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M269 Unit 7

Computability, Complexity Tutorial

» Welcome & Introductions
» Computability topics:

>

vvyyvyy

>

Ideas of Computation and Algorithms

Problem Reduction

Turing Machines

Undecidable, Semi-decidable and decidable problems
Effective Computability: Turing machines, Lambda
Calculus, p-recursive functions

Optional topic Lambda Calculus introduction

» Complexity topics
» Exercises similar to CMAs and exam

> Key aim: ldentify where people have problems and how

to overcome them.

» Adobe Connect — if you or | get cut off, wait till we
reconnect (or send you an email)

» Recording [Meeting )) Record Meeting. ... | v/
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Computability,

M269 Tutorial Complexity
Introductions — Me Phil Molyneux
i M269 Unit 7
» Name Phil Molyneux Adobe Connect
» Background Physics and Maths, Operational Research, Conpuisillivy
Computer Science Complexity
Future Work
> First programming languages Fortran, BASIC, Pascal PR
» Favourite Software
» Haskell — pure functional programming language
> Text editors TextMate, Sublime Text — previously Emacs
> Word processing and presentation slides in BTEX
> Mac OS X
» Learning style — | read the manual before using the

software (really)
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http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/BASIC
http://en.wikipedia.org/wiki/Pascal_(programming_language)
http://www.haskell.org/haskellwiki/Haskell
https://macromates.com
http://www.sublimetext.com
http://www.emacswiki.org
http://www.latex-project.org
https://developer.apple.com/devcenter/mac/index.action

Computability,

M269 Tutorial Complexity
Introductions — You Phil Molyneux
M269 Unit 7
» Name? Adobe Connect
> Position in M269 ? Which part of which Units and/or Computability
Reader have you read ? Complexity

Future Work

» Particular topics you want to look at?
> Learning Syle?

References
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Adobe Connect

Interface — Student Quick Reference

Participant Quick Reference Guide

Speaker volume

. Adobe® Connect

Adobe Connect Help

Connection status

Video pod

|- Attendee pod

|- Chat pod
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Adobe Connect

Interface — Student View

000 14269173 M269-17J Online twiorial room London/SE (1,13) CG 12311 M289-17.J (1) - Adobe Comect

I weins - 8- 2

M269Prsntn2017 TutorislOverviewAAC3A beamer.pd

M269 Overview
M269 Overview A

Phil Molyneux

15 October 2017

M269 Overview

Pl Mol
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Adobe Connect

Settings

>
>
>
>
>
>
>
>
>
>

vV vy

Everybody: Audio Settings Meeting )) Audio Setup Wizard. ... |
Audio [Menu bar>> Audio>> Microphone rights for Participants] v

Do not Enable single speaker mode
Drawing Tools [Share pod menu bar )) Draw| (1 slide/screen)

[Share pod menu bar>> Menu icon >> Enable Participants to draw] v gray

[Meeting >> Preferences>> Whiteboard >> Enable Participants to draw] v

Cancel hand tool ... Do not enable green pointer. ..

(Meeting )) Preferences )) Attendees Pod| X Raise Hand notification

[Meeting >> Preferences>> Display Name] Display First & Last Name

Cursor [Meeting>> Preferences>> General tab>> Host Cursors>
> Show to all attendees} v (default Off)

[Meeting >> Preferences>> Screen Share >> Cursor>> Show Application Cursor]

Webcam [Menu bar>> Webcam >> Enable Webcam for Participants] 4

Recording [Meeting )) Record Meeting. .. | v/
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Adobe Connect

Access

> Tutor Access
[TutorHome>> M269 Website >> Tutorials]

(Cluster Tutorials )) M269 Online tutorial room|

[Tutor Groups>> M269 Online tutor group room}

[Module—wide Tutorials>> M269 Online module-wide room]

> Attendance

[TutorHome>> Students>> View your tutorial timetables]
> Beamer Slide Scaling 440% (422 x 563 mm)
> Clear Everyone’s Status

[Attendee Pod >> Menu >> Clear Everyone’s Status]

» Grant Access and send link via email

[Meeting >> Manage Access & Entry>> Invite Participants. . . ]

> Presenter Only Area

{Meeting >> Enable/Disable Presenter Only Area}
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Adobe Connect

Keystroke Shortcuts

vV Vv vy VvVYyy

Keyboard shortcuts in Adobe Connect

Toggle Mic (5£]+(M] (Mac), [Ctrl)+[M] (win) (On/Disconnect)
Toggle Raise-Hand status [38)+E]

Close dialog box [©] (Mao), (Win)

End meeting (5¢]+[\ ]
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https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html

Adobe Connect Interface
Student View (default)

- e @-

M269Prsnn2017 TutorsloverviewAACIA beamer pdf 2 Video

M269 Overview
M269 Overview A

Phil Molyneux

15 October 2017
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Adobe Connect Interface

Tutor View

Host Quick Reference Guide

. Adobe® Connect

Status: raise hand, agree, disagree,
Control participant ~ step away, speak louder, speak
mics & audio softer, speed up, siow down,
conferencing laughter, applause
Manage meeting: audio
setup, recording, roles Speaker  Webcam
volume

Adobe Connect Help

Connection
status.

Status View

Breakout
Room View

Layout panel
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Adobe Connect Interface
Tutor View

M269Prsnn2017 TutorsloverviewAACIA beamer pdf

M58 Overview

Pl Myna

M269 Overview
M269 Overview A

Phil Molyneux

15 October 2017

i liss | = 4 o [ |88
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Adobe Connect Interface

Sharing Screen & Applications

vy

[Share My Screen>> Application tab >> Terminal] for Terminal

[Share menu >> Change View>> Zoom in] for mismatch of screen
size/resolution (Participants)

(Presenter) Change to 75% and back to 100% (solves
participants with smaller screen image overlap)

Leave the application on the original display

Beware blued hatched rectangles — from other (hidden)
windows or contextual menus

Presenter screen pointer affects viewer display —
beware of moving the pointer away from the application

First time: [System Preferences>> Security & Privacy>> Privacy>

Accessibility
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https://en.wikipedia.org/wiki/Terminal_(macOS)

Adobe Connect

Ending a Meeting

vVVvyVvyVvyy

Notes for the tutor only

Student: [Meeting>> Exit Adobe Connect]

Tutor:

Recording [Meeting>> Stop Recording] v

Remove Participants [Meeting ) End Meeting. .. | v/

> Dialog box allows for message with default message:
» The host has ended this meeting. Thank you for

attending.

Recording availability /n course Web site for joining
the room, click on the eye icon in the list of recordings
under your recording — edit description and name
Meeting Information [Meeting» Manage Meeting Information] —
can access a range of information in Web page.

