
Computability, Complexity

M269 Unit 7

Contents

1 M269 Unit 7 1

2 Adobe Connect 3
2.1 Student View . 3
2.2 Settings . 4
2.3 Student & Tutor Views . 6
2.4 Sharing Screen & Applications . 8
2.5 Ending a Meeting . 8
2.6 Invite Attendees . 8
2.7 Layouts . 9
2.8 Chat Pods . 9

3 Computability 9
3.1 The Turing Machine . 11
3.2 Turing Machine Examples . 12

3.2.1 The Successor Function . 14
3.2.2 The Binary Palindrome Function . 16
3.2.3 Binary Addition Example . 18

3.3 Computability, Decidability and Algorithms . 22
3.3.1 Non-Computability — Halting Problem 22
3.3.2 Reductions & Non-Computability . 24

3.4 Lambda Calculus . 30
3.4.1 Motivation . 30
3.4.2 Lambda Terms . 31
3.4.3 Substitution . 32
3.4.4 Lambda Calculus Encodings . 34

4 Complexity 37
4.1 NP-Completeness and Boolean Satisfiability . 39

5 Future Work 42

6 References 42
6.1 Web Sites . 42
References . 43

1 M269 Unit 7 — Computability, Complexity Tutorial

• Welcome & Introductions

• Computability topics:

– Ideas of Computation and Algorithms

1

2 Computability, Complexity 2 May 2021

– Problem Reduction

– Turing Machines

– Undecidable, Semi-decidable and decidable problems

– Effective Computability: Turing machines, Lambda Calculus, µ-recursive func-
tions

– Optional topic Lambda Calculus introduction

• Complexity topics

• Exercises similar to CMAs and exam

• Key aim: Identify where people have problems and how to overcome them.

• Adobe Connect — if you or I get cut off, wait till we reconnect (or send you an email)

• Recording Meeting Record Meeting. . . 4

Introductions — Me

• Name Phil Molyneux

• Background Physics and Maths, Operational Research, Computer Science

• First programming languages Fortran, BASIC, Pascal

• Favourite Software

– Haskell — pure functional programming language

– Text editors TextMate, Sublime Text — previously Emacs

– Word processing and presentation slides in LATEX

– Mac OS X

• Learning style — I read the manual before using the software (really)

Introductions — You

• Name ?

• Position in M269 ? Which part of which Units and/or Reader have you read ?

• Particular topics you want to look at ?

• Learning Syle ?

Go to Table of Contents

http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/BASIC
http://en.wikipedia.org/wiki/Pascal_(programming_language)
http://www.haskell.org/haskellwiki/Haskell
https://macromates.com
http://www.sublimetext.com
http://www.emacswiki.org
http://www.latex-project.org
https://developer.apple.com/devcenter/mac/index.action

Phil Molyneux M269 Unit 7 3

2 Adobe Connect Interface and Settings

2.1 Adobe Connect Interface — Student View

Adobe Connect Interface — Student Quick Reference

4 Computability, Complexity 2 May 2021

Adobe Connect Interface — Student View

2.2 Adobe Connect Settings

Adobe Connect Settings

• Everybody: Audio Settings Meeting Audio Setup Wizard. . .

• Audio Menu bar Audio Microphone rights for Participants 4

• Do not Enable single speaker mode

• Drawing Tools Share pod menu bar Draw (1 slide/screen)

• Share pod menu bar Menu icon Enable Participants to draw 4 gray

• Meeting Preferences Whiteboard Enable Participants to draw 4

• Cancel hand tool . . . Do not enable green pointer. . .

• Meeting Preferences Attendees Pod 8 Raise Hand notification

• Meeting Preferences Display Name Display First & Last Name

• Cursor Meeting Preferences General tab Host Cursors Show to all attendees 4 (default Off)

• Meeting Preferences Screen Share Cursor Show Application Cursor

• Webcam Menu bar Webcam Enable Webcam for Participants 4

• Recording Meeting Record Meeting. . . 4

Phil Molyneux M269 Unit 7 5

Adobe Connect — Access

• Tutor Access

TutorHome M269 Website Tutorials

Cluster Tutorials M269 Online tutorial room

Tutor Groups M269 Online tutor group room

Module-wide Tutorials M269 Online module-wide room

• Attendance

TutorHome Students View your tutorial timetables

• Beamer Slide Scaling 440% (422 x 563 mm)

• Clear Everyone’s Status

Attendee Pod Menu Clear Everyone’s Status

• Grant Access and send link via email

Meeting Manage Access & Entry Invite Participants. . .

• Presenter Only Area

Meeting Enable/Disable Presenter Only Area

Adobe Connect — Keystroke Shortcuts

• Keyboard shortcuts in Adobe Connect

• Toggle Mic + M (Mac), Ctrl + M (Win) (On/Disconnect)

• Toggle Raise-Hand status + E

• Close dialog box (Mac), Esc (Win)

• End meeting + \

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html

6 Computability, Complexity 2 May 2021

2.3 Adobe Connect Interface — Student & Tutor Views

Adobe Connect Interface — Student View (default)

Phil Molyneux M269 Unit 7 7

Adobe Connect Interface — Tutor Quick Reference

Adobe Connect Interface — Tutor View

8 Computability, Complexity 2 May 2021

2.4 Adobe Connect — Sharing Screen & Applications

• Share My Screen Application tab Terminal for Terminal

• Share menu Change View Zoom in for mismatch of screen size/resolution (Participants)

• (Presenter) Change to 75% and back to 100% (solves participants with smaller screen
image overlap)

• Leave the application on the original display

• Beware blued hatched rectangles — from other (hidden) windows or contextual
menus

• Presenter screen pointer affects viewer display — beware of moving the pointer away
from the application

• First time: System Preferences Security & Privacy Privacy Accessibility

2.5 Adobe Connect — Ending a Meeting

• Notes for the tutor only

• Student: Meeting Exit Adobe Connect

• Tutor:

• Recording Meeting Stop Recording 4

• Remove Participants Meeting End Meeting. . . 4

– Dialog box allows for message with default message:

– The host has ended this meeting. Thank you for attending.

• Recording availability In course Web site for joining the room, click on the eye icon
in the list of recordings under your recording — edit description and name

• Meeting Information Meeting Manage Meeting Information — can access a range of informa-
tion in Web page.

• Attendance Report see course Web site for joining room

2.6 Adobe Connect — Invite Attendees

• Provide Meeting URL Menu Meeting Manage Access & Entry Invite Participants. . .

• Allow Access without Dialog Menu Meeting Manage Meeting Information provides new browser
window with Meeting Information Tab bar Edit Information

• Check Anyone who has the URL for the meeting can enter the room

• Default Only registered users and accepted guests may enter the room

• Reverts to default next session but URL is fixed

• Guests have blue icon top, registered participants have yellow icon top — same icon
if URL is open

https://en.wikipedia.org/wiki/Terminal_(macOS)

Phil Molyneux M269 Unit 7 9

• See Start, attend, and manage Adobe Connect meetings and sessions

2.7 Layouts

• Creating new layouts example Sharing layout

• Menu Layouts Create New Layout. . . Create a New Layout dialog Create a new blank layout and name it
PMolyMain

• New layout has no Pods but does have Layouts Bar open (see Layouts menu)

• Pods

• Menu Pods Share Add New Share and resize/position — initial name is Share n

• Rename Pod Menu Pods Manage Pods. . . Manage Pods Select Rename or Double-click & rename

• Add Video pod and resize/reposition

• Add Attendance pod and resize/reposition

• Add Chat pod — name it PMolyChat — and resize/reposition

• Dimensions of Sharing layout (on 27-inch iMac)

– Width of Video, Attendees, Chat column 14 cm

– Height of Video pod 9 cm

– Height of Attendees pod 12 cm

– Height of Chat pod 8 cm

• Duplicating Layouts does not give new instances of the Pods and is probably not a
good idea (apart from local use to avoid delay in reloading Pods)

2.8 Chat Pods

• Format Chat text

• Chat Pod menu icon My Chat Color

• Choices: Red, Orange, Green, Brown, Purple, Pink, Blue, Black

• Note: Color reverts to Black if you switch layouts

• Chat Pod menu icon Show Timestamps

Go to Table of Contents

3 Computability

Ideas of Computation

• The idea of an algorithm and what is effectively computable

https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html

10 Computability, Complexity 2 May 2021

• Church-Turing thesis Every function that would naturally be regarded as com-
putable can be computed by a deterministic Turing Machine. (Unit 7 Section 4)

• See Phil Wadler on computability theory performed as part of the Bright Club at The
Strand in Edinburgh, Tuesday 28 April 2015

Computability — Models of Computation

• In automata theory, a problem is the question of deciding whether a given string is
a member of some particular language

• If Σ is an alphabet, and L is a language over Σ, that is L ⊆ Σ∗, where Σ∗ is the set
of all strings over the alphabet Σ then we have a more formal definition of decision
problem

• Given a string w ∈ Σ∗, decide whether w ∈ L

• Example: Testing for a prime number — can be expressed as the language Lp con-
sisting of all binary strings whose value as a binary number is a prime number (only
divisible by 1 or itself)

• See Hopcroft et al. (2007, section 1.5.4)

Automata Theory — Alphabets, Strings, Languages

• An Alphabet, Σ, is a finite, non-empty set of symbols.

