialog box [®] (Mac), [Esc] (win)
End meeting [32])+\ ]


https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html
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2.3 Adobe Connect Interface — Student & Tutor Views

Adobe Connect Interface — Student View (default)

Al Meeting
ke

17)TutorialOr

AAC3A.beamer.pdf

Start My Webcam

M269 Overview

Phil Molyneux

Attendees (1)

M269 Overview
M269 Overview A

e speakers

» Hosts (0)

» Presenters (0)

v Participants (1)

8 ehil molyneux

Phil Molyneux

15 October 2017

Chat  (Everyone)

Everyone
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Adobe Connect Interface — Tutor Quick Reference

Host Quick Reference Guide Adobe®Connect

Status: raise hand, agree, disagree,
Control participant step away, speak louder, speak
mics & audio softer, speed up, slow down,
conferencing laughter, applause

Manage meeting: audio
set up, recording, roles Speaker Webcam Adobe Connect Help

Connection

JV Meeting Layouts Pods  Audio
status

Share
pod

Share

Video pod

Attendee
Status View

Breakout
Room View

» Presenters (0)

»_Participants (0)

Attendee
pod

Chat (everyone)

Chat pod

Layout panel

Adobe Connect Interface — Tutor View

LA! Meeting  Layouts  Pods  Audio

AAC3A.beamer.pdf

Start My Webcam
M269 Overview

Phil Molyneux

Attendees (1)

M269 Overview
M269 Overview A

R e speaters

= Hosts (1)

&) Phit Molyneux

'+ Presenters (0)

Phil Molyneux + Participants (0)

15 October 2017

Chat (Everyone)

® & [ 1 ]iee | = & [ox -] | @ Everyone
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2.4 Adobe Connect — Sharing Screen & Applications

) {Share My Screen>> Application tab>> Terminal} for Terminal

e [Share menu )) Change View )) Zoom in| for mismatch of screen size/resolution (Participants)

(Presenter) Change to 75% and back to 100% (solves participants with smaller screen
image overlap)

e Leave the application on the original display

e Beware blued hatched rectangles — from other (hidden) windows or contextual
menus

e Presenter screen pointer affects viewer display — beware of moving the pointer away
from the application

e First time: {System Preferences>> Security & Privacy>> Privacy>> Accessibility}

2.5 Adobe Connect — Ending a Meeting

e Notes for the tutor only

e Student: {Meeting>> Exit Adobe Connect]

e Tutor:

e Recording {Meeting>> Stop Recording} v

e Remove Participants (Meeting )) End Meeting. .. | v/

- Dialog box allows for message with default message:
- The host has ended this meeting. Thank you for attending.

e Recording availability In course Web site for joining the room, click on the eye icon
in the list of recordings under your recording — edit description and name

e Meeting Information [Meeting )) Manage Meeting Information| — can access a range of informa-
tion in Web page.

e Attendance Report see course Web site for joining room

2.6 Adobe Connect — Invite Attendees

e Provide Meeting URL {Menu>> Meeting>> Manage Access & Entry>> Invite Participants. .. }

e Allow Access without Dialog [Menu ) Meeting )) Manage Meeting Information| provides new browser
window with Meeting Information [Tab bar )) Edit Information |

e Check Anyone who has the URL for the meeting can enter the room
e Default Only registered users and accepted guests may enter the room
e Reverts to default next session but URL is fixed

e Guests have blue icon top, registered participants have yellow icon top — same icon
if URL is open


https://en.wikipedia.org/wiki/Terminal_(macOS)
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e See Start, attend, and manage Adobe Connect meetings and sessions

2.7 Layouts

e Creating new layouts example Sharing layout

) {Menu>> Layouts>> Create New Layout. .. } {Create a New Layout dialog>> Create a new blank Iayout} and name it
PMolyMain

e New layout has no Pods but does have Layouts Bar open (see Layouts menu)

e Pods

e [Menu )) Pods )) Share )) Add New Share| and resize/position — initial name is Share n

e Rename Pod {Menu>> Pods>> Manage Pods. . } [Manage Pods>> Select>> Rename} or [Double-click & rename

e Add Video pod and resize/reposition
e Add Attendance pod and resize/reposition
e Add Chat pod — name it PMolyChat — and resize/reposition

e Dimensions of Sharing layout (on 27-inch iMac)

Width of Video, Attendees, Chat column 14 cm

Height of Video pod 9 cm

Height of Attendees pod 12 cm

Height of Chat pod 8 cm

e Duplicating Layouts does not give new instances of the Pods and is probably not a
good idea (apart from local use to avoid delay in reloading Pods)

Go to Table of Contents

3 Haskell & GHC

You can dofunctional programming in any language

To really see some of the ideas it is best to use a language that directly implements
these ideas

These notes use Haskell and the implementation GHC

We first set this file up as a Literate Haskell Script (this page explains roughly how I
do my notes)

1 | module M269TutorialExtension2019] where
2 import Data.List

e A Haskell script starts with a module header which starts with the reserved identifier,
module followed by the module name, M269TutorialExtension2019]

e The module name must start with an upper case letter and is the same as the file
name (without its extension of ./hs)


https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html
https://www.haskell.org/
https://www.haskell.org/ghc/
https://wiki.haskell.org/Literate_programming
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e Haskell uses layout (or the off-side rule) to determine scope of definitions, similar to
Python

e The body of the module follows the reserved identifier where and starts with import
declarations

e These import the built-in libraries
e We use the sort function from Data.List
e The Haskell standard library, Prelude, is always present

e We start the GHC REPL (Read-eval-print loop) from a command line with ghci

GHCi> :1 M269TutorialExtension2019]
[1 of 1] Compiling -- stuff removed
Ok, one module loaded.

GHCi>

e At the GHCi prompt we can evaluate expressions with any builtin functions or in our
script

GHCi> 6 = 7

42

GHCi> length [9,16,25]
3

GHCi>

Tength is defined in the standard Prelude library

It returns the size of its argument — in this case the length of the list [9,16,25]

Notice the quiet notation for function application

Function application is denoted by juxtaposition and is more binding than (almost)
anything else (remember BODMAS ?)

f x not T(X)

We can define values at the GHC prompt

GHCi> Tet add x y = x + y
GHCi> add 2 3
5

Function application is left associative

Soadd 2 3 means (add 2) 3

What could add x mean ?

And what is the type of add ? You said this language is strongly typed — where is
the type specification (as in Java, but not Python, which is weakly typed)

e GHC can infer the most general type of a variable in the Haskell type system

GHCi> :type add
add :: Num a => a -> a -> a

e This means add takes two arguments of type a as long as that type is some sort of
number, and it returns a number of the same type a

e Num is the Type Class of all the type that implement the behaviour of numbers

e This is similar to interfaces and generics in Java


https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/

12
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The type class Num is defined in the Prelude and includes the usual integers and
floating point numbers and also arbitrary precision integers and rational numbers

What is the meaning of add x?

GHCi> :type (add 2)
(add 2) :: Num a => a -> a

3.1

This means add 2 is a function which takes a number and adds 2 to the number
add x y means (add x) y — function application is left associative
The type (a -> a -> a) meansa -> (a -> a)

The function type arrow (->) associates to the right to be consistent with the left
associativity of function application

This means we get a notation for higher-order functions and partial application for
free (no need for a special notation)

GHCi Commands

: 7 display list of commands

GHC Manual GHC User Guide

:load, : 1 load module(s)

:reload, :r reload current module set

:type, :t show the type of an expression

:info, :1 display information about the given names
<statement> evaluate/run <statement>

:set editor <cmd> set the command used for :edit
:set +m allow multilevel commands — see Multiline input
:set +s print timing/memory stats after each evaluation

See also the .ghci and .haskeline files

Types & Type Classes

Types are collections of related values

Common primitive and built-in data types include characters, numbers, Booleans,
lists, strings, tuples and function types

Type systems are syntactic methods for assigning a type to each expression in the
programming language — the aim is to prove the absence of certain program be-
haviours by answering the following:

Type checking — given a type signature for an expression expr :: t,is expr an
instance of type t ?


https://hackage.haskell.org/package/base-4.14.0.0/docs/Prelude.html
https://www.haskell.org/onlinereport/haskell2010/haskellch4.html#x10-630004.1
https://downloads.haskell.org/ghc/latest/docs/html/users_guide/
https://downloads.haskell.org/ghc/latest/docs/html/users_guide/ghci.html#ghci-multiline
https://downloads.haskell.org/ghc/latest/docs/html/users_guide/ghci.html#the-ghci-and-haskeline-files
https://en.wikipedia.org/wiki/Data_type
https://en.wikipedia.org/wiki/Type_system
https://www.haskell.org/onlinereport/haskell2010/haskellch4.html#x10-810004.4.1
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e Type inference — given an expression expr what is its most general type ?

e Given a type t, is there any expression for it or does the type have no values ? This
is related to the Curry-Howard isomorphism

4.1 Expressions & Types

e A type is a collection of related values and operations

GHCi> :t (2 == 3)
(2 == 3) :: Bool
GHCi> (2 == 3)
False

e Basic types
e Booleans type name Bool values False, True

e Characters type name Char values ’a’, Unicode plus ways of escaping special char-
acters such as new line

e Strings type name String values "Hello" strings are actually syntactic sugar for
[Char]

e Numbers the usual Int, Float, Double but also arbitrary precision Integer, Ratio
and also Complex

e Lists are sequences of elements of the same type

GHCi> :t [True,False, not (1 == 3)]

[True,False, not (1 == 3)] :: [Bool] -- no evaluation is done
GHCi> length [] -- [] is an empty Tist

0

GHCi> 5 : [3,4] -- (:) Tlist constructor
[513!4]

GHCi> :t (:)

(:) :: a -> [a] -> [a]
GHCi> head [5,3,4]

5

GHCi> tail [5,3,4]

