
M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

M269 Python, Logic, ADTs
M269 Python, ADTs Prsntn2021J

Phil Molyneux

28 November 2021

1/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

M269 Tutorial: Python, Logic, ADTs
Agenda

ñ Introductions
ñ Programming — Paradigms and Step-by-Step Guide
ñ Programming and Python
ñ Complexity and Big O Notation
ñ . . . with a little classical logic
ñ Abstract Data Type examples
ñ Implementing Queues
ñ Implementing Lists in Lists
ñ A look towards the next topics

ñ Recursive function definitions
ñ Inductive data type definitions

ñ Adobe Connect — if you or I get cut off, wait till we
reconnect (or send you an email)

ñ Time: about 1 hour
ñ Do ask questions or raise points.
ñ Slides/Notes M269Tutorial02ProgPythonADT

2/174

http://pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269Tutorial02ProgPythonADT/

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

M250 Tutorial
Introductions — Phil

ñ Name Phil Molyneux
ñ Background

ñ Undergraduate: Physics and Maths (Sussex)
ñ Postgraduate: Physics (Sussex), Operational Research

(Brunel), Computer Science (University College, London)
ñ Worked in Operational Research, Business IT, Web

technologies, Functional Programming

ñ First programming languages Fortran, BASIC, Pascal
ñ Favourite Software

ñ Haskell — pure functional programming language
ñ Text editors TextMate, Sublime Text — previously Emacs
ñ Word processing in LATEX — all these slides and notes
ñ Mac OS X

ñ Learning style — I read the manual before using the
software

3/174

https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://www.haskell.org/
https://macromates.com
http://www.sublimetext.com
https://www.emacswiki.org/
https://www.latex-project.org/
https://developer.apple.com/

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

M250 Tutorial
Introductions — You

ñ Name ?

ñ Favourite software/Programming language ?

ñ Favourite text editor or integrated development
environment (IDE)

ñ List of text editors, Comparison of text editors and
Comparison of integrated development environments

ñ Other OU courses ?

ñ Anything else ?

4/174

https://en.wikipedia.org/wiki/Text_editor
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/List_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Adobe Connect
Interface — Host View

5/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Adobe Connect
Interface — Participant View

6/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Adobe Connect
Settings

ñ Everybody Menu bar Meeting Speaker & Microphone Setup

ñ Menu bar Microphone Allow Participants to Use Microphone 4

ñ Check Participants see the entire slide Workaround
ñ Disable Draw Share pod Menu bar Draw icon

ñ Fit Width Share pod Bottom bar Fit Width icon 4

ñ Meeting Preferences General Host Cursor Show to all attendees

ñ Menu bar Video Enable Webcam for Participants 4

ñ Do not Enable single speaker mode

ñ Cancel hand tool

ñ Do not enable green pointer

ñ Recording Meeting Record Session 4

ñ Documents Upload PDF with drag and drop to share
pod

ñ Delete Meeting Manage Meeting Information Uploaded Content

and check filename click on delete

7/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Adobe Connect
Access

ñ Tutor Access

TutorHome M269 Website Tutorials

Cluster Tutorials M269 Online tutorial room

Tutor Groups M269 Online tutor group room

Module-wide Tutorials M269 Online module-wide room

ñ Attendance

TutorHome Students View your tutorial timetables

ñ Beamer Slide Scaling 440% (422 x 563 mm)

ñ Clear Everyone’s Status

Attendee Pod Menu Clear Everyone’s Status

ñ Grant Access and send link via email

Meeting Manage Access & Entry Invite Participants. . .

ñ Presenter Only Area

Meeting Enable/Disable Presenter Only Area

8/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Adobe Connect
Keystroke Shortcuts

ñ Keyboard shortcuts in Adobe Connect

ñ Toggle Mic + M (Mac), Ctrl + M (Win) (On/Disconnect)

ñ Toggle Raise-Hand status + E

ñ Close dialog box (Mac), Esc (Win)

ñ End meeting + \

9/174

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Adobe Connect Interface
Sharing Screen & Applications

ñ Share My Screen Application tab Terminal for Terminal

ñ Share menu Change View Zoom in for mismatch of screen
size/resolution (Participants)

ñ (Presenter) Change to 75% and back to 100% (solves
participants with smaller screen image overlap)

ñ Leave the application on the original display

ñ Beware blued hatched rectangles — from other (hidden)
windows or contextual menus

ñ Presenter screen pointer affects viewer display —
beware of moving the pointer away from the application

ñ First time: System Preferences Security & Privacy Privacy

Accessibility

10/174

https://en.wikipedia.org/wiki/Terminal_(macOS)

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Adobe Connect
Ending a Meeting

ñ Notes for the tutor only
ñ Student: Meeting Exit Adobe Connect

ñ Tutor:
ñ Recording Meeting Stop Recording 4

ñ Remove Participants Meeting End Meeting. . . 4

ñ Dialog box allows for message with default message:
ñ The host has ended this meeting. Thank you for

attending.

ñ Recording availability In course Web site for joining
the room, click on the eye icon in the list of recordings
under your recording — edit description and name

ñ Meeting Information Meeting Manage Meeting Information —
can access a range of information in Web page.

ñ Delete File Upload Meeting Manage Meeting Information

Uploaded Content tab select file(s) and click Delete

ñ Attendance Report see course Web site for joining
room

11/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Adobe Connect
Invite Attendees

ñ Provide Meeting URL Menu Meeting Manage Access & Entry

Invite Participants. . .

ñ Allow Access without Dialog Menu Meeting

Manage Meeting Information provides new browser window
with Meeting Information Tab bar Edit Information

ñ Check Anyone who has the URL for the meeting can
enter the room

ñ Default Only registered users and accepted guests may
enter the room

ñ Reverts to default next session but URL is fixed

ñ Guests have blue icon top, registered participants have
yellow icon top — same icon if URL is open

ñ See Start, attend, and manage Adobe Connect meetings
and sessions

12/174

https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html
https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Adobe Connect
Layouts

ñ Creating new layouts example Sharing layout

ñ Menu Layouts Create New Layout. . . Create a New Layout dialog

Create a new blank layout and name it PMolyMain

ñ New layout has no Pods but does have Layouts Bar open
(see Layouts menu)

ñ Pods

ñ Menu Pods Share Add New Share and resize/position —
initial name is Share n

ñ Rename Pod Menu Pods Manage Pods. . . Manage Pods

Select Rename or Double-click & rename

ñ Add Video pod and resize/reposition

ñ Add Attendance pod and resize/reposition

ñ Add Chat pod — name it PMolyChat — and
resize/reposition

13/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Adobe Connect
Layouts

ñ Dimensions of Sharing layout (on 27-inch iMac)
ñ Width of Video, Attendees, Chat column 14 cm
ñ Height of Video pod 9 cm
ñ Height of Attendees pod 12 cm
ñ Height of Chat pod 8 cm

ñ Duplicating Layouts does not give new instances of
the Pods and is probably not a good idea (apart from
local use to avoid delay in reloading Pods)

14/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Adobe Connect
Chat Pods

ñ Format Chat text

ñ Chat Pod menu icon My Chat Color

ñ Choices: Red, Orange, Green, Brown, Purple, Pink, Blue,
Black

ñ Note: Color reverts to Black if you switch layouts

ñ Chat Pod menu icon Show Timestamps

15/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Graphics Conversion
PDF to PNG/JPG

ñ Conversion of the screen snaps for the installation of
Anaconda on 1 May 2020

ñ Using GraphicConverter 11

ñ File Convert & Modify Conversion Convert

ñ Select files to convert and destination folder

ñ Click on Start selected Function or +

16/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming
Computational
Components

Computation,
Programming,
Programming
Languages

Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Computational Components
Imperative, Procedural Programming

Imperative or procedural programming has statements
which can manipulate global memory, have explicit control
flow and can be organised into procedures (or functions)

ñ Sequence of statements

stmnt ; stmnt

ñ Iteration to repeat statements

while expr :
suite

for targetList in exprList :
suite

ñ Selection choosing between statements

if expr : suite
elif expr : suite
else : suite

17/174

https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Control_flow
https://en.wikipedia.org/wiki/Control_flow
https://en.wikipedia.org/wiki/Structured_programming

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming
Computational
Components

Computation,
Programming,
Programming
Languages

Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Computational Components
Functional Programming

Functional programming treats computation as the
evaluation of expressions and the definition of functions (in
the mathematical sense)

ñ Function composition to combine the application of
two or more functions — like sequence but from right
to left (notation accident of history)

(f . g) x = f (g x)

ñ Recursion — function definition defined in terms of
calls to itself (with smaller arguments) and base case(s)
which do not call itself.

ñ Conditional expressions choosing between
alternatives expressions

if expr then expr else expr

18/174

https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Function_composition_(computer_science)
https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://en.wikipedia.org/wiki/Conditional_(computer_programming)

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming
Computational
Components

Computation,
Programming,
Programming
Languages

Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Computation
Programming, Programming Languages

ñ M269 is not a programming course but . . .

ñ The course uses Python to illustrate various algorithms
and data structures

ñ The final unit addresses the question:

ñ What is an algorithm ? What is programming ? What is a
programming language ?

ñ So it is a programming course (sort of)

19/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming
Computational
Components

Computation,
Programming,
Programming
Languages

Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Example Algorithm Design
Searching

ñ Given an ordered list (xs) and a value (val), return
ñ Position of val in xs or
ñ Some indication if val is not present

ñ Simple strategy: check each value in the list in turn
ñ Better strategy: use the ordered property of the list to

reduce the range of the list to be searched each turn
ñ Set a range of the list
ñ If val equals the mid point of the list, return the mid

point
ñ Otherwise half the range to search
ñ If the range becomes negative, report not present

(return some distinguished value)

20/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming
Computational
Components

Computation,
Programming,
Programming
Languages

Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Example Algorithm Design
Binary Search Iterative

1def binarySearchIter(xs,val):
2 lo = 0
3 hi = len(xs) - 1

5 while lo <= hi:
6 mid = (lo + hi) // 2
7 guess = xs[mid]

9 if val == guess:
10 return mid
11 elif val < guess:
12 hi = mid - 1
13 else:
14 lo = mid + 1

16 return None

21/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming
Computational
Components

Computation,
Programming,
Programming
Languages

Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Example Algorithm Design
Binary Search Recursive

17def binarySearchRec(xs,val,lo=0,hi=-1):
18 if (hi == -1):
19 hi = len(xs) - 1

21 mid = (lo + hi) // 2

23 if hi < lo:
24 return None
25 else:
26 guess = xs[mid]
27 if val == guess:
28 return mid
29 elif val < guess:
30 return binarySearchRec(xs,val,lo,mid-1)
31 else:
32 return binarySearchRec(xs,val,mid+1,hi)

22/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming
Computational
Components

Computation,
Programming,
Programming
Languages

Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Example Algorithm Design
Binary Search — Exercise

Given the Python definition of binarySearchRec from
above, trace an evaluation of binarySearchRec(xs, 25)
where xs is
xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]

23/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming
Computational
Components

Computation,
Programming,
Programming
Languages

Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Example Algorithm Design
Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs, 25)
xs = Highlight the mid value and search range

binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range

binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range

binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range

binarySearchRec(xs,25,??,??)
Return value: ??

24/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming
Computational
Components

Computation,
Programming,
Programming
Languages

Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Example Algorithm Design
Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs, 25)
xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range

binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range

binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range

binarySearchRec(xs,25,??,??)
Return value: ??

25/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming
Computational
Components

Computation,
Programming,
Programming
Languages

Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Example Algorithm Design
Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs, 25)
xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,14) by line 31

xs = Highlight the mid value and search range

binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range

binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range

binarySearchRec(xs,25,??,??)
Return value: ??

26/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming
Computational
Components

Computation,
Programming,
Programming
Languages

Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Example Algorithm Design
Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs, 25)
xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,14) by line 31

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range

binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range

binarySearchRec(xs,25,??,??)
Return value: ??

27/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming
Computational
Components

Computation,
Programming,
Programming
Languages

Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Example Algorithm Design
Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs, 25)
xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,14) by line 31

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,10) by line 31

xs = Highlight the mid value and search range

binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range

binarySearchRec(xs,25,??,??)
Return value: ??

28/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming
Computational
Components

Computation,
Programming,
Programming
Languages

Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Example Algorithm Design
Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs, 25)
xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,14) by line 31

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,10) by line 31

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range

binarySearchRec(xs,25,??,??)
Return value: ??

