Sorting

Phil Molyneux

Agenda
Adobe Connect
Sorting: Motivation

Sorting Taxonomy

SO rti n g Recursion/Iteration
Split/Join Sorting
M269 Tutorial

What Next ?
Tree Sort

Heap Sort

Phil MOIyneUX References

9 January 2022

1/115

Sorting

M269 Tutorial: Sorting, Recursion

Phil Molyneux
Agenda
Agenda
» Welcome & introductions Fifin Comies:
. . i . . 3 Sorting: Motivation
» Tutorial topics: Sorting Algorithms, Recursion A —
» Adobe Connect — if you or | get cut off, wait till we Recursion/Iteration
reconnect (or send you an email) Split/Join Sorting
. What Next ?
» Time: about 1.5 hours .
ree Sort
> Do ask questions or raise points. Heap Sort
References

> Source: of slides, notes, programs and playing cards:
M269Tutorial03Sorting

www.pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269TutorialSorting

2/115

http://www.pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269Tutorial03Sorting/
http://www.pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269Tutorial03Sorting/

Sorting

M269 Tutorial

Phil Molyneux
Introductions — Phil
Agenda
» Name Phil Molyneux Acobiconnecy
Sorting: Motivation
» Background conti
orting Taxonomy
> Undergraduate: Physics and Maths (Sussex) Recursion/Iteration
> Postgraduate: Physics (Sussex), Operational Research split/Join Sorting
(Brunel), Computer Science (University College, London) What Next ?
» Worked in Operational Research, Business IT, Web Tree Sort
technologies, Functional Programming Heap Sort
> First programming languages Fortran, BASIC, Pascal References

v

Favourite Software
> Haskell — pure functional programming language
> Text editors TextMate, Sublime Text — previously Emacs
> Word processing in BTpX — all these slides and notes
> Mac OS X
Learning style — | read the manual before using the
software

v

3/115

https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://www.haskell.org/
https://macromates.com
http://www.sublimetext.com
https://www.emacswiki.org/
https://www.latex-project.org/
https://developer.apple.com/

M250 Tutorial

Introductions — You

>
>

Name ?
Favourite software/Programming language ?

Favourite text editor or integrated development
environment (IDE)

List of text editors, Comparison of text editors and
Comparison of integrated development environments

Other OU courses?
Anything else?

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Heap Sort

References

4/115

https://en.wikipedia.org/wiki/Text_editor
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/List_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments

Adobe Connect

Interface — Host View

M250 Units 10, 11

Collections, Arrays, Sets, Maps, Lists

Phil Molyneux

18 April 2021

M250 Units 10, 11
Phil Molyneux
M250 Units 10, 11
Tutorial Agenda
Adobe Connect

Classes and
Interfaces.

Sets
Maps
Uists

Collection
Implementations.

TMAO3 Practice
Quiz

Common Mistakes
sshell
What Next ?

References,

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics

Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Heap Sort

References

5/115

Adobe Connect

Interface — Participant View

M250 Units 10, 11

M250 Units 10, 11 Tutorial

Introductions

Phil Molyneux

M250 Units 10, 11
Tutorial Agenda.

> Introductions P
> Name Phil Molyneux Classes and
> Learning Style: Reads the manual s
> Learnt last month Framework for Teaching Recursion
and wrote notes on Recursion Teaching
> You?

Sets

Maps

Uists

Collection
Implementations.

TMAO3 Practice
Quiz

Common Mistakes
Ishell
What Next ?

References

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics

Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Heap Sort

References

6/115

Adobe Connect

Settings

v

vy

Everybody [Menu bar>> Meeting>> Speaker & Microphone Setup]
[Menu bar>> Microphone>> Allow Participants to Use Microphone] v

Check Participants see the entire slide Workaround

» Disable Draw [Share pod>> Menu bar>> Draw icon]
> Fit Width [Share pod>> Bottom bar>> Fit Width icon] v

[Meeting>> Preferences>> General >> Host Cursor>> Show to all attendees

[Menu bar>> Video>> Enable Webcam for Participants] v

Do not Enable single speaker mode
Cancel hand tool
Do not enable green pointer

Recording [Meeting>> Record Session] v

Documents Upload PDF with drag and drop to share
pod

Delete [Meeting)) Manage Meeting Information>> Uploaded Content]
and [check ﬁlename>> click on delete]

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics

Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Heap Sort

References

7/115

Adobe Connect

Access

> Tutor Access
[TutorHome>> M269 Website >> Tutorials]

(Cluster Tutorials)) M269 Online tutorial room|

[Tutor Groups>> M269 Online tutor group room]

[Module—wide Tutorials>> M269 Online module-wide room]

> Attendance

[TutorHome>> Students>> View your tutorial timetables]
> Beamer Slide Scaling 440% (422 x 563 mm)
> Clear Everyone’s Status

[Attendee Pod >> Menu >> Clear Everyone’s Status]

» Grant Access and send link via email

[Meeting >> Manage Access & Entry>> Invite Participants. . .]

> Presenter Only Area
[Meeting>> Enable/Disable Presenter Only Area}

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics

Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Heap Sort

References

8/115

Adobe Connect

Keystroke Shortcuts

vVvyVvYyYyVvyy

Keyboard shortcuts in Adobe Connect

Toggle Mic (5£]+(M] (Mac), [Ctrl)+[M] (win) (On/Disconnect)
Toggle Raise-Hand status [38)+E]

Close dialog box [©] (Mao), (Win)

End meeting (5¢]+[\]

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics

Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Heap Sort

References

9/115

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html

Adobe Connect Interface

Sharing Screen & Applications

vy

[Share My Screen>> Application tab >> Terminal] for Terminal

[Share menu >> Change View>> Zoom in] for mismatch of screen
size/resolution (Participants)

(Presenter) Change to 75% and back to 100% (solves
participants with smaller screen image overlap)

Leave the application on the original display

Beware blued hatched rectangles — from other (hidden)
windows or contextual menus

Presenter screen pointer affects viewer display —
beware of moving the pointer away from the application

First time: [System Preferences>> Security & Privacy>> Privacy>

Accessibility

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics

Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Heap Sort

References

10/115

https://en.wikipedia.org/wiki/Terminal_(macOS)

Adobe Connect

Ending a Meeting

vVvYyyvyy

Notes for the tutor only
Student: [Meeting>> Exit Adobe Connect]
Tutor:
Recording [Meeting)) Stop Recording] v/
Remove Participants Meeting)) End Meeting. .. | v
> Dialog box allows for message with default message:
» The host has ended this meeting. Thank you for
attending.
Recording availability In course Web site for joining
the room, click on the eye icon in the list of recordings
under your recording — edit description and name
Meeting Information [Meeting>> Manage Meeting Information] —
can access a range of information in Web page.
Delete File Upload [Meeting>> Manage Meeting Information>
2 Uploaded Content tab| select file(s) and click
Attendance Report see course Web site for joining
room

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics

Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Heap Sort

References

11/115

Adobe Connect

Invite Attendees

>

Provide Meeting URL [Menu>> Meeting>> Manage Access & Entry>
> Invite Participants. ..]

Allow Access without Dialog

J Manage Meeting Information| provides new browser window
with Meeting Information (Tab bar)) Edit Information|

Check Anyone who has the URL for the meeting can
enter the room

Default Only registered users and accepted guests may
enter the room

Reverts to default next session but URL is fixed

Guests have blue icon top, registered participants have
yellow icon top — same icon if URL is open

See Start, attend, and manage Adobe Connect meetings
and sessions

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics

Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Heap Sort

References

12/115

https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html
https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html

Adobe Connect

Layouts

vy

v

Creating new layouts example Sharing layout

[Menu>> Layouts>> Create New Layout. ..] [Create a New Layout dialog>
) Create a new blank layout] and name it PMolyMain

New layout has no Pods but does have Layouts Bar open
(see Layouts menu)

Pods

(Menu)) Pods) Share)) Add New Share] and resize/position —
initial name is Share n

Rename Pod [Menu>> Pods>> Manage Pods. . . } [Manage Pods>
) Select)) Rename| or [Double-click & rename)

Add Video pod and resize/reposition
Add Attendance pod and resize/reposition

Add Chat pod — name it PMolyChat — and
resize/reposition

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings
Sharing Screen &
Applications
Ending a Meeting
Invite Attendees
Layouts
Chat Pods
Web Graphics

Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Heap Sort

References

13/115

Adobe Connect

Layouts

» Dimensions of Sharing layout (on 27-inch iMac)

Width of Video, Attendees, Chat column 14 cm

Height of Video pod 9 cm

Height of Attendees pod 12 cm

Height of Chat pod 8 cm

> Duplicating Layouts does not give new instances of
the Pods and is probably not a good idea (apart from
local use to avoid delay in reloading Pods)

vyvyy

\4

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics

Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Heap Sort

References

14/115

Adobe Connect

Chat Pods
» Format Chat text
> [Chat Pod>> menu icon>> My Chat Color]
» Choices: Red, Orange, Green, Brown, Purple, Pink, Blue,
Black
» Note: Color reverts to Black if you switch layouts
> [Chat Pod>> menu icon>> Show Timestamps]

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics

Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Heap Sort

References

15/115

Graphics Conversion

PDF to PNG/JPG

> Conversion of the screen snaps for the installation of
Anaconda on 1 May 2020

» Using GraphicConverter 11

> > Convert & Modify>> Conversion>> Convert]

» Select files to convert and destination folder

> Click on [Start selected Function] or +

Sorting

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings
Sharing Screen &
Applications
Ending a Meeting
Invite Attendees
Layouts
Chat Pods
Web Graphics

Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Heap Sort

References

16/115

Sorting

Motivation

Motivation for studying sorting algorithms

Abstract comparison sort — split/join algorithm

vV vyVvyy

Insertion sort and selection sort described with
split/join algorithm diagram and implemented in
Python and Haskell

Recursive and iterative versions

» Mergesort, Quicksort and Bubble sort in the same
framework

v

» Sorting via a data structure — Tree sort

> Review of Web sites and sorting algorithms used in
practice

Taxonomy of sorting — see Wikipedia Sorting Algorithm

Sorting

Phil Molyneux

Agenda
Adobe Connect

Sorting: Motivation
Sorting as Dances
Card Sorting Ex

Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Heap Sort

References

17/115

https://en.wikipedia.org/wiki/Sorting_algorithm

Sorting Algorithms

Motivation for Studying

>
>

From Knuth (1998, page v)
. virtually every important aspect of programming

arises somewhere in the context of sorting or searching.

How are good algorithms discovered ?
How can given algorithms and programs be improved ?

How can the efficiency of algorithms be analyzed
mathematically ?

How can a person choose rationally between different
algorithms for the same task ?

In what senses can algorithms be proved best possible ?

How does the theory of computing interact with
practical considerations ?

