
Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References

Sorting
M269 Tutorial

Phil Molyneux

9 January 2022

1/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References

M269 Tutorial: Sorting, Recursion
Agenda

ñ Welcome & introductions

ñ Tutorial topics: Sorting Algorithms, Recursion

ñ Adobe Connect — if you or I get cut off, wait till we
reconnect (or send you an email)

ñ Time: about 1.5 hours

ñ Do ask questions or raise points.

ñ Source: of slides, notes, programs and playing cards:

M269Tutorial03Sorting

www.pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269TutorialSorting

2/115

http://www.pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269Tutorial03Sorting/
http://www.pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269Tutorial03Sorting/

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References

M269 Tutorial
Introductions — Phil

ñ Name Phil Molyneux
ñ Background

ñ Undergraduate: Physics and Maths (Sussex)
ñ Postgraduate: Physics (Sussex), Operational Research

(Brunel), Computer Science (University College, London)
ñ Worked in Operational Research, Business IT, Web

technologies, Functional Programming

ñ First programming languages Fortran, BASIC, Pascal
ñ Favourite Software

ñ Haskell — pure functional programming language
ñ Text editors TextMate, Sublime Text — previously Emacs
ñ Word processing in LATEX — all these slides and notes
ñ Mac OS X

ñ Learning style — I read the manual before using the
software

3/115

https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://www.haskell.org/
https://macromates.com
http://www.sublimetext.com
https://www.emacswiki.org/
https://www.latex-project.org/
https://developer.apple.com/

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References

M250 Tutorial
Introductions — You

ñ Name ?

ñ Favourite software/Programming language ?

ñ Favourite text editor or integrated development
environment (IDE)

ñ List of text editors, Comparison of text editors and
Comparison of integrated development environments

ñ Other OU courses ?

ñ Anything else ?

4/115

https://en.wikipedia.org/wiki/Text_editor
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/List_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References

Adobe Connect
Interface — Host View

5/115

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References

Adobe Connect
Interface — Participant View

6/115

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References

Adobe Connect
Settings

ñ Everybody Menu bar Meeting Speaker & Microphone Setup

ñ Menu bar Microphone Allow Participants to Use Microphone 4

ñ Check Participants see the entire slide Workaround
ñ Disable Draw Share pod Menu bar Draw icon

ñ Fit Width Share pod Bottom bar Fit Width icon 4

ñ Meeting Preferences General Host Cursor Show to all attendees

ñ Menu bar Video Enable Webcam for Participants 4

ñ Do not Enable single speaker mode

ñ Cancel hand tool

ñ Do not enable green pointer

ñ Recording Meeting Record Session 4

ñ Documents Upload PDF with drag and drop to share
pod

ñ Delete Meeting Manage Meeting Information Uploaded Content

and check filename click on delete

7/115

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References

Adobe Connect
Access

ñ Tutor Access

TutorHome M269 Website Tutorials

Cluster Tutorials M269 Online tutorial room

Tutor Groups M269 Online tutor group room

Module-wide Tutorials M269 Online module-wide room

ñ Attendance

TutorHome Students View your tutorial timetables

ñ Beamer Slide Scaling 440% (422 x 563 mm)

ñ Clear Everyone’s Status

Attendee Pod Menu Clear Everyone’s Status

ñ Grant Access and send link via email

Meeting Manage Access & Entry Invite Participants. . .

ñ Presenter Only Area

Meeting Enable/Disable Presenter Only Area

8/115

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References

Adobe Connect
Keystroke Shortcuts

ñ Keyboard shortcuts in Adobe Connect

ñ Toggle Mic + M (Mac), Ctrl + M (Win) (On/Disconnect)

ñ Toggle Raise-Hand status + E

ñ Close dialog box (Mac), Esc (Win)

ñ End meeting + \

9/115

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References

Adobe Connect Interface
Sharing Screen & Applications

ñ Share My Screen Application tab Terminal for Terminal

ñ Share menu Change View Zoom in for mismatch of screen
size/resolution (Participants)

ñ (Presenter) Change to 75% and back to 100% (solves
participants with smaller screen image overlap)

ñ Leave the application on the original display

ñ Beware blued hatched rectangles — from other (hidden)
windows or contextual menus

ñ Presenter screen pointer affects viewer display —
beware of moving the pointer away from the application

ñ First time: System Preferences Security & Privacy Privacy

Accessibility

10/115

https://en.wikipedia.org/wiki/Terminal_(macOS)

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References

Adobe Connect
Ending a Meeting

ñ Notes for the tutor only
ñ Student: Meeting Exit Adobe Connect

ñ Tutor:
ñ Recording Meeting Stop Recording 4

ñ Remove Participants Meeting End Meeting. . . 4

ñ Dialog box allows for message with default message:
ñ The host has ended this meeting. Thank you for

attending.

ñ Recording availability In course Web site for joining
the room, click on the eye icon in the list of recordings
under your recording — edit description and name

ñ Meeting Information Meeting Manage Meeting Information —
can access a range of information in Web page.

ñ Delete File Upload Meeting Manage Meeting Information

Uploaded Content tab select file(s) and click Delete

ñ Attendance Report see course Web site for joining
room

11/115

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References

Adobe Connect
Invite Attendees

ñ Provide Meeting URL Menu Meeting Manage Access & Entry

Invite Participants. . .

ñ Allow Access without Dialog Menu Meeting

Manage Meeting Information provides new browser window
with Meeting Information Tab bar Edit Information

ñ Check Anyone who has the URL for the meeting can
enter the room

ñ Default Only registered users and accepted guests may
enter the room

ñ Reverts to default next session but URL is fixed

ñ Guests have blue icon top, registered participants have
yellow icon top — same icon if URL is open

ñ See Start, attend, and manage Adobe Connect meetings
and sessions

12/115

https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html
https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References

Adobe Connect
Layouts

ñ Creating new layouts example Sharing layout

ñ Menu Layouts Create New Layout. . . Create a New Layout dialog

Create a new blank layout and name it PMolyMain

ñ New layout has no Pods but does have Layouts Bar open
(see Layouts menu)

ñ Pods

ñ Menu Pods Share Add New Share and resize/position —
initial name is Share n

ñ Rename Pod Menu Pods Manage Pods. . . Manage Pods

Select Rename or Double-click & rename

ñ Add Video pod and resize/reposition

ñ Add Attendance pod and resize/reposition

ñ Add Chat pod — name it PMolyChat — and
resize/reposition

13/115

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References

Adobe Connect
Layouts

ñ Dimensions of Sharing layout (on 27-inch iMac)
ñ Width of Video, Attendees, Chat column 14 cm
ñ Height of Video pod 9 cm
ñ Height of Attendees pod 12 cm
ñ Height of Chat pod 8 cm

ñ Duplicating Layouts does not give new instances of
the Pods and is probably not a good idea (apart from
local use to avoid delay in reloading Pods)

14/115

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References

Adobe Connect
Chat Pods

ñ Format Chat text

ñ Chat Pod menu icon My Chat Color

ñ Choices: Red, Orange, Green, Brown, Purple, Pink, Blue,
Black

ñ Note: Color reverts to Black if you switch layouts

ñ Chat Pod menu icon Show Timestamps

15/115

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References

Graphics Conversion
PDF to PNG/JPG

ñ Conversion of the screen snaps for the installation of
Anaconda on 1 May 2020

ñ Using GraphicConverter 11

ñ File Convert & Modify Conversion Convert

ñ Select files to convert and destination folder

ñ Click on Start selected Function or +

16/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation
Sorting as Dances

Card Sorting Ex

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References

Sorting
Motivation

ñ Motivation for studying sorting algorithms

ñ Taxonomy of sorting — see Wikipedia Sorting Algorithm

ñ Abstract comparison sort — split/join algorithm

ñ Insertion sort and selection sort described with
split/join algorithm diagram and implemented in
Python and Haskell

ñ Recursive and iterative versions

ñ Mergesort, Quicksort and Bubble sort in the same
framework

ñ Sorting via a data structure — Tree sort

ñ Review of Web sites and sorting algorithms used in
practice

17/115

https://en.wikipedia.org/wiki/Sorting_algorithm

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation
Sorting as Dances

Card Sorting Ex

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References

Sorting Algorithms
Motivation for Studying

ñ From Knuth (1998, page v)

ñ . . . virtually every important aspect of programming
arises somewhere in the context of sorting or searching.

ñ How are good algorithms discovered ?

ñ How can given algorithms and programs be improved ?

ñ How can the efficiency of algorithms be analyzed
mathematically ?

ñ How can a person choose rationally between different
algorithms for the same task ?

ñ In what senses can algorithms be proved best possible ?

ñ How does the theory of computing interact with
practical considerations ?

18/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation
Sorting as Dances

Card Sorting Ex

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References

Sorting Algorithms
Demonstration 1 Sorting Algorithms as Dances

ñ Insertion Sort

ñ AlgoRythmics

ñ This is the folk music that inspired Bartók

ñ Compare the dance with the Python algorithm for
Insertion Sort below

19/115

https://www.youtube.com/user/AlgoRythmics

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation
Sorting as Dances

Card Sorting Ex

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References

Sorting Algorithms
Activity 1 Card Sorting Exercise (1)

ñ Almost everyone has played cards and, as part of any
card game, will have sorted cards in their hand

ñ This exercise is aimed at writing down how you sort you
cards and giving these instructions to another person to
follow.

ñ Decide on your general ordering of playing cards — you
are free to set any ordering you like but here is the
usual ordering for suits and values:

Clubs < Diamonds < Hearts < Spades

Two < Three < Four < Five < Six
< Seven < Eight < Nine < Ten
< Jack < Queen < King < Ace

ñ Write down your method for sorting cards — the
method must specify how to choose a card to move and
where to move it to.

20/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation
Sorting as Dances

Card Sorting Ex

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References

Sorting Algorithms
Activity 1 Card Sorting Exercise (2)

ñ Take the 6 cards given below — record the order of the
cards

ñ Using your method, sort the cards — record the order
of the cards after each move of a card

ñ Now swap your written method and the cards in your
original order with another student.