[3,4]

GHCi> ["Athos","Porthos"] ++ ["Aramis","d’Artigan"]
["Athos","Porthos","Aramis","d’Artigan"] -- (++) appends two 1ists
GHCi> [5,3,4] !! 2 -- (!!) indexes from 0

4

GHCi> take 2 [5,3,4]

[5,3]

GHCi> drop 2 [5,3,4]

[4]

e List Comprehensions provide a concise way of performing calculations over lists

e Example: Square the even numbers between 0 and 9

GHCi> [xA2 | x <- [0..9], x ‘mod‘ 2 == 0]
[0,4,16,36,64]

GHCi>
e In general
[ [expr | quall, qual2,..., qualN]

e The qualifiers qual can be

- Generators pattern <- Tlist


https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence
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- Boolean guards — acting as filters

- Local declarations with Tet decls for use in expr and later generators and
boolean guards

e Note ‘mod*‘ is a function made into an infix operator

e Arithmetic sequences provide a concise way of generating a list of values from an
enumerable type

GHCi> [1..10]
[1,2,3,4,5,6,7,8,9,10]
GHCi> [1,3..10]
[1,3,5,7,9]

e We can also denote an infinite list (as long as we only consume a finite part) — lazy
evaluation gives us this but it is special in Python

GHCi> take 10 (drop 10 [100 ..])
[110,111,112,113,114,115,116,117,118,119]

e And it works with any enumerable type

GHCi> [’A’, ’D’ .. ’Z’]
"ADGIMPSVY"

e Strings are just syntactic sugar for list of characters [Char]

4.2 Type Classes

e Types specify sets of elements or data constructors
e Primitive: Numbers, characters

e Builtin: Booleans, Lists, Tuples, Maybe for failure or success, Either for error or
correct value, the Unit type, a type with only one (non-bottom) value, when you have
to have a type but don’t want to do anything with it — see What is () in Haskell

e User defined types: algebraic data type (naming the type constructor and data con-
structors — see LYAH chp 7), type synonyms, Datatype renamings

e Bottom, L or undefined is the value of a program that crashes or loops forever
e Type Classes provide a structured way of overloading

e For example, (+) works with Int, Integer, Float and other types of numbers
e Type Classes are specified by behaviour

e For a type to be a member of a type class, we have to provide an implementation of
some functions

4.2.1 Introduction to Haskell Builtin Type Classes

e Eq for equality — all basic data types are instances except functions and 10
e Ord for ordering — for types that have a total ordering

e Enum for enumeration — defining operations on sequentially ordered types


https://stackoverflow.com/questions/16892570/what-is-in-haskell-exactly
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e Bounded to name the upper and lower limits of a type
e Numbers have a family of classes
e Show and Read for printable and readable types

e Further type classes express types which capture common patterns of computation
— see LYAH chp 7 (Functor), chp 11 (Applicative), chp 12 (Monoid, FoldabTe),
chp 13 (Monad), and Traversable

e See Functors, Applicatives, And Monads In Pictures and Typeclassopedia for good
introductions to these

4.2.2 Equality Class

class Eq a where
(==), (/=) :: a -> a -> Bool

-- Minimal complete definition

-- (== or (/=)
X /=y =not (x ==y)
X ==y =not (x /=1Y)

4.2.3 Ordered Class

class (Eq a) => Ord a where

compare :: a ->a -> Ordering
(<),(<=),(>=),(>) :: a -> a -> Bool
max, min ira->a->a

-- Minimal complete definition
--  (<=) or compare

compare X y

| x == = EQ

| x <=y = LT

| otherwise = GT
X <=y = compare x y /= GT
X < y = compare x y == LT
X >=y = compare X y /= LT
X > y = compare x y == GT

-- data Ordering = LT | EQ | GT
- deriving (Eq,Ord,Enum,Read, Show, Bounded)

max x y
| x <=y =Yy
| otherwise = x
min x y
| x <=y =X
| otherwise =y

-- note (min x y, max x y) = (x,y) or (y,x)

-- data Ordering = LT | EQ | GT
- deriving (Eq,Ord, Enum,Read, Show, Bounded)

e Note that the Ordering algebraic data type is defined elsewhere in the Haskell Pre-
lude and is not part of the Ord type class declaration


http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html
https://wiki.haskell.org/Typeclassopedia
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4.2.4 Enumeration Class

class Enum a where

succ, pred ra->a

toEnum :: Int > a

fromEnum ::a -> Int

enumFrom :ra -> [a] -- [n..]
enumFromThen a -> a -> [a] -- [n,p..]
enumFromTo i a ->a -> [a] -- [n..m]
enumFromThenTo a->a->a->[al] -- [n,p..m]

-- Minimal complete definition
-- toEnum, fromEnum

e Class Enum defines operations on sequentially ordered types

toEnum . (+1) . fromEnum
toEnum . (subtract 1) . fromEum
map toEnum [fromEnum n ..]

succ

pred

enumFrom n
enumFromThen n p
= map toEnum [fromEnum n, fromEnum p ..]
enumFromTo n m

= map toEnum [fromEnum n .. fromEnum m]
enumFromThenTo n p m
= map toEnum [fromEnum n, fromEnum p .. fromEnum m]

GHCi> enumFromThenTo ’a’ ’'c’ ’z
"acegikmogsuwy"

GHCi> [’a’,’c’ .. ’z’]
"acegikmoqgsuwy"

e Note that the spaces either side of .. are sometimes required (to avoid misidentify-
ing a qualified name)

4.2.5 Bounded Class

class Bounded a where

minBound :: a
maxBound :: a
GHCi> minBound :: Bool
False
GHCi> maxBound :: Bool
True
GHCi> minBound :: Int
-9223372036854775808
GHCi> 2A63
9223372036854775808
GHCi> maxBound :: Int
9223372036854775807
GHCi> minBound :: Word
0
GHCi> maxBound :: Word
18446744073709551615
GHCi> 2A64 - 1
18446744073709551615

4.2.6 Read and Show Classes

class Read a where

class Show a where
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GHCi> :t read

read :: Read a => String -> a

GHCi> :t show

show :: Show a => a -> String

GHCi> read "True" :: Bool

True

GHCi> read "321" :: Int

321

GHCi> read "Just_ . .. True" :: Maybe Bool

Just True

GHCi> read "(Nothing, 321)" :: (Maybe Bool, Int)

(Nothing,321)

GHCi> show (Just True)
"Just_True"

GHCi> show "True"
"\"True\""

5 Function Definitions — Styles

e Declaration vs. expression style

e Declaration style: you formulate an algorithm in terms of several equations that
shall be satisfied

e Expression style: you compose big expressions from small expressions.
e Declaration style:

e Function arguments on left hand side

4 treble0l x = 3 * x

6 square0l x = x * X

e Pattern matching in function definitions

7

TengthO1l [] =0
8 =

TengthO1 (x : xs) 1 + lengthOl xs

e Guards on function definitions

9
10
11

Tlength02 xs
| null xs =0
| otherwise =

1 + length02 (tail xs)

e where clause
e Expression style:

e Function composition (.)

12 trebleThenSquare x = (squareOl . treble0l) x

14 squareThenTreble = treble0l . square0Ol

e Where did the argument go ? Pointfree style — can confuse beginners

e Do evaluations of:

16

test0l = trebleThenSquare 2

18 test02

squareThenTreble 2



https://wiki.haskell.org/Declaration_vs._expression_style
https://en.wikipedia.org/wiki/Function_composition
https://wiki.haskell.org/Pointfree
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e if expression

20 length03 xs

21 = if null xs
22 then 0
23 else 1 + lengthO3 (tail xs)

e Expression style:

e Lambda abstraction

25 [ square02 = \x -> X * X

e Case expression

27 length04 xs = case xs of
28 [1->0
29 (y : ys) -> 1 + length04 ys

e let expression

e Let expression

let
decll
decl2
declN

in
expr

e Where clause — declarations local to the right hand side of a function definition
(also used in top level class and instance declarations)

e See example usage (and misuse) in M269 Graph Algorithms tutorial notes
e See Let vs Where

e To evaluate a function applied to actual arguments, substitute the actual arguments
into the body of the definition of the function where the corresponding formal argu-
ments occur

TengthO1l [] =0 -- (A
lengthOl (x : xs) = 1 + TengthOl xs -- (B)

e Evaluate length01 [6,8,3]

lengthOl [6,8,3]

-> 1 + lengthO1 [8,3] -- by (B)
-> 1+ (1 + length [3]) -- by (B)
> 1+ (1 + (1 + 1ength [1)) -- by (B)
> 1+ @+ (1+0) -- by (A
-> 3 -- by arithmetic

6 Higher-order Functions

e Instead of special syntactic constructs such as for, while we capture common pat-
terns with higher-order functions

e Higher order functions are functions that can take functions as arguments and/or
return functions as results


https://wiki.haskell.org/Lambda_abstraction
http://www.pmolyneux.co.uk/OU/M269/M269TutorialNotes/M269TutorialGraphs/M269TutorialGraphs2017J.beamer.pdf
https://wiki.haskell.org/Let_vs._Where
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e In functional programming, functions are first class citizens — they can be treated
as data

e You just can’t print a function or compare functions for equality
e This section looks at the most commonly used higher order functions

e map, filter, function composition (.), function application ($) and the fold fam-
ily

6.1 Map, Filter

e map takes a function and a list and applies the function to every element of the list

e map can be defined with recursion: (name change to avoid Prelude clash)

31
32
33

map0l f [] []

map0l :: (a -> b) -> [a] -> [b]
map0l f (x:xs) f x : map0l f xs

e map can also be defined with a list comprehension:

35

map02 :: (a -> b) -> [a] -> [b] ’
36

map02 f xs = [f x | x <- xs]

e filter takes a predicate (a function that returns a Boolean) and a list and returns
all the elements that satisfy the predicate

e filter can be defined with recursion: (name change to avoid Prelude clash)

