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M269 Unit 7
Computability, Complexity Tutorial

ñ Welcome & Introductions
ñ Computability topics:

ñ Ideas of Computation and Algorithms
ñ Problem Reduction
ñ Turing Machines
ñ Undecidable, Semi-decidable and decidable problems
ñ Effective Computability: Turing machines, Lambda

Calculus, µ-recursive functions
ñ Optional topic Lambda Calculus introduction

ñ Complexity topics

ñ Exercises similar to CMAs and exam

ñ Key aim: Identify where people have problems and how
to overcome them.

ñ Adobe Connect — if you or I get cut off, wait till we
reconnect (or send you an email)

ñ Recording Meeting Record Meeting. . . 4

2/116



Computability,
Complexity

Phil Molyneux

M269 Unit 7

Adobe Connect

Computability

Complexity

Future Work

References

M269 Tutorial
Introductions — Me

ñ Name Phil Molyneux

ñ Background Physics and Maths, Operational Research,
Computer Science

ñ First programming languages Fortran, BASIC, Pascal
ñ Favourite Software

ñ Haskell — pure functional programming language
ñ Text editors TextMate, Sublime Text — previously Emacs
ñ Word processing and presentation slides in LATEX
ñ Mac OS X

ñ Learning style — I read the manual before using the
software (really)
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http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/BASIC
http://en.wikipedia.org/wiki/Pascal_(programming_language)
http://www.haskell.org/haskellwiki/Haskell
https://macromates.com
http://www.sublimetext.com
http://www.emacswiki.org
http://www.latex-project.org
https://developer.apple.com/devcenter/mac/index.action
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M269 Tutorial
Introductions — You

ñ Name ?

ñ Position in M269 ? Which part of which Units and/or
Reader have you read ?

ñ Particular topics you want to look at ?

ñ Learning Syle ?
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Adobe Connect
Interface — Student Quick Reference
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Adobe Connect
Settings

ñ Everybody: Audio Settings Meeting Audio Setup Wizard. . .

ñ Audio Menu bar Audio Microphone rights for Participants 4

ñ Do not Enable single speaker mode

ñ Drawing Tools Share pod menu bar Draw (1 slide/screen)

ñ Share pod menu bar Menu icon Enable Participants to draw 4 gray

ñ Meeting Preferences Whiteboard Enable Participants to draw 4

ñ Cancel hand tool . . . Do not enable green pointer. . .

ñ Meeting Preferences Attendees Pod 8 Raise Hand notification

ñ Meeting Preferences Display Name Display First & Last Name

ñ Cursor Meeting Preferences General tab Host Cursors

Show to all attendees 4 (default Off)

ñ Meeting Preferences Screen Share Cursor Show Application Cursor

ñ Webcam Menu bar Webcam Enable Webcam for Participants 4

ñ Recording Meeting Record Meeting. . . 4
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Adobe Connect
Access

ñ Tutor Access

TutorHome M269 Website Tutorials

Cluster Tutorials M269 Online tutorial room

Tutor Groups M269 Online tutor group room

Module-wide Tutorials M269 Online module-wide room

ñ Attendance

TutorHome Students View your tutorial timetables

ñ Beamer Slide Scaling 440% (422 x 563 mm)

ñ Clear Everyone’s Status

Attendee Pod Menu Clear Everyone’s Status

ñ Grant Access and send link via email

Meeting Manage Access & Entry Invite Participants. . .

ñ Presenter Only Area

Meeting Enable/Disable Presenter Only Area
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Adobe Connect
Keystroke Shortcuts

ñ Keyboard shortcuts in Adobe Connect

ñ Toggle Mic + M (Mac), Ctrl + M (Win) (On/Disconnect)

ñ Toggle Raise-Hand status + E

ñ Close dialog box (Mac), Esc (Win)

ñ End meeting + \
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Student View (default)
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Adobe Connect Interface
Sharing Screen & Applications

ñ Share My Screen Application tab Terminal for Terminal

ñ Share menu Change View Zoom in for mismatch of screen
size/resolution (Participants)

ñ (Presenter) Change to 75% and back to 100% (solves
participants with smaller screen image overlap)

ñ Leave the application on the original display

ñ Beware blued hatched rectangles — from other (hidden)
windows or contextual menus

ñ Presenter screen pointer affects viewer display —
beware of moving the pointer away from the application

ñ First time: System Preferences Security & Privacy Privacy

Accessibility
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https://en.wikipedia.org/wiki/Terminal_(macOS)
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Adobe Connect
Ending a Meeting

ñ Notes for the tutor only

ñ Student: Meeting Exit Adobe Connect

ñ Tutor:

ñ Recording Meeting Stop Recording 4

ñ Remove Participants Meeting End Meeting. . . 4

ñ Dialog box allows for message with default message:
ñ The host has ended this meeting. Thank you for

attending.

ñ Recording availability In course Web site for joining
the room, click on the eye icon in the list of recordings
under your recording — edit description and name

ñ Meeting Information Meeting Manage Meeting Information —
can access a range of information in Web page.

ñ Attendance Report see course Web site for joining
room

14/116



Computability,
Complexity

Phil Molyneux

M269 Unit 7

Adobe Connect
Student View

Settings

Student & Tutor Views

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Computability

Complexity

Future Work

References

Adobe Connect
Invite Attendees

ñ Provide Meeting URL Menu Meeting Manage Access & Entry

Invite Participants. . .

ñ Allow Access without Dialog Menu Meeting

Manage Meeting Information provides new browser window
with Meeting Information Tab bar Edit Information

ñ Check Anyone who has the URL for the meeting can
enter the room

ñ Default Only registered users and accepted guests may
enter the room

ñ Reverts to default next session but URL is fixed

ñ Guests have blue icon top, registered participants have
yellow icon top — same icon if URL is open

ñ See Start, attend, and manage Adobe Connect meetings
and sessions
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https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html
https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html


Computability,
Complexity

Phil Molyneux

M269 Unit 7

Adobe Connect
Student View

Settings

Student & Tutor Views

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Computability

Complexity

Future Work

References

Adobe Connect
Layouts

ñ Creating new layouts example Sharing layout

ñ Menu Layouts Create New Layout. . . Create a New Layout dialog

Create a new blank layout and name it PMolyMain

ñ New layout has no Pods but does have Layouts Bar open
(see Layouts menu)

ñ Pods

ñ Menu Pods Share Add New Share and resize/position —
initial name is Share n

ñ Rename Pod Menu Pods Manage Pods. . . Manage Pods

Select Rename or Double-click & rename

ñ Add Video pod and resize/reposition

ñ Add Attendance pod and resize/reposition

ñ Add Chat pod — name it PMolyChat — and
resize/reposition
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Adobe Connect
Layouts

ñ Dimensions of Sharing layout (on 27-inch iMac)
ñ Width of Video, Attendees, Chat column 14 cm
ñ Height of Video pod 9 cm
ñ Height of Attendees pod 12 cm
ñ Height of Chat pod 8 cm

ñ Duplicating Layouts does not give new instances of
the Pods and is probably not a good idea (apart from
local use to avoid delay in reloading Pods)
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Adobe Connect
Chat Pods