ñ Follow the other student’s method to sort the cards and
record your steps

21/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation
Sorting as Dances

Card Sorting Ex

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References

Activity 1 Card Sorting Exercise
Working Space

22/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation
Sorting as Dances

Card Sorting Ex

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References

Activity 1 Card Sorting Exercise (3)
Discussion

ñ Did both of you end up with the same sequence of
steps?

ñ Did any of the instructions require human knowledge?

ñ General point: probably most people use some variation
on Insertion sort or Selection sort but would have steps
that had multiple shifts of cards.

ñ Note: This activity may be done on the Whiteboard
using cards from http://pmolyneux.co.uk/OU/M269/
M269TutorialNotes/M269TutorialSorting/Cards/

23/115

http://pmolyneux.co.uk/OU/M269/M269TutorialNotes/M269TutorialSorting/Cards/
http://pmolyneux.co.uk/OU/M269/M269TutorialNotes/M269TutorialSorting/Cards/

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy
Other Classifications of
Sorting Algorithms

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References

Taxonomy of Sorting Algorithms
Comparison Sorts

ñ Computational complexity — worst, best, average
number of comparisons, exchanges and other program
contructs (but see http://www.softpanorama.org/
Algorithms/sorting.shtml for Slightly Skeptical
View) — O(n2) bad, O(n logn) better

ñ Other issues: space behaviour, performance on typical
data sets, exchanges versus shifts

ñ Abstract sorting algorithm — Following Merritt (1985,
1997) and Azmoodeh (1990, chp 9), we classify the
divide and conquer sorting algorithms by easy/hard
split/join

ñ see diagram below

24/115

http://www.softpanorama.org/Algorithms/sorting.shtml
http://www.softpanorama.org/Algorithms/sorting.shtml

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy
Other Classifications of
Sorting Algorithms

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References

Taxonomy of Sorting Algorithms
Abstract Sorting Algorithm

unsorted list xs

if (length xs > 1) then
(xs1,xs2) = split xs

xs1 xs2

ys1 = sort xs1 ys2 = sort xs2

ys = join (ys1,ys2)

sorted list ys

25/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy
Other Classifications of
Sorting Algorithms

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References

Sorting Algorithms
Other Classifications

ñ See Wikipedia Sorting algorithm for big list
ñ Comparison Sorts

ñ Insertion sort, Selection sort, Merge sort, Quicksort,
Bubble sort

ñ Sorting via a data structure: Tree sort, Heap sort

ñ Non-Comparison sorts — distribution sorts — bucket
sort, radix sort

ñ Sorts used in Programming Language Libraries
ñ Timsort by Tim Peters — used in Python and Java —

combination of merge and insertion sorts
ñ Haskell — modified Mergesort by Ian Lynagh in GHC

implementation

26/115

https://en.wikipedia.org/wiki/Sorting_algorithm
https://en.wikipedia.org/wiki/Timsort
https://www.haskell.org/onlinereport/haskell2010/
https://wiki.haskell.org/GHC

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References

Recursion
Recursion and Iteration

ñ Many functions are naturally defined using recursion

ñ A recursive function is defined in terms of calls to itself
acting on smaller problem instances along with a base
case(s) that terminate the recursion

ñ Classic example: Factorial n! = n× (n− 1) · · ·2× 1

5def fac(n) :
6 if n == 1 :
7 return 1
8 else :
9 return n * fac(n-1)

ñ We can evaluate fac(6) by using a substitution model
(section 1.1.5) for function application

ñ To evaluate a function applied to arguments, evaluate
the body of the function with each formal parameter
replaced by the corresponding actual arguments.

27/115

https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book-Z-H-10.html
https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book-Z-H-10.html

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References

Recursion
Evaluation of fac(6)

Expression to Evaluate Reason

fac(6) Initial
→ 6 * fac(5) line 8
→ 6 * (5 * fac(4)) line 8
→ 6 * (5 * (4 * fac(3)) line 8
→ 6 * (5 * (4 * (3 * fac(2)))) line 8
→ 6 * (5 * (4 * (3 * (2 * fac(1))))) line 8
→ 6 * (5 * (4 * (3 * (2 * 1)))) line 6
→ 720 Arithmetic

ñ This occupies more space in the process of evaluation
since we cannot do the multiplications until we reach
the base case of fac()

ñ This is a recursive function and a linear recursive
process

ñ Implemented in Python (and most imperative languages)
with a stack of function calls

ñ We can define an equivalent factorial function that
produces a different process

28/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References

Recursion
Iterative Factorial

24def facIter(n) :
25 return accProd(n,1)

27def accProd(n,x) :
28 if n == 1 :
29 return x
30 else :
31 return accProd(n-1, n * x)

ñ facIter() use accProd() to maintain a running
product and accumulate the final result to return

ñ We can display the evaluation of facIter(6) using the
substitution model

29/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References

Recursion
Evaluation of facIter(6)

Expression to Evaluate Reason

facIter(6) Initial
→ accProd(6,1) line 25
→ accProd(5, 6 * 1) line 30 & (*)
→ accProd(4, 5 * 6) line 30 & (*)
→ accProd(3, 4 * 30) line 30 & (*)
→ accProd(2, 3 * 120) line 30 & (*)
→ accProd(1, 2 * 360) line 30 & (*)
→ 720 line 28 & (*)

ñ This occupies constant space — at each stage all the
variables describing the state of the calculation are in
the function call

ñ This is a recursive program and an iterative process

ñ We are assuming the multiplication is evaluated at each
function call (strict or eager evaluation)

ñ Also referred to as tail recursion — we need not build a
stack of calls

30/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References

Recursion and Iteration
Iterative Factorial Exercises

ñ Write a version of the factorial function using a while
loop in Python

ñ Write a version of the factorial function using a for
loop in Python

31/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References

Recursion and Iteration
Iterative Factorial Exercises — Solutions

ñ Factorial function using a while loop in Python

46def facWhile(n) :
47 x = 1

49 while n > 1 :
50 x = n * x
51 n = (n - 1)

53 return x

ñ Factorial function using a for loop in Python

57def facFor(n) :
58 x = 1

60 for i in range(n,0,-1) :
61 x = i * x

63 return x

32/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References

Recursion
Tail Recursion and Iteration

ñ When the structured programming ideas emerged in the
1960s and 1970s the languages such as C and Pascal
implemented recursion by always placing the calls on
the stack — Python follows this as well

ñ This means the in those languages they have to have
special constructs such as for loops, while loops, to
express iterative processes without recursion

ñ A for loop is syntactically way more complicated than a
recursive definition

ñ Some language implementations (for example, Haskell)
spot tail recursion and do not build a stack of calls

ñ You still have to write your recursion in particular ways
to allow the compiler to spot such optimisations.

33/115

https://en.wikipedia.org/wiki/Structured_programming

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References

Recursion
Structured Programming, GOTO and Recursion

ñ Bohm & Jacopini (1966) showed that structured
programming with a combination of sequence,
selection, iteration and procedure calls was Turing
complete (see Unit 7)

ñ In the late 1980s two books came out that were
particularly influential:

ñ Abelson and Sussman (1984, 1996) Structure and
Interpretation of Computer Programs (known as SICP)
which was the programming course for the first year at
MIT,

ñ Bird and Wadler (1988, 1998, 2014) Introduction to
Functional Programming which was the the
programming course for the first year at Oxford.

ñ See SICP online and Section 1.2 Procedures and the
Process They Generate

34/115

https://en.wikipedia.org/wiki/Turing_completeness
https://en.wikipedia.org/wiki/Turing_completeness
https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book.html
https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book-Z-H-11.html
https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book-Z-H-11.html

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References

Recursion
Structured Programming, GOTO and Recursion (2)

ñ Dijkstra (1968) Go To Statement Considered Harmful
illustrates a debate on structured programming

ñ The von Neumann computer architecture takes the
memory and state view of computation as in Turing m/c

ñ Lambda calculus is equivalent in computational power
to a Turing machine (Turing showed this in 1930s) but
efficient implementations did not arrive until 1980s

ñ Functional programming in Lisp or APL was slow

ñ Alan Perlis (1982) Epigrams on Programming:
[Functional programmers] know the value of everything
but the cost on nothing

ñ Erik Meijer (1991) Recursion is the GOTO of functional
programming

ñ Leading to common patterns of higher order functions,
map, filter, fold and polymorphic data types

35/115

https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://en.wikipedia.org/wiki/Lambda_calculus
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/APL_(programming_language)

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Merge Sort

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Split/Join Sorting Algorithms
Example Algorithms & Implementation

ñ Insertion Sort

ñ Selection Sort

ñ Merge Sort

ñ Quicksort

ñ Bubble Sort

ñ Implementations in Python, recursive and non-recursive

ñ Implementations in Haskell — for comparison, optional

ñ Sorting via data structure — Treesort, Heap Sort

36/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Insertion Sort —
Abstract Algorithm

Insertion Sort — Python

Insertion Sort —
Haskell

Activity 2 — Insertion
Sort: Trace an
Evaluation

Insertion Sort —
Non-recursive

Activity 3 — Insertion
Sort Non-recursive
Trace

Selection Sort

Merge Sort

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Insertion Sort
Abstract Algorithm

ñ Insertion Split xs1 is the singleton list of the first item;
xs2 is the rest of the list

ñ Insertion Join insert the item in the singleton list into
the sorted result of the rest of the list

37/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Insertion Sort —
Abstract Algorithm

Insertion Sort — Python

Insertion Sort —
Haskell

Activity 2 — Insertion
Sort: Trace an
Evaluation

Insertion Sort —
Non-recursive

Activity 3 — Insertion
Sort Non-recursive
Trace

Selection Sort

Merge Sort

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Insertion Sort
Abstract Sorting Algorithm Diagram

[3,0,1,8,7,2,5,4,9,6]

(xs1, xs2) = insertionSplit xs

[3] [0,1,8,7,2,5,4,9,6]

[3] [0,1,2,4,5,6,7,8,9]

ys = insertionJoin (ys1,ys2)

