
M269 Python, Logic, ADTs

M269 Python, ADTs Prsntn2021J

Contents

1 Agenda 2

2 Adobe Connect 4
2.1 Interface . 4
2.2 Settings . 4
2.3 Sharing Screen & Applications . 6
2.4 Ending a Meeting . 6
2.5 Invite Attendees . 6
2.6 Layouts . 7
2.7 Chat Pods . 7
2.8 Web Graphics . 8

3 Programming 8
3.1 Computational Components . 8
3.2 Computation, Programming, Programming Languages 9
3.3 Example Algorithm Design . 9
3.4 Binary Search — Exercise . 10
3.5 Binary Search — Comparison . 10
3.6 Writing Programs & Thinking . 11

4 Python 12
4.1 Learning Python . 12
4.2 Basic Python . 12
4.3 Python Workflows . 13

5 Complexity 14
5.1 Complexity Example . 16
5.2 Complexity & Python Data Types . 19

6 Logarithms 20
6.1 Exponentials and Logarithms — Definitions . 20
6.2 Rules of Indices . 20
6.3 Logarithms — Motivation . 21
6.4 Exponentials and Logarithms — Graphs . 21
6.5 Laws of Logarithms . 21
6.6 Arithmetic and Inverses . 22
6.7 Change of Base . 23

7 Before Calculators 24
7.1 Log Tables . 25
7.2 Slide Rules . 27
7.3 Calculators . 29
7.4 Example Calculation . 30

1

2 M269 Python, Logic, ADTs 28 November 2021

8 Logic Introduction 30
8.1 Boolean Expressions and Truth Tables . 30
8.2 Conditional Expressions and Validity . 33
8.3 Boolean Expressions Exercise . 33
8.4 Propositional Calculus . 36
8.5 Truth Function . 37

9 ADTs 41
9.1 Abstract Data Types — Overview . 41
9.2 Abstract Data Type — Queue . 43
9.3 ADT Lists in Lists . 47

10 Future Work 51

11 Haskell Example 52
11.1Binary Search — Haskell — version 1 . 52
11.2Binary Search — Haskell — version 2 . 54
11.3Binary Search — Haskell — Comparison . 55

12 References 55
References . 56

1 Agenda

• Introductions

• Programming — Paradigms and Step-by-Step Guide

• Programming and Python

• Complexity and Big O Notation

• . . . with a little classical logic

• Abstract Data Type examples

• Implementing Queues

• Implementing Lists in Lists

• A look towards the next topics

– Recursive function definitions

– Inductive data type definitions

• Adobe Connect — if you or I get cut off, wait till we reconnect (or send you an email)

• Time: about 1 hour

• Do ask questions or raise points.

• Slides/Notes M269Tutorial02ProgPythonADT

http://pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269Tutorial02ProgPythonADT/

Phil Molyneux M269 Python, ADTs Prsntn2021J 3

Introductions — Phil

• Name Phil Molyneux

• Background

– Undergraduate: Physics and Maths (Sussex)

– Postgraduate: Physics (Sussex), Operational Research (Brunel), Computer Sci-
ence (University College, London)

– Worked in Operational Research, Business IT, Web technologies, Functional Pro-
gramming

• First programming languages Fortran, BASIC, Pascal

• Favourite Software

– Haskell — pure functional programming language

– Text editors TextMate, Sublime Text — previously Emacs

– Word processing in LATEX — all these slides and notes

– Mac OS X

• Learning style — I read the manual before using the software

Introductions — You

• Name ?

• Favourite software/Programming language ?

• Favourite text editor or integrated development environment (IDE)

• List of text editors, Comparison of text editors and Comparison of integrated devel-
opment environments

• Other OU courses ?

• Anything else ?