Attendance Report see course Web site for joining

room
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Adobe Connect

Invite Attendees

>

Provide Meeting URL [Menu>> Meeting>> Manage Access & Entry>
> Invite Participants. .. ]

Allow Access without Dialog

J Manage Meeting Information| provides new browser window
with Meeting Information (Tab bar )) Edit Information|

Check Anyone who has the URL for the meeting can
enter the room

Default Only registered users and accepted guests may
enter the room

Reverts to default next session but URL is fixed

Guests have blue icon top, registered participants have
yellow icon top — same icon if URL is open

See Start, attend, and manage Adobe Connect meetings
and sessions
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https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html
https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html

Adobe Connect

Layouts

vy

v

Creating new layouts example Sharing layout

[Menu>> Layouts>> Create New Layout. .. ] [Create a New Layout dialog>
) Create a new blank layout] and name it PMolyMain

New layout has no Pods but does have Layouts Bar open
(see Layouts menu)

Pods

(Menu )) Pods ) Share )) Add New Share] and resize/position —
initial name is Share n

Rename Pod [Menu>> Pods>> Manage Pods. . . } [Manage Pods>
) Select )) Rename| or [Double-click & rename)

Add Video pod and resize/reposition
Add Attendance pod and resize/reposition

Add Chat pod — name it PMolyChat — and
resize/reposition
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Adobe Connect

Layouts

» Dimensions of Sharing layout (on 27-inch iMac)
Width of Video, Attendees, Chat column 14 cm
Height of Video pod 9 cm

Height of Attendees pod 12 cm

Height of Chat pod 8 cm

vyvyy

v

> Duplicating Layouts does not give new instances of
the Pods and is probably not a good idea (apart from
local use to avoid delay in reloading Pods)
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Adobe Connect

Chat Pods
» Format Chat text
> [Chat Pod>> menu icon>> My Chat Color]
» Choices: Red, Orange, Green, Brown, Purple, Pink, Blue,
Black
» Note: Color reverts to Black if you switch layouts
> [Chat Pod>> menu icon>> Show Timestamps]
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Computability Compiexity”
Ideas of Computation Ful) (el meree
M269 Unit 7
> The idea of an algorithm and what is effectively Y Sp—
Computable Computability
» Church-Turing thesis Every function that would ?:;Mgh“
naturally be regarded as computable can be computed Computablty,
by a deterministic Turing Machine. (Unit 7 Section 4) Noorthms
> See Phil Wadler on computability theory performed as Complexity
part of the Bright Club at The Strand in Edinburgh, Future Work
Tuesday 28 April 2015 RefSisnces
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http://wadler.blogspot.co.uk/2015/05/bright-club-computability.html

Computability

Models of Computation

>

In automata theory, a problem is the question of
deciding whether a given string is a member of some
particular language

If > is an alphabet, and L is a language over X, that is
L = *, where X* is the set of all strings over the
alphabet 3 then we have a more formal definition of
decision problem

Given a string w € X*, decide whether w € L

Example: Testing for a prime number — can be
expressed as the language L, consisting of all binary
strings whose value as a binary number is a prime
number (only divisible by 1 or itself)

See Hopcroft (2007, section 1.5.4)
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Automate Theory
Alphabets, Strings

vV vyVvyy

v

An Alphabet, 3, is a finite, non-empty set of symbols.
Binary alphabet > = {0, 1}
Lower case letters X = {a, b, ..., z}

A String is a finite sequence of symbols from some
alphabet

01101 is a string from the Binary alphabet £ = {0, 1}
The Empty string, €, contains no symbols

Powers: XX is the set of strings of length k with
symbols from X

The set of all strings over an alphabet X is denoted >*
S =30u3xtux?u...
Question Does 30 = () ? () is the empty set)

Computability,
Complexity

Phil Molyneux

M269 Unit 7
Adobe Connect

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms
Lambda Calculus
Complexity
Future Work

References

21/116



Automata Theory

Languages

> An Language, L, is a subset of *

» The set of binary numerals whose value is a prime
{10,11,101,111,1011,...}

> The set of binary numerals whose value is a square
{100,1001,10000,11001,...}
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Computability

Church-Turing Thesis & Quantum Computing

>

Church-Turing thesis Every function that would
naturally be regarded as computable can be computed
by a deterministic Turing Machine.

physical Church-Turing thesis Any finite physical
system can be simulated (to any degree of
approximation) by a Universal Turing Machine.

strong Church-Turing thesis Any finite physical
system can be simulated (to any degree of
approximation) with polynomial slowdown by a
Universal Turing Machine.

Shor’s algorithm (1994) — quantum algorithm for
factoring integers — an NP problem that is not known
to be P — also not known to be NP-complete and we
have no proof that it is not in P

Reference: Section 4 of Unit 6 & 7 Reader
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http://en.wikipedia.org/wiki/Shor's_algorithm

Computability

Turing Machine

>

Finite control which can be in any of a finite number of
states

Tape divided into cells, each of which can hold one of a
finite number of symbols

Initially, the input, which is a finite-length string of
symbols in the input alphabet, is placed on the tape

All other tape cells (extending unbounded left and
right) hold a special symbol called blank

A tape head which initially is over the leftmost input
symbol

A move of the Turing Machine depends on the state
and the tape symbol scanned

A move can change state, write a symbol in the current
cell, move left, right or stay

References: Hopcroft (2007, page 326), Unit6 & 7
Reader (section 5.3)
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Turing Machine Diagram

Turing Machine Diagram

b|lblalal|lal]a .-+ 1/0O Tape

Reading and Writing Head

(moves in both directions)

a3

qz2 an

qn qao

Finite Control
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Computability

Turing Machine notation

vV vyVvyy

Q finite set of states of the finite control
3. finite set of input symbols (M269 S)
I' complete set of tape symbols 3 C T

6 Transition function (M269 instructions, /)
0:QxI'-QxTIx{LR,S}

6(g,X) —~ (p,Y,D)

0(g, X) takes a state, g and a tape symbol, X and
returns (p, Y, D) where p is a state, Y is a tape symbol
to overwrite the current cell, D is a direction, Left, Right
or Stay

qo Start state qo € Q
B blank symbol BT and B ¢ X
F set of final or accepting states F < Q
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Turing Machine Examples

Turing Machine Simulators

» Morphett’s Turing machine simulator — the examples
below are adapted from here

» Ugarte’s Turing machine simulator
» XKCD A Bunch of Rocks — XKCD Explanation
Image below (will need expanding to be readable)
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http://morphett.info/turing/turing.html
https://turingmachinesimulator.com/
https://xkcd.com/505/
https://www.explainxkcd.com/wiki/index.php/505:_A_Bunch_of_Rocks

Turing Machine Examples

XKCD A Bunch of Rocks
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Turing Machine Examples

The Successor Function

vV VY VvV VvV VvVVY

Input binary representation of numeral n
Output binary representation of n+ 1

Example 1010 — 1011 and 1011 ~ 1100

Initial cell: leftmost symbol of n

Strategy

Stage A make the rightmost cell the current cell
Stage B Add 1 to the current cell.

If the current cell is O then replace it with 1 and go to
stage C

If the current cell is 1 replace it with 0 and go to stage B
and move Left

If the current cell is blank, replace it by 1 and go to
stage C

Stage C Finish up by making the leftmost cell current
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Turing Machine Examples

The Successor Function (2)

> Represent the Turing Machine program as a list of
quintuples (g, X, p, Y, D)

>

Stage A

(40,0, 90,0, R)
(4o, 1,40,1,R)
(4o, B, g1, B, L)
Stage B

(41,0,92,1,5)
(q1,1,q1,0,L)
(a1,B,92,1,5)
Stage C

(42,0,42,0,L)
(g2,1,42,1,L)
(42, B, qn, B, R)
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Turing Machine Examples

The Successor Function (2a)

> Exercise Translate the quintuples (g, X, p, Y, D) into
English and check they are the same as the specification

> Stage A make the rightmost cell the current cell
(40,0, 90,0, R)
If state go and read symbol O then stay in state gg write 0, move R
(40, 1,40,1,R)
If state gp and read symbol 1 then stay in state gg write 1, move R

(qo, B, a1, B, L)

