M269 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect
Programming

Python

M269 Python, LOg|C, ADTS Complexity
M269 Python, ADTs Prsntn2021) Logarithms

Before Calculators
Logic Introduction

. ADTs
Phil Molyneux Future Work
Haskell Example

References

28 November 2021

1/174

M269 Tutorial: Python, Logic, ADTs

Agenda

VVVyVvVVVvVYVYyVvyYy

v

Introductions

Programming — Paradigms and Step-by-Step Guide
Programming and Python

Complexity and Big O Notation

... with a little classical logic

Abstract Data Type examples

Implementing Queues

Implementing Lists in Lists

A look towards the next topics

> Recursive function definitions
» |Inductive data type definitions

Adobe Connect — if you or | get cut off, wait till we
reconnect (or send you an email)

Time: about 1 hour
Do ask questions or raise points.
Slides/Notes M269Tutorial02ProgPythonADT

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

2/174

http://pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269Tutorial02ProgPythonADT/

M250 Tutorial oaits MDY

Introductions — Phil Phil Molyneux
Agenda
» Name Phil Molyneux Adobe Connect
> Backgi’ound Programming
> Undergraduate: Physics and Maths (Sussex) Python
> Postgraduate: Physics (Sussex), Operational Research A
(Brunel), Computer Science (University College, London) LRI
> Worked in Operational Research, Business IT, Web gefore Calculators
technologies, Functional Programming ;?le fniroduction
> First programming languages Fortran, BASIC, Pascal Future Work
> Favourite Software Haskell Example
> Haskell — pure functional programming language References
> Text editors TextMate, Sublime Text — previously Emacs
> Word processing in BTgX — all these slides and notes
> Mac OS X
» Learning style — | read the manual before using the
software

3/174

https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://www.haskell.org/
https://macromates.com
http://www.sublimetext.com
https://www.emacswiki.org/
https://www.latex-project.org/
https://developer.apple.com/

M250 Tutorial

Introductions — You

>
>

Name ?
Favourite software/Programming language ?

Favourite text editor or integrated development
environment (IDE)

List of text editors, Comparison of text editors and
Comparison of integrated development environments

Other OU courses?
Anything else?

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

4/174

https://en.wikipedia.org/wiki/Text_editor
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/List_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments

Adobe Connect

Interface — Host View

M250 Units 10, 11

Collections, Arrays, Sets, Maps, Lists

Phil Molyneux

18 April 2021

M250 Units 10, 11
Phil Molyneux
M250 Units 10, 11
Tutorial Agenda
Adobe Connect

Classes and
Interfaces.

Sets
Maps
Uists

Collection
Implementations.

TMAO3 Practice
Quiz

Common Mistakes
sshell
What Next ?

References,

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings
Sharing Screen &
Applications
Ending a Meeting
Invite Attendees
Layouts
Chat Pods
Web Graphics

Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

5/174

M269 Python,

Adobe Connect Logic, ADTS

Interface — Participant View Phil Molyneux

Agenda

Adobe Connect

M250 Units 10, 11

M250 Units 10, 11 Tutorial

Phil Molyneux Interface
Introductions §
’zsnnz&n Settings
> Introductions e Sharing Screen &
Applications

> Name Phil Molyneux Classes and

> Learning Style: Reads the manual s

> Learnt last month Framework for Teaching Recursion
and wrote notes on Recursion Teaching

> You?

Ending a Meeting
Invite Attendees
Layouts

o Chat Pods

Web Graphics

Sets

Maps

Uists

Collection
Implementations.

TMAO3 Practice
Quiz

Common Mistakes
Ishell
What Next ?

Programming

Python

References

Complexity
Logarithms
Before Calculators

Logic Introduction

ADTs
Future Work
Haskell Example

References

6/174

M269 Python,

Adobe Connect Logic, ADTS
Settings Phil Molyneux
Agenda
» Everybody [Menu bar>> Meeting>> Speaker & Microphone Setup] Py ca——
> [Menu bar>> Microphone>> Allow Participants to Use Microphone] v Isr:;,r,f.a;:
. . . Sharing Screen &
> Check Participants see the entire slide Workaround :o;_"cgno;s _
nding a Meeting
» Disable Draw [Share pod>> Menu bar>> Draw icon] Invite Attendees
> Fit Width [Share pod>> Bottom bar>> Fit Width icon] v e
Web Graphics
> [Meeting>> Preferences>> General >> Host Cursor>> Show to all attendees Programming
> [Menu bar>> Video>> Enable Webcam for Participants] v Python
i Complexi
» Do not Enable single speaker mode L°'”'°_:“y
ogarithms
> Cancel hand tOOI Before Calculators
» Do not enable green pointer ed giedictn
ADTs
> Recording [Meeting>> Record Session] v Future Work
» Documents Upload PDF with drag and drop to share Haskell Example
References

pod
» Delete [Meeting)) Manage Meeting Information>> Uploaded Content]
and [check ﬁlename>> click on delete]

7/174

Adobe Connect

Access

> Tutor Access
[TutorHome>> M269 Website >> Tutorials]

(Cluster Tutorials)) M269 Online tutorial room|

[Tutor Groups>> M269 Online tutor group room]

[Module—wide Tutorials>> M269 Online module-wide room]

> Attendance

[TutorHome>> Students>> View your tutorial timetables]
> Beamer Slide Scaling 440% (422 x 563 mm)
> Clear Everyone’s Status

[Attendee Pod >> Menu >> Clear Everyone’s Status]

» Grant Access and send link via email

[Meeting >> Manage Access & Entry>> Invite Participants. . .]

> Presenter Only Area
[Meeting>> Enable/Disable Presenter Only Area}

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics

Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

8/174

M269 Python,

Adobe Connect Logic, ADTS

Keystroke Shortcuts Phil Molyneux
. Agenda

Keyboard shortcuts in Adobe Connect At @ETEe:

Interface

Toggle Mic (5£]+(M] (Mac), [Ctrl)+[M] (win) (On/Disconnect) Settngs

Sharing Screen &

Toggle Raise-Hand status [38)+E] b

Ending a Meeting

Close dialog box [©] (Mao), (Win) {ovee tendees

End meeting (8)+[\] et

Programming

vVvyVvYyYyVvyy

Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

9/174

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html

Adobe Connect Interface

Sharing Screen & Applications

vy

[Share My Screen>> Application tab >> Terminal] for Terminal

[Share menu >> Change View>> Zoom in] for mismatch of screen
size/resolution (Participants)

(Presenter) Change to 75% and back to 100% (solves
participants with smaller screen image overlap)

Leave the application on the original display

Beware blued hatched rectangles — from other (hidden)
windows or contextual menus

Presenter screen pointer affects viewer display —
beware of moving the pointer away from the application

First time: [System Preferences>> Security & Privacy>> Privacy>

Accessibility

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics

Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

10/174

https://en.wikipedia.org/wiki/Terminal_(macOS)

Adobe Connect

Ending a Meeting

vVvYyyvyy

Notes for the tutor only
Student: [Meeting>> Exit Adobe Connect]
Tutor:
Recording [Meeting)) Stop Recording] v/
Remove Participants Meeting)) End Meeting. .. | v
> Dialog box allows for message with default message:
» The host has ended this meeting. Thank you for
attending.
Recording availability In course Web site for joining
the room, click on the eye icon in the list of recordings
under your recording — edit description and name
Meeting Information [Meeting>> Manage Meeting Information] —
can access a range of information in Web page.
Delete File Upload [Meeting>> Manage Meeting Information>
2 Uploaded Content tab| select file(s) and click
Attendance Report see course Web site for joining
room

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics

Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

11/174

Adobe Connect

Invite Attendees

>

Provide Meeting URL [Menu>> Meeting>> Manage Access & Entry>
> Invite Participants. ..]

Allow Access without Dialog

J Manage Meeting Information| provides new browser window
with Meeting Information (Tab bar)) Edit Information|

Check Anyone who has the URL for the meeting can
enter the room

Default Only registered users and accepted guests may
enter the room

Reverts to default next session but URL is fixed

Guests have blue icon top, registered participants have
yellow icon top — same icon if URL is open

See Start, attend, and manage Adobe Connect meetings
and sessions

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics

Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

12/174

https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html
https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html

Adobe Connect

Layouts

vy

v

Creating new layouts example Sharing layout

[Menu>> Layouts>> Create New Layout. ..] [Create a New Layout dialog>

) Create a new blank layout] and name it PMolyMain

New layout has no Pods but does have Layouts Bar open
(see Layouts menu)

Pods

(Menu)) Pods) Share)) Add New Share] and resize/position —
initial name is Share n

Rename Pod [Menu>> Pods>> Manage Pods. . . } [Manage Pods>
) Select)) Rename| or [Double-click & rename)

Add Video pod and resize/reposition
Add Attendance pod and resize/reposition

Add Chat pod — name it PMolyChat — and
resize/reposition

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics

Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

13/174

Adobe Connect

Layouts

» Dimensions of Sharing layout (on 27-inch iMac)
Width of Video, Attendees, Chat column 14 cm
Height of Video pod 9 cm

Height of Attendees pod 12 cm

Height of Chat pod 8 cm

> Duplicating Layouts does not give new instances of
the Pods and is probably not a good idea (apart from
local use to avoid delay in reloading Pods)

vyvyy

\4

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Interface
Settings

Sharing Screen &
Applications

Ending a Meeting
Invite Attendees
Layouts

Chat Pods

Web Graphics

Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

14/174

M269 Python,

Adobe Connect Logic, ADTs
Chat Pods Phil Molyneux
Agenda
» Format Chat text Py e—
> [Chat Pod >> menu icon>> My Chat Color] 2:;:;::
. . Sharing Screen &
» Choices: Red, Orange, Green, Brown, Purple, Pink, Blue, AR e
B I acC k Invite Attendees
Layouts
> Note: Color reverts to Black if you switch layouts Fewten
> [Chat Pod >> menu icon>> Show Timestamps] Programming
Python
Complexity
Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

15/174

M269 Python,

Graphics Conversion Logic, ADTS

PDF to PNG/JPG Phil Molyneux
. .) Agenda

> Conversion of the screen snaps for the installation of S a—
Anaconda on 1 May 2020 erac

» Using GraphicConverter 11 ety

Ending a Meeting

> > Convert & Modify>> Conversion>> Convert] Invite Attendees

Layouts

» Select files to convert and destination folder Chatlpods

Web Graphics

» Click on [Start selected Function] or + Programming

Python

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

16/174

Computational Components

Imperative, Procedural Programming

Imperative or procedural programming has statements
which can manipulate global memory, have explicit control
flow and can be organised into procedures (or functions)

> Sequence of statements

stmnt ; stmnt

> Iteration to repeat statements

while expr :
suite

for targetlList in exprList :
suite

> Selection choosing between statements

if expr : suite
elif expr : suite
else : suite

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming

Computational
Components
Computation,
Programming,
Programming
Languages
Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

17/174

https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Control_flow
https://en.wikipedia.org/wiki/Control_flow
https://en.wikipedia.org/wiki/Structured_programming

Computational Components

Functional Programming

Functional programming treats computation as the
evaluation of expressions and the definition of functions (in
the mathematical sense)

>

Function composition to combine the application of
two or more functions — like sequence but from right
to left (notation accident of history)

f .9 x=Ff@x

Recursion — function definition defined in terms of
calls to itself (with smaller arguments) and base case(s)
which do not call itself.

Conditional expressions choosing between
alternatives expressions

if expr then expr else expr

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming

Computational
Components

Computation,

Programming,
Programming

Languages

Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

18/174

https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Function_composition_(computer_science)
https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://en.wikipedia.org/wiki/Conditional_(computer_programming)

Computation

Programming, Programming Languages

>
>

M269 is not a programming course but ...

The course uses Python to illustrate various algorithms
and data structures

The final unit addresses the question:

What is an algorithm ? What is programming ? What is a
programming language ?
So it is a programming course (sort of)

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming

Computational
Components

Computation,
Programming,
Programming
Languages
Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

19/174

Example Algorithm Design

Searching

» Given an ordered list (xs) and a value (val), return

>
|

Position of val in xs or
Some indication if val is not present

> Simple strategy: check each value in the list in turn

> Better strategy: use the ordered property of the list to
reduce the range of the list to be searched each turn

>
>

>

Set a range of the list

If val equals the mid point of the list, return the mid
point

Otherwise half the range to search

If the range becomes negative, report not present
(return some distinguished value)

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming

Computational
Components
Computation,
Programming,
Programming
Languages

Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

20/174

Example Algorithm Design

Binary Search Iterative

1def binarySearchIter(xs,val):
2 lo=0
3 hi = len(xs) -1

5 while 1o <= hi:
6 mid = (lo + hi) // 2

7 guess = xs[mid]

9 if val == guess:
10 return mid

11 elif val < guess:
12 hi = mid - 1

13 else:

14 To =mid + 1

16 return None

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming
Computational
Components
Computation,
Programming,
Programming
Languages

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python
Complexity
Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

21/174

Example Algorithm Design

Binary Search Recursive

17def binarySearchRec(xs,val,l0o=0,hi=-1):
18 if (hi == -1):

19 hi = Ten(xs) - 1

21 mid = (lo + hi) // 2

23 1if hi < lo:

24 return None

25 else:

26 guess = xs[mid]

27 if val == guess:

28 return mid

29 elif val < guess:

30 return binarySearchRec(xs,val,lo,mid-1)
31 else:

32 return binarySearchRec(xs,val,mid+1,hi)

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming
Computational
Components
Computation,
Programming,
Programming
Languages

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python
Complexity
Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

22/174

Example Algorithm Design

Binary Search — Exercise

Given the Python definition of binarySearchRec from
above, trace an evaluation of binarySearchRec(xs, 25)

where xs is

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming

Computational
Components
Computation,
Programming,
Programming
Languages
Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

23/174

Example Algorithm Design

Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs, 25)

XS = Highlight the mid value and search
binarySearchRec(xs,25,77,7?)
XS = Highlight the mid value and search
binarySearchRec(xs,25,77,7?)
XS = Highlight the mid value and search
binarySearchRec(xs,25,77,7?7)
XS = Highlight the mid value and search
binarySearchRec(xs,25,77,?7?)

Return value:

?7?

range

range

range

range

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming

Computational
Components
Computation,
Programming,
Programming
Languages
Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

24/174

Example Algorithm Design

Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]

binarySearchRec(xs, 25)

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]

binarySearchRec(xs,25,77,7?)

XS = Highlight the mid value and search range
binarySearchRec(xs,25,77,7?)