Sorting

Phil Molyneux

Agenda
Adobe Connect

Sorting: Motivation
Sorting as Dances
Card Sorting Ex

Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Heap Sort

References

18/115

Sorting Algorithms

Demonstration 1 Sorting Algorithms as Dances

> Insertion Sort
> AlgoRythmics
» This is the folk music that inspired Bartdok

» Compare the dance with the Python algorithm for
Insertion Sort below

Sorting

Phil Molyneux

Agenda
Adobe Connect

Sorting: Motivation
Sorting as Dances
Card Sorting Ex

Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Heap Sort

References

19/115

https://www.youtube.com/user/AlgoRythmics

Sorting

Sorting Algorithms

Phil Molyneux
Activity 1 Card Sorting Exercise (1)
Agenda
> Almost everyone has played cards and, as part of any heletin Games:
card game, will have sorted cards in their hand SSTliR S

Sorting as Dances
Card Sorting Ex

» This exercise is aimed at writing down how you sort you
cards and giving these instructions to another person to
follow.

Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
> Decide on your general ordering of playing cards — you WhatNext?
are free to set any ordering you like but here is the free Sort
usual ordering for suits and values: Heap Sort

References

Clubs < Diamonds < Hearts < Spades

Two < Three < Four < Five < Six
< Seven < Eight < Nine < Ten
< Jack < Queen < King < Ace

> Write down your method for sorting cards — the
method must specify how to choose a card to move and
where to move it to.

20/115

Sorting Algorithms

Activity 1 Card Sorting Exercise (2)

> Take the 6 cards given below — record the order of the

cards

e off v v |0er
%] o o

v ¥ Y

Using your method, sort the cards — record the order
of the cards after each move of a card

Now swap your written method and the cards in your
original order with another student.

Follow the other student’s method to sort the cards and
record your steps

Sorting

Phil Molyneux

Agenda
Adobe Connect

Sorting: Motivation
Sorting as Dances
Card Sorting Ex

Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Heap Sort

References

21/115

Activity 1 Card Sorting Exercise

Working Space

Sorting

Phil Molyneux

Agenda
Adobe Connect

Sorting: Motivation
Sorting as Dances

Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Heap Sort

References

22/115

Activity 1 Card Sorting Exercise (3)

Discussion

>

Did both of you end up with the same sequence of
steps?

Did any of the instructions require human knowledge?
General point: probably most people use some variation
on Insertion sort or Selection sort but would have steps
that had multiple shifts of cards.

Note: This activity may be done on the Whiteboard
using cards from http://pmolyneux.co.uk/0U/M269/
M269TutorialNotes/M269TutorialSorting/Cards/

Sorting

Phil Molyneux

Agenda
Adobe Connect

Sorting: Motivation
Sorting as Dances
Card Sorting Ex

Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Heap Sort

References

23/115

http://pmolyneux.co.uk/OU/M269/M269TutorialNotes/M269TutorialSorting/Cards/
http://pmolyneux.co.uk/OU/M269/M269TutorialNotes/M269TutorialSorting/Cards/

Taxonomy of Sorting Algorithms

Comparison Sorts

» Computational complexity — worst, best, average
number of comparisons, exchanges and other program
contructs (but see http://www.softpanorama.org/
Algorithms/sorting.shtml for Slightly Skeptical
View) — O(n?) bad, O(nlog n) better

» Other issues: space behaviour, performance on typical
data sets, exchanges versus shifts

> Abstract sorting algorithm — Following Merritt (1985,
1997) and Azmoodeh (1990, chp 9), we classify the
divide and conquer sorting algorithms by easy/hard
split/join

» see diagram below

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Other Classifications of
Sorting Algorithms
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Heap Sort

References

24/115

http://www.softpanorama.org/Algorithms/sorting.shtml
http://www.softpanorama.org/Algorithms/sorting.shtml

Taxonomy of Sorting Algorithms
Abstract Sorting Algorithm

(unsorted list xs]

if (length xs > 1) then
(xs1,xs2) = split xs

g N

xs1 Xs2

[ys = join (ys1 ,ysZ)]

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Other Classifications of
Sorting Algorithms
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Heap Sort

References

25/115

Sorting Algorithms

Other Classifications

vy

v

v

See Wikipedia Sorting algorithm for big list
Comparison Sorts
> Insertion sort, Selection sort, Merge sort, Quicksort,

Bubble sort

> Sorting via a data structure: Tree sort, Heap sort

Non-Comparison sorts — distribution sorts — bucket
sort, radix sort

Sorts used in Programming Language Libraries

> Timsort by Tim Peters — used in Python and Java —
combination of merge and insertion sorts
> Haskell — modified Mergesort by lan Lynagh in GHC
implementation

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Other Classifications of
Sorting Algorithms
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Heap Sort

References

26/115

https://en.wikipedia.org/wiki/Sorting_algorithm
https://en.wikipedia.org/wiki/Timsort
https://www.haskell.org/onlinereport/haskell2010/
https://wiki.haskell.org/GHC

Recursion

Sorting

Phil Molyneux
Recursion and Iteration
Agenda
> Many functions are naturally defined using recursion AccosiConnect

Sorting: Motivation

> A recursive function is deﬁped in terms of ca.lls toitself o onomy
acting on smaller problem instances along with a base TR Voo,
case(s) that terminate the recursion Sl Seing

> Classic example: Factorial nl =nx (n—1)---2x 1 What Next?

Tree Sort

sdef fac(n) : Heap Sort
6 1if n == : References
7 return 1

8 else :

9 return n * fac(n-1)

» We can evaluate fac(6) by using a substitution model
(section 1.1.5) for function application

» To evaluate a function applied to arguments, evaluate
the body of the function with each formal parameter
replaced by the corresponding actual arguments.

27/115

https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book-Z-H-10.html
https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book-Z-H-10.html

R . Sorting
ec u rS I O n Phil Molyneux
Evaluation of fac(6)
- Agenda
Expression to Evaluate Reason P —
fac(6) Initial Sorting: Motivation
6 % fac(5) line 8 Sorting Taxonomy
- 6 = (5« fac(4)) line 8
- 6 % (5 % (4 = fac(3)) line 8 Recursion/Iteration
- 6% (5% (4= (3 fac(2)))) line 8 Split/Join Sorting
- 6 % (5% (4% (3% (2 fac(1))))) line8 What Next ?
- 6% (5% (4% 3 2+ 1)) line 6
. 720 Arithmetic SISO
Heap Sort
> This occupies more space in the process of evaluation References

since we cannot do the multiplications until we reach
the base case of fac()

» This is a recursive function and a linear recursive
process

» Implemented in Python (and most imperative languages)
with a stack of function calls

> We can define an equivalent factorial function that
produces a different process

28/115

R N Sorting
ecurslon Phil Molyneux
Iterative Factorial

Agenda
24def facIter(n) : Adobe Connect
25 return accProd(n,1) Sorting: Motivation

Sorting Taxonomy
27def accProd(n,x) :

28 1if n == 3 Recursion/Iteration
29 return x Split/Join Sorting
30 else :
h ?
31 return accProd(n-1, n * x) What Next 7
Tree Sort
Heap Sort
» facIter() use accProd() to maintain a running RefaraEs

product and accumulate the final result to return

> We can display the evaluation of facIter(6) using the
substitution model

29/115

Recursion
Evaluation of facIter(6)
Expression to Evaluate Reason
facIter(6) Initial
— accProd(6,1) line 25
— accProd(5, 6 = 1) line 30 & (%)
— accProd(4, 5 * 6) line 30 & (*)
— accProd(3, 4 = 30) line 30 & (%)
— accProd(2, 3 = 120) line 30 & (%)
— accProd(1, 2 * 360) line 30 & (*)
- 720 line 28 & (*)

» This occupies constant space — at each stage all the
variables describing the state of the calculation are in

the function call

> This is a recursive program and an iterative process
» We are assuming the multiplication is evaluated at each

function call (strict or eager evaluation)

» Also referred to as tail recursion — we need not build a

stack of calls

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Heap Sort

References

30/115

Recursion and Iteration

Iterative Factorial Exercises

> Write a version of the factorial function using a while
loop in Python

> Write a version of the factorial function using a for
loop in Python

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Heap Sort

References

31/115

Sorting

Recursion and Iteration

Phil Molyneux
Iterative Factorial Exercises — Solutions
Agenda
» Factorial function using a while loop in Python adcbelconpect
Sorting: Motivation
s6def facwhile(n) : Sorting Taxonomy
47 x =1 Recursion/Iteration
49 whilen > 1 : Split/Join Sorting
50 X =n % X What Next ?
51 n=(n-1 Tree Sort
53 return X Iilzegp Seri
References

» Factorial function using a for loop in Python

s7def facFor(n)
58 x =1

60 for i 1in range(n,0,-1) :
61 X =1 % x

63 return x

32/115

. Sorting
Recursion _
Phil Molyneux
Tail Recursion and lteration
Agenda
» When the structured programming ideas emerged in the AdobeConnect
1960s and 1970s the languages such as C and Pascal sorting: Motivation

Sorting Taxonomy

implemented recursion by always placing the calls on
the stack — Python follows this as well

Recursion/Iteration

Split/Join Sorting

> This means the in those languages they have to have What Next ?
special constructs such as for loops, while loops, to Tree Sort
express iterative processes without recursion Heap Sort

References

» A for loop is syntactically way more complicated than a
recursive definition

» Some language implementations (for example, Haskell)
spot tail recursion and do not build a stack of calls

> You still have to write your recursion in particular ways
to allow the compiler to spot such optimisations.