• Binary alphabet Σ = {0, 1}

• Lower case letters Σ = {a, b, . . . , z}

• A String is a finite sequence of symbols from some alphabet

• 01101 is a string from the Binary alphabet Σ = {0, 1}

• The Empty string, ε, contains no symbols

• Powers: Σk is the set of strings of length k with symbols from Σ
• The set of all strings over an alphabet Σ is denoted Σ∗
• Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ . . .

• Question Does Σ0 = � ? (� is the empty set)

• An Language, L, is a subset of Σ∗
• The set of binary numerals whose value is a prime

{10, 11, 101, 111, 1011, . . . }

• The set of binary numerals whose value is a square

{100, 1001, 10000, 11001, . . . }

Computability — Church-Turing Thesis

• Church-Turing thesis Every function that would naturally be regarded as com-
putable can be computed by a deterministic Turing Machine.

http://wadler.blogspot.co.uk/2015/05/bright-club-computability.html

Phil Molyneux M269 Unit 7 11

• physical Church-Turing thesis Any finite physical system can be simulated (to any
degree of approximation) by a Universal Turing Machine.

• strong Church-Turing thesis Any finite physical system can be simulated (to any
degree of approximation) with polynomial slowdown by a Universal Turing Machine.

• Shor’s algorithm (1994) — quantum algorithm for factoring integers — an NP prob-
lem that is not known to be P — also not known to be NP-complete and we have no
proof that it is not in P

• Reference: Section 4 of Unit 6 & 7 Reader

3.1 The Turing Machine

• Finite control which can be in any of a finite number of states

• Tape divided into cells, each of which can hold one of a finite number of symbols

• Initially, the input, which is a finite-length string of symbols in the input alphabet, is
placed on the tape

• All other tape cells (extending unbounded left and right) hold a special symbol called
blank

• A tape head which initially is over the leftmost input symbol

• A move of the Turing Machine depends on the state and the tape symbol scanned

• A move can change state, write a symbol in the current cell, move left, right or stay

• References: Hopcroft et al. (2007, page 326), Unit 6 & 7 Reader (section 5.3)

Turing Machine Diagram

. . . b b a a a a . . . Input/Output Tape

q0q1

q2

q3 . . .

qn

Finite Control

q1

Reading and Writing Head
(moves in both directions)

Source: Sebastian Sardina http://www.texample.net/tikz/examples/turing-machine-
2/
Date: 18 February 2012 (seen Sunday, 24 August 2014)
Further Source: Partly based on Ludger Humbert’s pics of Universal Turing Machine at

http://en.wikipedia.org/wiki/Shor's_algorithm
http://www.texample.net/tikz/examples/turing-machine-2/
http://www.texample.net/tikz/examples/turing-machine-2/

12 Computability, Complexity 2 May 2021

https://haspe.homeip.net/projekte/ddi/browser/tex/pgf2/turingmaschine-schema.
tex (not found) — http://www.texample.net/tikz/examples/turing-machine/

Turing Machine notation

• Q finite set of states of the finite control

• Σ finite set of input symbols (M269 S)

• Γ complete set of tape symbols Σ ⊂ Γ
• δ Transition function (M269 instructions, I)
δ :: Q× Γ → Q× Γ × {L, R, S}
δ(q, X) , (p, Y, D)

• δ(q, X) takes a state, q and a tape symbol, X and returns (p, Y, D) where p is a state,
Y is a tape symbol to overwrite the current cell, D is a direction, Left, Right or Stay

• q0 start state q0 ∈ Q

• B blank symbol B ∈ Γ and B ∉ Σ
• F set of final or accepting states F ⊆ Q

Go to Table of Contents

3.2 Turing Machine Examples

• Morphett’s Turing machine simulator — the examples below are adapted from here

• Ugarte’s Turing machine simulator

• XKCD A Bunch of Rocks — XKCD Explanation

Image below (will need expanding to be readable)

https://haspe.homeip.net/projekte/ddi/browser/tex/pgf2/turingmaschine-schema.tex
https://haspe.homeip.net/projekte/ddi/browser/tex/pgf2/turingmaschine-schema.tex
http://www.texample.net/tikz/examples/turing-machine/
http://morphett.info/turing/turing.html
https://turingmachinesimulator.com/
https://xkcd.com/505/
https://www.explainxkcd.com/wiki/index.php/505:_A_Bunch_of_Rocks

Phil Molyneux M269 Unit 7 13

14 Computability, Complexity 2 May 2021

3.2.1 The Successor Function

• Input binary representation of numeral n

• Output binary representation of n + 1

• Example 1010 , 1011 and 1011 , 1100

• Initial cell: leftmost symbol of n

• Strategy

• Stage A make the rightmost cell the current cell

• Stage B Add 1 to the current cell.

• If the current cell is 0 then replace it with 1 and go to stage C

• If the current cell is 1 replace it with 0 and go to stage B and move Left

• If the current cell is blank, replace it by 1 and go to stage C

• Stage C Finish up by making the leftmost cell current

• Represent the Turing Machine program as a list of quintuples (q, X, p, Y, D)

• Stage A

(q0, 0, q0, 0, R)

(q0, 1, q0, 1, R)

(q0, B, q1, B, L)

• Stage B

(q1, 0, q2, 1, S)

(q1, 1, q1, 0, L)

(q1, B, q2, 1, S)

• Stage C

(q2, 0, q2, 0, L)

(q2, 1, q2, 1, L)

(q2, B, qh, B, R)

(Smith, 2013, page 315)

• Exercise Translate the quintuples (q, X, p, Y, D) into English and check they are the
same as the specification

• Stage A make the rightmost cell the current cell

(q0, 0, q0, 0, R)

If state q0 and read symbol 0 then stay in state q0 write 0, move R

(q0, 1, q0, 1, R)

If state q0 and read symbol 1 then stay in state q0 write 1, move R

(q0, B, q1, B, L)

Phil Molyneux M269 Unit 7 15

If state q0 and read symbol B then state q1 write B, move L

• Exercise Translate the quintuples (q, X, p, Y, D) into English

• Stage B Add 1 to the current cell.

(q1, 0, q2, 1, S)

If state q1 and read symbol 0 then state q2 write 1, stay

(q1, 1, q1, 0, L)

If state q1 and read symbol 1 then state q1 write 0, move L

(q1, B, q2, 1, S)

If state q1 and read symbol B then state q2 write 1, stay

• Exercise Translate the quintuples (q, X, p, Y, D) into English

• Stage C Finish up by making the leftmost cell current

(q2, 0, q2, 0, L)

If state q2 and read symbol 0 then state q2 write 0, move L

(q2, 1, q2, 1, L)

If state q2 and read symbol 1 then state q2 write 0, move L

(q2, B, qh, B, R)

If state q2 and read symbol B then state qh write B, move R HALT

• Notice that the Turing Machine feels like a series of if ... then or case statements
inside a while loop

• Sample Evaluation 11 , 100

• Representation · · ·BX1X2 · · ·Xi–1qXiXi+1 · · ·XnB · · ·

q011

1q01

11q0B

1q11

q110

q1B00

q2100

q2B100

qh100

• Exercise evaluate 1011 , 1100

• Representation · · ·BX1X2 · · ·Xi–1qXiXi+1 · · ·XnB · · ·

• q is the state of the TM

• The head is scanning the symbol Xi

16 Computability, Complexity 2 May 2021

• Leading or trailing blanks B are (usually) not shown unless the head is scanning them

• `M denotes one move of the TM M

• `∗M denotes zero or more moves

• ` will be used if the TM M is understood

• If (q, Xi, p, Y, L) denotes a TM move then

X1 · · ·Xi–1qXi · · ·Xn `M X1 · · ·Xi–2pXi–1Y · · ·Xn

(Hopcroft et al., 2007, sec 8.2.3)

Go to Table of Contents

3.2.2 The Binary Palindrome Function

• Input binary string s

• Output YES if palindrome, NO otherwise

• Example 1010 , NO and 1001 , YES

• Initial cell: leftmost symbol of s

• Strategy

• Stage A read the leftmost symbol

• If blank then accept it and go to stage D otherwise erase it

• Stage B find the rightmost symbol

• If the current cell matches leftmost recently read then erase it and go to stage C

• Otherwise reject it and go to stage E

• Stage C return to the leftmost symbol and stage A

• Stage D print YES and halt

• Stage E erase the remaining string and print NO

• Represent the Turing Machine program as a list of quintuples (q, X, p, Y, D)

• Stage A read the leftmost symbol

(q0, 0, q1o, B, R)

(q0, 1, q1i, B, R)

(q0, B, q5, B, S)

• Stage B find rightmost symbol

(q1o, B, q2o, B, L)