29/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming
Computational
Components

Computation,
Programming,
Programming
Languages

Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Example Algorithm Design
Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs, 25)
xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,14) by line 31

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,10) by line 31

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,8) by line 29

xs = Highlight the mid value and search range

binarySearchRec(xs,25,??,??)
Return value: ??

30/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming
Computational
Components

Computation,
Programming,
Programming
Languages

Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Example Algorithm Design
Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs, 25)
xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,14) by line 31

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,10) by line 31

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,8) by line 29

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,??,??)
Return value: ??

31/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming
Computational
Components

Computation,
Programming,
Programming
Languages

Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Example Algorithm Design
Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs, 25)
xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,14) by line 31

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,10) by line 31

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,8) by line 29

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,7) by line 29

Return value: ??

32/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming
Computational
Components

Computation,
Programming,
Programming
Languages

Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Example Algorithm Design
Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs, 25)
xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,14) by line 31

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,10) by line 31

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,8) by line 29

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,7) by line 29

Return value: None by line 23

33/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming
Computational
Components

Computation,
Programming,
Programming
Languages

Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Example Algorithm Design
Binary Search — Comparison

ñ Both forms compare the given value (val) to the
mid-point value of the range of the list (xs[mid])

ñ If not found, the range is adjusted via assignment in a
while loop (iterative) or function call (recursive)

ñ The recursive version has default parameter values to
initialise the function call (evil, should be a helper
function)

ñ There are two base cases:
ñ The value is found (val == guess)
ñ The range becomes negative (hi < lo)

ñ The return value is either mid or None

ñ What is the type of the binary search function ?

34/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming
Computational
Components

Computation,
Programming,
Programming
Languages

Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Example Algorithm Design
Binary Search — Performance

ñ Linear search — number of comparisons
ñ Best case 1 (first item in the list)
ñ Worst case n (last item)
ñ Average case 1

2 n

ñ Binary search — number of comparisons
ñ Best case 1 (middle item in the list)
ñ Worst case log2 n (steps to see all)
ñ Average case log2 n− 1 (steps to see half)

35/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming
Computational
Components

Computation,
Programming,
Programming
Languages

Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Writing Programs & Thinking
The Steps

1. Invent a name for the program (or function)

2. What is the type of the function ? What sort of input
does it take and what sort of output does it produce ? In
Python a type is implicit; in other languages such as
Haskell a type signature can be explicit.

3. Invent names for the input(s) to the function (formal
parameters) — this can involve thinking about possible
patterns or data structures

4. What restrictions are there on the input — state the
preconditions.

5. What must be true of the output — state the
postconditions.

6. Think of the definition of the function body.

36/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming
Computational
Components

Computation,
Programming,
Programming
Languages

Example Algorithm
Design

Binary Search —
Exercise

Binary Search —
Comparison

Writing Programs &
Thinking

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Writing Programs & Thinking
The Think Step

ñ How to Think
1. Think of an example or two — what should the

program/function do ?
2. Break the inputs into separate cases.
3. Deal with simple cases.
4. Think about the result — try your examples again.

ñ Thinking Strategies
1. Don’t think too much at one go — break the problem

down. Top down design, step-wise refinement.
2. What are the inputs — describe all the cases.
3. Investigate choices. What data structures ? What

algorithms ?
4. Use common tools — bottom up synthesis.
5. Spot common function application patterns — generalise

& then specialise.
6. Look for good glue — to combine functions together.

37/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python
Learning Python

Basic Python

Python Workflows

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Python
Learning Python

ñ Miller & Ranum Problem Solving with Algorithms and
Data Structures using Python

ñ Python 3 Documentation

ñ Python Tutorial

ñ Python Language Reference

ñ Python Library Reference

ñ Hitchhiker’s Guide to Python

ñ Stackoverflow on Python

ñ Dive into Python 3

38/174

http://interactivepython.org/courselib/static/pythonds/index.html
http://interactivepython.org/courselib/static/pythonds/index.html
https://docs.python.org/3/
https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/reference/index.html
https://docs.python.org/3/library/index.html
http://docs.python-guide.org/en/latest/index.html
http://stackoverflow.com/tags/python/info
http://getpython3.com/diveintopython3/

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python
Learning Python

Basic Python

Python Workflows

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Basic Python
Python Usage — Questions

ñ How do you enter an interactive Python shell ?

ñ How do you exit Python in Terminal (Mac) or Command
prompt (Windows) ?

ñ How do you get help in a shell ?

ñ How do you exit the interactive help utility ?

39/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python
Learning Python

Basic Python

Python Workflows

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Basic Python
Python Usage — Answers

ñ How do you enter an interactive Python shell ?

Windows PythonWin Shell from Toolbox; Mac python3 in Terminal

ñ How do you exit Python in Terminal (Mac) or Command
prompt (Windows) ?

quit()

ñ How do you get help in a shell ?

help()

ñ How do you exit the interactive help utility ?

quit

40/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python
Learning Python

Basic Python

Python Workflows

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Basic Python
Python Usage — Answers

ñ How do you enter an interactive Python shell ?

Windows PythonWin Shell from Toolbox; Mac python3 in Terminal

ñ How do you exit Python in Terminal (Mac) or Command
prompt (Windows) ?

quit()

ñ How do you get help in a shell ?

help()

ñ How do you exit the interactive help utility ?

quit

41/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python
Learning Python

Basic Python

Python Workflows

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Basic Python
Python Usage — Answers

ñ How do you enter an interactive Python shell ?

Windows PythonWin Shell from Toolbox; Mac python3 in Terminal

ñ How do you exit Python in Terminal (Mac) or Command
prompt (Windows) ?

quit()

ñ How do you get help in a shell ?

help()

ñ How do you exit the interactive help utility ?

quit

42/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python
Learning Python

Basic Python

Python Workflows

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Basic Python
Python Usage — Answers

ñ How do you enter an interactive Python shell ?

Windows PythonWin Shell from Toolbox; Mac python3 in Terminal

ñ How do you exit Python in Terminal (Mac) or Command
prompt (Windows) ?

quit()

ñ How do you get help in a shell ?

help()

ñ How do you exit the interactive help utility ?

quit

43/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python
Learning Python

Basic Python

Python Workflows

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Basic Python
Python Usage — Answers

ñ How do you enter an interactive Python shell ?

Windows PythonWin Shell from Toolbox; Mac python3 in Terminal

ñ How do you exit Python in Terminal (Mac) or Command
prompt (Windows) ?

quit()

ñ How do you get help in a shell ?

help()

ñ How do you exit the interactive help utility ?

quit

44/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python
Learning Python

Basic Python

Python Workflows

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Basic Python
Sequences Indexing, Slices

ñ xs[i:j:k] is defined to be the sequence of items from
index i to (j-1) with step k.

ñ If k is omitted or None, it is treated as 1.

ñ If i or j are negative then they are relative to the end.

ñ If i is omitted or None use 0.

ñ If j is omitted or None use len(xs)

45/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python
Learning Python

Basic Python

Python Workflows

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Basic Python
Python Quiz — Lists

Given the following definitions

xs = [10.9,25,"Phil",3.14,42,1985]
ys = [[5]] * 3

Evaluate

1 xs[1]
2 xs[0]
3 xs[5]
4 ys
5 xs[1:3]
6 xs[::2]
7 xs[1:-1]
8 xs[-3]
9 xs[:]

10 ys[0].append(4)

46/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python
Learning Python

Basic Python

Python Workflows

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Basic Python
Python Quiz — Lists — Answers

Given the following definitions

xs = [10.9,25,"Phil",3.14,42,1985]
ys = [[5]] * 3

Evaluate

1xs[1] == 25
2xs[0] == 10.9
3xs[5] == 1985
4ys == [[5],[5],[5]]
5xs[1:3] == [25, ’Phil’]
6xs[::2] == [10.9, ’Phil’, 42]
7xs[1:-1] == [25, ’Phil’, 3.14, 42]
8xs[-3] == 3.14
9xs[:] == [10.9, 25, ’Phil’, 3.14, 42, 1985]

10ys[0].append(4) == [[5, 4], [5, 4], [5, 4]]

47/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python
Learning Python

Basic Python

Python Workflows

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Python Workflows
Komodo Python Workflow

1. Create someProgram.py with assignment statements
defining variables and other data along with function
definitions.

2. There may be auxiliary files with other definitions (for
example, Python Activity 2.2 has Stack.py with the
Stack class definition) — this uses the import statement
in someProgram.py

from someOtherDefinitions import someIdentifier

3. Load someProgram.py into Komodo Edit and use the
Run Python File macro from the Toolbox

4. For further results, edit the file in Komodo Edit and and
use the Save and Run macro from the Toolbox

48/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python
Learning Python

Basic Python

Python Workflows

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Python Workflows
Standalone Python Workflow

1. Create someDefinitions.py with assignment
statements defining variables and function definitions.

2. In Terminal (Mac) or Command Prompt (Windows),
navigate to someDefinitions.py and invoke the
Python 3 interpreter

3. Load someDefinitions.py into Python 3 with one of

from someDefinitions import *

import someDefinitions as sdf

The as sdf gives a shorter qualifier for the namespace
— names in the file are now sdf.x
Note that the commands are executed — any print
statement will execute

4. At the Python 3 interpreter prompt, evaluate
expressions (may have side effects and alter definitions)

49/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python
Learning Python

Basic Python

Python Workflows

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Python Workflows
Standalone Python Workflow 2

1. For further results, edit the file in Your Favourite Editor
and use one of the following commands:

reload(sdf)

import imp
imp.reload(sdf)

Note the use of the name sdf as opposed to the
original name.
Read the following references about the dangers of
reloading as compared to re-cycling Python 3
ñ How to re import an updated package while in Python

Interpreter?
ñ How do I unload (reload) a Python module?
ñ Reloading Python modules
ñ How to dynamically import and reimport a file containing

definition of a global variable which may change anytime

50/174

https://stackoverflow.com/questions/684171/how-to-re-import-an-updated-package-while-in-python-interpreter
https://stackoverflow.com/questions/684171/how-to-re-import-an-updated-package-while-in-python-interpreter
https://stackoverflow.com/questions/437589/how-do-i-unload-reload-a-python-module
http://pyunit.sourceforge.net/notes/reloading.html
https://stackoverflow.com/questions/12400467/how-to-dynamically-import-and-reimport-a-file-containing-definition-of-a-global
https://stackoverflow.com/questions/12400467/how-to-dynamically-import-and-reimport-a-file-containing-definition-of-a-global

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity
Complexity Example

Complexity & Python
Data Types

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Program Complexity
Big O Notation

ñ Measuring program complexity introduced in section 4
of M269 Unit 2

ñ See also Miller and Ranum chapter 2 Big-O Notation

ñ See also Wikipedia: Big O notation

ñ See also Big-O Cheat Sheet

51/174

http://interactivepython.org/courselib/static/pythonds/AlgorithmAnalysis/BigONotation.html
https://en.wikipedia.org/wiki/Big_O_notation
http://bigocheatsheet.com/

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity
Complexity Example

Complexity & Python
Data Types

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Program Complexity
Big O Notation (2)

ñ Complexity of algorithm measured by using some
surrogate to get rough idea

ñ In M269 mainly using assignment statements

ñ For exact measure we would have to have cost of each
operation, knowledge of the implementation of the
programming language and the operating system it
runs under.

ñ But mainly interested in the following questions:

ñ (1) Is algorithm A more efficient than algorithm B for
large inputs ?

ñ (2) Is there a lower bound on any possible algorithm for
calculating this particular function ?

ñ (3) Is it always possible to find a polynomial time (nk)
algorithm for any function that is computable

ñ — the later questions are addressed in Unit 7

52/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity
Complexity Example

Complexity & Python
Data Types

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Program Complexity
Orders of Common Functions

ñ O(1) constant — look-up table

ñ O(logn) logarithmic — binary search of sorted array,
binary search tree, binomial heap operations

ñ O(n) linear — searching an unsorted list

ñ O(n logn) loglinear — heapsort, quicksort (best and
average), merge sort

ñ O(n2) quadratic — bubble sort (worst case or naive
implementation), Shell sort, quicksort (worst case),
selection sort, insertion sort

ñ O(nc) polynomial

ñ O(cn) exponential — travelling salesman problem via
dynamic programming, determining if two logical
statements are equivalent by brute force

ñ O(n!) factorial — TSP via brute force.