[0,1,2,3,4,5,6,7,8,9]

xs
1 xs2

sort sort

ys1 ys2

38/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Insertion Sort —
Abstract Algorithm

Insertion Sort — Python

Insertion Sort —
Haskell

Activity 2 — Insertion
Sort: Trace an
Evaluation

Insertion Sort —
Non-recursive

Activity 3 — Insertion
Sort Non-recursive
Trace

Selection Sort

Merge Sort

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Insertion Sort
Python Implementation

4def insSort(xs) :
5 if len(xs) <= 1 :
6 return xs
7 else :
8 return ins(xs[0],insSort(xs[1:]))

10def ins(x,xs) :
11 if xs == [] :
12 return [x]
13 elif x <= xs[0] :
14 return [x] + xs
15 else :
16 return [xs[0]] + ins(x,xs[1:])

39/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Insertion Sort —
Abstract Algorithm

Insertion Sort — Python

Insertion Sort —
Haskell

Activity 2 — Insertion
Sort: Trace an
Evaluation

Insertion Sort —
Non-recursive

Activity 3 — Insertion
Sort Non-recursive
Trace

Selection Sort

Merge Sort

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Insertion Sort
Python Rewritten

ñ In the style of the abstract algorithm

20def insSort01(xs) :
21 if len(xs) <= 1 :
22 return xs
23 else :
24 (xs1,xs2) = insertionSplit(xs)
25 ys1 = insSort01(xs1)
26 ys2 = insSort01(xs2)
27 ys = insertionJoin(ys1,ys2)
28 return ys

30def insertionSplit(xs) :
31 (xs1,xs2) = (xs[0:1],xs[1:])
32 return (xs1,xs2)

34def insertionJoin(ys1,ys2) :
35 if ys2 == [] :
36 return ys1
37 elif ys1[0] <= ys2[0] :
38 return ys1 + ys2
39 else :
40 return ys2[0:1] + insertionJoin(ys1,ys2[1:])

40/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Insertion Sort —
Abstract Algorithm

Insertion Sort — Python

Insertion Sort —
Haskell

Activity 2 — Insertion
Sort: Trace an
Evaluation

Insertion Sort —
Non-recursive

Activity 3 — Insertion
Sort Non-recursive
Trace

Selection Sort

Merge Sort

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Insertion Sort
Haskell Implementation (1)

1module M269TutorialSorting where
2 import Data.List
3 import Data.Maybe

1. A Haskell script starts with a module header which
starts with the reserved identifier, module followed by
the module name, M269TutorialSorting

2. The module name must start with an upper case letter
and is the same as the file name (without its extension
of .lhs)

3. Haskell uses layout (or the off-side rule) to determine
scope of definitions, similar to Python

4. The body of the module follows the reserved identifier
where and starts with two import declarations

5. These import the built-in libraries Data.List and
Data.Maybe

6. We use the sort function from Data.List.
7. The Maybe datatype from Data.Maybe will be used at

the end of this script to implement the trees with data.

41/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Insertion Sort —
Abstract Algorithm

Insertion Sort — Python

Insertion Sort —
Haskell

Activity 2 — Insertion
Sort: Trace an
Evaluation

Insertion Sort —
Non-recursive

Activity 3 — Insertion
Sort Non-recursive
Trace

Selection Sort

Merge Sort

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Insertion Sort
Haskell Implementation (2)

5 insSort [] = []
6 insSort [x] = [x]
7 insSort (x : xs) = ins x (insSort xs)

9 ins x [] = [x]
10 ins x (y:ys)
11 = if x <= y
12 then x:y:ys
13 else y : (ins x ys)

ñ For structured English, I have used a subset of Haskell
(http://haskell.org) — in the code above:

ñ insSort and ins are function defined by several
equations

ñ We use indentation to determine scope — see Landin
(1966) and Python (see Python Tutorial: Introduction:
First Steps Towards Programming)

42/115

http://haskell.org
https://docs.python.org/3/tutorial/introduction.html#first-steps-towards-programming
https://docs.python.org/3/tutorial/introduction.html#first-steps-towards-programming

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Insertion Sort —
Abstract Algorithm

Insertion Sort — Python

Insertion Sort —
Haskell

Activity 2 — Insertion
Sort: Trace an
Evaluation

Insertion Sort —
Non-recursive

Activity 3 — Insertion
Sort Non-recursive
Trace

Selection Sort

Merge Sort

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Insertion Sort
Haskell Implementation (3)

ñ Function application is denoted by juxtaposition and is
more tightly binding than (almost) anything else
ñ we write f x and not f (x)
ñ f x y means (f x) y

This notational convention has huge advantages —
discuss and also see
http://en.wikipedia.org/wiki/Curried_function
and http://slid.es/gsklee/
functional-programming-in-5-minutes (which
does it in JavaScript, worth a look)

ñ Lists are denoted with brackets [1,2,3], the empty list
is []

ñ (:) is the operator that prefixes an element to a list,
1:[2,3] == [1,2,3]

ñ Parentheses over-ride precedence

43/115

http://en.wikipedia.org/wiki/Curried_function
http://slid.es/gsklee/functional-programming-in-5-minutes
http://slid.es/gsklee/functional-programming-in-5-minutes

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Insertion Sort —
Abstract Algorithm

Insertion Sort — Python

Insertion Sort —
Haskell

Activity 2 — Insertion
Sort: Trace an
Evaluation

Insertion Sort —
Non-recursive

Activity 3 — Insertion
Sort Non-recursive
Trace

Selection Sort

Merge Sort

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Activity 2
Trace an Evaluation — Haskell

ñ Evaluation of insSort [3,0,1,8,7]

ñ Answer goes here

44/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Insertion Sort —
Abstract Algorithm

Insertion Sort — Python

Insertion Sort —
Haskell

Activity 2 — Insertion
Sort: Trace an
Evaluation

Insertion Sort —
Non-recursive

Activity 3 — Insertion
Sort Non-recursive
Trace

Selection Sort

Merge Sort

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Activity 2
Trace an Evaluation — Haskell

ñ Evaluation of insSort [3,0,1,8,7]

Expression to Evaluate Reason

insSort [3,0,1,8,7] Initial
→ ins 3 (insSort [0,1,8,7]) line 7
→ ins 3 (ins 0 (insSort [1,8,7])) line 7
→ ins 3 (ins 0 (ins 1 (insSort [8,7]))) line 7
→ ins 3 (ins 0 (ins 1 (ins 8 (insSort [7])))) line 7
→ ins 3 (ins 0 (ins 1 (ins 8 [7]))) line 6
→ ins 3 (ins 0 (ins 1 (7:(ins 8 [])))) line 13
→ ins 3 (ins 0 (ins 1 (7:[8]))) line 9
→ ins 3 (ins 0 (ins 1 [7,8])) (:) operator
→ ins 3 (ins 0 (1:7:[8])) line 12
→ ins 3 (ins 0 [1,7,8]) (:) operator
→ ins 3 (0:1:[7,8]) line 12
→ ins 3 [0,1,7,8] (:) operator
→ 0:(ins 3 [1,7,8]) line 13
→ 0:(1:(ins 3 [7,8])) line 13
→ 0:(1:(3:7:[8])) line 12
→ [0,1,3,7,8] (:) operator

ñ Note that the evaluation consumes more space in the
process of evaluation;

ñ also note that you need to be careful with the brackets
when doing an evaluation like this by hand.

45/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Insertion Sort —
Abstract Algorithm

Insertion Sort — Python

Insertion Sort —
Haskell

Activity 2 — Insertion
Sort: Trace an
Evaluation

Insertion Sort —
Non-recursive

Activity 3 — Insertion
Sort Non-recursive
Trace

Selection Sort

Merge Sort

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Activity 2 Trace an Evaluation
Insertion Sort — Python Recursive

ñ Evaluation of insSort([3,0,1,8,7])

ñ Answer goes here

46/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Insertion Sort —
Abstract Algorithm

Insertion Sort — Python

Insertion Sort —
Haskell

Activity 2 — Insertion
Sort: Trace an
Evaluation

Insertion Sort —
Non-recursive

Activity 3 — Insertion
Sort Non-recursive
Trace

Selection Sort

Merge Sort

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Activity 2 Trace an Evaluation
Insertion Sort — Python Recursive

ñ Evaluation of insSort([3,0,1,8,7])

Expression to Evaluate Reason

insSort([3,0,1,8,7]) Initial
→ ins(3, insSort([0,1,8,7])) line 7
→ ins(3, ins(0, insSort([1,8,7]))) line 7
→ ins(3, ins(0, ins(1, insSort([8,7])))) line 7
→ ins(3, ins(0, ins(1, ins(8, insSort([7]))))) line 7
→ ins(3, ins(0, ins(1, ins(8, [7])))) line 5
→ ins(3, ins(0, ins(1, ([7] + ins(8, []))))) line 15
→ ins(3, ins(0, ins(1, ([7] + [8])))) line 11
→ ins(3, ins(0, ins(1, [7,8]))) (+) operator
→ ins(3, ins(0, ([1] + [7,8]))) line 13
→ ins(3, ins(0, [1,7,8])) (+) operator
→ ins(3, ([0] + [1,7,8])) line 13
→ ins(3, [0,1,7,8]) (+) operator
→ [0] + (ins 3 [1,7,8]) line 15
→ [0] + ([1] + (ins 3 [7,8])) line 15
→ [0] + ([1] + ([3] + ([7,8]))) line 13
→ [0,1,3,7,8] (+) operator

ñ Note that the evaluation consumes more space in the
process of evaluation;

ñ also note that you need to be careful with the brackets
when doing an evaluation like this by hand.

47/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Insertion Sort —
Abstract Algorithm

Insertion Sort — Python

Insertion Sort —
Haskell

Activity 2 — Insertion
Sort: Trace an
Evaluation

Insertion Sort —
Non-recursive

Activity 3 — Insertion
Sort Non-recursive
Trace

Selection Sort

Merge Sort

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Insertion Sort
Non-recursive Implementation

ñ The non-recursive version of Insertion sort takes each
element in turn and inserts it in the ordered list of
elements before it.

for index = 1 to (len(xs)-1) do
insert xs[index] in order in xs[0..index-1]

ñ Here is a Python implementation of the above (based on
Miller and Ranum (2011, page 215)).