XS = Highlight the mid value and search range
binarySearchRec(xs,25,77,7?7)

XS = Highlight the mid value and search range
binarySearchRec(xs,25,77,?7?)
Return value: 7?7

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming

Computational
Components

Computation,

Programming,
Programming

Languages

Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

25/174

Example Algorithm Design

Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs, 25)

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,14) by Tine 31

XS = Highlight the mid value and search range
binarySearchRec(xs,25,77,7?)

XS = Highlight the mid value and search range
binarySearchRec(xs,25,77,7?7)

XS = Highlight the mid value and search range
binarySearchRec(xs,25,77,?7?)

Return value:

?7?

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming

Computational
Components

Computation,

Programming,
Programming

Languages

Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

26/174

Example Algorithm Design

Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs, 25)

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,14) by Tine 31

xs = [27,31,37,48,57,87,95]
binarySearchRec(xs,25,77,?7?)

XS = Highlight the mid value and search range
binarySearchRec(xs,25,77,7?7)

XS = Highlight the mid value and search range
binarySearchRec(xs,25,77,?7?)

Return value: 7?7

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming

Computational
Components

Computation,

Programming,
Programming

Languages

Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

27/174

Example Algorithm Design

Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs, 25)

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,14) by Tine 31

xs = [27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,10) by Tine 31

XS = Highlight the mid value and search range
binarySearchRec(xs,25,77,7?7)

XS = Highlight the mid value and search range
binarySearchRec(xs,25,77,?7?)

Return value: 7?7

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming

Computational
Components
Computation,
Programming,
Programming
Languages
Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

28/174

Example Algorithm Design

Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs, 25)

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,14) by Tine 31

xs = [27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,10) by Tine 31

xs = [27,31,37,]
binarySearchRec(xs,25,77,7?)

XS = Highlight the mid value and search range

binarySearchRec(xs,25,77,?7?)
Return value: ?7?

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Computational
Components
Computation,
Programming,
Programming
Languages

Example Algorithm

Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Program.
Thinking
Python
Complexity

Logarithms

s &

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

29/174

Example Algorithm Design

Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs, 25)

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,14) by Tine 31

xs = [27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,10) by Tine 31

xs = [27,31,37,]
binarySearchRec(xs,25,8,8) by 7ine 29

XS = Highlight the mid value and search range

binarySearchRec(xs,25,77,?7?)
Return value: ?7?

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Computational
Components
Computation,
Programming,
Programming
Languages

Example Algorithm

Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Program.
Thinking
Python
Complexity

Logarithms

s &

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

30/174

Example Algorithm Design

Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]

binarySearchRec(xs, 25)

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,14) by Tine 31
27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,10) by Tine 31

xs = [

xs = [

27,31,37,

binarySearchRec(xs,25,8,8) by 7ine 29

Xs = [

27,

binarySearchRec(xs,25,77,?7?)

Return value: ?7?

]
]

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming

Computational
Components

Computation,

Programming,
Programming

Languages

Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

31/174

Example Algorithm Design

Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]

binarySearchRec(xs, 25)

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,14) by Tine 31
27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,10) by Tine 31

xs = [

xs = [

27,31,37,

binarySearchRec(xs,25,8,8) by 7ine 29

Xs = [

27,

binarySearchRec(xs,25,8,7) by Tine 29

Return value: ?7?

]
]

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming

Computational
Components
Computation,
Programming,
Programming
Languages
Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

32/174

Example Algorithm Design

Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs, 25)

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,14) by Tine 31

xs = [27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,10) by Tine 31
xs = [27,31,37,]
binarySearchRec(xs,25,8,8) by 7ine 29
Xs = [27,]

binarySearchRec(xs,25,8,7) by Tine 29
Return value: None by Tine 23

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Computational
Components
Computation,
Programming,
Programming
Languages

Example Algorithm

Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Program.
Thinking
Python
Complexity

Logarithms

s &

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

33/174

Example Algorithm Design

Binary Search — Comparison

>

Both forms compare the given value (val) to the
mid-point value of the range of the list (xs[mid])

If not found, the range is adjusted via assignment in a
while loop (iterative) or function call (recursive)

The recursive version has default parameter values to
initialise the function call (evil, should be a helper
function)

There are two base cases:

» The value is found (val == guess)
> The range becomes negative (hi < 10)

The return value is either mid or None
What is the type of the binary search function ?

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming

Computational
Components
Computation,
Programming,
Programming
Languages
Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

34/174

Example Algorithm Design

Binary Search — Performance

> Linear search — number of comparisons
> Best case 1 (first item in the list)
> Worst case n (last item)
> Average case %n

» Binary search — number of comparisons
> Best case 1 (middle item in the list)
> Worst case log, n (steps to see all)
> Average case log, n — 1 (steps to see half)

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming

Computational
Components
Computation,
Programming,
Programming
Languages
Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

35/174

Writing Programs & Thinking

The Steps

1. Invent a name for the program (or function)

2. What is the type of the function ? What sort of input
does it take and what sort of output does it produce ? In
Python a type is implicit; in other languages such as
Haskell a type signature can be explicit.

3. Invent names for the input(s) to the function (formal
parameters) — this can involve thinking about possible
patterns or data structures

4. What restrictions are there on the input — state the
preconditions.

5. What must be true of the output — state the
postconditions.

6. Think of the definition of the function body.

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming

Computational
Components
Computation,
Programming,
Programming
Languages

Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

36/174

Writing Programs & Thinking

The Think Step

» How to Think

1.
2.
3. Deal with simple cases.
4.

Think of an example or two — what should the
program/function do ?
Break the inputs into separate cases.

Think about the result — try your examples again.

» Thinking Strategies

1.

2.
3.

Don’t think too much at one go — break the problem
down. Top down design, step-wise refinement.

What are the inputs — describe all the cases.
Investigate choices. What data structures ? What
algorithms ?

. Use common tools — bottom up synthesis.
. Spot common function application patterns — generalise

& then specialise.

. Look for good glue — to combine functions together.

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect

Programming

Computational
Components
Computation,
Programming,
Programming
Languages
Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

37/174

Python

Learning Python

>

VvV Vv VvV Vv Vvyy

Miller & Ranum Problem Solving with Algorithms and
Data Structures using Python

Python 3 Documentation
Python Tutorial

Python Language Reference
Python Library Reference
Hitchhiker’s Guide to Python
Stackoverflow on Python
Dive into Python 3

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect
Programming

Python
Learning Python
Basic Python
Python Workflows

Complexity
Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

38/174

http://interactivepython.org/courselib/static/pythonds/index.html
http://interactivepython.org/courselib/static/pythonds/index.html
https://docs.python.org/3/
https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/reference/index.html
https://docs.python.org/3/library/index.html
http://docs.python-guide.org/en/latest/index.html
http://stackoverflow.com/tags/python/info
http://getpython3.com/diveintopython3/

Basic Python MLooic ADT
Python Usage — Questions Phil Molyneux
Agenda
» How do you enter an interactive Python shell ? Al Eia
» How do you exit Python in Terminal (Mac) or Command Programming
prompt (Windows) ? g pivon
» How do you get help in a shell ? T
» How do you exit the interactive help utility ? C°’""'eh*“y
Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

39/174

Basic Python

Python Usage — Answers

» How do you enter an interactive Python shell ?

» How do you exit Python in Terminal (Mac) or Command
prompt (Windows) ?

» How do you get help in a shell ?

» How do you exit the interactive help utility ?

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect
Programming

Python

Learning Python
Basic Python
Python Workflows

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

40/174

Basic Python

Python Usage — Answers

» How do you enter an interactive Python shell ?
Windows PythonWin Shell from Toolbox; Mac python3 in Terminal

» How do you exit Python in Terminal (Mac) or Command
prompt (Windows) ?

» How do you get help in a shell ?

» How do you exit the interactive help utility ?

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect
Programming

Python
Learning Python
Basic Python
Python Workflows

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

41/174

Basic Python

Python Usage — Answers

» How do you enter an interactive Python shell ?
Windows PythonWin Shell from Toolbox; Mac python3 in Terminal

» How do you exit Python in Terminal (Mac) or Command
prompt (Windows) ?

quitQ
» How do you get help in a shell ?

» How do you exit the interactive help utility ?

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect
Programming

Python
Learning Python
Basic Python
Python Workflows

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

42/174

Basic Python

Python Usage — Answers

» How do you enter an interactive Python shell ?
Windows PythonWin Shell from Toolbox; Mac python3 in Terminal

» How do you exit Python in Terminal (Mac) or Command
prompt (Windows) ?

quitQ
» How do you get help in a shell ?
help()
» How do you exit the interactive help utility ?

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect
Programming

Python
Learning Python
Basic Python
Python Workflows

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

43/174

Basic Python

Python Usage — Answers

» How do you enter an interactive Python shell ?
Windows PythonWin Shell from Toolbox; Mac python3 in Terminal

» How do you exit Python in Terminal (Mac) or Command
prompt (Windows) ?

quitQ

» How do you get help in a shell ?
help()

» How do you exit the interactive help utility ?
quit

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect
Programming

Python
Learning Python
Basic Python
Python Workflows

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

44/174

Basic Python

Sequences Indexing, Slices

>

vVvyVvyy

xs[i:j:k] is defined to be the sequence of items from
index i to (j-1) with step k.

If k is omitted or None, it is treated as 1.

If i or j are negative then they are relative to the end.
If i is omitted or None use 0.

If j is omitted or None use Ten(xs)

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect
Programming

Python
Learning Python
Basic Python
Python Workflows

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

45/174

Basic Python

Python Quiz — Lists
Given the following definitions

Xs
ys

[10.9,25,"Phil1",3.14,42,1985]
(0511 = 3

Evaluate

xs[1]

xs[0]

xs[5]

ys

xs[1:3]

xs[::2]
xs[1l:-1]

xs[-3]

xs[:]

ys[0] .append(4)

O WO NV A WN =

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect
Programming

Python
Learning Python
Basic Python
Python Workflows

Complexity
Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

46/174

Basic Python

Python Quiz — Lists — Answers

Given the following definitions

xs = [10.9,25,"Phi1",3.14,42,1985]
ys = [[5]1] = 3
Evaluate
1xs[1] == 25
2xs[0] == 10.9
3xs[5] == 1985
4ys == [[5]1,[5],[5]1
5xs[1:3] == [25, ’Phil’]
6xs[::2] == [10.9, ’Phil’, 42]
7xs[1:-1] == [25, 'Phil’, 3.14, 42]
8xs[-3] == 3.14
axs[:] == [10.9, 25, 'Phil’, 3.14, 42, 1985]
10ys[0].append(4) == [[5, 41, [5, 41, [5, 411

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect
Programming

Python
Learning Python
Basic Python
Python Workflows

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

47/174

M269 Python,
Python Workflows Logic, ADT
Komodo Python Workflow Phil Molyneux
. . Agenda
1. Create someProgram.py with assignment statements Adobe Connect
defining variables and other data along with function Programming
definitions. Bty
Learning Python
2. There may be auxiliary files with other definitions (for Basic Python

Python Workflows

example, Python Activity 2.2 has Stack.py with the ER——
Stack class definition) — this uses the import statement | ogarithms
in someProgram.py Before Calculators

Logic Introduction

from someOtherDefinitions import someldentifier DT
S

Future Work

3. Load someProgram.py into Komodo Edit and use the
Run Python File macro from the Toolbox

4. For further results, edit the file in Komodo Edit and and
use the Save and Run macro from the Toolbox

Haskell Example

References

48/174

Python Workflows

Standalone Python Workflow

1.

2.

Create someDefinitions.py with assignment
statements defining variables and function definitions.
In Terminal (Mac) or Command Prompt (Windows),
navigate to someDefinitions.py and invoke the
Python 3 interpreter

Load someDefinitions.py into Python 3 with one of

from someDefinitions import =

import someDefinitions as sdf

The as sdf gives a shorter qualifier for the namespace
— names in the file are now sdf.x

Note that the commands are executed — any print
statement will execute

. At the Python 3 interpreter prompt, evaluate
expressions (may have side effects and alter definitions)

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect
Programming

Python

Learning Python
Basic Python
Python Workflows

Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

49/174

M269 Python,
Python Workflows Logic, ADTs
Standalone Python Workflow 2 Phil Molyneux
i : .) i Agenda
1. For further results, edit the file in Your Favourite Editor PV —
and use one of the following commands: Programming
reload(sdf) Y o
Basic Python
import imp Python Workflows
imp.reload(sdf) Complexity
Logarithms

Note the use of the name sdf as opposed to the
original name. o
Read the following references about the dangers of ADTS
reloading as compared to re-cycling Python 3 Future Work

Haskell Example

Before Calculators

> How to re import an updated package while in Python
Interpreter?

> How do | unload (reload) a Python module?

> Reloading Python modules

» How to dynamically import and reimport a file containing
definition of a global variable which may change anytime

References

50/174

https://stackoverflow.com/questions/684171/how-to-re-import-an-updated-package-while-in-python-interpreter
https://stackoverflow.com/questions/684171/how-to-re-import-an-updated-package-while-in-python-interpreter
https://stackoverflow.com/questions/437589/how-do-i-unload-reload-a-python-module
http://pyunit.sourceforge.net/notes/reloading.html
https://stackoverflow.com/questions/12400467/how-to-dynamically-import-and-reimport-a-file-containing-definition-of-a-global
https://stackoverflow.com/questions/12400467/how-to-dynamically-import-and-reimport-a-file-containing-definition-of-a-global

Program Complexity
Big O Notation

» Measuring program complexity introduced in section 4
of M269 Unit 2

> See also Miller and Ranum chapter 2 Big-O Notation
> See also Wikipedia: Big O notation
> See also Big-O Cheat Sheet

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect
Programming
Python
Complexity
Complexity Example
Complexity & Python
Data Types
Logarithms
Before Calculators
Logic Introduction
ADTs
Future Work
Haskell Example

References

51/174

http://interactivepython.org/courselib/static/pythonds/AlgorithmAnalysis/BigONotation.html
https://en.wikipedia.org/wiki/Big_O_notation
http://bigocheatsheet.com/

Program Complexity
Big O Notation (2)

>

Complexity of algorithm measured by using some
surrogate to get rough idea

In M269 mainly using assignment statements

For exact measure we would have to have cost of each
operation, knowledge of the implementation of the
programming language and the operating system it
runs under.

But mainly interested in the following questions:

(1) Is algorithm A more efficient than algorithm B for
large inputs ?

(2) Is there a lower bound on any possible algorithm for
calculating this particular function ?