ñ Format Chat text

ñ Chat Pod menu icon My Chat Color

ñ Choices: Red, Orange, Green, Brown, Purple, Pink, Blue,
Black

ñ Note: Color reverts to Black if you switch layouts

ñ Chat Pod menu icon Show Timestamps
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Computability
Ideas of Computation

ñ The idea of an algorithm and what is effectively
computable

ñ Church-Turing thesis Every function that would
naturally be regarded as computable can be computed
by a deterministic Turing Machine. (Unit 7 Section 4)

ñ See Phil Wadler on computability theory performed as
part of the Bright Club at The Strand in Edinburgh,
Tuesday 28 April 2015
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http://wadler.blogspot.co.uk/2015/05/bright-club-computability.html
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Computability
Models of Computation

ñ In automata theory, a problem is the question of
deciding whether a given string is a member of some
particular language

ñ If Σ is an alphabet, and L is a language over Σ, that is
L ⊆ Σ∗, where Σ∗ is the set of all strings over the
alphabet Σ then we have a more formal definition of
decision problem

ñ Given a string w ∈ Σ∗, decide whether w ∈ L

ñ Example: Testing for a prime number — can be
expressed as the language Lp consisting of all binary
strings whose value as a binary number is a prime
number (only divisible by 1 or itself)

ñ See Hopcroft (2007, section 1.5.4)
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Automate Theory
Alphabets, Strings

ñ An Alphabet, Σ, is a finite, non-empty set of symbols.

ñ Binary alphabet Σ = {0,1}
ñ Lower case letters Σ = {a,b, . . . , z}
ñ A String is a finite sequence of symbols from some

alphabet

ñ 01101 is a string from the Binary alphabet Σ = {0,1}
ñ The Empty string, ε, contains no symbols

ñ Powers: Σk is the set of strings of length k with
symbols from Σ

ñ The set of all strings over an alphabet Σ is denoted Σ∗
ñ Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ . . .
ñ Question Does Σ0 = � ? (� is the empty set)
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Automata Theory
Languages

ñ An Language, L, is a subset of Σ∗
ñ The set of binary numerals whose value is a prime

{10,11,101,111,1011, . . . }
ñ The set of binary numerals whose value is a square

{100,1001,10000,11001, . . . }
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Computability
Church-Turing Thesis & Quantum Computing

ñ Church-Turing thesis Every function that would
naturally be regarded as computable can be computed
by a deterministic Turing Machine.

ñ physical Church-Turing thesis Any finite physical
system can be simulated (to any degree of
approximation) by a Universal Turing Machine.

ñ strong Church-Turing thesis Any finite physical
system can be simulated (to any degree of
approximation) with polynomial slowdown by a
Universal Turing Machine.

ñ Shor’s algorithm (1994) — quantum algorithm for
factoring integers — an NP problem that is not known
to be P — also not known to be NP-complete and we
have no proof that it is not in P

ñ Reference: Section 4 of Unit 6 & 7 Reader
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http://en.wikipedia.org/wiki/Shor's_algorithm
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Computability
Turing Machine

ñ Finite control which can be in any of a finite number of
states

ñ Tape divided into cells, each of which can hold one of a
finite number of symbols

ñ Initially, the input, which is a finite-length string of
symbols in the input alphabet, is placed on the tape

ñ All other tape cells (extending unbounded left and
right) hold a special symbol called blank

ñ A tape head which initially is over the leftmost input
symbol

ñ A move of the Turing Machine depends on the state
and the tape symbol scanned

ñ A move can change state, write a symbol in the current
cell, move left, right or stay

ñ References: Hopcroft (2007, page 326), Unit 6 & 7
Reader (section 5.3)
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Turing Machine Diagram
Turing Machine Diagram

. . . b b a a a a . . . I/O Tape

q0q1

q2

q3 . . .

qn

Finite Control

q1

Reading and Writing Head
(moves in both directions)
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Computability
Turing Machine notation

ñ Q finite set of states of the finite control

ñ Σ finite set of input symbols (M269 S)

ñ Γ complete set of tape symbols Σ ⊂ Γ
ñ δ Transition function (M269 instructions, I)
δ :: Q × Γ → Q × Γ × {L,R, S}
δ(q,X), (p,Y ,D)

ñ δ(q,X) takes a state, q and a tape symbol, X and
returns (p,Y ,D) where p is a state, Y is a tape symbol
to overwrite the current cell, D is a direction, Left, Right
or Stay

ñ q0 start state q0 ∈ Q

ñ B blank symbol B ∈ Γ and B ∉ Σ
ñ F set of final or accepting states F ⊆ Q
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Turing Machine Examples
Turing Machine Simulators

ñ Morphett’s Turing machine simulator — the examples
below are adapted from here

ñ Ugarte’s Turing machine simulator
ñ XKCD A Bunch of Rocks — XKCD Explanation

Image below (will need expanding to be readable)
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http://morphett.info/turing/turing.html
https://turingmachinesimulator.com/
https://xkcd.com/505/
https://www.explainxkcd.com/wiki/index.php/505:_A_Bunch_of_Rocks
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Turing Machine Examples
XKCD A Bunch of Rocks
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Turing Machine Examples
The Successor Function

ñ Input binary representation of numeral n

ñ Output binary representation of n+ 1

ñ Example 1010 , 1011 and 1011 , 1100

ñ Initial cell: leftmost symbol of n

ñ Strategy

ñ Stage A make the rightmost cell the current cell

ñ Stage B Add 1 to the current cell.

ñ If the current cell is 0 then replace it with 1 and go to
stage C

ñ If the current cell is 1 replace it with 0 and go to stage B
and move Left

ñ If the current cell is blank, replace it by 1 and go to
stage C

ñ Stage C Finish up by making the leftmost cell current
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Turing Machine Examples
The Successor Function (2)

ñ Represent the Turing Machine program as a list of
quintuples (q,X ,p,Y ,D)

ñ Stage A

(q0,0,q0,0,R)
(q0,1,q0,1,R)
(q0,B,q1,B, L)

ñ Stage B

(q1,0,q2,1, S)
(q1,1,q1,0, L)
(q1,B,q2,1, S)

ñ Stage C

(q2,0,q2,0, L)
(q2,1,q2,1, L)
(q2,B,qh,B,R)
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Turing Machine Examples
The Successor Function (2a)

ñ Exercise Translate the quintuples (q,X ,p,Y ,D) into
English and check they are the same as the specification

ñ Stage A make the rightmost cell the current cell

(q0,0,q0,0,R)
If state q0 and read symbol 0 then stay in state q0 write 0, move R

(q0,1,q0,1,R)
If state q0 and read symbol 1 then stay in state q0 write 1, move R

(q0,B,q1,B, L)
If state q0 and read symbol B then state q1 write B, move L
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Turing Machine Examples
The Successor Function (2b)

ñ Exercise Translate the quintuples (q,X ,p,Y ,D) into
English

ñ Stage B Add 1 to the current cell.