Go to Table of Contents

https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://www.haskell.org/
https://macromates.com
http://www.sublimetext.com
https://www.emacswiki.org/
https://www.latex-project.org/
https://developer.apple.com/
https://en.wikipedia.org/wiki/Text_editor
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/List_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments

4 M269 Python, Logic, ADTs 28 November 2021

2 Adobe Connect Interface and Settings

2.1 Adobe Connect Interface

Adobe Connect Interface — Host View

Adobe Connect Interface — Participant View

2.2 Adobe Connect Settings

Adobe Connect — Settings

Phil Molyneux M269 Python, ADTs Prsntn2021J 5

• Everybody Menu bar Meeting Speaker & Microphone Setup

• Menu bar Microphone Allow Participants to Use Microphone 4

• Check Participants see the entire slide including slide numbers bottom right Workaround

– Disable Draw Share pod Menu bar Draw icon

– Fit Width Share pod Bottom bar Fit Width icon 4

• Meeting Preferences General Host Cursor Show to all attendees

• Menu bar Video Enable Webcam for Participants 4

• Do not Enable single speaker mode

• Cancel hand tool

• Do not enable green pointer

• Recording Meeting Record Session 4

• Documents Upload PDF with drag and drop to share pod

• Delete Meeting Manage Meeting Information Uploaded Content and check filename click on delete

Adobe Connect — Access

• Tutor Access

TutorHome M269 Website Tutorials

Cluster Tutorials M269 Online tutorial room

Tutor Groups M269 Online tutor group room

Module-wide Tutorials M269 Online module-wide room

• Attendance

TutorHome Students View your tutorial timetables

• Beamer Slide Scaling 440% (422 x 563 mm)

• Clear Everyone’s Status

Attendee Pod Menu Clear Everyone’s Status

• Grant Access and send link via email

Meeting Manage Access & Entry Invite Participants. . .

• Presenter Only Area

Meeting Enable/Disable Presenter Only Area

Adobe Connect — Keystroke Shortcuts

• Keyboard shortcuts in Adobe Connect

• Toggle Mic + M (Mac), Ctrl + M (Win) (On/Disconnect)

• Toggle Raise-Hand status + E

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html

6 M269 Python, Logic, ADTs 28 November 2021

• Close dialog box (Mac), Esc (Win)

• End meeting + \

2.3 Adobe Connect — Sharing Screen & Applications

• Share My Screen Application tab Terminal for Terminal

• Share menu Change View Zoom in for mismatch of screen size/resolution (Participants)

• (Presenter) Change to 75% and back to 100% (solves participants with smaller screen
image overlap)

• Leave the application on the original display

• Beware blued hatched rectangles — from other (hidden) windows or contextual
menus

• Presenter screen pointer affects viewer display — beware of moving the pointer away
from the application

• First time: System Preferences Security & Privacy Privacy Accessibility

2.4 Adobe Connect — Ending a Meeting

• Notes for the tutor only

• Student: Meeting Exit Adobe Connect

• Tutor:

• Recording Meeting Stop Recording 4

• Remove Participants Meeting End Meeting. . . 4

– Dialog box allows for message with default message:

– The host has ended this meeting. Thank you for attending.

• Recording availability In course Web site for joining the room, click on the eye icon
in the list of recordings under your recording — edit description and name

• Meeting Information Meeting Manage Meeting Information — can access a range of informa-
tion in Web page.

• Delete File Upload Meeting Manage Meeting Information Uploaded Content tab select file(s) and
click Delete

• Attendance Report see course Web site for joining room

2.5 Adobe Connect — Invite Attendees

• Provide Meeting URL Menu Meeting Manage Access & Entry Invite Participants. . .

• Allow Access without Dialog Menu Meeting Manage Meeting Information provides new browser
window with Meeting Information Tab bar Edit Information

https://en.wikipedia.org/wiki/Terminal_(macOS)

Phil Molyneux M269 Python, ADTs Prsntn2021J 7

• Check Anyone who has the URL for the meeting can enter the room

• Default Only registered users and accepted guests may enter the room

• Reverts to default next session but URL is fixed

• Guests have blue icon top, registered participants have yellow icon top — same icon
if URL is open

• See Start, attend, and manage Adobe Connect meetings and sessions

2.6 Layouts

• Creating new layouts example Sharing layout

• Menu Layouts Create New Layout. . . Create a New Layout dialog Create a new blank layout and name it
PMolyMain

• New layout has no Pods but does have Layouts Bar open (see Layouts menu)

• Pods

• Menu Pods Share Add New Share and resize/position — initial name is Share n

• Rename Pod Menu Pods Manage Pods. . . Manage Pods Select Rename or Double-click & rename

