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1 M269 Unit 7 — Computability, Complexity Tutorial

• Welcome & Introductions

• Computability topics:

– Ideas of Computation and Algorithms

1
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– Problem Reduction

– Turing Machines

– Undecidable, Semi-decidable and decidable problems

– Effective Computability: Turing machines, Lambda Calculus, µ-recursive func-
tions

– Optional topic Lambda Calculus introduction

• Complexity topics

• Exercises similar to CMAs and exam

• Key aim: Identify where people have problems and how to overcome them.

• Adobe Connect — if you or I get cut off, wait till we reconnect (or send you an email)

• Recording Meeting Record Meeting. . . 4

Introductions — Me

• Name Phil Molyneux

• Background Physics and Maths, Operational Research, Computer Science

• First programming languages Fortran, BASIC, Pascal

• Favourite Software

– Haskell — pure functional programming language

– Text editors TextMate, Sublime Text — previously Emacs

– Word processing and presentation slides in LATEX

– Mac OS X

• Learning style — I read the manual before using the software (really)

Introductions — You

• Name ?

• Position in M269 ? Which part of which Units and/or Reader have you read ?

• Particular topics you want to look at ?

• Learning Syle ?

Go to Table of Contents

http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/BASIC
http://en.wikipedia.org/wiki/Pascal_(programming_language)
http://www.haskell.org/haskellwiki/Haskell
https://macromates.com
http://www.sublimetext.com
http://www.emacswiki.org
http://www.latex-project.org
https://developer.apple.com/devcenter/mac/index.action
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2 Adobe Connect Interface and Settings

2.1 Adobe Connect Interface — Student View

Adobe Connect Interface — Student Quick Reference
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Adobe Connect Interface — Student View

2.2 Adobe Connect Settings

Adobe Connect Settings

• Everybody: Audio Settings Meeting Audio Setup Wizard. . .

• Audio Menu bar Audio Microphone rights for Participants 4

• Do not Enable single speaker mode

• Drawing Tools Share pod menu bar Draw (1 slide/screen)

• Share pod menu bar Menu icon Enable Participants to draw 4 gray

• Meeting Preferences Whiteboard Enable Participants to draw 4

• Cancel hand tool . . . Do not enable green pointer. . .

• Meeting Preferences Attendees Pod 8 Raise Hand notification

• Meeting Preferences Display Name Display First & Last Name

• Cursor Meeting Preferences General tab Host Cursors Show to all attendees 4 (default Off )

• Meeting Preferences Screen Share Cursor Show Application Cursor

• Webcam Menu bar Webcam Enable Webcam for Participants 4

• Recording Meeting Record Meeting. . . 4
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Adobe Connect — Access

• Tutor Access

TutorHome M269 Website Tutorials

Cluster Tutorials M269 Online tutorial room

Tutor Groups M269 Online tutor group room

Module-wide Tutorials M269 Online module-wide room

• Attendance

TutorHome Students View your tutorial timetables

• Beamer Slide Scaling 440% (422 x 563 mm)

• Clear Everyone’s Status

Attendee Pod Menu Clear Everyone’s Status

• Grant Access and send link via email

Meeting Manage Access & Entry Invite Participants. . .

• Presenter Only Area

Meeting Enable/Disable Presenter Only Area

Adobe Connect — Keystroke Shortcuts

• Keyboard shortcuts in Adobe Connect

• Toggle Mic + M (Mac), Ctrl + M (Win) (On/Disconnect)

• Toggle Raise-Hand status + E

• Close dialog box (Mac), Esc (Win)

• End meeting + \

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html
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2.3 Adobe Connect Interface — Student & Tutor Views

Adobe Connect Interface — Student View (default)
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Adobe Connect Interface — Tutor Quick Reference

Adobe Connect Interface — Tutor View
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2.4 Adobe Connect — Sharing Screen & Applications

• Share My Screen Application tab Terminal for Terminal

• Share menu Change View Zoom in for mismatch of screen size/resolution (Participants)

• (Presenter) Change to 75% and back to 100% (solves participants with smaller screen
image overlap)

• Leave the application on the original display

• Beware blued hatched rectangles — from other (hidden) windows or contextual
menus

• Presenter screen pointer affects viewer display — beware of moving the pointer away
from the application

• First time: System Preferences Security & Privacy Privacy Accessibility

2.5 Adobe Connect — Ending a Meeting

• Notes for the tutor only

• Student: Meeting Exit Adobe Connect

• Tutor:

• Recording Meeting Stop Recording 4

• Remove Participants Meeting End Meeting. . . 4

– Dialog box allows for message with default message:

– The host has ended this meeting. Thank you for attending.

• Recording availability In course Web site for joining the room, click on the eye icon
in the list of recordings under your recording — edit description and name

• Meeting Information Meeting Manage Meeting Information — can access a range of informa-
tion in Web page.

• Attendance Report see course Web site for joining room

2.6 Adobe Connect — Invite Attendees

• Provide Meeting URL Menu Meeting Manage Access & Entry Invite Participants. . .

• Allow Access without Dialog Menu Meeting Manage Meeting Information provides new browser
window with Meeting Information Tab bar Edit Information

• Check Anyone who has the URL for the meeting can enter the room

• Default Only registered users and accepted guests may enter the room

• Reverts to default next session but URL is fixed

• Guests have blue icon top, registered participants have yellow icon top — same icon
if URL is open

https://en.wikipedia.org/wiki/Terminal_(macOS)
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• See Start, attend, and manage Adobe Connect meetings and sessions

2.7 Layouts

• Creating new layouts example Sharing layout

• Menu Layouts Create New Layout. . . Create a New Layout dialog Create a new blank layout and name it
PMolyMain

• New layout has no Pods but does have Layouts Bar open (see Layouts menu)

• Pods

• Menu Pods Share Add New Share and resize/position — initial name is Share n

• Rename Pod Menu Pods Manage Pods. . . Manage Pods Select Rename or Double-click & rename

• Add Video pod and resize/reposition

• Add Attendance pod and resize/reposition

• Add Chat pod — name it PMolyChat — and resize/reposition

• Dimensions of Sharing layout (on 27-inch iMac)

– Width of Video, Attendees, Chat column 14 cm

– Height of Video pod 9 cm

– Height of Attendees pod 12 cm

– Height of Chat pod 8 cm

• Duplicating Layouts does not give new instances of the Pods and is probably not a
good idea (apart from local use to avoid delay in reloading Pods)

2.8 Chat Pods

• Format Chat text

• Chat Pod menu icon My Chat Color

• Choices: Red, Orange, Green, Brown, Purple, Pink, Blue, Black

• Note: Color reverts to Black if you switch layouts

• Chat Pod menu icon Show Timestamps

Go to Table of Contents

3 Computability

Ideas of Computation

• The idea of an algorithm and what is effectively computable

https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html
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• Church-Turing thesis Every function that would naturally be regarded as com-
putable can be computed by a deterministic Turing Machine. (Unit 7 Section 4)

• See Phil Wadler on computability theory performed as part of the Bright Club at The
Strand in Edinburgh, Tuesday 28 April 2015

Computability — Models of Computation

• In automata theory, a problem is the question of deciding whether a given string is
a member of some particular language

• If Σ is an alphabet, and L is a language over Σ, that is L ⊆ Σ∗, where Σ∗ is the set
of all strings over the alphabet Σ then we have a more formal definition of decision
problem

• Given a string w ∈ Σ∗, decide whether w ∈ L

• Example: Testing for a prime number — can be expressed as the language Lp con-
sisting of all binary strings whose value as a binary number is a prime number (only
divisible by 1 or itself)

• See Hopcroft et al. (2007, section 1.5.4)

Automata Theory — Alphabets, Strings, Languages

• An Alphabet, Σ, is a finite, non-empty set of symbols.