42def insertionSort(xs) :
43 for index in range(1, len(xs)) :
44 currentValue = xs[index]
45 position = index
46 while (position > 0) and xs[position - 1] > currentValue :
47 xs[position] = xs[position - 1]
48 position = position - 1

50 xs[position] = currentValue

48/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Insertion Sort —
Abstract Algorithm

Insertion Sort — Python

Insertion Sort —
Haskell

Activity 2 — Insertion
Sort: Trace an
Evaluation

Insertion Sort —
Non-recursive

Activity 3 — Insertion
Sort Non-recursive
Trace

Selection Sort

Merge Sort

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Activity 3
Trace an Evaluation — Python Non-recursive

ñ Evaluation of insertionSort([3,0,1,8,7])

ñ Showing just the outer for index loop

ñ 3 0 1 8 7 start array

ñ Answer goes here

49/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Insertion Sort —
Abstract Algorithm

Insertion Sort — Python

Insertion Sort —
Haskell

Activity 2 — Insertion
Sort: Trace an
Evaluation

Insertion Sort —
Non-recursive

Activity 3 — Insertion
Sort Non-recursive
Trace

Selection Sort

Merge Sort

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Activity 3
Trace an Evaluation — Python Non-recursive

ñ Evaluation of insertionSort([3,0,1,8,7])

ñ Showing just the outer for index loop

ñ 3 0 1 8 7 start array

3 0 1 8 7

0 3 1 8 7

0 1 3 8 7

0 1 3 8 7

0 1 3 7 8

index = 1

index = 2

index = 3

index = 4

end

50/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Selection Sort —
Abstract Algorithm

Selection Sort —
Haskell

Activity 4 — Selection
Sort: Trace an
Evaluation

Selection Sort — Python

Selection Sort —
Non-recursive

Activity 5 — Finding
the Non-Recursive
Algorithm

Merge Sort

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Selection Sort
Abstract Algorithm

ñ Selection Split xs1 is the singleton list of the minimum
item; xs2 is the original list with the minimum item
taken out

ñ Selection Join just put the minimum item and the sorted
xs2 together as the output list

51/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Selection Sort —
Abstract Algorithm

Selection Sort —
Haskell

Activity 4 — Selection
Sort: Trace an
Evaluation

Selection Sort — Python

Selection Sort —
Non-recursive

Activity 5 — Finding
the Non-Recursive
Algorithm

Merge Sort

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Selection Sort
Abstract Sorting Algorithm Diagram

[3,0,1,8,7,2,5,4,9,6]

(xs1, xs2) = selectionSplit xs

[0] [3,1,8,7,2,5,4,9,6]

[0] [1,2,3,4,5,6,7,8,9]

ys = selectionJoin (ys1,ys2)

[0,1,2,3,4,5,6,7,8,9]

xs1 xs2

sort sort

ys1 ys2

52/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Selection Sort —
Abstract Algorithm

Selection Sort —
Haskell

Activity 4 — Selection
Sort: Trace an
Evaluation

Selection Sort — Python

Selection Sort —
Non-recursive

Activity 5 — Finding
the Non-Recursive
Algorithm

Merge Sort

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Selection Sort
Haskell Implementation

15 selSort [] = []
16 selSort [x] = [x]
17 selSort xs = minItem : selSort (xs \\ [minItem])
18 where
19 minItem = minimum xs

ñ Explanation of the above:

ñ (\\) is the list difference operator

ñ [2,1,3,1] \\ [1] == [2,3,1]

ñ minimum is the Haskell built in function that takes a list
a returns the smallest item.

ñ See the Data.List library

ñ Exercise: produce your own implementation of minimum
— remember to give it a different name

53/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Selection Sort —
Abstract Algorithm

Selection Sort —
Haskell

Activity 4 — Selection
Sort: Trace an
Evaluation

Selection Sort — Python

Selection Sort —
Non-recursive

Activity 5 — Finding
the Non-Recursive
Algorithm

Merge Sort

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Activity 4 — Selection Sort
Trace an Evaluation — Haskell

ñ Evaluation of selSort [3,0,1,8,7]

ñ Answer goes here

54/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Selection Sort —
Abstract Algorithm

Selection Sort —
Haskell

Activity 4 — Selection
Sort: Trace an
Evaluation

Selection Sort — Python

Selection Sort —
Non-recursive

Activity 5 — Finding
the Non-Recursive
Algorithm

Merge Sort

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Activity 4 — Selection Sort
Trace an Evaluation — Haskell

ñ Evaluation of selSort [3,0,1,8,7]

Expression to Evaluate Reason

selSort [3,0,1,8,7] Initial
→ 0 : (selSort [3,1,8,7]) line 17
→ 0 : (1 : (selSort [3,8,7])) line 17
→ 0 : (1 : (3 : (selSort [8,7]))) line 17
→ 0 : (1 : (3 : (7 : (selSort [8])))) line 17
→ 0:(1:(3:(7:[8]))) line 16
→ [0,1,3,7,8] (:) operator

ñ Note that the evaluation consumes more space in the
process of evaluation;

ñ also note that you need to be careful with the brackets
when doing an evaluation like this by hand.

55/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Selection Sort —
Abstract Algorithm

Selection Sort —
Haskell

Activity 4 — Selection
Sort: Trace an
Evaluation

Selection Sort — Python

Selection Sort —
Non-recursive

Activity 5 — Finding
the Non-Recursive
Algorithm

Merge Sort

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Selection Sort
Python Implementation

54def selSort(xs) :
55 if len(xs) <= 1 :
56 return xs
57 else :
58 minElmnt = min(xs)
59 minIndex = xs.index(minElmnt)
60 xsWithoutMin = xs[:minIndex] + xs[minIndex+1:]
61 return [minElmnt] + selSort(xsWithoutMin)

ñ Why do we not use xs.remove(min(xs)) ?

56/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Selection Sort —
Abstract Algorithm

Selection Sort —
Haskell

Activity 4 — Selection
Sort: Trace an
Evaluation

Selection Sort — Python

Selection Sort —
Non-recursive

Activity 5 — Finding
the Non-Recursive
Algorithm

Merge Sort

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Selection Sort
Non-recursive Implementation

ñ The non-recursive version of Selection sort takes each
position of the list in turn and swaps the element at
that position with the minimum element in the rest of
the list from that position to the end of the list.

for fillSlot = 0 to (len(xs) - 2) do
find the minimum of
xs[fillSlot+1]..xs[len(xs) - 1]

and swap with xs[fillSlot]

57/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Selection Sort —
Abstract Algorithm

Selection Sort —
Haskell

Activity 4 — Selection
Sort: Trace an
Evaluation

Selection Sort — Python

Selection Sort —
Non-recursive

Activity 5 — Finding
the Non-Recursive
Algorithm

Merge Sort

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Selection Sort
Python Non-recursive Implementation

ñ Here is a Python implementation of the above (based on
Miller and Ranum (2011, page 211) but selecting the
smallest first not largest, influenced by
http://rosettacode.org/wiki/Sorting_
algorithms/Selection_sort#PureBasic).

ñ Note that here we indent by 2 spaces and use the
Python idiomatic simultaneous assignment to do the
swap in line 71

63def selectionSort(xs) :
64 for fillSlot in range(0,len(xs)-1) :
65 minIndex = fillSlot
66 for index in range(fillSlot+1,len(xs)) :
67 if xs[index] < xs[minIndex] :
68 minIndex = index

70 # if fillSlot != minIndex: # only swap if different
71 xs[fillSlot],xs[minIndex] = xs[minIndex],xs[fillSlot]

58/115

http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort#PureBasic
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort#PureBasic

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Selection Sort —
Abstract Algorithm

Selection Sort —
Haskell

Activity 4 — Selection
Sort: Trace an
Evaluation

Selection Sort — Python

Selection Sort —
Non-recursive

Activity 5 — Finding
the Non-Recursive
Algorithm

Merge Sort

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Selection Sort
Non-recursive Implementation

ñ The non-recursive version of Selection sort in Miller &
Ranum sorts in ascending order but takes each position
of the list in turn from the right end and swaps the
element at that position with the maximum element in
the rest of the list from the beginning of the list to that
position. (Miller and Ranum (2011, page 211))

for fillSlot = len(xs) - 1 down to 1 do
find the maximum of
xs[0] .. xs[fillSlot]

and swap with xs[fillSlot]

59/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Selection Sort —
Abstract Algorithm

Selection Sort —
Haskell

Activity 4 — Selection
Sort: Trace an
Evaluation

Selection Sort — Python

Selection Sort —
Non-recursive

Activity 5 — Finding
the Non-Recursive
Algorithm

Merge Sort

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Selection Sort
Python Non-recursive Implementation

ñ Here is a Python implementation of the above (based on
Miller and Ranum (2011, page 211) selecting the largest
first.

73def selSortAscByMax(xs) :
74 for fillSlot in range(len(xs) - 1, 0, -1) :
75 maxIndex = 0
76 for index in range(1, fillSlot + 1) :
77 if xs[index] > xs[maxIndex] :
78 maxIndex = index

80 temp = xs[fillSlot]
81 xs[fillSlot] = xs[maxIndex]
82 xs[maxIndex] = temp

ñ Note that both Python non-recursive versions work by
side-effect on the input list — they do not return new
lists.

60/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Selection Sort —
Abstract Algorithm

Selection Sort —
Haskell

Activity 4 — Selection
Sort: Trace an
Evaluation

Selection Sort — Python

Selection Sort —
Non-recursive

Activity 5 — Finding
the Non-Recursive
Algorithm

Merge Sort

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Activity 5
Finding the Non-Recursive Algorithm

ñ For Insertion Sort and Selection Sort discuss how the
non-recursive case can be found by considering the
recursive case and doing the algorithm in place.