• Add Video pod and resize/reposition

• Add Attendance pod and resize/reposition

• Add Chat pod — name it PMolyChat — and resize/reposition

• Dimensions of Sharing layout (on 27-inch iMac)

– Width of Video, Attendees, Chat column 14 cm

– Height of Video pod 9 cm

– Height of Attendees pod 12 cm

– Height of Chat pod 8 cm

• Duplicating Layouts does not give new instances of the Pods and is probably not a
good idea (apart from local use to avoid delay in reloading Pods)

2.7 Chat Pods

• Format Chat text

• Chat Pod menu icon My Chat Color

• Choices: Red, Orange, Green, Brown, Purple, Pink, Blue, Black

• Note: Color reverts to Black if you switch layouts

• Chat Pod menu icon Show Timestamps

https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html

8 M269 Python, Logic, ADTs 28 November 2021

2.8 Graphics Conversion for Web

• Conversion of the screen snaps for the installation of Anaconda on 1 May 2020

• Using GraphicConverter 11

• File Convert & Modify Conversion Convert

• Select files to convert and destination folder

• Click on Start selected Function or +

Go to Table of Contents

3 Programming — Computational Components

3.1 Computational Components

Computational Components — Imperative

Imperative or procedural programming has statements which can manipulate global mem-
ory, have explicit control flow and can be organised into procedures (or functions)

• Sequence of statements� �
stmnt ; stmnt� �

• Iteration to repeat statements� �
while expr :
suite

for targetList in exprList :
suite� �

• Selection choosing between statements� �
if expr : suite
elif expr : suite
else : suite� �

Functional programming treats computation as the evaluation of expressions and the
definition of functions (in the mathematical sense)

• Function composition to combine the application of two or more functions — like
sequence but from right to left (notation accident of history)� �

(f . g) x = f (g x)� �
• Recursion — function definition defined in terms of calls to itself (with smaller ar-

guments) and base case(s) which do not call itself.

• Conditional expressions choosing between alternatives expressions� �
if expr then expr else expr� �

https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Control_flow
https://en.wikipedia.org/wiki/Structured_programming
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Function_composition_(computer_science)
https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://en.wikipedia.org/wiki/Conditional_(computer_programming)

Phil Molyneux M269 Python, ADTs Prsntn2021J 9

3.2 Computation, Programming, Programming Languages

• M269 is not a programming course but . . .

• The course uses Python to illustrate various algorithms and data structures

• The final unit addresses the question:

• What is an algorithm ? What is programming ? What is a programming language ?

• So it is a programming course (sort of)

3.3 Example Algorithm Design

Searching

• Given an ordered list (xs) and a value (val), return

– Position of val in xs or

– Some indication if val is not present

• Simple strategy: check each value in the list in turn

• Better strategy: use the ordered property of the list to reduce the range of the list to
be searched each turn

– Set a range of the list

– If val equals the mid point of the list, return the mid point

– Otherwise half the range to search

– If the range becomes negative, report not present (return some distinguished
value)

Binary Search Iterative� �
1 def binarySearchIter(xs,val):
2 lo = 0
3 hi = len(xs) - 1

5 while lo <= hi:
6 mid = (lo + hi) // 2
7 guess = xs[mid]

9 if val == guess:
10 return mid
11 elif val < guess:
12 hi = mid - 1
13 else:
14 lo = mid + 1

16 return None� �
Binary Search Recursive� �

17 def binarySearchRec(xs,val,lo=0,hi=-1):
18 if (hi == -1):
19 hi = len(xs) - 1

21 mid = (lo + hi) // 2

10 M269 Python, Logic, ADTs 28 November 2021

23 if hi < lo:
24 return None
25 else:
26 guess = xs[mid]
27 if val == guess:
28 return mid
29 elif val < guess:
30 return binarySearchRec(xs,val,lo,mid-1)
31 else:
32 return binarySearchRec(xs,val,mid+1,hi)� �

3.4 Binary Search — Exercise

Given the Python definition of binarySearchRec from above, trace an evaluation of
binarySearchRec(xs, 25) where xs is

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]

Binary Search — Solution

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs, 25)
xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,14) by line 31

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,10) by line 31

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,8) by line 29

xs = [2,5,7,15,17,19,21,24,27,31,37,48,57,87,95]
binarySearchRec(xs,25,8,7) by line 29

Return value: None by line 23

3.5 Binary Search — Comparison

• Both forms compare the given value (val) to the mid-point value of the range of the
list (xs[mid])

• If not found, the range is adjusted via assignment in a while loop (iterative) or
function call (recursive)

• The recursive version has default parameter values to initialise the function call (evil,
should be a helper function)

• There are two base cases:

– The value is found (val == guess)

– The range becomes negative (hi < lo)

• The return value is either mid or None

• What is the type of the binary search function ?