• Binary alphabet Σ = {0, 1}

• Lower case letters Σ = {a, b, . . . , z}

• A String is a finite sequence of symbols from some alphabet

• 01101 is a string from the Binary alphabet Σ = {0, 1}

• The Empty string, ε, contains no symbols

• Powers: Σk is the set of strings of length k with symbols from Σ
• The set of all strings over an alphabet Σ is denoted Σ∗
• Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ . . .

• Question Does Σ0 = � ? (� is the empty set)

• An Language, L, is a subset of Σ∗
• The set of binary numerals whose value is a prime

{10, 11, 101, 111, 1011, . . . }

• The set of binary numerals whose value is a square

{100, 1001, 10000, 11001, . . . }

Computability — Church-Turing Thesis

• Church-Turing thesis Every function that would naturally be regarded as com-
putable can be computed by a deterministic Turing Machine.

http://wadler.blogspot.co.uk/2015/05/bright-club-computability.html
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• physical Church-Turing thesis Any finite physical system can be simulated (to any
degree of approximation) by a Universal Turing Machine.

• strong Church-Turing thesis Any finite physical system can be simulated (to any
degree of approximation) with polynomial slowdown by a Universal Turing Machine.

• Shor’s algorithm (1994) — quantum algorithm for factoring integers — an NP prob-
lem that is not known to be P — also not known to be NP-complete and we have no
proof that it is not in P

• Reference: Section 4 of Unit 6 & 7 Reader

3.1 The Turing Machine

• Finite control which can be in any of a finite number of states

• Tape divided into cells, each of which can hold one of a finite number of symbols

• Initially, the input, which is a finite-length string of symbols in the input alphabet, is
placed on the tape

• All other tape cells (extending unbounded left and right) hold a special symbol called
blank

• A tape head which initially is over the leftmost input symbol

• A move of the Turing Machine depends on the state and the tape symbol scanned

• A move can change state, write a symbol in the current cell, move left, right or stay

• References: Hopcroft et al. (2007, page 326), Unit 6 & 7 Reader (section 5.3)

Turing Machine Diagram

. . . b b a a a a . . . Input/Output Tape

q0q1

q2

q3 . . .

qn

Finite Control

q1

Reading and Writing Head
(moves in both directions)

Source: Sebastian Sardina http://www.texample.net/tikz/examples/turing-machine-
2/
Date: 18 February 2012 (seen Sunday, 24 August 2014)
Further Source: Partly based on Ludger Humbert’s pics of Universal Turing Machine at

http://en.wikipedia.org/wiki/Shor's_algorithm
http://www.texample.net/tikz/examples/turing-machine-2/
http://www.texample.net/tikz/examples/turing-machine-2/
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https://haspe.homeip.net/projekte/ddi/browser/tex/pgf2/turingmaschine-schema.
tex (not found) — http://www.texample.net/tikz/examples/turing-machine/

Turing Machine notation

• Q finite set of states of the finite control

• Σ finite set of input symbols (M269 S)

• Γ complete set of tape symbols Σ ⊂ Γ
• δ Transition function (M269 instructions, I)
δ :: Q× Γ → Q× Γ × {L, R, S}
δ(q, X) , (p, Y, D)

• δ(q, X) takes a state, q and a tape symbol, X and returns (p, Y, D) where p is a state,
Y is a tape symbol to overwrite the current cell, D is a direction, Left, Right or Stay

• q0 start state q0 ∈ Q

• B blank symbol B ∈ Γ and B ∉ Σ
• F set of final or accepting states F ⊆ Q

Go to Table of Contents

3.2 Turing Machine Examples

• Morphett’s Turing machine simulator — the examples below are adapted from here

• Ugarte’s Turing machine simulator

• XKCD A Bunch of Rocks — XKCD Explanation

Image below (will need expanding to be readable)

https://haspe.homeip.net/projekte/ddi/browser/tex/pgf2/turingmaschine-schema.tex
https://haspe.homeip.net/projekte/ddi/browser/tex/pgf2/turingmaschine-schema.tex
http://www.texample.net/tikz/examples/turing-machine/
http://morphett.info/turing/turing.html
https://turingmachinesimulator.com/
https://xkcd.com/505/
https://www.explainxkcd.com/wiki/index.php/505:_A_Bunch_of_Rocks
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3.2.1 The Successor Function

• Input binary representation of numeral n

• Output binary representation of n + 1

• Example 1010 , 1011 and 1011 , 1100

• Initial cell: leftmost symbol of n

• Strategy

• Stage A make the rightmost cell the current cell

• Stage B Add 1 to the current cell.

• If the current cell is 0 then replace it with 1 and go to stage C

• If the current cell is 1 replace it with 0 and go to stage B and move Left

• If the current cell is blank, replace it by 1 and go to stage C

• Stage C Finish up by making the leftmost cell current

• Represent the Turing Machine program as a list of quintuples (q, X, p, Y, D)

• Stage A

(q0, 0, q0, 0, R)

(q0, 1, q0, 1, R)

(q0, B, q1, B, L)

• Stage B

(q1, 0, q2, 1, S)

(q1, 1, q1, 0, L)

(q1, B, q2, 1, S)

• Stage C

(q2, 0, q2, 0, L)

(q2, 1, q2, 1, L)

(q2, B, qh, B, R)

(Smith, 2013, page 315)

• Exercise Translate the quintuples (q, X, p, Y, D) into English and check they are the
same as the specification

• Stage A make the rightmost cell the current cell

(q0, 0, q0, 0, R)

If state q0 and read symbol 0 then stay in state q0 write 0, move R

(q0, 1, q0, 1, R)

If state q0 and read symbol 1 then stay in state q0 write 1, move R

(q0, B, q1, B, L)
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If state q0 and read symbol B then state q1 write B, move L

• Exercise Translate the quintuples (q, X, p, Y, D) into English

• Stage B Add 1 to the current cell.