53/174

https://en.wikipedia.org/wiki/Lookup_table
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Merge_sort
https://en.wikipedia.org/wiki/Bubble_sort
https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Selection_sort
https://en.wikipedia.org/wiki/Insertion_sort
https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Dynamic_programming

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity
Complexity Example

Complexity & Python
Data Types

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Program Complexity
Tyranny of Asymptotics

ñ Table from Bentley (1984, page 868)

ñ Cubic algorithm on Cray-1 3.0n3 nanoseconds

ñ Linear algorithm on TRS-80 19.5n× 106 nanoseconds

N Cray-1 TRS-80

10 3.0 microsecs 200 millisecs
100 3.0 millisecs 2.0 secs

1000 3.0 secs 20 secs
10000 49 mins 3.2 mins

100000 35 days 32 mins
1000000 95 yrs 5.4 hrs

54/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity
Complexity Example

Complexity & Python
Data Types

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Program Complexity
Big O Complexity Chart

O(lnn)

O(n)

O(n lnn)

O(n2)O(2n)

20 40 60 80 100 120 140

100

200

300

400

n

O(n)
Big O Complexity Chart

55/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity
Complexity Example

Complexity & Python
Data Types

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Program Complexity
Big O Notation

ñ Abuse of notation — we write f (x) = O(g(x))
ñ but O(g(x)) is the class of all functions h(x) such that
|h(x)| à C|g(x)| for some constant C

ñ So we should write f (x) ∈ O(g(x)) (but we don’t)

ñ We ought to use a notation that says that (informally)
the function f is bounded both above and below by g
asymptotically

ñ This would mean that for big enough x we have

k1g(x) à f (x) à k2g(x) for some k1,k2

ñ This is Big Theta, f (x) = Θ(g(x))
ñ But we use Big O to indicate an asymptotically tight

bound where Big Theta might be more appropriate

ñ See Wikipedia: Big O Notation

ñ This could be Maths phobia generated confusion

56/174

https://en.wikipedia.org/wiki/Big_O_notation

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity
Complexity Example

Complexity & Python
Data Types

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Program Complexity
Example

5def someFunction(aList) :
6 n = len(aList)
7 best = 0
8 for i in range(n) :
9 for j in range(i + 1, n + 1) :

10 s = sum(aList[i:j])
11 best = max(best, s)
12 return best

ñ Example from M269 Unit 2 page 46

ñ Code in file M269TutorialProgPythonADT.py

ñ What does the code do ?

ñ (It was a famous problem from the late 1970s/early
1980s)

ñ Can we construct a more efficient algorithm for the
same computational problem ?

57/174

http://www.pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269TutorialProgPythonADT/M269TutorialProgPythonADT.py

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity
Complexity Example

Complexity & Python
Data Types

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Program Complexity
Example (2)

ñ The code calculates the maximum subsegment of a list

ñ Described in Bentley (1984), (1988, column 7), (2000,
column 7) Also in Gries (1989)

ñ These are all in a procedural programming style (as in
C, Java, Python)

ñ Problem arose from medical image processing.

ñ A functional approach using Haskell is in Bird (1998,
page 134), (2014, page 127, 133) — a variant on this
called the Not the maximum segment sum is given in
Bird (2010, Page 73) — both of these derive a linear
time program from the (n3) initial specification

ñ See Wikipedia: Maximum subarray problem

ñ See Rosetta Code: Greatest subsequential sum

58/174

https://en.wikipedia.org/wiki/Maximum_subarray_problem
http://rosettacode.org/wiki/Greatest_subsequential_sum

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity
Complexity Example

Complexity & Python
Data Types

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Program Complexity
Example (3)

ñ Here is the same program but modified to allow lists
that may only have negative numbers

ñ The complexity T (n) function will be slightly different

ñ but the Big O complexity will be the same

14def maxSubSeg01(xs) :
15 n = len(xs)
16 maxSoFar = xs[0]
17 for i in range(1,n) :
18 for j in range(i + 1, n + 1) :
19 s = sum(xs[i:j])
20 maxSoFar = max(maxSoFar, s)
21 return maxSoFar

59/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity
Complexity Example

Complexity & Python
Data Types

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Program Complexity
Example (4)

ñ Complexity function T (n) for maxSubSeg01()

ñ Two initial assignments

ñ The outer loop will be executed (n− 1) times,

ñ Hence the inner loop is executed

(n− 1)+ (n− 2)+ . . .+ 2+ 1 = (n− 1)
2

× n

ñ Assume sum() takes n assignments

ñ Hence T (n) = 2+ (n+ 2)×
(
(n− 1)

2
× n

)
= 2+ (n+ 2)×

(
n2

2
− n

2

)
= 2+ 1

2n3 − 1
2n2 + n2 − n

= 1
2n3 + 1

2n2 − n+ 2

ñ Hence O(n3)

60/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity
Complexity Example

Complexity & Python
Data Types

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Program Complexity
Example (5)

ñ Developing a better algorithm

ñ Assume we know the solution (maxSoFar) for xs[0..(i
- 1)]

ñ We extend the solution to xs[0..i] as follows:

ñ The maximum segment will be either maxSoFar

ñ or the sum of a sublist ending at i (maxToHere) if it is
bigger

ñ This reasoning is similar to divide and conquer in binary
search or Dynamic programming (see Unit 5)

ñ Keep track of both maxSoFar and maxToHere — the
Eureka step

61/174

https://en.wikipedia.org/wiki/Dynamic_programming

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity
Complexity Example

Complexity & Python
Data Types

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Program Complexity
Example (6)

ñ Developing a better algorithm maxSubSeg02()

27def maxSubSeg02(xs) :
28 maxToHere = xs[0]
29 maxSoFar = xs[0]
30 for x in xs[1:] :
31 # Invariant: maxToHere, maxSoFar OK for xs[0..(i-1)]
32 maxToHere = max(x, maxToHere + x)
33 maxSoFar = max(maxSoFar, maxToHere)
34 return maxSoFar

ñ Complexity function T (n) = 2+ 2n

ñ Hence O(n)
ñ What if we want more information ?

ñ Return the (or a) segment with max sum and position in
list

62/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity
Complexity Example

Complexity & Python
Data Types

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Program Complexity
Example (7)

38def maxSubSeg03(xs) :
39 maxSoFar = maxToHere = xs[0]
40 startIdx, endIdx, startMaxToHere = 0, 0, 0
41 for i, x in enumerate(xs) :
42 if maxToHere + x < x :
43 maxToHere = x
44 startMaxToHere = i
45 else :
46 maxToHere = maxToHere + x

48 if maxSoFar < maxToHere :
49 maxSoFar = maxToHere
50 startIdx, endIdx = startMaxToHere, i

52 return (maxSoFar,xs[startIdx:endIdx+1],startIdx,endIdx)

ñ Developing a better algorithm maxSubSeg03()

ñ Complexity function worst case T (n) = 2+ 3+ (2+ 3)n
ñ Hence still O(n)
ñ Note Python assignments, enumerate() and tuple

63/174

https://docs.python.org/3/reference/simple_stmts.html#assignment-statements
https://docs.python.org/3/library/functions.html#enumerate
https://docs.python.org/3/library/stdtypes.html#tuple

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity
Complexity Example

Complexity & Python
Data Types

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Program Complexity
Example (8)

ñ Sample data and output

56egList = [-2,1,-3,4,-1,2,1,-5,4]

58egList01 = [-1,-1,-1]

60egList02 = [1,2,3]

62assert maxSubSeg03(egList) == (6, [4, -1, 2, 1], 3, 6)

64assert maxSubSeg03(egList01) == (-1, [-1], 0, 0)

66assert maxSubSeg03(egList02) == (7, [1, 2, 3], 0, 2)

64/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity
Complexity Example

Complexity & Python
Data Types

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Program Complexity
Python Data Types — Lists

Operation Notation Average Amortized Worst

Get item x = xs[i] O(1) O(1)
Set item xs[i] = x O(1) O(1)
Append xs = ys + zs O(1) O(1)
Copy xs = ys[:] O(n) O(n)
Pop last xs.pop() O(1) O(1)
Pop other xs.pop(i) O(k) O(k)
Insert(i,x) xs[i:i] = [x] O(n) O(n)
Delete item del xs[i:i+1] O(n) O(n)
Get slice xs = ys[i:j] O(k) O(k)
Set slice xs[i:j] = ys O(k + n) O(k + n)
Delete slice xs[i:j] = [] O(n) O(n)
Member x in xs O(n)
Get length n = len(xs) O(1) O(1)
Count(x) n = xs.count(x) O(n) O(n)

ñ Source https://wiki.python.org/moin/TimeComplexity
ñ See https://docs.python.org/3/library/stdtypes.html#

sequence-types-list-tuple-range

65/174

https://wiki.python.org/moin/TimeComplexity
https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range
https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity
Complexity Example

Complexity & Python
Data Types

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Program Complexity
User Defined Type — Bags

5class Bag:

7 def __init__(self):
8 self.list = []

10 def add(self, item):
11 self.list.append(item)

13 def remove(self, item):
14 self.list.remove(item)

16 def contains(self, item):
17 return item in self.list

19 def count(self, item):
20 return self.list.count(item)

22 def size(self):
23 return len(self.list)

25 def __str__(self):
26 return str(self.list)

66/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity
Complexity Example

Complexity & Python
Data Types

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Using a Data Type
Information Retrieval Functions

ñ Term Frequency, tf, takes a string, term, and a Bag,
document

returns occurrences of term divided by total strings in
document

ñ Inverse Document Frequency, idf, takes a string,
term, and a list of Bags, documents

returns log(total/(1+ containing)) — total is total
number of Bags, containing is the number of Bags
containing term

ñ tf-idf, tf_idf, takes a string, term, and a list of Bags,
documents

returns a sequence [r0, r1, . . . , rn−1] such that
ri = tf(term,di)× idf(term,documents)

67/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms
Exponentials and
Logarithms —
Definitions

Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs

Laws of Logarithms

Arithmetic and Inverses

Change of Base

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Exponentials and Logarithms
Definitions

ñ Exponential function y = ax or f (x) = ax

ñ an = a× a× · · · × a (n a terms)

ñ Logarithm reverses the operation of exponentiation

ñ loga y = x means ax = y

ñ loga 1 = 0

ñ loga a = 1

ñ Method of logarithms propounded by John Napier from
1614

ñ Log Tables from 1617 by Henry Briggs

ñ Slide Rule from about 1620–1630 by William Oughtred
of Cambridge

ñ Logarithm from Greek logos ratio, and arithmos
number (Chanbers Dictionary 13th edition 2014)

68/174

https://en.wikipedia.org/wiki/Exponential_function
https://en.wikipedia.org/wiki/Logarithm
https://en.wikipedia.org/wiki/Mathematical_table#Tables_of_logarithms
https://en.wikipedia.org/wiki/Slide_rule

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms
Exponentials and
Logarithms —
Definitions

Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs

Laws of Logarithms

Arithmetic and Inverses

Change of Base

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Exponentiation
Rules of Indices

1. am × an = am+n

2. am ÷ an = am−n

3. a−m = 1
am

4. a
1
m = m

√
a

5. (am)n = amn

6. a
n
m = m

√
an

7. a0 = 1 where a ≠ 0

ñ Exercise Justify the above rules

ñ What should 00 evaluate to ?

ñ See Wikipedia: Exponentiation

ñ The justification above probably only worked for whole
or rational numbers — see later for exponents with real
numbers (and the value of logarithms, calculus. . .)

69/174

http://en.wikipedia.org/wiki/Exponentiation

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms
Exponentials and
Logarithms —
Definitions

Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs

Laws of Logarithms

Arithmetic and Inverses

Change of Base

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Logarithms
Motivation

ñ Make arithmetic easier — turns multiplication and
division into addition and subtraction (see later)

ñ Complete the range of elementary functions for
differentiation and integration

ñ An elementary function is a function of one variable
which is the composition of a finite number of
arithmetic operations ((+), (−), (×), (÷)), exponentials,
logarithms, constants, and solutions of algebraic
equations (a generalization of nth roots).

ñ The elementary functions include the trigonometric and
hyperbolic functions and their inverses, as they are
expressible with complex exponentials and logarithms.

ñ See A Level FP2 for Euler’s relation eiθ = cosθ + i sinθ

ñ In A Level C3, C4 we get
∫

1
x
= loge |x| + C

ñ e is Euler’s number 2.71828. . .