33/115

https://en.wikipedia.org/wiki/Structured_programming

Sorting

Recursion -~
I olyneux
Structured Programming, GOTO and Recursion
Agenda
» Bohm & Jacopini (1966) showed that structured AccosiConnect

Sorting: Motivation

programming with a combination of sequence,
selection, iteration and procedure calls was Turing
complete (see Unit 7)
> In the late 1980s two books came out that were What Next ?
particularly influential: Tree Sort
> Abelson and Sussman (1984, 1996) Structure and e sort
Interpretation of Computer Programs (known as SICP)
which was the programming course for the first year at
MIT,
» Bird and Wadler (1988, 1998, 2014) Introduction to
Functional Programming which was the the
programming course for the first year at Oxford.
» See SICP online and Section 1.2 Procedures and the
Process They Generate

Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting

References

34/115

https://en.wikipedia.org/wiki/Turing_completeness
https://en.wikipedia.org/wiki/Turing_completeness
https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book.html
https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book-Z-H-11.html
https://mitpress.mit.edu/sites/default/files/sicp/full-text/book/book-Z-H-11.html

Recursion

Structured Programming, GOTO and Recursion (2)

>

Dijkstra (1968) Go To Statement Considered Harmful
illustrates a debate on structured programming

The von Neumann computer architecture takes the
memory and state view of computation as in Turing m/c
Lambda calculus is equivalent in computational power
to a Turing machine (Turing showed this in 1930s) but
efficient implementations did not arrive until 1980s
Functional programming in Lisp or APL was slow

Alan Perlis (1982) Epigrams on Programming:
[Functional programmers] know the value of everything
but the cost on nothing

Erik Meijer (1991) Recursion is the GOTO of functional
programming

Leading to common patterns of higher order functions,
map, filter, fold and polymorphic data types

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Heap Sort

References

35/115

https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://en.wikipedia.org/wiki/Lambda_calculus
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/APL_(programming_language)

Split/Join Sorting Algorithms

Example Algorithms & Implementation

vV VvV VvV VvV VvVVY

Insertion Sort

Selection Sort

Merge Sort

Quicksort

Bubble Sort

Implementations in Python, recursive and non-recursive
Implementations in Haskell — for comparison, optional
Sorting via data structure — Treesort, Heap Sort

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort
Quicksort
Bubble Sort

What Next ?
Tree Sort
Heap Sort

References

36/115

Insertion Sort
Abstract Algorithm

> Insertion Split xs1 is the singleton list of the first item;
xs2 is the rest of the list

» Insertion Join insert the item in the singleton list into
the sorted result of the rest of the list

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting

Insertion Sort

Insertion Sort —
Abstract Algorithm
Insertion Sort — Python
Insertion Sort —
Haskell

Activity 2 — Insertion
Sort: Trace an
Evaluation

Insertion Sort —
Non-recursive

Activity 3 — Insertion
Sort Non-recursive
Trace

Selection Sort
Merge Sort
Quicksort
Bubble Sort

What Next ?
Tree Sort
Heap Sort

References

37/115

Insertion Sort
Abstract Sorting Algorithm Diagram

(13,0,1,8,7,2,5,4,9,61)

[(xs] , Xs2) = insertionSplit xs]

N ’\'Sg
o

3] (10,1,8,7,2,5,4,9,6])

sort sort
[3] (10,1,2,4,5,6,7,8,9])
ol

7 N
[ys = insertionjoin (ys1 ,ysZ)]

(10,1,2,3,4,5,6,7,8,9])

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting

Insertion Sort

Insertion Sort —
Abstract Algorithm
Insertion Sort — Python
Insertion Sort —
Haskell

Activity 2 — Insertion
Sort: Trace an
Evaluation

Insertion Sort —
Non-recursive

Activity 3 — Insertion
Sort Non-recursive
Trace

Selection Sort
Merge Sort
Quicksort
Bubble Sort

What Next ?
Tree Sort
Heap Sort

References

38/115

Insertion Sort

Python Implementation

4def insSort(xs)

5 if Ten(xs) <=1 :
6 return xs

7 else :

8 return ins(xs[0],insSort(xs[1:]1))

1odef ins(x,xs)
1 if xs == []

12 return [x]

13 elif x <= xs[0] :

14 return [x] + xs

15 else :

16 return [xs[0]] + ins(x,xs[1:])

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort

Insertion Sort —
Abstract Algorithm

Insertion Sort — Python

Insertion Sort —
Haskell

Activity 2 — Insertion
Sort: Trace an
Evaluation

Insertion Sort —
Non-recursive

Activity 3 — Insertion
Sort Non-recursive
Trace

Selection Sort
Merge Sort
Quicksort
Bubble Sort

What Next ?
Tree Sort
Heap Sort

References

39/115

Insertion Sort

Python Rewritten

> In the style of the abstract algorithm

20def insSort01(xs)
21 if len(xs) <=1

22 return xs
23 else :
24 (xs1l,xs2) = insertionSplit(xs)

25 ysl = insSort01(xsl)

26 ys2 = insSort01(xs2)

27 ys = insertionJoin(ysl,ys2)
28 return ys

3odef insertionSplit(xs)
31 (xsl,xs2) = (xs[0:1],xs[1:1)
32 return (xsl,xs2)

34def insertionJoin(ysl,ys2)
35 if ys2 == [] :

36 return ysl

37 elif ys1[0] <= ys2[0]
38 return ysl + ys2

39 else :

40 return ys2[0:1] + insertionJoin(ysl,ys2[1:])

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort

Insertion Sort —
Abstract Algorithm

Insertion Sort — Python

Insertion Sort —
Haskell

Activity 2 — Insertion
Sort: Trace an
Evaluation

Insertion Sort —
Non-recursive

Activity 3 — Insertion
Sort Non-recursive
Trace

Selection Sort
Merge Sort
Quicksort
Bubble Sort

What Next ?
Tree Sort
Heap Sort

References

40/115

Insertion Sort

Haskell Implementation (1)

1module M269TutorialSorting where
2 import Data.List
3 dimport Data.Maybe

1. A Haskell script starts with a module header which
starts with the reserved identifier, module followed by
the module name, M269TutorialSorting

2. The module name must start with an upper case letter
and is the same as the file name (without its extension
of .lhs)

3. Haskell uses layout (or the off-side rule) to determine
scope of definitions, similar to Python

4. The body of the module follows the reserved identifier
where and starts with two import declarations

5. These import the built-in libraries Data.List and
Data.Maybe

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort

Insertion Sort —
Abstract Algorithm

Insertion Sort — Python

Insertion Sort —
Haskell

Activity 2 — Insertion
Sort: Trace an
Evaluation

Insertion Sort —
Non-recursive

Activity 3 — Insertion
Sort Non-recursive
Trace

Selection Sort
Merge Sort
Quicksort
Bubble Sort

What Next ?
Tree Sort
Heap Sort

References

41/115

Insertion Sort

Haskell Implementation (2)

s dinsSort []1 =[]

6 insSort [x] = [x]

7 insSort (x : xs) = 1ins x (insSort xs)
9 1ins x [1 = [x]

10 ins x (y:ys)

11 = if x <=y

12 then x:y:ys

13 else y : (ins x ys)

> For structured English, | have used a subset of Haskell
(http://haskell.org) — in the code above:

> jnsSort and ins are function defined by several
equations

> We use indentation to determine scope — see Landin
(1966) and Python (see Python Tutorial: Introduction:
First Steps Towards Programming)

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort

Insertion Sort —
Abstract Algorithm

Insertion Sort — Python

Insertion Sort —
Haskell

Activity 2 — Insertion
Sort: Trace an
Evaluation

Insertion Sort —
Non-recursive

Activity 3 — Insertion
Sort Non-recursive
Trace

Selection Sort
Merge Sort
Quicksort
Bubble Sort

What Next ?
Tree Sort
Heap Sort

References

42/115

http://haskell.org
https://docs.python.org/3/tutorial/introduction.html#first-steps-towards-programming
https://docs.python.org/3/tutorial/introduction.html#first-steps-towards-programming

Insertion Sort

Haskell Implementation (3)

> Function application is denoted by juxtaposition and is
more tightly binding than (almost) anything else

> we write f x and not ¥ (x)
» f x ymeans (f x) y
This notational convention has huge advantages —
discuss and also see
http://en.wikipedia.org/wiki/Curried_function
and http://slid.es/gsklee/
functional-programming-in-5-minutes (which
does it in JavaScript, worth a look)
> Lists are denoted with brackets [1,2,3], the empty list
is []
» (:) is the operator that prefixes an element to a list,
1:[2,3] == [1,2,3]
» Parentheses over-ride precedence

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort

Insertion Sort —
Abstract Algorithm

Insertion Sort — Python

Insertion Sort —
Haskell

Activity 2 — Insertion
Sort: Trace an
Evaluation

Insertion Sort —
Non-recursive

Activity 3 — Insertion
Sort Non-recursive
Trace

Selection Sort
Merge Sort
Quicksort
Bubble Sort

What Next ?
Tree Sort
Heap Sort

References

43/115

http://en.wikipedia.org/wiki/Curried_function
http://slid.es/gsklee/functional-programming-in-5-minutes
http://slid.es/gsklee/functional-programming-in-5-minutes

Activity 2

Trace an Evaluation — Haskell
» Evaluation of insSort [3,0,1,8,7]

» Answer goes here

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Insertion Sort —
Abstract Algorithm

Insertion Sort — Python

Insertion Sort —
Haskell

Insertion Sort —
Non-recursive

Activity 3 — Insertion
Sort Non-recursive
Trace

Selection Sort
Merge Sort
Quicksort
Bubble Sort

What Next ?
Tree Sort
Heap Sort

References

44/115

Activity 2

Trace an Evaluation — Haskell

» Evaluation of insSort [3,0,1,8,7]

0:(ins 3 [1,7,8])

0:(1:(ins 3 [7,81))

0:(1:(3:7:[81))
[o,1,3,7,8]

line 13
line 13
line 12
(:) operator

Expression to Evaluate Reason
insSort [3,0,1,8,7] Initial
— 1ins 3 (insSort [0,1,8,71) line 7
— 1ins 3 (ins 0 (insSort [1,8,71)) line 7
— 1ins 3 (ins 0 (ins 1 (insSort [8,71))) line 7
— 1ins 3 (ins 0 (ins 1 (ins 8 (insSort [7])))) line7
- 1ins 3 (ins 0 (ins 1 (ins 8 [7]))) line 6
- dns 3 (ins 0 (ins 1 (7:(ins 8 [1)))) line 13
- 1ins 3 (ins 0 (ins 1 (7:[81))) line 9
—~ dins 3 (ins 0 (ins 1 [7,8])) (:) operator
— dns 3 (ins 0 (1:7:[81)) line 12
— ins 3 (ins 0 [1,7,8]) (:) operator
— ins 3 (0:1:[7,81) line 12
- ins 3 [0,1,7,8] (:) operator

process of evaluation;

> Note that the evaluation consumes more space in the

> also note that you need to be careful with the brackets
when doing an evaluation like this by hand.

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort

Insertion Sort —
Abstract Algorithm

Insertion Sort — Python

Insertion Sort —
Haskell

Activity 2 — Insertion
Sort: Trace an
Evaluation

Insertion Sort —
Non-recursive

Activity 3 — Insertion
Sort Non-recursive
Trace

Selection Sort
Merge Sort
Quicksort
Bubble Sort

What Next ?
Tree Sort
Heap Sort

References

45/115

Activity 2 Trace an Evaluation

Insertion Sort — Python Recursive
» Evaluation of insSort([3,0,1,8,7])

» Answer goes here

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort

Insertion Sort —
Abstract Algorithm

Insertion Sort — Python

Insertion Sort —
Haskell

Insertion Sort —
Non-recursive

Activity 3 — Insertion
Sort Non-recursive
Trace

Selection Sort
Merge Sort
Quicksort
Bubble Sort

What Next ?
Tree Sort
Heap Sort

References

46/115

Activity 2 Trace an Evaluation

Insertion Sort — Python Recursive

» Evaluation of insSort([3,0,1,8,7])

Expression to Evaluate

Reason

[

insSort([3,0,1,8,71)

ins(3, insSort([0,1,8,71))
ins(3, ins(0, insSort([1,8,71)))

ins(3, 1ins(0, ins(1,

ins(3, 1ins(0, ins(1,

ins(3, ins(0, ins(1,

ins(3, ins(0, ins(1,

ins(3, ins(0, ins(1,

ins(3, ins(0, ins(1,

ins(3, ins(0, ([1] +

ins(3, ins(0, [1,7,8]
ins(3, ([0] + [1,7,8]
ins(3, [0,1,7,8])

[0] + (ins 3 [1,7,8])

insSort([8,71))))

ins(8, insSort([71)))))

ins(8, [710)))

([7] + ins(8, [1)))))

([71 + [81D)))
(7,810
{7,810

D)

»

[0] + ([1] + (ins 3 [7,81))
[0] + ([1] + ([31 + ([7,810))

[0,1,3,7,81

Initial

line 7

line 7

line 7

line 7

line 5

line 15

line 11

(+) operator
line 13

(+) operator
line 13

(+) operator
line 15

line 15

line 13

(+) operator

> Note that the evaluation consumes more space in the
process of evaluation;

> also note that you need to be careful with the brackets
when doing an evaluation like this by hand.