(q1,0,q2,1, S)
If state q1 and read symbol 0 then state q2 write 1, stay

(q1,1,q1,0, L)
If state q1 and read symbol 1 then state q1 write 0, move L

(q1,B,q2,1, S)
If state q1 and read symbol B then state q2 write 1, stay
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Turing Machine Examples
The Successor Function (2c)

ñ Exercise Translate the quintuples (q,X ,p,Y ,D) into
English

ñ Stage C Finish up by making the leftmost cell current

(q2,0,q2,0, L)
If state q2 and read symbol 0 then state q2 write 0, move L

(q2,1,q2,1, L)
If state q2 and read symbol 1 then state q2 write 0, move L

(q2,B,qh,B,R)
If state q2 and read symbol B then state qh write B, move R HALT

ñ Notice that the Turing Machine feels like a series of if
... then or case statements inside a while loop
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Turing Machine Examples
The Successor Function (3)

ñ Sample Evaluation 11 , 100

ñ Representation · · ·BX1X2 · · ·Xi−1qXiXi+1 · · ·XnB · · ·
q011

1q01

11q0B

1q11

q110

q1B00

q2100

q2B100

qh100

ñ Exercise evaluate 1011 , 1100
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Turing Machine Examples
Instantaneous Description

ñ Representation · · ·BX1X2 · · ·Xi−1qXiXi+1 · · ·XnB · · ·
ñ q is the state of the TM

ñ The head is scanning the symbol Xi

ñ Leading or trailing blanks B are (usually) not shown
unless the head is scanning them

ñ `M denotes one move of the TM M

ñ `∗M denotes zero or more moves

ñ ` will be used if the TM M is understood

ñ If (q,Xi ,p,Y , L) denotes a TM move then

X1 · · ·Xi−1qXi · · ·Xn `M X1 · · ·Xi−2pXi−1Y · · ·Xn

35/116



Computability,
Complexity

Phil Molyneux

M269 Unit 7

Adobe Connect

Computability
The Turing Machine

Turing Machine
Examples

The Successor Function

The Binary Palindrome
Function

Binary Addition
Example

Computability,
Decidability and
Algorithms

Lambda Calculus

Complexity

Future Work

References

Turing Machine Examples
The Binary Palindrome Function

ñ Input binary string s

ñ Output YES if palindrome, NO otherwise

ñ Example 1010 , NO and 1001 , YES

ñ Initial cell: leftmost symbol of s

ñ Strategy

ñ Stage A read the leftmost symbol

ñ If blank then accept it and go to stage D otherwise
erase it

ñ Stage B find the rightmost symbol

ñ If the current cell matches leftmost recently read then
erase it and go to stage C

ñ Otherwise reject it and go to stage E

ñ Stage C return to the leftmost symbol and stage A

ñ Stage D print YES and halt

ñ Stage E erase the remaining string and print NO
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Turing Machine Examples
The Binary Palindrome Function (2)

ñ Represent the Turing Machine program as a list of
quintuples (q,X ,p,Y ,D)

ñ Stage A read the leftmost symbol

(q0,0,q1o ,B,R)
(q0,1,q1i ,B,R)
(q0,B,q5,B, S)

ñ Stage B find rightmost symbol

(q1o ,B,q2o ,B, L)
(q1o ,∗,q1o ,∗,R) * is a wild card, matches anything

(q1i ,B,q2i ,B, L)
(q1i ,∗,q1i ,∗,R)
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Turing Machine Examples
The Binary Palindrome Function (3)

ñ Stage B check

(q2o ,0,q3,B, L)
(q2o ,B,q5,B, S)
(q2o ,∗,q6,∗, S)
(q2i ,1,q3,B, L)
(q2i ,B,q5,B, S)
(q2i ,∗,q6,∗, S)

ñ Stage C return to the leftmost symbol and stage A

(q3,B,q5,B, S)
(q3,∗,q4,∗, L)
(q4,B,q0,B,R)
(q4,∗,q4,∗, L)
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Turing Machine Examples
The Binary Palindrome Function (4)

ñ Stage D accept and print YES

(q5,∗,q5a ,Y ,R)
(q5a ,∗,q5b , E ,R)
(q5b ,∗,q7, S, S)

ñ Stage E erase the remaining string and print NO

(q6,B,q6a ,N,R)
(q6,∗,q6,B, L)
(q6a ,∗,q7,O, S)

ñ Finish

(q7,B,qh,B,R)
(q7,∗,q7,∗, L)
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Turing Machine Examples
The Binary Palindrome Function (4)

ñ Sample Evaluation 101 , YES

q0101 ` Bq1i 01 ` B0q1i 1 ` B01q1i B

` B0q2i 1

` Bq30B ` q4B0B

` Bq00B ` BBq1oB

` Bq2oBB

` Bq5BB ` Yq5aB ` YEq5bB ` YEq7S

` Yq7ES ` Bq7YES ` q7BYES ` qhYES

ñ Exercise Evaluate 110 , NO
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Turing Machine Examples
Binary Addition Example

ñ Input two binary numerals separated by a single space
n1 n2

ñ Output binary numeral which is the sum of the inputs

ñ Example 110110+ 101011 , 1100001

ñ Initial cell: leftmost symbol of n1 n2

ñ Insight look at the arithmetic algorithm

1 1 0 1 1 0
1 0 1 0 1 1

1 1 0 0 0 0 1

ñ Discussion how can we overwrite the first number with
the result and remember how far we have gone ?
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Turing Machine Examples
Binary Addition Example — Arithmetic Reinvented

1 1 0 1 1 0
1 0 1 0 1 1

1 1 0 1 1 y
1 0 1 0 1

1 1 1 0 x y
1 0 1 0

1 1 1 x x y
1 0 1

1 0 0 x x x y
1 0

1 0 x x x x y
1

1 y x x x x y

1 1 0 0 0 0 1
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Turing Machine Examples
Binary Addition Example (2)

ñ Input two binary numerals separated by a single space
n1 n2

ñ Output binary numeral which is the sum of the inputs
ñ Example 110110+ 101011 , 1100001
ñ Initial cell: leftmost symbol of n1 n2
ñ Strategy
ñ Stage A find the rightmost symbol

If the symbol is 0 erase and go to stage Bx

If the symbol is 1 erase go to stage By

If the symbol is blank go to stage F

dealing with each digit in n1

if no further digits in n1 go to final stage

ñ Stage Bx Move left to a blank go to stage Cx
ñ Stage By Move left to a blank go to stage Cy

moving to n1
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Turing Machine Examples
Binary Addition Example (3)

ñ Stage Cx Move left to find first 0, 1 or B

Turn 0 or B to X, turn 1 to Y and go to stage A

adding 0 to a digit finalises the result (no carry one)

ñ Stage Cy Move left to find first 0, 1 or B

Turn 0 or B to 1 and go to stage D

Turn 1 to 0, move left and go to stage Cy

dealing with the carry one in school arithmetic

ñ Stage D move right to X, Y or B and go to stage E

ñ Stage E replace 0 by X, 1 by Y, move right and go to
Stage A

finalising the value of a digit resulting from a carry

ñ Stage F move left and replace X by 0, Y by 1 and at B
halt
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Turing Machine Examples
Binary Addition Example (4)