(q1, 0, q2, 1, S)

If state q1 and read symbol 0 then state q2 write 1, stay

(q1, 1, q1, 0, L)

If state q1 and read symbol 1 then state q1 write 0, move L

(q1, B, q2, 1, S)

If state q1 and read symbol B then state q2 write 1, stay

• Exercise Translate the quintuples (q, X, p, Y, D) into English

• Stage C Finish up by making the leftmost cell current

(q2, 0, q2, 0, L)

If state q2 and read symbol 0 then state q2 write 0, move L

(q2, 1, q2, 1, L)

If state q2 and read symbol 1 then state q2 write 0, move L

(q2, B, qh, B, R)

If state q2 and read symbol B then state qh write B, move R HALT

• Notice that the Turing Machine feels like a series of if ... then or case statements
inside a while loop

• Sample Evaluation 11 , 100

• Representation · · ·BX1X2 · · ·Xi–1qXiXi+1 · · ·XnB · · ·

q011

1q01

11q0B

1q11

q110

q1B00

q2100

q2B100

qh100

• Exercise evaluate 1011 , 1100

• Representation · · ·BX1X2 · · ·Xi–1qXiXi+1 · · ·XnB · · ·

• q is the state of the TM

• The head is scanning the symbol Xi
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• Leading or trailing blanks B are (usually) not shown unless the head is scanning them

• `M denotes one move of the TM M

• `∗M denotes zero or more moves

• ` will be used if the TM M is understood

• If (q, Xi, p, Y, L) denotes a TM move then

X1 · · ·Xi–1qXi · · ·Xn `M X1 · · ·Xi–2pXi–1Y · · ·Xn

(Hopcroft et al., 2007, sec 8.2.3)

Go to Table of Contents

3.2.2 The Binary Palindrome Function

• Input binary string s

• Output YES if palindrome, NO otherwise

• Example 1010 , NO and 1001 , YES

• Initial cell: leftmost symbol of s

• Strategy

• Stage A read the leftmost symbol

• If blank then accept it and go to stage D otherwise erase it

• Stage B find the rightmost symbol

• If the current cell matches leftmost recently read then erase it and go to stage C

• Otherwise reject it and go to stage E

• Stage C return to the leftmost symbol and stage A

• Stage D print YES and halt

• Stage E erase the remaining string and print NO

• Represent the Turing Machine program as a list of quintuples (q, X, p, Y, D)

• Stage A read the leftmost symbol

(q0, 0, q1o, B, R)

(q0, 1, q1i, B, R)

(q0, B, q5, B, S)

• Stage B find rightmost symbol

(q1o, B, q2o, B, L)

(q1o,∗, q1o,∗, R) * is a wild card, matches anything

(q1i, B, q2i, B, L)

(q1i,∗, q1i,∗, R)

• Stage B check
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(q2o, 0, q3, B, L)

(q2o, B, q5, B, S)

(q2o,∗, q6,∗, S)

(q2i, 1, q3, B, L)

(q2i, B, q5, B, S)

(q2i,∗, q6,∗, S)

• Stage C return to the leftmost symbol and stage A

(q3, B, q5, B, S)

(q3,∗, q4,∗, L)

(q4, B, q0, B, R)

(q4,∗, q4,∗, L)

• Stage D accept and print YES

(q5,∗, q5a, Y, R)

(q5a,∗, q5b
, E, R)

(q5b
,∗, q7, S, S)

• Stage E erase the remaining string and print NO

(q6, B, q6a, N, R)

(q6,∗, q6, B, L)

(q6a,∗, q7, O, S)

• Finish

(q7, B, qh, B, R)

(q7,∗, q7,∗, L)

• Sample Evaluation 101 , YES

q0101 ` Bq1i01 ` B0q1i1 ` B01q1iB

` B0q2i1

` Bq30B ` q4B0B

` Bq00B ` BBq1oB

` Bq2oBB

` Bq5BB ` Yq5aB ` YEq5b
B ` YEq7S

` Yq7ES ` Bq7YES ` q7BYES ` qhYES

• Exercise Evaluate 110 , NO

Go to Table of Contents
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3.2.3 Binary Addition Example

• Input two binary numerals separated by a single space n1 n2

• Output binary numeral which is the sum of the inputs

• Example 110110 + 101011 , 1100001

• Initial cell: leftmost symbol of n1 n2

• Insight look at the arithmetic algorithm

1 1 0 1 1 0
1 0 1 0 1 1

1 1 0 0 0 0 1

• Discussion how can we overwrite the first number with the result and remember
how far we have gone ?

Binary Addition Example — Arithmetic Reinvented

1 1 0 1 1 0
1 0 1 0 1 1

1 1 0 1 1 y
1 0 1 0 1

1 1 1 0 x y
1 0 1 0

1 1 1 x x y
1 0 1

1 0 0 x x x y
1 0

1 0 x x x x y
1

1 y x x x x y

1 1 0 0 0 0 1

• Input two binary numerals separated by a single space n1 n2

• Output binary numeral which is the sum of the inputs

• Example 110110 + 101011 , 1100001

• Initial cell: leftmost symbol of n1 n2

• Strategy

• Stage A find the rightmost symbol

If the symbol is 0 erase and go to stage Bx

If the symbol is 1 erase go to stage By
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If the symbol is blank go to stage F

dealing with each digit in n1

if no further digits in n1 go to final stage

• Stage Bx Move left to a blank go to stage Cx

• Stage By Move left to a blank go to stage Cy

moving to n1

• Stage Cx Move left to find first 0, 1 or B

Turn 0 or B to X, turn 1 to Y and go to stage A

adding 0 to a digit finalises the result (no carry one)

• Stage Cy Move left to find first 0, 1 or B

Turn 0 or B to 1 and go to stage D

Turn 1 to 0, move left and go to stage Cy

dealing with the carry one in school arithmetic

• Stage D move right to X, Y or B and go to stage E

• Stage E replace 0 by X, 1 by Y, move right and go to Stage A

finalising the value of a digit resulting from a carry

• Stage F move left and replace X by 0, Y by 1 and at B halt

• Represent the Turing Machine program as a list of quintuples (q, X, p, Y, D)

• Stage A find the rightmost symbol

(q0, B, q1, B, R)

(q0,∗, q0,∗, R) * is a wild card, matches anything

(q1, B, q2, B, L)

(q1,∗, q1,∗, R)

(q2, 0, q3x, B, L)

(q2, 1, q3y, B, L)

(q2, B, q7, B, L)

• Stage Bx move left to blank

(q3x, B, q4x, B, L)

(q3x,∗, q3x,∗, L)

• Stage By move left to blank

(q3y, B, q4y, B, L)

(q3y,∗, q3y,∗, L)

• Stage Cx move left to 0, 1, or blank

(q4x, 0, q0, x, R)
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(q4x, 1, q0, y, R)

(q4x, B, q0, x, R)

(q4x,∗, q4x,∗, L)

• Stage Cy move left to 0, 1, or blank

(q4y, 0, q5, 1, S)

(q4y, 1, q4y, 0, L)

(q4y, B, q5, 1, S)

(q4y,∗, q4y,∗, L)

• Stage D move right to x, y or B

(q5, x, q6, x, L)

(q5, y, q6, y, L)

(q5, B, q6, B, L)

(q5,∗, q5,∗, R)

• Stage E replace 0 by x, 1 by y

(q6, 0, q0, x, R)

(q6, 1, q0, y, R)

• Stage F replace x by 0, y by 1

(q7, x, q7, 0, L)

(q7, y, q7, 1, L)

(q7, B, qh, B, R)

(q7,∗, q7,∗, L)