38 filter0l :: (a -> Bool) -> [a] -> [a]
39 filter0l p []1 = []
40 filter0l p (x:xs)

41 =1if p x
42 then x : filter0l p xs
43 else filter0l p xs

e filter can also be defined with a list comprehension:

44 filter02 :: (a -> Bool) -> [a] -> [a]
45 filter02 p xs = [x | x <- xs, p x]

6.2 List Comprehensions

List Comprehensions — Python

e List Comprehensions provide a concise way of performing calculations over lists
(or other iterables)

e Example: Square the even numbers between 0 and 9

Python3>>> [x #% 2 for x in range(10) if x % 2 == 0]
[0, 4, 16, 36, 64]
Python3>>> [(x,y) for x in range(4)

for y in range(4)

if x % 2 ==

and y % 3 == 0]

[(0 0, (0, 3, @, 0), (2 31
Python3>>>
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e In general

[expr for targetl in iterablel if condl
for target2 in iterable2 if cond2 ...
for targetN in iterableN if condN ]

e Lots example usage in the algorithms below

List Comprehensions — Python
e List Comprehensions provide a concise way of performing calculations over lists

e Example: Square the even numbers between 0 and 9

GHCi> [xA2 | x <- [0..9], x ‘mod‘ 2 == 0]
[0,4,16,36,64]

GHCi>
e In general
{ [expr | quall, qual2,..., qualN] J

e The qualifiers qual can be
- Generators pattern <- Tist
- Boolean guards — acting as filters

- Local declarations with Tet decTs for use in expr and later generators and
boolean guards

Activity 1 (a) Stop Words Filter

e Stop words are the most common words that most search engines avoid: ’a’, an’,’the’,’ th

e Using list comprehensions, write a function filterStopWords that takes a list of
words and filters out the stop words

e Here is the initial code

sentence \
= "the_quick_brown_fox_jumps_over_the Tlazy_dog"

words = sentence.split()

wordsTest \
= (words == [’the’, ’'quick’, ’brown’
, 'fox’, ’jumps’, ’over’
, 'the’, ’lazy’, ’dog’])

stopWords \
= [’a’,’an’,’the’, that’]

Go to Answer

Activity 1 (a) Stop Words Filter

sentence \
= "the_quick_brown_fox_jumps_over_the_lazy dog"

words = sentence.split()

wordsTest \
= (words == [’the’, ’'quick’, ’brown’
, 'fox’, ’jumps’, ’over’
, 'the’, ’Tazy’, ’dog’])



https://en.wikipedia.org/wiki/Stop_words
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stopWords \
= [’a’,’an’,’the’, that’]

e Notice the Python Explicit line joining with (\<n1>) and Python Implicit line joining
with ((...))

e The backslash (\) must be followed by an end of line character (<nl1>)
e The (") symbol represents a space (see Unicode U+2423 Open Box)
Go to Answer
Activity 1 (b) Transpose Matrix
e A matrix can be represented as a list of rows of numbers
e We transpose a matrix by swapping columns and rows

e Here is an example

matrixA \

= [[11 21 31 4]
,[5, 6, 7 ,8]
,[9, 10, 11, 12]]

matATr \

= [[1, 5, 9]
,[2, 6, 10]
,[3, 7, 11]
,[4, 8, 12]]

e Using list comprehensions, write a function transMat, to transpose a matrix
Go to Answer
Activity 1 (c) List Pairs in Fair Order

e Write a function which takes a pair of positive integers and outputs a list of all
possible pairs in those ranges

e If we do this in the simplest way we get a bias to one argument

e Here is an example of a bias to the second argument

yBiasLstTest \
= (yBiasListing(5,5)
== [(0, 0), (0, 1), (0, 2), (O, 3), (O, O
, 1, 00, 1, D, @, 2, (@, 3, @, H
’ (21 0)1 (2! 1)! (21 2)! (2! 3)1 (21 4)
, 3, 00, 3, D, 3, 2, 3, 3, G, H
, (4,00, (4, D, (4, 2), (4, 3), (4, HD

Go to Answer
Activity 1 (c) List Pairs in Fair Order

e Rewrite the function which takes a pair of positive integers and outputs a list of all
possible pairs in those ranges

e The output should treat each argument fairly — any initial prefix should have roughly
the same number of instances of each argument

e Here is an example output



https://docs.python.org/3/reference/lexical_analysis.html#explicit-line-joining
https://docs.python.org/3/reference/lexical_analysis.html#implicit-line-joining
https://en.wikipedia.org/wiki/Backslash
https://en.wikipedia.org/wiki/Newline
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fairLstTest \
= (fairListing(5,5)
== [(0, 0)
’ (0! 1) bl (17 0)
, (0, 2), (1, D, 2, 0
, (0, 3), (1, 2, 2, D, @G, 0
, (0, 9, @, 3, 2, 2, 3, L, 4, OD

Go to Answer
Activity 1 (c) List Pairs in Fair Order

e Rewrite the function which takes a pair of positive integers and outputs a list of lists
of all possible pairs in those ranges

e The output should treat each argument fairly — any initial prefix should have roughly
the same number of instances of each argument — further, the output should be
segment by each initial prefix (see example below)

e Here is an example output

fairLstATest \
= (fairListingA(5,5)
== [[(0, 0)]
, [0, 1), (1, 0)]
, [0, 2), (1, 1), (2, 0)]
, [C0, 3), (1, 2, (2, D, (@3, 0]
, [0, &, 41, 3), 2, 2>, 3, L, 4, OID

Go to Answer
Answer 1 (a) Stop Words Filter
e Answer 1 (a) Stop Words Filter
o Write here:
Answer 1 (a) Stop Words Filter
e Answer 1 (a) Stop Words Filter

def filterStopWords(words) :
nonStopWords \
= [word for word in words
if word not 1in stopWords]
return nonStopWords

filterStopWordsTest \
= filterStopWords(words) \
== ['quick’, ’brown’, ’fox
, 'jumps’, ’over’, ’lazy’, ’dog’]

’

Go to Activity
Answer 1 (b) Transpose Matrix
e Answer 1 (b) Transpose Matrix
o Write here:
Answer 1 (b) Transpose Matrix

e Answer 1 (b) Transpose Matrix
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def transMat(mat) :
rowLen = Ten(mat[0])
matTr \
= [[row[i] for row in mat] for i in range(rowlLen)]
return matTr

transMatTestA \
= (transMat(matrixA)
== matATr)

e Note that a list comprehension is a valid expression as a target expression in a list
comprehension

e The code assumes every row is of the same length
Go to Activity
Answer 1 (b) Transpose Matrix

e Note the differences in the list comprehensions below

matrixA \

= [[1, 2, 3, 4]
![5! 6! 7 18]
,[9, 10, 11, 12]]

Python3>>> [[row[i] for row in matrixA]

- for i 1in range(4)]

(1, s, 91, (2, 6, 101, [3, 7, 11], [4, 8, 12]]
Python3>>> [row[i] for row in matrixA

e for i 1in range(4)]

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
Python3>>> [row[i] for i 1in range(4)

- for row in matrixA]

[1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8, 12]
Python3>>> [[row[i] for i 1in range(4)]

- for row in matrixA]

[ra, 2, 3, 41, [5, 6, 7, 81, [9, 10, 11, 12]]

Go to Activity
Answer 1 (b) Transpose Matrix
e Answer 1 (b) Transpose Matrix
e The Python NumPy package provides functions for N-dimensional array objects

e For transpose see numpy.ndarray.transpose

Python3>>> import numpy as np
Python3>>> ar = np.array([[1,2],[3,411)
Python3>>> ar
array([[1, 2],
[3, 41D
Python3>>> arT = ar.transpose()
Python3>>> arT
array([[1, 3],
[2, 41D
Python3>>> ar
array([[1, 2],
[3, 41D
Python3>>> ar.shape

@, 2

Go to Activity
Answer 1 (c) List Pairs in Fair Order

e Answer 1 (c) List Pairs in Fair Order — first version



https://www.numpy.org/
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.transpose.html
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e Write here

yBiasLstTest \
= (yBiasListing(5,5)
== [(07 0)! (01 1)7 (0! 2)1 (Ol 3), (01 4)
, (1, 0, (1, D, A, 25, 1, 3, 4, D
» (2, 00, 2, D, @, 2, @, 3, 2, D
» 3, 00, 3, D, G, 2, (3, 3), 3, ®
, (4, 00, (4, D, (4, 2, (4, 3), (4, DD

Go to Activity
Answer 1 (c) List Pairs in Fair Order
e Answer 1 (c) List Pairs in Fair Order

e This is the obvious but biased version

def yBiasListing(xRng,yRng) :
yBiasLst \
= [(x,y) for x 1in range(xRng)
for y 1in range(yRng)]
return yBiaslLst

yBiasLstTest \
= (yBiasListing(5,5)
== [(Oy 0)1 (01 1)7 (01 2)1 (Ol 3), (01 4)
, 1, 0, (1, D, @, 2), (1, 3, @, 4
, 2, 00, 2, D, @, 2), @2, 3, @2, D
,» 3,0, 3, D, G, 2), (3, 3, B, 4
, (4, 0, (4, D, (4, D, (4, 3, (4, DD

Go to Activity
Answer 1 (c) List Pairs in Fair Order
e Answer 1 (c) List Pairs in Fair Order — second version

e Write here

fairlLstTest \
= (fairListing(5,5)
== [(0, 0)
, (0, 1, (1, 0)
, (0, 2), (1, D, @, 0
’ (0! 3)1 (17 2)! (21 l)l (3! o)
, (0, 9, 1, 3, @2, 2, 3, L, 4, OD