ñ Represent the Turing Machine program as a list of
quintuples (q,X ,p,Y ,D)

ñ Stage A find the rightmost symbol

(q0,B,q1,B,R)
(q0,∗,q0,∗,R) * is a wild card, matches anything

(q1,B,q2,B, L)
(q1,∗,q1,∗,R)
(q2,0,q3x ,B, L)
(q2,1,q3y ,B, L)
(q2,B,q7,B, L)
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Turing Machine Examples
Binary Addition Example (5)

ñ Stage Bx move left to blank

(q3x ,B,q4x ,B, L)
(q3x ,∗,q3x ,∗, L)

ñ Stage By move left to blank

(q3y ,B,q4y ,B, L)
(q3y ,∗,q3y ,∗, L)

ñ Stage Cx move left to 0, 1, or blank

(q4x ,0,q0, x,R)
(q4x ,1,q0, y ,R)
(q4x ,B,q0, x,R)
(q4x ,∗,q4x ,∗, L)
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Turing Machine Examples
Binary Addition Example (6)

ñ Stage Cy move left to 0, 1, or blank

(q4y ,0,q5,1, S)
(q4y ,1,q4y ,0, L)
(q4y ,B,q5,1, S)
(q4y ,∗,q4y ,∗, L)

ñ Stage D move right to x, y or B

(q5, x,q6, x, L)
(q5, y ,q6, y , L)
(q5,B,q6,B, L)
(q5,∗,q5,∗,R)

ñ Stage E replace 0 by x, 1 by y

(q6,0,q0, x,R)
(q6,1,q0, y ,R)
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Turing Machine Examples
Binary Addition Example (7)

ñ Stage F replace x by 0, y by 1

(q7, x,q7,0, L)
(q7, y ,q7,1, L)
(q7,B,qh,B,R)
(q7,∗,q7,∗, L)

ñ Exercise Evaluate 11+ 10 , 101
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Turing Machine Examples
Binary Addition Example (7a)

ñ Exercise Evaluate 11+ 10 , 101
ñ Stage A find the rightmost symbol

BBq011B10B Note space symbols B at start and end

` BB1q01B10B

` BB11q0B10B

` BB11Bq110B

` BB11B1q10B

` BB11B10q1B

` BB11B1q20B

` BB11Bq3x 1BB
ñ Stage Bx move left to blank

` B11q3x B1BB
ñ Stage Cx move left to 0, 1, or blank

` BB1q4x 1B1BB

` BB1Yq0B1BB
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Turing Machine Examples
Binary Addition Example (7b)

ñ Exercise Evaluate 11+ 10 , 101 (contd)
ñ Stage A find the rightmost symbol
` BB1BYBq11BB
` BB1YB1q1BB
` BB1YBq21BB
` BB1Yq3y BBBB
ñ Stage Cy move left to 0, 1, or blank
` BB1q4y YBBBB
` BBq4y 1YBBBB
` Bq4y B0YBBBB
` Bq510YBBBB
ñ Stage D move right to x, y or B
` Bq50YBBBB
` B0q5YBBBB
` Bq60YBBBB
ñ Stage E replace 0 by x, 1 by y
` B1Xq0YBBBB
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Turing Machine Examples
Binary Addition Example (7c)

ñ Exercise Evaluate 11+ 10 , 101 (contd)

ñ Stage A find the rightmost symbol

` B1XYq0BBBB

` B1XYBq1BBB

` B1XYq2BBBB

` B1Xq7YBBBB

ñ Stage F replace x by 0, y by 1

` B1q7X1BBBB

` Bq7101BBBB

` Bq7B101BBBB

` Bqh101BBBB

ñ This is mimicking what you learnt to do on paper as a
child! Real step-by-step instructions

ñ See Morphett’s Turing machine simulator for more
examples (takes too long by hand!)
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Computability
Universal Turing Machine

ñ Universal Turing Machine, U, is a Turing Machine that
can simulate any arbitrary Turing machine, M

ñ Achieves this by encoding the transition function of M
in some standard way

ñ The input to U is the encoding for M followed by the
data for M

ñ See Turing machine examples
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Computability
Decidability

ñ Decidable — there is a TM that will halt with yes/no for
a decision problem — that is, given a string w over the
alphabet of P the TM with halt and return yes.no the
string is in the language P (same as recursive in
Recursion theory — old use of the word)

ñ Semi-decidable — there is a TM will halt with yes if
some string is in P but may loop forever on some inputs
(same as recursively enumerable) — Halting Problem

ñ Highly-undecidable — no outcome for any input —
Totality, Equivalence Problems
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Computability
Undecidable Problems

ñ Halting problem — the problem of deciding, given a
program and an input, whether the program will
eventually halt with that input, or will run forever —
term first used by Martin Davis 1952

ñ Entscheidungsproblem — the problem of deciding
whether a given statement is provable from the axioms
using the rules of logic — shown to be undecidable by
Turing (1936) by reduction from the Halting problem to
it

ñ Type inference and type checking in the second-order
lambda calculus (important for functional
programmers, Haskell, GHC implementation)

ñ Undecidable problem — see link to list
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Computability
Halting Problem — Sketch Proof (1)

ñ Halting problem — is there a program that can
determine if any arbitrary program will halt or continue
forever ?

ñ Assume we have such a program (Turing Machine)
h(f,x) that takes a program f and input x and
determines if it halts or not

h( f ,x )
= i f f (x ) runs forever

return True
else

return False

ñ We shall prove this cannot exist by contradiction
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Computability
Halting Problem — Sketch Proof (2)

ñ Now invent two further programs:

ñ q(f) that takes a program f and runs h with the input
to f being a copy of f

ñ r(f) that runs q(f) and halts if q(f) returns True,
otherwise it loops

q( f )
= h( f , f )

r ( f )
= i f q( f )

return
else

while True : continue

ñ What happens if we run r(r) ?

ñ If it loops, q(r) returns True and it does not loop —
contradiction.
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Computability
Why undecidable problems must exist

ñ A problem is really membership of a string in some
language

ñ The number of different languages over any alphabet of
more than one symbol is uncountable

ñ Programs are finite strings over a finite alphabet (ASCII
or Unicode) and hence countable.

ñ There must be an infinity (big) of problems more than
programs.

ñ Computational problem — defined by a function

ñ Computational problem is computable if there is a
Turing machine that will calculate the function.

57/116



Computability,
Complexity

Phil Molyneux

M269 Unit 7

Adobe Connect

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Lambda Calculus

Complexity

Future Work

References

Computability
Computability and Terminology (1)

ñ The idea of an algorithm dates back 3000 years to
Euclid, Babylonians. . .

ñ In the 1930s the idea was made more formal: which
functions are computable?