(q1o,∗, q1o,∗, R) * is a wild card, matches anything

(q1i, B, q2i, B, L)

(q1i,∗, q1i,∗, R)

• Stage B check

Phil Molyneux M269 Unit 7 17

(q2o, 0, q3, B, L)

(q2o, B, q5, B, S)

(q2o,∗, q6,∗, S)

(q2i, 1, q3, B, L)

(q2i, B, q5, B, S)

(q2i,∗, q6,∗, S)

• Stage C return to the leftmost symbol and stage A

(q3, B, q5, B, S)

(q3,∗, q4,∗, L)

(q4, B, q0, B, R)

(q4,∗, q4,∗, L)

• Stage D accept and print YES

(q5,∗, q5a, Y, R)

(q5a,∗, q5b
, E, R)

(q5b
,∗, q7, S, S)

• Stage E erase the remaining string and print NO

(q6, B, q6a, N, R)

(q6,∗, q6, B, L)

(q6a,∗, q7, O, S)

• Finish

(q7, B, qh, B, R)

(q7,∗, q7,∗, L)

• Sample Evaluation 101 , YES

q0101 ` Bq1i01 ` B0q1i1 ` B01q1iB

` B0q2i1

` Bq30B ` q4B0B

` Bq00B ` BBq1oB

` Bq2oBB

` Bq5BB ` Yq5aB ` YEq5b
B ` YEq7S

` Yq7ES ` Bq7YES ` q7BYES ` qhYES

• Exercise Evaluate 110 , NO

Go to Table of Contents

18 Computability, Complexity 2 May 2021

3.2.3 Binary Addition Example

• Input two binary numerals separated by a single space n1 n2

• Output binary numeral which is the sum of the inputs

• Example 110110 + 101011 , 1100001

• Initial cell: leftmost symbol of n1 n2

• Insight look at the arithmetic algorithm

1 1 0 1 1 0
1 0 1 0 1 1

1 1 0 0 0 0 1

• Discussion how can we overwrite the first number with the result and remember
how far we have gone ?

Binary Addition Example — Arithmetic Reinvented

1 1 0 1 1 0
1 0 1 0 1 1

1 1 0 1 1 y
1 0 1 0 1

1 1 1 0 x y
1 0 1 0

1 1 1 x x y
1 0 1

1 0 0 x x x y
1 0

1 0 x x x x y
1

1 y x x x x y

1 1 0 0 0 0 1

• Input two binary numerals separated by a single space n1 n2

• Output binary numeral which is the sum of the inputs

• Example 110110 + 101011 , 1100001

• Initial cell: leftmost symbol of n1 n2

• Strategy

• Stage A find the rightmost symbol

If the symbol is 0 erase and go to stage Bx

If the symbol is 1 erase go to stage By

Phil Molyneux M269 Unit 7 19

If the symbol is blank go to stage F

dealing with each digit in n1

if no further digits in n1 go to final stage

• Stage Bx Move left to a blank go to stage Cx

• Stage By Move left to a blank go to stage Cy

moving to n1

• Stage Cx Move left to find first 0, 1 or B

Turn 0 or B to X, turn 1 to Y and go to stage A

adding 0 to a digit finalises the result (no carry one)

• Stage Cy Move left to find first 0, 1 or B

Turn 0 or B to 1 and go to stage D

Turn 1 to 0, move left and go to stage Cy

dealing with the carry one in school arithmetic

• Stage D move right to X, Y or B and go to stage E

• Stage E replace 0 by X, 1 by Y, move right and go to Stage A

finalising the value of a digit resulting from a carry

• Stage F move left and replace X by 0, Y by 1 and at B halt

• Represent the Turing Machine program as a list of quintuples (q, X, p, Y, D)

• Stage A find the rightmost symbol

(q0, B, q1, B, R)

(q0,∗, q0,∗, R) * is a wild card, matches anything

(q1, B, q2, B, L)

(q1,∗, q1,∗, R)

(q2, 0, q3x, B, L)

(q2, 1, q3y, B, L)

(q2, B, q7, B, L)

• Stage Bx move left to blank

(q3x, B, q4x, B, L)

(q3x,∗, q3x,∗, L)

• Stage By move left to blank

(q3y, B, q4y, B, L)

(q3y,∗, q3y,∗, L)

• Stage Cx move left to 0, 1, or blank

(q4x, 0, q0, x, R)

20 Computability, Complexity 2 May 2021

(q4x, 1, q0, y, R)

(q4x, B, q0, x, R)

(q4x,∗, q4x,∗, L)

• Stage Cy move left to 0, 1, or blank

(q4y, 0, q5, 1, S)

(q4y, 1, q4y, 0, L)

(q4y, B, q5, 1, S)

(q4y,∗, q4y,∗, L)

• Stage D move right to x, y or B

(q5, x, q6, x, L)

(q5, y, q6, y, L)

(q5, B, q6, B, L)

(q5,∗, q5,∗, R)

• Stage E replace 0 by x, 1 by y

(q6, 0, q0, x, R)

(q6, 1, q0, y, R)

• Stage F replace x by 0, y by 1

(q7, x, q7, 0, L)

(q7, y, q7, 1, L)

(q7, B, qh, B, R)

(q7,∗, q7,∗, L)

• Exercise Evaluate 11 + 10 , 101

• Exercise Evaluate 11 + 10 , 101

• Stage A find the rightmost symbol

BBq011B10B Note space symbols B at start and end

` BB1q01B10B

` BB11q0B10B

` BB11Bq110B

` BB11B1q10B

` BB11B10q1B

` BB11B1q20B

` BB11Bq3x1BB

• Stage Bx move left to blank

` B11q3xB1BB

Phil Molyneux M269 Unit 7 21

• Stage Cx move left to 0, 1, or blank

` BB1q4x1B1BB

` BB1Yq0B1BB

• Stage A find the rightmost symbol

` BB1BYBq11BB

` BB1YB1q1BB

` BB1YBq21BB

` BB1Yq3yBBBB

• Stage Cy move left to 0, 1, or blank

` BB1q4yYBBBB

` BBq4y1YBBBB

` Bq4yB0YBBBB

` Bq510YBBBB

• Stage D move right to x, y or B

` Bq50YBBBB

` B0q5YBBBB

` Bq60YBBBB

• Stage E replace 0 by x, 1 by y

` B1Xq0YBBBB

• Stage A find the rightmost symbol

` B1XYq0BBBB

` B1XYBq1BBB

` B1XYq2BBBB

` B1Xq7YBBBB

• Stage F replace x by 0, y by 1

` B1q7X1BBBB

` Bq7101BBBB

` Bq7B101BBBB

` Bqh101BBBB

• This is mimicking what you learnt to do on paper as a child! Real step-by-step in-
structions

• See Morphett’s Turing machine simulator for more examples (takes too long by
hand!)

Go to Table of Contents

http://morphett.info/turing/turing.html

22 Computability, Complexity 2 May 2021

3.3 Computability, Decidability and Algorithms

Universal Turing Machine

• Universal Turing Machine, U, is a Turing Machine that can simulate any arbitrary
Turing machine, M

• Achieves this by encoding the transition function of M in some standard way

• The input to U is the encoding for M followed by the data for M

• See Turing machine examples

• Decidable — there is a TM that will halt with yes/no for a decision problem — that
is, given a string w over the alphabet of P the TM with halt and return yes.no the
string is in the language P (same as recursive in Recursion theory — old use of the
word)

• Semi-decidable — there is a TM will halt with yes if some string is in P but may loop
forever on some inputs (same as recursively enumerable) — Halting Problem

• Highly-undecidable — no outcome for any input — Totality, Equivalence Problems

Undecidable Problems

• Halting problem — the problem of deciding, given a program and an input, whether
the program will eventually halt with that input, or will run forever — term first used
by Martin Davis 1952

• Entscheidungsproblem — the problem of deciding whether a given statement is
provable from the axioms using the rules of logic — shown to be undecidable by
Turing (1936) by reduction from the Halting problem to it

• Type inference and type checking in the second-order lambda calculus (important
for functional programmers, Haskell, GHC implementation)

• Undecidable problem — see link to list

(Turing, 1936, 1937)

3.3.1 Non-Computability — Halting Problem

Halting Problem — Sketch Proof

• Halting problem — is there a program that can determine if any arbitrary program
will halt or continue forever ?

• Assume we have such a program (Turing Machine) h(f,x) that takes a program f
and input x and determines if it halts or not� �

h(f ,x)
= i f f (x) runs forever

return True
else

return False� �
• We shall prove this cannot exist by contradiction

https://en.wikipedia.org/wiki/Universal_Turing_machine
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Turing_machine_examples
http://en.wikipedia.org/wiki/Recursion_theory
http://en.wikipedia.org/wiki/Halting_problem
http://en.wikipedia.org/wiki/Entscheidungsproblem
http://en.wikipedia.org/wiki/System_F
http://en.wikipedia.org/wiki/Undecidable_problem
https://simple.wikipedia.org/wiki/Halting_problem

Phil Molyneux M269 Unit 7 23

• Now invent two further programs:

• q(f) that takes a program f and runs h with the input to f being a copy of f

• r(f) that runs q(f) and halts if q(f) returns True, otherwise it loops� �
q(f)

= h(f , f)

r (f)
= i f q(f)

return
else

while True : continue� �
• What happens if we run r(r) ?