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort

Insertion Sort —
Abstract Algorithm

Insertion Sort — Python

Insertion Sort —
Haskell

Activity 2 — Insertion
Sort: Trace an
Evaluation

Insertion Sort —
Non-recursive

Activity 3 — Insertion
Sort Non-recursive
Trace

Selection Sort
Merge Sort
Quicksort
Bubble Sort

What Next ?
Tree Sort
Heap Sort

References

47/115

Insertion Sort

Non-recursive Implementation

» The non-recursive version of Insertion sort takes each

element in turn and inserts it in the ordered list of
elements before it.

for index = 1 to (len(xs)-1) do
insert xs[index] in order in xs[0..index-1]

» Here is a Python implementation of the above (based on

Miller and Ranum (2011, page 215)).

42def insertionSort(xs)

43
44
45
46
47
48

50

for index in range(1l, len(xs))
currentValue = xs[index]
position = index
while (position > 0) and xs[position - 1] > currentValue :
xs[position] = xs[position - 1]
position = position - 1

xs[position] = currentValue

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort

Insertion Sort —
Abstract Algorithm

Insertion Sort — Python

Insertion Sort —
Haskell

Activity 2 — Insertion
Sort: Trace an
Evaluation

Insertion Sort —
Non-recursive

Activity 3 — Insertion
Sort Non-recursive
Trace

Selection Sort
Merge Sort
Quicksort
Bubble Sort

What Next ?
Tree Sort
Heap Sort

References

48/115

Activity 3

Trace an Evaluation — Python Non-recursive

» Evaluation of insertionSort([3,0,1,8,7])
» Showing just the outer for index loop

start arra
» 2] o] o] 7] saramr

» Answer goes here

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Insertion Sort —
Abstract Algorithm
Insertion Sort — Python
Insertion Sort —
Haskell
Activity 2 — Insertion
Sort: Trace an
Evaluation
Insertion Sort —
Non-recursive

Selection Sort
Merge Sort
Quicksort
Bubble Sort

What Next ?
Tree Sort
Heap Sort

References

49/115

Activity 3 oring

Phil Molyneux
Trace an Evaluation — Python Non-recursive
Agenda
» Evaluation of insertionSort([3,0,1,8,7]) Fifin Comies:

Sorting: Motivation

» Showing just the outer for index loop

Sorting Taxonomy

‘ 3 | 0 | 1 | 8 | 7 ‘ start array Recursion/Iteration
>

Split/Join Sorting
Insertion Sort

3 0 1 8 7 index =1 Insertion Sort —
Abstract Algorithm
Insertion Sort — Python
. _ Insertion Sort —
03| 18| 7]index=2 Haskell

Activity 2 — Insertion
Sort: Trace an
index = 3 Evaluation

‘ Insertion Sort —
‘ Non-recursive

index = 4

Selection Sort
end Merge Sort
Quicksort

[ofr]s]e]7

Bubble Sort
What Next ?
Tree Sort
Heap Sort

References

50/115

Selection Sort
Abstract Algorithm

> Selection Split xs1 is the singleton list of the minimum
item; xs2 is the original list with the minimum item
taken out

> Selection Join just put the minimum item and the sorted
xs?2 together as the output list

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort

Selection Sort —
Abstract Algorithm

Selection Sort —
Haskell

Activity 4 — Selection
Sort: Trace an
Evaluation

Selection Sort — Python

Selection Sort —
Non-recursive
Activity 5 — Finding
the Non-Recursive
Algorithm

Merge Sort

Quicksort

Bubble Sort

What Next ?
Tree Sort
Heap Sort

References

51/115

Selection Sort

Abstract Sorting Algorithm Diagram

(13,0,1,8,7,2,5,4,9,61)

[(xs] , Xs2) = selectionSplit xsj

xs1 s2

(13,1,8,7,2,5,4,9,6])

sort sort

(11,2,3,4,5,6,7,8,9])
ys1 M

[ys = selectionjoin (ys1 ,ysZ)J

(10,1,2,3,4,5,6,7,8,9])

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort

Selection Sort —
Abstract Algorithm

Selection Sort —
Haskell

Activity 4 — Selection
Sort: Trace an
Evaluation

Selection Sort — Python

Selection Sort —
Non-recursive

Activity 5 — Finding
the Non-Recursive
Algorithm

Merge Sort
Quicksort
Bubble Sort

What Next ?
Tree Sort
Heap Sort

References

52/115

Selection Sort

Haskell Implementation

15
16
17
18
19

selSort []
selSort [x]

[1
[x]

selSort xs minItem : selSort (xs \\ [minItem])
where
minItem = minimum xs
> Explanation of the above:
» (\\) is the list difference operator
» [2,1,3,1]1 \\ [1] == [2,3,1]
» minimum is the Haskell built in function that takes a list

a returns the smallest item.
See the Data.List library

v

> Exercise: produce your own implementation of minimum
— remember to give it a different name

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort

Selection Sort —
Abstract Algorithm

Selection Sort —
Haskell

Activity 4 — Selection
Sort: Trace an
Evaluation

Selection Sort — Python

Selection Sort —
Non-recursive
Activity 5 — Finding
the Non-Recursive
Algorithm

Merge Sort

Quicksort

Bubble Sort

What Next ?
Tree Sort
Heap Sort

References

53/115

Activity 4 — Selection Sort

Trace an Evaluation — Haskell

» Evaluation of selSort [3,0,1,8,7]

» Answer goes here

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort

Selection Sort —
Abstract Algorithm
Selection Sort —
Haskell

Selection Sort — Python

Selection Sort —
Non-recursive
Activity 5 — Finding
the Non-Recursive
Algorithm

Merge Sort
Quicksort
Bubble Sort

What Next ?
Tree Sort
Heap Sort

References

54/115

Activity 4 — Selection Sort

Trace an Evaluation — Haskell

» Evaluation of selSort [3,0,1,8,7]

Expression to Evaluate

Reason

selSort [3,0,1,8,7]

0 : (selSort [3,1,8,7])
(1 : (selSort [3,8,71))
(selSort [8,71)))

0 :

0:@: @3 :
0: (@ : @3 :
0:(1:3:(7:81)))

[0’15357!8]

(7 :

(selSort [8]1))))

Initial

line 17

line 17

line 17

line 17

line 16

(:) operator

v

v

Note that the evaluation consumes more space in the

process of evaluation;
also note that you need to be careful with the brackets

when doing an evaluation like this by hand.

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort

Selection Sort —
Abstract Algorithm

Selection Sort —
Haskell

Activity 4 — Selection
Sort: Trace an
Evaluation

Selection Sort — Python

Selection Sort —
Non-recursive
Activity 5 — Finding
the Non-Recursive
Algorithm

Merge Sort
Quicksort
Bubble Sort

What Next ?
Tree Sort
Heap Sort

References

55/115

Selection Sort

Python Implementation

s4def selSort(xs)
s5 if len(xs) <=1 :

56 return xs

57 else :

58 minEIlmnt = min(xs)

59 minIndex = xs.index(minElmnt)

60 xsWithoutMin = xs[:minIndex] + xs[minIndex+1:]
61 return [minETmnt] + selSort(xsWithoutMin)

» Why do we not use xs.remove(min(xs)) ?

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort

Selection Sort —
Abstract Algorithm

Selection Sort —
Haskell

Activity 4 — Selection
Sort: Trace an
Evaluation

Selection Sort — Python

Selection Sort —
Non-recursive

Activity 5 — Finding
the Non-Recursive
Algorithm

Merge Sort
Quicksort
Bubble Sort

What Next ?
Tree Sort
Heap Sort

References

56/115

Selection Sort

Non-recursive Implementation

» The non-recursive version of Selection sort takes each
position of the list in turn and swaps the element at
that position with the minimum element in the rest of
the list from that position to the end of the list.

for fi11Slot = 0 to (len(xs) - 2) do
find the minimum of
xs[fi11STot+1]..xs[Ten(xs) - 1]
and swap with xs[fil11STot]

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort

Selection Sort —
Abstract Algorithm

Selection Sort —
Haskell

Activity 4 — Selection
Sort: Trace an
Evaluation

Selection Sort — Python

Selection Sort —
Non-recursive
Activity 5 — Finding
the Non-Recursive
Algorithm

Merge Sort
Quicksort
Bubble Sort

What Next ?
Tree Sort
Heap Sort

References

57/115

Selection Sort

Python Non-recursive Implementation

> Here is a Python implementation of the above (based on
Miller and Ranum (2011, page 211) but selecting the
smallest first not largest, influenced by
http://rosettacode.org/wiki/Sorting_
algorithms/Selection_sort#PureBasic).

» Note that here we indent by 2 spaces and use the
Python idiomatic simultaneous assignment to do the
swap in line 71

63def selectionSort(xs) :
64 for fillSlot in range(0,len(xs)-1) :

65 minIndex = fil1Slot

66 for index in range(fil11Slot+1,Ten(xs))
67 if xs[index] < xs[minIndex] :

68 minIndex = index

70 # if fillSlot != minIndex: # only swap if different
71 xs[fi11S1ot],xs[minIndex] = xs[minIndex],xs[fi11Slot]

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort

Selection Sort —
Abstract Algorithm

Selection Sort —
Haskell

Activity 4 — Selection
Sort: Trace an
Evaluation

Selection Sort — Python

Selection Sort —
Non-recursive

Activity 5 — Finding
the Non-Recursive
Algorithm

Merge Sort
Quicksort
Bubble Sort

What Next ?
Tree Sort
Heap Sort

References

58/115

http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort#PureBasic
http://rosettacode.org/wiki/Sorting_algorithms/Selection_sort#PureBasic

Selection Sort

Non-recursive Implementation

» The non-recursive version of Selection sort in Miller &
Ranum sorts in ascending order but takes each position
of the list in turn from the right end and swaps the
element at that position with the maximum element in
the rest of the list from the beginning of the list to that
position. (Miller and Ranum (2011, page 211))

for fil1STot = len(xs) - 1 down to 1 do
find the maximum of
xs[0] .. xs[fil11Slot]
and swap with xs[fi11Slot]

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort

Selection Sort —
Abstract Algorithm

Selection Sort —
Haskell

Activity 4 — Selection
Sort: Trace an
Evaluation

Selection Sort — Python

Selection Sort —
Non-recursive

Activity 5 — Finding
the Non-Recursive
Algorithm

Merge Sort
Quicksort
Bubble Sort

What Next ?
Tree Sort
Heap Sort

References

59/115

Selection Sort

Python Non-recursive Implementation

> Here is a Python implementation of the above (based on
Miller and Ranum (2011, page 211) selecting the largest
first.