Phil Molyneux M269 Python, ADTs Prsntn2021J 11

Binary Search — Performance

• Linear search — number of comparisons

– Best case 1 (first item in the list)

– Worst case n (last item)

– Average case 1
2n

• Binary search — number of comparisons

– Best case 1 (middle item in the list)

– Worst case log2n (steps to see all)

– Average case log2n− 1 (steps to see half)

3.6 Writing Programs & Thinking

The Steps

1. Invent a name for the program (or function)

2. What is the type of the function ? What sort of input does it take and what sort of
output does it produce ? In Python a type is implicit; in other languages such as
Haskell a type signature can be explicit.

3. Invent names for the input(s) to the function (formal parameters) — this can involve
thinking about possible patterns or data structures

4. What restrictions are there on the input — state the preconditions.

5. What must be true of the output — state the postconditions.

6. Think of the definition of the function body.

The Think Step

• How to Think

1. Think of an example or two — what should the program/function do ?

2. Break the inputs into separate cases.

3. Deal with simple cases.

4. Think about the result — try your examples again.

• Thinking Strategies

1. Don’t think too much at one go — break the problem down. Top down design,
step-wise refinement.

2. What are the inputs — describe all the cases.

3. Investigate choices. What data structures ? What algorithms ?

4. Use common tools — bottom up synthesis.

5. Spot common function application patterns — generalise & then specialise.

12 M269 Python, Logic, ADTs 28 November 2021

6. Look for good glue — to combine functions together.

4 Python

4.1 Learning Python

• Miller & Ranum Problem Solving with Algorithms and Data Structures using Python

• Python 3 Documentation

• Python Tutorial

• Python Language Reference

• Python Library Reference

• Hitchhiker’s Guide to Python

• Stackoverflow on Python

• Dive into Python 3

4.2 Basic Python

Python Usage

• How do you enter an interactive Python shell ?

• How do you exit Python in Terminal (Mac) or Command prompt (Windows) ?

• How do you get help in a shell ?

• How do you exit the interactive help utility ?

• How do you enter an interactive Python shell ?

Windows PythonWin Shell from Toolbox; Mac python3 in Terminal

• How do you exit Python in Terminal (Mac) or Command prompt (Windows) ?

quit()

• How do you get help in a shell ?

help()

• How do you exit the interactive help utility ?

quit

Sequences Indexing, Slices

• xs[i:j:k] is defined to be the sequence of items from index i to (j-1) with step k.

• If k is omitted or None, it is treated as 1.

• If i or j are negative then they are relative to the end.

http://interactivepython.org/courselib/static/pythonds/index.html
https://docs.python.org/3/
https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/reference/index.html
https://docs.python.org/3/library/index.html
http://docs.python-guide.org/en/latest/index.html
http://stackoverflow.com/tags/python/info
http://getpython3.com/diveintopython3/

Phil Molyneux M269 Python, ADTs Prsntn2021J 13

• If i is omitted or None use 0.

• If j is omitted or None use len(xs)

Python Quiz — Lists

Given the following definitions� �
xs = [10.9,25,"Phil",3.14,42,1985]
ys = [[5]] * 3� �

Evaluate� �
1 xs[1]
2 xs[0]
3 xs[5]
4 ys
5 xs[1:3]
6 xs[::2]
7 xs[1:-1]
8 xs[-3]
9 xs[:]

10 ys[0].append(4)� �
Python Quiz — Lists — Answers

Given the following definitions� �
xs = [10.9,25,"Phil",3.14,42,1985]
ys = [[5]] * 3� �

Evaluate� �
1 xs[1] == 25
2 xs[0] == 10.9
3 xs[5] == 1985
4 ys == [[5],[5],[5]]
5 xs[1:3] == [25, ’Phil’]
6 xs[::2] == [10.9, ’Phil’, 42]
7 xs[1:-1] == [25, ’Phil’, 3.14, 42]
8 xs[-3] == 3.14
9 xs[:] == [10.9, 25, ’Phil’, 3.14, 42, 1985]

10 ys[0].append(4) == [[5, 4], [5, 4], [5, 4]]� �
4.3 Python Workflows

Komodo Python Workflow

1. Create someProgram.py with assignment statements defining variables and other
data along with function definitions.

2. There may be auxiliary files with other definitions (for example, Python Activity 2.2
has Stack.py with the Stack class definition) — this uses the import statement in
someProgram.py� �

from someOtherDefinitions import someIdentifier� �
3. Load someProgram.py into Komodo Edit and use the Run Python File macro from

the Toolbox

14 M269 Python, Logic, ADTs 28 November 2021

4. For further results, edit the file in Komodo Edit and and use the Save and Run macro
from the Toolbox

Standalone Python Workflow

1. Create someDefinitions.py with assignment statements defining variables and
function definitions.

2. In Terminal (Mac) or Command Prompt (Windows), navigate to someDefinitions.py
and invoke the Python 3 interpreter

3. Load someDefinitions.py into Python 3 with one of� �
from someDefinitions import *� �� �
import someDefinitions as sdf� �

The as sdf gives a shorter qualifier for the namespace — names in the file are now
sdf.x

Note that the commands are executed — any print statement will execute

4. At the Python 3 interpreter prompt, evaluate expressions (may have side effects and
alter definitions)

Standalone Python Workflow 2

1. For further results, edit the file in Your Favourite Editor and use one of the following
commands:� �

reload(sdf)

import imp
imp.reload(sdf)� �

Note the use of the name sdf as opposed to the original name.

Read the following references about the dangers of reloading as compared to re-
cycling Python 3

• How to re import an updated package while in Python Interpreter?

• How do I unload (reload) a Python module?

• Reloading Python modules

• How to dynamically import and reimport a file containing definition of a global
variable which may change anytime

5 Complexity and Big O Notation

• Measuring program complexity introduced in section 4 of M269 Unit 2

• See also Miller and Ranum chapter 2 Big-O Notation

• See also Wikipedia: Big O notation

https://stackoverflow.com/questions/684171/how-to-re-import-an-updated-package-while-in-python-interpreter
https://stackoverflow.com/questions/437589/how-do-i-unload-reload-a-python-module
http://pyunit.sourceforge.net/notes/reloading.html
https://stackoverflow.com/questions/12400467/how-to-dynamically-import-and-reimport-a-file-containing-definition-of-a-global
https://stackoverflow.com/questions/12400467/how-to-dynamically-import-and-reimport-a-file-containing-definition-of-a-global
http://interactivepython.org/courselib/static/pythonds/AlgorithmAnalysis/BigONotation.html
https://en.wikipedia.org/wiki/Big_O_notation

Phil Molyneux M269 Python, ADTs Prsntn2021J 15

• See also Big-O Cheat Sheet

• Complexity of algorithm measured by using some surrogate to get rough idea

• In M269 mainly using assignment statements

• For exact measure we would have to have cost of each operation, knowledge of
the implementation of the programming language and the operating system it runs
under.

• But mainly interested in the following questions:

• (1) Is algorithm A more efficient than algorithm B for large inputs ?

• (2) Is there a lower bound on any possible algorithm for calculating this particular
function ?

• (3) Is it always possible to find a polynomial time (nk) algorithm for any function that
is computable

• — the later questions are addressed in Unit 7

Orders of Common Functions

• O(1) constant — look-up table

• O(logn) logarithmic — binary search of sorted array, binary search tree, binomial
heap operations

• O(n) linear — searching an unsorted list

• O(n logn) loglinear — heapsort, quicksort (best and average), merge sort

• O(n2) quadratic — bubble sort (worst case or naive implementation), Shell sort,
quicksort (worst case), selection sort, insertion sort

• O(nc) polynomial

• O(cn) exponential — travelling salesman problem via dynamic programming, de-
termining if two logical statements are equivalent by brute force

• O(n!) factorial — TSP via brute force.