If state go and read symbol B then state g7 write B, move L
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Turing Machine Examples

The Successor Function (2b)

> Exercise Translate the quintuples (g, X, p, Y, D) into
English

> Stage B Add 1 to the current cell.
(1,0,92,1,5)
If state g7 and read symbol 0O then state g, write 1, stay
(,1,q1,0,L)
If state g7 and read symbol 1 then state g7 write 0, move L
(91,B,92,1,5)

If state g7 and read symbol B then state g, write 1, stay
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Turing Machine Examples

The Successor Function (2¢)

> Exercise Translate the quintuples (g, X, p, Y, D) into
English

» Stage C Finish up by making the leftmost cell current
(42,0, 492,0,L)
If state g and read symbol 0 then state g, write 0, move L
(92,1,92,1,L)
If state g, and read symbol 1 then state g write 0, move L
(42, B, qn, B, R)
If state g and read symbol B then state gj write B, move R HALT

> Notice that the Turing Machine feels like a series of if

then or case statements inside a while loop
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Turing Machine Examples

The Successor Function (3)

» Sample Evaluation 11 — 100

> Representation - - - BX1 Xy - - - Xi—1gXiXit1 - -

C]o]1

1g01

quB

1g:11

10

qi BOO

q2100

q28100
qn100

> Exercise evaluate 1011 — 1100

“X,B---
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Turing Machine Examples

Instantaneous Description

vV vyVvyy

vV vyVvVvyy

Representation - - - BX1 Xy - - - Xi—1gXiXiz1 - - XpB- - -

q is the state of the TM
The head is scanning the symbol X;

Leading or trailing blanks B are (usually) not shown
unless the head is scanning them

+um denotes one move of the TM M

4 denotes zero or more moves

+ will be used if the TM M is understood

If (q,Xi,p,Y,L) denotes a TM move then

Xi- - Xic1gXi- - - Xnbm Xo -+ - XicapXicaa Y - - - Xy
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Turing Machine Examples

The Binary Palindrome Function

VVvVVvVVvVvyVvYyyvyy

vy

vV vYyy

Input binary string s

Output YES if palindrome, NO otherwise
Example 1010 — NO and 1001 —~ YES
Initial cell: leftmost symbol of s

Strategy

Stage A read the leftmost symbol
If blank then accept it and go to stage D otherwise

erase it

Stage B find the rightmost symbol

If the current cell matches leftmost recently read then
erase it and go to stage C

Otherwise reject it and go to stage E

Stage C return to the leftmost symbol and stage A
Stage D print YES and halt

Stage E erase the remaining string and print NO
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Turing Machine Examples

The Binary Palindrome Function (2)

>

>

Represent the Turing Machine program as a list of
quintuples (g, X, p, Y, D)

Stage A read the leftmost symbol
(40,0,q1,,B,R)

(90, 1,91, B,R)

(40, B, gs, B, S)

Stage B find rightmost symbol
(a1,,B,492,,B,L)

(Cﬁ o K q1,, %, R) *is a wild card, matches anything
(a1,,B,92;,,B,L)

(a;, *,q,, %, R)
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Turing Machine Examples

The Binary Palindrome Function (3)

> Stage B check
(42,,0,493,B,L)
(42,,B,45,B,5)
(42,, *, g6, *, S)
(92,,1,43,B,L)
(42,,B,4s,B,S)
(42;, *, g6, *, S)

> Stage C return to the leftmost symbol and stage A
(g3,8B,4s,B,5)
(g3, %, qa, *, L)
(g4, B, 40, B, R)
(qa, *, g4, %,L)
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Turing Machine Examples

The Binary Palindrome Function (4)

» Stage D accept and print YES
(gs, *,4s5,, Y, R)
(4G5, *,4s,, E, R)
(g5,, %, 47,5, S)
> Stage E erase the remaining string and print NO
(g6, B, g6, N, R)
(g6, *, g6, B, L)
(g6, *,47,0,5)
» Finish
(47, B, qn, B, R)
(g7, *,497, *,L)
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Turing Machine Examples

The Binary Palindrome Function (4)

» Sample Evaluation 101 — YES
q0101 [ Bq1,01 [ BOQ1,.] [ BO]m,B
= BOqz,l
~ Bg30B +— q4BOB
~ BgoOB BBQ]OB
+ Bg.,BB
~ BqgsBB +— YanB = YEquB + YEq7S
~ Yq7ES + Bq7;YES + q7BYES + qnYES

» Exercise Evaluate 110 — NO
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Turing Machine Examples
Binary Addition Example

>

vVvyVvyy

Input two binary numerals separated by a single space
nl n2

Output binary numeral which is the sum of the inputs
Example 110110+ 101011 — 1100001

Initial cell: leftmost symbol of n1 n2

Insight look at the arithmetic algorithm

1T 1.0 1 1 O
T 01 0 1 1

—

—

1T 1.0 0 0 0 1

Discussion how can we overwrite the first number with
the result and remember how far we have gone ?
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Turing Machine Examples

Binary Addition Example — Arithmetic Reinvented

o1 1 0o 1 1 0
o1 0o 1 0o 1 1
o1 1 0o 1 1 y
L1 0 1 0 1 o
. 1 1 1 0 x vy
L1 0o 1 o . .
. 1 1 1 X X y
L1 0 1 oL o
1 0 0 x x x vy
T T
1 0 X X X X 'y
T T
1 y X X X X Yy
1 1 o 0 o0 o0 1
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Turing Machine Examples
Binary Addition Example (2)

>

vV vYyyVvyy

Input two binary numerals separated by a single space
nl n2

Output binary numeral which is the sum of the inputs
Example 110110+ 101011 — 1100001
Initial cell: leftmost symbol of n1 n2
Strategy

Stage A find the rightmost symbol

If the symbol is 0 erase and go to stage Bx
If the symbol is 1 erase go to stage By

If the symbol is blank go to stage F

dealing with each digit in n1

if no further digits in nl1 go to final stage

Stage Bx Move left to a blank go to stage Cx
Stage By Move left to a blank go to stage Cy

moving to nl
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Turing Machine Examples
Binary Addition Example (3)

>

Stage Cx Move left to find first 0, 1 or B

Turn O or Bto X, turn 1 to Y and go to stage A
adding 0 to a digit finalises the result (no carry one)

Stage Cy Move left to find first 0, 1 or B

Turn 0 or Bto 1 and go to stage D

Turn 1 to 0, move left and go to stage Cy

dealing with the carry one in school arithmetic

Stage D move right to X, Y or B and go to stage E

Stage E replace 0 by X, 1 by Y, move right and go to
Stage A

finalising the value of a digit resulting from a carry

Stage F move left and replace X by 0, Y by 1 and at B
halt
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Turing Machine Examples
Binary Addition Example (4)

>

>

Represent the Turing Machine program as a list of
quintuples (g, X, p, Y, D)

Stage A find the rightmost symbol

(90, B, 41, B, R)

(C]o, *, qo, *, R) *is a wild card, matches anything
(a1,B,92,B,L)

(q, %, q1, %, R)

(92,0, 493,,B,L)

(g2,1,493,,B,L)

(42,B,47,8B,L)
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Turing Machine Examples
Binary Addition Example (5)

> Stage Bx move left to blank
(43,, B, 4a,, B, L)
(g3, *,G3,, %, L)

> Stage By move left to blank
(g3,,B,49a,,B,L)
(g3,,*,493,,*,L)