(3) Is it always possible to find a polynomial time (nk)
algorithm for any function that is computable

— the later questions are addressed in Unit 7

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Complexity
Complexity Example
Complexity & Python
Data Types
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

52/174

M269 Python,

Program Complexity Logic, ADT
Orders of Common Functions Phil Molyneux
Agenda
» O(1) constant — look-up table Py —
» O(log n) logarithmic — binary search of sorted array, Ficgiamming
binary search tree, binomial heap operations ZV"“T ‘
» O(n) linear — searching an unsorted list SOEE“:;EWT:'
> O(nlog n) loglinear — heapsort, quicksort (best and L:a;::ms
aVerage), merge sort Before Calculators
> 0O(n?) quadratic — bubble sort (worst case or naive Logic Introduction
implementation), Shell sort, quicksort (worst case), ADTs
selection sort, insertion sort FULITEYWOTIS
> O(”C) polynomial Haskell Example
References
> O(c") exponential — travelling salesman problem via
dynamic programming, determining if two logical
statements are equivalent by brute force
» O(n') factorial — TSP via brute force.

53/174

https://en.wikipedia.org/wiki/Lookup_table
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Merge_sort
https://en.wikipedia.org/wiki/Bubble_sort
https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Selection_sort
https://en.wikipedia.org/wiki/Insertion_sort
https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Dynamic_programming

Program Complexity
Tyranny of Asymptotics

> Table from Bentley (1984, page 868)
> Cubic algorithm on Cray-1 3.0n3 nanoseconds
> Linear algorithm on TRS-80 19.5n x 10° nanoseconds

N Cray-1 TRS-80

10 3.0 microsecs 200 millisecs
100 3.0 millisecs 2.0 secs
1000 3.0 secs 20 secs
10000 49 mins 3.2 mins
100000 35 days 32 mins
1000000 95 yrs 5.4 hrs

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect
Programming
Python
Complexity
Complexity Example
Complexity & Python
Data Types
Logarithms
Before Calculators
Logic Introduction
ADTs
Future Work

Haskell Example

References

54/174

Program Complexity
Big O Complexity Chart

O(n)
400 Towem

300 |

200 |

100

Big O Complexity Chart

2
| O(n%)

/ O(ninn)
/ O(n)

/ _—

/ //
/Z _— olhm

20 40 60 80 100 120 140"

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect
Programming

Python

Complexity Example
Complexity & Python
Data Types
Logarithms
Before Calculators
Logic Introduction
ADTs
Future Work
Haskell Example

References

55/174

Program Complexity
Big O Notation

>
>

Abuse of notation — we write f(x) = O(g(x))

but O(g(x)) is the class of all functions h(x) such that
lh(x)| < C|g(x)| for some constant C

So we should write f(x) € O(g(x)) (but we don’t)

We ought to use a notation that says that (informally)
the function f is bounded both above and below by g
asymptotically

This would mean that for big enough x we have
kig(x) < f(x) < kag(x) for some ki, k;
This is Big Theta, f(x) = ©(g(x))

But we use Big O to indicate an asymptotically tight
bound where Big Theta might be more appropriate

See Wikipedia: Big O Notation
This could be Maths phobia generated confusion

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python

Complexity
Complexity Example
Complexity & Python
Data Types
Logarithms
Before Calculators
Logic Introduction
ADTs
Future Work
Haskell Example

References

56/174

https://en.wikipedia.org/wiki/Big_O_notation

Program Complexity

Example

sdef someFunction(aList)
6 n = len(aList)

7 best =0

g8 for i 1in range(n)

9 for j in range(i + 1, n + 1) :
10 s = sum(aList[i:j]1)

1 best = max(best, s)

12 return best

Example from M269 Unit 2 page 46
Code in file M269TutorialProgPythonADT.py
What does the code do ?

(It was a famous problem from the late 1970s/early
1980s)

» Can we construct a more efficient algorithm for the
same computational problem ?

vV vyVvVvyy

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect
Programming
Python
Complexity
Complexity Example
Complexity & Python
Data Types
Logarithms
Before Calculators
Logic Introduction
ADTs
Future Work
Haskell Example

References

57/174

http://www.pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269TutorialProgPythonADT/M269TutorialProgPythonADT.py

Program Complexity
Example (2)

>
>

The code calculates the maximum subsegment of a list
Described in Bentley (1984), (1988, column 7), (2000,
column 7) Also in Gries (1989)

These are all in a procedural programming style (as in
C, Java, Python)

Problem arose from medical image processing.

A functional approach using Haskell is in Bird (1998,
page 134), (2014, page 127, 133) — a variant on this
called the Not the maximum segment sum is given in
Bird (2010, Page 73) — both of these derive a linear
time program from the (n3) initial specification

See Wikipedia: Maximum subarray problem

See Rosetta Code: Greatest subsequential sum

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Complexity Example
Complexity & Python
Data Types
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work

Haskell Example

References

58/174

https://en.wikipedia.org/wiki/Maximum_subarray_problem
http://rosettacode.org/wiki/Greatest_subsequential_sum

Program Complexity
Example (3)

> Here is the same program but modified to allow lists
that may only have negative numbers

» The complexity T(n) function will be slightly different
> but the Big O complexity will be the same

14def maxSubSeg01(xs)

15 n = len(xs)

16 maxSoFar = xs[0]

17 for i 1in range(1l,n) :

18 for j in range(i + 1, n + 1) :
19 s = sum(xs[i:j1)
20 maxSoFar = max(maxSoFar, s)

21 return maxSoFar

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Complexity Example
Complexity & Python
Data Types
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

59/174

Program Complexity

Example (4)
» Complexity function T(n) for maxSubSeg01()
> Two initial assignments
» The outer loop will be executed (n— 1) times,
>

Hence the inner loop is executed

n-1N+mn-2)+...+2+1 =(”;71)><n

Assume sum() takes n assignments

Hence T(n) =2+ (n+2) X ((nz D) n)
—2+(n+2)><<r72 —")
2 2
=2+m I+ n?—n
=Im+Im—n+2
Hence O(n3)

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Complexity Example
Complexity & Python
Data Types
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

60/174

Program Complexity

Example (5)

» Developing a better algorithm

» Assume we know the solution (maxSoFar) for xs[0. . (i
- D]

> We extend the solution to xs[0..1] as follows:

» The maximum segment will be either maxSoFar

> or the sum of a sublist ending at i (maxToHere) if it is
bigger

>

This reasoning is similar to divide and conquer in binary
search or Dynamic programming (see Unit 5)

Keep track of both maxSoFar and maxToHere — the
Eureka step

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect
Programming
Python
Complexity
Complexity Example
Complexity & Python
Data Types
Logarithms
Before Calculators
Logic Introduction
ADTs
Future Work
Haskell Example

References

61/174

https://en.wikipedia.org/wiki/Dynamic_programming

Program Complexity
Example (6)

» Developing a better algorithm maxSubSeg02 ()

27def maxSubSeg02 (xs)

28
29
30
31
32
33
34

maxToHere = xs[0]

maxSoFar = xs[0]

for x in xs[1:]
Invariant: maxToHere, maxSoFar OK for xs[0..(i-1)]
maxToHere = max(x, maxToHere + Xx)
maxSoFar = max(maxSoFar, maxToHere)

return maxSoFar

» Complexity function T(n) =2 + 2n
» Hence O(n)

» What if we want more information ?

> Return the (or a) segment with max sum and position in

list

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect
Programming
Python
Complexity
Complexity Example
Complexity & Python
Data Types
Logarithms
Before Calculators
Logic Introduction
ADTs
Future Work
Haskell Example

References

62/174

Program Complexity
Example (7)

3gdef maxSubSeg03(xs)

39 maxSoFar = maxToHere = xs[0]

40 startIdx, endIdx, startMaxToHere = 0, 0, O
41 for i, x 1in enumerate(xs)

42 if maxToHere + x < x :

43 maxToHere = x

44 startMaxToHere = i

45 else :

46 maxToHere = maxToHere + x

48 if maxSoFar < maxToHere :

49 maxSoFar = maxToHere

50 startIdx, endIdx = startMaxToHere, i

52 return (maxSoFar,xs[startIdx:endIdx+1],startIdx,endIdx)

> Developing a better algorithm maxSubSeg03()

» Complexity function worst case T(n) =2 +3+ (2+ 3)n
» Hence still O(n)

» Note Python assignments, enumerate() and tuple

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Complexity Example
Complexity & Python
Data Types
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

63/174

https://docs.python.org/3/reference/simple_stmts.html#assignment-statements
https://docs.python.org/3/library/functions.html#enumerate
https://docs.python.org/3/library/stdtypes.html#tuple

M269 Python,

Program Complexity Logic, ADTs

Example (8) Phil Molyneux
Agenda

» Sample data and output Adobe Connect

Programming

seeglist = [-2,1,-3,4,-1,2,1,-5,4] S

g 1o R (T

60eglist02 = [1,2,3] e AT
Logarithms

62assert maxSubSeg03(egList) == (6, [4, -1, 2, 1], 3, 6) -
64assert maxSubSeg03(egList01l) == (-1, [-1], 0, 0) Logic Introduction

ADTs
66assert maxSubSeg03(egList02) == (7, [1, 2, 3], 0, 2)

Future Work

Haskell Example

References

64/174

. M269 Python,
Program Complexity Logic, ADTs
Python Data Types — Lists Phil Molyneux
Operation Notation Average Amortized Worst Petk
Adobe Connect
Get item x = xs[i] o(1) o(1) Fregamiiing
Set item xs[i] = x o(1) o(1) e
Append XS = yS + zs o(1) o(1)
Copy xs = ys[:] O(n) O(n) Complexity
Pop last xs.pop() o(1) o) Eomp:exfw:’xam:le
Pop other xs.pop(i) O(k) O(k) il tion
Insert(i,x) xs[i:i] = [x] O(n) O(n)
Delete item del xs[i:i+1] 0(n) o(n) Logarithms
Get slice xs = ys[i:j] o(k) 0O(k) Before Calculators
Set slice xs[i:j] = ys O(k + n) O(k + n) Logic Introduction
Delete slice xs[i:j] = [1 o(n) o(n) ADTe
Member X in xs O(n)
Get length n = len(xs) o(1) o(1) Future Work
Count(x) n = xs.count(x) O(n) O(n) Haskell Example
References

> Source https://wiki.python.org/moin/TimeComplexity

> See https://docs.python.org/3/1library/stdtypes.html#
sequence-types-Tist-tuple-range

65/174

https://wiki.python.org/moin/TimeComplexity
https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range
https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range

Program Complexity
User Defined Type — Bags

sclass Bag:

7
8

10
11

13
14

16
17

19
20

22
23

25
26

def __init__(self):
self.list = []

def add(self, item):
self.list.append(item)

def remove(self, item):
self.list.remove(item)

def contains(self, item):
return item in self.Tlist

def count(self, item):
return self.list.count(item)

def size(self):
return len(self.list)

def _str__(self):
return str(self.list)

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Complexity Example
Complexity & Python
Data Types
Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

66/174

M269 Python,

Using a Data Type Logic, ADTs
Information Retrieval Functions Phil Molyneux
i Agenda
» Term Frequency, tf, takes a string, term, and a Bag, PV —
document Programming
returns occurrences of term divided by total strings in e
CI Complexity
Ocument Complexity Example
. . Complexity & Python
> Inverse Document Frequency, idf, takes a string, bata Types
term, and a list of Bags, documents RSJNTE
.. . Before Calculators
returns log(total/(1 + containing)) — total is total T —
number of Bags, containing is the number of Bags AT
containing term Future Work
> tf-idf, tf_1idf, takes a string, term, and a list of Bags, MG Eee
References
documents
returns a sequence [ry, r1,..., ¥ n—1] such that

ri = tf(term, d;) x idf(term,documents)

67/174

Exponentials and Logarithms

Definitions
» Exponential function y = g* or f(x) = a*
> g"=axax---Xa(naterms)
> Logarithm reverses the operation of exponentiation
> log,y = x means a* =y
> log,1=0
> log,a=1
» Method of logarithms propounded by John Napier from

v

1614
Log Tables from 1617 by Henry Briggs

Slide Rule from about 1620-1630 by William Oughtred
of Cambridge

Logarithm from Greek logos ratio, and arithmos
number (Chanbers Dictionary 13th edition 2014)

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity

Logarithms

Exponentials and
Logarithms —
Definitions

Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs

Laws of Logarithms
Arithmetic and Inverses
Change of Base

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

68/174

https://en.wikipedia.org/wiki/Exponential_function
https://en.wikipedia.org/wiki/Logarithm
https://en.wikipedia.org/wiki/Mathematical_table#Tables_of_logarithms
https://en.wikipedia.org/wiki/Slide_rule

Exponentiation

Rules of Indices

p—

w

vV vyVvVYyy

NS VR

. amxan — aH’H—H

am = g = gm"

1
-m_
a —am
1
aﬁ:%

Exercise Justify the above rules
What should 0° evaluate to ?
See Wikipedia: Exponentiation

The justification above probably only worked for whole
or rational numbers — see later for exponents with real
numbers (and the value of logarithms, calculus. . .)

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity

Logarithms
Exponentials and
Logarithms —
Definitions
Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs
Laws of Logarithms
Arithmetic and Inverses
Change of Base

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

69/174

http://en.wikipedia.org/wiki/Exponentiation

Logarithms

Motivation

>

Make arithmetic easier — turns multiplication and
division into addition and subtraction (see later)

Complete the range of elementary functions for
differentiation and integration

An elementary function is a function of one variable
which is the composition of a finite number of
arithmetic operations ((+), (=), (x), (%)), exponentials,
logarithms, constants, and solutions of algebraic
equations (a generalization of nth roots).

The elementary functions include the trigonometric and
hyperbolic functions and their inverses, as they are
expressible with complex exponentials and logarithms.