70/174

https://en.wikipedia.org/wiki/Elementary_function
https://en.wikipedia.org/wiki/Elementary_function
https://en.wikipedia.org/wiki/E_(mathematical_constant)

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms
Exponentials and
Logarithms —
Definitions

Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs

Laws of Logarithms

Arithmetic and Inverses

Change of Base

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Exponentials and Logarithms
Graphs

ñ See GeoGebra file expLog.ggb

71/174

expLog.ggb

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms
Exponentials and
Logarithms —
Definitions

Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs

Laws of Logarithms

Arithmetic and Inverses

Change of Base

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Exponentials and Logarithms
Laws of Logarithms

ñ Multiplication law loga xy = loga x + loga y

ñ Division law loga

(
x
y

)
= loga x − loga y

ñ Power law loga xk = k loga x

ñ Proof of Multiplication Law

x = aloga x

y = aloga y by definition of log

xy = aloga xaloga y

= aloga x+loga y by laws of indices

Hence loga xy = loga x + loga y by definition of log

72/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms
Exponentials and
Logarithms —
Definitions

Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs

Laws of Logarithms

Arithmetic and Inverses

Change of Base

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Arithmetic Operations
Inverse Operations

ñ Notation helps or maybe not ?

ñ Addition add(b, x) = x + b

ñ Subtraction sub(b, x) = x − b

ñ Inverse sub(b, add(b, x)) = (x + b)− b = x

ñ Multiplication mul(b, x) = x × b

ñ Division div(b, x) = x ÷ b = x
b = x/b

ñ Inverse div(b,mul(b, x)) = (x × b)÷ b = (x×b)
b = x

ñ Exponentiation exp(b, x) = bx

ñ Logarithm log(b, x) = logb x

ñ Inverse log(b, exp(b, x)) = logb(bx) = x

ñ What properties do the operations have that work (or
not) with the notation ?

73/174

https://en.wikipedia.org/wiki/Addition
https://en.wikipedia.org/wiki/Subtraction
https://en.wikipedia.org/wiki/Multiplication
https://en.wikipedia.org/wiki/Division_(mathematics)
https://en.wikipedia.org/wiki/Exponentiation
https://en.wikipedia.org/wiki/Logarithm

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms
Exponentials and
Logarithms —
Definitions

Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs

Laws of Logarithms

Arithmetic and Inverses

Change of Base

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Arithmetic Operations
Commutativity and Associativity

ñ Commutativity x ç y = y ç x

ñ Associativity (x ç y)ç z = x ç (y ç z)
ñ (+) and (×) are semantically commutative and

associative — so we can leave the brackets out

ñ (−) and (÷) are not

ñ Evaluate (3− (2− 1)) and ((3− 2)− 1)
ñ Evaluate (3/(2/2)) and ((3/2)/2)
ñ We have the syntactic ideas of left (and right)

associativity

ñ We choose (−) and (÷) to be left associative

ñ 3− 2− 1 means ((3− 2)− 1)
ñ 3/2/2 means ((3/2)/2)
ñ Operator precedence is also a choice (remember

BIDMAS or BODMAS ?)

ñ If in doubt, put the brackets in

74/174

https://en.wikipedia.org/wiki/Commutative_property
https://en.wikipedia.org/wiki/Associative_property
https://en.wikipedia.org/wiki/Order_of_operations

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms
Exponentials and
Logarithms —
Definitions

Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs

Laws of Logarithms

Arithmetic and Inverses

Change of Base

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Exponentials and Logarithms
Associativity

ñ What should 234
mean ?

ñ Let b ^ x ≡ bx

ñ Evaluate (2 ^ 3) ^ 4 and 2 ^ (3 ^ 4)
ñ Evaluate c = logb(logb((b ^ b) ^ x))
ñ Evaluate d = logb(logb(b ^ (b ^ x)))
ñ Beware spreadsheets Excel and LibreOffice here

75/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms
Exponentials and
Logarithms —
Definitions

Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs

Laws of Logarithms

Arithmetic and Inverses

Change of Base

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Exponentials and Logarithms
Associativity

ñ (23)4 = 212 and 234 = 281

ñ Exponentiation is not semantically associative

ñ We choose the syntactic left or right associativity to
make the syntax nicer.

ñ Evaluate c = logb(logb((b ^ b) ^ x))
ñ c = logb(x logb(bb)) = logb(x · (b logb b)) = logb(x · b · 1)
ñ Hence c = logb x + logb b = logb x + 1

ñ Not symmetrical (unless b and x are both 2)

ñ Evaluate d = logb(logb(b ^ (b ^ x)))
ñ d = logb((b ^ x)(logb b)) = logb((b ^ x)× 1)
ñ Hence d = logb(b ^ x) = x(logb b) = x

ñ Which is what we want — so exponentiation is chosen to
be right associative

76/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms
Exponentials and
Logarithms —
Definitions

Rules of Indices

Logarithms —
Motivation

Exponentials and
Logarithms — Graphs

Laws of Logarithms

Arithmetic and Inverses

Change of Base

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Exponentials and Logarithms
Change of Base

ñ Change of base

loga x = logb x
logb a

Proof: Let y = loga x

ay = x

logb ay = logb x

y logb a = logb x

y = logb x
logb a

ñ Given x, logb x, find the base b

ñ b = x
1

logb x

ñ loga b = 1
logb a

77/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators
Log Tables

Slide Rules

Calculators

Example Calculation

Logic Introduction

ADTs

Future Work

Haskell Example

References

Before Calculators and Computers

ñ We had computers before 1950 — they were humans
with pencil, paper and some further aids:

ñ Slide rule invented by William Oughtred in the 1620s —
major calculating tool until pocket calculators in 1970s

ñ Log tables in use from early 1600s — method of
logarithms propounded by John Napier

ñ Logarithm from Greek logos ratio, and arithmos
number

78/174

https://en.wikipedia.org/wiki/Slide_rule
https://en.wikipedia.org/wiki/William_Oughtred
https://en.wikipedia.org/wiki/Calculator
https://en.wikipedia.org/wiki/Mathematical_table
https://en.wikipedia.org/wiki/John_Napier
https://en.wikipedia.org/wiki/Logarithm

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators
Log Tables

Slide Rules

Calculators

Example Calculation

Logic Introduction

ADTs

Future Work

Haskell Example

References

Log Tables
Knott’s Four-Figure Mathematical Tables

79/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators
Log Tables

Slide Rules

Calculators

Example Calculation

Logic Introduction

ADTs

Future Work

Haskell Example

References

Log Tables
Logarithms of Numbers

80/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators
Log Tables

Slide Rules

Calculators

Example Calculation

Logic Introduction

ADTs

Future Work

Haskell Example

References

Log Tables
Antilogarithms

81/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators
Log Tables

Slide Rules

Calculators

Example Calculation

Logic Introduction

ADTs

Future Work

Haskell Example

References

Slide Rules
Pickett N 3-ES from 1967

ñ See Oughtred Society

ñ UKSRC

ñ Rod Lovett’s Slide Rules

ñ Slide Rule Museum

82/174

http://www.oughtred.org
http://www.uksrc.org.uk
http://sliderules.lovett.com
http://sliderulemuseum.com

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators
Log Tables

Slide Rules

Calculators

Example Calculation

Logic Introduction

ADTs

Future Work

Haskell Example

References

Slide Rules
Pickett log log Slide Rules Manual 1953

83/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators
Log Tables

Slide Rules

Calculators

Example Calculation

Logic Introduction

ADTs

Future Work

Haskell Example

References

Calculators
HP HP-21 Calculator from 1975 £69

84/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators
Log Tables

Slide Rules

Calculators

Example Calculation

Logic Introduction

ADTs

Future Work

Haskell Example

References

Calculators
Casio fx-85GT PLUS Calculator from 2013 £10

85/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators
Log Tables

Slide Rules

Calculators

Example Calculation

Logic Introduction

ADTs

Future Work

Haskell Example

References

Calculators
Calculator Links

ñ HP Calculator Museum http://www.hpmuseum.org

ñ HP Calculator Emulators
http://nonpareil.brouhaha.com

ñ HP Calculator Emulators for OS X
http://www.bartosiak.org/nonpareil/

ñ Vintage Calculators Web Museum
http://www.vintagecalculators.com

86/174

http://www.hpmuseum.org
http://nonpareil.brouhaha.com
http://www.bartosiak.org/nonpareil/
http://www.vintagecalculators.com

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators
Log Tables

Slide Rules

Calculators

Example Calculation

Logic Introduction

ADTs

Future Work

Haskell Example

References

Example Calculation
Log Tables, Slide Rule and Calculator

ñ Evaluate 89.7× 597

ñ Knott’s Tables

ñ log10 89.7 = 1.9528 and log10 597 = 2.7760

ñ Shows mantissa (decimal) & characteristic (integral)

ñ Add 4.7288, take antilog to get
5346+ 10 = 5.356× 104

ñ HP-21 Calculator — set display to 4 decimal places

ñ 89.7 log = 1.9528 and 597 log = 2.7760

ñ + displays 4.7288

ñ 10 ENTER , x m y and yx displays 53550.9000

ñ Casio fx-85GT PLUS

ñ log 89.7) = 1.952792443 + log 597) = 2.775974331 =

ñ 4.728766774 Ans + 10x gives 53550.9

87/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

ADTs

Future Work

Haskell Example

References

Boolean Expressions
Traffic Lights Example (1)

ñ Consider traffic light at the intersection of roads AC and
BD with the following rules for the AC controller

ñ Vehicles should not wait on red on BD for too long.

ñ If there is a long queue on AC then BD is only given a
green for a short interval.

ñ If both queues are long the usual flow times are used.
ñ We use the following propositions:

ñ w Vehicles have been waiting on red on BD for too long
ñ q Queue on AC is too long
ñ r Queue on BD is too long

ñ Given the following events:
ñ ToBD Change flow to BD
ñ ToBDShort Change flow to BD for short time
ñ NoChange No Change to lights

ñ Express above as truth table, outcome tree, boolean
expression

88/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

ADTs

Future Work

Haskell Example

References

Boolean Expressions
Traffic Lights Example (2)

ñ Traffic Lights outcome table

w q r Event

T T T ToBD
T T F ToBDShort
T F T ToBD
T F F ToBD
F T T NoChange
F T F NoChange
F F T NoChange
F F F NoChange

89/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

ADTs

Future Work

Haskell Example

References

Boolean Expressions
Traffic Lights Example (3)

ñ Traffic lights outcome tree

NoChange¬r

NoChanger¬q

NoChange¬r

NoChanger

q
¬w

ToBD¬r

ToBDr¬q

ToBDShort¬r

ToBDr

q

w

90/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

ADTs

Future Work

Haskell Example

References

Boolean Expressions
Traffic Lights Example (4)

ñ Traffic lights outcome tree simplified

NoChange

¬w

ToBD
¬q

ToBDShort¬r

ToBDr

q

w

91/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

ADTs

Future Work

Haskell Example

References

Boolean Expressions
Traffic Lights Example (5)

ñ Traffic Lights code 01

ñ See M269TutorialProgPythonADT01.py

3def trafficLights01(w,q,r) :
4 """
5 Input 3 Booleans
6 Return Event string
7 """
8 if w :
9 if q :

10 if r :
11 evnt = "ToBD"
12 else :
13 evnt = "ToBDShort"
14 else :
15 evnt = "ToBD"
16 else :
17 evnt = "NoChange"
18 return evnt

92/174

http://www.pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269TutorialProgPythonADT/M269TutorialProgPythonADT01.py

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

ADTs

Future Work

Haskell Example

References

Boolean Expressions
Traffic Lights Example (6)

ñ Traffic Lights test code 01

22trafficLights01Evnts = [((w,q,r), trafficLights01(w,q,r))
23 for w in [True,False]
24 for q in [True,False]
25 for r in [True,False]]

27assert trafficLights01Evnts \
28 == [((True, True, True), ’ToBD’)
29 ,((True, True, False), ’ToBDShort’)
30 ,((True, False, True), ’ToBD’)
31 ,((True, False, False), ’ToBD’)
32 ,((False, True, True), ’NoChange’)
33 ,((False, True, False), ’NoChange’)
34 ,((False, False, True), ’NoChange’)
35 ,((False, False, False), ’NoChange’)]

93/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

ADTs

Future Work

Haskell Example

References

Boolean Expressions
Traffic Lights Example (7)

ñ Traffic Lights code 02 compound Boolean conditions

37def trafficLights02(w,q,r) :
38 """
39 Input 3 Booleans
40 Return Event string
41 """
42 if ((w and q and r) or (w and not q)) :
43 evnt = "ToBD"
44 elif (w and q and not r) :
45 evnt = "ToBDShort"
46 else :
47 evnt = "NoChange"
48 return evnt

ñ What objectives do we have for our code ?