» Stage Cx move left to 0, 1, or blank
(g4, 0,490, X, R)
(G4,, 1,490, y, R)
(da,, B, g0, X, R)
(44, *,qa,, *, L)
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Turing Machine Examples
Binary Addition Example (6)

» Stage Cy move left to 0, 1, or blank
(9a,,0,45,1,5)
(ga,,1,9a4,,0,L)

(a,,B,qs5,1,5)
(ga,s *, qa,, *, L)

» Stage D move right to x, y or B
(g5, X, g6, X, L)

(gs,¥,46,y,L)
(gs, B, g6, B, L)
(gs, *,qs, %, R)

> Stage E replace 0 by x, 1 by y
(gs, 0, 90, X, R)

(g6, 1,40, ¥, R)
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Turing Machine Examples
Binary Addition Example (7)

> Stage F replace x by 0, y by 1
(47, x,47,0, L)
(g7,y,a7,1,L)
(47, B, qn, B, R)
(g7, *,q7,%,L)
» Exercise Evaluate 11 + 10~ 101
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Turing Machine Examples
Binary Addition Example (7a)

>

v

T T YT1T YT T T T T T T

Exercise Evaluate 11 + 10 — 101
Stage A find the rightmost symbol
BBqo11B10B Note space symbols B at start and end
BB1go1B10B

BB11goB10B

BB11Bg;10B

BB11B1¢,0B

BB11B10g; B

BB11B1g,08B

BB11Bgs, 1BB

Stage Bx move left to blank
B11gs3,B1BB

Stage Cx move left to 0, 1, or blank
BB1qg4,1B1BB

BB1YqoB1BB
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Turing Machine Examples
Binary Addition Example (7b)

v

T Y7T T T YT TTTUWYTTTTV

Exercise Evaluate 11 + 10 —~ 101 (contd)
Stage A find the rightmost symbol
BB1BYBqg,1BB

BB1YB1q,BB

BB1YBg,1BB

BB1Yqs3,BBBB

Stage Cy move left to 0, 1, or blank
BB1q4,YBBBB

BBqg4,1YBBBB

Bqs,BOYBBBB

Bgs10YBBBB

Stage D move right to x, y or B
Bgqs0YBBBB

BOgs YBBBB

Bgs0YBBBB

Stage E replace 0 by x, 1 by y
B1Xqo YBBBB
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Turing Machine Examples
Binary Addition Example (7¢c)

v T T TT YT TTT VYV

v

Exercise Evaluate 11 + 10 ~ 101 (contd)
Stage A find the rightmost symbol
B1XYqoBBBB

B1XYBq, BBB

B1XYq,BBBB

B1Xq; YBBBB

Stage F replace x by 0, y by 1
B1g7X1BBBB

Bg;101BBBB

Bg7;B101BBBB

Bguy101BBBB

This is mimicking what you learnt to do on paper as a

child! Real step-by-step instructions

See Morphett’s Turing machine simulator for more

examples (takes too long by hand!)
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Computability

Universal Turing Machine

» Universal Turing Machine, U, is a Turing Machine that
can simulate any arbitrary Turing machine, M

> Achieves this by encoding the transition function of M
in some standard way

» The input to U is the encoding for M followed by the
data for M

> See Turing machine examples
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https://en.wikipedia.org/wiki/Universal_Turing_machine
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Turing_machine_examples
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Computability Complexity
Decidability Phil Molyneux
M269 Unit 7
> Decidable — there is a TM that will halt with yes/no for  suope connect
a decision problem — that is, given a string w over the Computability
alphabet of P the TM with halt and return yes.no the T g e
string is in the language P (same as recursive in S
Recursion theory — old use of the word) Rsorihme
> Semi-decidable — there is a TM will halt with yes if Egcf?pi':““y
some string is in P but may loop forever on some inputs NomComputabilty
(same as recursively enumerable) — Halting Problem Complexity

Future Work

» Highly-undecidable — no outcome for any input —
Totality, Equivalence Problems
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http://en.wikipedia.org/wiki/Recursion_theory

Computability

Undecidable Problems

> Halting problem — the problem of deciding, given a

program and an input, whether the program will
eventually halt with that input, or will run forever —
term first used by Martin Davis 1952

Entscheidungsproblem — the problem of deciding
whether a given statement is provable from the axioms
using the rules of logic — shown to be undecidable by
Turing (1936) by reduction from the Halting problem to
it

Type inference and type checking in the second-order

lambda calculus (important for functional
programmers, Haskell, GHC implementation)

» Undecidable problem — see link to list
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Computability

Halting Problem — Sketch Proof (1)

» Halting problem — is there a program that can
determine if any arbitrary program will halt or continue
forever ?

> Assume we have such a program (Turing Machine)
h(f,x) that takes a program f and input x and
determines if it halts or not

h(f,x)
= if f(x) runs forever
return True
else
return False

» We shall prove this cannot exist by contradiction
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https://simple.wikipedia.org/wiki/Halting_problem

Computability

Halting Problem — Sketch Proof (2)

» Now invent two further programs:

» q(f) that takes a program f and runs h with the input
to f being a copy of

» r(f) that runs q(f) and halts if q(f) returns True,
otherwise it loops

q(f)

= h(f,f)

r(f)

= if q(f)
return

else

while True:

» What happens if we run r(r) ?

» If it loops, q(r) returns True and it does not loop —
contradiction.
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Computability

Why undecidable problems must exist

>

>

A problem is really membership of a string in some
language

The number of different languages over any alphabet of
more than one symbol is uncountable

Programs are finite strings over a finite alphabet (ASCII
or Unicode) and hence countable.

There must be an infinity (big) of problems more than
programs.

Computational problem — defined by a function

Computational problem is computable if there is a
Turing machine that will calculate the function.
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Computability

Computability and Terminology (1)

>

The idea of an algorithm dates back 3000 years to
Euclid, Babylonians. ..

In the 1930s the idea was made more formal: which
functions are computable?

A function is a set of pairs

f=10f(x):x e XAf(x)e€ Y} with the function
property

Function property: (a,b) € f A (a,c) e f > b==c¢
Function property: Same input implies same output

Note that maths notation is deeply inconsistent here —
see Function and History of the function concept

What do we mean by computing a function — an
algorithm ?

Computability,
Complexity

Phil Molyneux

M269 Unit 7
Adobe Connect

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability
Lambda Calculus
Complexity
Future Work

References

58/116


http://en.wikipedia.org/wiki/Computable_function
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/History_of_the_function_concept

Functions

Relation and Rule

>

The idea of function as a set of pairs (Binary relation)
with the function property (each element of the domain
has at most one element in the co-domain) is fairly
recent — see History of the function concept

School maths presents us with function as rule to get
from the input to the output

Example: the square function: square x = x X x

But lots of rules (or algorithms) can implement the
same function

squarel x = xA2
X times

squareZ X =x+---+xif xis integer
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Computability

Computability and Terminology (2)

>
>

v

In the 1930s three definitions:

A-Calculus, simple semantics for computation — Alonzo
Church

General recursive functions — Kurt Godel
Universal (Turing) machine — Alan Turing

Terminology:
> Recursive, recursively enumerable — Church, Kleene
> Computable, computably enumerable — Gédel, Turing
» Decidable, semi-decidable, highly undecidable
> In the 1930s, computers were human
» Unfortunate choice of terminology

Turing and Church showed that the above three were
equivalent

Church-Turing thesis — function is intuitively
computable if and only if Turing machine computable