Tyranny of Asymptotics

• Table from Bentley (1984, page 868)

• Cubic algorithm on Cray-1 supercomputer with FORTRAN3.0n3 nanoseconds

• Linear algorithm on TRS-80 micro with BASIC 19.5n× 106 nanoseconds

N Cray-1 TRS-80

10 3.0 microsecs 200 millisecs
100 3.0 millisecs 2.0 secs

1000 3.0 secs 20 secs
10000 49 mins 3.2 mins

100000 35 days 32 mins
1000000 95 yrs 5.4 hrs

http://bigocheatsheet.com/
https://en.wikipedia.org/wiki/Lookup_table
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Merge_sort
https://en.wikipedia.org/wiki/Bubble_sort
https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Selection_sort
https://en.wikipedia.org/wiki/Insertion_sort
https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Dynamic_programming

16 M269 Python, Logic, ADTs 28 November 2021

O(lnn)

O(n)

O(n lnn)

O(n2)
O(2n)

20 40 60 80 100 120 140

100

200

300

400

n

O(n)
Big O Complexity Chart

Big O Notation

• Abuse of notation — we write f(x) = O(g(x))

• but O(g(x)) is the class of all functions h(x) such that |h(x)| à C|g(x)| for some
constant C

• So we should write f(x) ∈ O(g(x)) (but we don’t)

• We ought to use a notation that says that (informally) the function f is bounded both
above and below by g asymptotically

• This would mean that for big enough x we have

k1g(x) à f(x) à k2g(x) for some k1, k2

• This is Big Theta, f(x) = Θ(g(x))
• But we use Big O to indicate an asymptotically tight bound where Big Theta might be

more appropriate

• See Wikipedia: Big O Notation

• This could be Maths phobia generated confusion

5.1 Complexity Example� �
5 def someFunction(aList) :
6 n = len(aList)
7 best = 0
8 for i in range(n) :
9 for j in range(i + 1, n + 1) :

10 s = sum(aList[i:j])
11 best = max(best, s)
12 return best� �

https://en.wikipedia.org/wiki/Big_O_notation

Phil Molyneux M269 Python, ADTs Prsntn2021J 17

• Example from M269 Unit 2 page 46

• Code in file M269TutorialProgPythonADT.py

• What does the code do ?

• (It was a famous problem from the late 1970s/early 1980s)

• Can we construct a more efficient algorithm for the same computational problem ?

• The code calculates the maximum subsegment of a list

• Described in Bentley (1984),Bentley (1986, column 7),Bentley (2000, column 8) Also
in Gries (1989)

• These are all in a procedural programming style (as in C, Java, Python)

• Problem arose from medical image processing.

• A functional approach using Haskell is in Bird (1998, page 134), Bird (2014, page
127, 133) — a variant on this called the Not the maximum segment sum is given
in Bird (2010, Page 73) — both of these derive a linear time program from the (n3)
initial specification

• See Wikipedia: Maximum subarray problem

• See Rosetta Code: Greatest subsequential sum

• Here is the same program but modified to allow lists that may only have negative
numbers

• The complexity T(n) function will be slightly different

• but the Big O complexity will be the same� �
14 def maxSubSeg01(xs) :
15 n = len(xs)
16 maxSoFar = xs[0]
17 for i in range(1,n) :
18 for j in range(i + 1, n + 1) :
19 s = sum(xs[i:j])
20 maxSoFar = max(maxSoFar, s)
21 return maxSoFar� �

• Complexity function T(n) for maxSubSeg01()

• Two initial assignments

• The outer loop will be executed (n− 1) times,

• Hence the inner loop is executed

(n− 1)+ (n− 2)+ . . .+ 2+ 1 = (n− 1)
2

×n

• Assume sum() takes n assignments

• Hence T(n) = 2+ (n+ 2)×
(
(n− 1)

2
×n

)

= 2+ (n+ 2)×
(
n2

2
− n

2

)

= 2+ 1
2n

3 − 1
2n

2 +n2 −n

http://www.pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269TutorialProgPythonADT/M269TutorialProgPythonADT.py
https://en.wikipedia.org/wiki/Maximum_subarray_problem
http://rosettacode.org/wiki/Greatest_subsequential_sum

18 M269 Python, Logic, ADTs 28 November 2021

= 1
2n

3 + 1
2n

2 −n+ 2

• Hence O(n3)