94/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

ADTs

Future Work

Haskell Example

References

Boolean Expressions
Traffic Lights Example (8)

ñ Traffic Lights test code 02

52trafficLights02Evnts = [((w,q,r), trafficLights02(w,q,r))
53 for w in [True,False]
54 for q in [True,False]
55 for r in [True,False]]

57assert trafficLights02Evnts == trafficLights01Evnts

95/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

ADTs

Future Work

Haskell Example

References

Boolean Expressions
Traffic Lights Example (9)

w q

r

BD

BD

BD

BDS

NoC

NoC

NoC

NoC

ñ Traffic Lights Venn diagram

ñ OK using a fill colour would look better but didn’t have the time to hack the

package

96/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

ADTs

Future Work

Haskell Example

References

Boolean Expressions
Validity

ñ Validity of Boolean expressions

ñ Complete every outcome returns an event (or error
message, raises an exception)

ñ Consistent — we do not want two nested if
statements or expressions resulting in different events

ñ We check this by ensuring that the events form a
disjoint partition of the set of outcomes — see the Venn
diagram

ñ We would quite like the programming language
processor to warn us otherwise — not always possible

97/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

ADTs

Future Work

Haskell Example

References

Booleans Expressions
Rail Ticket Exercise (1)

ñ Rail ticket discounts for:
ñ c Rail card
ñ q Off-peak time
ñ s Special offer

ñ 4 fares: Standard, Reduced, Special, Super Special
ñ Rules:

1. Reduced fare if rail card or at off-peak time
2. Without rail card no reduction for both special offer and

off-peak.
3. Rail card always has reduced fare but cannot get

off-peak discount as well.
4. Rail card gets super special discount for journey with

special offer

ñ Draw up truth table, outcome tree, Venn diagram and
conditional statement (or expression) for this

98/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

ADTs

Future Work

Haskell Example

References

Booleans Expressions
Rail Ticket Exercise (2)

ñ Rail ticket outcome table

c q s Event

T T T Super Special
T T F Reduced
T F T Super Special
T F F Reduced
F T T Special
F T F Reduced
F F T Special
F F F Standard

99/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

ADTs

Future Work

Haskell Example

References

Booleans Expressions
Rail Ticket Exercise (3)

ñ Rail ticket outcome table

ñ Note that it may be more convenient to change columns

c s q Event

T T T Super Special
T T F Super Special
T F T Reduced
T F F Reduced
F T T Special
F T F Special
F F T Reduced
F F F Standard

ñ Real fares are a little more complex — see brfares.com

100/174

http://www.brfares.com

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

ADTs

Future Work

Haskell Example

References

Boolean Expressions
Rail Ticket Exercise (4)

ñ Rail Ticket outcome tree

Standard¬q

Reducedq
¬s

Special¬q

Specialq

s¬c

Reduced¬q

Reducedq
¬s

Super Special¬q

Super Specialq

s

c

101/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

ADTs

Future Work

Haskell Example

References

Boolean Expressions
Rail Ticket Exercise (5)

ñ Rail Ticket outcome tree simplified

Standard¬q

Reducedq
¬s

Special
s¬c

Reduced
¬s

Super Special
s

c

102/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

ADTs

Future Work

Haskell Example

References

Boolean Expressions
Rail Ticket Example (6)

c s

q

SSP

RD

RD

SSP

STD

SP

RD

SP

ñ Rail Ticket Venn diagram

103/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

ADTs

Future Work

Haskell Example

References

Boolean Expressions
Rail Ticket Example (7)

ñ Rail Ticket code 01

61def railTicket01(c,s,q) :
62 """
63 Input 3 Booleans
64 Return Event string
65 """
66 if c :
67 if s :
68 evnt = "SSP"
69 else :
70 evnt = "RD"
71 else :
72 if s :
73 evnt = "SP"
74 else :
75 if q :
76 evnt = "RD"
77 else :
78 evnt = "STD"
79 return evnt

104/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

ADTs

Future Work

Haskell Example

References

Boolean Expressions
Rail Ticket Example (8)

ñ Rail Ticket test code 01

83railTicket01Evnts = [((c,s,q), railTicket01(c,s,q))
84 for c in [True,False]
85 for s in [True,False]
86 for q in [True,False]]

88assert railTicket01Evnts \
89 == [((True, True, True), ’SSP’)
90 ,((True, True, False), ’SSP’)
91 ,((True, False, True), ’RD’)
92 ,((True, False, False), ’RD’)
93 ,((False, True, True), ’SP’)
94 ,((False, True, False), ’SP’)
95 ,((False, False, True), ’RD’)
96 ,((False, False, False), ’STD’)]

105/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

ADTs

Future Work

Haskell Example

References

Boolean Expressions
Rail Ticket Example (9)

ñ Rail Ticket code 02 compound Boolean expressions

98def railTicket02(c,s,q) :
99 """

100 Input 3 Booleans
101 Return Event string
102 """
103 if (c and s) :
104 evnt = "SSP"
105 elif ((c and not s) or (not c and not s and q)) :
106 evnt = "RD"
107 elif (not c and s) :
108 evnt = "SP"
109 else :
110 evnt = "STD"
111 return evnt

106/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

ADTs

Future Work

Haskell Example

References

Boolean Expressions
Rail Ticket Example (10)

ñ Rail Ticket test code 02

115railTicket02Evnts = [((c,s,q), railTicket02(c,s,q))
116 for c in [True,False]
117 for s in [True,False]
118 for q in [True,False]]

120assert railTicket02Evnts == railTicket01Evnts

107/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

ADTs

Future Work

Haskell Example

References

Propositional Calculus
Introduction

ñ Unit 2 section 3.2 A taste of formal logic introduces
Propositional calculus

ñ A language for calculating about Booleans — truth
values

ñ Gives operators (connectives) conjunction (∧) AND,
disjunction (∨) OR, negation (¬) NOT, implication (⇒) IF

ñ There are 16 possible functions (B,B)→ B — see below
— defined by their truth tables

ñ Discussion Did you find the truth table for implication
weird or surprising ?

108/174

https://en.wikipedia.org/wiki/Propositional_calculus
https://en.wikipedia.org/wiki/Logical_conjunction
https://en.wikipedia.org/wiki/Logical_disjunction
https://en.wikipedia.org/wiki/Negation
https://en.wikipedia.org/wiki/Material_conditional

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

ADTs

Future Work

Haskell Example

References

Propositional Calculus
Implication

ñ Implication has a negative definition — we accept its
truth unless we have contrary evidence

ñ T ⇒ T == T and T ⇒ F == F

ñ Hence 4 possibilities for truth table

p q p
⇒

q

q p
a

q

p
∧

q

T T T T T T
T F F F F F
F T T T F F
F F T F T F

ñ (⇒) must have the entry shown — the others are taken

ñ Do not think of p causing q

109/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

ADTs

Future Work

Haskell Example

References

Propositional Calculus
Functional Completeness, Boolean Programming

ñ Functionally complete set of connectives is one which
can be used to express all possible connectives

ñ p ⇒ q ≡ ¬p ∨ q so we could just use {¬,∧,∨}
ñ Boolean programming — we have to have a

functionally complete set but choose more to make the
programming easier

ñ Expressiveness is an issue in programming language
design

110/174

https://en.wikipedia.org/wiki/Functional_completeness

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

ADTs

Future Work

Haskell Example

References

Propositional Calculus
NAND, NOR

ñ NAND p∧q, p ↑ q, Sheffer stroke

ñ NOR p∨q, p ↓ q, Pierce’s arrow

ñ See truth tables below — both {↑}, {↓} are functionally
complete

ñ Exercise verify
ñ ¬p ≡ p ↑ p
ñ p ∧ q ≡ ¬(p ↑ q) = (p ↑ q) ↑ (p ↑ q)
ñ p ∨ q ≡ (p ↑ p) ↑ (q ↑ q)
ñ ¬p ≡ p ↓ p
ñ p ∧ q ≡ (p ↓ p) ↓ (q ↓ q)
ñ p ∨ q ≡ ¬(p ↓ q) = (p ↓ q) ↓ (p ↓ q)

ñ Not a novelty — the Apollo Guidance Computer was
implemented in NOR gates alone.

111/174

https://en.wikipedia.org/wiki/Sheffer_stroke
https://en.wikipedia.org/wiki/Logical_NOR
https://en.wikipedia.org/wiki/Apollo_Guidance_Computer

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

ADTs

Future Work

Haskell Example

References

Truth Function
Truth Function References

ñ The following appendix notes illustrate the 16 binary
functions of two Boolean variables

ñ See Truth function

ñ See Functional completeness

ñ See Sheffer stroke

ñ See Logical NOR

112/174

https://en.wikipedia.org/wiki/Truth_function
https://en.wikipedia.org/wiki/Functional_completeness
https://en.wikipedia.org/wiki/Sheffer_stroke
https://en.wikipedia.org/wiki/Logical_NOR

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

ADTs

Future Work

Haskell Example

References

Truth Function
Table of Binary Truth Functions

p q > p
∨

q

p
⇐

q

p p
⇒

q

q p
a

q

p
∧

q

T T T T T T T T T T
T F T T T T F F F F
F T T T F F T T F F
F F T F T F T F T F

p q ⊥ p
∨

q

p
f

q

¬
p

p
h

q

¬
q

p
g

q

p
ö

q
T T F F F F F F F F
T F F F F F T T T T
F T F F T T F F T T
F F F T F T F T F T

113/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

ADTs

Future Work

Haskell Example

References

Truth Function
Tautology/Contradiction

ñ Tautology True, >, Top

U

p q

ñ Contradiction False, ⊥, Bottom

U

p q

114/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

ADTs

Future Work

Haskell Example

References

Truth Function
Disjunction/Joint Denial

ñ Disjunction OR, p ∨ q

U

p q

ñ Joint Denial NOR, p∨q, p ↓ q, Pierce’s arrow

U

p q

115/174

https://en.wikipedia.org/wiki/Logical_NOR

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

ADTs

Future Work

Haskell Example

References

Truth Function
Converse Implication/Converse Nonimplication

ñ Converse Implication p ⇐ q

U

p q

ñ Converse Nonimplication p f q

U

p q

116/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

ADTs

Future Work

Haskell Example

References

Truth Function
Proposition p/Negation of p

ñ Proposition p

U

p q

ñ Negation of p

U

p q

117/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

ADTs

Future Work

Haskell Example

References

Truth Function
Material Implication/Material Nonimplication

ñ Material Implication p ⇒ q

U

p q

ñ Material Nonimplication p h q

U

p q

118/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

ADTs

Future Work

Haskell Example

References

Truth Function
Proposition q/Negation of q

ñ Proposition q q

U

p q

ñ Negation of q ¬q

U

p q

119/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

ADTs

Future Work

Haskell Example

References

Truth Function
Biconditional/Exclusive disjunction

ñ Biconditional If and only if, IFF, p a q

U

p q

ñ Exclusive disjunction XOR, p g q

U

p q

120/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction
Boolean Expressions
and Truth Tables

Conditional Expressions
and Validity

Boolean Expressions
Exercise

Propositional Calculus

Truth Function

ADTs

Future Work

Haskell Example

References

Truth Function
Conjunction/Alternative denial

ñ Conjunction AND, p ∧ q

U

p q

ñ Alternative denial NAND, p ö q, p ↑ q, Sheffer stroke

U

p q

121/174

https://en.wikipedia.org/wiki/Sheffer_stroke

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs
Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists

Future Work

Haskell Example

References

Abstract Data Types
Overview

ñ Abstract data type is a type with associated operations,
but whose representation is hidden (or not accessible)

ñ Common examples in most programming languages
are Integer and Characters and other built in types such
as tuples and lists

ñ Abstract data types are modeled on Algebraic
structures
ñ A set of values
ñ Collection of operations on the values
ñ Axioms for the operations may be specified as equations

or pre and post conditions

ñ Health Warning different languages provide different
ways of doing data abstraction with similar names that
may mean subtly different things

122/174

https://en.wikipedia.org/wiki/Abstract_data_type
https://wiki.haskell.org/Abstract_data_type
https://en.wikipedia.org/wiki/Algebraic_structure
https://en.wikipedia.org/wiki/Algebraic_structure

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs
Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists

Future Work

Haskell Example

References

Abstract Data Types
Overview (2)

ñ Abstract Data Types and Object-Oriented
Programming

ñ Example: Shape with Circles, Squares, . . . and
operations draw, moveTo, . . .

ñ ADT approach centres on the data type — that tells you
what shapes exist

ñ For each operation on shapes, you describe what they
do for different shapes.