• Exercise Evaluate 11 + 10 , 101

• Exercise Evaluate 11 + 10 , 101

• Stage A find the rightmost symbol

BBq011B10B Note space symbols B at start and end

` BB1q01B10B

` BB11q0B10B

` BB11Bq110B

` BB11B1q10B

` BB11B10q1B

` BB11B1q20B

` BB11Bq3x1BB

• Stage Bx move left to blank

` B11q3xB1BB
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• Stage Cx move left to 0, 1, or blank

` BB1q4x1B1BB

` BB1Yq0B1BB

• Stage A find the rightmost symbol

` BB1BYBq11BB

` BB1YB1q1BB

` BB1YBq21BB

` BB1Yq3yBBBB

• Stage Cy move left to 0, 1, or blank

` BB1q4yYBBBB

` BBq4y1YBBBB

` Bq4yB0YBBBB

` Bq510YBBBB

• Stage D move right to x, y or B

` Bq50YBBBB

` B0q5YBBBB

` Bq60YBBBB

• Stage E replace 0 by x, 1 by y

` B1Xq0YBBBB

• Stage A find the rightmost symbol

` B1XYq0BBBB

` B1XYBq1BBB

` B1XYq2BBBB

` B1Xq7YBBBB

• Stage F replace x by 0, y by 1

` B1q7X1BBBB

` Bq7101BBBB

` Bq7B101BBBB

` Bqh101BBBB

• This is mimicking what you learnt to do on paper as a child! Real step-by-step in-
structions

• See Morphett’s Turing machine simulator for more examples (takes too long by
hand!)

Go to Table of Contents

http://morphett.info/turing/turing.html
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3.3 Computability, Decidability and Algorithms

Universal Turing Machine

• Universal Turing Machine, U, is a Turing Machine that can simulate any arbitrary
Turing machine, M

• Achieves this by encoding the transition function of M in some standard way

• The input to U is the encoding for M followed by the data for M

• See Turing machine examples

• Decidable — there is a TM that will halt with yes/no for a decision problem — that
is, given a string w over the alphabet of P the TM with halt and return yes.no the
string is in the language P (same as recursive in Recursion theory — old use of the
word)

• Semi-decidable — there is a TM will halt with yes if some string is in P but may loop
forever on some inputs (same as recursively enumerable) — Halting Problem

• Highly-undecidable — no outcome for any input — Totality, Equivalence Problems

Undecidable Problems

• Halting problem — the problem of deciding, given a program and an input, whether
the program will eventually halt with that input, or will run forever — term first used
by Martin Davis 1952

• Entscheidungsproblem — the problem of deciding whether a given statement is
provable from the axioms using the rules of logic — shown to be undecidable by
Turing (1936) by reduction from the Halting problem to it

• Type inference and type checking in the second-order lambda calculus (important
for functional programmers, Haskell, GHC implementation)

• Undecidable problem — see link to list

(Turing, 1936, 1937)

3.3.1 Non-Computability — Halting Problem

Halting Problem — Sketch Proof

• Halting problem — is there a program that can determine if any arbitrary program
will halt or continue forever ?

• Assume we have such a program (Turing Machine) h(f,x) that takes a program f
and input x and determines if it halts or not� �

h( f ,x )
= i f f (x ) runs forever

return True
else

return False� �
• We shall prove this cannot exist by contradiction

https://en.wikipedia.org/wiki/Universal_Turing_machine
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Turing_machine_examples
http://en.wikipedia.org/wiki/Recursion_theory
http://en.wikipedia.org/wiki/Halting_problem
http://en.wikipedia.org/wiki/Entscheidungsproblem
http://en.wikipedia.org/wiki/System_F
http://en.wikipedia.org/wiki/Undecidable_problem
https://simple.wikipedia.org/wiki/Halting_problem
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• Now invent two further programs:

• q(f) that takes a program f and runs h with the input to f being a copy of f

• r(f) that runs q(f) and halts if q(f) returns True, otherwise it loops� �
q( f )

= h( f , f )

r ( f )
= i f q( f )

return
else

while True : continue� �
• What happens if we run r(r) ?

• If it loops, q(r) returns True and it does not loop — contradiction.

Why undecidable problems must exist

• A problem is really membership of a string in some language

• The number of different languages over any alphabet of more than one symbol is
uncountable

• Programs are finite strings over a finite alphabet (ASCII or Unicode) and hence count-
able.

• There must be an infinity (big) of problems more than programs.

• Computational problem — defined by a function

• Computational problem is computable if there is a Turing machine that will calcu-
late the function.

Reference: Hopcroft et al. (2007, page 318)

Computability and Terminology (1)

• The idea of an algorithm dates back 3000 years to Euclid, Babylonians. . .

• In the 1930s the idea was made more formal: which functions are computable?

• A function is a set of pairs f = {(x, f(x)) : x ∈ X∧ f(x) ∈ Y} with the function property

• Function property: (a, b) ∈ f∧ (a, c) ∈ f⇒ b == c

• Function property: Same input implies same output

• Note that maths notation is deeply inconsistent here — see Function and History of
the function concept

• What do we mean by computing a function — an algorithm ?

Function: Relation and Rules

• The idea of function as a set of pairs (Binary relation) with the function property
(each element of the domain has at most one element in the co-domain) is fairly
recent — see History of the function concept

http://en.wikipedia.org/wiki/Computable_function
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/History_of_the_function_concept
http://en.wikipedia.org/wiki/History_of_the_function_concept
https://en.wikipedia.org/wiki/Binary_relation
https://en.wikipedia.org/wiki/History_of_the_function_concept
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• School maths presents us with function as rule to get from the input to the output

• Example: the square function: square x = x× x

• But lots of rules (or algorithms) can implement the same function

• square1 x = x^2

• square2 x =

x times︷ ︸︸ ︷
x + · · · + x if x is integer

Computability and Terminology (2)

• In the 1930s three definitions:

• λ-Calculus, simple semantics for computation — Alonzo Church

• General recursive functions — Kurt Gödel

• Universal (Turing) machine — Alan Turing

• Terminology:

– Recursive, recursively enumerable — Church, Kleene

– Computable, computably enumerable — Gödel, Turing

– Decidable, semi-decidable, highly undecidable

– In the 1930s, computers were human

– Unfortunate choice of terminology

• Turing and Church showed that the above three were equivalent

• Church-Turing thesis — function is intuitively computable if and only if Turing ma-
chine computable

Sources on Computability Terminology

• Soare (1996) on the history of the terms computable and recursive meaning calcula-
ble

• See also Soare (2013, sections 9.9–9.15) in Copeland et al. (2013)

3.3.2 Reductions & Non-Computability

Reducing one problem to another

• To reduce problem P1 to P2, invent a construction that converts instances of P1 to
P2 that have the same answer. That is:

– any string in the language P1 is converted to some string in the language P2

– any string over the alphabet of P1 that is not in the language of P1 is converted
to a string that is not in the language P2

• With this construction we can solve P1

http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Alonzo_Church
https://en.wikipedia.org/wiki/%CE%9C-recursive_function
https://en.wikipedia.org/wiki/Kurt_G%C3%B6del
http://en.wikipedia.org/wiki/Universal_Turing_machine
http://en.wikipedia.org/wiki/Alan_Turing
http://en.wikipedia.org/wiki/Stephen_Cole_Kleene
https://en.wikipedia.org/wiki/Church%E2%80%93Turing_thesis
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– Given an instance of P1, that is, given a string w that may be in the language
P1, apply the construction algorithm to produce a string x