73def selSortAscByMax(xs) :
74 for fi11STlot in range(len(xs) - 1, 0, -1)

75 maxIndex = 0

76 for index 1in range(1l, fil11Slot + 1)
77 if xs[index] > xs[maxIndex]

78 maxIndex = index

80 temp = xs[fil1STot]
81 xs[fi11STot] = xs[maxIndex]
82 xs[maxIndex] = temp

> Note that both Python non-recursive versions work by
side-effect on the input list — they do not return new
lists.

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort

Selection Sort —
Abstract Algorithm

Selection Sort —
Haskell

Activity 4 — Selection
Sort: Trace an
Evaluation

Selection Sort — Python

Selection Sort —
Non-recursive
Activity 5 — Finding
the Non-Recursive
Algorithm

Merge Sort
Quicksort
Bubble Sort

What Next ?
Tree Sort
Heap Sort

References

60/115

Activity 5

Finding the Non-Recursive Algorithm

» For Insertion Sort and Selection Sort discuss how the
non-recursive case can be found by considering the
recursive case and doing the algorithm in place.

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort

Selection Sort —
Abstract Algorithm

Selection Sort —
Haskell

Activity 4 — Selection
Sort: Trace an
Evaluation

Selection Sort — Python

Selection Sort —
Non-recursive
Activity 5 — Finding
the Non-Recursive
Algorithm

Merge Sort
Quicksort
Bubble Sort

What Next ?
Tree Sort
Heap Sort

References

61/115

Merge Sort

Abstract Algorithm

> Merge Split xs1 is half the list; xs2 is the other half of
the list.

» Merge Join Merge the sorted xs1 and the sorted xs2
together as the output list

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Haskell
Merge Sort — Python
Merge Sort Diagram

Merge Sort Python
In-Place

Quicksort
Bubble Sort

What Next ?
Tree Sort
Heap Sort

References

62/115

Merge Sort o

Phil Molyneux
Abstract Sorting Algorithm Diagram

Agenda
(13,0,1,8,7,2,5,4,9,6])

Adobe Connect

Sorting: Motivation
Sorting Taxonomy

- Recursion/Iteration
[(xs], xs2) = mergeSplit xsj

Split/Join Sorting

Insertion Sort
XS/ NS 2 Selection Sort

Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Haskell
Merge Sort — Python
Merge Sort Diagram

Merge Sort Python
In-Place

[0,1,3,7,8]

Quicksort
Bubble Sort

[2,4,5,6,9]
What Next ?

yS] Tree Sort

[ys = mergeJoin (ys] ,ysZ)] e ot

References

(10,1,2,3,4,5,6,7,8,9])

63/115

Merge Sort e

Phil Molyneux
Haskell Implementation
Agenda
21 mergeSort I = 1 Adobe Connect
22 mergeSort [x] = [x] Sorting: Motivation
23 mergeSort xs ;
N Sorting Taxonomy
24 = mergeloin (mergeSort as) (mergeSort bs)
25 where Recursion/Iteration
26 (as,bs) = mergeSplit xs Split/Join Sorting
Insertion Sort
28 mergeSplit = mergeSplit2 Selection Sort
Merge Sort
. M Sort — Abstract
30 mergeSplit2 xs = (take half xs, drop half xs) Alzrogr?th‘r)n ot
31 where
32 half = (length xs) ‘div‘ 2 Merge Sort — Python
Merge Sort Diagram
. Merge Sort Python
34 mergelJoin [] ys = ys In-Place
35 mergelJoin xs [] = xs Quicksort
36 mergeJoin (x:xs) (y:ys) Bt Saie
37 | X <=y = x : mergeloin xs (y:ys) What Next ?
38 | otherwise = vy : mergeloin (x:xs) ys Tree Sort
Heap Sort
References

64/115

Haskell Implementation

Code Description

>
>

Reserved words and built in function are in blue
take n xs returns the first n of xs as a new list

div is the integer division function, the back quotes
make it an infix operator

3 ‘divt 2 ==div32-==1

In mergeJoin, if the boolean expression following a
vertical bar (|) evaluates to True then the value of the
left hand side is given by the expression on the right of
the following “=" — the lines are known as guards and
are evaluated in turn until one is found to be true
(otherwise is a nickname for True)

We have mergeSplitl and mergeSp1it2 to illustrate
choices.

The code for mergeSp1itl is given below — it splits the
list with just one traversal of the list

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Haskell
Merge Sort — Python
Merge Sort Diagram

Merge Sort Python
In-Place

Quicksort
Bubble Sort

What Next ?
Tree Sort
Heap Sort

References

65/115

Merge Sort

Haskell mergeSpT1itl

40
41
42
43
44
45

mergeSplitl [1 = ([1,[DD
mergeSplitl [x] = ([x],[D
mergeSplitl (x:y:zs)
= (X:Xs, y:ys)
where
(xs,ys) = mergeSplitl zs

> mergeSplitl recursively splits the list by adding
alternate elements to the two parts of the result pair

» The code in Python would look similar

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Haskell
Merge Sort — Python
Merge Sort Diagram

Merge Sort Python
In-Place

Quicksort
Bubble Sort

What Next ?
Tree Sort
Heap Sort

References

66/115

Merge Sort

Python Implementation

gedef mergeSort(xs)
g7 if Ten(xs) <=1

88 return xs

89 else :

90 (aList,bList) = mergeSplit(xs)

91 return mergeJoin(mergeSort(aList),mergeSort(bList))

93def mergeSplit(xs)
94 return mergeSplit2(xs)

96 def mergeSplit2(xs)
97 half = Ten(xs)//2
98 return (xs[:half],xs[half:])

100def mergeloin(xs,ys)

101 if xs ==

102 return ys

103 elif ys == []

104 return xs

105 elif xs[0] <= ys[0]

106 return [xs[0]] + mergeJoin(xs[1l:],ys)
107 else :

108 return [ys[0]] + mergeJoin(xs,ys[1:])

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Haskell
Merge Sort — Python
Merge Sort Diagram

Merge Sort Python
In-Place

Quicksort
Bubble Sort

What Next ?
Tree Sort
Heap Sort

References

67/115

Merge Sort

Python mergeSplitl

11odef mergeSplitl(xs)
111 if Ten(xs) == :
12 return ([]1,[])
113 elif Ten(xs) ==
114 return (xs,[])
115 else :

116 (aList,bList) = mergeSplitl(xs[2:])
117 return ([xs[0]] + aList, [xs[1]] + bList)

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Haskell
Merge Sort — Python
Merge Sort Diagram

Merge Sort Python
In-Place

Quicksort
Bubble Sort

What Next ?
Tree Sort
Heap Sort

References

68/115

Merge Sort Diagram e

Phil Molyneux
Merge Sort Split Phase

Agenda
0 Adobe Connect

Sorting: Motivation
¢ Sorting Taxonomy

Recursion/Iteration

0 5 E Split/Join Sorting

Insertion Sort
Selection Sort

Merge Sort
Merge Sort — Abstract
Algorithm
Merge Sort — Haskell

’
EEI 8 EEI 9 E Merge Sort — Python

Merge Sort Python
In-Place

Quicksort
Bubble Sort
l What Next ?
9 6 Tree Sort

Heap Sort

References

69/115

Merge Sort Diagram

Merge Sort Join Phase

o[1]2]3]

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Haskell
Merge Sort — Python
Merge Sort Diagram

Merge Sort Python
In-Place

Quicksort
Bubble Sort

What Next ?
Tree Sort
Heap Sort

References

70/115

Merge Sort

Python In-Place (1)

»
>

Here is a Python implementation of the above
From Miller and Ranum (2011, page 218-221)

This is also recursive but works in place by changing
the array.

Code from
http://interactivepython.org/courselib/
static/pythonds/SortSearch/TheMergeSort.html

119def mergeSortInPlace(xs) :

120
121

122
123

125
126
127

129
130

if len(xs) > 1 :

print("Splitting.", xs)

else :

print("Singleton_", xs)

if len(xs) > 1 :

half = len(xs)//2
(aList, bList) = (xs[:half],xs[half:])

mergeSortInPlace(alList)
mergeSortInPlace(bList)

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Haskell
Merge Sort — Python
Merge Sort Diagram

Merge Sort Python
In-Place

Quicksort
Bubble Sort

What Next ?
Tree Sort
Heap Sort

References

71/115

http://interactivepython.org/courselib/static/pythonds/SortSearch/TheMergeSort.html
http://interactivepython.org/courselib/static/pythonds/SortSearch/TheMergeSort.html

Merge Sort

Python In-Place (2)

132
133
134
135
136
137
138
139
140

142
143
144
145

147
148
149
150

i,j,k =0

xs[k]

i =1
else :

xs[k]

]]
k =k +

while i
xs[k]
i=1

k = k

+ + I A

while j
xs[k]
i=7
k = k

+ + I A

,0,0
while i < len(aList) and j < Ten(bList)
if alList[i] < bList[j]

= alList[i]
+ 1

= bList[j]
+ 1

1
len(aList)
alist[i]

1

1

Ten(bList)
bList[j]
1

1

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Haskell
Merge Sort — Python
Merge Sort Diagram

Merge Sort Python
In-Place

Quicksort
Bubble Sort

What Next ?
Tree Sort
Heap Sort

References

72/115

Merge Sort e

Phil Molyneux
Python In-Place (3)
Agenda
> Here is the code that reports the merging of the lists Pilsle @i
Sorting: Motivation
152 if Ten(xs) > 1 : Sorting Taxonomy
153 print("Merging", aList, ",", bList, "to", xs) Recursion/Iteration
154 else :
155 print("Merged_", xs)

Split/Join Sorting
Insertion Sort

Selection Sort
Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Haskell
Merge Sort — Python
Merge Sort Diagram

Quicksort
Bubble Sort

What Next ?
Tree Sort
Heap Sort

References

73/115

Merge Sort

Python Code Description

» _is how the Tistings package shows spaces in strings
by default (read the manual)

» // is the Python integer division operator

> alist[start:stop:step] is a slice of a list — see
Python Sequence Types — slice operations return a new
list (van Rossum and Drake, 2011a, page 19) so xs[:]
returns a copy (or clone) of xs — if any of the indices

are missing or negative than you have to think a bit (or
read the manual)

» In Python you really do need to be aware when you are
working with values or references to objects.