61/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Haskell

Merge Sort — Python

Merge Sort Diagram

Merge Sort Python
In-Place

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Merge Sort
Abstract Algorithm

ñ Merge Split xs1 is half the list; xs2 is the other half of
the list.

ñ Merge Join Merge the sorted xs1 and the sorted xs2
together as the output list

62/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Haskell

Merge Sort — Python

Merge Sort Diagram

Merge Sort Python
In-Place

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Merge Sort
Abstract Sorting Algorithm Diagram

[3,0,1,8,7,2,5,4,9,6]

(xs1, xs2) = mergeSplit xs

[3,0,1,8,7] [2,5,4,9,6]

[0,1,3,7,8] [2,4,5,6,9]

ys = mergeJoin (ys1,ys2)

[0,1,2,3,4,5,6,7,8,9]

xs1 xs2

sort sort

ys1 ys2

63/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Haskell

Merge Sort — Python

Merge Sort Diagram

Merge Sort Python
In-Place

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Merge Sort
Haskell Implementation

21 mergeSort [] = []
22 mergeSort [x] = [x]
23 mergeSort xs
24 = mergeJoin (mergeSort as) (mergeSort bs)
25 where
26 (as,bs) = mergeSplit xs

28 mergeSplit = mergeSplit2

30 mergeSplit2 xs = (take half xs, drop half xs)
31 where
32 half = (length xs) ‘div‘ 2

34 mergeJoin [] ys = ys
35 mergeJoin xs [] = xs
36 mergeJoin (x:xs) (y:ys)
37 | x <= y = x : mergeJoin xs (y:ys)
38 | otherwise = y : mergeJoin (x:xs) ys

64/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Haskell

Merge Sort — Python

Merge Sort Diagram

Merge Sort Python
In-Place

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Haskell Implementation
Code Description

ñ Reserved words and built in function are in blue

ñ take n xs returns the first n of xs as a new list

ñ div is the integer division function, the back quotes
make it an infix operator

ñ 3 ‘div‘ 2 == div 3 2 == 1

ñ In mergeJoin, if the boolean expression following a
vertical bar (|) evaluates to True then the value of the
left hand side is given by the expression on the right of
the following “=” — the lines are known as guards and
are evaluated in turn until one is found to be true
(otherwise is a nickname for True)

ñ We have mergeSplit1 and mergeSplit2 to illustrate
choices.

ñ The code for mergeSplit1 is given below — it splits the
list with just one traversal of the list

65/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Haskell

Merge Sort — Python

Merge Sort Diagram

Merge Sort Python
In-Place

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Merge Sort
Haskell mergeSplit1

40 mergeSplit1 [] = ([],[])
41 mergeSplit1 [x] = ([x],[])
42 mergeSplit1 (x:y:zs)
43 = (x:xs, y:ys)
44 where
45 (xs,ys) = mergeSplit1 zs

ñ mergeSplit1 recursively splits the list by adding
alternate elements to the two parts of the result pair

ñ The code in Python would look similar

66/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Haskell

Merge Sort — Python

Merge Sort Diagram

Merge Sort Python
In-Place

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Merge Sort
Python Implementation

86def mergeSort(xs) :
87 if len(xs) <= 1 :
88 return xs
89 else :
90 (aList,bList) = mergeSplit(xs)
91 return mergeJoin(mergeSort(aList),mergeSort(bList))

93def mergeSplit(xs) :
94 return mergeSplit2(xs)

96def mergeSplit2(xs) :
97 half = len(xs)//2
98 return (xs[:half],xs[half:])

100def mergeJoin(xs,ys) :
101 if xs == [] :
102 return ys
103 elif ys == [] :
104 return xs
105 elif xs[0] <= ys[0] :
106 return [xs[0]] + mergeJoin(xs[1:],ys)
107 else :
108 return [ys[0]] + mergeJoin(xs,ys[1:])

67/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Haskell

Merge Sort — Python

Merge Sort Diagram

Merge Sort Python
In-Place

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Merge Sort
Python mergeSplit1

110def mergeSplit1(xs) :
111 if len(xs) == 0 :
112 return ([],[])
113 elif len(xs) == 1 :
114 return (xs,[])
115 else :
116 (aList,bList) = mergeSplit1(xs[2:])
117 return ([xs[0]] + aList, [xs[1]] + bList)

68/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Haskell

Merge Sort — Python

Merge Sort Diagram

Merge Sort Python
In-Place

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Merge Sort Diagram
Merge Sort Split Phase

3 0 1 8

3 0 1 8

3 0

3 0

1 8 7

1

8 7

8 7

2 5 4 9

2 5

2 5

4 9 6

4

9 6

9 6

69/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Haskell

Merge Sort — Python

Merge Sort Diagram

Merge Sort Python
In-Place

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Merge Sort Diagram
Merge Sort Join Phase

0 1 2 3

0 1 3 7

0 3

3 0

1 7 8

1

7 8

8 7

2 4 5 6

2 5

2 5

4 6 9

4

6 9

9 6

70/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Haskell

Merge Sort — Python

Merge Sort Diagram

Merge Sort Python
In-Place

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Merge Sort
Python In-Place (1)

ñ Here is a Python implementation of the above

ñ From Miller and Ranum (2011, page 218–221)

ñ This is also recursive but works in place by changing
the array.

ñ Code from
http://interactivepython.org/courselib/
static/pythonds/SortSearch/TheMergeSort.html

119def mergeSortInPlace(xs) :
120 if len(xs) > 1 :
121 print("Splitting ", xs)
122 else :
123 print("Singleton ", xs)

125 if len(xs) > 1 :
126 half = len(xs)//2
127 (aList, bList) = (xs[:half],xs[half:])

129 mergeSortInPlace(aList)
130 mergeSortInPlace(bList)

71/115

http://interactivepython.org/courselib/static/pythonds/SortSearch/TheMergeSort.html
http://interactivepython.org/courselib/static/pythonds/SortSearch/TheMergeSort.html

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Haskell

Merge Sort — Python

Merge Sort Diagram

Merge Sort Python
In-Place

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Merge Sort
Python In-Place (2)

132 i,j,k = 0,0,0
133 while i < len(aList) and j < len(bList) :
134 if aList[i] < bList[j] :
135 xs[k] = aList[i]
136 i = i + 1
137 else :
138 xs[k] = bList[j]
139 j = j + 1
140 k = k + 1

142 while i < len(aList) :
143 xs[k] = aList[i]
144 i = i + 1
145 k = k + 1

147 while j < len(bList) :
148 xs[k] = bList[j]
149 j = j + 1
150 k = k + 1

72/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Haskell

Merge Sort — Python

Merge Sort Diagram

Merge Sort Python
In-Place

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Merge Sort
Python In-Place (3)

ñ Here is the code that reports the merging of the lists

152 if len(xs) > 1 :
153 print("Merging ", aList, ",", bList, "to", xs)
154 else :
155 print("Merged ", xs)

73/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Haskell

Merge Sort — Python

Merge Sort Diagram

Merge Sort Python
In-Place

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Merge Sort
Python Code Description

ñ is how the listings package shows spaces in strings
by default (read the manual)

ñ // is the Python integer division operator

ñ aList[start:stop:step] is a slice of a list — see
Python Sequence Types — slice operations return a new
list (van Rossum and Drake, 2011a, page 19) so xs[:]
returns a copy (or clone) of xs — if any of the indices
are missing or negative than you have to think a bit (or
read the manual)

ñ In Python you really do need to be aware when you are
working with values or references to objects.

74/115

https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Haskell

Merge Sort — Python

Merge Sort Diagram

Merge Sort Python
In-Place

Quicksort

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Merge Sort
Python In-Place (3)

ñ A listing of the output of mergeSortInPlace(xsc)
below is given in the article version of these notes

>>> from SortingPython import *
>>> xs = [3,0,1,8,7,2,5,4,9,6]
>>> xsc = xs[:]
>>> mergeSortInPlace(xsc)
Splitting [3, 0, 1, 8, 7, 2, 5, 4, 9, 6]
#
lines removed
#
Merging [0, 1, 3, 7, 8] , [2, 4, 5, 6, 9]
to [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

75/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Merge Sort

Quicksort

Quicksort — Abstract
Algorithm

Quicksort — Haskell

List Comprehensions

Quicksort — Python

Quicksort Python
In-Place

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Quicksort
Abstract Algorithm

ñ Quicksort Split Choose an item in the list to be the pivot
item; xs1 comprises items in the list less than the pivot
plus the pivot; xs2 comprises items in the list greater
than or equal to the pivot.

ñ Quicksort Join just append the sorted xs1 and the
sorted xs2 together as the output list

76/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Merge Sort

Quicksort

Quicksort — Abstract
Algorithm

Quicksort — Haskell

List Comprehensions

Quicksort — Python

Quicksort Python
In-Place

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Quicksort
Abstract Sorting Algorithm Diagram

[3,0,1,8,7,2,5,4,9,6]

(xs1, xs2) = quickSplit xs

[0,1,2] ⊕ [3] [8,7,5,4,9,6]

[0,1,2,3] [4,5,6,7,8,9]

ys = quickJoin (ys1,ys2)

[0,1,2,3,4,5,6,7,8,9]

xs1 xs2

sort sort

ys1 ys2

77/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Merge Sort

Quicksort

Quicksort — Abstract
Algorithm

Quicksort — Haskell

List Comprehensions

Quicksort — Python

Quicksort Python
In-Place

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Quicksort
Haskell Implementation

47 quickSort1 [] = []
48 quickSort1 (x:xs)
49 = quickSort1 [y | y <- xs, y < x]
50 ++ [x]
51 ++ quickSort1 [y | y <- xs, y >= x]

ñ This uses the Haskell version of the list comprehension
notation

ñ Based on classical set notation and originally
implemented in Miranda out of David Turner in 1983–6
(see http://miranda.org.uk)

ñ This idea is available in Python but in a slightly different
syntax

ñ ++ is the list append operator — denoted ⊕ in various
courses and texts

78/115

https://en.wikipedia.org/wiki/List_comprehension
https://en.wikipedia.org/wiki/List_comprehension
http://miranda.org.uk