• If it loops, q(r) returns True and it does not loop — contradiction.

Why undecidable problems must exist

• A problem is really membership of a string in some language

• The number of different languages over any alphabet of more than one symbol is
uncountable

• Programs are finite strings over a finite alphabet (ASCII or Unicode) and hence count-
able.

• There must be an infinity (big) of problems more than programs.

• Computational problem — defined by a function

• Computational problem is computable if there is a Turing machine that will calcu-
late the function.

Reference: Hopcroft et al. (2007, page 318)

Computability and Terminology (1)

• The idea of an algorithm dates back 3000 years to Euclid, Babylonians. . .

• In the 1930s the idea was made more formal: which functions are computable?

• A function is a set of pairs f = {(x, f(x)) : x ∈ X∧ f(x) ∈ Y} with the function property

• Function property: (a, b) ∈ f∧ (a, c) ∈ f⇒ b == c

• Function property: Same input implies same output

• Note that maths notation is deeply inconsistent here — see Function and History of
the function concept

• What do we mean by computing a function — an algorithm ?

Function: Relation and Rules

• The idea of function as a set of pairs (Binary relation) with the function property
(each element of the domain has at most one element in the co-domain) is fairly
recent — see History of the function concept

http://en.wikipedia.org/wiki/Computable_function
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/History_of_the_function_concept
http://en.wikipedia.org/wiki/History_of_the_function_concept
https://en.wikipedia.org/wiki/Binary_relation
https://en.wikipedia.org/wiki/History_of_the_function_concept

24 Computability, Complexity 2 May 2021

• School maths presents us with function as rule to get from the input to the output

• Example: the square function: square x = x× x

• But lots of rules (or algorithms) can implement the same function

• square1 x = x^2

• square2 x =

x times︷ ︸︸ ︷
x + · · · + x if x is integer

Computability and Terminology (2)

• In the 1930s three definitions:

• λ-Calculus, simple semantics for computation — Alonzo Church

• General recursive functions — Kurt Gödel

• Universal (Turing) machine — Alan Turing

• Terminology:

– Recursive, recursively enumerable — Church, Kleene

– Computable, computably enumerable — Gödel, Turing

– Decidable, semi-decidable, highly undecidable

– In the 1930s, computers were human

– Unfortunate choice of terminology

• Turing and Church showed that the above three were equivalent

• Church-Turing thesis — function is intuitively computable if and only if Turing ma-
chine computable

Sources on Computability Terminology

• Soare (1996) on the history of the terms computable and recursive meaning calcula-
ble

• See also Soare (2013, sections 9.9–9.15) in Copeland et al. (2013)

3.3.2 Reductions & Non-Computability

Reducing one problem to another

• To reduce problem P1 to P2, invent a construction that converts instances of P1 to
P2 that have the same answer. That is:

– any string in the language P1 is converted to some string in the language P2

– any string over the alphabet of P1 that is not in the language of P1 is converted
to a string that is not in the language P2

• With this construction we can solve P1

http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Alonzo_Church
https://en.wikipedia.org/wiki/%CE%9C-recursive_function
https://en.wikipedia.org/wiki/Kurt_G%C3%B6del
http://en.wikipedia.org/wiki/Universal_Turing_machine
http://en.wikipedia.org/wiki/Alan_Turing
http://en.wikipedia.org/wiki/Stephen_Cole_Kleene
https://en.wikipedia.org/wiki/Church%E2%80%93Turing_thesis

Phil Molyneux M269 Unit 7 25

– Given an instance of P1, that is, given a string w that may be in the language
P1, apply the construction algorithm to produce a string x

– Test whether x is in P2 and give the same answer for w in P1

(Hopcroft et al., 2007, page 322)

• Problem Reduction — Ordinary Example

• Want to phone Alice but don’t have her number

• You know that Bill has her number

• So reduce the problem of finding Alice’s number to the problem of getting hold of
Bill

(Rich, 2007, page 449)

• The direction of reduction is important

• If we can reduce P1 to P2 then (in some sense) P2 is at least as hard as P1 (since a
solution to P2 will give us a solution to P1)

• So, if P2 is decidable then P1 is decidable

• To show a problem is undecidable we have to reduce from an known undecidable
problem to it

• ∀x(dpP1(x) = dpP2
(reduce(x)))

• Since, if P1 is undecidable then P2 is undecidable

• Some further examples

• Totality and Equivalence Problems http://www.cs.ucc.ie/~dgb/courses/toc/
handout36.pdf

• Totality and Equivalence Problems https://www.cs.rochester.edu/~nelson/courses/
csc_173/computability/undecidable.html

A1

input outputf A2
f(input)

• A reduction of problem P1 to problem P2

– transforms inputs to P1 into inputs to P2

– runs algorithm A2 (which solves P2) and

– interprets the outputs from A2 as answers to P1

• More formally: A problem P1 is reducible to a problem P2 if there is a function f that
takes any input x to P1 and transforms it to an input f(x) of P2

such that the solution of P2 on f(x) is the solution of P1 on x

http://www.cs.ucc.ie/~dgb/courses/toc/handout36.pdf
http://www.cs.ucc.ie/~dgb/courses/toc/handout36.pdf
https://www.cs.rochester.edu/~nelson/courses/csc_173/computability/undecidable.html
https://www.cs.rochester.edu/~nelson/courses/csc_173/computability/undecidable.html

26 Computability, Complexity 2 May 2021

Source: Bridge Theory of Computation, 2007

A1

M M2f A2
(M, M)

• Given an algorithm (A2) for matrix multiplication (P2)

– Input: pair of matrices, (M1, M2)

– Output: matrix result of multiplying M1 and M2

• P1 is the problem of squaring a matrix

– Input: matrix M

– Output: matrix M2

• Algorithm A1 has

f(M) = (M, M)

uses A2 to calculate M×M = M2

Non-Computable Problems

A1

input outputf A2
f(input)

• If P2 is computable (A2 exists) then P1 is computable (f being simple or polynomial)

• Equivalently If P1 is non-computable then P2 is non-computable

• Exercise: show B→ A ≡ ¬A→ ¬B

• Proof by Contrapositive

• B→ A ≡ ¬B∨ A by truth table or equivalences

≡ ¬(¬A)∨¬B commutativity and negation laws

≡ ¬A→ ¬B equivalences

• Common error: switching the order round

http://www.cs.ucc.ie/~dgb/courses/toc.html
https://en.wikipedia.org/wiki/Proof_by_contrapositive

Phil Molyneux M269 Unit 7 27

Totality Problem

HP

(P, x) YES/NOf TP
Q

• Totality Problem

– Input: program Q

– Output: YES if Q terminates for all inputs else NO

• Assume we have algorithm TP to solve the Totality Problem

• Now reduce the Halting Problem to the Totality Problem

HP

(P, x) YES/NOf TP
Q

• Define f to transform inputs to HP to TP pseudo-Python� �
def f(P,x) :
def Q(y):
ignore y
P(x)

return Q� �
• Run TP on Q

– If TP returns YES then P halts on x

– If TP returns NO then P does not halt on x

• We have solved the Halting Problem — contradiction

Negative Value Problem

HP

(P, x) YES/NOf NVP
(Q, v)

• Negative Value Problem

– Input: program Q which has no input and variable v used in Q

– Output: YES if v ever gets assigned a negative value else NO

28 Computability, Complexity 2 May 2021

• Assume we have algorithm NVP to solve the Negative Value Problem

• Now reduce the Halting Problem to the Negative Value Problem

HP

(P, x) YES/NOf NVP
(Q, v)

• Define f to transform inputs to HP to NVP pseudo-Python� �
def f(P,x) :
def Q(y):
ignore y
P(x)
v = -1

return (Q,var(v))� �
• Run NVP on (Q, var(v)) var(v) gets the variable name

– If NVP returns YES then P halts on x

– If NVP returns NO then P does not halt on x

• We have solved the Halting Problem — contradiction

Squaring Function Problem

HP

(P, x) YES/NOf SFP
Q

• Squaring Function Problem

– Input: program Q which takes an integer, y

– Output: YES if Q always returns the square of y else NO

• Assume we have algorithm SFP to solve the Squaring Function Problem

• Now reduce the Halting Problem to the Squaring Function Problem

HP

(P, x) YES/NOf SFP
Q

• Define f to transform inputs to HP to SFP pseudo-Python

Phil Molyneux M269 Unit 7 29

� �
def f(P,x) :
def Q(y):
P(x)
return y * y

return Q� �
• Run SFP on Q

– If SFP returns YES then P halts on x

– If SFP returns NO then P does not halt on x

• We have solved the Halting Problem — contradiction

Equivalence Problem

HP

P YES/NOf EP
(P1, P2)

• Equivalence Problem

– Input: two programs P1 and P2

– Output: YES if P1 and P2 solve the ame problem (same output for same input)
else NO

• Assume we have algorithm EP to solve the Equivalence Problem

• Now reduce the Totality Problem to the Equivalence Problem

TP

P YES/NOf EP
(P1, P2)

• Define f to transform inputs to TP to EP pseudo-Python� �
def f(P) :
def P1(x):
P(x)
return "Same string"

def P2(x)
return "Same string"

return (P1,P2)� �
• Run EP on (P1, P2)

– If EP returns YES then P halts on all inputs

– If EP returns NO then P does not halt on all inputs

• We have solved the Totality Problem — contradiction

30 Computability, Complexity 2 May 2021

Rice’s Theorem

A1

input outputf A2
f(input)

• Rice’s Theorem all non-trivial, semantic properties of programs are undecidable. H G

Rice 1951 PhD Thesis

• Equivalently: For any non-trivial property of partial functions, no general and effec-
tive method can decide whether an algorithm computes a partial function with that
property.