Computability,
Complexity

Phil Molyneux

M269 Unit 7
Adobe Connect

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem
Reductions &

Non-Computability
Lambda Calculus
Complexity
Future Work

References

60/116


http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Alonzo_Church
http://en.wikipedia.org/wiki/Alonzo_Church
https://en.wikipedia.org/wiki/%CE%9C-recursive_function
https://en.wikipedia.org/wiki/Kurt_G%C3%B6del
http://en.wikipedia.org/wiki/Universal_Turing_machine
http://en.wikipedia.org/wiki/Alan_Turing
http://en.wikipedia.org/wiki/Stephen_Cole_Kleene
https://en.wikipedia.org/wiki/Church%E2%80%93Turing_thesis

Computability

Reducing one problem to another

» To reduce problem P; to P,, invent a construction that
converts instances of P; to P, that have the same
answer. That is:

> any string in the language P; is converted to some string
in the language P,
> any string over the alphabet of P; that is not in the
language of P; is converted to a string that is not in the
language P,
» With this construction we can solve P;

> Given an instance of P;, that is, given a string w that
may be in the language P;, apply the construction
algorithm to produce a string x

> Test whether x is in P, and give the same answer for w
in P
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Computability

Problem Reduction

» Problem Reduction — Ordinary Example
» Want to phone Alice but don’t have her number
> You know that Bill has her number

> So reduce the problem of finding Alice’s number to the
problem of getting hold of Bill

Computability,
Complexity

Phil Molyneux

M269 Unit 7
Adobe Connect

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms
Non-Computability —
Halting Problem
Reductions &
Non-Computability
Lambda Calculus

Complexity
Future Work

References

62/116



Computability

Direction of Reduction

>
>

The direction of reduction is important

If we can reduce P; to P, then (in some sense) P> is at
least as hard as P; (since a solution to P, will give us a
solution to P;)

So, if P> is decidable then P; is decidable

To show a problem is undecidable we have to reduce
from an known undecidable problem to it

V x(dpp, (x) = dpp, (reduce(x)))
Since, if P; is undecidable then P is undecidable
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Reductions & Non-Computable

Reductions

|

|

f(input) ‘
» ——> output

» A reduction of problem P; to problem P,
> transforms inputs to Py into inputs to P;
> runs algorithm A2 (which solves P;) and
> interprets the outputs from A2 as answers to P,
» More formally: A problem Py is reducible to a problem
P, if there is a function f that takes any input x to P,
and transforms it to an input f(x) of P,

such that the solution of P, on f(x) is the solution of P,
on x
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Reductions & Non-Computible

Example: Squaring a Matrix

» Given an algorithm (A2) for matrix multiplication (P;)

> Input: pair of matrices, (M;, M)
> Qutput: matrix result of multiplying M; and M,

> P; is the problem of squaring a matrix

> Input: matrix M
> OQutput: matrix M2

» Algorithm A1 has
f(M) = (M, M)
uses A2 to calculate M x M = M2
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Reductions & Non-Computable

Non-Computable Problems

|
|
. f(input) !
input ———p| f » A2 ——>» output

> If P, is computable (A2 exists) then P; is computable (f
being simple or polynomial)

> Equivalently If P; is non-computable then P; is
non-computable

» Exercise: show B—- A= -A—- —-B
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Reductions & Non-Computable

Contrapositive

> Proof by Contrapositive
» B — A= =BV A by truth table or equivalences

—|(—'A) V =B commutativity and negation laws

=-A- B equivalences

» Common error: switching the order round
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Reductions & Non-Computable

Totality Problem

\ 4

——» YES/NO

> Totality Problem
> Input: program Q

> OQutput: YES if Q terminates for all inputs else NO
» Assume we have algorithm TP to solve the Totality

Problem

» Now reduce the Halting Problem to the Totality Problem
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Reductions & Non-Computable

Totality Problem

(P, x) ———»| f Q > TP ——» YES/NO

» Define f to transform inputs to HP to TP pseudo-Python

def f(P,x) :
def Q(y):
# ignore y

P(x)

return Q

> Run TP on Q

> |f TP returns YES then P halts on x
> If TP returns NO then P does not halt on x

» We have solved the Halting Problem — contradiction
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Reductions & Non-Computable

Negative Value Problem

NVP ——» YES/NO

> Negative Value Problem
> Input: program Q which has no input and variable v
used in Q
> OQutput: YES if v ever gets assigned a negative value else
NO
» Assume we have algorithm NVP to solve the Negative
Value Problem

» Now reduce the Halting Problem to the Negative Value
Problem
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Reductions & Non-Computable

Negative Value Problem

I ( X ) I
| e, L VES/NO

» Define f to transform inputs to HP to NVP pseudo-Python

def f(P,x) :
def Q(y):
# ignore y
P(x)
v =-1
return (Q,var(v))

» Run NVP on (Q, var(v)) var(v) gets the variable name

> |f NVP returns YES then P halts on x
> If NVP returns NO then P does not halt on x

» We have solved the Halting Problem — contradiction

Computability,
Complexity

Phil Molyneux

M269 Unit 7
Adobe Connect

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem
Reductions &
Non-Computability
Lambda Calculus
Complexity
Future Work

References

71/116



Reductions & Non-Computable

Squaring Function Problem

(P,x) ——» f Q » SFP |—— YES/NO

» Squaring Function Problem
> Input: program Q which takes an integer, y
» OQutput: YES if Q always returns the square of y else NO
» Assume we have algorithm SFP to solve the Squaring
Function Problem

» Now reduce the Halting Problem to the Squaring
Function Problem
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Reductions & Non-Computable

Squaring Function Problem

| |
| |
| Q |
; - » YES/NO

> Define f to transform inputs to HP to SFP pseudo-Python

def f(P,x) :
def Q(y):
P(x)
return y * y
return Q

» Run SFP on Q

» |f SFP returns YES then P halts on x
> If SFP returns NO then P does not halt on x

» We have solved the Halting Problem — contradiction
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Reductions & Non-Computable

Equivalence Problem

| |
| |
; (P1,P2) ;
: > . YES/NO

» Equivalence Problem
> Input: two programs P1 and P2
» Qutput: YES if P1 and P2 solve the ame problem (same
output for same input) else NO
> Assume we have algorithm EP to solve the Equivalence
Problem

» Now reduce the Totality Problem to the Equivalence
Problem
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Reductions & Non-Computable

Equivalence Problem

| |
| |
; (P1,P2) ;
‘ > - » YES/NO

> Define f to transform inputs to TP to EP pseudo-Python

def f(P) :
def P1(x):
P(x)
return "Same_string"
def P2(x)
return "Same_string"
return (P1,P2)

» Run EP on (P1, P2)

» If EP returns YES then P halts on all inputs
» If EP returns NO then P does not halt on all inputs

» We have solved the Totality Problem — contradiction
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Reductions & Non-Computable

Rice’s Theorem

|

|

f(input) ‘
» ——> output

> Rice’s Theorem all non-trivial, semantic properties of
programs are undecidable. H G Rice 1951 PhD Thesis

> Equivalently: For any non-trivial property of partial
functions, no general and effective method can decide
whether an algorithm computes a partial function with
that property.

» A property of partial functions is called trivial if it holds
for all partial computable functions or for none.
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Reductions & Non-Computable

Rice’s Theorem

vy

Rice’s Theorem and computability theory
Let S be a set of languages that is nontrivial, meaning
> there exists a Turing machine that recognizes a
language in S
> there exists a Turing machine that recognizes a
language not in S
Then, it is undecidable to determine whether the
language recognized by an arbitrary Turing machine
lies in S.