Go to Activity
Answer 1 (c) List Pairs in Fair Order
e Answer 1 (c) List Pairs in Fair Order — second version

e This works by making the sum of the coordinates the same for each prefix

def fairListing(xRng,yRng) :
fairLst \
= [(x,d-x) for d in range(yRng)
for x 1in range(d+1)]
return fairlLst

fairlLstTest \
= (fairListing(5,5)
== [(0, 0)
, (0, D, @1, 0
, (0, 2, (1, D, 2, 0
, (0, 3), @, 2, 2, D, 3, 0
, (0, 4, @, 3, 2, 2), 3, 1, 4, 0]
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Go to Activity

Answer 1 (c) List Pairs in Fair Order

e Answer 1 (c) List Pairs in Fair Order — third version

e Write here

fairlLstATest \

= (fairListingA(5,

== [[(0, 0)]
,» [0, 1),
,» [€0, 2,
’ [(0’ 3)7
,» [0, 4),

5

(1, 0]

(1, 1, (2, 0]

1, 2, (2, 1), @G, 0]

(1, 3, @, 2, G, D, 4, OID

Go to Activity

Answer 1 (c) List Pairs in Fair Order

e Answer 1 (c) List Pairs in Fair Order — third version

e The inner loop is placed into its own list comprehension

def fairListingA(xRng,yRng) :

fairLstA \

= [[(x,d-x) for x in range(d+1)]
for d in range(yRng)]

return fairLstA

fairLstATest \

= (fairListingA(5,

== [[(0, 0)]
» [€0, 1),
’ [(01 2)7
,» [C0, 3),
,» [C0, 4),

5

1, 0]

(1, 1, (2, 0]

(1, 25, 2, ), @G, 0]

(1, 3, @, 2, G, D, 4, 0OID

Go to Activity

6.3 Fold Family

e foldr captures a common pattern of combining elements of a list

e Consider sum and product

46 sum01l :: Num
47 sumOl []
48 sumO0l (x:xs)

50 productOl ::
51 product0l []

52 productOl (x:

= [a] -> a
0
X + sum0l xs

nmn e

Num a => [a] -> a
1

x * productOl xs

nmn o

XS)

e We abstract out the common pattern:

53
54

foldr0l f v [] = v
foldrOl f v (x:xs) = f x (foldr0l f v xs)

e We now can define:

55
56

sum02 xs
product02 xs

foldr0ol (+) 0 xs
foldr0l (+) 1 xs

e foldr takes

an operator (®), a final value x and a list xs
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foldr (®) » [X7,X2,...,%Xn]
=x1 ® (X2 ® (...(Xn ® *)...))

The operator (®) is substituted for each list constructor (:)
The final value x is substituted for the empty list []
The function is called fold right because of the direction of the bracketing

Beware operator associativity

Further Foldr Examples

e or takes a list of Booleans and finds the disjunction of all the values

e Recursive version followed by foldr version

57
58
59

o

or0l :: [Bool] -> Bool
or01 [] False
or0l (x:xs) x || or0l xs

or02 xs = foldr (||) False xs

e and takes a list of Booleans and finds the conjunction of all the values

e Recursive version followed by foldr version

63
64
65

and0l :: [Bool] -> Bool
and01 [] = True
and0l (x:xs) = x & & and0l xs

67 [ and02 xs = foldr (&&) True xs

e foldr is more general than you might expect

e length takes a list and returns its length

69
70
71

Health warning: Tength is more general than shown here

Recursive version followed by foldr version

length05 :: [a] -> Int
Tength05 [] 0
length05 (x:xs) 1 + TengthO5 xs

[ length06 xs = foldr0l (\x n -> 1 + n) 0 xs

e reverse takes a list and returns the reverse

75
76
77

79
80

Recursive version followed by foldr version

reverseOl :: [a] -> [a]
reverse0l [] =[]
reverse0l (x:xs) = reverseOl xs ++ [x]

reverse02 xs = foldr0l snoc [] xs
where snoc x xs = xs ++ [x]
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Type of foldrO1

e As we have defined foldr01 it has the type
82 { foldr0l :: (a -> b -> b) -> b -> [a] -> b J

e Without the later examples you may have thought it was

[ foldr0l :: (a -> a -> a) -> a -> [a] -> a j

e The GHC Prelude has a more general version since this pattern of computation can
be performed over more data types than just lists — see later

7 User Defined Data Types

7.1 Algebraic Datatypes
e Haskell provides a way of providing new concrete data types by declaring the names
of a type and names of the elements of the type
e The names of a type is called a type constructor
e The names of elements of a type is called a data constructor

e Example: Day for days of the week

83 data Day

84 = Monday | Tuesday | Wednesday | Thursday
85 | Friday | Saturday | Sunday
86 deriving (Show, Read, Eq, Ord, Enum, Bounded)

e Names of type constructors start with upper case letters

e Names of data constructors start with upper case letters but symbolic infix construc-
tors can be formed

e The deriving clause creates automatic instances of the type classes Show, Read,
Eqg, Ord, Enum, Bounded

e tomorrow takes a Day and returns the next

88 tomorrow dy

89 = if dy == Sunday then Monday else succ dy
91 tomorrow0l :: Day -> Day

92 tomorrow0l dy

93 = toEnum ((fromEnum dy + 1) ‘mod‘ 7)

e Note that tomorrowO1l requires the type signature (or type annotation) otherwise
toEnum and fromEnum would not know which type

e The brackets are required since ‘mod‘ has precedence 7, the same as (*),(/)

e Several provided types are defined this way

data Bool = False | True
deriving (Show, Read, Eq, Ord, Enum, Bounded)

e Note that Day has 8 elements, Bool has 3 elements since undefined (bottom, 1) is
a member of every type
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7.1.1 Standard Haskell Types

e We have already met characters, strings, numbers and Bool

e Lists are an algebraic data type with a special syntax — it is as if it had the following
declaration

data [a] = [] | a : [a]
deriving (Eq, Ord)

e Tuples are an algebraic data type with special syntax — for pairs the single construc-
toris (,)

GHCi> (3,5) == (,) 3 5
True

GHCi> :t (,)

() ::a->b ->(a, b)

e The Unit datatype () has only one non-L member, the nullary constructor ()

data O = O
deriving (Eq,Ord,Bounded, Enum,Read, Show)

e Function types — functions are an abstract type — no constructors directly create
functional values.

e The Maybe datatype provides a simple optional value — useful for error handling —
here is the declaration and the maybe function as an example usage

data Maybe a = Nothing | Just a
deriving (Eq,Ord)

maybe :: b -> (a -> b) -> Maybe a -> b
maybe n f Nothing
maybe n f (Just x)

n
f x

e The Either datatype provides for richer error handling

data Either a b = Left a | Right b
deriving (Eq, Ord, Read, Show)

either :: (@ > c) > (b -> ¢) -> Either a b -> c
either f g (Left x) f x
either f g (Right y) gy

8 Algebraic Data Type Exercises

8.1 Algebraic Data Type Exercises S0607 Q1

e Here is an algebraic data type representing temperature

94 data Temperature
95 = Celsius Float | Fahrenheit Float | Kelvin Float
96 deriving (Eq,Show,Read)

e Write the following functions
e tempToCelsius takes a temperature and converts it to Celsius

e tempToFahrenheit takes a temperature and converts it to Fahrenheit
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e tempToKelvin takes a temperature and converts it to Kelvin
e The formulas are at Conversion of units of temerature

Go to Algebraic Data Type Exercises S0607 A 1

8.2 Algebraic Data Type Exercises S0607 Al

97 tempToCelsius (Celsius x) = Celsius x
98 tempToCelsius (Fahrenheit x) = Celsius ((x - 32)%*5/9)
99 tempToCelsius (Kelvin x) = Celsius (x - 273.15)

101 tempToFahrenheit (Celsius x) = Fahrenheit (x%*9/5 + 32)
102 tempToFahrenheit (Fahrenheit x)

103 = Fahrenheit x

104 tempToFahrenheit (Kelvin x) = Fahrenheit (x*9/5 - 459.67)
105 -- 459.67 = -273.15%9/5 + 32

107 tempToKelvin (Celsius x) = Kelvin (x + 273.15)

108 tempToKelvin (Fahrenheit x)

109 = Kelvin ((x + 459.672)%5/9)

110 tempToKelvin (Kelvin x) = Kelvin x

112 temp0l = Celsius O

113 temp02 = Kelvin 0

114 temp03 = Fahrenheit 0

115 temp04 = Celsius 100

117 temps = [tempO0l,temp02,temp03,temp04]
118 tempConvs = [tempToCelsius,tempToFahrenheit,tempToKelvin]

120 test03 = [f x | f <- tempConvs, x <- temps]

121 testO3out

122 = [Celsius 0.0,Celsius (-273.15),Celsius (-17.777779),Celsius 100.0

123 ,Fahrenheit 32.0,Fahrenheit (-459.67),Fahrenheit 0.0,Fahrenheit 212.0
124 ,Kelvin 273.15,Kelvin 0.0,Kelvin 255.37332,Kelvin 373.15]

127 test04 = [[f x | f <- tempConvs] | x <- temps]
128 testO4out

129 = [[Celsius 0.0,Fahrenheit 32.0,Kelvin 273.15]

130 ,[Celsius (-273.15),Fahrenheit (-459.67),Kelvin 0.0]
131 ,[Celsius (-17.777779),Fahrenheit 0.0,Kelvin 255.37332]
132 ,[Celsius 100.0,Fahrenheit 212.0,Kelvin 373.15]]

Go to Algebraic Data Type Exercises S0607 Q 1

8.3 Algebraic Data Type Exercises S0607 Q2

e Here is a (very) simple family database

134 data Person = Person {name :: String

135 ,father :: Maybe Person

136 ,mother :: Maybe Person}

137 deriving (Eq,Show,Read)

139 phil = Person "Phil" (Just ron) (Just hilda)
140 beryl = Person "Beryl" Nothing (Just dora)