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Haskell
Merge Sort — Python
Merge Sort Diagram

Merge Sort Python
In-Place

Quicksort
Bubble Sort

What Next ?
Tree Sort
Heap Sort

References

74/115

https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range

Merge Sort

Python In-Place (3)

> A listing of the output of mergeSortInPlace(xsc)
below is given in the article version of these notes

>>> from SortingPython import =

>>> xs = [3,0,1,8,7,2,5,4,9,6]

>>> XSC = Xxs[:]

>>> mergeSortInPlace(xsc)

Splitting [3, 0, 1, 8, 7, 2, 5, 4, 9, 6]
#

lines removed
#

Merging [O, 1, 3, 7, 8] , [2, 4, 5, 6, 9]
to [0, 1, 2, 3, 4, 5,6, 7, 8

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort

Merge Sort — Abstract
Algorithm

Merge Sort — Haskell
Merge Sort — Python
Merge Sort Diagram

Merge Sort Python
In-Place

Quicksort
Bubble Sort

What Next ?
Tree Sort
Heap Sort

References

75/115

Quicksort e

Phil Molyneux
Abstract Algorithm

Agenda
» Quicksort Split Choose an item in the list to be the pivot Adobe Connect

item; xs1 comprises items in the list less than the pivot =~ ®°fno Motvation

. Sorting Taxonomy
plus the pivot; xs2 comprises items in the list greater Recursion/lteration
than or equal to the pivot.

Split/Join Sorting
> Quicksort Join just append the sorted xs1 and the eerton Sort

Selection Sort
sorted xs2 together as the output list

Merge Sort
Quicksort

Quicksort — Abstract
Algorithm

Quicksort — Haskell
List Comprehensions
Quicksort — Python

Quicksort Python

In-Place
Bubble Sort
What Next ?
Tree Sort
Heap Sort

References

76/115

Quicksort

Abstract Sorting Algorithm Diagram

(13,0,1,8,7,2,5,4,9,61)

[(xs], xs2) = quickSplit xs]

xs1
[0,1,2] ® [3]

sort

[817,514,9)6]

sort

[415’617!8!9]

[ys = quickjoin (ys1 ,ysZ)J

(10,1,2,3,4,5,6,7,8,9])

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort
Quicksort

Quicksort — Abstract
Algorithm

Quicksort — Haskell
List Comprehensions
Quicksort — Python
Quicksort Python

In-Place
Bubble Sort
What Next ?
Tree Sort
Heap Sort

References

77/115

Quicksort

Haskell Implementation

47
48
49
50
51

quickSortl []1 = T[]
quickSortl (x:xs)
= quickSortl [y | y <- xs, y < x]
++ [x]
++ quickSortl [y | y <- xs, y >= X]

This uses the Haskell version of the list comprehension
notation
Based on classical set notation and originally

implemented in Miranda out of David Turner in 1983-6
(see http://miranda.org.uk)

This idea is available in Python but in a slightly different
syntax

++ is the list append operator — denoted @ in various
courses and texts

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort
Quicksort

Quicksort — Abstract
Algorithm

Quicksort — Haskell
List Comprehensions
Quicksort — Python
Quicksort Python

In-Place
Bubble Sort
What Next ?
Tree Sort
Heap Sort

References

78/115

https://en.wikipedia.org/wiki/List_comprehension
https://en.wikipedia.org/wiki/List_comprehension
http://miranda.org.uk

List Comprehensions
In Haskell and Python

» Haskell 2010 Language Report section 3.11 List
Comprehensions

> [el|l qi1,...,qn],n = 1 where g; qualifiers are either
> generators of the form p <- e where p is a pattern of
type t and e is an expression of type [t]
» local bindings that provide new definitions for use in the

generated expression e or subsequent boolean guards
and generators

> boolean guards which are expressions of type Bool
» Python Language Reference section 6.2.4 Displays for
lists, sets and dictionaries and section 6.2.5 List
displays
» [expr for target in list] — simple
comprehension

» [expr for target in 1list if condition] —
filters

» [expr for targetl in 1listl for target2 in
Tist2] — multiple generators

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort
Quicksort

Quicksort — Abstract
Algorithm

Quicksort — Haskell
List Comprehensions
Quicksort — Python
Quicksort Python

In-Place
Bubble Sort
What Next ?
Tree Sort
Heap Sort

References

79/115

Quicksort

Python

150def gsort(xs)

160
161
162
163
164
165
166

if not xs :
return []

else :
pivot = xs[0]
less = [x for x in xs if x < pivot]
more = [x for x in xs[1:] if x >= pivot]
return gsort(less) + [pivot] + gsort(more)

» The if test shows that Python is weakly typed (and the
author of this code comes from JavaScript)

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort
Quicksort

Quicksort — Abstract
Algorithm

Quicksort — Haskell
List Comprehensions
Quicksort — Python

Quicksort Python
In-Place

Bubble Sort
What Next ?
Tree Sort
Heap Sort

References

80/115

Quicksort

Python In-Place (1)

» The in-place version of Quick sort works by partitioning
a list in place about a value pivotvalue: (Azmoodeh,

1990, page 259-266)
(1) Scan from the left until
> alist[leftmark] >=
(2) Scan from the right until

pivotvalue

» alist[rightmark] < pivotvalue

(3) Swap alist[leftmark] and alist[rightmark]

(4) Repeat (1) to (3) until scans meet

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort
Quicksort

Quicksort — Abstract
Algorithm

Quicksort — Haskell
List Comprehensions
Quicksort — Python
Quicksort Python

In-Place
Bubble Sort
What Next ?
Tree Sort
Heap Sort

References

81/115

Quicksort

Python In-Place (2)

> Here is an in place version of Quick Sort from Miller and

Ranum (2011, pages 221-226)
» Code based on

http://interactivepython.org/courselib/
static/pythonds/SortSearch/TheQuickSort.html

168def quickSort(xs) :
169 quickSortHelper(xs, 0, Ten(xs) - 1)

171def quickSortHelper(xs, fst, Tst) :
172 if fst < Ist :

174 splitPoint = partition(xs,fst,1st)

176

quickSortHelper(xs, fst, splitPoint - 1)
177

quickSortHelper(xs, splitPoint + 1, 1st)

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort
Quicksort

Quicksort — Abstract
Algorithm

Quicksort — Haskell
List Comprehensions
Quicksort — Python
Quicksort Python

In-Place
Bubble Sort
What Next ?
Tree Sort
Heap Sort

References

82/115

http://interactivepython.org/courselib/static/pythonds/SortSearch/TheQuickSort.html
http://interactivepython.org/courselib/static/pythonds/SortSearch/TheQuickSort.html

Quicksort

Python In-Place (3)

179def partition(xs,fst,lIst)

180
181
182
183

185
186
187
188
189
190
191

193
194
195
196

198
199

pivotValue = xs[fst]

TeftMk =fst +1
rightMk = Ist
done = False

while not done
while leftMk <= rightMk and \
xs[leftMk] <= pivotValue :
TeftMk = leftMk + 1
while xs[rightMk] >= pivotValue and \
rightMk >= leftMk :
rightMk = rightMk - 1

if rightMk < TeftMk
done = True
else :
xs[TeftMk], xs[rightMk] = xs[rightMk], xs[leftMk]

xs[fst], xs[rightMk] = xs[rightMk], xs[fst]
return rightMk

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort
Quicksort

Quicksort — Abstract
Algorithm

Quicksort — Haskell
List Comprehensions
Quicksort — Python
Quicksort Python

In-Place
Bubble Sort
What Next ?
Tree Sort
Heap Sort

References

83/115

Quicksort

Python In-Place (4)

» The (\) is enabling a statement to span multiple lines
— see Lutz (2009, page 317), Lutz (2013, page 378)

» for a language that uses the offside rule why do we
need to do this?

> Note that using (\) to create continuations is frowned
on Lutz (2009, page 318), Lutz (2013, page 379)
» the authors should have put the entire boolean

expression inside parentheses () so that we get implicit
continuation.

» This is not mentioned explicitly in the Style Guide for
Python Code
http://www.python.org/dev/peps/pep-0008/ but it
does explicitly mention using Python’s implicit line
joining with layout guidelines.

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort
Quicksort

Quicksort — Abstract
Algorithm

Quicksort — Haskell
List Comprehensions
Quicksort — Python
Quicksort Python

In-Place
Bubble Sort
What Next ?
Tree Sort
Heap Sort

References

84/115

http://www.python.org/dev/peps/pep-0008/

Bubble Sort

Abstract Algorithm

> Bubble sort is rather like the Hello World program of
sorting algorithms — we have to include it even it isn’t
very useful in practice.

> It can be thought of as an in-place version of Selection
sort

» In the implementations below, in each pass through the
list, the next highest item is moved (bubbled) to its
proper place.

» OK, | should have written it to bubble the smallest the
other way to be consistent with the implementations of
Selection sort above.

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort
Quicksort
Bubble Sort

Bubble Sort — Abstract
Algorithm

Bubble Sort — Haskell
Bubble Sort — Python

What Next ?
Tree Sort
Heap Sort

References

85/115

Bubble Sort

Haskell

53
54
55

58
59
60
61
62

> Here is a naive version (based on
http://rosettacode.org/wiki/Sorting_
algorithms/Bubble_sort#Haskell

> it is naive because it does the check for changes in a
simple way.

> See the above Web site for more sophisticated versions

bubbleSort xs
= 1if (ts == xs) then ts else (bubble ts)
where
ts = bubble xs

bubble [] [1]
bubble [x] [x]
bubble (x1:x2:xs)
| x1 > x2
| otherwise

x2 : (bubble (x1 : xs))
x1 : (bubble (x2 : xs))

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort
Quicksort
Bubble Sort

Bubble Sort — Abstract
Algorithm

Bubble Sort — Haskell
Bubble Sort — Python

What Next ?
Tree Sort
Heap Sort

References

86/115

http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort#Haskell
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort#Haskell

Bubble Sort

Haskell Code Description

> The expression (x1:x2:xs) denotes a list of at least
two items whose first two items are x1 and x2 and the
rest of the list is xs

The third equation defining bubble uses boolean
guards starting with (|) rather than a conditional
expression (if then else ...)

it could be written the other way and remove the need
to understand this style of function declaration but this
is a frequently used style in Haskell

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort
Quicksort
Bubble Sort

Bubble Sort — Abstract
Algorithm

Bubble Sort — Haskell
Bubble Sort — Python

What Next ?
Tree Sort
Heap Sort

References

87/115

Bubble Sort

Python

> Here is a Python implementation from Miller and Ranum
(2011, pages 207-210)

> it does not test if there have been no swaps but does
use some knowledge of the algorithm by reducing the

pass length by one each time (which the Haskell one did
not do)

203def bubbleSort(xs) :
204 for passNum in range(len(xs) - 1, 0, -1) :

205 for i 1in range(passNum) :
206 if xs[i] > xs[i+1] :
207 xs[i], xs[i+1] = xs[i+1], xs[i]