This has implications for compilers and virus checkers
Note that Rice’s theorem does not say anything about

those properties of machines or programs that are not
also properties of functions and languages.

For example, whether a machine runs for more than
100 steps on some input is a decidable property, even
though it is non-trivial.
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Lambda Calculus

Motivation

» Lambda Calculus is a formal system in mathematical
logic for expressing computation based on function

abstraction and application using variable binding and
substitution

Lambda calculus is Turing complete — it can simulate
any Turing machine

» Introduced by Alonzo Church in 1930s

> Basis of functional programming languages — Lisp,
Scheme, ISWIM, ML, SASL, KRC, Miranda, Haskell, Scala,
F#. ..

>

Note this is not part of M269 but may help understand
ideas of computability
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Functions
Binding and Substitution

» School maths introduces functions as

vV VvV Vv VvyVvyy

v

v

f(x)=3x2+4x+5

Substitution: f(2) =3x22+4x2+5=25
Generalise: f(x) = ax? + bx + ¢

What is wrong with the following:
fla)=axa*+bxa+c

The ideas of free and bound variables and substitution

Evaluating an expression — how many ways can you
evaluate (3 +7)?

Answer: 3 ways (Bird, 1998, Ex 1.2.2, page 6)
Ways of evaluating ((3 + 7)2)°

Answer: 547 ways (Bird and Wadler, 1988, Ex 1.2.1,
page 6)

Computability,
Complexity

Phil Molyneux

M269 Unit 7
Adobe Connect

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus
Motivation
Lambda Terms
Substitution
Lambda Calculus
Encodings

Complexity
Future Work

References

79/116



Lambda Calculus
Optional Topic

» M269 Unit 6/7 Reader Logic and the Limits of
Computation alludes to other formalisations with equal
power to a Turing Machine (pages 81 and 87)

The Reader mentions Alonzo Church and his 1930s
formalism (page 87, but does not give any detail)

The notes in this section are optional and for
comparison with the Turing Machine material

Turing machine: explicit memory, state and implicit
loop and case/if statement

Lambda Calculus: function definition and application,
explicit rules for evaluation (and transformation) of
expressions, explicit rules for substitution (for function
application)

Lambda calculus reduction workbench
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Lambda Calculus

Lambda Terms

>
>

A variable, x, is a lambda term

If Mis alambda term and x is a variable, then (Ax.M) is
a lambda term — a lambda abstraction or function
definition

If M and N are lambda terms, the (M N) is lambda term
— an application

Nothing else is a lambda term
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Lambda Calculus Eompienty”

Complexity
Lambda Terms — Notational Conveniences Fllelee:
i M269 Unit 7
» Qutermost parentheses are omitted (M N) = M N Adobe Connect
» Application is left associative (M N) P) = M N P AR
e Turing Machine
> The body of an abstraction extends as far right as LD
possible, subject to scope limited by parentheses Decoabmity o
Algorithms
» Ax.M N = Ax.(M N) and not (Ax.M) N tambda Calculus
> AX.AY.AzM = Axy z.M T

Substitution
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Future Work
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Lambda Calculus

Lambda Calculus Semantics

» What do we mean by evaluating an expression?
» To evaluate (Ax.M)N

» Evaluate M with x replaced by N

» This rule is called B-reduction

> (AxX.M)N E M[x = N]

> M[x := N] is M with occurrences of x replaced by N
» This operation is called substitution — see rules below
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Lambda Calculus

B-Reduction Examples

» (Ax.X)z— z
> (Ax.y)z—y
> (Ax.xy)z—zy
a function that applies its argument to y
> (Ax.xy)(Az.z) - (Az.z2)y — y
» (AX.Ay.xy)z— Ay.zy

A curried function of two arguments — applies first
argument to second

> currying replaces f(x, y) with (f x)y — nice notational
convenience — gives partial application for free
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Lambda Calculus

Substitution

» To define substitution use recursion on the structure of
terms

» x[x:=N]=N

» y[x:=N]=y

> (PQ)x:= N = (P[x:= N]) (Q[x:= N])
> (AX.M)[x := N] = Ax.M

In (Ax.M), the x is a formal parameter and thus a local
variable, different to any other
» (Ay.M)[x := N] = what?

» Look back at the school maths example above — a
subtle point
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Lambda Calculus “Compiexiy”

Complexity
Substitution (2) Phil Molyneux

M269 Unit 7
» Renaming bound variables consistently is allowed A
> AX.X = )\yy =Az.Z Computability
The Turing Machine
> Ay.AXx.y = Az.AX.Z

Turing Machine
Examples

. . . Computability,
» This is called x-conversion Decidaiity and

> (AxAy.xy)y — (AX.Azx2)y — Az.yz Lambda Calculus

Motivation
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Lambda Calculus
Substitution (3)

VYV VvV VvV VvV VvV VvVYVYYy

Bound and Free Variables

BV(x) =0

BV(Ax.M) = BV(M) U {x}

BV(MN) = BV(M) U BV(N)

FV(x) = {x}

FV(Ax.M) = FV(M) — {x}

FV(MN) = FV(M) U FV(N)

The above is a formalisation of school maths

A Lambda term with no free variables is said to be
closed — such terms are also called combinators — see
Combinator and Combinatory logic (Hankin, 2004,
page 10)

x-conversion
Ax.M = Ay.M[x:=ylify ¢ FV(M)
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Lam bda Ca|Cu|US Computability,

Complexity
Substitution (4)

Phil Molyneux
M269 Unit 7
» B-reduction final rule ot o
> (Ay.M)[x:= N]=Ay.Mif x ¢ FV(M) Computabitty
> (Ay.M)[x := N] = Ay.M[x := N] Tutg schine
if x € FV(M) and y ¢ FV(N)
> (Ay.M)[x := N] = Az.M[y := z][x := N] Lan:zsz‘;zlculus
if x € FV(M) and y € FV(N) Subsiuson
z is chosen to be first variable z ¢ FV(N M) EiToZ‘?:g?"“'“s
» This is why you cannot go f(a) when given Complextty

Future Work

> f(x) =ax®+bx+c
» School maths — but made formal

References

88/116



Lambda Calculus Complesit’

Complexity
. Phil Molyneux
Rules Summary — Conversion
. ) . M269 Unit 7
> «-conversion renaming bound variables

Adobe Connect

> Ax.M = Ay.M(x:=ylify ¢ FV(M)

Computability
The Turing Machine

. . . . Turing Machine
> B-conversion function application

Examples

Computability,

idabili d

> (AX.M)N — M[x := N] Woorithms
B Lambda Calculus

Motivation
> n-conversion extensionality

Lambda Terms

Substitution
> Ax.Fx - Fif x¢ FV(F) Lamoca Calcus
n
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https://en.wikipedia.org/wiki/Extensionality

Lambda Calculus

Rules Summary — Substitution

. X[x:=N]=N
. y[x=N]=y

1
2
3. (PQ)[x:= N] = (P[x:= N]) (Q[x:= NI)
4.
5
6

(Ax.M)[x := N] = Ax.M

. (Ay.M)[x:=N]=Ay.Mif x ¢ FV(M)
. (Ay.M)[x = N] = Ay.M[x := N]

if xe FV(M) and y ¢ FV(N)

. (Ay.M)[x:= N] =AzM[y = z][x = N]

if x€ FV(M) and y € FV(N)
z is chosen to be first variable z ¢ FV(N M)
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Lambda Calculus