• A property of partial functions is called trivial if it holds for all partial computable
functions or for none.

• Rice’s Theorem and computability theory

• Let S be a set of languages that is nontrivial, meaning

– there exists a Turing machine that recognizes a language in S

– there exists a Turing machine that recognizes a language not in S

• Then, it is undecidable to determine whether the language recognized by an arbitrary
Turing machine lies in S.

• This has implications for compilers and virus checkers

• Note that Rice’s theorem does not say anything about those properties of machines
or programs that are not also properties of functions and languages.

• For example, whether a machine runs for more than 100 steps on some input is a
decidable property, even though it is non-trivial.

Go to Table of Contents

3.4 Lambda Calculus

3.4.1 Motivation

• Lambda Calculus is a formal system in mathematical logic for expressing computa-
tion based on function abstraction and application using variable binding and sub-
stitution

• Lambda calculus is Turing complete — it can simulate any Turing machine

• Introduced by Alonzo Church in 1930s

• Basis of functional programming languages — Lisp, Scheme, ISWIM, ML, SASL, KRC,
Miranda, Haskell, Scala, F#. . .

• Note this is not part of M269 but may help understand ideas of computability

https://en.wikipedia.org/wiki/Rice%27s_theorem
https://en.wikipedia.org/wiki/Rice%27s_theorem
https://en.wikipedia.org/wiki/Lambda_calculus
https://en.wikipedia.org/wiki/Formal_system
https://en.wikipedia.org/wiki/Mathematical_logic
https://en.wikipedia.org/wiki/Computability
https://en.wikipedia.org/wiki/Computability
https://en.wikipedia.org/wiki/Name_binding
https://en.wikipedia.org/wiki/Substitution_(algebra)
https://en.wikipedia.org/wiki/Substitution_(algebra)
https://en.wikipedia.org/wiki/Turing_completeness
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Scheme_(programming_language)
https://en.wikipedia.org/wiki/ISWIM
https://en.wikipedia.org/wiki/ML_(programming_language)
https://en.wikipedia.org/wiki/SASL_(programming_language)
https://en.wikipedia.org/wiki/Kent_Recursive_Calculator
https://en.wikipedia.org/wiki/Miranda_(programming_language)
https://en.wikipedia.org/wiki/Haskell_(programming_language)
https://en.wikipedia.org/wiki/Scala_(programming_language)
https://en.wikipedia.org/wiki/F_Sharp_(programming_language)

Phil Molyneux M269 Unit 7 31

Functions — Binding and Substitution

• School maths introduces functions as

f(x) = 3x2 + 4x + 5

• Substitution: f(2) = 3× 22 + 4× 2 + 5 = 25

• Generalise: f(x) = ax2 + bx + c

• What is wrong with the following:

• f(a) = a× a2 + b× a + c

• The ideas of free and bound variables and substitution

• Evaluating an expression — how many ways can you evaluate (3 + 7)2

• Answer: 3 ways (Bird, 1998, Ex 1.2.2, page 6)

• Ways of evaluating
(
(3 + 7)2

)2

• Answer: 547 ways (Bird and Wadler, 1988, Ex 1.2.1, page 6)

• M269 Unit 6/7 Reader Logic and the Limits of Computation alludes to other formali-
sations with equal power to a Turing Machine (pages 81 and 87)

• The Reader mentions Alonzo Church and his 1930s formalism (page 87, but does
not give any detail)

• The notes in this section are optional and for comparison with the Turing Machine
material

• Turing machine: explicit memory, state and implicit loop and case/if statement

• Lambda Calculus: function definition and application, explicit rules for evaluation
(and transformation) of expressions, explicit rules for substitution (for function ap-
plication)

• Lambda calculus reduction workbench

Go to Table of Contents

3.4.2 Lambda Terms

• A variable, x, is a lambda term

• If M is a lambda term and x is a variable, then (λx.M) is a lambda term — a lambda
abstraction or function definition

• If M and N are lambda terms, the (M N) is lambda term — an application

• Nothing else is a lambda term

(Lambda Calculus notes based on lecture slides at CMSC 330, Spring 2011)

• Outermost parentheses are omitted (M N) ≡ M N

• Application is left associative ((M N) P) ≡ M N P

• The body of an abstraction extends as far right as possible, subject to scope limited
by parentheses

http://www.itu.dk/people/sestoft/lamreduce/
http://www.cs.umd.edu/class/spring2011/cmsc330/schedule.shtml

32 Computability, Complexity 2 May 2021

• λx.M N ≡ λx.(M N) and not (λx.M) N

• λx.λy.λz.M ≡ λx y z.M

Lambda Calculus Semantics

• What do we mean by evaluating an expression ?

• To evaluate (λx.M)N

• Evaluate M with x replaced by N

• This rule is called β-reduction

• (λx.M)N→
β

M[x := N]

• M[x := N] is M with occurrences of x replaced by N

• This operation is called substitution — see rules below

β-Reduction Examples

• (λx.x)z→ z

• (λx.y)z→ y

• (λx.x y)z→ z y

a function that applies its argument to y

• (λx.x y)(λz.z)→ (λz.z)y→ y

• (λx.λy.x y)z→ λy.z y

A curried function of two arguments — applies first argument to second

• currying replaces f(x, y) with (f x)y — nice notational convenience — gives partial
application for free

Go to Table of Contents

3.4.3 Substitution

• To define substitution use recursion on the structure of terms

• x[x := N] ≡ N

• y[x := N] ≡ y

• (P Q)[x := N] ≡ (P[x := N]) (Q[x := N])

• (λx.M)[x := N] = λx.M

In (λx.M), the x is a formal parameter and thus a local variable, different to any other

• (λy.M)[x := N] = what?

• Look back at the school maths example above — a subtle point

• Renaming bound variables consistently is allowed

Phil Molyneux M269 Unit 7 33

• λx.x ≡ λy.y ≡ λz.z

• λy.λx.y ≡ λz.λx.z

• This is called α-conversion

• (λx.λy.x y) y→ (λx.λz.x z) y→ λz.y z

• Bound and Free Variables

• BV(x) = �

• BV(λx.M) = BV(M)∪ {x}

• BV(M N) = BV(M)∪ BV(N)

• FV(x) = {x}

• FV(λx.M) = FV(M) – {x}

• FV(M N) = FV(M)∪ FV(N)

• The above is a formalisation of school maths

• A Lambda term with no free variables is said to be closed — such terms are also
called combinators — see Combinator and Combinatory logic (Hankin, 2004, page
10)

• α-conversion

• λx.M→
α
λy.M[x := y] if y ∉ FV(M)

• β-reduction final rule

• (λy.M)[x := N] = λy.M if x ∉ FV(M)

• (λy.M)[x := N] = λy.M[x := N]

if x ∈ FV(M) and y ∉ FV(N)

• (λy.M)[x := N] = λz.M[y := z][x := N]

if x ∈ FV(M) and y ∈ FV(N)

z is chosen to be first variable z ∉ FV(N M)

• This is why you cannot go f(a) when given

• f(x) = ax2 + bx + c

• School maths — but made formal

Lambda Calculus — Rules Summary — Conversion

• α-conversion renaming bound variables

• λx.M→
α
λy.M[x := y] if y ∉ FV(M)

• β-conversion function application

• (λx.M)N→
β

M[x := N]

• η-conversion extensionality

https://wiki.haskell.org/Combinator
https://en.wikipedia.org/wiki/Combinatory_logic
https://en.wikipedia.org/wiki/Extensionality

34 Computability, Complexity 2 May 2021

• λx.F x→
η

F if x ∉ FV(F)

Lambda Calculus — Rules Summary — Substitution

1. x[x := N] ≡ N

2. y[x := N] ≡ y

3. (P Q)[x := N] ≡ (P[x := N]) (Q[x := N])

4. (λx.M)[x := N] = λx.M

5. (λy.M)[x := N] = λy.M if x ∉ FV(M)

6. (λy.M)[x := N] = λy.M[x := N]

if x ∈ FV(M) and y ∉ FV(N)

7. (λy.M)[x := N] = λz.M[y := z][x := N]

if x ∈ FV(M) and y ∈ FV(N)

z is chosen to be first variable z ∉ FV(N M)

Go to Table of Contents

3.4.4 Lambda Calculus Encodings

• So what does this formalism get us ?