ñ OO you declare that to be a shape, you have to have
some operations (draw, moveTo)

ñ For each kind of shape you provide an implementation
of the operations

ñ OO easier to answer What is a circle? and add new
shapes

ñ ADT easier to answer How do you draw a shape? and
add new operations

123/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs
Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists

Future Work

Haskell Example

References

Abstract Data Types
Overview (3)

ñ Health Warning and Optional Material Discussions
about the merits of Functional programming and
Object-oriented programming tend to look like the
disputes between Lilliput and Blefuscu

ñ Abstract data type article contrasts ADT and OO as
algebra compared to co-algebra

ñ What does coalgebra mean in the context of
programming? is a fairly technical but accessible article.

ñ What does the forall keyword in Haskell do? — is an
accessible article on Existential Quantification

ñ Bart Jacobs Coalgebra

ñ nLab Coalgebra

ñ Beware the distinction between concepts and features in
programming languages — see OOP Disaster

ñ Not for this session — this slide is here just in case

124/174

https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Lilliput_and_Blefuscu
https://wiki.haskell.org/Abstract_data_type
http://stackoverflow.com/questions/16015020/what-does-coalgebra-mean-in-the-context-of-programming
http://stackoverflow.com/questions/16015020/what-does-coalgebra-mean-in-the-context-of-programming
http://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do
http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf
https://ncatlab.org/nlab/show/coalgebra
http://www.smashcompany.com/technology/object-oriented-programming-is-an-expensive-disaster-which-must-end

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs
Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists

Future Work

Haskell Example

References

Abstract Data Types
Overview (4) — Shapes ADT Style

1 data Shape
2 = Circle Point Radius
3 | Square Point Size

5 draw :: Shape -> Pict
6 draw (Circle p r) = drawCircle p r
7 draw (Square p s) = drawRectangle p s s

9 moveTo :: Point -> Shape -> Shape
10 moveTo p2 (Circle p1 r) = Circle p2 r
11 moveTo p2 (Square p1 s) = Square p2 s

13 shapes :: [Shape]
14 shapes = [Circle (0,0) 1, Square (1,1) 2]

16 shapes01 :: [Shape]
17 shapes01 = map (moveTo (2,2)) shapes

ñ Example based on Lennart Augustsson email of 23 June
2005 on Haskell list

125/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs
Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists

Future Work

Haskell Example

References

Abstract Data Types
Overview (5) — Shapes OO Style

1 class IsShape shape where
2 draw :: shape -> Pict
3 moveTo :: Point -> shape -> shape

5 data Shape = forall a . (IsShape a) => Shape a

7 data Circle = Circle Point Radius
8 instance IsShape Circle where
9 draw (Circle p r) = drawCircle p r

10 moveTo p2 (Circle p1 r) = Circle p2 r

12 data Square = Square Point Size
13 instance IsShape Square where
14 draw (Square p s) = drawRectangle p s s
15 moveTo p2 (Square p1 s) = Square p2 s

17 shapes :: [Shape]
18 shapes = [Shape (Circle (0,0) 10), Shape (Square (1,1) 2)]

20 shapes01 :: [Shape]
21 shapes01 = map (moveShapeTo (2,2)) shapes
22 where
23 moveShapeTo p (Shape s) = Shape (moveTo p s)

126/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs
Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists

Future Work

Haskell Example

References

Abstract Data Types
Overview (6) — The Expression Problem

ñ The Expression Problem describes a dual problem that
neither Object Oriented Programming nor Functional
Programming fully addresses.

ñ If you want to add a new thing, Object Oriented
Programming makes it easy (since you can simply
create a new class) but Functional Programming makes
it harder (since you have to edit every function that
accepts a thing of that type)

ñ If you want to add a new function, Functional
Programming makes it easy (simply add a new function)
while Object Oriented Programming makes it harder
(since you have to edit every class to add the function)

ñ Wikipedia: Expression problem
ñ Bendersky: The Expression Problem and More thoughts
ñ C2 Wiki: Expression Problem
ñ What is the ’expression problem’?
ñ Philip Wadler: The Expression Problem

127/174

https://en.wikipedia.org/wiki/Expression_problem
https://eli.thegreenplace.net/2016/the-expression-problem-and-its-solutions/
https://eli.thegreenplace.net/2018/more-thoughts-on-the-expression-problem-in-haskell/
https://wiki.c2.com/?ExpressionProblem
https://stackoverflow.com/questions/3596366/what-is-the-expression-problem
https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs
Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists

Future Work

Haskell Example

References

Abstract Data Type
Queue

ñ Queue Abstract Data Type — operations

ñ makeEmptyQ returns empty queue

ñ isEmptyQ takes queue, returns Boolean

ñ addToQ takes queue, item, returns queue with item
added at back

ñ headOfQ takes queue, returns item at front

ñ tailOfQ takes queue, returns queue without front item

ñ Other operations

ñ removeFrontQ takes queue, returns pair of item on the
front and queue with item removed

ñ sizeQ to save calculating it

ñ isFullQ for a bounded queue

128/174

https://en.wikipedia.org/wiki/Queue_(abstract_data_type)

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs
Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists

Future Work

Haskell Example

References

Abstract Data Type
Queue (2)

ñ Pre, Post Conditions, Axioms should be complete

ñ They define all permissable inputs to the functions (or
methods)

ñ They define the outcome of all applications of the
functions

ñ Composition of the functions constructs all possible
members of the ADT set

129/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs
Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists

Future Work

Haskell Example

References

Abstract Data Type
Queue (3) — Pre-conditions, Post-conditions, Axioms

ñ Pre-conditions, Post-conditions, Axioms

ñ makeEmptyQ()

ñ Pre True

ñ Post Return value q is an empty queue

ñ Axiom makeEmptyQ() == EmptyQ

ñ isEmptyQ()

ñ Pre True

ñ Post Returns True if q is empty, otherwise False

ñ Axiom isEmptyQ(makeEmptyQ()) == True

ñ isEmptyQ(addToQ(q,x)) == False

ñ Exercise complete this for the other operations

130/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs
Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists

Future Work

Haskell Example

References

Abstract Data Type
Queue (4) — Pre-conditions, Post-conditions, Axioms

ñ Pre-conditions, Post-conditions, Axioms

ñ addToQ()

ñ Pre True

ñ Post Returns queue with x at back, front part is input
queue

ñ headOfQ()

ñ Pre Argument q is non-empty

ñ Post Return value is item at the front (queue is
unchanged)

ñ Axioms headOfQ(makeEmptyQ()) == error

ñ headOfQ(addToQ(makeEmptyQ(),x)) == x

ñ headOfQ(addToQ(q,x)) == headOfQ(q)

131/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs
Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists

Future Work

Haskell Example

References

Abstract Data Type
Queue (5) — Pre-conditions, Post-conditions, Axioms

ñ Pre-conditions, Post-conditions, Axioms

ñ tailOfQ()

ñ Pre True

ñ Post Returns queue without first item

ñ Axioms tailOfQ(makeEmptyQ()) == error

ñ tailOfQ(addToQ(makeEmptyQ(),x)) == EmptyQ

ñ tailOfQ(addToQ(q,x)) == addToQ(tailOfQ(q),x)

132/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs
Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists

Future Work

Haskell Example

References

Abstract Data Type
Queue Implementation (1)

ñ Queue Implementation

ñ Using Lists as Queues section 5.1.2 of the Tutorial

ñ Quote: It is also possible to use a list as a queue, where the first element

added is the first element retrieved (first-in, first-out); however, lists are not

efficient for this purpose. While appends and pops from the end of list are

fast, doing inserts or pops from the beginning of a list is slow (because all of

the other elements have to be shifted by one).

ñ Could use collections.deque but we will use a pair of
lists — See Okasaki (1998, page 42)

133/174

https://docs.python.org/3/tutorial/datastructures.html#using-lists-as-queues
https://docs.python.org/3/library/collections.html#collections.deque

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs
Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists

Future Work

Haskell Example

References

Abstract Data Type
Queue Implementation (2)

ñ Queue Implementation 1

ñ Using a namedtuple()

ñ A factory function for creating tuple subclasses with
named fields

5from collections import namedtuple

7Qp1 = namedtuple(’Qp1’,[’frs’,’rbks’])

134/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs
Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists

Future Work

Haskell Example

References

Abstract Data Type
Queue Implementation (3)

ñ Queue Implementation 1 main operations

9def makeEmptyQp1():
10 return Qp1([],[])

12def isEmptyQp1(q):
13 return q.frs == []

15def addToQp1(q,x):
16 return checkQp1(q.frs, [x] + q.rbks[:])

18def headOfQp1(q):
19 if q.frs == [] :
20 RunTimeError("headOfQp1 applied to empty queue")
21 else:
22 return q.frs[0]

24def tailOfQp1(q):
25 if q.frs == [] :
26 RunTimeError("tailOfQp1 applied to empty queue")
27 else:
28 return checkQp1(q.frs[1:], q.rbks[:])

135/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs
Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists

Future Work

Haskell Example

References

Abstract Data Type
Queue Implementation (4)

ñ Queue Implementation 1 checkOp1()

30def checkQp1(frs, rbks):
31 if frs == [] :
32 bks = rbks[:]
33 bks.reverse()
34 return Qp1(bks, [])
35 else :
36 return Qp1(frs, rbks)

ñ Note copying of arguments — see below for reason

ñ Note also in stringQp1Items below at line 47 on slide
138

ñ implicit line joining using (()) (why is this needed ??)

ñ Note use of recursion

136/174

https://docs.python.org/3/reference/lexical_analysis.html#implicit-line-joining

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs
Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists

Future Work

Haskell Example

References

Abstract Data Type
Python Argument Passing

ñ Functions, Immutable and Mutable Arguments

ñ Immutable arguments are passed by value

ñ Mutable arguments are passed by reference

ñ Immutable: numbers, strings, tuples

ñ Mutable: Lists, dictionaries, sets, and most objects in
user classes

>>> def changer (a,b) :
... a = 2
... b[0] = ’spam’
...
>>> n = 1
>>> xs = [1,2]
>>> changer(n, xs)
>>> (n,xs)
(1, [’spam’, 2])

137/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs
Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists

Future Work

Haskell Example

References

Abstract Data Type
Queue Implementation (5)

ñ Queue Implementation 1 conversion operations

38def stringQp1(q) :
39 return ("<" + stringQp1Items(q) + ">")

41def stringQp1Items(q) :
42 if isEmptyQp1(q) :
43 return ""
44 elif isEmptyQp1(tailOfQp1(q)) :
45 return str(headOfQp1(q))
46 else :
47 return (str(headOfQp1(q))
48 + ", " + stringQp1Items(tailOfQp1(q)))

50def buildQp1(xs,q) :
51 if xs == [] :
52 return q
53 else :
54 return buildQp1(xs[1:],addToQp1(q,xs[0]))

56def listToQp1(xs) :
57 return buildQp1(xs, makeEmptyQp1())

138/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs
Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists

Future Work

Haskell Example

References

Abstract Data Type
Queue Implementation (6)

ñ Queue Implementation 1 test code

61q11 = listToQp1([1,2,3,1])

63q12 = tailOfQp1(q11)

65assert q11 == Qp1(frs=[1], rbks=[1, 3, 2])

67assert stringQp1(q11) == ’<1, 2, 3, 1>’

69assert q12 == Qp1(frs=[2, 3, 1], rbks=[])

71assert stringQp1(q12) == ’<2, 3, 1>’

139/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs
Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists

Future Work

Haskell Example

References

Abstract Data Type
Queue Implementation (7)

ñ Queue Implementation 2

ñ Modify to add size

ñ Store in tuple to save calculating each time

75Qp2 = namedtuple(’Qp2’,[’frs’,’rbks’,’sz’])

ñ Exercise Add size() operation and other modifications

140/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs
Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists

Future Work

Haskell Example

References

Abstract Data Type
Queue Implementation (8)

ñ Queue Implementation 2 main operations

77def makeEmptyQp2():
78 return Qp2([],[], 0)

80def isEmptyQp2(q):
81 return q.frs == []

83def addToQp2(q,x):
84 return checkQp2(q.frs, [x] + q.rbks[:], q.sz + 1)

86def headOfQp2(q):
87 if q.frs == [] :
88 RunTimeError("headOfQp2 applied to empty queue")
89 else:
90 return q.frs[0]

92def tailOfQp2(q):
93 if q.frs == [] :
94 RunTimeError("tailOfQp2 applied to empty queue")
95 else:
96 return checkQp2(q.frs[1:], q.rbks[:], q.sz - 1)

141/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs
Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists

Future Work

Haskell Example

References

Abstract Data Type
Queue Implementation (9)

ñ Queue Implementation 2 sizeQp2(), checkOp1()

98def sizeOfQp2(q) :
99 return q.sz

101def checkQp2(frs, rbks, sz):
102 if frs == [] :
103 bks = rbks[:]
104 bks.reverse()
105 return Qp2(bks, [], sz)
106 else :
107 return Qp2(frs, rbks, sz)

ñ Note also in stringQp2Items below at line 118 on
slide 143

ñ implicit line joining using (()) (why is this needed ??)