• Developing a better algorithm

• Assume we know the solution (maxSoFar) for xs[0..(i - 1)]

• We extend the solution to xs[0..i] as follows:

• The maximum segment will be either maxSoFar

• or the sum of a sublist ending at i (maxToHere) if it is bigger

• This reasoning is similar to divide and conquer in binary search or Dynamic pro-
gramming (see Unit 5)

• Keep track of both maxSoFar and maxToHere — the Eureka step

• Developing a better algorithm maxSubSeg02()� �
27 def maxSubSeg02(xs) :
28 maxToHere = xs[0]
29 maxSoFar = xs[0]
30 for x in xs[1:] :
31 # Invariant: maxToHere, maxSoFar OK for xs[0..(i-1)]
32 maxToHere = max(x, maxToHere + x)
33 maxSoFar = max(maxSoFar, maxToHere)
34 return maxSoFar� �

• Complexity function T(n) = 2+ 2n

• Hence O(n)

• What if we want more information ?

• Return the (or a) segment with max sum and position in list� �
38 def maxSubSeg03(xs) :
39 maxSoFar = maxToHere = xs[0]
40 startIdx, endIdx, startMaxToHere = 0, 0, 0
41 for i, x in enumerate(xs) :
42 if maxToHere + x < x :
43 maxToHere = x
44 startMaxToHere = i
45 else :
46 maxToHere = maxToHere + x

48 if maxSoFar < maxToHere :
49 maxSoFar = maxToHere
50 startIdx, endIdx = startMaxToHere, i

52 return (maxSoFar,xs[startIdx:endIdx+1],startIdx,endIdx)� �
• Developing a better algorithm maxSubSeg03()

• Complexity function worst case T(n) = 2+ 3+ (2+ 3)n

• Hence still O(n)

• Note Python assignments, enumerate() and tuple

• Sample data and output� �
56 egList = [-2,1,-3,4,-1,2,1,-5,4]

58 egList01 = [-1,-1,-1]

60 egList02 = [1,2,3]

https://en.wikipedia.org/wiki/Dynamic_programming
https://en.wikipedia.org/wiki/Dynamic_programming
https://docs.python.org/3/reference/simple_stmts.html#assignment-statements
https://docs.python.org/3/library/functions.html#enumerate
https://docs.python.org/3/library/stdtypes.html#tuple

Phil Molyneux M269 Python, ADTs Prsntn2021J 19

62 assert maxSubSeg03(egList) == (6, [4, -1, 2, 1], 3, 6)

64 assert maxSubSeg03(egList01) == (-1, [-1], 0, 0)

66 assert maxSubSeg03(egList02) == (7, [1, 2, 3], 0, 2)� �
5.2 Complexity & Python Data Types

Lists

Operation Notation Average Amortized Worst

Get item x = xs[i] O(1) O(1)
Set item xs[i] = x O(1) O(1)
Append xs = ys + zs O(1) O(1)
Copy xs = ys[:] O(n) O(n)
Pop last xs.pop() O(1) O(1)
Pop other xs.pop(i) O(k) O(k)
Insert(i,x) xs[i:i] = [x] O(n) O(n)
Delete item del xs[i:i+1] O(n) O(n)
Get slice xs = ys[i:j] O(k) O(k)
Set slice xs[i:j] = ys O(k+n) O(k+n)
Delete slice xs[i:j] = [] O(n) O(n)
Member x in xs O(n)
Get length n = len(xs) O(1) O(1)
Count(x) n = xs.count(x) O(n) O(n)

• Source https://wiki.python.org/moin/TimeComplexity

• See https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range

Bags� �
5 class Bag:

7 def __init__(self):
8 self.list = []

10 def add(self, item):
11 self.list.append(item)

13 def remove(self, item):
14 self.list.remove(item)

16 def contains(self, item):
17 return item in self.list

19 def count(self, item):
20 return self.list.count(item)

22 def size(self):
23 return len(self.list)

25 def __str__(self):
26 return str(self.list)� �

Information Retrieval Functions

• Term Frequency, tf, takes a string, term, and a Bag, document

https://wiki.python.org/moin/TimeComplexity
https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range