141 ron = Person "Ron" (Just joe) (Just jane)

142 hilda = Person "Hilda" (Just sam) (Just florrie)
143 dora = Person "Dora" (Just arthur) (Just hannah)
144 joe = Person "Joseph" Nothing Nothing

145 jane = Person "Jane" Nothing Nothing

146 sam = Person "Sam" Nothing Nothing

147 florrie = Person "Florence" Nothing Nothing

148 arthur = Person "Arthur" Nothing Nothing

149 hannah = Person "Hannah" Nothing Nothing
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150 people = [phil,beryl,ron,hilda,dora
151 ,joe,jane,sam,florrie,arthur,hannah]

e In the data, Nothing represents a missing value

e Write a function nameStr which takes a Maybe Person and returns the name if
present otherwise the string “Unknown”

e Use the standard Prelude function maybe — see GHC Prelude — note you can search
quickly by typing s — try it, it’s neat (it is part of Hackage)

153 [ nameStr :: Maybe Person -> String j

e Write a function nameMbe which takes a Maybe Person and returns the name (if
known) as a Maybe String

154 [ nameMbe :: Maybe Person -> Maybe String J

Go to Algebraic Data Type Exercises S0607 A 2

8.4 Algebraic Data Type Exercises S0607 A2

e nameStr

155 E nameStr mPers = maybe "Unknown" name mPers J

e nameMbe

156
157

nameMbe (Just pers)
nameMbe Nothing

Just (name pers)
Nothing

Go to Algebraic Data Type Exercises S0607 Q 2

8.5 Algebraic Data Type Exercises S0607 Q3

e Write a function maternalGrandfather0l that takes a Person and returns their
maternal grandfather (if known)

158 [ maternalGrandfather0l :: Person -> Maybe Person J

e Write a function paternalGrandfather0l that takes a Person and returns their
maternal grandfather (if known)

160 { paternalGrandfather0l :: Person -> Maybe Person J

Go to Algebraic Data Type Exercises S0O607 A 3

8.6 Algebraic Data Type Exercises S0607 A3

e maternalGrandfather0l
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161 maternalGrandfather0l p

162 = case mother p of

163 Nothing -> Nothing

164 Just mum ->

165 case father mum of
166 Nothing -> Nothing
167 Just mgf ->

168 Just mgf

e paternalGrandfather0l

169 paternalGrandfather0l p

170 = case father p of

171 Nothing -> Nothing

172 Just dad ->

173 case father dad of
174 Nothing -> Nothing
175 Just pgf ->

176 Just pgf

Go to Algebraic Data Type Exercises S0607 Q 3

8.7 Algebraic Data Type Exercises S0607 Q4

e Write a function bothGrandfathersO1l that takes a Person and returns a pair of
grandfathers, if they both exist

177 bothGrandfathers0l :: Person
178 -> Maybe (Person,Person)

Go to Algebraic Data Type Exercises S0607 A 4

8.8 Algebraic Data Type Exercises S0607 A4

e bothGrandfathers0O1

179 bothGrandfathers0l p

180 = case father p of

181 Nothing -> Nothing

182 Just dad ->

183 case father dad of

184 Nothing -> Nothing

185 Just gfl ->

186 case mother p of

187 Nothing -> Nothing

188 Just mum ->

189 case father mum of

190 Nothing -> Nothing

191 Just gf2 >

192 Just (gfl, gf2)
e In each of the last three examples we had a common pattern:
e If a computation fails at any point we return Nothing
e If it succeeds we pass the value on to the next stage
e Finally we return a value wrapped in a Maybe value
e Haskell captures this pattern with two functions
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(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
Nothing >>= g = Nothing

Just x >>=g =g X

-- (>>=) 1is spoken as \emph{bind}

return :: a -> Maybe a

return x = Just x

e We now rewrite the previous three functions:

194
195

197
198

200
201
202
203
204
205
206

208
209
210
211
212
213

215
216
217
218
219
220
221

maternalGrandfather02 p
= mother p >>= father

paternalGrandfather02 p
= father p >>= father

bothGrandfathers02 p
= father p >>=
(\dad -> father dad >>=
(\gfl -> mother p >>=
(\mum -> father mum >>=
(\gf2 -> return (gfl,gf2)
)DD))

Haskell further provides the do notation to reduce syntactic clutter

do {p} = p
do {p;stmnts} = p >> do {stmnts}
do {x <- p;stmnts} = p >>= \x -> do {stmnts}

(>>) :: Maybe a -> Maybe b -> Maybe b
m>>n=m>= \X ->n
-- (>>) 1s spoken then

(>>) is a convenience function that sequences two computational contexts where

the second does not involve the value carried in the first

We can now give the brief form of bothGrandfathers

Note that the offside rule means we can dispense with (;) or choose not to

Without (;)

bothGrandfathers03 p = do
dad <- father p
gfl <- father dad
mum <- mother p
gf2 <- father mum
return (gfl,gf2)

With (;) — what does it look like ?

bothGrandfathers04 p = do {
dad <- father p ;
gfl <- father dad ;
mum <- mother p ;
gf2 <- father mum ;
return (gfl,gf2) ;

The last two examples look like code snippets from an imperative language

The expression father p which has type Maybe Person is interpreted as a state-
ment in an imperative language that returns a Person as a result or fails

Under this interpretation, the then, (>>) operator is an an implementation of the

semicolon
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e The bind, (>>=) operator is an an implementation of the semicolon and assignment
(binding) of the result of a previous computational step

Go to Algebraic Data Type Exercises S0607 Q 4

8.9 Algebraic Data Type Exercises S0607 Q5

e Write a function bothGFNames that takes a Person and returns the names of both
grandfathers, if they both are known

222 bothGFNames :: Person
223 -> Maybe (String, String)

Go to Algebraic Data Type Exercises SO607 A 5

8.10 Algebraic Data Type Exercises S0607 A5

e bothGFNames long version

225 bothGFNames p

226 = case father p of

227 Nothing -> Nothing

228 Just dad ->

229 case father dad of

230 Nothing -> Nothing

231 Just gfl —>

232 case mother p of

233 Nothing -> Nothing
234 Just mum ->

235 case father mum of
236 Nothing -> Nothing
237 Just gf2 >

238 Just (name gfl, name gf2)

e bothGFNames with return and bind, (>>=)

240 bothGFNamesOl :: Person

241 -> Maybe (String,String)

242 bothGFNames01 p

243 = father p >>=

244 (\dad -> father dad >>=

245 (\gfl -> mother p >>=

246 (\mum -> father mum >>=

247 (\gf2 -> return (name gfl,name gf2)
248 D))

e bothGFNames with do notation

250 bothGFNames02 :: Person

251 -> Maybe (String,String)
252 bothGFNames02 p = do

253 dad <- father p

254 gfl <- father dad

255 mum <- mother p

256 gf2 <- father mum

257 return (name gfl,name gf2)

e bothGFNames with do notation and explicit (;), ({D, (})

259 bothGFNames03 :: Person

260 -> Maybe (String,String)
261 bothGFNames03 p = do {

262 dad <- father p ;

263 gfl <- father dad ;
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264 mum <- mother p ;

265 gf2 <- father mum ;

266 return (name gfl,name gf2) ;
267 }

Go to Algebraic Data Type Exercises S0607 Q 5

8.11 Algebraic Data Type Exercises S0607 Q6

e Write eitherGFNames which takes a Person and returns a pair of names if either or

both or none are known

269 eitherGrandfather

270 :: Person -> (Maybe String, Maybe String)

Go to Algebraic Data Type Exercises S0607 A 6

8.12 Algebraic Data Type Exercises S0607 A6

e Posible answer

272 maternalGrandfather :: Person -> Maybe Person
273 maternalGrandfather p = do

274 mum <- mother p

275 gfm <- father mum

276 return gfm

278 paternalGrandfather :: Person -> Maybe Person
279 paternalGrandfather p = do

280 dad <- father p

281 gfp <- father dad

282 return gfp

284 -- eitherGrandfather

285 - :: Person -> (Maybe Person,Maybe Person)
286 eitherGrandfather p

287 = (nameMbe (maternalGrandfather p)

288 ,nameMbe (paternalGrandfather p))

Go to Algebraic Data Type Exercises S0607 Q 6

8.13 Laws for return and bind

e The return and bind, (>>=) functions are provided by Haskell since they are much
more general than just being used for the Maybe a datatype

e They are provided by a type class

e Any instance must obey the following laws

1 return x >>= f = f x -- Jeft unit

2 m >>= return =m -- right unit

3 (m>>=Ff) >>=g =m>>= (\x -> f x >>= @)
4 -- associativity

e These laws ensure that the instance of this type class works as expected and fits
with other instances (and other type classes)
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e Exercise: verify the laws for the definitions of return and bind, (>>=) for the Maybe

a type

e The return and bind, (>>=) — verification of laws

1
2
3

5

10
11

13
14
15
16
17

return x >>= f
— Just x >>= f
- f x

m >>= return
Nothing >>= return — Nothing (= m)
Just x >>= return — return x — Just x (= m)

(m >>=f) >>=¢g
(Nothing >>= f) >>= g — Nothing >>= g — Nothing
(JQust x >>=f) >>=g - f x >>=g¢

m>>= (\x -> f x >>= @g)

Nothing >>= (\x -> f x >>= g) — Nothing
Just x >>= (\x -> T x >>= g)

- (\x > f x >>=g) x

- fx>=9

The examples above come from Haskell Wikibook: Understanding Monads

We are being a bit premature and introducing the Maybe a instance of the Monad
type class as a motivating example (it is meant to look useful)

This pattern of computation is very common (it encapsulates just about all imperative
programming)

Return as a neutral element — the behaviour of return is specified by the left and
right unit laws — return does not perform computation, it just collects values