– Test whether x is in P2 and give the same answer for w in P1

(Hopcroft et al., 2007, page 322)

• Problem Reduction — Ordinary Example

• Want to phone Alice but don’t have her number

• You know that Bill has her number

• So reduce the problem of finding Alice’s number to the problem of getting hold of
Bill

(Rich, 2007, page 449)

• The direction of reduction is important

• If we can reduce P1 to P2 then (in some sense) P2 is at least as hard as P1 (since a
solution to P2 will give us a solution to P1)

• So, if P2 is decidable then P1 is decidable

• To show a problem is undecidable we have to reduce from an known undecidable
problem to it

• ∀x(dpP1(x) = dpP2
(reduce(x)))

• Since, if P1 is undecidable then P2 is undecidable

• Some further examples

• Totality and Equivalence Problems http://www.cs.ucc.ie/~dgb/courses/toc/
handout36.pdf

• Totality and Equivalence Problems https://www.cs.rochester.edu/~nelson/courses/
csc_173/computability/undecidable.html

A1

input outputf A2
f(input)

• A reduction of problem P1 to problem P2

– transforms inputs to P1 into inputs to P2

– runs algorithm A2 (which solves P2) and

– interprets the outputs from A2 as answers to P1

• More formally: A problem P1 is reducible to a problem P2 if there is a function f that
takes any input x to P1 and transforms it to an input f(x) of P2

such that the solution of P2 on f(x) is the solution of P1 on x

http://www.cs.ucc.ie/~dgb/courses/toc/handout36.pdf
http://www.cs.ucc.ie/~dgb/courses/toc/handout36.pdf
https://www.cs.rochester.edu/~nelson/courses/csc_173/computability/undecidable.html
https://www.cs.rochester.edu/~nelson/courses/csc_173/computability/undecidable.html
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Source: Bridge Theory of Computation, 2007

A1

M M2f A2
(M, M)

• Given an algorithm (A2) for matrix multiplication (P2)

– Input: pair of matrices, (M1, M2)

– Output: matrix result of multiplying M1 and M2

• P1 is the problem of squaring a matrix

– Input: matrix M

– Output: matrix M2

• Algorithm A1 has

f(M) = (M, M)

uses A2 to calculate M×M = M2

Non-Computable Problems

A1

input outputf A2
f(input)

• If P2 is computable (A2 exists) then P1 is computable (f being simple or polynomial)

• Equivalently If P1 is non-computable then P2 is non-computable

• Exercise: show B→ A ≡ ¬A→ ¬B

• Proof by Contrapositive

• B→ A ≡ ¬B∨ A by truth table or equivalences

≡ ¬(¬A)∨¬B commutativity and negation laws

≡ ¬A→ ¬B equivalences

• Common error: switching the order round

http://www.cs.ucc.ie/~dgb/courses/toc.html
https://en.wikipedia.org/wiki/Proof_by_contrapositive
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Totality Problem

HP

(P, x) YES/NOf TP
Q

• Totality Problem

– Input: program Q

– Output: YES if Q terminates for all inputs else NO

• Assume we have algorithm TP to solve the Totality Problem

• Now reduce the Halting Problem to the Totality Problem

HP

(P, x) YES/NOf TP
Q

• Define f to transform inputs to HP to TP pseudo-Python� �
def f(P,x) :
def Q(y):
# ignore y
P(x)

return Q� �
• Run TP on Q

– If TP returns YES then P halts on x

– If TP returns NO then P does not halt on x

• We have solved the Halting Problem — contradiction

Negative Value Problem

HP

(P, x) YES/NOf NVP
(Q, v)

• Negative Value Problem

– Input: program Q which has no input and variable v used in Q

– Output: YES if v ever gets assigned a negative value else NO
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• Assume we have algorithm NVP to solve the Negative Value Problem

• Now reduce the Halting Problem to the Negative Value Problem

HP

(P, x) YES/NOf NVP
(Q, v)

• Define f to transform inputs to HP to NVP pseudo-Python� �
def f(P,x) :
def Q(y):
# ignore y
P(x)
v = -1

return (Q,var(v))� �
• Run NVP on (Q, var(v)) var(v) gets the variable name

– If NVP returns YES then P halts on x

– If NVP returns NO then P does not halt on x

• We have solved the Halting Problem — contradiction

Squaring Function Problem

HP

(P, x) YES/NOf SFP
Q

• Squaring Function Problem

– Input: program Q which takes an integer, y

– Output: YES if Q always returns the square of y else NO

• Assume we have algorithm SFP to solve the Squaring Function Problem

• Now reduce the Halting Problem to the Squaring Function Problem

HP

(P, x) YES/NOf SFP
Q

• Define f to transform inputs to HP to SFP pseudo-Python
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� �
def f(P,x) :
def Q(y):
P(x)
return y * y

return Q� �
• Run SFP on Q

– If SFP returns YES then P halts on x

– If SFP returns NO then P does not halt on x

• We have solved the Halting Problem — contradiction

Equivalence Problem

HP

P YES/NOf EP
(P1, P2)

• Equivalence Problem

– Input: two programs P1 and P2

– Output: YES if P1 and P2 solve the ame problem (same output for same input)
else NO

• Assume we have algorithm EP to solve the Equivalence Problem

• Now reduce the Totality Problem to the Equivalence Problem

TP

P YES/NOf EP
(P1, P2)

• Define f to transform inputs to TP to EP pseudo-Python� �
def f(P) :
def P1(x):
P(x)
return "Same string"

def P2(x)
return "Same string"

return (P1,P2)� �
• Run EP on (P1, P2)

– If EP returns YES then P halts on all inputs

– If EP returns NO then P does not halt on all inputs

• We have solved the Totality Problem — contradiction



30 Computability, Complexity 2 May 2021

Rice’s Theorem

A1

input outputf A2
f(input)

• Rice’s Theorem all non-trivial, semantic properties of programs are undecidable. H G

Rice 1951 PhD Thesis

• Equivalently: For any non-trivial property of partial functions, no general and effec-
tive method can decide whether an algorithm computes a partial function with that
property.

• A property of partial functions is called trivial if it holds for all partial computable
functions or for none.

• Rice’s Theorem and computability theory

• Let S be a set of languages that is nontrivial, meaning

– there exists a Turing machine that recognizes a language in S

– there exists a Turing machine that recognizes a language not in S

• Then, it is undecidable to determine whether the language recognized by an arbitrary
Turing machine lies in S.

• This has implications for compilers and virus checkers

• Note that Rice’s theorem does not say anything about those properties of machines
or programs that are not also properties of functions and languages.

• For example, whether a machine runs for more than 100 steps on some input is a
decidable property, even though it is non-trivial.

Go to Table of Contents

3.4 Lambda Calculus

3.4.1 Motivation

• Lambda Calculus is a formal system in mathematical logic for expressing computa-
tion based on function abstraction and application using variable binding and sub-
stitution

• Lambda calculus is Turing complete — it can simulate any Turing machine

• Introduced by Alonzo Church in 1930s

• Basis of functional programming languages — Lisp, Scheme, ISWIM, ML, SASL, KRC,
Miranda, Haskell, Scala, F#. . .