Lambda Calculus Encodings

> So what does this formalism get us ?
» The Lambda Calculus is Turing complete

» We can encode any computation (if we are clever
enough)

» Booleans and propositional logic
> Pairs

» Natural numbers and arithmetic
» Looping and recursion
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Lambda Calculus Encodings

Booleans and Propositional Logic

> True = AX.Ay.x

> False = Ax.Ay.y

» IFaTHEN bELSEc=abc

» IF True THEN b ELSE ¢ — (Ax.Ay.x) bc
» - (Ay.b)c—-b

> |IF False THEN b ELSE ¢ — (Ax.Ay.y) bc
» —-@Ayyc—c
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Lambda Calculus Encodings

Booleans and Propositional Logic (2)

VYV VvV VvV VvV VvV VvVVYYyYy

Not = Ax.((xFalse)True)

Not x = IF x THEN False ELSE True
Exercise: evaluate Not True

And = Ax.Ay.((xy) False)

And x y = IF x THEN y ELSE False
Exercise: evaluate And True False
Or = Ax.Ay.((x True ) y)

Or x y = IF x THEN True ELSE y
Exercise: evaluate Or False True
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Lambda Calculus Encodings

Booleans and Propositional Logic (2) — Exercises

vV vyVvyy

vV VvV VvV VvV VYVY VY

Exercise: evaluate Not True
— (Ax.((x False) True)) True
— (True False) True

Could go straight to False from here, but we shall fill in
the detail

- ((Ax.Ay.x) (Ax.Ay.y)) (Ax.Ay.x)

— (Ay.(Ax.Ay.y)) (Ax.Ay.x)

— (Ax.Ay.y) = False

Exercise: evaluate And True False

—(IF x THEN y ELSE False) True False
—(IF True THEN False ELSE False) —False
Exercise: evaluate Or False True

—(IF x THEN True ELSE y) False True
—(IF False THEN True ELSE True) —True
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Lambda Calculus Encodings

Natural Numbers — Church Numerals

» Encoding of natural numbers

0 =Af.Ay.y

1 =Af.Ay.fy

2=AfAy.f(fy)

3=AfAy.f(f(fy)

Successor Succ = AzAf.Ay.f(zfy)
Succ 0 = (AzZAfAy.f(zfy))(Af.Ay.y)
= AfAy.f (Af.Ay.y) fy)

= AfAy.f ((Ay.y) y)

- AfAy.fy=1

vV VY VvV VvV VvV VvV VY VvYYyYy
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Lambda Calculus Encodings Eompienty”

Complexity
i Phil Mol
Natural Numbers — Operations il Molyneux

M269 Unit 7
» isZero = Az.z(Ay. False ) True

Adobe Connect
» Exercise: evaluate isZero 0 Computability

The Turing Machine
> If M and N are numerals (as A expressions) Tttt Egie

Examples

> Add MN = Ax.Ay.(Mx) (Nx) y) E-b'"é’tén.:’(y"yd

| 2 Mult MN = AX(M (Nx)) L;n:zj:‘iij‘lculus
. Lambda Terms

> Exercise: show 1 +1 =2 cambda Ter
Lambda Calculus
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Lambda Calculus Encodings Eompienty”

Complexity
Pairs Phil Molyneux
M269 Unit 7
» Encoding of a pair a, b A @
» (a,b) = Ax.IF x THEN a ELSE b i:?ﬁ?fnzbﬂgme
> FST = Af.f True T
» SND = Af.f False iol:é’tén.:’(y"vd
> Exercise: evaluate FST (a, b) Tothaton
> Exercise: evaluate SND (a, b) o
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Lambda Calculus Encodings

The Fixpoint Combinator

> Y =Af.(Ax.f (xx)) (Ax.f (xx))

> YF=Af.(Ax.f (xx)) (Ax.f (xx)) F

» — (Ax.F (xx))(Ax.F (xx))

» F((Ax.F(xx)) (Ax.F(xx))) =F(YF)

> (Y F) is a fixed point of F

> We can use Y to achieve recursion for F
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https://en.wikipedia.org/wiki/Fixed_point_(mathematics)

Lambda Calculus Encodings

The Fixpoint Combinator — Recursion

» Recursion implementation — Factorial
> Fact = Af.An.IFn=0THEN 1 ELSEn* (f(n—1))
» (Y Fact)1 = (Fact (Y Fact))1
» — |[F1=0THEN 1 ELSE 1 % ((Y Fact) 0)
» — 1 % ((Y Fact) 0)

» — 1 % (Fact (Y Fact) 0)
» -~ 1% IFO=0THEN 1 ELSE O % ((Y Fact) (0—1))
> - 1x%x1 -1

» Factorial n = (Y Fact) n

>

Recursion implemented with a non-recursive function Y

Computability,
Complexity

Phil Molyneux

M269 Unit 7
Adobe Connect

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Lambda Calculus
Motivation
Lambda Terms
Substitution
Lambda Calculus
Encodings

Complexity
Future Work

References

99/116



Computability
Turing Machines, Lambda Calculus and Programming Languages

» Anything computable can be represented as TM or
Lambda Calculus

» But programs would be slow, large and hard to read

> In practice use the ideas to create more expressive
languages which include built-in primitives

» Also leads to ideas on data types
» Polymorphic data types
> Algebraic data types

> Also leads on to ideas on higher order functions —

functions that take functions as arguments or returns

functions as results.
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Complexity

P and NP

>

P, the set of all decision problems that can be solved in
polynomial time on a deterministic Turing machine

NP, the set of all decision problems whose solutions can
be verified (certificate) in polynomial time

Equivalently, NP, the set of all decision problems that
can be solved in polynomial time on a non-deterministic
Turing machine
A decision problem, dp is NP-complete if

1. dpis in NP and

2. Every problem in NP is reducible to dp in polynomial time
NP-hard — a problem satisfying the second condition,
whether or not it satisfies the first condition. Class of
problems which are at least as hard as the hardest
problems in NP. NP-hard problems do not have to be in
NP and may not be decision problems
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Complexity

P and NP — Diagram

Euler diagram for P, NP, NP-complete and NP-hard set of

problems

NP-Hard

NP-Complete

P = NP

Complexity

NP-Hard

P=NP=
NP-Complete

P =NP

Source: Wikipedia NP-complete entry
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Complexity

NP-complete problems

>
>
>
>
>

Boolean satisfiability (SAT) Cook-Levin theorem
Conjunctive Normal Form 3SAT

Hamiltonian path problem

Travelling salesman problem

NP-complete — see list of problems
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Complexity

Knapsack Problem

MY HOBBY:
EMBEDDING NP-(OMPLETE PROBLEMS IN RESTAURANT ORDERS

L CHOTCHKIES ResTavRAWT Eggn{u':ﬁ%:;{ngg&vgg
| L EXACTLY? U ..