Associativity of bind — this makes sure that the bind operator (like the semicolon)
only cares about the order of computations not about their nesting

9 Tree Data Types

9.1

Binary Trees and Recursion Schemes

Binary trees appear in lots of applications and have common patterns of recursive
definitions fr many functions

In imperative, procedural programming, common patterns of control flow with GO-
TOs were astracted out with structured programming in the 1970s — sequence,
selection and iteration — which required new language constructs

In functional programming, we can often express new constructions and abstrac-
tions as higher-order functions

This decouples how a function recurses over data from what the function actually
does

Whilst it takes some effort to learn about the common patterns and their higher-
order functions, there are several advantages (as there are for any abstraction)

We can discover general properties of the abstraction and hence infer properties of
specific instances for free.
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e We can also use the general properties to calculate functions

9.2 Binary Trees: Data Types and Examples

e We shall (mainly) use the following algebraic data type for binary trees

292 = EmptyBT | NodeBT a (BinTree a) (BinTree a)

291 data BinTree a
293 deriving (Eq, Show, Read)

e We also declare a Letter algebraic data type for convenience

296 = A|B|CID|E|IFIGIHII|JIIKILIMIN|O

295 data Letter
297 deriving (Eq, Ord, Enum, Bounded, Show, Read)

9.2.1 Example Binary Tree: egBSTree

egBSTree

egBSTreelL egBSTreeR

e Name convention: variables must start with lower case so we have eg (for example,
exempli gratia), BSTree indicates this is not just a Binary Tree but also a Binary
Search Tree

299 egBSTree :: BinTree Letter

300 egBSTree

301 = NodeBT H

302 (NodeBT D

303 (NodeBT B

304 (NodeBT A EmptyBT EmptyBT)
305 (NodeBT C EmptyBT EmptyBT))
306 (NodeBT F

307 (NodeBT E EmptyBT EmptyBT)
308 (NodeBT G EmptyBT EmptyBT))
309 )

310 (NodeBT L

311 (NodeBT ]

312 (NodeBT I EmptyBT EmptyBT)
313 (NodeBT K EmptyBT EmptyBT))
314 (NodeBT N

315 (NodeBT M EmptyBT EmptyBT)
316 (NodeBT O EmptyBT EmptyBT))
317 )
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9.2.2 Example Binary Tree: egBSTreel

egBSTreellL

egBSTreel

egBSTreelR

egBSTreel :: BinTree Letter
egBSTreel
= NodeBT H
(NodeBT D EmptyBT EmptyBT)
(NodeBT L
(NodeBT J EmptyBT EmptyBT)
(NodeBT N
(NodeBT M EmptyBT EmptyBT)
(NodeBT O EmptyBT EmptyBT)))

9.2.3 Example Binary Tree: egBSTree2

egBSTree2L

egBSTree2

egBSTree2R

egBSTree2 :: BinTree Letter
egBSTree2
= NodeBT H
(NodeBT D
(NodeBT B
(NodeBT A EmptyBT EmptyBT)
(NodeBT C EmptyBT EmptyBT))
(NodeBT F
(NodeBT E EmptyBT EmptyBT)
(NodeBT G EmptyBT EmptyBT)))
(NodeBT L
(NodeBT J
(NodeBT I EmptyBT EmptyBT)
EmptyBT)
(NodeBT N EmptyBT EmptyBT))
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9.2.4 Example Binary Tree: egBSTree3

egBSTree3

egBSTree3L

egBSTree3R

egBSTree3 :: BinTree Letter
egBSTree3
= NodeBT H
(NodeBT D
(NodeBT B
(NodeBT A EmptyBT EmptyBT)
(NodeBT C EmptyBT EmptyBT))
(NodeBT F
EmptyBT
(NodeBT G EmptyBT EmptyBT)))
(NodeBT L
EmptyBT
(NodeBT N
(NodeBT M EmptyBT EmptyBT)
(NodeBT O EmptyBT EmptyBT)))

data BinTreeL a = EmptyBTL | NodeBTL {dataltemBTL ::

, TeftBTL ::
,rightTreeL ::
deriving (Eq,Show,Read)
egBSTreelL
= NodeBTL H
(NodeBTL D
(NodeBTL B

(NodeBTL A EmptyBTL EmptyBTL)

(NodeBTL C EmptyBTL EmptyBTL))
(NodeBTL F

(NodeBTL E EmptyBTL EmptyBTL)

(NodeBTL G EmptyBTL EmptyBTL))

D)
(NodeBTL L
(NodeBTL J
(NodeBTL I EmptyBTL EmptyBTL)
(NodeBTL K EmptyBTL EmptyBTL))
(NodeBTL N
(NodeBTL M EmptyBTL EmptyBTL)
(NodeBTL O EmptyBTL EmptyBTL))

a
BinTreelL a
BinTreelL a}

9.3 Alternative Tree Types

e In computing, trees can come in many forms. There can be trees with data only at
the leaves, data only in the internal nodes, data of different types in alternate levels
(useful for game trees), or multiway trees
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data LeafTree a = LeaflT a
| NodelLT a (LeafTree a) (LeafTree a)
deriving (Eq, Show, Read)

data IntlTree a = LeafIT a
| NodeIT a (IntlTree a) (IntlTree a)
deriving (Eq, Show, Read)

data DualTree a b = LeafDT a
| NodeDT a (DualTree b a) (DualTree b a)
deriving (Eq, Show, Read)

data RoseTree a = LeafRT a [RoseTree a]
deriving (Eq, Show, Read)

e Exercise: give an example of DualTree Letter Integer

e Examples of DualTree Letter Integer

egDualTree0l
= LeafDT H

egDualTree02
= NodeDT H
(NodeDT 4 (NodeDT B (LeafDT 1) (LeafDT 3))
(LeafDT F))
(NodeDT 12 (LeafDT J)
(NodeDT N (LeafDT 13) (LeafDT 15)))

egDualTree03
= NodeDT 8
(NodeDT D (NodeDT 2 (LeafDT A) (LeafDT C))
(LeafDT 6))
(NodeDT L (LeafDT 10)
(NodeDT 14 (LeafDT M) (LeafDT 0)))

egDualTree02

egDualTree02L egDualTree02R

10 Tree Data Type Exercises

e These exercises or short topics are aimed at illustrating common patterns of re-
cursion in tree structures and showing how the fold family of functions naturally
extends to tree structures (or any algebraic data type)

10.1 Tree Data Type Exercises S0607 Q1

e Write functions inOrderBTO01, preOrderBT01, postOrderBT01 which tak a BinTree
a and returns in order, pre order, post order traversals of the tree
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inOrderBTO1 :: BinTree a -> [a]
preOrderBTO01 :: BinTree a -> [a]

postOrderBTO1l :: BinTree a -> [a]

Go to Tree Exs S0607 A 1

10.2 Tree Data Type Exercises S0607 Al

e Here are the usual recursive definitions

inOrderBT01 EmptyBT = []
inOrderBT01 (NodeBT x T1eftBT rightBT)
= (inOrderBTO01 TeftBT)

++ [x] ++ (inOrderBTOl rightBT)

preOrderBTO1 EmptyBT = []
preOrderBT01 (NodeBT x TeftBT rightBT)
= [x]
++ (preOrderBT01 1eftBT) ++ (preOrderBTO1l rightBT)

postOrderBT01 EmptyBT = []
postOrderBT01 (NodeBT x 1eftBT rightBT)
= (postOrderBT01 TeftBT)

++ (postOrderBTO01l rightBT) ++ [x]

e Each of the functions has a common pattern

e The constructors of the algebraic data type are replaced by functions (or a value)
that consume or transform the data structure

e This is a generalisation of the fold function given in S0405 for lists

foldBinTree
it (@a->b ->b ->b) -> b -> BinTree a -> b

foldBinTree fNodeBT fEmptyBT EmptyBT = fEmptyBT
foldBinTree fNodeBT fEmptyBT (NodeBT x leftT rightT)
= fNodeBT x (foldBinTree fNodeBT fEmptyBT leftT)
(foldBinTree fNodeBT fEmptyBT rightT)

e We now define the traversal functions in terms of the fold function

inOrderFoldBT :: BinTree a -> [a]
inOrderFoldBT t
= foldBinTree
fNodeBTToInOrderList fEmptyBTToInOrderList t

fEmptyBTToInOrderList = []
fNodeBTToInOrderList x leftTList rightTList
= leftTList ++ [x] ++ rightTList

preOrderFol1dBT :: BinTree a -> [a]
preOrderFoldBT t
= foldBinTree
fNodeBTToPreOrderList fEmptyBTToPreOrderList t

fEmptyBTToPreOrderList = []
fNodeBTToPreOrderList x TeftTList rightTList
= [x] ++ leftTList ++ rightTList

postOrderFoldBT :: BinTree a -> [a]
postOrderFoldBT t
= foldBinTree
fNodeBTToPostOrderList fEmptyBTToPostOrderList t
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fEmptyBTToPostOrderList = []
fNodeBTToPostOrderList x leftTList rightTList
= leftTList ++ rightTList ++ [x]

Go to Tree Exs S0607 Q 1

10.3 Tree Data Type Exercises S0607 Q2

e A level order traversal takes a tree and returns the list of lists of items at each level

e In the Binary Trees notes, the final functional definition:

levelOrderBT :: BinTree a -> [[a]]
levelOrderBT EmptyBT = []
levelOrderBT (NodeBT x leftT rightT)
= [x] : TlongZipWith (++)
(TevelOrderBT leftT)
(TevelOrderBT rightT)

longZipWith :: (a -> a -> a) -> [a] -> [a] -> [a]
TongZipWith f [] ys = ys
longZipWith f (a:xs) [] = (a:xs)
longZipWith f (a:xs) (b:ys)