• Note this is not part of M269 but may help understand ideas of computability

https://en.wikipedia.org/wiki/Rice%27s_theorem
https://en.wikipedia.org/wiki/Rice%27s_theorem
https://en.wikipedia.org/wiki/Lambda_calculus
https://en.wikipedia.org/wiki/Formal_system
https://en.wikipedia.org/wiki/Mathematical_logic
https://en.wikipedia.org/wiki/Computability
https://en.wikipedia.org/wiki/Computability
https://en.wikipedia.org/wiki/Name_binding
https://en.wikipedia.org/wiki/Substitution_(algebra)
https://en.wikipedia.org/wiki/Substitution_(algebra)
https://en.wikipedia.org/wiki/Turing_completeness
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Scheme_(programming_language)
https://en.wikipedia.org/wiki/ISWIM
https://en.wikipedia.org/wiki/ML_(programming_language)
https://en.wikipedia.org/wiki/SASL_(programming_language)
https://en.wikipedia.org/wiki/Kent_Recursive_Calculator
https://en.wikipedia.org/wiki/Miranda_(programming_language)
https://en.wikipedia.org/wiki/Haskell_(programming_language)
https://en.wikipedia.org/wiki/Scala_(programming_language)
https://en.wikipedia.org/wiki/F_Sharp_(programming_language)
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Functions — Binding and Substitution

• School maths introduces functions as

f(x) = 3x2 + 4x + 5

• Substitution: f(2) = 3× 22 + 4× 2 + 5 = 25

• Generalise: f(x) = ax2 + bx + c

• What is wrong with the following:

• f(a) = a× a2 + b× a + c

• The ideas of free and bound variables and substitution

• Evaluating an expression — how many ways can you evaluate (3 + 7)2

• Answer: 3 ways (Bird, 1998, Ex 1.2.2, page 6)

• Ways of evaluating
(
(3 + 7)2

)2

• Answer: 547 ways (Bird and Wadler, 1988, Ex 1.2.1, page 6)

• M269 Unit 6/7 Reader Logic and the Limits of Computation alludes to other formali-
sations with equal power to a Turing Machine (pages 81 and 87)

• The Reader mentions Alonzo Church and his 1930s formalism (page 87, but does
not give any detail)

• The notes in this section are optional and for comparison with the Turing Machine
material

• Turing machine: explicit memory, state and implicit loop and case/if statement

• Lambda Calculus: function definition and application, explicit rules for evaluation
(and transformation) of expressions, explicit rules for substitution (for function ap-
plication)

• Lambda calculus reduction workbench

Go to Table of Contents

3.4.2 Lambda Terms

• A variable, x, is a lambda term

• If M is a lambda term and x is a variable, then (λx.M) is a lambda term — a lambda
abstraction or function definition

• If M and N are lambda terms, the (M N) is lambda term — an application

• Nothing else is a lambda term

(Lambda Calculus notes based on lecture slides at CMSC 330, Spring 2011)

• Outermost parentheses are omitted (M N) ≡ M N

• Application is left associative ((M N) P) ≡ M N P

• The body of an abstraction extends as far right as possible, subject to scope limited
by parentheses

http://www.itu.dk/people/sestoft/lamreduce/
http://www.cs.umd.edu/class/spring2011/cmsc330/schedule.shtml
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• λx.M N ≡ λx.(M N) and not (λx.M) N

• λx.λy.λz.M ≡ λx y z.M

Lambda Calculus Semantics

• What do we mean by evaluating an expression ?

• To evaluate (λx.M)N

• Evaluate M with x replaced by N

• This rule is called β-reduction

• (λx.M)N→
β

M[x := N]

• M[x := N] is M with occurrences of x replaced by N

• This operation is called substitution — see rules below

β-Reduction Examples

• (λx.x)z→ z

• (λx.y)z→ y

• (λx.x y)z→ z y

a function that applies its argument to y

• (λx.x y)(λz.z)→ (λz.z)y→ y

• (λx.λy.x y)z→ λy.z y

A curried function of two arguments — applies first argument to second

• currying replaces f(x, y) with (f x)y — nice notational convenience — gives partial
application for free

Go to Table of Contents

3.4.3 Substitution

• To define substitution use recursion on the structure of terms

• x[x := N] ≡ N

• y[x := N] ≡ y

• (P Q)[x := N] ≡ (P[x := N]) (Q[x := N])

• (λx.M)[x := N] = λx.M

In (λx.M), the x is a formal parameter and thus a local variable, different to any other

• (λy.M)[x := N] = what?

• Look back at the school maths example above — a subtle point

• Renaming bound variables consistently is allowed
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• λx.x ≡ λy.y ≡ λz.z

• λy.λx.y ≡ λz.λx.z

• This is called α-conversion

• (λx.λy.x y) y→ (λx.λz.x z) y→ λz.y z

• Bound and Free Variables

• BV(x) = �

• BV(λx.M) = BV(M)∪ {x}

• BV(M N) = BV(M)∪ BV(N)

• FV(x) = {x}

• FV(λx.M) = FV(M) – {x}

• FV(M N) = FV(M)∪ FV(N)

• The above is a formalisation of school maths

• A Lambda term with no free variables is said to be closed — such terms are also
called combinators — see Combinator and Combinatory logic (Hankin, 2004, page
10)

• α-conversion

• λx.M→
α
λy.M[x := y] if y ∉ FV(M)

• β-reduction final rule

• (λy.M)[x := N] = λy.M if x ∉ FV(M)

• (λy.M)[x := N] = λy.M[x := N]

if x ∈ FV(M) and y ∉ FV(N)

• (λy.M)[x := N] = λz.M[y := z][x := N]

if x ∈ FV(M) and y ∈ FV(N)

z is chosen to be first variable z ∉ FV(N M)

• This is why you cannot go f(a) when given

• f(x) = ax2 + bx + c

• School maths — but made formal

Lambda Calculus — Rules Summary — Conversion

• α-conversion renaming bound variables

• λx.M→
α
λy.M[x := y] if y ∉ FV(M)

• β-conversion function application

• (λx.M)N→
β

M[x := N]

• η-conversion extensionality

https://wiki.haskell.org/Combinator
https://en.wikipedia.org/wiki/Combinatory_logic
https://en.wikipedia.org/wiki/Extensionality
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• λx.F x→
η

F if x ∉ FV(F)

Lambda Calculus — Rules Summary — Substitution

1. x[x := N] ≡ N

2. y[x := N] ≡ y

3. (P Q)[x := N] ≡ (P[x := N]) (Q[x := N])

4. (λx.M)[x := N] = λx.M

5. (λy.M)[x := N] = λy.M if x ∉ FV(M)

6. (λy.M)[x := N] = λy.M[x := N]

if x ∈ FV(M) and y ∉ FV(N)

7. (λy.M)[x := N] = λz.M[y := z][x := N]

if x ∈ FV(M) and y ∈ FV(N)

z is chosen to be first variable z ∉ FV(N M)

Go to Table of Contents

3.4.4 Lambda Calculus Encodings

• So what does this formalism get us ?