• The Lambda Calculus is Turing complete

• We can encode any computation (if we are clever enough)

• Booleans and propositional logic

• Pairs

• Natural numbers and arithmetic

• Looping and recursion

Booleans and Propositional Logic

• True = λx.λy.x

• False = λx.λy.y

• IF a THEN b ELSE c ≡ a b c

• IF True THEN b ELSE c → (λx.λy.x) b c

• → (λy.b) c→ b

• IF False THEN b ELSE c → (λx.λy.y) b c

• → (λy.y) c→ c

• Not = λx.((x False)True)

• Not x = IF x THEN False ELSE True

Phil Molyneux M269 Unit 7 35

• Exercise: evaluate Not True

• And = λx.λy.((x y) False)

• And x y = IF x THEN y ELSE False

• Exercise: evaluate And True False

• Or = λx.λy.((x True) y)

• Or x y = IF x THEN True ELSE y

• Exercise: evaluate Or False True

• Exercise: evaluate Not True

• → (λx.((x False) True)) True

• → (True False) True

• Could go straight to False from here, but we shall fill in the detail

• → ((λx.λy.x) (λx.λy.y)) (λx.λy.x)

• → (λy.(λx.λy.y)) (λx.λy.x)

• → (λx.λy.y) ≡ False

• Exercise: evaluate And True False

• →(IF x THEN y ELSE False) True False

• →(IF True THEN False ELSE False) →False

• Exercise: evaluate Or False True

• →(IF x THEN True ELSE y) False True

• →(IF False THEN True ELSE True) →True

Natural Numbers — Church Numerals

• Encoding of natural numbers

• 0 = λf.λy.y

• 1 = λf.λy.f y

• 2 = λf.λy.f (f y)

• 3 = λf.λy.f (f (f y))

• Successor Succ = λz.λf.λy.f(z f y)

• Succ 0 = (λz.λf.λy.f(z f y))(λf.λy.y)

• → λf.λy.f ((λf.λy.y) f y)

• → λf.λy.f ((λy.y) y)

• → λf.λy.f y = 1

36 Computability, Complexity 2 May 2021

Natural Numbers — Operations

• isZero = λz.z(λy. False) True

• Exercise: evaluate isZero 0

• If M and N are numerals (as λ expressions)

• Add M N = λx.λy.(M x) ((N x) y)

• Mult M N = λx.(M (N x))

• Exercise: show 1 + 1 = 2

Pairs

• Encoding of a pair a, b

• (a, b) = λx. IF x THEN a ELSE b

• FST = λf.f True

• SND = λf.f False

• Exercise: evaluate FST (a, b)

• Exercise: evaluate SND (a, b)

The Fixpoint Combinator

• Y = λf.(λx.f (x x)) (λx.f (x x))

• Y F = λf.(λx.f (x x)) (λx.f (x x)) F

• → (λx.F (x x))(λx.F (x x))

• F((λx.F (x x)) (λx.F (x x))) = F (Y F)

• (Y F) is a fixed point of F

• We can use Y to achieve recursion for F

• Recursion implementation — Factorial

• Fact = λf.λn. IF n = 0 THEN 1 ELSE n∗ (f (n – 1))

• (Y Fact)1 = (Fact (Y fact))1

• → IF 1 = 0 THEN 1 ELSE 1∗ ((Y Fact) 0)

• → 1∗ ((Y Fact) 0)

• → 1∗ (Fact (Y Fact) 0)

• → 1∗ IF 0 = 0 THEN 1 ELSE 0∗ ((Y Fact) (0 – 1))

• → 1∗ 1→ 1

• Factorial n = (Y Fact) n

• Recursion implemented with a non-recursive function Y

https://en.wikipedia.org/wiki/Fixed_point_(mathematics)

Phil Molyneux M269 Unit 7 37

Go to Table of Contents

Go to Table of Contents

Turing Machines, Lambda Calculus and Programming Languages

• Anything computable can be represented as TM or Lambda Calculus

• But programs would be slow, large and hard to read

• In practice use the ideas to create more expressive languages which include built-in
primitives

• Also leads to ideas on data types

• Polymorphic data types

• Algebraic data types

• Also leads on to ideas on higher order functions — functions that take functions as
arguments or returns functions as results.

Go to Table of Contents

4 Complexity

P and NP

• P, the set of all decision problems that can be solved in polynomial time on a deter-
ministic Turing machine

• NP, the set of all decision problems whose solutions can be verified (certificate) in
polynomial time

• Equivalently, NP, the set of all decision problems that can be solved in polynomial
time on a non-deterministic Turing machine

• A decision problem, dp is NP-complete if

1. dp is in NP and

2. Every problem in NP is reducible to dp in polynomial time

• NP-hard — a problem satisfying the second condition, whether or not it satisfies the
first condition. Class of problems which are at least as hard as the hardest problems
in NP. NP-hard problems do not have to be in NP and may not be decision problems

Euler diagram for P, NP, NP-complete and NP-hard set of problems

http://en.wikipedia.org/wiki/P_(complexity)
http://en.wikipedia.org/wiki/NP_(complexity)
http://en.wikipedia.org/wiki/NP-complete
https://en.wikipedia.org/wiki/NP-hardness
http://en.wikipedia.org/wiki/Euler_diagram

38 Computability, Complexity 2 May 2021

Source: Wikipedia NP-complete entry

NP-complete problems

• Boolean satisfiability (SAT) Cook-Levin theorem

• Conjunctive Normal Form 3SAT

• Hamiltonian path problem

• Travelling salesman problem

• NP-complete — see list of problems

XKCD on NP-Complete Problems

http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Cook-Levin_theorem
http://en.wikipedia.org/wiki/3-satisfiability
http://en.wikipedia.org/wiki/Hamiltonian_path_problem
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/NP-complete

Phil Molyneux M269 Unit 7 39

Source & Explanation: XKCD 287

4.1 NP-Completeness and Boolean Satisfiability

• The Boolean satisfiability problem (SAT) was the first decision problem shown to be
NP-Complete

• This section gives a sketch of an explanation

• Health Warning different texts have different notations and there will be some in-
consistency in these notes

• Health warning these notes use some formal notation to make the ideas more pre-
cise — computation requires precise notation and is about manipulating strings ac-
cording to precise rules.

Alphabets, Strings and Languages

• Notation:

• Σ is a set of symbols — the alphabet

• Σk is the set of all string of length k, which each symbol from Σ
• Example: if Σ = {0, 1}

– Σ1 = {0, 1}

– Σ2 = {00, 01, 10, 11}

• Σ0 = {ε} where ε is the empty string

• Σ∗ is the set of all possible strings over Σ
• Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ . . .

• A Language, L, over Σ is a subset of Σ∗
• L ⊆ Σ∗

Language Accepted by a Turing Machine

• Language accepted by Turing Machine, M denoted by L(M)

• L(M) is the set of strings w ∈ Σ∗ accepted by M

• For Final States F = {Y, N}, a string w ∈ Σ∗ is accepted by M a (if and only if) M
starting in q0 with w on the tape halts in state Y

• Calculating a function (function problem) can be turned into a decision problem by
asking whether f(x) = y

The NP-Complete Class

• If we do not know if P ≠ NP, what can we say ?

• A language L is NP-Complete if:

http://www.explainxkcd.com/wiki/index.php/287:_NP-Complete
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Function_problem
http://en.wikipedia.org/wiki/Decision_problem

40 Computability, Complexity 2 May 2021

– L ∈ NP and

– for all other L′ ∈ NP there is a polynomial time transformation (Karp reducible,
reduction) from L′ to L

• Problem P1 polynomially reduces (Karp reduces, transforms) to P2, written P1 ∝ P2
or P1 ≤p P2, iff ∃f : dpP1 → dpP2

such that

– ∀I ∈ dpP1[I ∈ YP1 a f(I) ∈ YP2]

– f can be computed in polynomial time

• More formally, L1 ⊆ Σ∗1 polynomially transforms to L2 ⊆ Σ∗2 , written L1 ∝ L2 or
L1 ≤p L2, iff ∃f : Σ∗1 → Σ∗2 such that

– ∀x ∈ Σ∗1 [x ∈ L1 a f(x) ∈ L2]

– There is a polynomial time TM that computes f

• Transitivity If L1 ∝ L2 and L2 ∝ L3 then L1 ∝ L3

• If L is NP-Hard and L ∈ P then P = NP

• If L is NP-Complete, then L ∈ P if and only if P = NP

• If L0 is NP-Complete and L ∈ NP and L0 ∝ L then L is NP-Complete

• Hence if we find one NP-Complete problem, it may become easier to find more

• In 1971/1973 Cook-Levin showed that the Boolean satisfiability problem (SAT) is
NP-Complete

The Boolean Satisfiability Problem

• A propositional logic formula or Boolean expression is built from variables, opera-
tors: AND (conjunction, ∧), OR (disjunction, ∨), NOT (negation, ¬)

• A formula is said to be satisfiable if it can be made True by some assignment to its
variables.