WHPFETPZERS e

MIXED FRUTT 2.15 HERE, THESE PAPERS ON THE KNAFSACK, )
PROBLEM MIGHT HELP YOU OUT.
FRENCH FRIES 275 LISTEN, T HAVE S OTHER
CIE SALAD 235 TABLES T0 GET T0 —
— A FAST AS POSSIRE, 0F (QURSE. WANT
HOT WINGS 2.55 SOMETHING ON TRAVELING SALESHAN? /

MOZZAREUA STICKS  4.20

g \.
S 2R

—— SANDWICHES ~—
_LQAPWﬂI e £ BT

Source & Explanation: XKCD 287
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NP-Completeness and Boolean Satisfiability

Points on Notes

>

The Boolean satisfiability problem (SAT) was the first
decision problem shown to be NP-Complete

This section gives a sketch of an explanation
Health Warning different texts have different notations
and there will be some inconsistency in these notes

Health warning these notes use some formal notation
to make the ideas more precise — computation requires
precise notation and is about manipulating strings
according to precise rules.
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NP-Completeness and Boolean Satisfiability
Alphabets, Strings and Languages

>
>
>

vVvyVvyYyeyswy

Notation:
3. is a set of symbols — the alphabet

>k is the set of all string of length k, which each symbol
from X

Example: if > = {0, 1}

> > ={0,1}
> >2 = {00,01,10,11}

>0 = {e} where € is the empty string

>* is the set of all possible strings over X
S*=30uxtux?u...

A Language, L, over X is a subset of >*
Lc>*
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Computability,

NP-Completeness and Boolean Satisfiability Compiexity
Language Accepted by a Turing Machine il CIEf e
M269 Unit 7
» Language accepted by Turing Machine, M denoted by Py —
I_(M) Computability
> L(M) is the set of strings w € X* accepted by M e
> For Final States F = {Y, N}, a string w € =* is accepted :::nvsvﬂ:::ab"'w
by M < (if and only if) M starting in go with w on the Refcs

tape halts in state Y

» Calculating a function (function problem) can be turned
into a decision problem by asking whether f(x) = y

107/116


http://en.wikipedia.org/wiki/Function_problem
http://en.wikipedia.org/wiki/Decision_problem

NP-Completeness and Boolean Satisfiability
The NP-Complete Class

> If we do not know if P += NP, what can we say ?
> A language L is NP-Complete if:

» | € NP and
» for all other L' € NP there is a polynomial time
transformation (Karp reducible, reduction) from L' to L

» Problem Py polynomially reduces (Karp reduces,
transforms) to P,, written Py o< P; or P <, Py, iff
3f : dpp, — dpp, such that

> VIedpp [l € Ye = fl) € Yp,]
> f can be computed in polynomial time
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NP-Completeness and Boolean Satisfiability
The NP-Complete Class (2)

>

vVvyVvYyywy

More formally, L; = =F polynomially transforms to
L = 35, written Ly o< Ly or Ly <, Ly, iff If : = — 33
such that

> Vxelflxely o f(x) € L]

> There is a polynomial time TM that computes f
Transitivity If Ly oc L, and Ly oc L3 then Ly oc L3
If Lis NP-Hard and L € P then P = NP
If Lis NP-Complete, then L € P if and only if P = NP

If Lo is NP-Complete and L € NP and Ly oc L then Lis
NP-Complete

Hence if we find one NP-Complete problem, it may
become easier to find more

In 1971/1973 Cook-Levin showed that the Boolean
satisfiability problem (SAT) is NP-Complete
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NP-Completeness and Boolean Satisfiability ey

The Boolean Satisfiability Problem AT

M269 Unit 7

> A propositional logic formula or Boolean expression is PP G
built from variables, operators: AND (conjunction, A), Computability
OR (disjunction, V), NOT (negation, —) Complexity

NP-Completeness and

> A formula is said to be satisfiable if it can be made True Boolean Satisfiabiiy
. . . Future Work
by some assignment to its variables.
> The Boolean Satisfiability Problem is, given a formula,
check if it is satisfiable.
> Instance: a finite set U of Boolean variables and a finite
set C of clauses over U
> Question: Is there a satisfying truth assignment for C ?

References

> A clause is is a disjunction of variables or negations of
variables

» Conjunctive normal form (CNF) is a conjunction of
clauses

> Any Boolean expression can be transformed to CNF
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NP-Completeness and Boolean Satisfiability
The Boolean Satisfiability Problem (2)

>
>

Given a set of Boolean variable U = {uy, uz,..., un}

A literal from U is either any u; or the negation of some
u; (written uj)

A clause is denoted as a subset of literals from U —
{uz,usg, us}

A clause is satisfied by an assignment to the variables if

at least one of the literals evaluates to True (just like
disjunction of the literals)

Let C be a set of clauses over U — C is satisfiable iff
there is some assignment of truth values to the
variables so that every clause is satisfied (just like CNF)

C={{u,uz,us3},{uz,u3}, {u>,u3}} is satisfiable
C={{um,ux}, {u,uz}, {u}} is not satisfiable
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NP-Completeness and Boolean Satisfiability
The Boolean Satisfiability Problem (3)

> Proof that SAT is NP-Complete looks at the structure of
NDTMs and shows you can transform any NDTM to SAT
in polynomial time (in fact logarithmic space suffices)

» SAT is in NP since you can check a solution in
polynomial time

» To show that VL € NP : L oc SAT invent a polynomial
time algorithm for each polynomial time NDTM, M,
which takes as input a string x and produces a Boolean
formula Ex which is satisfiable iff M accepts x

> See Cook-Levin theorem

Computability,
Complexity

Phil Molyneux

M269 Unit 7
Adobe Connect
Computability
Complexity
NP-Completeness and
Boolean Satisfiability

Future Work

References

112/116


http://en.wikipedia.org/wiki/Cook-Levin_theorem

NP-Completeness and Boolean Satisfiability

Coping with NP-Completeness

> What does it mean if a problem is NP-Complete ?
> There is a P time verification algorithm.
» There is a P time algorithm to solve it iff P = NP (?)
> No one has yet found a P time algorithm to solve any
NP-Complete problem
> So what do we do ?

» Improved exhaustive search — Dynamic Programming;
Branch and Bound

> Heuristic methods — acceptable solutions in acceptable

time — compromise on optimality

> Average time analysis — look for an algorithm with
good average time — compromise on generality (see
Big-O Algorithm Complexity Cheatsheet)

> Probabilistic or Randomized algorithms — compromise

on correctness

Computability,
Complexity

Phil Molyneux

M269 Unit 7
Adobe Connect
Computability
Complexity
NP-Completeness and
Boolean Satisfiability

Future Work

References

113/116


http://bigocheatsheet.com

Computability,

Future Work Complexty
Topics & Events D Celiymets
M269 Unit 7
> Sunday, 16 May 2021 online tutorial exam revision P Sy —
» Saturday, 22 May 2021 tutorial online, exam revision Computability
> Please email me with any requests for particular topics :::::::k
> Tuesday, 8 June 2021 exam References
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Web Sites Gl

Computability

> Logic

>

Phil Molyneux

M269 Unit 7

Adobe Connect

WFF, WFF’N Proof online Computability

> Com putability Complexity

>

VVYVVYVYVYVYYVYYVYY

vwyy

. Future Work
Computability References

Computable function Web Sites
Decidability (logic)

Turing Machines

Universal Turing Machine

Turing machine simulator

Lambda Calculus

Von Neumann Architecture

Turing Machine XKCD 205 Candy Button Paper

Turing Machine XKCD 505 A Bunch of Rocks

RIP John Conway Why can Conway’s Game of Life be
classified as a universal machine?

Phil Wadler Bright Club on Computability

Bridges: Theory of Computation: Halting Problem
Bridges: Theory of Computation: Other Non-computable
Problems
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Web Sites

Complexity

> Complexity

>

vVvyyvVYyYVvYyy

Complexity class

NP complexity

NP complete

Reduction (complexity)

P versus NP problem

Graph of NP-Complete Problems
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