• The Lambda Calculus is Turing complete

• We can encode any computation (if we are clever enough)

• Booleans and propositional logic

• Pairs

• Natural numbers and arithmetic

• Looping and recursion

Booleans and Propositional Logic

• True = λx.λy.x

• False = λx.λy.y

• IF a THEN b ELSE c ≡ a b c

• IF True THEN b ELSE c → (λx.λy.x) b c

• → (λy.b) c→ b

• IF False THEN b ELSE c → (λx.λy.y) b c

• → (λy.y) c→ c

• Not = λx.((x False)True)

• Not x = IF x THEN False ELSE True
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• Exercise: evaluate Not True

• And = λx.λy.((x y) False)

• And x y = IF x THEN y ELSE False

• Exercise: evaluate And True False

• Or = λx.λy.((x True ) y)

• Or x y = IF x THEN True ELSE y

• Exercise: evaluate Or False True

• Exercise: evaluate Not True

• → (λx.((x False) True)) True

• → (True False) True

• Could go straight to False from here, but we shall fill in the detail

• → ((λx.λy.x) (λx.λy.y)) (λx.λy.x)

• → (λy.(λx.λy.y)) (λx.λy.x)

• → (λx.λy.y) ≡ False

• Exercise: evaluate And True False

• →(IF x THEN y ELSE False) True False

• →(IF True THEN False ELSE False) →False

• Exercise: evaluate Or False True

• →(IF x THEN True ELSE y) False True

• →(IF False THEN True ELSE True) →True

Natural Numbers — Church Numerals

• Encoding of natural numbers

• 0 = λf.λy.y

• 1 = λf.λy.f y

• 2 = λf.λy.f (f y)

• 3 = λf.λy.f (f (f y))

• Successor Succ = λz.λf.λy.f(z f y)

• Succ 0 = (λz.λf.λy.f(z f y))(λf.λy.y)

• → λf.λy.f ((λf.λy.y) f y)

• → λf.λy.f ((λy.y) y)

• → λf.λy.f y = 1
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Natural Numbers — Operations

• isZero = λz.z(λy. False ) True

• Exercise: evaluate isZero 0

• If M and N are numerals (as λ expressions)

• Add M N = λx.λy.(M x) ((N x) y)

• Mult M N = λx.(M (N x))

• Exercise: show 1 + 1 = 2

Pairs

• Encoding of a pair a, b

• (a, b) = λx. IF x THEN a ELSE b

• FST = λf.f True

• SND = λf.f False

• Exercise: evaluate FST (a, b)

• Exercise: evaluate SND (a, b)

The Fixpoint Combinator

• Y = λf.(λx.f (x x)) (λx.f (x x))

• Y F = λf.(λx.f (x x)) (λx.f (x x)) F

• → (λx.F (x x))(λx.F (x x))

• F((λx.F (x x)) (λx.F (x x))) = F (Y F)

• (Y F) is a fixed point of F

• We can use Y to achieve recursion for F

• Recursion implementation — Factorial

• Fact = λf.λn. IF n = 0 THEN 1 ELSE n∗ (f (n – 1))

• (Y Fact)1 = (Fact (Y fact))1

• → IF 1 = 0 THEN 1 ELSE 1∗ ((Y Fact) 0)

• → 1∗ ((Y Fact) 0)

• → 1∗ (Fact (Y Fact) 0)

• → 1∗ IF 0 = 0 THEN 1 ELSE 0∗ ((Y Fact) (0 – 1))

• → 1∗ 1→ 1

• Factorial n = (Y Fact) n

• Recursion implemented with a non-recursive function Y

https://en.wikipedia.org/wiki/Fixed_point_(mathematics)
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Turing Machines, Lambda Calculus and Programming Languages

• Anything computable can be represented as TM or Lambda Calculus

• But programs would be slow, large and hard to read

• In practice use the ideas to create more expressive languages which include built-in
primitives

• Also leads to ideas on data types

• Polymorphic data types

• Algebraic data types

• Also leads on to ideas on higher order functions — functions that take functions as
arguments or returns functions as results.

Go to Table of Contents

4 Complexity

P and NP

• P, the set of all decision problems that can be solved in polynomial time on a deter-
ministic Turing machine

• NP, the set of all decision problems whose solutions can be verified (certificate) in
polynomial time

• Equivalently, NP, the set of all decision problems that can be solved in polynomial
time on a non-deterministic Turing machine

• A decision problem, dp is NP-complete if

1. dp is in NP and

2. Every problem in NP is reducible to dp in polynomial time

• NP-hard — a problem satisfying the second condition, whether or not it satisfies the
first condition. Class of problems which are at least as hard as the hardest problems
in NP. NP-hard problems do not have to be in NP and may not be decision problems

Euler diagram for P, NP, NP-complete and NP-hard set of problems

http://en.wikipedia.org/wiki/P_(complexity)
http://en.wikipedia.org/wiki/NP_(complexity)
http://en.wikipedia.org/wiki/NP-complete
https://en.wikipedia.org/wiki/NP-hardness
http://en.wikipedia.org/wiki/Euler_diagram
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Source: Wikipedia NP-complete entry

NP-complete problems

• Boolean satisfiability (SAT) Cook-Levin theorem

• Conjunctive Normal Form 3SAT

• Hamiltonian path problem

• Travelling salesman problem

• NP-complete — see list of problems

XKCD on NP-Complete Problems

http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Cook-Levin_theorem
http://en.wikipedia.org/wiki/3-satisfiability
http://en.wikipedia.org/wiki/Hamiltonian_path_problem
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/NP-complete
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Source & Explanation: XKCD 287

4.1 NP-Completeness and Boolean Satisfiability

• The Boolean satisfiability problem (SAT) was the first decision problem shown to be
NP-Complete

• This section gives a sketch of an explanation

• Health Warning different texts have different notations and there will be some in-
consistency in these notes

• Health warning these notes use some formal notation to make the ideas more pre-
cise — computation requires precise notation and is about manipulating strings ac-
cording to precise rules.

Alphabets, Strings and Languages

• Notation:

• Σ is a set of symbols — the alphabet

• Σk is the set of all string of length k, which each symbol from Σ
• Example: if Σ = {0, 1}

– Σ1 = {0, 1}

– Σ2 = {00, 01, 10, 11}

• Σ0 = {ε} where ε is the empty string

• Σ∗ is the set of all possible strings over Σ
• Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ . . .

• A Language, L, over Σ is a subset of Σ∗
• L ⊆ Σ∗

Language Accepted by a Turing Machine

• Language accepted by Turing Machine, M denoted by L(M)

• L(M) is the set of strings w ∈ Σ∗ accepted by M

• For Final States F = {Y, N}, a string w ∈ Σ∗ is accepted by M a (if and only if) M
starting in q0 with w on the tape halts in state Y

• Calculating a function (function problem) can be turned into a decision problem by
asking whether f(x) = y

The NP-Complete Class

• If we do not know if P ≠ NP, what can we say ?