See A Level FP2 for Euler’s relation e = cos 0 + isin 0

1
In A Level C3, C4 we get I; =log. Ix| + C
e is Euler’s number 2.71828...

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity

Logarithms

Exponentials and
Logarithms —
Definitions

Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs

Laws of Logarithms
Arithmetic and Inverses
Change of Base

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

70/174

https://en.wikipedia.org/wiki/Elementary_function
https://en.wikipedia.org/wiki/Elementary_function
https://en.wikipedia.org/wiki/E_(mathematical_constant)

Exponentials and Logarithms

Graphs

> See GeoGebra file explLog.ggb

]

h(x) = g(f(x))

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity

Logarithms
Exponentials and
Logarithms —
Definitions
Rules of Indices
Logarithms —
Motivation

Laws of Logarithms
Arithmetic and Inverses

Change of Base
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

71/174

expLog.ggb

Exponentials and Logarithms

Laws of Logarithms

» Multiplication law log, xy = log, x + log, y
> Division law log, (;’ﬁ) = log, x — log, ¥y
> Power law log, xk = klog, x
» Proof of Multiplication Law
X = glogax
y = a'°gaY by definition of log

Xy = alogﬂ Xalc)gL7 y

= g'°gaX*logay by laws of indices

Hence log, xy = log, x + log, y by definition of log

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity

Logarithms
Exponentials and
Logarithms —
Definitions
Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs

Laws of Logarithms
Arithmetic and Inverses
Change of Base

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

72/174

Arithmetic Operations

Inverse Operations

VvV VYV VvV vV VY VY

Notation helps or maybe not ?

Addition add(b,x) = x+ b

Subtraction sub(b,x) = x— b

Inverse sub(b,add(b,x)) = (x+ b) — b= x
Multiplication mul(b,x) = x X b

Division div(b,x) = x+ b =7 = x/b

Inverse div(b, mul(b,x)) = (xxX b) + b = (Xib)
Exponentiation exp(b, x) = b*

Logarithm log(b, x) = log), x

Inverse log(b, exp(b, x)) = log,(b*) = x

What properties do the operations have that work (or

not) with the notation ?

=X

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity

Logarithms
Exponentials and
Logarithms —
Definitions
Rules of Indices
Logarithms —
Motivation

Exponentials and
Logarithms — Graphs
Laws of Logarithms
Arithmetic and Inverses
Change of Base

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

73/174

https://en.wikipedia.org/wiki/Addition
https://en.wikipedia.org/wiki/Subtraction
https://en.wikipedia.org/wiki/Multiplication
https://en.wikipedia.org/wiki/Division_(mathematics)
https://en.wikipedia.org/wiki/Exponentiation
https://en.wikipedia.org/wiki/Logarithm

Arithmetic Operations

Commutativity and Associativity

>
>

vVvyVvyy Vv

vV vyVvyy

Commutativity x®@ y =y ® x
Associativity (xey)®z=x® (y® 2)

(+) and (x) are semantically commutative and
associative — so we can leave the brackets out

(=) and (=) are not
Evaluate (3—-(2-1))and ((3-2)-1)
Evaluate (3/(2/2)) and ((3/2)/2)

We have the syntactic ideas of left (and right)
associativity

We choose (—) and (+) to be left associative
3—-2—-—1means ((3-2)-1)
3/2/2 means ((3/2)/2)

Operator precedence is also a choice (remember
BIDMAS or BODMAS ?)

If in doubt, put the brackets in

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity

Logarithms
Exponentials and
Logarithms —
Definitions
Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs

Laws of Logarithms
Arithmetic and Inverses
Change of Base

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

74/174

https://en.wikipedia.org/wiki/Commutative_property
https://en.wikipedia.org/wiki/Associative_property
https://en.wikipedia.org/wiki/Order_of_operations

Exponentials and Logarithms

Associativity

vV VvVyVvyVvVYyYyyy

What should 23* mean ?

Let bA x = b*

Evaluate (2A3)A4and 2A (37 4)

Evaluate ¢ = log(log,((bA b) A X))

Evaluate d = log,(log,(bA (bA X)))

Beware spreadsheets Excel and LibreOffice here

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity

Logarithms
Exponentials and
Logarithms —
Definitions
Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs

Laws of Logarithms
Arithmetic and Inverses
Change of Base

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

75/174

Exponentials and Logarithms

Associativity

>
>

v

VYV Vv VvV VvV VvyYyy

(23)4 =212 3nd 234 = 281
Exponentiation is not semantically associative

We choose the syntactic left or right associativity to
make the syntax nicer.

Evaluate ¢ = log(log,((bA b) A X))

c= Iogb(xlogb(bb)) = log,(x - (blogy, b)) =log,(x-b-1)
Hence c = log, x + log, b = log), x + 1

Not symmetrical (unless b and x are both 2)

Evaluate d = log,(log, (b A (b A X)))

d = log,((bA x)(logy, b)) =log,((bAX) X 1)

Hence d = log,(b A x) = x(log, b) = x

Which is what we want — so exponentiation is chosen to
be right associative

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity

Logarithms
Exponentials and
Logarithms —
Definitions
Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs

Laws of Logarithms
Arithmetic and Inverses
Change of Base

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

76/174

Exponentials and Logarithms

Change of Base
» Change of base

log), x
log, x = @
Proof: Let y = log, x

a’ =x
logy, a¥ = logy, x
ylogy, a = log, x
logy, x
" log,a

» Given x, log, x, find the base b

1
> ph = xloepx
1
logy, a

> log, b=

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity

Logarithms
Exponentials and
Logarithms —
Definitions
Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs
Laws of Logarithms
Arithmetic and Inverses
Change of Base

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

77/174

Before Calculators and Computers

» We had computers before 1950 — they were humans
with pencil, paper and some further aids:

» Slide rule invented by William Oughtred in the 1620s —
major calculating tool until pocket calculators in 1970s

> Log tables in use from early 1600s — method of
logarithms propounded by John Napier

» Logarithm from Greek logos ratio, and arithmos
number

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms

Before Calculators
Log Tables

Slide Rules
Calculators

Example Calculation

Logic Introduction
ADTs

Future Work
Haskell Example

References

78/174

https://en.wikipedia.org/wiki/Slide_rule
https://en.wikipedia.org/wiki/William_Oughtred
https://en.wikipedia.org/wiki/Calculator
https://en.wikipedia.org/wiki/Mathematical_table
https://en.wikipedia.org/wiki/John_Napier
https://en.wikipedia.org/wiki/Logarithm

Log Tables

Knott’s Four-Figure Mathematical Tables

KNOTT’S
FOUR-FIGURE
MATHEMATICAL

W. & R. CHAMBERS, LTD.
LONDON AND EDINBURC

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms

Before Calculators

Slide Rules
Calculators
Example Calculation

Logic Introduction
ADTs

Future Work
Haskell Example

References

79/174

M26_9 Python,
LOg Tab I e S Logic, ADTs

. Phil Molyneux
Logarithms of Numbers

Agenda
2 LOGARITHMS OF NUMBERS LOGARITHMS OF NUMBERS 3
T Adobe Connect
A0
¥ [ivos it Baiislilval s [oifi7i o1 P el R 8 B .
|) Ao Programming
10 [-0000[003 0086 0128 0170 0212 "
oataaiss cesslona e e 7007 7016 | 7024 7033 7042 | 7080 7089 7067 | | 1 3 h
11 [-0ste{osss oso2 0sst os 3548 s s Tt | 7o 7ite 7ae | 7ae o 7z || H Python
9907 6a4s0se2 0719 0788|3714 7 11 7177 7185 | 7193 7202 7210 | 7218 7226 7235 1 7
1207920828 0864 08990934 0969 e) 1 7250 7267 | 7275 7284 7292 ul)ﬂ 7308 7316 i 7
69 1004 1088 1072 1108 |34/ 37 10 733 7ado 7348 | 7356 7364 7473 | 7380 7388 7ave [8 | 1 7 B
18/ t120{1173 1208 1as0]rert T 53710 Complexity
1908 1399|1967 1308 1420 22| 38 10 | 3 7412 7419 7427 | 7435 7443 7451 | 7450 7466 7474 1 4
14 | 1401|1482 1529 1550 1504 1614 1604 1675 1703 1732 30[3 6 '8 i piOe e L D ¢
7386 754 7383 | 7980 7007 7604 | To12 ro1s 7ezr | | 1 7 ;
15 [-1761 | 1790 1618 1847 1675 1909 1931 | 1960 1087 2004 [28[3 6 & 7828 7aus 7o8s | roes era 1o08 | vose rene pozr | | 7 Logarithms
16 | -2041 22 2201|2027 2083 2279 [26]3 & 7716 7723 7731 | 7738 7745 7752 | 7760 7767 7774 1 2
17 | 2305 2380 o fis ik 2003 im 2125
18 | 3863|3577 2005 271 7780 7796 7808 | 710 zaas (7] 1 o
18 | 27as a1 2032045 2007 2089|523 4 7 e il i H Before Calculators
551 HE A H
20| sot0fs022 ust sl oms 311 sran|ate0 et 3212 4 | 91013 7031 703 70| 7oz [ANE
21 | 5220 5243 Soes 3on 5 Bors 082 | som b | | i
22 | 3424|3444 3464 3483|3502 ﬂﬁ lwl lnl 19) g : g :v: “ e
23| 3617|3630 3035 3674|2002 37 e SR, et E h
24| 803 620 3838 sase 3674 3002 DEERIRRRHE 1 s13 p142 w140 | s1se 2l o Slide Rules
.| 267 8274 8280 | 8287 821 8319 1 6
brerd Ane 41sla7|2 3 6] 7 01012140 8331 8338 8344 | 8351 8357 8363 | 8370 8376 8382 1 6
e dast i e w123 8] 8 200 AR b gl H ClalEimi
4548 4504 4000 1181213 6 j0 89 8457 8463 8470 | 8476 8452 8488 | 8494 8500 8505 1 s Example Calculation
33 4698 4742 4787 13 4L0.7 9 8519 8525 8531 | 8537 8543 8549 8867 6 1 5 B
8270 saas soot | 3507 3003 3600 i H
4829 4843 871 A00j14113 4] 878 39 8645 8651 | 8657 8663 8669 1 8686 i 5 i i
4360 4983 frh 2 i ic Introduction
don gl 1343 04 8710 | 8716 8722 8727 8 1 s Log
6211 37 8250 5289 5302 L 8756 8762 8768 | 8774 1 5
5320 Saso sass sase sa70 it e EE R B | o 7 K ADTs
5 i H
5453 5465 5478 5400 5502 s f124lse7 7 1 s
5575 5587 5599 12(12 4| 6 6 7 8998 1 5
seas 5108 717 o7 JE B Future Work
Saoo cast 4 i s08s 1 s
5023 cass saa hili23 887 soss H s utu
6107 6117 123456 o :] i
i i H
Gz e (123456 -4 i H
oardoazs| (123456 ST Haskell Example
o 6a1s sizs10l12 3| 4 5 6 aa1s 5320 9325 | 0330 | s
s cara oans G513 6oz2| (123 458 55 S470 saoe | sass 51 H
o 5 | o4a0 0 H
sz ess1 aso0 123456 2434 | 0439 H 3 References
6637 6646 8675 1231488 Nn 9504 98 9523 | 9528 0 4
75 58 aror 13288
412(021 6a30 o430 oa1s o DIERIRE L sers | ose 01 omss | [0 .
G511 6620 ooea 6037 6o4p 123448 it Sero | Sars ams ss | |3 H
Seis s i | |3 i
e iy H
USEFUL CONSTANTS WITH THEIR LOGARITHMS o728 oot 9759 | o703 ores o778 | | o H
No. v et $ 9782 9786 9791 9818 [4
(oo e o 2riem o SEE3 oxss ouas s | [0 i
=, P10k . pdert o M 04sas Teare 472 9877 9881 9908 o 4
1 - 3 """‘1 il 9917 9921 9926 9952 0 4
1 osm Teom P & rem osm S56r ovas oven 599 |4 [0 i
- e osess arc1o ootz 43 203 st
vE 171 ozess arc1’ 0000 29 888 Togex = logix Only the decimal portion (mantissa) of each logarithm is shown in this table.
gl portion (characaris) must be. determined ndependendy.
S v osm arct 0000 004 48 1o x= M. logex Pelieseal sl) pandesily