• The Boolean Satisfiability Problem is, given a formula, check if it is satisfiable.

– Instance: a finite set U of Boolean variables and a finite set C of clauses over U

– Question: Is there a satisfying truth assignment for C ?

• A clause is is a disjunction of variables or negations of variables

• Conjunctive normal form (CNF) is a conjunction of clauses

• Any Boolean expression can be transformed to CNF

• Given a set of Boolean variable U = {u1, u2, . . . , un}

• A literal from U is either any ui or the negation of some ui (written ui)

• A clause is denoted as a subset of literals from U — {u2, u4, u5}

• A clause is satisfied by an assignment to the variables if at least one of the literals
evaluates to True (just like disjunction of the literals)

• Let C be a set of clauses over U — C is satisfiable iff there is some assignment of
truth values to the variables so that every clause is satisfied (just like CNF)

http://en.wikipedia.org/wiki/Cook\T1\textendash Levin_theorem
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem

Phil Molyneux M269 Unit 7 41

• C = {{u1, u2, u3}, {u2, u3}, {u2, u3}} is satisfiable

• C = {{u1, u2}, {u1, u2}, {u1}} is not satisfiable

• Proof that SAT is NP-Complete looks at the structure of NDTMs and shows you can
transform any NDTM to SAT in polynomial time (in fact logarithmic space suffices)

• SAT is in NP since you can check a solution in polynomial time

• To show that ∀L ∈ NP : L∝ SAT invent a polynomial time algorithm for each polyno-
mial time NDTM, M, which takes as input a string x and produces a Boolean formula
Ex which is satisfiable iff M accepts x

• See Cook-Levin theorem

Sources

• Garey and Johnson (1979, page 34) has the notation L1 ∝ L2 for polynomial trans-
formation

• Arora and Barak (2009, page 42) has the notation L1 ≤p L2 for polynomial-time Karp
reducible

• The sketch of Cook’s theorem is from Garey and Johnson (1979, page 38)

• For the satisfiable C we could have assignments (u1, u2, u3) ∈ {(T, T, F), (T, F, F), (F, T, F)}

Coping with NP-Completeness

• What does it mean if a problem is NP-Complete ?

– There is a P time verification algorithm.

– There is a P time algorithm to solve it iff P = NP (?)

– No one has yet found a P time algorithm to solve any NP-Complete problem

– So what do we do ?

• Improved exhaustive search — Dynamic Programming; Branch and Bound

• Heuristic methods — acceptable solutions in acceptable time — compromise on op-
timality

• Average time analysis — look for an algorithm with good average time — compro-
mise on generality (see Big-O Algorithm Complexity Cheatsheet)

• Probabilistic or Randomized algorithms — compromise on correctness

Sources

• Practical Solutions for Hard Problems Rich (2007, chp 30)

• Coping with NP-Complete Problems Garey and Johnson (1979, chp 6)

Go to Table of Contents

Go to Table of Contents

http://en.wikipedia.org/wiki/Cook-Levin_theorem
http://bigocheatsheet.com

42 Computability, Complexity 2 May 2021

5 Future Work

• Sunday, 16 May 2021 online tutorial exam revision

• Saturday, 22 May 2021 tutorial online, exam revision

• Please email me with any requests for particular topics

• Tuesday, 8 June 2021 exam

Go to Table of Contents

6 Web Sites & References

6.1 Web Sites

• Logic

– WFF, WFF’N Proof online

• Computability

– Computability

– Computable function

– Decidability (logic)

– Turing Machines

– Universal Turing Machine

– Turing machine simulator

– Lambda Calculus

– Von Neumann Architecture

– Turing Machine XKCD 205 Candy Button Paper

– Turing Machine XKCD 505 A Bunch of Rocks

– RIP John Conway Why can Conway’s Game of Life be classified as a universal
machine?

– Phil Wadler Bright Club on Computability

– Bridges: Theory of Computation: Halting Problem

– Bridges: Theory of Computation: Other Non-computable Problems

• Complexity

– Complexity class

– NP complexity

– NP complete

– Reduction (complexity)

http://en.wikipedia.org/wiki/Well-formed_formula
http://www.oercommons.org/authoring/1364-basic-wff-n-proof-a-teaching-guide/view
http://en.wikipedia.org/wiki/Computability
http://en.wikipedia.org/wiki/Computable_function
http://en.wikipedia.org/wiki/Decidability_(logic)
http://en.wikipedia.org/wiki/Turing_machine
http://en.wikipedia.org/wiki/Universal_Turing_machine
http://morphett.info/turing/turing.html
http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Von_Neumann_architecture
http://www.explainxkcd.com/wiki/index.php/205:_Candy_Button_Paper
http://www.explainxkcd.com/wiki/index.php/505:_A_Bunch_of_Rocks
https://xkcd.com/2293/
https://stackoverflow.com/questions/394957/why-can-conway-s-game-of-life-be-classified-as-a-universal-machine
https://stackoverflow.com/questions/394957/why-can-conway-s-game-of-life-be-classified-as-a-universal-machine
http://wadler.blogspot.co.uk/2015/05/bright-club-computability.html
http://www.cs.ucc.ie/~dgb/courses/toc/handout35.pdf
http://www.cs.ucc.ie/~dgb/courses/toc/handout36.pdf
http://en.wikipedia.org/wiki/Complexity_class
http://en.wikipedia.org/wiki/NP_(complexity)
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/Reduction_(complexity)

Phil Molyneux M269 Unit 7 43

– P versus NP problem

– Graph of NP-Complete Problems

Go to Table of Contents

Note on References — the list of references is mainly to remind me where I obtained
some of the material and is not required reading.

References

Adelson-Velskii, G M and E M Landis (1962). An algorithm for the organization of infor-
mation. In Doklady Akademia Nauk SSSR, volume 146, pages 263–266. Translated
from Soviet Mathematics — Doklady; 3(5), 1259–1263.

Arora, Sanjeev and Boaz Barak (2009). Computational Complexity: A Modern Approach.
Cambridge University Press. ISBN 0521424267. URL http://www.cs.princeton.
edu/theory/complexity/. 41

Bird, Richard (1998). Introduction to Functional Programming using Haskell. Prentice
Hall, second edition. ISBN 0134843460. 31

Bird, Richard and Phil Wadler (1988). Introduction to Functional Programming. Prentice
Hall, first edition. ISBN 0134841972. 31

Chiswell, Ian and Wilfrid Hodges (2007). Mathematical Logic. Oxford University Press.
ISBN 0199215626.

Church, Alonzo et al. (1937). Review: AM Turing, On Computable Numbers, with an Ap-
plication to the Entscheidungsproblem. Journal of Symbolic Logic, 2(1):42–43.

Cook, Stephen A. (1971). The Complexity of Theorem-proving Procedures. In Pro-
ceedings of the Third Annual ACM Symposium on Theory of Computing, STOC ’71,
pages 151–158. ACM, New York, NY, USA. doi:10.1145/800157.805047. URL http:
//doi.acm.org/10.1145/800157.805047.

Copeland, B Jack, editor (2004). The Essential Turing: Seminal Writings in Computing,
Logic, Philosophy, Artificial Intelligence, and Artificial Life plus The Secrets of Enigma.
Oxford University Press. ISBN 0198250800.

Copeland, B. Jack; Carl J. Posy; and Oron Shagrir (2013). Computability: Turing, Gödel,
Church, and Beyond. The MIT Press. ISBN 0262018993. 24

Cormen, Thomas H.; Charles E. Leiserson; Ronald L. Rivest; and Clifford Stein (2009). In-
troduction to Algorithms. MIT Press, third edition. ISBN 0262533057. URL http:
//mitpress.mit.edu/books/introduction-algorithms.

Davis, Martin (1995). Influences of mathematical logic on computer science. In The Uni-
versal Turing Machine A Half-Century Survey, pages 289–299. Springer.

Davis, Martin (2012). The Universal Computer: The Road from Leibniz to Turing. A K
Peters/CRC Press. ISBN 1466505192.

Dowsing, R.D.; V.J Rayward-Smith; and C.D Walter (1986). First Course in Formal Logic
and Its Applications in Computer Science. Blackwells Scientific. ISBN 0632013087.

http://en.wikipedia.org/wiki/P_%3D_NP_problem
http://adriann.github.io/npc/npc.html
http://www.cs.princeton.edu/theory/complexity/
http://www.cs.princeton.edu/theory/complexity/
http://doi.acm.org/10.1145/800157.805047
http://doi.acm.org/10.1145/800157.805047
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms

44 Computability, Complexity 2 May 2021

Franzén, Torkel (2005). Gödel’s Theorem: An Incomplete Guide to Its Use and Abuse. A K
Peters, Ltd. ISBN 1568812388.