• A language L is NP-Complete if:

http://www.explainxkcd.com/wiki/index.php/287:_NP-Complete
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Function_problem
http://en.wikipedia.org/wiki/Decision_problem
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– L ∈ NP and

– for all other L′ ∈ NP there is a polynomial time transformation (Karp reducible,
reduction) from L′ to L

• Problem P1 polynomially reduces (Karp reduces, transforms) to P2, written P1 ∝ P2
or P1 ≤p P2, iff ∃f : dpP1 → dpP2

such that

– ∀I ∈ dpP1[I ∈ YP1 a f(I) ∈ YP2]

– f can be computed in polynomial time

• More formally, L1 ⊆ Σ∗1 polynomially transforms to L2 ⊆ Σ∗2 , written L1 ∝ L2 or
L1 ≤p L2, iff ∃f : Σ∗1 → Σ∗2 such that

– ∀x ∈ Σ∗1 [x ∈ L1 a f(x) ∈ L2]

– There is a polynomial time TM that computes f

• Transitivity If L1 ∝ L2 and L2 ∝ L3 then L1 ∝ L3

• If L is NP-Hard and L ∈ P then P = NP

• If L is NP-Complete, then L ∈ P if and only if P = NP

• If L0 is NP-Complete and L ∈ NP and L0 ∝ L then L is NP-Complete

• Hence if we find one NP-Complete problem, it may become easier to find more

• In 1971/1973 Cook-Levin showed that the Boolean satisfiability problem (SAT) is
NP-Complete

The Boolean Satisfiability Problem

• A propositional logic formula or Boolean expression is built from variables, opera-
tors: AND (conjunction, ∧), OR (disjunction, ∨), NOT (negation, ¬)

• A formula is said to be satisfiable if it can be made True by some assignment to its
variables.

• The Boolean Satisfiability Problem is, given a formula, check if it is satisfiable.

– Instance: a finite set U of Boolean variables and a finite set C of clauses over U

– Question: Is there a satisfying truth assignment for C ?

• A clause is is a disjunction of variables or negations of variables

• Conjunctive normal form (CNF) is a conjunction of clauses

• Any Boolean expression can be transformed to CNF

• Given a set of Boolean variable U = {u1, u2, . . . , un}

• A literal from U is either any ui or the negation of some ui (written ui)

• A clause is denoted as a subset of literals from U — {u2, u4, u5}

• A clause is satisfied by an assignment to the variables if at least one of the literals
evaluates to True (just like disjunction of the literals)

• Let C be a set of clauses over U — C is satisfiable iff there is some assignment of
truth values to the variables so that every clause is satisfied (just like CNF)

http://en.wikipedia.org/wiki/Cook\T1\textendash Levin_theorem
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
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• C = {{u1, u2, u3}, {u2, u3}, {u2, u3}} is satisfiable

• C = {{u1, u2}, {u1, u2}, {u1}} is not satisfiable

• Proof that SAT is NP-Complete looks at the structure of NDTMs and shows you can
transform any NDTM to SAT in polynomial time (in fact logarithmic space suffices)

• SAT is in NP since you can check a solution in polynomial time

• To show that ∀L ∈ NP : L∝ SAT invent a polynomial time algorithm for each polyno-
mial time NDTM, M, which takes as input a string x and produces a Boolean formula
Ex which is satisfiable iff M accepts x

• See Cook-Levin theorem

Sources

• Garey and Johnson (1979, page 34) has the notation L1 ∝ L2 for polynomial trans-
formation

• Arora and Barak (2009, page 42) has the notation L1 ≤p L2 for polynomial-time Karp
reducible

• The sketch of Cook’s theorem is from Garey and Johnson (1979, page 38)

• For the satisfiable C we could have assignments (u1, u2, u3) ∈ {(T, T, F), (T, F, F), (F, T, F)}

Coping with NP-Completeness

• What does it mean if a problem is NP-Complete ?

– There is a P time verification algorithm.

– There is a P time algorithm to solve it iff P = NP (?)

– No one has yet found a P time algorithm to solve any NP-Complete problem

– So what do we do ?

• Improved exhaustive search — Dynamic Programming; Branch and Bound

• Heuristic methods — acceptable solutions in acceptable time — compromise on op-
timality

• Average time analysis — look for an algorithm with good average time — compro-
mise on generality (see Big-O Algorithm Complexity Cheatsheet)

• Probabilistic or Randomized algorithms — compromise on correctness

Sources

• Practical Solutions for Hard Problems Rich (2007, chp 30)

• Coping with NP-Complete Problems Garey and Johnson (1979, chp 6)

Go to Table of Contents

Go to Table of Contents

http://en.wikipedia.org/wiki/Cook-Levin_theorem
http://bigocheatsheet.com
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5 Future Work

• Sunday, 16 May 2021 online tutorial exam revision

• Saturday, 22 May 2021 tutorial online, exam revision

• Please email me with any requests for particular topics

• Tuesday, 8 June 2021 exam

Go to Table of Contents

6 Web Sites & References

6.1 Web Sites

• Logic

– WFF, WFF’N Proof online

• Computability

– Computability

– Computable function

– Decidability (logic)

– Turing Machines

– Universal Turing Machine

– Turing machine simulator

– Lambda Calculus

– Von Neumann Architecture

– Turing Machine XKCD 205 Candy Button Paper

– Turing Machine XKCD 505 A Bunch of Rocks

– RIP John Conway Why can Conway’s Game of Life be classified as a universal
machine?

– Phil Wadler Bright Club on Computability

– Bridges: Theory of Computation: Halting Problem

– Bridges: Theory of Computation: Other Non-computable Problems

• Complexity

– Complexity class

– NP complexity

– NP complete

– Reduction (complexity)

http://en.wikipedia.org/wiki/Well-formed_formula
http://www.oercommons.org/authoring/1364-basic-wff-n-proof-a-teaching-guide/view
http://en.wikipedia.org/wiki/Computability
http://en.wikipedia.org/wiki/Computable_function
http://en.wikipedia.org/wiki/Decidability_(logic)
http://en.wikipedia.org/wiki/Turing_machine
http://en.wikipedia.org/wiki/Universal_Turing_machine
http://morphett.info/turing/turing.html
http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Von_Neumann_architecture
http://www.explainxkcd.com/wiki/index.php/205:_Candy_Button_Paper
http://www.explainxkcd.com/wiki/index.php/505:_A_Bunch_of_Rocks
https://xkcd.com/2293/
https://stackoverflow.com/questions/394957/why-can-conway-s-game-of-life-be-classified-as-a-universal-machine
https://stackoverflow.com/questions/394957/why-can-conway-s-game-of-life-be-classified-as-a-universal-machine
http://wadler.blogspot.co.uk/2015/05/bright-club-computability.html
http://www.cs.ucc.ie/~dgb/courses/toc/handout35.pdf
http://www.cs.ucc.ie/~dgb/courses/toc/handout36.pdf
http://en.wikipedia.org/wiki/Complexity_class
http://en.wikipedia.org/wiki/NP_(complexity)
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/Reduction_(complexity)
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– P versus NP problem

– Graph of NP-Complete Problems

Go to Table of Contents

Note on References — the list of references is mainly to remind me where I obtained
some of the material and is not required reading.
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