80/174

M269 Python,

LOg Tab I e S Logic, ADTs

Antilogarithms Phil Molyneux

i e
Agenda
4 ANTILOGARITHMS ANTILOGARITHMS 5
Adobe Connect
A0D 4 0D,
sl Lo s S O Ot] AP S P o M R .
123]456/780 123[4s6]7 80 Programming
006 1007 | 1000 1012 1014 | 1016 1010 1021 |2 [0011 11(1 22 at62(3170 3177 3104|3192 3199 3208 a214 3221 222 [|11
1030 1033 103 1038 1040 1042 1088 | * | 061(1 11232 $361 Soga saas 3279 3a01(sans 300 a04 | |13 Python
2 1054|1057 T064 fou7 fomn | | 001(111(232 $527 3034|3040 3350 3007 3a0s 378 3001 | |12
1o7s | 108 1 086 1051 1064 | [001(111(23% S04 3473 s4so 340 3430|sads S o0 | |13
08 104 | 1907 1106 1112 | 1114 1917 1115 | [09411 2(222 3463 3401 |34 30 3 30| o] 12
5 1130 | 1182 1135 1138 [1140 1143 1146 | 01 1(112[222 as6s 3573 12 Complexity
‘08 118 1101 104 1167 o0 1172 | [011(112|223 Sais bH
kA i i et ek e | 8110113|333 e 7 bH
1200 1311|1213 1316 1219 | 1208 1208 1327 | | 011(112223 Su2s 3637 3 i ;
“09 (1530 | 1233 1236 1230 | 1242 1246 1247 | 1260 1253 1256 | |0 11(112|223 3008 39173926 3936 0|12 Logarithms
10 [1250 12g2 1265 1260 | 1270 1274 1276 | 1270 1282 1205 | 01 1[112|223 3909 4000 401 4027 40 1
A7 1o 1 1R a1k s 1 1 A e 21111231330 aioalenns a1 430 bH Do Elakans
Az (150 1527 1380 1304 137 | 1840 1943 1346 | | 01 1(122233 ety i
13 (1348|138 1355 135m | 1301 1300 1aan 1071 1afa 127 | | 011(123(283 priierd 0|13
14 [1380 | 1384 1387 1300 | 1393 1906 1400|1408 1406 1400 | | 011(122|233 g i
5 (1413 1416 1410 1402 | 1420 1420 1432 | 1435 1439 102 | 01 1[122/238 1519 4520 12
e [14ia | 1486 145 1488 1486 148 1488 46 i 1 | 61 1(125/2338 privpr i Slide Rules
9 1478|1483 1486 140 | 1402 1456 1500 1508 1507 1610 | | 011|122(233 i3 i wli3
5 (181 | 1017 1021 1000|1528 1601 038 |Toan 1odz 1045 | | 011|123(233 Saia s iH
19 [1549 1652 1656 1560 [1563 1567 1670 | 1574 1578 1581 011(122(333 ' 4955 4966 12 Calculators
1680 1502 1508 | 1600 1608 1007 | 1611 1614 1 011]122(333 70 5012 58 5070 sose somn 5105 5117 | [12 i
1620 1620 1033 | 1037 1041 1084 | 1048 1052 011/223(333 73 8120 o1 5176.5188 5200|5212 5224 5236 | 12| 12 Example Calculation
1663 1667 o7t | 1675 1670 1683 | 1687 1690 011(235(333 72| Gaas 5260 Sa09 cagt s (13
1702 1908 17i0| 1914 103 1738 1738 170 1 4| 0112281334 T8 s i 20 4133 S s e o | |11
742 1746 1750 | 1754 i 011]22233 73| B433(3508 G521 5 [sado sos0 078 Y i i
i 5 4 A Logic Introduction
1791 1705 1700 1 o11/222(334 75 | s6aa seae se4o sasa sers sono s7oalszis s72s 7 (13 1345 7
e i 011]223(534 8 {6724 5768 S7ar o7as sans Saat Gasa(sass oot e7s || 134 & 7
i 0111223334 7 | Gass 5o 5670 sond cooe aora | [134]5 7 ADT:
e 011223334 i A R s
21 011223344 G032 coes 13487
2018 203 | 00 or1lz2slaas oo estz o7 sz | [134]6 7
2070 011223344 1 Gado aser 6577 2356 8 Future Work
it o | 211 01102231544 06714 6730 HHE
| e e % s|112(233(348 o s G cur1 o7 HHEN
EHE P T1E[a33)448 G550 7018|7081 7047 HHHE Haskell Example
s254 | 250 3208 2270 | ars s zone | [112233408 1000 112 120 7145 7161 7178 s ot | | 2357 8 P
g0t s 3 2 B MR A AR | 11313330448 Tath 7208 1 7330 7348 736k 7470 2337 .
2360|2366 2a71 2a77 | 2aaa aase 2a03 | | 112(233[4ds 7430 7is7 7asa| 7482 7400 71| HHER
Site |31%% 3oy 24ss biseowis aase | | 115(233[4ds 748 7et1 res8|racs Terh Tebs B HIH References
$iGo 2uas pirs | sarr 2ams sass | 2avs 2500 2006 | (112233458 7780 7706 7ato| 7834 768 7970 1] 248(7 8
2518 2623 2020 | 2535 2041 2547 2558 2550 206 | | 112(234lu5s 24a(1962 7080 7908|s017 8035 8054 2487 011
S 500 aan 5601 2 Booe 202 Btk | o 118301450 5147 #1660 oies 8204 228 B2t o[348 Er01t
Saao 2oke 204 | 2045 2661 26d7 | 2070 2670 2ams | (1122344 37 3 Bt 8% (3459 a4 Bicatonn
3704 3710 | 716 27 2730 | 2738 2743 IREIERRAH 18531 3551 8570|8500 8610 8030 24681012
306t arar o773 | £7ao 27as 27aa | 2199 2A05 TiE3ad) % s o e 531 3851 2|346] 81012
auat ouan | 2nus 2as1 2uss | 2804 2871 11zlaaals 103 9005 9016 9036 246(81012
51 2007 2004|2011 2017 2034|2031 2030 11353415 5141 G1cs o1as a204 2036 2047 et
% a7 |3 33293 Sne 5 113(334)s 4 aark s ity vt e 247(0%113
S0s4 3041 | S04 3o en 3070 3003 (7| 112(34 48 5572 o 2(247(5311
S547 $108 3112 | 311 3130 Srss | 3141 S14n [REEEE 5795 9617 3640|3865 2606 9008|9031 9064 0077 |33 | 367|911 14| 1618 21

81/174

. M269 Python,
Sllde RUIGS Logic,AD‘?g
Pickett N 3-ES from 1967 Phil Molyneux

D, S Agenda

Adobe Connect

; - i Programming
£ i
: tii o : il "Y. i ‘_‘ Python
: it Complexity
Logarithms
v,
ol Before Calculators
ot e : Log Tables
B mm Slide Rules
ST liacnnes Calculators
Example Calculation
| " e Logic Introduction
p 0
i o i ADTs
i ko Future Work
it e
.{n...‘m m Haskell Example

References

> See Oughtred Society

» UKSRC

» Rod Lovett’s Slide Rules
» Slide Rule Museum

82/174

http://www.oughtred.org
http://www.uksrc.org.uk
http://sliderules.lovett.com
http://sliderulemuseum.com

Slide Rules

Pickett log log Slide Rules Manual 1953

by MAURICE L. HARTUNG
Asociate Professor of the
Teoching of Mothematics
THE UNIVERSITY OF CHICAGO

Price 50 Conts

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda
Adobe Connect
Programming
Python
Complexity
Logarithms

Before Calculators
Log Tables

Slide Rules
Calculators

Example Calculation

Logic Introduction
ADTs

Future Work
Haskell Example

References

83/174

M269 Python,

Calculators Logic, ADT
HP HP-21 Calculator from 1975 £69 Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms

Before Calculators
Log Tables

Slide Rules

Example Calculation
Logic Introduction
ADTs

Future Work
Haskell Example

References

84/174

M269 Python,

Calculators Logic, ADT
Casio fx-85GT PLUS Calculator from 2013 £10 goiltelyneLxe

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms

Before Calculators
Log Tables

Slide Rules
Calculators

Example Calculation

Logic Introduction
ADTs

Future Work
Haskell Example

References

85/174

Calculators

Calculator Links

>
>

HP Calculator Museum http://www.hpmuseum.org
HP Calculator Emulators
http://nonpareil.brouhaha.com

HP Calculator Emulators for OS X
http://www.bartosiak.org/nonpareil/

Vintage Calculators Web Museum
http://www.vintagecalculators.com

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms

Before Calculators
Log Tables

Slide Rules
Calculators

Example Calculation

Logic Introduction
ADTs

Future Work
Haskell Example

References

86/174

http://www.hpmuseum.org
http://nonpareil.brouhaha.com
http://www.bartosiak.org/nonpareil/
http://www.vintagecalculators.com

Example Calculation

Log Tables, Slide Rule and Calculator

vV VvV VvYyVvYyy

vV vV.vvY

>
>

>

Evaluate 89.7 x 597

Knott’s Tables

log1089.7 = 1.9528 and log;(597 = 2.7760

Shows mantissa (decimal) & characteristic (integral)

Add 4.7288, take antilog to get
5346 + 10 = 5.356 x 104

HP-21 Calculator — set display to 4 decimal places

89.7 [log) = 1.9528 and 597 [log] = 2.7760
displays 4.7288
10 [ENTER), and [y*] displays 53550.9000

Casio fx-85GT PLUS
89.7 (0] =1.952792443 5970 =2.775974331 =)
4.728766774 [Ans)+(10] gives 53550.9

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms

Before Calculators
Log Tables

Slide Rules
Calculators

Example Calculation

Logic Introduction
ADTs

Future Work
Haskell Example

References

87/174

Boolean Expressions
Traffic Lights Example (1)

» Consider traffic light at the intersection of roads AC and

>
>

BD with the following rules for the AC controller
Vehicles should not wait on red on BD for too long.

If there is a long queue on AC then BD is only given a
green for a short interval.

If both queues are long the usual flow times are used.
We use the following propositions:

> w Vehicles have been waiting on red on BD for too long
»> g Queue on AC is too long
> r Queue on BD is too long
Given the following events:
> ToBD Change flow to BD
» ToBDShort Change flow to BD for short time
» NoChange No Change to lights

Express above as truth table, outcome tree, boolean
expression

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

88/174

Boolean Expressions

Traffic Lights Example (2)

> Traffic Lights outcome table

w q r Event
T T T ToBD
T T F ToBDShort
T F T ToBD
T F F ToBD
F T T NoChange
F T F NoChange
F F T NoChange
F F F NoChange

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

89/174

M269 Python,

Boolean Expressions Logic, ADT
Traffic Lights Example (3) Phil Molyneux

Agenda
> Traffic lights outcome tree At @ETEe:

Programming

ToBD Python

Complexity
ToBDShort

Logarithms

Before Calculators

ToBD

Logic Introduction

ToBD Conditional Expressions
and Validity
Boolean Expressions

NOChange Exercise

Propositional Calculus
Truth Function

NoChange AT

Future Work
NoChange Haskell Example

References

NoChange

90/174

Boolean Expressions
Traffic Lights Example (4)

> Traffic lights outcome tree simplified

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators

Logic Introduction

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

91/174

Boolean Expressions
Traffic Lights Example (5)

> Traffic Lights code 01
> See M269TutorialProgPythonADTO1.py

3def trafficLights01l(w,q,r)
P

s Input 3 Booleans

6 Return Event string
7

8

min

if w
9 if q
10 if r
11 evnt = "ToBD"
12 else :
13 evnt = "ToBDShort"
14 else :
15 evnt = "ToBD"
16 else :
17 evnt = "NoChange"

18 return evnt

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators

Logic Introduction

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

92/174

http://www.pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269TutorialProgPythonADT/M269TutorialProgPythonADT01.py

Boolean Expressions
Traffic Lights Example (6)

22trafficlightsOlEvnts = [((w,q,r), trafficLights0l(w,q,r))
for w in [True,False]

for q in [True,False]

for r 1in [True,False]]

23
24
25

> Traffic Lights test code 01

27assert trafficLightsOlEvnts \

28

== [((True, True, True),
,((True, True, False),
, ((True, False, True),

,((True, False, False),
True, True), ’'NoChange’)

, ((False,
, ((False,
, ((False,
, ((False,

True, False),
False, True),
False, False),

"ToBD’)
"ToBDShort’)
"ToBD’)

"ToBD’)

’NoChange’)
’NoChange’)
’NoChange’)]

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms

Before Calculators
Logic Introduction

Boolean Expressions.
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

93/174

Boolean Expressions
Traffic Lights Example (7)

37def trafficlLights02(w,q,r)

38
39
40
41

42
43
44
45
46
47
48

> Traffic Lights code 02 compound Boolean conditions

min

Input 3 Booleans
Return Event string

i

if ((w and q and r) or (w and not q))

evnt = "ToBD"

elif (w and g and not r)
evnt = "ToBDShort"

else :

evnt = "NoChange"

return evnt

> What objectives do we have for our code ?

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms

Before Calculators
Logic Introduction

Boolean Expressions.
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

94/174

Boolean Expressions
Traffic Lights Example (8)

> Traffic Lights test code 02

s2trafficLights02Evnts = [((w,q,r), trafficLights02(w,q,r))

53 for w in [True,False]
54 for q in [True,False]
55 for r 1in [True,False]]

s7assert trafficLights02Evnts == trafficLightsOlEvnts

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

95/174

M269 Python,

Boolean Expressions Logic, ADT
Traffic Lights Example (9) Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators

Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs

Future Work

» Traffic Lights Venn diagram Haskell Example

P OK using a fill colour would look better but didn’t have the time to hack the Refeienees

package

96/174

Boolean Expressions

Validity

> Validity of Boolean expressions

» Complete every outcome returns an event (or error
message, raises an exception)

» Consistent — we do not want two nested if
statements or expressions resulting in different events

» We check this by ensuring that the events form a
disjoint partition of the set of outcomes — see the Venn
diagram

>

We would quite like the programming language
processor to warn us otherwise — not always possible

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

97/174

Booleans Expressions

Rail Ticket Exercise (1)

» Rail ticket discounts for:
> ¢ Rail card
> g Off-peak time
> s Special offer

» 4 fares: Standard, Reduced, Special, Super Special
> Rules:

1. Reduced fare if rail card or at off-peak time

2. Without rail card no reduction for both special offer and
off-peak.

3. Rail card always has reduced fare but cannot get
off-peak discount as well.

4. Rail card gets super special discount for journey with
special offer

» Draw up truth table, outcome tree, Venn diagram and
conditional statement (or expression) for this

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

98/174

Booleans Expressions

Rail Ticket Exercise (2)

» Rail ticket outcome table

o

N

Event

b B B e B B B B |

mmH AT o A

Super Special
Reduced
Super Special
Reduced
Special
Reduced
Special
Standard

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

99/174

Booleans Expressions

Rail Ticket Exercise (3)

» Rail ticket outcome table

> Note that it may be more convenient to change columns

c s q Event

T T T Super Special
T T F Super Special
T F T Reduced
T F F Reduced

F T T Special

F T F Special

F F T Reduced

F F F Standard

> Real fares are a little more complex — see brfares.com

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

100/174

http://www.brfares.com

Boolean Expressions
Rail Ticket Exercise (4)

» Rail Ticket outcome tree

Super Special
Super Special

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

101/174

Boolean Expressions
Rail Ticket Exercise (5)

> Rail Ticket outcome tree simplified

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

102/174

Boolean Expressions
Rail Ticket Example (6)

> Rail Ticket Venn diagram

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms

Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

103/174

Boolean Expressions
Rail Ticket Example (7)

61def railTicket01l(c,s,q)

62
63
64
65
66
67
68
69
70
71

72
73
74
75
76
77
78
79

» Rail Ticket code 01

min

Input 3 Booleans

Return Event string

if c
if s
evnt =
else
evnt
else
if s
evnt =
else
if g
evnt
else

evnt =

return evnt

"SSp"

"RD"

ngpn

— "RD"

"STD"

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms

Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

104/174

Boolean Expressions
Rail Ticket Example (8)

» Rail Ticket test code 01

83railTicketOlEvnts = [((c,s,q), railTicket0l(c,s,q))

84 for c in [True,False]
85 for s 1in [True,False]
86 for q in [True,False]]

ggassert railTicketOlEvnts \

89 == [((True, True, True), ’SSP’)

90 ,((True, True, False), ’SSP’)

91 ,((True, False, True), ’RD’)

92 ,((True, False, False), ’RD’)

93 ,((False, True, True), ’SP’)

94 ,((False, True, False), ’SP’)

95 ,((False, False, True), ’RD’)

96 ,((False, False, False), ’'STD’)]

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

105/174

Boolean Expressions
Rail Ticket Example (9)

» Rail Ticket code 02 compound Boolean expressions

ogdef railTicket02(c,s,q)

99
100
101
102
103
104
105
106
107
108
109
110
111

min

Input 3 Booleans
Return Event string

i

if (c and s) :
evnt = "SSP"

elif ((c and not s) or (not c and not s and q))
evnt = "RD"

elif (not c and s)

evnt = "SP"
else
evnt = "STD"

return evnt

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms

Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions.
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

106/174

Boolean Expressions
Rail Ticket Example (10)

» Rail Ticket test code 02

115railTicket02Evnts = [((c,s,q), railTicket02(c,s,q))

116 for c in [True,False]
117 for s 1in [True,False]
118 for q in [True,False]]
120assert railTicket02Evnts == railTicketOlEvnts

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms

Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions.
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

107/174

Propositional Calculus

Introduction

>

>

Unit 2 section 3.2 A taste of formal logic introduces
Propositional calculus

A language for calculating about Booleans — truth
values

Gives operators (connectives) conjunction (A) AND,
disjunction (V) OR, negation (=) NOT, implication (=) IF
There are 16 possible functions (B,B) — B — see below
— defined by their truth tables

Discussion Did you find the truth table for implication
weird or surprising ?