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Merge Sort

Quicksort

Quicksort — Abstract
Algorithm

Quicksort — Haskell

List Comprehensions

Quicksort — Python

Quicksort Python
In-Place

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

List Comprehensions
In Haskell and Python

ñ Haskell 2010 Language Report section 3.11 List
Comprehensions

ñ [e | q1, . . . ,qn],n ≥ 1 where qi qualifiers are either
ñ generators of the form p <- e where p is a pattern of

type t and e is an expression of type [t]
ñ local bindings that provide new definitions for use in the

generated expression e or subsequent boolean guards
and generators

ñ boolean guards which are expressions of type Bool
ñ Python Language Reference section 6.2.4 Displays for

lists, sets and dictionaries and section 6.2.5 List
displays

ñ [expr for target in list] — simple
comprehension

ñ [expr for target in list if condition] —
filters

ñ [expr for target1 in list1 for target2 in
list2] — multiple generators

79/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Merge Sort

Quicksort

Quicksort — Abstract
Algorithm

Quicksort — Haskell

List Comprehensions

Quicksort — Python

Quicksort Python
In-Place

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Quicksort
Python

159def qsort(xs) :
160 if not xs :
161 return []
162 else :
163 pivot = xs[0]
164 less = [x for x in xs if x < pivot]
165 more = [x for x in xs[1:] if x >= pivot]
166 return qsort(less) + [pivot] + qsort(more)

ñ The if test shows that Python is weakly typed (and the
author of this code comes from JavaScript)

80/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Merge Sort

Quicksort

Quicksort — Abstract
Algorithm

Quicksort — Haskell

List Comprehensions

Quicksort — Python

Quicksort Python
In-Place

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Quicksort
Python In-Place (1)

ñ The in-place version of Quick sort works by partitioning
a list in place about a value pivotvalue: (Azmoodeh,
1990, page 259–266)

(1) Scan from the left until
ñ alist[leftmark] >= pivotvalue

(2) Scan from the right until
ñ alist[rightmark] < pivotvalue

(3) Swap alist[leftmark] and alist[rightmark]

(4) Repeat (1) to (3) until scans meet

81/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Merge Sort

Quicksort

Quicksort — Abstract
Algorithm

Quicksort — Haskell

List Comprehensions

Quicksort — Python

Quicksort Python
In-Place

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Quicksort
Python In-Place (2)

ñ Here is an in place version of Quick Sort from Miller and
Ranum (2011, pages 221–226)

ñ Code based on
http://interactivepython.org/courselib/
static/pythonds/SortSearch/TheQuickSort.html

168def quickSort(xs) :
169 quickSortHelper(xs, 0, len(xs) - 1)

171def quickSortHelper(xs, fst, lst) :
172 if fst < lst :

174 splitPoint = partition(xs,fst,lst)

176 quickSortHelper(xs, fst, splitPoint - 1)
177 quickSortHelper(xs, splitPoint + 1, lst)

82/115

http://interactivepython.org/courselib/static/pythonds/SortSearch/TheQuickSort.html
http://interactivepython.org/courselib/static/pythonds/SortSearch/TheQuickSort.html

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Merge Sort

Quicksort

Quicksort — Abstract
Algorithm

Quicksort — Haskell

List Comprehensions

Quicksort — Python

Quicksort Python
In-Place

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Quicksort
Python In-Place (3)

179def partition(xs,fst,lst) :
180 pivotValue = xs[fst]
181 leftMk = fst + 1
182 rightMk = lst
183 done = False

185 while not done :
186 while leftMk <= rightMk and \
187 xs[leftMk] <= pivotValue :
188 leftMk = leftMk + 1
189 while xs[rightMk] >= pivotValue and \
190 rightMk >= leftMk :
191 rightMk = rightMk - 1

193 if rightMk < leftMk :
194 done = True
195 else :
196 xs[leftMk], xs[rightMk] = xs[rightMk], xs[leftMk]

198 xs[fst], xs[rightMk] = xs[rightMk], xs[fst]
199 return rightMk

83/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Merge Sort

Quicksort

Quicksort — Abstract
Algorithm

Quicksort — Haskell

List Comprehensions

Quicksort — Python

Quicksort Python
In-Place

Bubble Sort

What Next ?

Tree Sort

Heap Sort

References

Quicksort
Python In-Place (4)

ñ The (\) is enabling a statement to span multiple lines
— see Lutz (2009, page 317), Lutz (2013, page 378)

ñ for a language that uses the offside rule why do we
need to do this?

ñ Note that using (\) to create continuations is frowned
on Lutz (2009, page 318), Lutz (2013, page 379)

ñ the authors should have put the entire boolean
expression inside parentheses () so that we get implicit
continuation.

ñ This is not mentioned explicitly in the Style Guide for
Python Code
http://www.python.org/dev/peps/pep-0008/ but it
does explicitly mention using Python’s implicit line
joining with layout guidelines.

84/115

http://www.python.org/dev/peps/pep-0008/

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Merge Sort

Quicksort

Bubble Sort

Bubble Sort — Abstract
Algorithm

Bubble Sort — Haskell

Bubble Sort — Python

What Next ?

Tree Sort

Heap Sort

References

Bubble Sort
Abstract Algorithm

ñ Bubble sort is rather like the Hello World program of
sorting algorithms — we have to include it even it isn’t
very useful in practice.

ñ It can be thought of as an in-place version of Selection
sort

ñ In the implementations below, in each pass through the
list, the next highest item is moved (bubbled) to its
proper place.

ñ OK, I should have written it to bubble the smallest the
other way to be consistent with the implementations of
Selection sort above.

85/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Merge Sort

Quicksort

Bubble Sort

Bubble Sort — Abstract
Algorithm

Bubble Sort — Haskell

Bubble Sort — Python

What Next ?

Tree Sort

Heap Sort

References

Bubble Sort
Haskell

ñ Here is a naive version (based on
http://rosettacode.org/wiki/Sorting_
algorithms/Bubble_sort#Haskell

ñ it is naive because it does the check for changes in a
simple way.

ñ See the above Web site for more sophisticated versions

53 bubbleSort xs
54 = if (ts == xs) then ts else (bubble ts)
55 where
56 ts = bubble xs

58 bubble [] = []
59 bubble [x] = [x]
60 bubble (x1:x2:xs)
61 | x1 > x2 = x2 : (bubble (x1 : xs))
62 | otherwise = x1 : (bubble (x2 : xs))

86/115

http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort#Haskell
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort#Haskell

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Merge Sort

Quicksort

Bubble Sort

Bubble Sort — Abstract
Algorithm

Bubble Sort — Haskell

Bubble Sort — Python

What Next ?

Tree Sort

Heap Sort

References

Bubble Sort
Haskell Code Description

ñ The expression (x1:x2:xs) denotes a list of at least
two items whose first two items are x1 and x2 and the
rest of the list is xs

ñ The third equation defining bubble uses boolean
guards starting with (|) rather than a conditional
expression (if ... then ... else ...)

ñ it could be written the other way and remove the need
to understand this style of function declaration but this
is a frequently used style in Haskell

87/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting
Insertion Sort

Selection Sort

Merge Sort

Quicksort

Bubble Sort

Bubble Sort — Abstract
Algorithm

Bubble Sort — Haskell

Bubble Sort — Python

What Next ?

Tree Sort

Heap Sort

References

Bubble Sort
Python

ñ Here is a Python implementation from Miller and Ranum
(2011, pages 207–210)

ñ it does not test if there have been no swaps but does
use some knowledge of the algorithm by reducing the
pass length by one each time (which the Haskell one did
not do)

203def bubbleSort(xs) :
204 for passNum in range(len(xs) - 1, 0, -1) :
205 for i in range(passNum) :
206 if xs[i] > xs[i+1] :
207 xs[i], xs[i+1] = xs[i+1], xs[i]

ñ Note that range() is a built-in function to Python that
is used a lot

ñ Read the documentation at Section 4.6.6 Ranges

ñ Remember that range(5) means [0,1,2,3,4] (not
[0,1,2,3,4,5] or [1,2,3,4,5])

88/115

https://docs.python.org/3.3/library/stdtypes.html#typesseq-range

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References

What Next ?
Trees, Graph algorithms, Greed, Logic, Computability

ñ Binary trees, Binary heaps and Heap sort

ñ Searching — searching for patterns, string searches

ñ Hashing and hash tables

ñ Binary search trees, height balanced binary search
trees, AVL trees

ñ Graph algorithms

ñ Greedy algorithms

ñ Sunday 6 February 2022 Tutorial Online Binary Trees,
Graph algorithms

ñ Logic, Computability

ñ Sunday 13 March 2022 Tutorial Online Logic

ñ Sunday 24 April 2022 Tutorial Online Computability

89/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort
Tree Sort — Abstract
Algorithm

Tree Sort — Python

Example Tree Sort

Tree Sort — Haskell

Heap Sort

References

Tree Sort
Abstract Algorithm

ñ Build Binary Search Tree — build a binary search tree
from the list of keys to be sorted

ñ Traverse Tree In-Order — traverse the tree in-order to
output the keys in sorted order

90/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort
Tree Sort — Abstract
Algorithm

Tree Sort — Python

Example Tree Sort

Tree Sort — Haskell

Heap Sort

References

Tree Sort
Python (1)

211from collections import namedtuple

213EmptyTreeBT = None

215NodeBT = namedtuple(’NodeBT’
216 ,[’dataBT’,’leftBT’,’rightBT’])

218# Binary Tree Operations

220def makeEmptyBT() :
221 return EmptyTreeBT

223def makeBT(x,t1,t2) :
224 return NodeBT(x,t1,t2)

226def isEmptyBT(t) :
227 return t is EmptyTreeBT

91/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort
Tree Sort — Abstract
Algorithm

Tree Sort — Python

Example Tree Sort

Tree Sort — Haskell

Heap Sort

References

Tree Sort
Python (2)

ñ This is from SortingPython.py

ñ Reserved identifiers are shown in this color

ñ User defined data constructors such as NodeBT and
EmptyTreeBT are shown in that color

ñ NodeBT is a named tuple with named fields — a quick
and dirty object

ñ makeEmptyBT, makeBT are constructor functions — we
could have used the raw named tuple and None but the
discipline is good for you

ñ isEmptyBT uses the is operator for identity check (not
(==))

ñ Health Warning: these notes may not be totally
consistent with syntax colouring.