= (f ab) : (longZipWith f xs ys)

e Define level order as a fold

Go to Tree Exs S0607 A 2

10.4 Tree Data Type Exercises S0607 A2

levelOrderFoldBT :: BinTree a -> [[a]]
levelOrderFoldBT t
= foldBinTree

fNodeBTToLevelOrder fEmptyBTToLevelOrder t

fEmptyBTToLevelOrder = []

fNodeBTToLevelOrder :: a -> [[al] -> [[al] -> [[all]
fNodeBTToLevelOrder x leftTOrder rightTOrder
= [x] : longZipWith (++)

TeftTOrder rightTOrder

GHCi> levelOrderFoldBT egBSTree
[[H],([D,L],[B,F,],N],[A,C,E,G,I,K,M,0]]
GHCi> levelOrderFoldBT egBSTreel
[[H1,[D,L],[3,N],[M,0]]

Go to Tree Exs S0607 Q 2

10.5 Tree Data Type Exercises S0607 Q3

e Using a fold, define heightBT which returns the height of a tree

e here is the usual recursive definition

heightBT :: BinTree a -> Int

heightBT EmptyBT = 0
heightBT (NodeBT x TeftT rightT)
= 1 + max (heightBT leftT) (heightBT rightT)
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Go to Tree Exs S0607 A 3

10.6 Tree Data Type Exercises S0607 A3

498 heightFoldBT t
499 = foldBinTree
500 fNodeBTToHeight fEmptyBTToHeight t

502 fEmptyBTToHeight = 0
503 fNodeBTToHeight x leftTHeight rightTHeight
504 = 1 + max leftTHeight rightTHeight

GHCi> heightBT egBSTree

4

GHCi> heightFoldBT egBSTree
4

Go to Tree Exs S0607 Q 3

10.7 Tree Data Type Exercises S0607 Q4

e Using a fold, define sizeBT which returns the size of a tree

e Here is the usual recursive definition

505 sizeBT :: BinTree a -> Int

507 sizeBT EmptyBT = 0
508 sizeBT (NodeBT x leftT rightT)
509 =1 + (sizeBT TleftT) + (sizeBT rightT)

Go to Tree Exs S0607 A 4

10.8 Tree Data Type Exercises S0607 A4

510 sizeFoldBT t
511 = foldBinTree
512 fNodeBTToSize fEmptyBTToSize t

514 fEmptyBTToSize = 0
515 fNodeBTToSize x leftTSize rightTSize
516 =1 + leftTSize + rightTSize

GHCi> sizeBT egBSTree

15

GHCi> sizeFoldBT egBSTree
15

Go to Tree Exs S0607 Q 4

10.9 Tree Data Type Exercises S0607 Q5

e Write a function numLeavesBT which takes a tree and returns the number of leaves

a leaf is a node with two empty subtrees
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isEmptyBT EmptyBT = True
isEmptyBT (NodeBT x 1eftT rightT) = False

isBothEmptyBT tl t2
= isEmptyBT tl && isEmptyBT t2

numLeavesBT EmptyBT = 0
numLeavesBT (NodeBT x leftT rightT)
= if isBothEmptyBT TeftT rightT
then 1
else numLeavesBT leftT
+ numLeavesBT rightT

e Write numLeavesFoldBT which uses foldBinTree

Go to Tree Exs SO607 A 5

10.10 Tree Data Type Exercises S0607 A5

e We calculate the function using the Universal Property

numLeaves t = fold f v t
numLeaves EmptyBT = v
numLeaves (NodeBT x TeftT rightT)
= f x leftTNL rightTNL
-- defn of numlLeaves
= if isBothEmptyBT TleftT rightT
then 1
else (numLeavesBT TleftT)
+ (numLeaves righT)
-- Eureka step to get rid of isolated leftT, righT
= if isBothZero (numLeavesBT leftT) (numLeaves righT)
then 1
else (numLeavesBT leftT)
+ (numLeaves righT)
-- this gives us the required definition

isBothZero x y
=x=0&&y ==

numLeavesFoldBT t
= foldBinTree
fNodeBTToNumL fEmptyBTToNumL t

fEmptyBTToNumL = 0
fNodeBTToNumL x TeftTNL rightTNL
= if isBothZero TeftTNL rightTNL
then 1
else TeftTNL + rightTNL

Go to Tree Exs S0607 Q 5

10.11 Tree Data Type Exercises S0607 Q6

e The function minDepthBT can be defined recursively as

minDepthBT EmptyBT = 0
minDepthBT (NodeBT x leftT rightT)
=1 + min (minDepthBT 1eftT) (minDepthBT rightT)

e This will visit every node in the tree but the computation can stop earlier

e See egBSTreel — we can stop when we meet node D
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e Suggest ways of making this more efficient — this may or may not use fold

Go to Tree Exs SO607 A 6

10.12 Tree Data Type Exercises S0607 A6

e We can do this by keeping track of the depth in the tree and the minimum depth so

far

minDepthBTO1 :: BinTree a -> Int
minDepthBT01 t

= minD t 0 maxBound

-- here maxBound is regarded as infinity
minD :: BinTree a -> Int -> Int -> Int
minD EmptyBT d m = min d m

minD (NodeBT x leftT rightT) d m
=ifd+ 1>=m

then m
else minD leftT (d + 1) (minD rightT (d + 1) m)

11

We can do better than this if we consider the tree level by level
TODO: complete A 6
Go to Tree Exs S0607 Q 6

Recursion Schemes

Get Height of Tree (20 August 2018) StackExchange Code Review — uses catamor-
phism

Practical Recursion Schemes (20 August 2018) — Jared Tobin 5 September 2015
Haskell WikiBook: Category theory (20 August 2018)

Recursion schemes for dummies? (21 August 2018)

Wikipedia: Recursion schemes (21 August 2018)

An Introduction to Recursion Scheme — Patrick Thomson 15 February 2014
Recursion Schemes, Part II: A Mob of Morphisms — 21 August 2015

Recursion Schemes, Part Ill: Folds in Context — 20 July 2016

Recursion Schemes, Part IV: Time is of the Essence — 11 October 2017

Recursion Schemes, Part 4 1/2: Better Living Through Base Functors — 24 January
2018

Recursion Schemes, Part V: Hello, Hylomorphisms — 17 April 2018 Patrick Thomson



https://codereview.stackexchange.com/questions/64724/get-height-of-tree
https://medium.com/@jaredtobin/practical-recursion-schemes-c10648ec1c29
https://en.wikibooks.org/wiki/Haskell/Category_theory
https://stackoverflow.com/questions/6941904/recursion-schemes-for-dummies
https://en.wikipedia.org/wiki/Category:Recursion_schemes
https://blog.sumtypeofway.com/an-introduction-to-recursion-schemes/
https://blog.sumtypeofway.com/recursion-schemes-part-2/
https://blog.sumtypeofway.com/recursion-schemes-part-iii-folds-in-context/
https://blog.sumtypeofway.com/recursion-schemes-part-iv-time-is-of-the-essence/
https://blog.sumtypeofway.com/recursion-schemes-part-41-2-better-living-through-base-functors/
https://blog.sumtypeofway.com/recursion-schemes-part-v/

Phil Molyneux M269 Extension Tutorial 45

12

Interactive Programming

12.1 1/0 The Problem

Calculating values in the language and performing actions outside the language are
different

Actions have to be performed in the correct order

Call-by-value (or strict) functional languages take the approach of imperative lan-
guages

I/0 is treated as a function (even though it is a side effect)
The language design has to specify the order of evaluation of expressions

Suppose we have a function printChar that takes a character, prints it to standard
output and returns nothing

In imperative languages and strict functional languages, the programmer has to en-
sure that calls to printChar happen in the correct order

Consider

[ xs = [printChar ’a’, printChar ’b’]

e Call-by-need (or lazy) languages (such as Haskell) do not specify order of evaluation

e The printChar calls are only performed if the elements of the list are evaluated

e length xs would return 2 but does not need to evaluate the elements of xs

e Laziness and side effects appear incompatible

12.2 1/0 Solution (1)

e First version of Haskell:

e View of Program — Top level program is a function from a (lazy) list (stream) of

system responses returning a (lazy) list of system requests.

[ main :: [Response] -> [Request]

e Request and Response are both ordinary algebraic data types

type FilePath = String

data Request = ReadFile FilePath
| WriteFile FilePath String
| ...

data Response = RequestFailed
| ReadSucceeded String
| WriteSucceeded

e This was used in the first version of Haskell

e but it has problems:
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e Hard to extend since it can only be extended by changing the Request and Response
types

e There is no close connection between a request and its corresponding response —
hence easy to write a program that gets out of step

e Even if not out of step, it is too easy to evaluate the response stream too eagerly and
hence block emitting a request

12.3 Monadic 1/0

e Need an abstract data type that allows us to calculate programs that have side effects
in a purely functional way

A value of type I0 a is an action that, when performed, may do some input/output,
before delivering a value of type a

We distinguish between evaluating an expression and performing an action

Sometimes actions are referred to as computations

It is as if we have:

[ type I0 a = World -> (a,World) j

e A value of I0 a is a function that takes an argument of type World and delivers a
new World together with a result of type a

e We then provide some primitive operations and a small number of ways of combining
the primitive operations

e The top level program is of type I0 ()

getChar :: IO Char
putChar :: Char -> I0 O

e getChar, when performed, reads a character from the standard input and returns it

e putChar takes a character and returns an action which, when performed, prints the
character on the standard output

e An action is a first class value
e Evaluating an action has no effect; performing an action has an effect

e To combine actions, (>>=) (spoken bind) is provided

(>>=) ::I0a ->(a->I0b) ->I0Db

echo :: I0 O
echo = getChar >>= putChar

e echo, when performed, reads a character from the standard input and prints it to
the standard output.

e When a >>= f is performed, it performs action a, takes the result, applies f to it to
get a new action and then performs the new action

e In the echo example, we first perform the action getChar, yielding a character c and
then we perform putChar c
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To combine two actions without using the result of the first, we construct (>>)
(spoken then)