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

108/174

https://en.wikipedia.org/wiki/Propositional_calculus
https://en.wikipedia.org/wiki/Logical_conjunction
https://en.wikipedia.org/wiki/Logical_disjunction
https://en.wikipedia.org/wiki/Negation
https://en.wikipedia.org/wiki/Material_conditional

Propositional Calculus

Implication
> Implication has a negative definition — we accept its
truth unless we have contrary evidence
» T>T==Tand T=> F ==
» Hence 4 possibilities for truth table

A —4Tn-|pP=>q
m4mH|4q

mTmH4H(S
m=T |
A—mm4|peq
M| pPAG

> (=) must have the entry shown — the others are taken
» Do not think of p causing q

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

109/174

Propositional Calculus

Functional Completeness, Boolean Programming

» Functionally complete set of connectives is one which
can be used to express all possible connectives

» p=>qg=-pV qsowe could just use {—, A, V}

> Boolean programming — we have to have a
functionally complete set but choose more to make the
programming easier

» Expressiveness is an issue in programming language
design

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

110/174

https://en.wikipedia.org/wiki/Functional_completeness

Propositional Calculus
NAND, NOR

>
>
>

NAND pAgq, p 1 q, Sheffer stroke
NOR pVgq, p | q, Pierce’s arrow
See truth tables below — both {1}, {!} are functionally

complete

Exercise verify

>

vvyyvyy

>

p=Eplp

prgq=-(ptg=prtgtptaqg
pva=(ptp)tgtq

p=Eplp

prg=(plp)l(qlq)
pvag=-(plg=plgalplqg

Not a novelty — the Apollo Guidance Computer was
implemented in NOR gates alone.

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

111/174

https://en.wikipedia.org/wiki/Sheffer_stroke
https://en.wikipedia.org/wiki/Logical_NOR
https://en.wikipedia.org/wiki/Apollo_Guidance_Computer

Truth Function

Truth Function References

> The following appendix notes illustrate the 16 binary
functions of two Boolean variables

> See Truth function

» See Functional completeness
> See Sheffer stroke

> See Logical NOR

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

112/174

https://en.wikipedia.org/wiki/Truth_function
https://en.wikipedia.org/wiki/Functional_completeness
https://en.wikipedia.org/wiki/Sheffer_stroke
https://en.wikipedia.org/wiki/Logical_NOR

Truth Function

Table of Binary Truth Functions

SENS s NS

> U f ¢ <
P g T [[2 8 T QA
T T T T T T T T T T
TFTTTTF F F F
F T T TTFF T TF F
F FTFTTFTFTFEF

N < N

‘g ¥ o & & ¢ IS
p g L X 8 7T 8 T a8 8
T TF F F F F F F F
T F F F F F T TTT
F TF F TTFFTT
F FF T FTFTF T

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
Truth Function

ADTs
Future Work
Haskell Example

References

113/174

Truth Function
Tautology/Contradiction

» Tautology True, T, Top

» Contradiction False, L, Bottom

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
ADTs
Future Work
Haskell Example

References

114/174

Truth Function

Disjunction/Joint Denial

» Disjunction OR, pV g

U

> Joint Denial NOR, pVgq, p | q, Pierce’s arrow

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
ADTs
Future Work
Haskell Example

References

115/174

https://en.wikipedia.org/wiki/Logical_NOR

Truth Function

Converse Implication/Converse Nonimplication

> Converse Implication p « g

» Converse Nonimplication p < g

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
ADTs
Future Work
Haskell Example

References

116/174

Truth Function
Proposition p/Negation of p

> Proposition p

U

> Negation of p

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
ADTs
Future Work
Haskell Example

References

117/174

. M269 Python,
Truth Function Logic, ADTS
Material Implication/Material Nonimplication Phil Molyneux
Agenda
> Material Implication p = g Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

. - - - Boolean Expressions
> Material Nonimplication p # g Beerdse

Propositional Calculus

ADTs
Future Work
Haskell Example

References

118/174

Truth Function
Proposition g/Negation of g

> Proposition g g

U

> Negation of g —¢q

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
ADTs
Future Work
Haskell Example

References

119/174

Truth Function

Biconditional/Exclusive disjunction

> Biconditional If and only if, IFF, p & g

> Exclusive disjunction XOR, p ¢ g

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus
ADTs
Future Work
Haskell Example

References

120/174

. M269 Python,
Truth Function Logic, ADTS
Conjunction/Alternative denial Phil Molyneux

Agenda
» Conjunction AND, p A g)

Adobe Connect

Programming
Python
Complexity
Logarithms

Before Calculators

Logic Introduction

u et Faes
Conditional Expressions
and Validity

- - Boolean Expressions
> Alternative denial NAND, p % g, p 1 q, Sheffer stroke Exercise

Propositional Calculus

ADTs
Future Work
Haskell Example

References

121/174

https://en.wikipedia.org/wiki/Sheffer_stroke

Abstract Data Types "Loaic, ADTS"
Overview Phil Molyneux
Agenda
» Abstract data type is a type with associated operations, Py —
but whose representation is hidden (or not accessible) Programming
» Common examples in most programming languages :"h"T v
omplexity

are Integer and Characters and other built in types such

. Logarithms
as tuples and IIStS Before Calculators
> Abstract data types are modeled on Algebraic Logic Introduction
structures ADTs
> A set of values Overew P
> Collection of operations on the values R =

ADT Lists in Lists

> Axioms for the operations may be specified as equations

e Fut! Work
or pre and post conditions e o

Haskell Example

» Health Warning different languages provide different Refermas
ways of doing data abstraction with similar names that
may mean subtly different things

122/174

https://en.wikipedia.org/wiki/Abstract_data_type
https://wiki.haskell.org/Abstract_data_type
https://en.wikipedia.org/wiki/Algebraic_structure
https://en.wikipedia.org/wiki/Algebraic_structure

Abstract Data Types

Overview (2)

>

Abstract Data Types and Object-Oriented
Programming

Example: Shape with Circles, Squares, ...and
operations draw, moveTo, ...

ADT approach centres on the data type — that tells you
what shapes exist

For each operation on shapes, you describe what they
do for different shapes.

00 you declare that to be a shape, you have to have
some operations (draw, moveTo)

For each kind of shape you provide an implementation
of the operations

OO easier to answer What is a circle? and add new
shapes

ADT easier to answer How do you draw a shape? and
add new operations

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

123/174

M269 Python,

Abstract Data Types Looie, ADTs
Overview (3) Phil Molyneux
> Health Warning and Optional Material Discussions ijzz:aConnect
about the merits of Functional programming and Programming
Object-oriented programming tend to look like the Python
disputes between Lilliput and Blefuscu Complexity
Logarithms

> Abstract data type article contrasts ADT and OO as
algebra compared to co-algebra

Before Calculators

Logic Introduction

» What does coalgebra mean in the context of ADTS
. Abstract Data Types —
programming? is a fairly technical but accessible article. S
stract Data Type —
» What does the forall keyword in Haskell do? — is an e e Lists
accessible article on Existential Quantification Future Work
> Bart Jacobs Coalgebra Haskell Bxample

References

» nlLab Coalgebra

» Beware the distinction between concepts and features in
programming languages — see OOP Disaster

> Not for this session — this slide is here just in case

124/174

https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Lilliput_and_Blefuscu
https://wiki.haskell.org/Abstract_data_type
http://stackoverflow.com/questions/16015020/what-does-coalgebra-mean-in-the-context-of-programming
http://stackoverflow.com/questions/16015020/what-does-coalgebra-mean-in-the-context-of-programming
http://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do
http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf
https://ncatlab.org/nlab/show/coalgebra
http://www.smashcompany.com/technology/object-oriented-programming-is-an-expensive-disaster-which-must-end

Abstract Data Types

Overview (4) — Shapes ADT Style

1

13
14

16
17

data Shape

= Circle Point Radius
| Square Point Size

draw :: Shape -> Pict
draw (Circle p r) =

draw (Squa

moveTo ::

shapes ::

shapes = [Circle (0,0) 1, Square (1,1) 2]

shapesO1 ::
shapes01 = map (moveTo (2,2)) shapes

re ps) =

[Shape]

[Shape]

drawCircle p r

drawRectangle p s s

Point -> Shape -> Shape
moveTo p2 (Circle pl r)
moveTo p2 (Square pl s)

Circle p2 r
Square p2 s

» Example based on Lennart Augustsson email of 23 June

2005 on Haskell list

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

125/174

Abstract Data Types

Overview (5) — Shapes OO Style

1

12
13
14

17
18

20
21
22
23

class IsShape shape where
draw :: shape -> Pict
moveTo :: Point -> shape -> shape

data Shape = forall a . (IsShape a) => Shape a

data Circle = Circle Point Radius
instance IsShape Circle where
draw (Circle p r) = drawCircle p r
moveTo p2 (Circle pl r) = Circle p2 r

data Square = Square Point Size

instance IsShape Square where
draw (Square p s) = drawRectangle p s s
moveTo p2 (Square pl s) = Square p2 s

shapes :: [Shape]
shapes = [Shape (Circle (0,0) 10), Shape (Square (1,1) 2)]

shapes01 :: [Shape]
shapes01 = map (moveShapeTo (2,2)) shapes
where
moveShapeTo p (Shape s) = Shape (moveTo p s)

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms

Before Calculators
Logic Introduction

ADTs

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

126/174

Abstract Data Types

Overview (6) — The Expression Problem

>

vVvyyvYyVvyy

The Expression Problem describes a dual problem that
neither Object Oriented Programming nor Functional
Programming fully addresses.

If you want to add a new thing, Object Oriented
Programming makes it easy (since you can simply
create a new class) but Functional Programming makes
it harder (since you have to edit every function that
accepts a thing of that type)

If you want to add a new function, Functional
Programming makes it easy (simply add a new function)
while Object Oriented Programming makes it harder
(since you have to edit every class to add the function)
Wikipedia: Expression problem

Bendersky: The Expression Problem and More thoughts
C2 Wiki: Expression Problem

What is the ’expression problem’?

Philip Wadler: The Expression Problem

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

127/174

https://en.wikipedia.org/wiki/Expression_problem
https://eli.thegreenplace.net/2016/the-expression-problem-and-its-solutions/
https://eli.thegreenplace.net/2018/more-thoughts-on-the-expression-problem-in-haskell/
https://wiki.c2.com/?ExpressionProblem
https://stackoverflow.com/questions/3596366/what-is-the-expression-problem
https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

Abstract Data Type

Queue

vV vyVvVvyy vV vyVvyy

v

Queue Abstract Data Type — operations
makeEmptyQ returns empty queue
isEmptyQ takes queue, returns Boolean

addToQ takes queue, item, returns queue with item
added at back

head0fQ takes queue, returns item at front
tail0fQ takes queue, returns queue without front item
Other operations

removeFrontQ takes queue, returns pair of item on the
front and queue with item removed

sizeQ to save calculating it
isFul11Q for a bounded queue

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

128/174

https://en.wikipedia.org/wiki/Queue_(abstract_data_type)

Abstract Data Type

Queue (2)
> Pre, Post Conditions, Axioms should be complete
» They define all permissable inputs to the functions (or
methods)
» They define the outcome of all applications of the
functions
» Composition of the functions constructs all possible

members of the ADT set

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

129/174

Abstract Data Type

Queue (3) — Pre-conditions, Post-conditions, Axioms

V VY VY VY VYV VY VY VY

Pre-conditions, Post-conditions, Axioms
makeEmptyQ()

Pre True

Post Return value g is an empty queue

Axiom makeEmptyQ() == EmptyQ
isEmptyQQ)

Pre True

Post Returns True if q is empty, otherwise False
Axiom isEmptyQ(makeEmptyQ()) == True
isEmptyQ(addToQ(qg,x)) == False

Exercise complete this for the other operations

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

130/174

Abstract Data Type

Queue (4) — Pre-conditions, Post-conditions, Axioms

vV vyVvyy

v

Pre-conditions, Post-conditions, Axioms
addToQQO)
Pre True

Post Returns queue with x at back, front part is input
queue

head0fQ()
Pre Argument q is nhon-empty

Post Return value is item at the front (queue is
unchanged)

Axioms head0fQ(makeEmptyQ()) == error
headO0fQ(addToQ(makeEmptyQ() ,x)) ==
head0fQ(addToQ(q,x)) == head0fQ(q)

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

131/174

Abstract Data Type

Queue (5) — Pre-conditions, Post-conditions, Axioms

VYV Vv VvVVvyVvyy

Pre-conditions, Post-conditions, Axioms

tailofQO)

Pre True

Post Returns queue without first item

Axioms tail0fQ(makeEmptyQ()) == error
tail0fQ(addToQ(makeEmptyQ(),x)) == EmptyQ
tail0fQ(addToQ(qg,x)) == addToQ(tailofQ(q),x)

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

132/174

M269 Python,

Abstract Data Type Looie, ADTs

Queue Implementation (1) Phil Molyneux
Agenda

» Queue Implementation PV —

> Using Lists as Queues section 5.1.2 of the Tutorial Riogramming

» Quote: Itis also possible to use a list as a queue, where the first element Zv:r::exity
added is the first element retrieved (first-in, first-out); however, lists are not \GEEHTE
efficient for this purpose. While appends and pops from the end of list are Before Calculators
fast, doing inserts or pops from the beginning of a list is slow (because all of Logic Introduction
the other elements have to be shifted by one). ADTs

Abstract Data Types —
Overview

» Could use collections.deque but we will use a pair of T
lists — See Okasaki (1998, page 42) ADT Lists i Liss
Future Work
Haskell Example

References

133/174

https://docs.python.org/3/tutorial/datastructures.html#using-lists-as-queues
https://docs.python.org/3/library/collections.html#collections.deque

Abstract Data Type

Queue Implementation (2)

» Queue Implementation 1
» Using a namedtuple()

» A factory function for creating tuple subclasses with
named fields

s from collections import namedtuple

7Qpl = namedtuple(’Qpl’,[’frs’,’ rbks’])