92/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort
Tree Sort — Abstract
Algorithm

Tree Sort — Python

Example Tree Sort

Tree Sort — Haskell

Heap Sort

References

Tree Sort
Python (3)

ñ insertListBST and insertBST insert a list of items
into a Binary Search Tree

ñ To be consistent, we should have used the constructor
functions to hide the implementation.

274def insertBST(x,t) :
275 if isEmptyBT(t) :
276 return NodeBT(x,EmptyTreeBT,EmptyTreeBT)
277 else :
278 y = t.dataBT
279 if x < y :
280 return NodeBT(y, insertBST(x,t.leftBT),t.rightBT)
281 elif x > y :
282 return NodeBT(y, t.leftBT, insertBST(x,t.rightBT))
283 else :
284 return t

286def insertListBST(t,xs) :
287 if xs == [] :
288 return t
289 else :
290 return insertListBST(insertBST(xs[0],t),xs[1:])

93/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort
Tree Sort — Abstract
Algorithm

Tree Sort — Python

Example Tree Sort

Tree Sort — Haskell

Heap Sort

References

Tree Sort
Python (4)

ñ inOrderBT takes a Binary Tree and does an in-order
traversal

ñ treeSort combines insertListBST and inOrderBT

251def inOrderBT(t) :
252 if isEmptyBT(t) :
253 return []
254 else :
255 return (inOrderBT(t.leftBT) + [t.dataBT]
256 + inOrderBT(t.rightBT))

292def treeSort(xs) :
293 return inOrderBT(insertListBST(makeEmptyBT(),xs))

94/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort
Tree Sort — Abstract
Algorithm

Tree Sort — Python

Example Tree Sort

Tree Sort — Haskell

Heap Sort

References

Tree Sort
Python (5)

ñ Example list and tree

297xs = [3,0,1,8,7,2,5,4,9,6]

299egTree = insertListBST(makeEmptyBT(),xs)

301egTreeTest = NodeBT(3,
302 NodeBT(0,
303 EmptyTreeBT,
304 NodeBT(1,
305 EmptyTreeBT,
306 NodeBT(2, EmptyTreeBT, EmptyTreeBT))),
307 NodeBT(8,
308 NodeBT(7,
309 NodeBT(5,
310 NodeBT(4, EmptyTreeBT, EmptyTreeBT),
311 NodeBT(6, EmptyTreeBT, EmptyTreeBT)),
312 EmptyTreeBT),
313 NodeBT(9, EmptyTreeBT, EmptyTreeBT)))

95/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort
Tree Sort — Abstract
Algorithm

Tree Sort — Python

Example Tree Sort

Tree Sort — Haskell

Heap Sort

References

Example Tree Sort 1
Insert [3,0,1,8,7,2,5,4,9,6] into EmptyTreeBT

3

egTreeTest

0

1

2

8

7

5

4 6

9

ñ The in-order traversal of egTreeTest outputs

ñ [0,1,2,3,4,5,6,7,8,9]

96/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort
Tree Sort — Abstract
Algorithm

Tree Sort — Python

Example Tree Sort

Tree Sort — Haskell

Heap Sort

References

Tree Sort
Haskell (1)

64 data BinTree a = EmptyTreeBT
65 | NodeBT a (BinTree a) (BinTree a)
66 deriving (Eq,Ord,Show,Read)

68 -- BSTree is an alias for BinTree,
69 -- we have to enforce the Binary Search Tree property

71 type BSTree a = BinTree a

ñ The code starting with data (line 64) is an Algebraic
Datatype declaration. Algebraic datatypes allow you
just to name things and use them in your program

ñ Meta-magic and avoids ever needing to use pointers

ñ For a description see Algebraic data type and Marlow
and Peyton Jones (2010, section 4.2.1)

ñ -- comments out a line

97/115

http://en.wikipedia.org/wiki/Algebraic_data_type

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort
Tree Sort — Abstract
Algorithm

Tree Sort — Python

Example Tree Sort

Tree Sort — Haskell

Heap Sort

References

Tree Sort
Haskell (2)

ñ BinTree is the name of the type and EmptyTreeBT,
NodeBT are the two data constructors

ñ a is a type variable — that is, a variable that ranges
over types (not values). It could be any type (subject to
any restrictions we place on it): primitive types such as
Int, Bool, built-in structured types such as tuples or
list, or other user defined types

ñ The constructor EmptyTreeBT is to represent an empty
tree (took ages to think of that name)

ñ The constructor Node takes three arguments: the first is
of type a and is meant to represent the data stored at a
node, the second and third are of type BinTree a and
indicate the left and right sub trees

98/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort
Tree Sort — Abstract
Algorithm

Tree Sort — Python

Example Tree Sort

Tree Sort — Haskell

Heap Sort

References

Tree Sort
Haskell (3)

ñ Here is a sample tree with 51 at the root and left and
right subtree with 26 and 69 at their roots

NodeBT 51
(NodeBT 26 EmptyTreeBT EmptyTreeBT)
(NodeBT 69 EmptyTreeBT EmptyTreeBT)

Here is the usual diagram of this tree (with the empty
trees labelled as E):

51

26

E E

69

E E

99/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort
Tree Sort — Abstract
Algorithm

Tree Sort — Python

Example Tree Sort

Tree Sort — Haskell

Heap Sort

References

Tree Sort
Haskell (4)

ñ The deriving (Eq,Ord,Show,Read) part of the
declaration produces derived instances for BinTree is
the type classes for equality (Eq), ordering (Ord),
printing (Show) and reading from files (or standard
input) (Read)

ñ Equality as a derived instance is just lexicographic —
that is, two trees are equal if and only if they look the
same

ñ Show and Read do the fairly obvious thing — the above
example would be printed or read as you see it above.

ñ The (|) is just the syntax separating the two
constructors

ñ The line starting type (line 71) is a type synonym
declaration — this is not needed apart from making the
code a bit more readable (to distinguish Binary Search
Trees from other Binary Trees)

100/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort
Tree Sort — Abstract
Algorithm

Tree Sort — Python

Example Tree Sort

Tree Sort — Haskell

Heap Sort

References

Tree Sort
Haskell (5)

72 insertBST :: (Ord a) => BSTree a -> a -> BSTree a

74 insertBST EmptyTreeBT x
75 = NodeBT x EmptyTreeBT EmptyTreeBT

77 -- Note that insertBST does not accept duplicate keys,
78 -- see \citet[page 271]{millar:2011python}

80 insertBST (NodeBT y leftT rightT) x
81 | x < y = NodeBT y (insertBST leftT x) rightT
82 | x > y = NodeBT y leftT (insertBST rightT x)
83 | x == y = NodeBT y leftT rightT

85 insertListBST :: (Ord a) => BSTree a -> [a] -> BSTree a
86 insertListBST t [] = t
87 insertListBST t (x:xs)
88 = insertListBST (insertBST t x) xs

101/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort
Tree Sort — Abstract
Algorithm

Tree Sort — Python

Example Tree Sort

Tree Sort — Haskell

Heap Sort

References

Tree Sort
Haskell (6)

ñ The line starting insertBST :: (line 72) is a Type
Signature which specifies the type of the function
insertBST

ñ Ord a is a context for the type following => with one
class assertion — it restricts the type variable a to be a
member of the Ord type class

ñ BSTree a -> a -> BSTree a says that insertBST
takes a binary tree and an item and returns a binary
tree.

ñ The function type operator -> is right associative (to
match left association of function application) — see
Lee (2013).

102/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort
Tree Sort — Abstract
Algorithm

Tree Sort — Python

Example Tree Sort

Tree Sort — Haskell

Heap Sort

References

Tree Sort
Haskell (7)

89 inorderBST :: BSTree a -> [a]
90 inorderBST EmptyTreeBT = []
91 inorderBST (NodeBT x leftT rightT)
92 = (inorderBST leftT) ++ [x] ++ (inorderBST rightT)

94 treeSort :: Ord a => [a] -> [a]
95 treeSort xs = inorderBST (insertListBST EmptyTreeBT xs)

ñ The ++ is the list append operator

ñ treeSort takes a list xs and uses insertListBST to
insert the list into EmptyTreeBT and then inorderBST
to traverse the tree

103/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort
Tree Sort — Abstract
Algorithm

Tree Sort — Python

Example Tree Sort

Tree Sort — Haskell

Heap Sort

References

Tree Sort
Haskell (8) Alternative Definitions

ñ Alternative tree building bracketing from the right

96 insertBST01 :: (Ord a) => a -> BSTree a -> BSTree a

98 insertBST01 x EmptyTreeBT
99 = NodeBT x EmptyTreeBT EmptyTreeBT

101 -- Note that insertBST01 does not accept duplicate keys,
102 -- see \citet[page 271]{millar:2011python}

104 insertBST01 x (NodeBT y leftT rightT)
105 | x < y = NodeBT y (insertBST01 x leftT) rightT
106 | x > y = NodeBT y leftT (insertBST01 x rightT)
107 | x == y = NodeBT y leftT rightT

109 insertListBST01 :: (Ord a) => BSTree a -> [a] -> BSTree a
110 insertListBST01 t [] = t
111 insertListBST01 t (x:xs)
112 = insertBST01 x (insertListBST01 t xs)

104/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort
Tree Sort — Abstract
Algorithm

Tree Sort — Python

Example Tree Sort

Tree Sort — Haskell

Heap Sort

References

Tree Sort
Haskell (9) Alternative Definitions

ñ Some more idiomatic Haskell using higher order
functions

ñ (.) is the function composition operator

ñ (f . g) x = f (g x)

ñ foldl and foldr capture common patterns of
recursion on lists

113 treeSort01 :: Ord a => [a] -> [a]
114 treeSort01 = inorderBST . (insertListBST EmptyTreeBT)
115 -- point free style requires explicit type signature
116 -- because of the monomorphism restriction

118 insertListBSTa :: (Ord a) => [a] -> BSTree a
119 insertListBSTa xs = foldl insertBST EmptyTreeBT xs

121 insertListBST01a :: (Ord a) => [a] -> BSTree a
122 insertListBST01a xs = foldr insertBST01 EmptyTreeBT xs

105/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort
Tree Sort — Abstract
Algorithm

Tree Sort — Python

Example Tree Sort

Tree Sort — Haskell

Heap Sort

References

Tree Sort
Haskell (10)

foldl (⊕) z [x1,x2,...,xn]
→ (...((z ⊕ x1) ⊕ x2) ⊕...)⊕ xn

foldr (⊕) z [x1,x2,...,xn]
→ x1 ⊕ (x2 ⊕...⊕ (xn ⊕ z)...)