ñ A function is a set of pairs
f = {(x, f (x)) : x ∈ X ∧ f (x) ∈ Y} with the function
property

ñ Function property: (a,b) ∈ f ∧ (a, c) ∈ f ⇒ b == c

ñ Function property: Same input implies same output

ñ Note that maths notation is deeply inconsistent here —
see Function and History of the function concept

ñ What do we mean by computing a function — an
algorithm ?
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Functions
Relation and Rule

ñ The idea of function as a set of pairs (Binary relation)
with the function property (each element of the domain
has at most one element in the co-domain) is fairly
recent — see History of the function concept

ñ School maths presents us with function as rule to get
from the input to the output

ñ Example: the square function: square x = x × x

ñ But lots of rules (or algorithms) can implement the
same function

ñ square1 x = x^2

ñ square2 x =

x times︷ ︸︸ ︷
x + · · · + x if x is integer
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Computability
Computability and Terminology (2)

ñ In the 1930s three definitions:

ñ λ-Calculus, simple semantics for computation — Alonzo
Church

ñ General recursive functions — Kurt Gödel

ñ Universal (Turing) machine — Alan Turing
ñ Terminology:

ñ Recursive, recursively enumerable — Church, Kleene
ñ Computable, computably enumerable — Gödel, Turing
ñ Decidable, semi-decidable, highly undecidable
ñ In the 1930s, computers were human
ñ Unfortunate choice of terminology

ñ Turing and Church showed that the above three were
equivalent

ñ Church-Turing thesis — function is intuitively
computable if and only if Turing machine computable
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Computability
Reducing one problem to another

ñ To reduce problem P1 to P2, invent a construction that
converts instances of P1 to P2 that have the same
answer. That is:
ñ any string in the language P1 is converted to some string

in the language P2
ñ any string over the alphabet of P1 that is not in the

language of P1 is converted to a string that is not in the
language P2

ñ With this construction we can solve P1

ñ Given an instance of P1, that is, given a string w that
may be in the language P1, apply the construction
algorithm to produce a string x

ñ Test whether x is in P2 and give the same answer for w
in P1
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Computability
Problem Reduction

ñ Problem Reduction — Ordinary Example

ñ Want to phone Alice but don’t have her number

ñ You know that Bill has her number

ñ So reduce the problem of finding Alice’s number to the
problem of getting hold of Bill
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Computability
Direction of Reduction

ñ The direction of reduction is important

ñ If we can reduce P1 to P2 then (in some sense) P2 is at
least as hard as P1 (since a solution to P2 will give us a
solution to P1)

ñ So, if P2 is decidable then P1 is decidable

ñ To show a problem is undecidable we have to reduce
from an known undecidable problem to it

ñ ∀x(dpP1
(x) = dpP2

(reduce(x)))
ñ Since, if P1 is undecidable then P2 is undecidable
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Reductions & Non-Computable
Reductions

A1

input outputf A2
f (input)

ñ A reduction of problem P1 to problem P2

ñ transforms inputs to P1 into inputs to P2
ñ runs algorithm A2 (which solves P2) and
ñ interprets the outputs from A2 as answers to P1

ñ More formally: A problem P1 is reducible to a problem
P2 if there is a function f that takes any input x to P1

and transforms it to an input f (x) of P2

such that the solution of P2 on f (x) is the solution of P1

on x
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Reductions & Non-Computible
Example: Squaring a Matrix

A1

M M2f A2
(M,M)

ñ Given an algorithm (A2) for matrix multiplication (P2)
ñ Input: pair of matrices, (M1,M2)
ñ Output: matrix result of multiplying M1 and M2

ñ P1 is the problem of squaring a matrix
ñ Input: matrix M
ñ Output: matrix M2

ñ Algorithm A1 has

f (M) = (M,M)
uses A2 to calculate M ×M = M2

65/116



Computability,
Complexity

Phil Molyneux

M269 Unit 7

Adobe Connect

Computability
The Turing Machine

Turing Machine
Examples

Computability,
Decidability and
Algorithms

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Lambda Calculus

Complexity

Future Work

References

Reductions & Non-Computable
Non-Computable Problems

A1

input outputf A2
f (input)

ñ If P2 is computable (A2 exists) then P1 is computable (f
being simple or polynomial)

ñ Equivalently If P1 is non-computable then P2 is
non-computable

ñ Exercise: show B → A ≡ ¬A→ ¬B
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Reductions & Non-Computable
Contrapositive

ñ Proof by Contrapositive

ñ B → A ≡ ¬B ∨ A by truth table or equivalences

≡ ¬(¬A)∨¬B commutativity and negation laws

≡ ¬A→ ¬B equivalences

ñ Common error: switching the order round
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Reductions & Non-Computable
Totality Problem

HP

(P, x) YES/NOf TP
Q

ñ Totality Problem
ñ Input: program Q
ñ Output: YES if Q terminates for all inputs else NO

ñ Assume we have algorithm TP to solve the Totality
Problem

ñ Now reduce the Halting Problem to the Totality Problem
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Reductions & Non-Computable
Totality Problem

HP

(P, x) YES/NOf TP
Q

ñ Define f to transform inputs to HP to TP pseudo-Python

def f(P,x) :
def Q(y):
# ignore y
P(x)

return Q

ñ Run TP on Q
ñ If TP returns YES then P halts on x
ñ If TP returns NO then P does not halt on x

ñ We have solved the Halting Problem — contradiction
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Reductions & Non-Computable
Negative Value Problem

HP

(P, x) YES/NOf NVP
(Q, v)

ñ Negative Value Problem
ñ Input: program Q which has no input and variable v

used in Q
ñ Output: YES if v ever gets assigned a negative value else

NO

ñ Assume we have algorithm NVP to solve the Negative
Value Problem

ñ Now reduce the Halting Problem to the Negative Value
Problem
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Reductions & Non-Computable
Negative Value Problem

HP

(P, x) YES/NOf NVP
(Q, v)

ñ Define f to transform inputs to HP to NVP pseudo-Python

def f(P,x) :
def Q(y):
# ignore y
P(x)
v = -1

return (Q,var(v))

ñ Run NVP on (Q, var(v)) var(v) gets the variable name

ñ If NVP returns YES then P halts on x
ñ If NVP returns NO then P does not halt on x

ñ We have solved the Halting Problem — contradiction
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Reductions & Non-Computable
Squaring Function Problem

HP

(P, x) YES/NOf SFP
Q

ñ Squaring Function Problem
ñ Input: program Q which takes an integer, y
ñ Output: YES if Q always returns the square of y else NO

ñ Assume we have algorithm SFP to solve the Squaring
Function Problem

ñ Now reduce the Halting Problem to the Squaring
Function Problem
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Reductions & Non-Computable
Squaring Function Problem

HP

(P, x) YES/NOf SFP
Q

ñ Define f to transform inputs to HP to SFP pseudo-Python

def f(P,x) :
def Q(y):
P(x)
return y * y

return Q

ñ Run SFP on Q
ñ If SFP returns YES then P halts on x
ñ If SFP returns NO then P does not halt on x

ñ We have solved the Halting Problem — contradiction
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Reductions & Non-Computable
Equivalence Problem

HP

P YES/NOf EP
(P1,P2)

ñ Equivalence Problem
ñ Input: two programs P1 and P2
ñ Output: YES if P1 and P2 solve the ame problem (same

output for same input) else NO

ñ Assume we have algorithm EP to solve the Equivalence
Problem

ñ Now reduce the Totality Problem to the Equivalence
Problem
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Reductions & Non-Computable
Equivalence Problem

TP

P YES/NOf EP
(P1,P2)

ñ Define f to transform inputs to TP to EP pseudo-Python

def f(P) :
def P1(x):
P(x)
return "Same string"

def P2(x)
return "Same string"

return (P1,P2)

ñ Run EP on (P1,P2)
ñ If EP returns YES then P halts on all inputs
ñ If EP returns NO then P does not halt on all inputs

ñ We have solved the Totality Problem — contradiction
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Reductions & Non-Computable
Rice’s Theorem

A1

input outputf A2
f (input)

ñ Rice’s Theorem all non-trivial, semantic properties of
programs are undecidable. H G Rice 1951 PhD Thesis

ñ Equivalently: For any non-trivial property of partial
functions, no general and effective method can decide
whether an algorithm computes a partial function with
that property.