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

134/174

Abstract Data Type

Queue Implementation (3)

» Queue Implementation 1 main operations

odef makeEmptyQplQ):
10 return Qp1([]1,[1)

12def isEmptyQpl(q):
13 return q.frs == []

1sdef addToQpl(q,x):
16 return checkQpl(q.frs, [x] + q.rbks[:])

18def head0fQpl(q):

19 if q.frs == []

20 RunT1meError(head0fQpl_applied_to_empty, queue")
21 else:

22 return q.frs[0]

24def tailOofQpl(q):

25 if q.frs == []

26 RunT‘lmeEr‘ror‘(tail0fQpl_applied_to_empty queue")
27 else:

28 return checkQpl(q.frs[1:], q.rbks[:])

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms

Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

135/174

Abstract Data Type

Queue Implementation (4)

31
32
33
34
35
36

» Queue Implementation 1 checkOpl()

3odef checkQpl(frs, rbks):

if frs == [] :
bks = rbks[:]
bks.reverse()
return Qpl(bks, [1)
else :
return Qpl(frs, rbks)

> Note copying of arguments — see below for reason

> Note also in stringQplItems below at line 47 on slide
138

» implicit line joining using (()) (why is this needed ??)
» Note use of recursion

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

136/174

https://docs.python.org/3/reference/lexical_analysis.html#implicit-line-joining

Abstract Data Type

Python

vV VvV VvYyVvYyy

Argument Passing

Functions, Immutable and Mutable Arguments
Immutable arguments are passed by value
Mutable arguments are passed by reference
Immutable: numbers, strings, tuples

Mutable: Lists, dictionaries, sets, and most objects in
user classes

>>>
>>>
>>>
>>>
a,

def changer (a,b)
a=2
b[0] = ’spam’

n=1

xs = [1,2]
changer(n, xs)
(n,xs)
["spam’, 21)

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

137/174

Abstract Data Type

Queue Implementation (5)

» Queue Implementation 1 conversion operations

3sdef stringQpl(q)

39 return ("<" + stringQplItems(q) + ">")

s1def stringQplItems(q)

42 if isEmptyQpl(q)

43 return ""

44 elif isEmptyQpl(tailofQpl(q))
45 return str(head0fQpl(q))

46 else :
47 return (str(head0fQpl(q))
48 + ",." + stringQplItems(tailofQpl(q)))

sodef buildQpl(xs,q)

51 if xs == []
52 return q
53 else :

54 return buildQpl(xs[1:],addToQpl(qg,xs[0]1))

sedef 1istToQpl(xs)
57 return buildQpl(xs, makeEmptyQpl())

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms

Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

138/174

Abstract Data Type

Queue Implementation (6)

» Queue Implementation 1 test code

61911 = 1istToQpl([1,2,3,1])
63912 = tail0fQpl(qll)
6s5assert qll == Qpl(frs=[1], rbks=[1, 3, 2])

2,.3,.1>’

67assert stringQpl(qll) == ’'<1

69assert ql2 == Qpl(frs=[2, 3, 1], rbks=[1)

71assert stringQpl(gql2) == <2, 3, 1>’

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms

Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

ADT Lists in Lists
Future Work
Haskell Example

References

139/174

Abstract Data Type
Queue Implementation (7)
» Queue Implementation 2
» Modify to add size
» Store in tuple to save calculating each time

75Qp2 = namedtuple(’Qp2’,[’frs’,’rbks’,’sz’])

> Exercise Add size() operation and other modifications

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

140/174

Abstract Data Type

Queue Implementation (8)

» Queue Implementation 2 main operations

77def makeEmptyQp2(Q):
78 return Qp2([1,[1, 0)

godef isEmptyQp2(q):
81 return q.frs == []

83def addToQp2(q,x):
84 return checkQp2(q.frs, [x] + q.rbks[:], q.sz + 1)

gedef headOfQp2(q):

g7 if q.frs == []

88 RunT1meError(head0fQp2_applied_to_empty, queue")
89 else:

90 return q.frs[0]

92def tailOofQp2(q):

93 if q.frs == []

94 RunT1meError(tail0fQp2_applied_to_empty, queue")
95 else:

96 return checkQp2(q.frs[1:], q.rbks[:], q.sz - 1)

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms

Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

141/174

M269 Python,

Abstract Data Type Looie, ADTs

Queue Implementation (9) 7T el e

Agenda
> Queue Implementation 2 sizeQp2 (), checkOp1() :

Adobe Connect

Programming

ogdef sizeOfQp2(q) :

Python
99 return q.sz)
Complexity
101def checkQp2(frs, rbks, sz): Logarithms

102 if frs == [] :
103 bks = rbks[:]

Before Calculators

104 bks reverse() Logic Introduction
105 return Qp2(bks, [1, sz) ADTs
106 else : Abstract Data Types —
107 return Qp2(frs, rbks, sz) Abstract Data Type —
Queue
ADT Lists in Lists
> Note also in stringQp2Items below at line 118 on Future Work
Slide]43 Haskell Example
References

» implicit line joining using (()) (why is this needed ??)
> Note use of recursion

142/174

https://docs.python.org/3/reference/lexical_analysis.html#implicit-line-joining

Abstract Data Type

Queue Implementation (10)

» Queue Implementation 2 conversion operations

109def stringQp2(q)

110 return ("<" + stringQp2Items(q) + ">")

112def stringQp2Items(q)

113 if isEmptyQp2(q)

114 return ""

115 elif isEmptyQp2(tailofQp2(q))
116 return str(head0fQp2(q))

117 else :
118 return (str(head0fQp2(q))
119 + ",." + stringQp2Items(tailofQp2(q)))

121def buildQp2(xs,q)

122 if xs == []
123 return q
124 else :

125 return buildQp2(xs[1:],addToQp2(qg,xs[01))

127def TistToQp2(xs)
128 return buildQp2(xs, makeEmptyQp2())

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms

Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

143/174

Abstract Data Type

Queue Implementation (11)

» Queue Implementation 2 test code

132921 = 1istToQp2([1,2,3,1])
134922 = tail0fQp2(q21)
136assert 21 == Qp2(frs=[1], rbks=[1, 3, 2], sz=4)

138assert stringQp2(q2l) == '<1,.2, .3, 1>’

140assert 22 == Qp2(frs=[2, 3, 1], rbks=[], sz=3)

142assert stringQp2(q22) == '<2,. 3, 1>’

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms

Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

144/174

Abstract Data Types

Lists Implemented in Lists (1)

>

Lists implemented naively as linked lists have some
operations that take constant time and some that are
linear in the length of the list

Adding an element to the front of a list takes constant
time while adding an element to the rear takes linear
time

This section reimplements lists using a pair of lists that
overcomes this asymmetry in efficiency giving constant
time for all operations.

The basic idea is quite simple: break the list in two and
reverse the second half

This means that the last element is the first element of
the second list

A problem arises when one attempts to remove an
element — in some cases the list has to be reorganised
into two halves

The criteria for reorganising gives the clue in how to
write the code

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

145/174

Abstract Data Types

Lists Implemented in Lists (2)

» This implementation is based on Bird and Gibbons
(2020, chp 3) Algorithm Design with Haskell

» The idea is attributed to Gries (1981, page 250) The
Science of Programming and Hood and Melville (1980)
Real time queue operations in pure Lisp

> See also Hoogerwoord (1992) Functional Pearls A
symmetric set of efficient list operations

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

146/174

Abstract Data Types

Lists Implemented in Lists (3)

> We give the code in Python from SymmetricLists.py
with Haskell type specifications and declarations given
as comments

> Here is the type alias declaration as a comment along
with fromSL which converts back from symmetric lists
to standard lists — this is known as the abstraction
function

12# type SymList a = ([a],[a])
14# Abstraction function
16# fromSL :: SymList a -> [a]

18def fromSL (pr)

19 xs = pr[0]

20 ys = pr[1]

21 return xs + reverseF (ys)

23def reverseF (xs) :
24 ys = xs[:]

25 ys.reverse()

26 return ys

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

147/174

Abstract Data Types

Lists Implemented in Lists (4)

» The abstraction function captures the relationship
between the implementation of an operation on the
representing type and its abstract type with an equation

» The Eureka bit of the implementation is spotting the
representation invariant that our definitions both
exploit and maintain

28# repInvSL :: SymList a -> Bool

3odef repInvSL (pr) :

31
32
33
34
35
36
37

xs = pr[0]
ys = pr[1]
xsTest = ((not isEmpty (xs))

or (isEmpty (ys) or singleton (ys)))
ysTest = ((not isEmpty (ys))

or (isEmpty (xs) or singleton (xs)))
return (xsTest and ysTest)

» This says if one list is empty then the other must be
either empty or a singleton

» This tells us when we need to reorganise the lists

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

148/174

Abstract Data Types

Lists Implemented in Lists (5)

» Here are the service operations for empty lists and
singletons

39# isEmpty :: [a] -> Bool

41def isEmpty (xs)
42 return (xs == [])

44 # TisEmptySL :: SymList a -> Bool

4s6def isEmptySL (pr)

47 xs = pr[0]

48 ys = pr[1]

49 return (isEmpty (xs) and isEmpty (ys))

s1# singleton :: [a] -> Bool

s3def singleton (xs)
s4 return (len(xs) == 1)

se# singletonSL :: SymList a -> Bool

ssdef singletonSL (pr)

59 xs = pr[0]

60 ys = pr[1]

61 return ((isEmpty (xs) and singleton (ys))

62 or (isEmpty (ys) and singleton (xs)))

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms

Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

Future Work
Haskell Example

References

149/174

Abstract Data Types

Lists Implemented in Lists (6)

> Constructor operations
» Both of these definitions make use of the
representation invariant

64# Constructor functions
66# consSL :: a -> SymList a -> SymList a

e6sdef consSL (x, pr)
69 xs = pr[0]
70 ys = pr[1]
71 if isEmpty (ys)

72 return ([x],xs)

73 else :

74 return ([x] + xs, ys)

76 # snocSL :: a -> SymList a -> SymList a

78def snocSL (x, pr)
79 xs = pr[0]
80 ys = pr[1]
81 if isEmpty (xs)

82 return (ys, [x])
83 else :
84 return (xs, [x] + ys)

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms

Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

150/174

Abstract Data Types

Lists Implemented in Lists (7)

88 # headSL ::

godef headSL (pr)

91 xs = pr[0]

92 ys = pr[l]

93 if isEmpty (xs)
94 if isEmpty (ys)
95

96 else :

97 return ys[0]
98 else :

99 return xs[0]

101 # lastSL ::

> Inspectors

raise RuntimeError("headSL_([]1,[1)")

103def TastSL (pr)

104
105
106
107
108
109
110
111
112

xs = pr[0]
ys = pr[1]
if isEmpty (ys)

if isEmpty (xs)
raise RuntimeError("tailSL_([],[1D)™)

else :

return xs[0]

else :
return ys[0]

SymList a -> a

SymList a -> a

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms

Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

Future Work
Haskell Example

References

151/174

Abstract Data Types

Lists Implemented in Lists (8)

> tailSL

» Notice how the representation invariant is maintained

1ns# tailSL :: SymList a -> SymList a

117def tailSL (pr)

118
119
120
121
122
123
124
125
126
127
128
129
130

xs = pr[0]
ys = pr[1]
if isEmpty (xs)
if isEmpty (ys):
raise RuntimeError("tailSL_C[1,[1)"™)
else:
return ([]1,[D)
elif singleton (xs)
splitPt = len(ys) // 2
(us,vs) = (ys[:splitPt],ys[splitPt:])
return (reverseF (vs), us)
else :
return (xs[1:],ys)

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms

Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

152/174

Abstract Data Types

Lists Implemented in Lists (9)

> initSL

132# initSL :: SymList a -> SymList a

134def initSL (pr)

135
136
137
138
139
140
141
142
143
144
145
146
147

xs = pr[0]
ys = pr[1]
if isEmpty (ys)
if isEmpty (xs):
raise RuntimeError("initSL_C[]1,[1D")
else:
return ([1,[D)
elif singleton (ys) :
splitPt = len(xs) // 2
(us,vs) = (xs[:splitPt],xs[splitPt:])
return (us, reverseF (vs))
else :
return (xs,ys[1:])

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms

Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

Future Work
Haskell Example

References

153/174

Abstract Data Types

Lists Implemented in Lists (10)

» The implementations are designed to satisfy the six
equations:

» The equations are expressed here in Haskell notation

1 # -- The implementation satifies the following
2 # -
3 # -- (cons x . fromSL) ps == (fromSL . consSL x) ps
4 # -- (snoc x . fromSL) ps == (fromSL . snocSL x) ps
5 # -- (tail . fromSL) ps == (fromSL . tailSL) ps
6 # -- (init . fromSL) ps == (fromSL . initSL) ps
7 # -- (head . fromSL) ps == headSL ps
8 # -- (last . fromSL) ps == JastSL ps
» Each of the operations apart from tailSL and initSL

take constant time

» tailSL and initSL can take linear time in the worst
case but they take amortised constant time — see the
references for derivation

> Note that Haskell Data.Sequence uses 2-3 Finger Trees
for better performance

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

154/174

Abstract Data Types

Lists Implemented in Lists (11)

> Ex (1) Write down all the ways "abcd" can be
represented as a symmetric list.

Give examples to show how each of these
representations can be generated.

> Ex (2) Define TengthSL
» Ex (3) Implement dropWhiTeSL so that

dropWhile . fromSL = fromSL . dropWhileSL

> Ex (4) Define initsSL with the type

initsSL :: SymList a -> SymList (SymList a)

Write down the equation which expresses the

relationship between fromSL, initsSL, and inits.