> Note that range() is a built-in function to Python that
is used a lot

» Read the documentation at Section 4.6.6 Ranges

» Remember that range(5) means [0,1,2,3,4] (not
[0’1!2’3!4’5] or [1’2!3’415])

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration

Split/Join Sorting
Insertion Sort
Selection Sort
Merge Sort
Quicksort
Bubble Sort

Bubble Sort — Abstract
Algorithm

Bubble Sort — Haskell
Bubble Sort — Python

What Next ?
Tree Sort
Heap Sort

References

88/115

https://docs.python.org/3.3/library/stdtypes.html#typesseq-range

Sorting

?
What NEXt : Phil Molyneux
Trees, Graph algorithms, Greed, Logic, Computability
Agenda
» Binary trees, Binary heaps and Heap sort it GaTEe:
. . . Sorting: Motivation
» Searching — searching for patterns, string searches Sorting Taxonomy
» Hashing and hash tables Recursion/Iteration
) .) <ot/ Joim Sort
> Binary search trees, height balanced binary search w”h"t”:'”t:”'“g
al ext ¢
trees, AVL trees .
ree Sort
» Graph algorithms Heap Sort

References

» Greedy algorithms

» Sunday 6 February 2022 Tutorial Online Binary Trees,
Graph algorithms

> Logic, Computability
> Sunday 13 March 2022 Tutorial Online Logic
» Sunday 24 April 2022 Tutorial Online Computability

89/115

Tree Sort
Abstract Algorithm

» Build Binary Search Tree — build a binary search tree
from the list of keys to be sorted

» Traverse Tree In-Order — traverse the tree in-order to
output the keys in sorted order

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Tree Sort — Abstract
Algorithm

Tree Sort — Python
Example Tree Sort
Tree Sort — Haskell

Heap Sort

References

90/115

Tree Sort
Python (1)

211 from collections import namedtuple
213EmptyTreeBT = None

215NodeBT = namedtuple(’NodeBT’
216 ,[’dataBT’,’ 1eftBT’, ’rightBT’])

218# Binary Tree Operations

220def makeEmptyBT()
221 return EmptyTreeBT

223def makeBT(x,tl,t2) :
224 return NodeBT(x,tl,t2)

226def isEmptyBT(t)
227 return t is EmptyTreeBT

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Tree Sort — Abstract
Algorithm

Example Tree Sort
Tree Sort — Haskell
Heap Sort

References

91/115

Tree Sort
Python (2)

>
>
>

This is from SortingPython.py
Reserved identifiers are shown in this color

User defined data constructors such as NodeBT and
EmptyTreeBT are shown in that color

NodeBT is a named tuple with named fields — a quick
and dirty object

makeEmptyBT, makeBT are constructor functions — we
could have used the raw named tuple and None but the
discipline is good for you

isEmptyBT uses the is operator for identity check (not
(==))

Health Warning: these notes may not be totally
consistent with syntax colouring.

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Tree Sort — Abstract
Algorithm

Tree Sort — Python
Example Tree Sort
Tree Sort — Haskell

Heap Sort

References

92/115

Tree Sort
Python (3)

» insertListBST and insertBST insert a list of items
into a Binary Search Tree

» To be consistent, we should have used the constructor
functions to hide the implementation.

274def insertBST(x,t)
275 if isEmptyBT(t)
276 return NodeBT(x,EmptyTreeBT,EmptyTreeBT)

277 else :

278 y = t.dataBT

279 if x <y :

280 return NodeBT(y, insertBST(x,t.leftBT),t.rightBT)
281 elif x >y :

282 return NodeBT(y, t.leftBT, insertBST(x,t.rightBT))
283 else :

284 return t

286def insertListBST(t,xs)

287 if xs == []
288 return t
289 else :

290 return insertListBST(insertBST(xs[0],t),xs[1:])

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Tree Sort — Abstract
Algorithm

Tree Sort — Python
Example Tree Sort
Tree Sort — Haskell

Heap Sort

References

93/115

Tree Sort
Python (4)

» inOrderBT takes a Binary Tree and does an in-order
traversal

» treeSort combines insertListBST and inOrderBT

251def inOrderBT(t)
252 if isEmptyBT(t)

253 return []

254 else :

255 return (inOrderBT(t.leftBT) + [t.dataBT]
256 + inOrderBT(t.rightBT))

292def treeSort(xs)
293 return inOrderBT(insertListBST(makeEmptyBT(),xs))

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Tree Sort — Abstract
Algorithm

Tree Sort — Python
Example Tree Sort
Tree Sort — Haskell

Heap Sort

References

94/115

Tree Sort
Python (5)

> Example list and tree

297xs = [3,0,1,8,7,2,5,4,9,6]
299egTree = insertListBST(makeEmptyBT(),xs)

301 egTreeTest = NodeBT(3,

302 NodeBT (0,

303 EmptyTreeBT,

304 NodeBT(1,

305 EmptyTreeBT,

306 NodeBT(2, EmptyTreeBT, EmptyTreeBT))),
307 NodeBT(8,

308 NodeBT(7,

309 NodeBT(5,

310 NodeBT (4, EmptyTreeBT, EmptyTreeBT),
311 NodeBT(6, EmptyTreeBT, EmptyTreeBT)),
312 EmptyTreeBT),

313 NodeBT(9, EmptyTreeBT, EmptyTreeBT)))

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Tree Sort — Abstract
Algorithm

Example Tree Sort
Tree Sort — Haskell
Heap Sort

References

95/115

Example Tree Sort 1
Insert [3,0,1,8,7,2,5,4,9,6] into EmptyTreeBT
egTreeTest

» The in-order traversal of egTreeTest outputs
> [Oll!2l3!4!5!6,7!8!9]

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Tree Sort — Abstract
Algorithm

Tree Sort — Python
Example Tree Sort
Tree Sort — Haskell

Heap Sort

References

96/115

Tree Sort

Haskell (1)

64 data BinTree a = EmptyTreeBT

65 | NodeBT a (BinTree a) (BinTree a)
66 deriving (Eq,0rd,Show,Read)

68 -- BSTree is an alias for BinTree,

69

71

-- we have to enforce the Binary Search Tree property

type BSTree a = BinTree a

> The code starting with data (line 64) is an Algebraic
Datatype declaration. Algebraic datatypes allow you
just to name things and use them in your program

» Meta-magic and avoids ever needing to use pointers

> For a description see Algebraic data type and Marlow

and Peyton Jones (2010, section 4.2.1)

» -- comments out a line

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Tree Sort — Abstract
Algorithm

Tree Sort — Python
Example Tree Sort
Tree Sort — Haskell

Heap Sort

References

97/115

http://en.wikipedia.org/wiki/Algebraic_data_type

Tree Sort
Haskell (2)

> BinTree is the name of the type and EmptyTreeBT,
NodeBT are the two data constructors

> ais a type variable — that is, a variable that ranges
over types (not values). It could be any type (subject to
any restrictions we place on it): primitive types such as
Int, BooT, built-in structured types such as tuples or
list, or other user defined types

» The constructor EmptyTreeBT is to represent an empty
tree (took ages to think of that name)

» The constructor Node takes three arguments: the first is
of type a and is meant to represent the data stored at a
node, the second and third are of type BinTree a and
indicate the left and right sub trees

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Tree Sort — Abstract
Algorithm

Tree Sort — Python
Example Tree Sort
Tree Sort — Haskell

Heap Sort

References

98/115

Tree Sort
Haskell (3)

> Here is a sample tree with 51 at the root and left and
right subtree with 26 and 69 at their roots

NodeBT 51
(NodeBT 26 EmptyTreeBT EmptyTreeBT)
(NodeBT 69 EmptyTreeBT EmptyTreeBT)

Here is the usual diagram of this tree (with the empty
trees labelled as E):

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Tree Sort — Abstract
Algorithm

Tree Sort — Python
Example Tree Sort
Tree Sort — Haskell

Heap Sort

References

99/115

Tree Sort
Haskell (4)

» The deriving (Eq,Ord,Show,Read) part of the
declaration produces derived instances for BinTree is
the type classes for equality (Eq), ordering (Ord),
printing (Show) and reading from files (or standard
input) (Read)

Equality as a derived instance is just lexicographic —

that is, two trees are equal if and only if they look the
same

Show and Read do the fairly obvious thing — the above
example would be printed or read as you see it above.

The (]) is just the syntax separating the two
constructors

The line starting type (line 71) is a type synonym
declaration — this is not needed apart from making the
code a bit more readable (to distinguish Binary Search
Trees from other Binary Trees)

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Tree Sort — Abstract
Algorithm

Tree Sort — Python
Example Tree Sort
Tree Sort — Haskell

Heap Sort

References

100/115

Tree Sort

Haskell (5)

72 insertBST :: (Ord a) => BSTree a -> a -> BSTree a

74 insertBST EmptyTreeBT x

75 = NodeBT x EmptyTreeBT EmptyTreeBT

77 -- Note that insertBST does not accept duplicate keys,
78 -- see \citet[page 271]{millar:2011python}

80 insertBST (NodeBT y leftT rightT) x

81 | x <y = NodeBT y (insertBST leftT x) rightT

82 | x >y = NodeBT y leftT (insertBST rightT x)

83 | x == = NodeBT y leftT rightT

85 insertListBST :: (Ord a) => BSTree a -> [a] -> BSTree a
86 insertListBST t [] = t

87 insertListBST t (x:xs)

88 = 1insertListBST (insertBST t x) xs

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Tree Sort — Abstract
Algorithm

Tree Sort — Python
Example Tree Sort

Heap Sort

References

101/115

Tree Sort
Haskell (6)

» The line starting insertBST :: (line 72) is a Type
Signature which specifies the type of the function
insertBST

> Ord ais a context for the type following => with one
class assertion — it restricts the type variable a to be a
member of the Ord type class

» BSTree a -> a -> BSTree a says that insertBST
takes a binary tree and an item and returns a binary
tree.

» The function type operator -> is right associative (to
match left association of function application) — see
Lee (2013).