ñ A property of partial functions is called trivial if it holds
for all partial computable functions or for none.
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Reductions & Non-Computable
Rice’s Theorem

ñ Rice’s Theorem and computability theory
ñ Let S be a set of languages that is nontrivial, meaning

ñ there exists a Turing machine that recognizes a
language in S

ñ there exists a Turing machine that recognizes a
language not in S

ñ Then, it is undecidable to determine whether the
language recognized by an arbitrary Turing machine
lies in S.

ñ This has implications for compilers and virus checkers

ñ Note that Rice’s theorem does not say anything about
those properties of machines or programs that are not
also properties of functions and languages.

ñ For example, whether a machine runs for more than
100 steps on some input is a decidable property, even
though it is non-trivial.
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Lambda Calculus
Motivation

ñ Lambda Calculus is a formal system in mathematical
logic for expressing computation based on function
abstraction and application using variable binding and
substitution

ñ Lambda calculus is Turing complete — it can simulate
any Turing machine

ñ Introduced by Alonzo Church in 1930s

ñ Basis of functional programming languages — Lisp,
Scheme, ISWIM, ML, SASL, KRC, Miranda, Haskell, Scala,
F#. . .

ñ Note this is not part of M269 but may help understand
ideas of computability
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Functions
Binding and Substitution

ñ School maths introduces functions as

f (x) = 3x2 + 4x + 5

ñ Substitution: f (2) = 3× 22 + 4× 2+ 5 = 25

ñ Generalise: f (x) = ax2 + bx + c

ñ What is wrong with the following:

ñ f (a) = a× a2 + b × a+ c

ñ The ideas of free and bound variables and substitution

ñ Evaluating an expression — how many ways can you
evaluate (3+ 7)2

ñ Answer: 3 ways (Bird, 1998, Ex 1.2.2, page 6)

ñ Ways of evaluating
(
(3+ 7)2

)2

ñ Answer: 547 ways (Bird and Wadler, 1988, Ex 1.2.1,
page 6)
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Lambda Calculus
Optional Topic

ñ M269 Unit 6/7 Reader Logic and the Limits of
Computation alludes to other formalisations with equal
power to a Turing Machine (pages 81 and 87)

ñ The Reader mentions Alonzo Church and his 1930s
formalism (page 87, but does not give any detail)

ñ The notes in this section are optional and for
comparison with the Turing Machine material

ñ Turing machine: explicit memory, state and implicit
loop and case/if statement

ñ Lambda Calculus: function definition and application,
explicit rules for evaluation (and transformation) of
expressions, explicit rules for substitution (for function
application)

ñ Lambda calculus reduction workbench
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Lambda Calculus
Lambda Terms

ñ A variable, x, is a lambda term

ñ If M is a lambda term and x is a variable, then (λx.M) is
a lambda term — a lambda abstraction or function
definition

ñ If M and N are lambda terms, the (M N) is lambda term
— an application

ñ Nothing else is a lambda term
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Lambda Calculus
Lambda Terms — Notational Conveniences

ñ Outermost parentheses are omitted (M N) ≡ M N

ñ Application is left associative ((M N) P) ≡ M N P

ñ The body of an abstraction extends as far right as
possible, subject to scope limited by parentheses

ñ λx.M N ≡ λx.(M N) and not (λx.M) N

ñ λx.λy .λz.M ≡ λx y z.M
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Lambda Calculus
Lambda Calculus Semantics

ñ What do we mean by evaluating an expression ?

ñ To evaluate (λx.M)N
ñ Evaluate M with x replaced by N

ñ This rule is called β-reduction

ñ (λx.M)N →
β

M[x := N]

ñ M[x := N] is M with occurrences of x replaced by N

ñ This operation is called substitution — see rules below
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Lambda Calculus
β-Reduction Examples

ñ (λx.x)z → z

ñ (λx.y)z → y

ñ (λx.x y)z → z y

a function that applies its argument to y

ñ (λx.x y)(λz.z)→ (λz.z)y → y

ñ (λx.λy .x y)z → λy .z y

A curried function of two arguments — applies first
argument to second

ñ currying replaces f (x, y) with (f x)y — nice notational
convenience — gives partial application for free
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Lambda Calculus
Substitution

ñ To define substitution use recursion on the structure of
terms

ñ x[x := N] ≡ N

ñ y[x := N] ≡ y

ñ (P Q)[x := N] ≡ (P[x := N]) (Q[x := N])
ñ (λx.M)[x := N] = λx.M

In (λx.M), the x is a formal parameter and thus a local
variable, different to any other

ñ (λy .M)[x := N] = what?

ñ Look back at the school maths example above — a
subtle point
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Lambda Calculus
Substitution (2)

ñ Renaming bound variables consistently is allowed

ñ λx.x ≡ λy .y ≡ λz.z
ñ λy .λx.y ≡ λz.λx.z
ñ This is called α-conversion

ñ (λx.λy .x y) y → (λx.λz.x z) y → λz.y z
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Lambda Calculus
Substitution (3)

ñ Bound and Free Variables

ñ BV(x) = �
ñ BV(λx.M) = BV(M)∪ {x}
ñ BV(M N) = BV(M)∪ BV(N)
ñ FV(x) = {x}
ñ FV(λx.M) = FV(M)− {x}
ñ FV(M N) = FV(M)∪ FV(N)
ñ The above is a formalisation of school maths

ñ A Lambda term with no free variables is said to be
closed — such terms are also called combinators — see
Combinator and Combinatory logic (Hankin, 2004,
page 10)

ñ α-conversion

ñ λx.M →
α
λy .M[x := y] if y ∉ FV(M)
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Lambda Calculus
Substitution (4)

ñ β-reduction final rule

ñ (λy .M)[x := N] = λy .M if x ∉ FV(M)
ñ (λy .M)[x := N] = λy .M[x := N]

if x ∈ FV(M) and y ∉ FV(N)
ñ (λy .M)[x := N] = λz.M[y := z][x := N]

if x ∈ FV(M) and y ∈ FV(N)
z is chosen to be first variable z ∉ FV(N M)

ñ This is why you cannot go f (a) when given

ñ f (x) = ax2 + bx + c

ñ School maths — but made formal
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Lambda Calculus
Rules Summary — Conversion