(>>) :: I0a->I0b ->I0b
(>>) al a2 = al >>= (\x -> a2)

echoTwice :: I0 ()
echo = echo >> echo

(>>) is analogous to the semicolon (;) in (some) imperative programming lan-
guages

It is common for the second argument of (>>=) to be an explicit lambda abstraction

Example: echoDup reads a character and prints it twice

echoDup :: I0 O
echoDup = getChar >>= (\c ->
(putChar c >> putChar c))

All the parentheses above are optional, since a lambda abstraction extends as far to
the right as possible — so

echoDup :: I0 O

echoDup = getChar >>= \c ->
putChar c >>
putChar c

This looks like a sequence of imperative actions and that is no coincidence — the do
notation (see later) mirrors an imperative program more closely

We need one more primitive to allow us to combine several values

getTwoChars :: I0 (Char,Char)

getTwoChars = getChar >>= \cl ->
getChar >>= \c2 ->
return (cl,c2)

The action (return v) is an action that does no I/O and immediately returns v
without any side effects

[ return :: a -> I0 a

e (return v) lifts a value of type a into the I0 a data type and does nothing else

e getlLine0l reads a whole line of input

getLine0l :: IO [Char]
getLine0l = getChar >>= \c ->
if ¢ == ’\n’ then
return []
else
getLine0l >>= \cs ->
return (c : cs)

e We use the name getLineO0l to not conflict with the builtin getLine which is defined
as

getLine :: IO String
getLine = hGetLine stdin

hGetLine :: Handle -> IO String

e hGetLine is more general and efficient — it also does some error checking - see
System.lO


http://hackage.haskell.org/package/base-4.12.0.0/docs/System-IO.html
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e A complete Haskell program defines a single I/0 action of type I0 ()
e The program is executed by performing the action

e The following example reads a line, reverses it and prints the result

main :: I0 O
main = getLine >>= \CS ->
putLine (reverse cs)

e Monadic I/0 can be thought of as composable action descriptions

e The essence of this style is the separation of the composition calculations from the
composed action’s execution timeline

e Note that (>>=) is the only (primitive) operation that combines or composes 1/0O
actions

e There is no operator of the type I0 a -> a — all we can do is feed the result of an
action into another action

e This prevents the programmer bypassing the sequencing of actions

12.4 do Notation

e Haskell provides the do notation to re-write long chains of (>>) and (>>=)

do {e; stmnts} = e >> do {stmnts}

do {x <- e; stmnts} = e >>= \x -> do {stmnts}
do {e} = e

do {let decls; stmnts}

= let decls in do {stmnts}

e Layout can be used to get rid of the braces ({), (}) and semicolons (;)
e This gives monadic computations an imperative feel

e Note that x <- e binds the variable x — it is not an assignment as in an imperative
language

12.5 Control Structures
e Control structures such as for and while loops were invented in the 1960s as part
of structured programming for imperative languages
e These required modifying the language

e However in functional programming we can build control structures out of functions
in the language

e See Control.Monad
e See examples in monad-loops: avoiding writing recursive functions by refactoring
e See Control.Monad.Loops

e An infinite loop

forever :: I0 O -> I0 OO
forever a = a >> forever a



http://hackage.haskell.org/package/base-4.12.0.0/docs/Control-Monad.html
https://conscientiousprogrammer.com/blog/2015/12/11/24-days-of-hackage-2015-day-11-monad-loops-avoiding-writing-recursive-functions-by-refactoring/
https://hackage.haskell.org/package/monad-loops-0.4.3/docs/Control-Monad-Loops.html
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e Repeat an action a number of times

repeatN 0 a return ()

repeatN :: Int -> I0 a -> I0 O
repeatN n a = a >> repeatN (n-1) a

e A for loop
for :: [a] -> (a -> I0 )) -> I0 O
for [] f = return
for (n:ins) f = f n>> for ns f

e Instead of having a fixed collection of contol structures provided by the language
designer, we are free to invent new ones

e This is a very powerful technique

e Another definition of for

for ns f = sequence_ (map f ns)

sequence_ :: [I0 a] -> I0 O
sequence_ as = foldr (>>) (return ()) as

e The (_) in the name sequence_ reminds us that it throws away the results of the
sub-actions

sequence :: [I0 a] -> IO [a]
sequence [] = return []
sequence (a:as)
=dor <- a
rs <- sequence as
return (r:rs)

12.6 Interaction Exercises S0809 Q1

e Define putLine0l which takes a String and prints the string with a new line at the
end

555 [ putLineOl :: String -> I0 O

Go to Interaction Exercises SO809 A 1

12.7 Interaction Exercises SO0809 Al

e We first define putStr0Ol

557 putStrol :: String -> I0 ()
558 putStrO0l [] = return

559 putStrol (x : xs)

560 = putChar x >>

561 putStrOl xs

e ...and just add a newline

563 putLineOl xs
564 = putStr0l xs >>
565 putChar ’\n’

Go to Interaction Exercises SO809 Q 1
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12.8 Monadic 1/0 Review

A complete Haskell program is a single I0 ()) action called main
Note that GHCi allows various expressions at the prompt (see the GHC User Guide)

Larger 1/0 actions are constructed by gluing together smaller actions with (>>=)
and return

An 1/O action is a first-class value: it can be passed to a function as an argument or
returned as the result of a function call; it can be stored in a data structure

Because I/O actions are first-class values, it is easy to define new combinators in
terms of existing ones.

The Monadic data structure for 1/0 allows us to separate calculating values in the
language from calculating effects to be performed outside the language

12.8.1 Monad Data Structure

The Monad data structure is more generally useful and we will return to discuss its
other uses in a later section

A monad is a triple of a type constructor, m and two function return and (>>=) with
types

(>>=) :: Monad m=>ma ->(a->mb) ->mb
return :: Monad m => a -> m a

These must also satisfy the following laws

return x >>= f == f x -- left unit
m >>= return =m -- right unit
ml >>= (\x -> m2 >>= (\y -> m3)) -- assoc.

== (Ml >>= (\x -> m2)) >>= (\y -> m3)

The above laws can also be expressed in do notation which may their meaning more
obvious

The monad laws in do notation

do x0 <- return x

f x0
:Z f x -- left unit
do x <-m

return x
:Z m -- right unit

do x <- ml
do y <- m2 x
m3 y

do y <- do x <- ml
m2 x
m3 y
== -- associativity
do x <- ml
y <- m2 X
m3 y



https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/
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The monad laws just describe how we expect imperative code to behave

skipAndGetA

= do unused <- getLine
Tine <- getLine
return line

skipAndGetB
= do unused <- getLine
getLine

e We expect the above two to have the same behaviour

Now use skipAndGet

main
= do answer <- skipAndGCet
putStrLn answer

e We expect this to be the same as

13

main
= do answer <- do unused <- getLine
getLine
putStrLn answer

and applying associativity

main

= do unused <- getLine
answer <- getLine
putStrLn answer

Future Work

Functional programming is having a significant impact on the mainstream

Program construction with functions and expressions rather than commands and
statements

Functions are first-class citizens

Higher order functions

Powerful combining forms

Function composition

Lazy evaluation or non-strict semantics

Strong polymorphic type system

Recursion and recursion patterns

Efficiency and pragmatic issues

Languages such as Scala, Kotlin, Rust, Julia and others have many of these features

Notice the interplay between ideas and particular languages and technoloies
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14

Web Sites & References

Miran Lipovaca: Learn You a Haskell (LYAH) (Lipovaca, 2011) written when he was a
student in Ljubljana, Slovenia, well written but has no exercises. Online version

Graham Hutton: Programming in Haskell (Hutton, 2016) — aimed at beginners —
does have sections on Monoid, Foldable, Traversable, Functor, Applicative,
Monad without being mathematical in the formal sense.

See also Erik Meijer: C9 Lectures — Functional Programming Fundamentals

Richard Bird: Thinking Functionally with Haskell (Bird, 2014) — third edition of a
classic text — concentrates on derivation and transformation of functions

Richard Bird & Jeremy Gibbons: Algorithm Design with Haskell (Bird and Gibbons,
2020) — sequel to the previous book

Simon Thompson: Haskell The Craft of Functional Programming (Thompson, 2011)
— a lot more examples and sections on coping with error messages from GHC

Christopher Allen & Julie Moronuki: Haskell Programming (Allen and Moronuki, 2016)
Web site — more formal than LYAH and does have exercises

O’Sullivan et al: Real World Haskell (O’Sullivan et al., 2008) Web site — practitioners
book

Hudak: The Haskell School of Expression (Hudak, 2000) — learning Haskell through
multimedia and music (Hudak was a jazz musician)

Functional Programming Papers

Haskell

Haskell Documentation

Haskell 2010 Language Report

Glasgow Haskell Compiler

GHC User Guide

GHC Prelude

A History of Haskell: Being Lazy with Class (Hudak et al., 2007)

Conception, Evolution, and Application of Functional Programming Languages (Hu-
dak, 1989)

Haskell vs. Ada vs. C++ vs. awk vs.... an experiment in software prototyping produc-
tivity (Hudak and Jones, 1994)

Why Functional Programming Matters (Hughes, 1989)

Haskore music notation -an algebra of music- (Hudak et al., 1996)


http://learnyouahaskell.com/
https://channel9.msdn.com/Series/C9-Lectures-Erik-Meijer-Functional-Programming-Fundamentals/Lecture-Series-Erik-Meijer-Functional-Programming-Fundamentals-Chapter-1
http://haskellbook.com
http://book.realworldhaskell.org/
https://www.haskell.org/
https://www.haskell.org/documentation
https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/ghc/
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/
http://hackage.haskell.org/package/base-4.11.1.0/docs/Prelude.html
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