ñ Note use of recursion

142/174

https://docs.python.org/3/reference/lexical_analysis.html#implicit-line-joining

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs
Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists

Future Work

Haskell Example

References

Abstract Data Type
Queue Implementation (10)

ñ Queue Implementation 2 conversion operations

109def stringQp2(q) :
110 return ("<" + stringQp2Items(q) + ">")

112def stringQp2Items(q) :
113 if isEmptyQp2(q) :
114 return ""
115 elif isEmptyQp2(tailOfQp2(q)) :
116 return str(headOfQp2(q))
117 else :
118 return (str(headOfQp2(q))
119 + ", " + stringQp2Items(tailOfQp2(q)))

121def buildQp2(xs,q) :
122 if xs == [] :
123 return q
124 else :
125 return buildQp2(xs[1:],addToQp2(q,xs[0]))

127def listToQp2(xs) :
128 return buildQp2(xs, makeEmptyQp2())

143/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs
Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists

Future Work

Haskell Example

References

Abstract Data Type
Queue Implementation (11)

ñ Queue Implementation 2 test code

132q21 = listToQp2([1,2,3,1])

134q22 = tailOfQp2(q21)

136assert q21 == Qp2(frs=[1], rbks=[1, 3, 2], sz=4)

138assert stringQp2(q21) == ’<1, 2, 3, 1>’

140assert q22 == Qp2(frs=[2, 3, 1], rbks=[], sz=3)

142assert stringQp2(q22) == ’<2, 3, 1>’

144/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs
Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists

Future Work

Haskell Example

References

Abstract Data Types
Lists Implemented in Lists (1)

ñ Lists implemented naively as linked lists have some
operations that take constant time and some that are
linear in the length of the list

ñ Adding an element to the front of a list takes constant
time while adding an element to the rear takes linear
time

ñ This section reimplements lists using a pair of lists that
overcomes this asymmetry in efficiency giving constant
time for all operations.

ñ The basic idea is quite simple: break the list in two and
reverse the second half

ñ This means that the last element is the first element of
the second list

ñ A problem arises when one attempts to remove an
element — in some cases the list has to be reorganised
into two halves

ñ The criteria for reorganising gives the clue in how to
write the code

145/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs
Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists

Future Work

Haskell Example

References

Abstract Data Types
Lists Implemented in Lists (2)

ñ This implementation is based on Bird and Gibbons
(2020, chp 3) Algorithm Design with Haskell

ñ The idea is attributed to Gries (1981, page 250) The
Science of Programming and Hood and Melville (1980)
Real time queue operations in pure Lisp

ñ See also Hoogerwoord (1992) Functional Pearls A
symmetric set of efficient list operations

146/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs
Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists

Future Work

Haskell Example

References

Abstract Data Types
Lists Implemented in Lists (3)

ñ We give the code in Python from SymmetricLists.py
with Haskell type specifications and declarations given
as comments

ñ Here is the type alias declaration as a comment along
with fromSL which converts back from symmetric lists
to standard lists — this is known as the abstraction
function

12# type SymList a = ([a],[a])

14# Abstraction function

16# fromSL :: SymList a -> [a]

18def fromSL (pr) :
19 xs = pr[0]
20 ys = pr[1]
21 return xs + reverseF (ys)

23def reverseF (xs) :
24 ys = xs[:]
25 ys.reverse()
26 return ys

147/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs
Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists

Future Work

Haskell Example

References

Abstract Data Types
Lists Implemented in Lists (4)

ñ The abstraction function captures the relationship
between the implementation of an operation on the
representing type and its abstract type with an equation

ñ The Eureka bit of the implementation is spotting the
representation invariant that our definitions both
exploit and maintain

28# repInvSL :: SymList a -> Bool

30def repInvSL (pr) :
31 xs = pr[0]
32 ys = pr[1]
33 xsTest = ((not isEmpty (xs))
34 or (isEmpty (ys) or singleton (ys)))
35 ysTest = ((not isEmpty (ys))
36 or (isEmpty (xs) or singleton (xs)))
37 return (xsTest and ysTest)

ñ This says if one list is empty then the other must be
either empty or a singleton

ñ This tells us when we need to reorganise the lists

148/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs
Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists

Future Work

Haskell Example

References

Abstract Data Types
Lists Implemented in Lists (5)

ñ Here are the service operations for empty lists and
singletons

39# isEmpty :: [a] -> Bool

41def isEmpty (xs) :
42 return (xs == [])

44# isEmptySL :: SymList a -> Bool

46def isEmptySL (pr) :
47 xs = pr[0]
48 ys = pr[1]
49 return (isEmpty (xs) and isEmpty (ys))

51# singleton :: [a] -> Bool

53def singleton (xs) :
54 return (len(xs) == 1)

56# singletonSL :: SymList a -> Bool

58def singletonSL (pr) :
59 xs = pr[0]
60 ys = pr[1]
61 return ((isEmpty (xs) and singleton (ys))
62 or (isEmpty (ys) and singleton (xs)))

149/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs
Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists

Future Work

Haskell Example

References

Abstract Data Types
Lists Implemented in Lists (6)

ñ Constructor operations
ñ Both of these definitions make use of the

representation invariant

64# Constructor functions

66# consSL :: a -> SymList a -> SymList a

68def consSL (x, pr) :
69 xs = pr[0]
70 ys = pr[1]
71 if isEmpty (ys) :
72 return ([x],xs)
73 else :
74 return ([x] + xs, ys)

76# snocSL :: a -> SymList a -> SymList a

78def snocSL (x, pr) :
79 xs = pr[0]
80 ys = pr[1]
81 if isEmpty (xs) :
82 return (ys,[x])
83 else :
84 return (xs, [x] + ys)

150/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs
Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists

Future Work

Haskell Example

References

Abstract Data Types
Lists Implemented in Lists (7)

ñ Inspectors

88# headSL :: SymList a -> a

90def headSL (pr) :
91 xs = pr[0]
92 ys = pr[1]
93 if isEmpty (xs) :
94 if isEmpty (ys) :
95 raise RuntimeError("headSL ([],[])")
96 else :
97 return ys[0]
98 else :
99 return xs[0]

101# lastSL :: SymList a -> a

103def lastSL (pr) :
104 xs = pr[0]
105 ys = pr[1]
106 if isEmpty (ys) :
107 if isEmpty (xs) :
108 raise RuntimeError("tailSL ([],[])")
109 else :
110 return xs[0]
111 else :
112 return ys[0]

151/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs
Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists

Future Work

Haskell Example

References

Abstract Data Types
Lists Implemented in Lists (8)

ñ tailSL

ñ Notice how the representation invariant is maintained

115# tailSL :: SymList a -> SymList a

117def tailSL (pr) :
118 xs = pr[0]
119 ys = pr[1]
120 if isEmpty (xs) :
121 if isEmpty (ys):
122 raise RuntimeError("tailSL ([],[])")
123 else:
124 return ([],[])
125 elif singleton (xs) :
126 splitPt = len(ys) // 2
127 (us,vs) = (ys[:splitPt],ys[splitPt:])
128 return (reverseF (vs), us)
129 else :
130 return (xs[1:],ys)

152/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs
Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists

Future Work

Haskell Example

References

Abstract Data Types
Lists Implemented in Lists (9)

ñ initSL

132# initSL :: SymList a -> SymList a

134def initSL (pr) :
135 xs = pr[0]
136 ys = pr[1]
137 if isEmpty (ys) :
138 if isEmpty (xs):
139 raise RuntimeError("initSL ([],[])")
140 else:
141 return ([],[])
142 elif singleton (ys) :
143 splitPt = len(xs) // 2
144 (us,vs) = (xs[:splitPt],xs[splitPt:])
145 return (us, reverseF (vs))
146 else :
147 return (xs,ys[1:])

153/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs
Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists

Future Work

Haskell Example

References

Abstract Data Types
Lists Implemented in Lists (10)

ñ The implementations are designed to satisfy the six
equations:

ñ The equations are expressed here in Haskell notation

1 # -- The implementation satifies the following
2 # --
3 # -- (cons x . fromSL) ps == (fromSL . consSL x) ps
4 # -- (snoc x . fromSL) ps == (fromSL . snocSL x) ps
5 # -- (tail . fromSL) ps == (fromSL . tailSL) ps
6 # -- (init . fromSL) ps == (fromSL . initSL) ps
7 # -- (head . fromSL) ps == headSL ps
8 # -- (last . fromSL) ps == lastSL ps

ñ Each of the operations apart from tailSL and initSL
take constant time

ñ tailSL and initSL can take linear time in the worst
case but they take amortised constant time — see the
references for derivation

ñ Note that Haskell Data.Sequence uses 2-3 Finger Trees
for better performance

154/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs
Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists

Future Work

Haskell Example

References

Abstract Data Types
Lists Implemented in Lists (11)

ñ Ex (1) Write down all the ways "abcd" can be
represented as a symmetric list.

Give examples to show how each of these
representations can be generated.

ñ Ex (2) Define lengthSL

ñ Ex (3) Implement dropWhileSL so that

dropWhile . fromSL = fromSL . dropWhileSL

ñ Ex (4) Define initsSL with the type

initsSL :: SymList a -> SymList (SymList a)

Write down the equation which expresses the
relationship between fromSL, initsSL, and inits.

155/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs
Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists

Future Work

Haskell Example

References

Abstract Data Types
Lists Implemented in Lists (12a)

ñ Ans (1) There are three ways:

("a","dcb"),("ab","dc"),("abc","d")

Python3>>> prs1 = consSL(’a’,([],[]))
Python3>>> prs1
([’a’], [])
Python3>>> prs2 = snocSL(’b’,prs1)
Python3>>> prs2
([’a’], [’b’])
Python3>>> prs3 = snocSL(’c’,prs2)
Python3>>> prs3
([’a’], [’c’, ’b’])
Python3>>> prs4 = snocSL(’d’,prs3)
Python3>>> prs4
([’a’], [’d’, ’c’, ’b’])

Python3>>> prs1a = snocSL(’a’,([],[]))
Python3>>> prs1a
([], [’a’])
Python3>>> prs2a = snocSL(’b’,prs1a)
Python3>>> prs2a
([’a’], [’b’])

156/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs
Abstract Data Types —
Overview

Abstract Data Type —
Queue

ADT Lists in Lists

Future Work

Haskell Example

References

Abstract Data Types
Lists Implemented in Lists (12b)

ñ Ans (1) There are three ways:

("a","dcb"),("ab","dc"),("abc","d")

Python3>>> prs1 = consSL(’d’,([],[]))
Python3>>> prs1
([’d’], [])
Python3>>> prs2 = consSL(’c’,prs1)
Python3>>> prs2
([’c’], [’d’])
Python3>>> prs3 = consSL(’b’,prs2)
Python3>>> prs3
([’b’, ’c’], [’d’])
Python3>>> prs4 = consSL(’a’,prs3)
Python3>>> prs4
([’a’, ’b’, ’c’], [’d’])

ñ Functional programmers will spot that the first is an
instance of a foldl while the third is an instance of a
foldr

157/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

What Next ?
Programming, Debugging, Psychology

Although programming techniques have improved
immensely since the early days, the process of finding and
correcting errors in programming — known graphically if
inelegantly as debugging — still remains a most difficult,
confused and unsatisfactory operation. The chief impact of
this state of affairs is psychological. Although we are happy
to pay lip-service to the adage that to err is human, most of
us like to make a small private reservation about our own
performance on special occasions when we really try. It is
somewhat deflating to be shown publicly and
incontrovertibly by a machine that even when we do try, we
in fact make just as many mistakes as other people. If your
pride cannot recover from this blow, you will never make a
programmer.
Christopher Strachey, Scientific American 1966 vol 215 (3) September

pp112–124

158/174

https://en.wikipedia.org/wiki/Christopher_Strachey

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

What Next ?
To err is human ?

ñ To err is human, to really foul things up requires a
computer.