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists
Future Work
Haskell Example

References

155/174

Abstract Data Types

Lists Implemented in Lists (12a)

> Ans (1) There are three ways:

("a","dcb"), ("ab","dc"), ("abc","d")

Python3>>> prsl = consSL(’a’, ([1,[1))
Python3>>> prsl

([’a’1, [D

Python3>>> prs2 = snocSL(’b’,prsl)
Python3>>> prs2

([’a’1, [’b’D

Python3>>> prs3 = snocSL(’c’,prs2)
Python3>>> prs3

([’a’]l, [’c’, ’b’D)

Python3>>> prs4 = snocSL(’d’,prs3)
Python3>>> prs4

([’a’1, [’d’, ’c’, ’b’D

Python3>>> prsla = snocSL(’a’, ([1,[1))

Python3>>> prsla

([1, ’a’D

Python3>>> prs2a = snocSL(’b’,prsla)
Python3>>> prs2a

([’a’l, ’b’D

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms

Before Calculators
Logic Introduction

ADTs

Abstract Data Types —
Overview

Abstract Data Type —
Queue

Future Work
Haskell Example

References

156/174

M269 Python,

Abstract Data Types Looie, ADTs

Lists Implemented in Lists (12b) Phil Molyneux
Agenda
» Ans (1) There are three ways: Adobe Connect

Programming

("a","dcb"), ("ab","dc"), ("abc","d")

Python
Complexity
Python3>>> prsl = consSL(C’d’, ([]1,[1)) Logarithms
E{Fz??3>?§)pr51 Before Calculators
Python3>>> prs2 = consSL(’c’,prsl) peoiginioduchon
Python3>>> prs2 ADTs
([’C,], [’d’]) gb:t{ra_x:tDalaTypesf
Python3>>> prs3 = consSL(’b’,prs2) Abstract Data Type —
Python3>>> prs3 Queue
([’b' 'C’] [’d']) ADT Lists in Lists
Python3>>> prs4 = consSL(’a’,prs3) Future Work

Python3>>> prs4
(r’a’, ’b’, ’c’1, [’d’D

Haskell Example

References

» Functional programmers will spot that the first is an
instance of a foldT while the third is an instance of a
foldr

157/174

What Next ?

Programming, Debugging, Psychology

Although programming techniques have improved
immensely since the early days, the process of finding and
correcting errors in programming — known graphically if
inelegantly as debugging — still remains a most difficult,
confused and unsatisfactory operation. The chief impact of
this state of affairs is psychological. Although we are happy
to pay lip-service to the adage that to err is human, most of
us like to make a small private reservation about our own
performance on special occasions when we really try. It is
somewhat deflating to be shown publicly and
incontrovertibly by a machine that even when we do try, we
in fact make just as many mistakes as other people. If your
pride cannot recover from this blow, you will never make a
programmer.

Christopher Strachey, Scientific American 1966 vol 215 (3) September
ppl12-124

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

158/174

https://en.wikipedia.org/wiki/Christopher_Strachey

What Next ? MLosic, DTS

To err is human ? Phil Molyneux
i i i Agenda
» To err is human, to really foul things up requires a Py —
Computer. Programming
> Attributed to Paul R. Ehrlich in 101 Great Programming Python
Complexity
Quotes
Logarithms
» Attributed to Bill Vaughn in Quote Investigator Befiae Celtanlivers
» Derived from Alexander Pope (1711, An Essay on Logic Introduction
Criticism) AT
. . L Future Work
» To Err is Humane; to Forgive, Divine il BamEe

» This also contains References

A little learning is a dangerous thing;
Drink deep, or taste not the Pierian Spring

> In programming, this means you have to read the
fabulous manual (RTFM)

159/174

https://en.wikipedia.org/wiki/Paul_R._Ehrlich
http://www.devtopics.com/101-great-computer-programming-quotes/
http://www.devtopics.com/101-great-computer-programming-quotes/
https://en.wikipedia.org/wiki/William_E._Vaughan
http://quoteinvestigator.com/2010/12/07/foul-computer/
https://en.wikipedia.org/wiki/Alexander_Pope
https://en.wikipedia.org/wiki/An_Essay_on_Criticism
https://en.wikipedia.org/wiki/An_Essay_on_Criticism
https://en.wikipedia.org/wiki/Pierian_Spring
https://lmgtfy.com/?q=rtfm

M269 Python,

Future Work Logic, ADTs
Sorting, Searching Phil Molyneux
. i o Agenda
» Recursive function definitions PV —
> Inductive data type definitions Programming
> A list is either an empty list or a first item followed by Python _
the rest of the list complexity
> A binary tree is either an empty tree or a node with an LT
. Before Calculators
item and two sub-trees
Logic Introduction
> Recursive definitions often easier to find than iterative ADTS
» Sorting Future Work
) Haskell Example
> SearChlng References
» Both use binary tree structure

160/174

Future Work

Dates

9 December 2021 TMAO1

Sunday 9 January 2022 Tutorial Online Sorting
Sunday 6 February 2022 Tutorial Online Binary Trees
8 March 2022 TMAO02

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

161/174

Example Algorithm Design — Haskell

Binary Search — Haskell

>

>

The notes following give two implementations of Binary
Search in Haskell

Note: these are not part of M269 and are purely for
comparison for those interested

The first is a direct translation of the recursive Python
version

The second is derived from
http://rosettacode.org/wiki/Binary_search and
is more idiomatic Haskell

The code for both implementations is in the file

M269BinarySearch.hs (which should be near the file
of these slides)

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

Binary Search — Haskell
— version 1

Binary Search — Haskell
— version 2

Binary Search — Haskell
— Comparison

References

162/174

http://haskell.org
http://rosettacode.org/wiki/Binary_search

Example Algorithm Design — Haskell

Binary Search — Haskell — 1 (a)

1module M269BinarySearch where

3 import Data.Array
4 import Data.List

> A Haskell script starts with a module header which
starts with the reserved identifier, module followed by
the module name, M269BinarySearch

» The module name must start with an upper case letter
and is the same as the file name (without its extension
of .hs or .lhs)

» Haskell uses layout (or the off-side rule) to determine
scope of definitions, similar to Python

» The body of the module follows the reserved identifier
where and starts with import declarations

» This imports the libraries Data.List, Data.Array

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

Binary Search — Haskell
— version 1

Binary Search — Haskell
— version 2

Binary Search — Haskell
— Comparison

References

163/174

Example Algorithm Design — Haskell

Binary Search — Haskell — 1 (b)

6

8
9
10
11
12

binarySearch :: Ord a => [a] -> a -> Maybe Int

binarySearch xs val
= binarySearch01l xs val (lo,hi)
where
To =0
hi = Tength xs - 1

» Line 8 is the definition of binarySearch
> The preceding line, 6, is the type signature
> binarySearch takes a list and a value of type a (in the

class Ord for ordering) and returns a Maybe Int — ais
a type variable

» The Maybe a type is an algebraic data type which is the

union of the data constructors Nothing and Just a

data Maybe a = Nothing | Just a

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

Binary Search — Haskell
— version 1

Binary Search — Haskell
— version 2

Binary Search — Haskell
— Comparison

References

164/174

Example Algorithm Design — Haskell

Code Description 1

>

>

f :: tis atype signature for variable f that reads fis
of type t
f :: tl -> t2 means that f has the type of a function

that takes elements of type t1 and returns elements of
type t2
The function type arrow -> associates to the right

» f :: tl -> t2 -> t3 means

> f i tl > (t2 -> t3)
f x — function application is denoted by juxtaposition
and is more binding than (almost) any other operation.
Function application is left associative

> f x y means
> (f)y

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work

Haskell Example

Binary Search — Haskell
— version 1

Binary Search — Haskell
— version 2

Binary Search — Haskell
— Comparison

References

165/174

Example Algorithm Design — Haskell

Binary Search — Haskell — 1 (¢)

14
15

17
18
19
20
21
22
23
24
25
26
27

binarySearch0l :: Ord a
=> [a] -> a -> (Int, Int) -> Maybe Int

binarySearch0l xs val (lo,hi)
= if hi < 1o then Nothing

else
let mid = (lo + hi) ‘div‘ 2
guess = xs !! mid
in
if val == guess

then Just mid
else if val < guess

then binarySearch0l xs val (lo,mid-1)
else binarySearch0l xs val (mid + 1, hi)

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work

Haskell Example

Binary Search — Haskell
— version 2

Binary Search — Haskell
— Comparison

References

166/174

Example Algorithm Design — Haskell

Code Description 2

»

A 4

A Tet expression has the form

let decls 1in expr

decls is a number of declarations

expr is an expression (which is the scope of the
declarations)

div is the integer division function

In "div’, the grave accents () make a function into an
infix operator (OK, that is syntactic sugar | need not
have introduced — and my formatting program has
coerced the grave accent to a left single quotation mark
Unicode U+2018, not the grave accent U+0060)

(!'1) is the list index operator — first item has index 0

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work

Haskell Example

Binary Search — Haskell
— version 1

Binary Search — Haskell
— version 2

Binary Search — Haskell
— Comparison

References

167/174

Example Algorithm Design — Haskell

Binary Search — Haskell — 2 (a)

29 binarySearchGen :: Integral a

30 => (a -> Ordering) -> (a, a) -> Maybe a

31 binarySearchGen p (lo,hi)

32 | hi < 1o = Nothing

33 | otherwise =

34 Tet mid = (To + hi) ‘div‘ 2 1in

35 case p mid of

36 LT -> binarySearchGen p (lo, mid - 1)
37 GT -> binarySearchGen p (mid + 1, hi)
38 EQ -> Just mid

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms

Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

Binary Search — Haskell
— version 1

Binary Search — Haskell
— Comparison

References

168/174

Example Algorithm Design — Haskell

Code Description 3

> A case expression has the form

case expr of alts

expr is evaluated and whichever alternative of alts
matches is the result

» The lines starting with (|) are guarded definitions — if
the boolean expression to the right is True then the
following expression is used

» otherwise is a synonym for True
> A conditional expression has the form

if expr then expr else expr

The first expr must be of type Bool

» Guards and conditionals are alternative styles in
programming

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

Binary Search — Haskell
— version 1

Binary Search — Haskell
— version 2

Binary Search — Haskell
— Comparison

References

169/174

Example Algorithm Design — Haskell

Binary Search — Haskell — 2 (b)

40
41
42
43
44
45

47
48
49
50
51
52

binarySearchArray :: (Ix i, Integral i, Ord a)
=> Array i a -> a -> Maybe i
binarySearchArray ary x
= binarySearchGen p (bounds ary)
where
p m=x ‘compare‘ (ary ! m)

binarySearchList :: Ord a
=> [a] -> a -> Maybe Int
binarySearchList xs val
= binarySearchGen p (0, length xs - 1)
where
p m = val ‘compare‘ (xs !! m)

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

Binary Search — Haskell
— version 1

Binary Search — Haskell
— Comparison

References

170/174

Example Algorithm Design — Haskell

Code Description 4

> compare is a method of the Ord class, for ordering,
defined in the standard Prelude

class (Eq a) => Ord a where

compare ::a -> a -> Ordering
(<), (<=),(>=),(>) :: a -> a -> Bool
max, min ira->a->a

compare X y

| x ==y =EQ
| x <=y = LT
| otherwise = GT

data Ordering = LT | EQ | GT
deriving (Eq,Ord,Enum,Read, Show, Bounded)

» Minimal type-specific definitions required are compare
or (==) and (<=)

» ! and !! are the array and list indexing operators

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

Binary Search — Haskell
— version 1

Binary Search — Haskell
— version 2

Binary Search — Haskell
— Comparison

References

171/174

Example Algorithm Design

Binary Search — Haskell — Comparison

>

The first version with binarySearch and
binarySearch01 is very similar to the Python recursive
version binarySearchRec

In the Haskell case an explicit helper function is used

The second version is more general: binarySearchGen
can be used with any type that is indexed by a data type
in the Integral class

binarySearchArray and binarySearchList
specialise the function to arrays or lists.
For the Haskell Array data type see the Haskell Report

Idiomatic Haskell tends to be more general and make
use of higher order functions, type classes and
advanced features.

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

Binary Search — Haskell
— version 1

Binary Search — Haskell
— version 2

Binary Search — Haskell
— Comparison

References

172/174

http://www.haskell.org/haskellwiki/Language_and_library_specification

Web Links & References

Python IDEs

» Python Online IDEs

> Repl.it https://repl.it/languages/python3
(Read-eval-print loop)

> TutorialsPoint CodingGround Python 3 https://www.
tutorialspoint.com/execute_python3_online.php

> TutorialsPoint CodingGround Haskell ghci
https://www.tutorialspoint.com/compile_
haskell_online.php

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

173/174

https://repl.it/languages/python3
https://www.tutorialspoint.com/execute_python3_online.php
https://www.tutorialspoint.com/execute_python3_online.php
https://www.tutorialspoint.com/compile_haskell_online.php
https://www.tutorialspoint.com/compile_haskell_online.php

Web Links & References

References

> The offside rule (using layout to determine the start and
end of code blocks) comes originally from Landin
(1966) — see Off-side rule for other programming
languages that use this.

» The step-by-step approach to writing programs is
described in Glaser (2000)

» The difficulty in learning programs is described in many
articles — see, for example, Dehnadi (2006)
» Inductive data type
> Algebraic data type composite type — possibly recursive
sum type of product types — common in modern
functional languages.
> Recursive data type from Type theory

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Programming
Python
Complexity
Logarithms
Before Calculators
Logic Introduction
ADTs

Future Work
Haskell Example

References

174/174

https://en.wikipedia.org/wiki/Off-side_rule
https://en.wikipedia.org/wiki/Algebraic_data_type
https://en.wikipedia.org/wiki/Tagged_union
https://en.wikipedia.org/wiki/Product_type
https://en.wikipedia.org/wiki/Recursive_data_type
https://en.wikipedia.org/wiki/Type_theory

	Agenda
	Adobe Connect Interface and Settings
	Adobe Connect Interface
	Adobe Connect Settings
	Adobe Connect — Sharing Screen & Applications
	Adobe Connect — Ending a Meeting
	Adobe Connect — Invite Attendees
	Layouts
	Chat Pods
	Graphics Conversion for Web

	Programming — Computational Components
	Computational Components
	Computation, Programming, Programming Languages
	Example Algorithm Design
	Binary Search — Exercise
	Binary Search — Comparison
	Writing Programs & Thinking

	Python
	Learning Python
	Basic Python
	Python Workflows

	Complexity and Big O Notation
	Complexity Example
	Complexity & Python Data Types

	Exponentials and Logarithms
	Exponentials and Logarithms — Definitions
	Rules of Indices
	Logarithms — Motivation
	Exponentials and Logarithms — Graphs
	Laws of Logarithms
	Arithmetic and Inverses
	Change of Base

	Before Calculators and Computers
	Log Tables
	Slide Rules
	Calculators
	Example Calculation

	Logic and Truth Tables
	Boolean Expressions and Truth Tables
	Conditional Expressions and Validity
	Boolean Expressions Exercise
	Propositional Calculus
	Truth Function

	Abstract Data Types
	Abstract Data Types — Overview
	Abstract Data Type — Queue
	ADT Lists in Lists

	Future Work
	Example Algorithm Design — Haskell
	Binary Search — Haskell — version 1
	Binary Search — Haskell — version 2
	Binary Search — Haskell — Comparison

	Web Links & References