Fulop, Sean A. (2006). On the Logic and Learning of Language. Trafford Publishing. ISBN
1412023815.

Garey, Michael R. and David S. Johnson (1979). Computers and Intractability: A Guide to
the Theory of NP-completeness. W.H.Freeman Co Ltd. ISBN 0716710455. 41

Halbach, Volker (2010). The Logic Manual. OUP Oxford. ISBN 0199587841. URL http:
//logicmanual.philosophy.ox.ac.uk/index.html.

Halpern, Joseph Y; Robert Harper; Neil Immerman; Phokion G Kolaitis; Moshe Y Vardi;
and Victor Vianu (2001). On the unusual effectiveness of logic in computer science.
Bulletin of Symbolic Logic, pages 213–236.

Hankin, Chris (2004). An Introduction to Lambda Calculi for Computer Scientists. King’s
College Publications. ISBN 0954300653. URL http://www.doc.ic.ac.uk/~clh/. 33

Hindley, J. Roger and Jonathan P. Seldin (1986). Introduction to Combinators and λ-
Calculus. Cambridge University Press. ISBN 0521318394. URL http://www-maths.
swan.ac.uk/staff/jrh/.

Hindley, J. Roger and Jonathan P. Seldin (2008). Lambda-Calculus and Combinators:
An Introduction. Cambridge University Press. ISBN 0521898854. URL http://www-
maths.swan.ac.uk/staff/jrh/.

Hodges, Wilfred (1977). Logic. Penguin. ISBN 0140219854.

Hodges, Wilfred (2001). Logic. Penguin, second edition. ISBN 0141003146.

Hopcroft, John E.; Rajeev Motwani; and Jeffrey D. Ullman (2001). Introduction to Au-
tomata Theory, Languages, and Computation. Addison-Wesley, second edition. ISBN
0-201-44124-1.

Hopcroft, John E.; Rajeev Motwani; and Jeffrey D. Ullman (2007). Introduction to
Automata Theory, Languages, and Computation. Pearson, third edition. ISBN
0321514483. URL http://infolab.stanford.edu/~ullman/ialc.html. 10, 11,
16, 23, 25

Hopcroft, John E. and Jeffrey D. Ullman (2001). Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, first edition. ISBN 020102988X.

Lemmon, Edward John (1965). Beginning Logic. Van Nostrand Reinhold. ISBN
0442306768.

Levin, Leonid A (1973). Universal sorting problems. Problemy Peredachi Informatsii,
9(3):265–266.

Manna, Zohar (1974). Mathematical Theory of Computation. McGraw-Hill. ISBN 0-07-
039910-7.

Miller, Bradley W. and David L. Ranum (2011). Problem Solving with Algorithms and
Data Structures Using Python. Franklin, Beedle Associates Inc, second edition. ISBN
1590282574. URL http://interactivepython.org/courselib/static/pythonds/
index.html.

Pelletier, Francis Jeffrey and Allen P Hazen (2012). A history of natural deduction. In
Gabbay, Dov M; Francis Jeffrey Pelletier; and John Woods, editors, Logic: A History of

http://logicmanual.philosophy.ox.ac.uk/index.html
http://logicmanual.philosophy.ox.ac.uk/index.html
http://www.doc.ic.ac.uk/~clh/
http://www-maths.swan.ac.uk/staff/jrh/
http://www-maths.swan.ac.uk/staff/jrh/
http://www-maths.swan.ac.uk/staff/jrh/
http://www-maths.swan.ac.uk/staff/jrh/
http://infolab.stanford.edu/~ullman/ialc.html
http://interactivepython.org/courselib/static/pythonds/index.html
http://interactivepython.org/courselib/static/pythonds/index.html

Phil Molyneux M269 Unit 7 45

Its Central Concepts, volume 11 of Handbook of the History of Logic, pages 341–414.
North Holland. ISBN 0444529373. URL http://www.ualberta.ca/~francisp/
papers/PellHazenSubmittedv2.pdf.

Pelletier, Francis Jeffry (2000). A history of natural deduction and elementary logic text-
books. Logical consequence: Rival approaches, 1:105–138. URL http://www.sfu.ca/
~jeffpell/papers/pelletierNDtexts.pdf.

Rayward-Smith, V J (1983). A First Course in Formal Language Theory. Blackwells Scien-
tific. ISBN 0632011769.

Rayward-Smith, V J (1985). A First Course in Computability. Blackwells Scientific. ISBN
0632013079.

Rich, Elaine A. (2007). Automata, Computability and Complexity: Theory and Applica-
tions. Prentice Hall. ISBN 0132288060. URL http://www.cs.utexas.edu/~ear/
cs341/automatabook/. 25, 41

Smith, Peter (2003). An Introduction to Formal Logic. Cambridge University Press. ISBN
0521008042. URL http://www.logicmatters.net/ifl/.

Smith, Peter (2007). An Introduction to Gödel’s Theorems. Cambridge University Press,
first edition. ISBN 0521674530.

Smith, Peter (2013). An Introduction to Gödel’s Theorems. Cambridge University Press,
second edition. ISBN 1107606756. URL http://godelbook.net. 14

Smullyan, Raymond M. (1995). First-Order Logic. Dover Publications Inc. ISBN
0486683702.

Soare, Robert Irving (1996). Computability and Recursion. Bulletin of Symbolic Logic,
2:284–321. URL http://www.people.cs.uchicago.edu/~soare/History/. 24

Soare, Robert Irving (2013). Interactive computing and relativized computability. In
Computability: Turing, Gödel, Church, and Beyond, chapter 9, pages 203–260. The MIT
Press. URL http://www.people.cs.uchicago.edu/~soare/Turing/shagrir.pdf.
24

Teller, Paul (1989a). A Modern Formal Logic Primer: Predicate and Metatheory: 2.
Prentice-Hall. ISBN 0139031960. URL http://tellerprimer.ucdavis.edu.

Teller, Paul (1989b). A Modern Formal Logic Primer: Sentence Logic: 1. Prentice-Hall.
ISBN 0139031707. URL http://tellerprimer.ucdavis.edu.

Thompson, Simon (1991). Type Theory and Functional Programming. Addison Wesley.
ISBN 0201416670. URL http://www.cs.kent.ac.uk/people/staff/sjt/TTFP/.

Tomassi, Paul (1999). Logic. Routledge. ISBN 0415166969. URL http://
emilkirkegaard.dk/en/wp-content/uploads/Paul-Tomassi-Logic.pdf.

Turing, Alan Mathison (1936). On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society, 42:230–265.
22

Turing, Alan Mathison (1937). On computable numbers, with an application to the
Entscheidungsproblem. A Correction. Proceedings of the London Methematical Soci-
ety, 43:544–546. 22

http://www.ualberta.ca/~francisp/papers/PellHazenSubmittedv2.pdf
http://www.ualberta.ca/~francisp/papers/PellHazenSubmittedv2.pdf
http://www.sfu.ca/~jeffpell/papers/pelletierNDtexts.pdf
http://www.sfu.ca/~jeffpell/papers/pelletierNDtexts.pdf
http://www.cs.utexas.edu/~ear/cs341/automatabook/
http://www.cs.utexas.edu/~ear/cs341/automatabook/
http://www.logicmatters.net/ifl/
http://godelbook.net
http://www.people.cs.uchicago.edu/~soare/History/
http://www.people.cs.uchicago.edu/~soare/Turing/shagrir.pdf
http://tellerprimer.ucdavis.edu
http://tellerprimer.ucdavis.edu
http://www.cs.kent.ac.uk/people/staff/sjt/TTFP/
http://emilkirkegaard.dk/en/wp-content/uploads/Paul-Tomassi-Logic.pdf
http://emilkirkegaard.dk/en/wp-content/uploads/Paul-Tomassi-Logic.pdf

46 Computability, Complexity 2 May 2021

van Dalen, Dirk (1994). Logic and Structure. Springer-Verlag, third edition. ISBN
0387578390.

van Dalen, Dirk (2012). Logic and Structure. Springer-Verlag, fifth edition. ISBN
1447145577.

Go to Table of Contents

Author Phil Molyneux Written 2 May 2021 Printed 25th April 2021
Subject dir: 〈baseURL〉/OU/Courses/Computing/M269/M269TutorialNotes
Topic path: /M269TutorialComputability/M269TutorialComputability2020J/M269TutorialComputability2020J.pdf

	M269 Unit 7
	Adobe Connect
	Student View
	Settings
	Student & Tutor Views
	Sharing Screen & Applications
	Ending a Meeting
	Invite Attendees
	Layouts
	Chat Pods

	Computability
	The Turing Machine
	Turing Machine Examples
	The Successor Function
	The Binary Palindrome Function
	Binary Addition Example

	Computability, Decidability and Algorithms
	Non-Computability — Halting Problem
	Reductions & Non-Computability

	Lambda Calculus
	Motivation
	Lambda Terms
	Substitution
	Lambda Calculus Encodings

	Complexity
	NP-Completeness and Boolean Satisfiability

	Future Work
	References
	Web Sites
	References