ñ Attributed to Paul R. Ehrlich in 101 Great Programming
Quotes

ñ Attributed to Bill Vaughn in Quote Investigator

ñ Derived from Alexander Pope (1711, An Essay on
Criticism)

ñ To Err is Humane; to Forgive, Divine
ñ This also contains

A little learning is a dangerous thing;
Drink deep, or taste not the Pierian Spring

ñ In programming, this means you have to read the
fabulous manual (RTFM)

159/174

https://en.wikipedia.org/wiki/Paul_R._Ehrlich
http://www.devtopics.com/101-great-computer-programming-quotes/
http://www.devtopics.com/101-great-computer-programming-quotes/
https://en.wikipedia.org/wiki/William_E._Vaughan
http://quoteinvestigator.com/2010/12/07/foul-computer/
https://en.wikipedia.org/wiki/Alexander_Pope
https://en.wikipedia.org/wiki/An_Essay_on_Criticism
https://en.wikipedia.org/wiki/An_Essay_on_Criticism
https://en.wikipedia.org/wiki/Pierian_Spring
https://lmgtfy.com/?q=rtfm

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Future Work
Sorting, Searching

ñ Recursive function definitions
ñ Inductive data type definitions

ñ A list is either an empty list or a first item followed by
the rest of the list

ñ A binary tree is either an empty tree or a node with an
item and two sub-trees

ñ Recursive definitions often easier to find than iterative

ñ Sorting

ñ Searching

ñ Both use binary tree structure

160/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Future Work
Dates

ñ 9 December 2021 TMA01

ñ Sunday 9 January 2022 Tutorial Online Sorting

ñ Sunday 6 February 2022 Tutorial Online Binary Trees

ñ 8 March 2022 TMA02

161/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example
Binary Search — Haskell
— version 1

Binary Search — Haskell
— version 2

Binary Search — Haskell
— Comparison

References

Example Algorithm Design — Haskell
Binary Search — Haskell

ñ The notes following give two implementations of Binary
Search in Haskell

ñ Note: these are not part of M269 and are purely for
comparison for those interested

ñ The first is a direct translation of the recursive Python
version

ñ The second is derived from
http://rosettacode.org/wiki/Binary_search and
is more idiomatic Haskell

ñ The code for both implementations is in the file
M269BinarySearch.hs (which should be near the file
of these slides)

162/174

http://haskell.org
http://rosettacode.org/wiki/Binary_search

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example
Binary Search — Haskell
— version 1

Binary Search — Haskell
— version 2

Binary Search — Haskell
— Comparison

References

Example Algorithm Design — Haskell
Binary Search — Haskell — 1 (a)

1module M269BinarySearch where

3 import Data.Array
4 import Data.List

ñ A Haskell script starts with a module header which
starts with the reserved identifier, module followed by
the module name, M269BinarySearch

ñ The module name must start with an upper case letter
and is the same as the file name (without its extension
of .hs or .lhs)

ñ Haskell uses layout (or the off-side rule) to determine
scope of definitions, similar to Python

ñ The body of the module follows the reserved identifier
where and starts with import declarations

ñ This imports the libraries Data.List, Data.Array

163/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example
Binary Search — Haskell
— version 1

Binary Search — Haskell
— version 2

Binary Search — Haskell
— Comparison

References

Example Algorithm Design — Haskell
Binary Search — Haskell — 1 (b)

6 binarySearch :: Ord a => [a] -> a -> Maybe Int

8 binarySearch xs val
9 = binarySearch01 xs val (lo,hi)

10 where
11 lo = 0
12 hi = length xs - 1

ñ Line 8 is the definition of binarySearch

ñ The preceding line, 6, is the type signature

ñ binarySearch takes a list and a value of type a (in the
class Ord for ordering) and returns a Maybe Int — a is
a type variable

ñ The Maybe a type is an algebraic data type which is the
union of the data constructors Nothing and Just a

data Maybe a = Nothing | Just a

164/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example
Binary Search — Haskell
— version 1

Binary Search — Haskell
— version 2

Binary Search — Haskell
— Comparison

References

Example Algorithm Design — Haskell
Code Description 1

ñ f :: t is a type signature for variable f that reads f is
of type t

ñ f :: t1 -> t2 means that f has the type of a function
that takes elements of type t1 and returns elements of
type t2

ñ The function type arrow -> associates to the right
ñ f :: t1 -> t2 -> t3 means
ñ f :: t1 -> (t2 -> t3)

ñ f x — function application is denoted by juxtaposition
and is more binding than (almost) any other operation.

ñ Function application is left associative
ñ f x y means
ñ (f x) y

165/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example
Binary Search — Haskell
— version 1

Binary Search — Haskell
— version 2

Binary Search — Haskell
— Comparison

References

Example Algorithm Design — Haskell
Binary Search — Haskell — 1 (c)

14 binarySearch01 :: Ord a
15 => [a] -> a -> (Int, Int) -> Maybe Int

17 binarySearch01 xs val (lo,hi)
18 = if hi < lo then Nothing
19 else
20 let mid = (lo + hi) ‘div‘ 2
21 guess = xs !! mid
22 in
23 if val == guess
24 then Just mid
25 else if val < guess
26 then binarySearch01 xs val (lo,mid-1)
27 else binarySearch01 xs val (mid + 1, hi)

166/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example
Binary Search — Haskell
— version 1

Binary Search — Haskell
— version 2

Binary Search — Haskell
— Comparison

References

Example Algorithm Design — Haskell
Code Description 2

ñ A let expression has the form

let decls in expr

ñ decls is a number of declarations

ñ expr is an expression (which is the scope of the
declarations)

ñ div is the integer division function

ñ In `div`, the grave accents (`) make a function into an
infix operator (OK, that is syntactic sugar I need not
have introduced — and my formatting program has
coerced the grave accent to a left single quotation mark
Unicode U+2018, not the grave accent U+0060)

ñ (!!) is the list index operator — first item has index 0

167/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example
Binary Search — Haskell
— version 1

Binary Search — Haskell
— version 2

Binary Search — Haskell
— Comparison

References

Example Algorithm Design — Haskell
Binary Search — Haskell — 2 (a)

29 binarySearchGen :: Integral a
30 => (a -> Ordering) -> (a, a) -> Maybe a
31 binarySearchGen p (lo,hi)
32 | hi < lo = Nothing
33 | otherwise =
34 let mid = (lo + hi) ‘div‘ 2 in
35 case p mid of
36 LT -> binarySearchGen p (lo, mid - 1)
37 GT -> binarySearchGen p (mid + 1, hi)
38 EQ -> Just mid

168/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example
Binary Search — Haskell
— version 1

Binary Search — Haskell
— version 2

Binary Search — Haskell
— Comparison

References

Example Algorithm Design — Haskell
Code Description 3

ñ A case expression has the form

case expr of alts

expr is evaluated and whichever alternative of alts
matches is the result

ñ The lines starting with (|) are guarded definitions — if
the boolean expression to the right is True then the
following expression is used

ñ otherwise is a synonym for True

ñ A conditional expression has the form

if expr then expr else expr

The first expr must be of type Bool

ñ Guards and conditionals are alternative styles in
programming

169/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example
Binary Search — Haskell
— version 1

Binary Search — Haskell
— version 2

Binary Search — Haskell
— Comparison

References

Example Algorithm Design — Haskell
Binary Search — Haskell — 2 (b)

40 binarySearchArray :: (Ix i, Integral i, Ord a)
41 => Array i a -> a -> Maybe i
42 binarySearchArray ary x
43 = binarySearchGen p (bounds ary)
44 where
45 p m = x ‘compare‘ (ary ! m)

47 binarySearchList :: Ord a
48 => [a] -> a -> Maybe Int
49 binarySearchList xs val
50 = binarySearchGen p (0, length xs - 1)
51 where
52 p m = val ‘compare‘ (xs !! m)

170/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example
Binary Search — Haskell
— version 1

Binary Search — Haskell
— version 2

Binary Search — Haskell
— Comparison

References

Example Algorithm Design — Haskell
Code Description 4

ñ compare is a method of the Ord class, for ordering,
defined in the standard Prelude

class (Eq a) => Ord a where
compare :: a -> a -> Ordering
(<),(<=),(>=),(>) :: a -> a -> Bool
max, min :: a -> a -> a

compare x y
| x == y = EQ
| x <= y = LT
| otherwise = GT

data Ordering = LT | EQ | GT
deriving (Eq,Ord,Enum,Read,Show,Bounded)

ñ Minimal type-specific definitions required are compare
or (==) and (<=)

ñ ! and !! are the array and list indexing operators

171/174

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example
Binary Search — Haskell
— version 1

Binary Search — Haskell
— version 2

Binary Search — Haskell
— Comparison

References

Example Algorithm Design
Binary Search — Haskell — Comparison

ñ The first version with binarySearch and
binarySearch01 is very similar to the Python recursive
version binarySearchRec

ñ In the Haskell case an explicit helper function is used

ñ The second version is more general: binarySearchGen
can be used with any type that is indexed by a data type
in the Integral class

ñ binarySearchArray and binarySearchList
specialise the function to arrays or lists.

ñ For the Haskell Array data type see the Haskell Report

ñ Idiomatic Haskell tends to be more general and make
use of higher order functions, type classes and
advanced features.

172/174

http://www.haskell.org/haskellwiki/Language_and_library_specification

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Web Links & References
Python IDEs

ñ Python Online IDEs
ñ Repl.it https://repl.it/languages/python3

(Read-eval-print loop)
ñ TutorialsPoint CodingGround Python 3 https://www.

tutorialspoint.com/execute_python3_online.php
ñ TutorialsPoint CodingGround Haskell ghci

https://www.tutorialspoint.com/compile_
haskell_online.php

173/174

https://repl.it/languages/python3
https://www.tutorialspoint.com/execute_python3_online.php
https://www.tutorialspoint.com/execute_python3_online.php
https://www.tutorialspoint.com/compile_haskell_online.php
https://www.tutorialspoint.com/compile_haskell_online.php

M269 Python,
Logic, ADTs

Phil Molyneux

Agenda

Adobe Connect

Programming

Python

Complexity

Logarithms

Before Calculators

Logic Introduction

ADTs

Future Work

Haskell Example

References

Web Links & References
References

ñ The offside rule (using layout to determine the start and
end of code blocks) comes originally from Landin
(1966) — see Off-side rule for other programming
languages that use this.

ñ The step-by-step approach to writing programs is
described in Glaser (2000)

ñ The difficulty in learning programs is described in many
articles — see, for example, Dehnadi (2006)

ñ Inductive data type
ñ Algebraic data type composite type — possibly recursive

sum type of product types — common in modern
functional languages.

ñ Recursive data type from Type theory

174/174

https://en.wikipedia.org/wiki/Off-side_rule
https://en.wikipedia.org/wiki/Algebraic_data_type
https://en.wikipedia.org/wiki/Tagged_union
https://en.wikipedia.org/wiki/Product_type
https://en.wikipedia.org/wiki/Recursive_data_type
https://en.wikipedia.org/wiki/Type_theory

	Agenda
	Adobe Connect Interface and Settings
	Adobe Connect Interface
	Adobe Connect Settings
	Adobe Connect — Sharing Screen & Applications
	Adobe Connect — Ending a Meeting
	Adobe Connect — Invite Attendees
	Layouts
	Chat Pods
	Graphics Conversion for Web

	Programming — Computational Components
	Computational Components
	Computation, Programming, Programming Languages
	Example Algorithm Design
	Binary Search — Exercise
	Binary Search — Comparison
	Writing Programs & Thinking

	Python
	Learning Python
	Basic Python
	Python Workflows

	Complexity and Big O Notation
	Complexity Example
	Complexity & Python Data Types

	Exponentials and Logarithms
	Exponentials and Logarithms — Definitions
	Rules of Indices
	Logarithms — Motivation
	Exponentials and Logarithms — Graphs
	Laws of Logarithms
	Arithmetic and Inverses
	Change of Base

	Before Calculators and Computers
	Log Tables
	Slide Rules
	Calculators
	Example Calculation

	Logic and Truth Tables
	Boolean Expressions and Truth Tables
	Conditional Expressions and Validity
	Boolean Expressions Exercise
	Propositional Calculus
	Truth Function

	Abstract Data Types
	Abstract Data Types — Overview
	Abstract Data Type — Queue
	ADT Lists in Lists

	Future Work
	Example Algorithm Design — Haskell
	Binary Search — Haskell — version 1
	Binary Search — Haskell — version 2
	Binary Search — Haskell — Comparison

	Web Links & References