ñ α-conversion renaming bound variables

ñ λx.M →
α
λy .M[x := y] if y ∉ FV(M)

ñ β-conversion function application

ñ (λx.M)N →
β

M[x := N]

ñ η-conversion extensionality

ñ λx.F x →
η

F if x ∉ FV(F)
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Lambda Calculus
Rules Summary — Substitution

1. x[x := N] ≡ N

2. y[x := N] ≡ y

3. (P Q)[x := N] ≡ (P[x := N]) (Q[x := N])
4. (λx.M)[x := N] = λx.M
5. (λy .M)[x := N] = λy .M if x ∉ FV(M)
6. (λy .M)[x := N] = λy .M[x := N]

if x ∈ FV(M) and y ∉ FV(N)
7. (λy .M)[x := N] = λz.M[y := z][x := N]

if x ∈ FV(M) and y ∈ FV(N)
z is chosen to be first variable z ∉ FV(N M)
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Lambda Calculus
Lambda Calculus Encodings

ñ So what does this formalism get us ?

ñ The Lambda Calculus is Turing complete

ñ We can encode any computation (if we are clever
enough)

ñ Booleans and propositional logic

ñ Pairs

ñ Natural numbers and arithmetic

ñ Looping and recursion
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Lambda Calculus Encodings
Booleans and Propositional Logic

ñ True = λx.λy .x
ñ False = λx.λy .y
ñ IF a THEN b ELSE c ≡ a b c

ñ IF True THEN b ELSE c → (λx.λy .x)b c

ñ → (λy .b) c → b

ñ IF False THEN b ELSE c → (λx.λy .y)b c

ñ → (λy .y) c → c
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Lambda Calculus Encodings
Booleans and Propositional Logic (2)

ñ Not = λx.((x False)True)
ñ Not x = IF x THEN False ELSE True

ñ Exercise: evaluate Not True

ñ And = λx.λy .((x y) False)
ñ And x y = IF x THEN y ELSE False

ñ Exercise: evaluate And True False

ñ Or = λx.λy .((x True ) y)
ñ Or x y = IF x THEN True ELSE y

ñ Exercise: evaluate Or False True
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Lambda Calculus Encodings
Booleans and Propositional Logic (2) — Exercises

ñ Exercise: evaluate Not True

ñ → (λx.((x False) True)) True

ñ → (True False) True

ñ Could go straight to False from here, but we shall fill in
the detail

ñ → ((λx.λy .x) (λx.λy .y)) (λx.λy .x)
ñ → (λy .(λx.λy .y)) (λx.λy .x)
ñ → (λx.λy .y) ≡ False

ñ Exercise: evaluate And True False

ñ →(IF x THEN y ELSE False) True False

ñ →(IF True THEN False ELSE False) →False

ñ Exercise: evaluate Or False True

ñ →(IF x THEN True ELSE y) False True

ñ →(IF False THEN True ELSE True) →True
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Lambda Calculus Encodings
Natural Numbers — Church Numerals

ñ Encoding of natural numbers

ñ 0 = λf .λy .y
ñ 1 = λf .λy .f y

ñ 2 = λf .λy .f (f y)
ñ 3 = λf .λy .f (f (f y))
ñ Successor Succ = λz.λf .λy .f (z f y)
ñ Succ 0 = (λz.λf .λy .f (z f y))(λf .λy .y)
ñ → λf .λy .f ((λf .λy .y) f y)
ñ → λf .λy .f ((λy .y) y)
ñ → λf .λy .f y = 1
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Lambda Calculus Encodings
Natural Numbers — Operations

ñ isZero = λz.z(λy . False ) True

ñ Exercise: evaluate isZero 0

ñ If M and N are numerals (as λ expressions)

ñ Add M N = λx.λy .(M x) ((N x) y)
ñ Mult M N = λx.(M (N x))
ñ Exercise: show 1+ 1 = 2
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Lambda Calculus Encodings
Pairs

ñ Encoding of a pair a, b

ñ (a,b) = λx. IF x THEN a ELSE b

ñ FST = λf .f True

ñ SND = λf .f False

ñ Exercise: evaluate FST (a,b)
ñ Exercise: evaluate SND (a,b)
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Lambda Calculus Encodings
The Fixpoint Combinator

ñ Y = λf .(λx.f (x x)) (λx.f (x x))
ñ Y F = λf .(λx.f (x x)) (λx.f (x x)) F

ñ → (λx.F (x x))(λx.F (x x))
ñ F((λx.F (x x)) (λx.F (x x))) = F (Y F)
ñ (Y F) is a fixed point of F

ñ We can use Y to achieve recursion for F
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Lambda Calculus Encodings
The Fixpoint Combinator — Recursion

ñ Recursion implementation — Factorial

ñ Fact = λf .λn. IF n = 0 THEN 1 ELSE n∗ (f (n− 1))
ñ (Y Fact)1 = (Fact (Y Fact))1
ñ → IF 1 = 0 THEN 1 ELSE 1∗ ((Y Fact)0)
ñ → 1∗ ((Y Fact)0)
ñ → 1∗ (Fact (Y Fact)0)
ñ → 1∗ IF 0 = 0 THEN 1 ELSE 0∗ ((Y Fact) (0− 1))
ñ → 1∗ 1→ 1

ñ Factorial n = (Y Fact) n

ñ Recursion implemented with a non-recursive function Y
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Computability
Turing Machines, Lambda Calculus and Programming Languages

ñ Anything computable can be represented as TM or
Lambda Calculus

ñ But programs would be slow, large and hard to read

ñ In practice use the ideas to create more expressive
languages which include built-in primitives

ñ Also leads to ideas on data types

ñ Polymorphic data types

ñ Algebraic data types

ñ Also leads on to ideas on higher order functions —
functions that take functions as arguments or returns
functions as results.
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Complexity
P and NP

ñ P, the set of all decision problems that can be solved in
polynomial time on a deterministic Turing machine

ñ NP, the set of all decision problems whose solutions can
be verified (certificate) in polynomial time

ñ Equivalently, NP, the set of all decision problems that
can be solved in polynomial time on a non-deterministic
Turing machine

ñ A decision problem, dp is NP-complete if
1. dp is in NP and
2. Every problem in NP is reducible to dp in polynomial time

ñ NP-hard — a problem satisfying the second condition,
whether or not it satisfies the first condition. Class of
problems which are at least as hard as the hardest
problems in NP. NP-hard problems do not have to be in
NP and may not be decision problems
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P and NP — Diagram

Euler diagram for P, NP, NP-complete and NP-hard set of
problems

Source: Wikipedia NP-complete entry
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Complexity
NP-complete problems

ñ Boolean satisfiability (SAT) Cook-Levin theorem

ñ Conjunctive Normal Form 3SAT

ñ Hamiltonian path problem

ñ Travelling salesman problem

ñ NP-complete — see list of problems
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Complexity
Knapsack Problem

Source & Explanation: XKCD 287
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NP-Completeness and Boolean Satisfiability
Points on Notes