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Tree Sort — Abstract
Algorithm

Tree Sort — Python
Example Tree Sort
Tree Sort — Haskell

Heap Sort

References

102/115

Tree Sort

Haskell (7)

89 inorderBST :: BSTree a -> [al]

90 inorderBST EmptyTreeBT = T[]

91 inorderBST (NodeBT x leftT rightT)

92 = (inorderBST leftT) ++ [x] ++ (inorderBST rightT)
94 treeSort :: Ord a => [a] -> [a]

95 treeSort xs = inorderBST (insertListBST EmptyTreeBT xs)

» The ++ is the list append operator

> treeSort takes a list xs and uses insertListBST to
insert the list into EmptyTreeBT and then inorderBST
to traverse the tree

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Tree Sort — Abstract
Algorithm

Tree Sort — Python
Example Tree Sort
Tree Sort — Haskell

Heap Sort

References

103/115

Tree Sort

Haskell (8) Alternative Definitions

96

98
99

101
102

104
105
106
107

109
110
111
112

> Alternative tree building bracketing from the right

insertBSTO1 :

(Ord a) => a -> BSTree a -> BSTree a

insertBSTO1 x EmptyTreeBT
= NodeBT x EmptyTreeBT EmptyTreeBT

-- Note that insertBSTO1 does not accept duplicate keys,

-- see \citet[page 271]{millar:2011python}

insertBSTO1
| x <y
| x>y
| x ==y

insertListBSTOl ::

X

(NodeBT y leftT rightT)
NodeBT y (insertBSTOl x leftT) rightT
NodeBT y TeftT (insertBSTOl x rightT)
NodeBT y TeftT rightT

insertListBSTOl t [] = t
insertListBSTOl t (x:xs)
= 1insertBSTO1l x (insertListBSTOl t xs)

(Ord a) => BSTree a -> [a] -> BSTree a

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Tree Sort — Abstract
Algorithm

Tree Sort — Python
Example Tree Sort
Tree Sort — Haskell

Heap Sort

References

104/115

Tree Sort

Haskell (9) Alternative Definitions

113
114
115
116

118
119

121
122

» Some more idiomatic Haskell using higher order
functions

> (.)is the function composition operator
» (f . g x=° (g x)

» foldl and foldr capture common patterns of
recursion on lists

treeSort0l :: Ord a => [a] -> [a]

treeSort0l = inorderBST . (insertListBST EmptyTreeBT)
-- point free style requires explicit type signature
-- because of the monomorphism restriction

insertListBSTa :: (Ord a) => [a] -> BSTree a
insertListBSTa xs = foldl insertBST EmptyTreeBT xs

insertListBSTOla :: (Ord a) => [a] -> BSTree a
insertListBSTOla xs = foldr insertBSTOl EmptyTreeBT xs

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Tree Sort — Abstract
Algorithm

Tree Sort — Python
Example Tree Sort
Tree Sort — Haskell

Heap Sort

References

105/115

Tree Sort
Haskell (10)

!

vVvyVvyyyey

foldl (&) z [x1,X2,...,Xn]
(...((z® x1) @ x2) &...)0 X,
foldr (&) z [X1,X2,...,Xnl
x1® (o &...9 (X, & 2)...)
Examples

sum xs = foldr (+) 0 xs
product xs = foldr (%) 1 xs
concat xss foldr (++) [] xss

Higher order functions tend to get used a lot in
idiomatic functional programming

Higher order functions take functions as arguments
and/or return functions as results

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Tree Sort — Abstract
Algorithm

Tree Sort — Python
Example Tree Sort
Tree Sort — Haskell

Heap Sort

References

106/115

Tree Sort

Haskell (10)

124 xs = [3,0,1,8,7,2,5,4,9,6]

126 egTreeTesta = insertListBSTa xs

128 testA

129 = egTreeTesta
130 == NodeBT 3

131
132
133
134
135
136
137
138
139
140
141

142

(NodeBT 2 EmptyTreeBT EmptyTreeBT)))

(NodeBT 4 EmptyTreeBT EmptyTreeBT)
(NodeBT 6 EmptyTreeBT EmptyTreeBT))
EmptyTreeBT)
(NodeBT 9 EmptyTreeBT EmptyTreeBT))

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Tree Sort — Abstract
Algorithm

Tree Sort — Python
Example Tree Sort

Heap Sort

References

107/115

Tree Sort
Haskell (11)

143

145

147
148
149
150
151

152
153
154
155
156
157
158
159
160
161

-- xs = [3,0,1,8,7,2,5,4,9,6]
egTreeTest0la = insertListBSTOla xs

test01A
= egTreeTestOla
== NodeBT 6
(NodeBT 4
(NodeBT 2
(NodeBT 1
(NodeBT O EmptyTreeBT EmptyTreeBT)
EmptyTreeBT)
(NodeBT 3 EmptyTreeBT EmptyTreeBT))
(NodeBT 5 EmptyTreeBT EmptyTreeBT))
(NodeBT 9
(NodeBT 7
EmptyTreeBT
(NodeBT 8 EmptyTreeBT EmptyTreeBT))
EmptyTreeBT)

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Tree Sort — Abstract
Algorithm

Tree Sort — Python
Example Tree Sort

Heap Sort

References

108/115

Sorting

Example Tree Sort 2 .

Phil Molyneux
Insert [3,0,1,8,7,2,5,4,9,6] into EmptyTreeBT

Agenda
egTreeTestOla

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Tree Sort — Abstract
Algorithm

Tree Sort — Python
Example Tree Sort
Tree Sort — Haskell

Heap Sort

References

» egTreeTest0la is built with foldr

» The in-order traversal of egTreeTest0la outputs
» [0,1,2,3,4,5,6,7,8,9]

109/115

Heap Sort

Abstract Algorithm

» A Binary Heap is a Heap using a binary tree with two
additional properties:
> Compact shape A binary heap is a complete binary tree
— every level, except possibly the last, is completely
filled and all nodes in the last level are as for left as
possible.
> Heap property All nodes are either greater than or equal
to or less than or equal to each of its children.

» In many implementations, the Binary Heap is
implemented as an implicit data structure using an
array

» The array is a breadth first listing of the nodes

» New nodes can be added in the next position in the
implicit tree and then percolated or sifted up the tree to
its (or a) correct position.

> If the root of the tree is deleted then the last node is
promoted to the root and percolated or sifted down the
tree to a correct place

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Heap Sort

Heap Sort — Abstract
Algorithm

References

110/115

https://en.wikipedia.org/wiki/Binary_heap
https://en.wikipedia.org/wiki/Heap_(data_structure)
https://en.wikipedia.org/wiki/Binary_tree

Heaps

Implementations and Applications

> There are lots of varieties of heaps
» Used later in M269 for Priority queues

» As well as Miller and Ranum and the M269 material, see

» Comparison of Priority Queue implementations in
Haskell
> Louis Wasserman: Playing with Priority Queues

» TODO: typeset the Python and Haskell for this

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Heap Sort

Heap Sort — Abstract
Algorithm

References

111/115

https://en.wikipedia.org/wiki/Heap_(data_structure)
https://en.wikipedia.org/wiki/Priority_queue
http://stackoverflow.com/questions/6976559/comparison-of-priority-queue-implementations-in-haskell
http://stackoverflow.com/questions/6976559/comparison-of-priority-queue-implementations-in-haskell
https://themonadreader.files.wordpress.com/2010/05/issue16.pdf

Sorting

Web Links

» Rosetta Code Sorting Algorithms http:
//rosettacode.org/wiki/Sorting_algorithms —
sorting algorithms implemented n lots of programming
languages

> Sorting Algorithm Animations
http://www.sorting-algorithms.com — visual
display of the performance of various sorting
algorithms for several classes of data: random, nearly
sorted, reversed, few unique — worth browsing to.

» Sorting Algorithms as Dances

https://www.youtube.com/user/ATgoRythmics —
inspired!

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Heap Sort

References

Sorting Web Links
Python Web Links &
References

Haskell Web Links &
References
Demonstration 2 Sorting
Algorithms as Dances

112/115

http://rosettacode.org/wiki/Sorting_algorithms
http://rosettacode.org/wiki/Sorting_algorithms
http://www.sorting-algorithms.com
https://www.youtube.com/user/AlgoRythmics

Python

Web Links & References

» Miller and Ranum (2011)
http://interactivepython.org/courselib/
static/pythonds/index.html — the entire book
online with a nice way of running the code.

> Lutz (2013) — one of the best introductory books

» Lutz (2011) — a more advanced book — earlier

editions of these books are still relevant — you can also

obtain electronic versions from the O’Reilly Web site
http://oreilly.com

» Python 3 Documentation
https://docs.python.org/3/

» Python Style Guide PEP 8

https://www.python.org/dev/peps/pep-0008/
(Python Enhancement Proposals)

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Heap Sort

References
Sorting Web Links

Python Web Links &
References
Haskell Web Links &
References

Demonstration 2 Sorting
Algorithms as Dances

113/115

http://interactivepython.org/courselib/static/pythonds/index.html
http://interactivepython.org/courselib/static/pythonds/index.html
http://oreilly.com
https://docs.python.org/3/
https://www.python.org/dev/peps/pep-0008/

Haskell

Web Links & References

>
>
>

Haskell Language https://www.haskell.org
HaskellWiki https://wiki.haskell.org/Haskell
Learn You a Haskell for Great Good!
http://learnyouahaskell.com — very readable
introduction to Haskell

Bird and Wadler (1988); Bird (1998, 2014) — one of
the best introductions but tough in parts, requires

some mathematical maturity — the three books are in
effect different editions

Functors, Applicatives, and Monads in Pictures
http://adit.io/posts/2013-04-17-functors,
_applicatives,_and_monads_in_pictures.htm]l —
a very good outline with cartoons

Haskell Wikibook
https://en.wikibooks.org/wiki/Haskell

Sorting

Phil Molyneux

Agenda

Adobe Connect
Sorting: Motivation
Sorting Taxonomy
Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Heap Sort

References
Sorting Web Links

Python Web Links &
References

Haskell Web Links &
References

Demonstration 2 Sorting
Algorithms as Dances

114/115

https://www.haskell.org
https://wiki.haskell.org/Haskell
http://learnyouahaskell.com
http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html
http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html
https://en.wikibooks.org/wiki/Haskell

Sorting Algorithms Sorting

Phil Molyneux
Demonstration 2 Sorting Algorithms as Dances
Agenda
» Quicksort Adobe Connect
. Sorting: Motivation
> https://www.youtube.com/user/AlgoRythmics

Sorting Taxonomy

» the hats make the point(!)

Recursion/Iteration
Split/Join Sorting
What Next ?

Tree Sort

Heap Sort

References
Sorting Web Links
Python Web Links &
References
Haskell Web Links &
References

115/115

https://www.youtube.com/user/AlgoRythmics

	M269 Tutorial Agenda — Sorting, Recursion
	Adobe Connect Interface and Settings
	Adobe Connect Interface
	Adobe Connect Settings
	Adobe Connect — Sharing Screen & Applications
	Adobe Connect — Ending a Meeting
	Adobe Connect — Invite Attendees
	Layouts
	Chat Pods
	Graphics Conversion for Web

	Sorting: Motivation
	Demonstration 1 Sorting Algorithms as Dances
	Activity 1 Card Sorting Exercise

	Taxonomy of Sorting Algorithms
	Other Classifications of Sorting Algorithms

	Recursion and Iteration
	Some Split/Join Sorting Algorithms
	Insertion Sort
	Selection Sort
	Merge Sort
	Quicksort
	Bubble Sort

	What Next ?
	Sorting via a Data Structure — Tree Sort
	Tree Sort — Abstract Algorithm
	Tree Sort — Python
	Example Tree Sort
	Tree Sort — Haskell

	Sorting via a Data Structure — Heap Sort
	Heap Sort — Abstract Algorithm

	Web Sites & References
	Sorting Web Links
	Python Web Links & References
	Haskell Web Links & References
	Demonstration 2 Sorting Algorithms as Dances