ñ Examples

ñ sum xs = foldr (+) 0 xs

ñ product xs = foldr (*) 1 xs

ñ concat xss = foldr (++) [] xss

ñ Higher order functions tend to get used a lot in
idiomatic functional programming

ñ Higher order functions take functions as arguments
and/or return functions as results

106/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort
Tree Sort — Abstract
Algorithm

Tree Sort — Python

Example Tree Sort

Tree Sort — Haskell

Heap Sort

References

Tree Sort
Haskell (10)

124 xs = [3,0,1,8,7,2,5,4,9,6]

126 egTreeTesta = insertListBSTa xs

128 testA
129 = egTreeTesta
130 == NodeBT 3
131 (NodeBT 0
132 EmptyTreeBT
133 (NodeBT 1
134 EmptyTreeBT
135 (NodeBT 2 EmptyTreeBT EmptyTreeBT)))
136 (NodeBT 8
137 (NodeBT 7
138 (NodeBT 5
139 (NodeBT 4 EmptyTreeBT EmptyTreeBT)
140 (NodeBT 6 EmptyTreeBT EmptyTreeBT))
141 EmptyTreeBT)
142 (NodeBT 9 EmptyTreeBT EmptyTreeBT))

107/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort
Tree Sort — Abstract
Algorithm

Tree Sort — Python

Example Tree Sort

Tree Sort — Haskell

Heap Sort

References

Tree Sort
Haskell (11)

143 -- xs = [3,0,1,8,7,2,5,4,9,6]

145 egTreeTest01a = insertListBST01a xs

147 test01A
148 = egTreeTest01a
149 == NodeBT 6
150 (NodeBT 4
151 (NodeBT 2
152 (NodeBT 1
153 (NodeBT 0 EmptyTreeBT EmptyTreeBT)
154 EmptyTreeBT)
155 (NodeBT 3 EmptyTreeBT EmptyTreeBT))
156 (NodeBT 5 EmptyTreeBT EmptyTreeBT))
157 (NodeBT 9
158 (NodeBT 7
159 EmptyTreeBT
160 (NodeBT 8 EmptyTreeBT EmptyTreeBT))
161 EmptyTreeBT)

108/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort
Tree Sort — Abstract
Algorithm

Tree Sort — Python

Example Tree Sort

Tree Sort — Haskell

Heap Sort

References

Example Tree Sort 2
Insert [3,0,1,8,7,2,5,4,9,6] into EmptyTreeBT

6

egTreeTest01a

4

5 2

3 1

0

9

7

8

ñ egTreeTest01a is built with foldr
ñ The in-order traversal of egTreeTest01a outputs
ñ [0,1,2,3,4,5,6,7,8,9]

109/115

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort
Heap Sort — Abstract
Algorithm

References

Heap Sort
Abstract Algorithm

ñ A Binary Heap is a Heap using a binary tree with two
additional properties:
ñ Compact shape A binary heap is a complete binary tree

— every level, except possibly the last, is completely
filled and all nodes in the last level are as for left as
possible.

ñ Heap property All nodes are either greater than or equal
to or less than or equal to each of its children.

ñ In many implementations, the Binary Heap is
implemented as an implicit data structure using an
array

ñ The array is a breadth first listing of the nodes
ñ New nodes can be added in the next position in the

implicit tree and then percolated or sifted up the tree to
its (or a) correct position.

ñ If the root of the tree is deleted then the last node is
promoted to the root and percolated or sifted down the
tree to a correct place

110/115

https://en.wikipedia.org/wiki/Binary_heap
https://en.wikipedia.org/wiki/Heap_(data_structure)
https://en.wikipedia.org/wiki/Binary_tree

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort
Heap Sort — Abstract
Algorithm

References

Heaps
Implementations and Applications

ñ There are lots of varieties of heaps

ñ Used later in M269 for Priority queues
ñ As well as Miller and Ranum and the M269 material, see

ñ Comparison of Priority Queue implementations in
Haskell

ñ Louis Wasserman: Playing with Priority Queues

ñ TODO: typeset the Python and Haskell for this

111/115

https://en.wikipedia.org/wiki/Heap_(data_structure)
https://en.wikipedia.org/wiki/Priority_queue
http://stackoverflow.com/questions/6976559/comparison-of-priority-queue-implementations-in-haskell
http://stackoverflow.com/questions/6976559/comparison-of-priority-queue-implementations-in-haskell
https://themonadreader.files.wordpress.com/2010/05/issue16.pdf

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References
Sorting Web Links

Python Web Links &
References

Haskell Web Links &
References

Demonstration 2 Sorting
Algorithms as Dances

Sorting
Web Links

ñ Rosetta Code Sorting Algorithms http:
//rosettacode.org/wiki/Sorting_algorithms —
sorting algorithms implemented n lots of programming
languages

ñ Sorting Algorithm Animations
http://www.sorting-algorithms.com — visual
display of the performance of various sorting
algorithms for several classes of data: random, nearly
sorted, reversed, few unique — worth browsing to.

ñ Sorting Algorithms as Dances
https://www.youtube.com/user/AlgoRythmics —
inspired!

112/115

http://rosettacode.org/wiki/Sorting_algorithms
http://rosettacode.org/wiki/Sorting_algorithms
http://www.sorting-algorithms.com
https://www.youtube.com/user/AlgoRythmics

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References
Sorting Web Links

Python Web Links &
References

Haskell Web Links &
References

Demonstration 2 Sorting
Algorithms as Dances

Python
Web Links & References

ñ Miller and Ranum (2011)
http://interactivepython.org/courselib/
static/pythonds/index.html — the entire book
online with a nice way of running the code.

ñ Lutz (2013) — one of the best introductory books

ñ Lutz (2011) — a more advanced book — earlier
editions of these books are still relevant — you can also
obtain electronic versions from the O’Reilly Web site
http://oreilly.com

ñ Python 3 Documentation
https://docs.python.org/3/

ñ Python Style Guide PEP 8
https://www.python.org/dev/peps/pep-0008/
(Python Enhancement Proposals)

113/115

http://interactivepython.org/courselib/static/pythonds/index.html
http://interactivepython.org/courselib/static/pythonds/index.html
http://oreilly.com
https://docs.python.org/3/
https://www.python.org/dev/peps/pep-0008/

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References
Sorting Web Links

Python Web Links &
References

Haskell Web Links &
References

Demonstration 2 Sorting
Algorithms as Dances

Haskell
Web Links & References

ñ Haskell Language https://www.haskell.org

ñ HaskellWiki https://wiki.haskell.org/Haskell

ñ Learn You a Haskell for Great Good!
http://learnyouahaskell.com — very readable
introduction to Haskell

ñ Bird and Wadler (1988); Bird (1998, 2014) — one of
the best introductions but tough in parts, requires
some mathematical maturity — the three books are in
effect different editions

ñ Functors, Applicatives, and Monads in Pictures
http://adit.io/posts/2013-04-17-functors,
_applicatives,_and_monads_in_pictures.html —
a very good outline with cartoons

ñ Haskell Wikibook
https://en.wikibooks.org/wiki/Haskell

114/115

https://www.haskell.org
https://wiki.haskell.org/Haskell
http://learnyouahaskell.com
http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html
http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html
https://en.wikibooks.org/wiki/Haskell

Sorting

Phil Molyneux

Agenda

Adobe Connect

Sorting: Motivation

Sorting Taxonomy

Recursion/Iteration

Split/Join Sorting

What Next ?

Tree Sort

Heap Sort

References
Sorting Web Links

Python Web Links &
References

Haskell Web Links &
References

Demonstration 2 Sorting
Algorithms as Dances

Sorting Algorithms
Demonstration 2 Sorting Algorithms as Dances

ñ Quicksort

ñ https://www.youtube.com/user/AlgoRythmics

ñ the hats make the point(!)

115/115

https://www.youtube.com/user/AlgoRythmics

	M269 Tutorial Agenda — Sorting, Recursion
	Adobe Connect Interface and Settings
	Adobe Connect Interface
	Adobe Connect Settings
	Adobe Connect — Sharing Screen & Applications
	Adobe Connect — Ending a Meeting
	Adobe Connect — Invite Attendees
	Layouts
	Chat Pods
	Graphics Conversion for Web

	Sorting: Motivation
	Demonstration 1 Sorting Algorithms as Dances
	Activity 1 Card Sorting Exercise

	Taxonomy of Sorting Algorithms
	Other Classifications of Sorting Algorithms

	Recursion and Iteration
	Some Split/Join Sorting Algorithms
	Insertion Sort
	Selection Sort
	Merge Sort
	Quicksort
	Bubble Sort

	What Next ?
	Sorting via a Data Structure — Tree Sort
	Tree Sort — Abstract Algorithm
	Tree Sort — Python
	Example Tree Sort
	Tree Sort — Haskell

	Sorting via a Data Structure — Heap Sort
	Heap Sort — Abstract Algorithm

	Web Sites & References
	Sorting Web Links
	Python Web Links & References
	Haskell Web Links & References
	Demonstration 2 Sorting Algorithms as Dances