ñ The Boolean satisfiability problem (SAT) was the first
decision problem shown to be NP-Complete

ñ This section gives a sketch of an explanation

ñ Health Warning different texts have different notations
and there will be some inconsistency in these notes

ñ Health warning these notes use some formal notation
to make the ideas more precise — computation requires
precise notation and is about manipulating strings
according to precise rules.
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NP-Completeness and Boolean Satisfiability
Alphabets, Strings and Languages

ñ Notation:

ñ Σ is a set of symbols — the alphabet

ñ Σk is the set of all string of length k, which each symbol
from Σ

ñ Example: if Σ = {0,1}
ñ Σ1 = {0,1}
ñ Σ2 = {00,01,10,11}

ñ Σ0 = {ε} where ε is the empty string

ñ Σ∗ is the set of all possible strings over Σ
ñ Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ . . .
ñ A Language, L, over Σ is a subset of Σ∗
ñ L ⊆ Σ∗
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NP-Completeness and Boolean Satisfiability
Language Accepted by a Turing Machine

ñ Language accepted by Turing Machine, M denoted by
L(M)

ñ L(M) is the set of strings w ∈ Σ∗ accepted by M

ñ For Final States F = {Y ,N}, a string w ∈ Σ∗ is accepted
by M a (if and only if) M starting in q0 with w on the
tape halts in state Y

ñ Calculating a function (function problem) can be turned
into a decision problem by asking whether f (x) = y
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NP-Completeness and Boolean Satisfiability
The NP-Complete Class

ñ If we do not know if P ≠ NP, what can we say ?

ñ A language L is NP-Complete if:
ñ L ∈ NP and
ñ for all other L′ ∈ NP there is a polynomial time

transformation (Karp reducible, reduction) from L′ to L

ñ Problem P1 polynomially reduces (Karp reduces,
transforms) to P2, written P1 ∝ P2 or P1 ≤p P2, iff
∃f : dpP1

→ dpP2
such that

ñ ∀I ∈ dpP1
[I ∈ YP1 a f (I) ∈ YP2]

ñ f can be computed in polynomial time
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NP-Completeness and Boolean Satisfiability
The NP-Complete Class (2)

ñ More formally, L1 ⊆ Σ∗1 polynomially transforms to
L2 ⊆ Σ∗2 , written L1 ∝ L2 or L1 ≤p L2, iff ∃f : Σ∗1 → Σ∗2
such that
ñ ∀x ∈ Σ∗1 [x ∈ L1 a f (x) ∈ L2]
ñ There is a polynomial time TM that computes f

ñ Transitivity If L1 ∝ L2 and L2 ∝ L3 then L1 ∝ L3

ñ If L is NP-Hard and L ∈ P then P = NP

ñ If L is NP-Complete, then L ∈ P if and only if P = NP

ñ If L0 is NP-Complete and L ∈ NP and L0 ∝ L then L is
NP-Complete

ñ Hence if we find one NP-Complete problem, it may
become easier to find more

ñ In 1971/1973 Cook-Levin showed that the Boolean
satisfiability problem (SAT) is NP-Complete
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NP-Completeness and Boolean Satisfiability
The Boolean Satisfiability Problem

ñ A propositional logic formula or Boolean expression is
built from variables, operators: AND (conjunction, ∧),
OR (disjunction, ∨), NOT (negation, ¬)

ñ A formula is said to be satisfiable if it can be made True
by some assignment to its variables.

ñ The Boolean Satisfiability Problem is, given a formula,
check if it is satisfiable.
ñ Instance: a finite set U of Boolean variables and a finite

set C of clauses over U
ñ Question: Is there a satisfying truth assignment for C ?

ñ A clause is is a disjunction of variables or negations of
variables

ñ Conjunctive normal form (CNF) is a conjunction of
clauses

ñ Any Boolean expression can be transformed to CNF
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NP-Completeness and Boolean Satisfiability
The Boolean Satisfiability Problem (2)

ñ Given a set of Boolean variable U = {u1,u2, . . . ,un}
ñ A literal from U is either any ui or the negation of some

ui (written ui)

ñ A clause is denoted as a subset of literals from U —
{u2,u4,u5}

ñ A clause is satisfied by an assignment to the variables if
at least one of the literals evaluates to True (just like
disjunction of the literals)

ñ Let C be a set of clauses over U — C is satisfiable iff
there is some assignment of truth values to the
variables so that every clause is satisfied (just like CNF)

ñ C = {{u1,u2,u3}, {u2,u3}, {u2,u3}} is satisfiable

ñ C = {{u1,u2}, {u1,u2}, {u1}} is not satisfiable
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NP-Completeness and Boolean Satisfiability
The Boolean Satisfiability Problem (3)

ñ Proof that SAT is NP-Complete looks at the structure of
NDTMs and shows you can transform any NDTM to SAT
in polynomial time (in fact logarithmic space suffices)

ñ SAT is in NP since you can check a solution in
polynomial time

ñ To show that ∀L ∈ NP : L∝ SAT invent a polynomial
time algorithm for each polynomial time NDTM, M,
which takes as input a string x and produces a Boolean
formula Ex which is satisfiable iff M accepts x

ñ See Cook-Levin theorem
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NP-Completeness and Boolean Satisfiability
Coping with NP-Completeness

ñ What does it mean if a problem is NP-Complete ?
ñ There is a P time verification algorithm.
ñ There is a P time algorithm to solve it iff P = NP (?)
ñ No one has yet found a P time algorithm to solve any

NP-Complete problem
ñ So what do we do ?

ñ Improved exhaustive search — Dynamic Programming;
Branch and Bound

ñ Heuristic methods — acceptable solutions in acceptable
time — compromise on optimality

ñ Average time analysis — look for an algorithm with
good average time — compromise on generality (see
Big-O Algorithm Complexity Cheatsheet)

ñ Probabilistic or Randomized algorithms — compromise
on correctness
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Future Work
Topics & Events

ñ Sunday, 16 May 2021 online tutorial exam revision

ñ Saturday, 22 May 2021 tutorial online, exam revision

ñ Please email me with any requests for particular topics

ñ Tuesday, 8 June 2021 exam
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Web Sites
Computability

ñ Logic
ñ WFF, WFF’N Proof online

ñ Computability
ñ Computability
ñ Computable function
ñ Decidability (logic)
ñ Turing Machines
ñ Universal Turing Machine
ñ Turing machine simulator
ñ Lambda Calculus
ñ Von Neumann Architecture
ñ Turing Machine XKCD 205 Candy Button Paper
ñ Turing Machine XKCD 505 A Bunch of Rocks
ñ RIP John Conway Why can Conway’s Game of Life be

classified as a universal machine?
ñ Phil Wadler Bright Club on Computability
ñ Bridges: Theory of Computation: Halting Problem
ñ Bridges: Theory of Computation: Other Non-computable

Problems
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Complexity

ñ Complexity
ñ Complexity class
ñ NP complexity
ñ NP complete
ñ Reduction (complexity)
ñ P versus NP problem
ñ Graph of NP-Complete Problems
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http://en.wikipedia.org/wiki/Complexity_class
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