20 M269 Python, Logic, ADTs 28 November 2021

returns occurrences of term divided by total strings in document

• Inverse Document Frequency, idf, takes a string, term, and a list of Bags, documents

returns log(total/(1+containing))— total is total number of Bags, containing
is the number of Bags containing term

• tf-idf, tf_idf, takes a string, term, and a list of Bags, documents

returns a sequence [r0, r1, . . . , rn−1] such that ri = tf(term, di)×idf(term,documents)

6 Exponentials and Logarithms

6.1 Exponentials and Logarithms — Definitions

• Exponential function y = ax or f(x) = ax

• an = a× a× · · · × a (n a terms)

• Logarithm reverses the operation of exponentiation

• logay = x means ax = y

• loga 1 = 0

• logaa = 1

• Method of logarithms propounded by John Napier from 1614

• Log Tables from 1617 by Henry Briggs

• Slide Rule from about 1620–1630 by William Oughtred of Cambridge

• Logarithm from Greek logos ratio, and arithmos number (Chanbers Dictionary 13th
edition 2014)

6.2 Rules of Indices

1. am × an = am+n

2. am ÷ an = am−n

3. a−m = 1
am

4. a
1
m = m√a

5. (am)n = amn

6. a
n
m = m√an

7. a0 = 1 where a ≠ 0

• Exercise Justify the above rules

• What should 00 evaluate to ?

• See Wikipedia: Exponentiation

https://en.wikipedia.org/wiki/Exponential_function
https://en.wikipedia.org/wiki/Logarithm
https://en.wikipedia.org/wiki/Mathematical_table#Tables_of_logarithms
https://en.wikipedia.org/wiki/Slide_rule
http://en.wikipedia.org/wiki/Exponentiation

Phil Molyneux M269 Python, ADTs Prsntn2021J 21

• The justification above probably only worked for whole or rational numbers — see
later for exponents with real numbers (and the value of logarithms, calculus. . .)

6.3 Logarithms — Motivation

• Make arithmetic easier — turns multiplication and division into addition and subtrac-
tion (see later)

• Complete the range of elementary functions for differentiation and integration

• An elementary function is a function of one variable which is the composition of a
finite number of arithmetic operations ((+), (−), (×), (÷)), exponentials, logarithms,
constants, and solutions of algebraic equations (a generalization of nth roots).

• The elementary functions include the trigonometric and hyperbolic functions and
their inverses, as they are expressible with complex exponentials and logarithms.

• See A Level FP2 for Euler’s relation eiθ = cosθ + i sinθ

• In A Level C3, C4 we get
∫

1
x
= loge |x| + C

• e is Euler’s number 2.71828. . .

6.4 Exponentials and Logarithms — Graphs

• See GeoGebra file expLog.ggb

6.5 Laws of Logarithms

• Multiplication law logaxy = logax + logay

https://en.wikipedia.org/wiki/Elementary_function
https://en.wikipedia.org/wiki/Elementary_function
https://en.wikipedia.org/wiki/E_(mathematical_constant)
expLog.ggb

22 M269 Python, Logic, ADTs 28 November 2021

• Division law loga
(
x
y

)
= logax − logay

• Power law logaxk = k logax

• Proof of Multiplication Law

x = aloga x

y = aloga y by definition of log

xy = aloga xaloga y

= aloga x+loga y by laws of indices

Hence logaxy = logax + logay by definition of log

6.6 Arithmetic and Inverses

• Notation helps or maybe not ?

• Addition add(b,x) = x + b

• Subtraction sub(b,x) = x − b

• Inverse sub(b, add(b,x)) = (x + b)− b = x

• Multiplication mul(b,x) = x × b

• Division div(b,x) = x ÷ b = x
b = x/b

• Inverse div(b,mul(b,x)) = (x × b)÷ b = (x×b)
b = x

• Exponentiation exp(b,x) = bx

• Logarithm log(b,x) = logb x

• Inverse log(b, exp(b,x)) = logb(bx) = x

• What properties do the operations have that work (or not) with the notation ?

Arithmetic Operations — Commutativity and Associativity

• Commutativity x çy = y ç x

• Associativity (x çy)ç z = x ç (y ç z)

• (+) and (×) are semantically commutative and associative — so we can leave the
brackets out

• (−) and (÷) are not

• Evaluate (3− (2− 1)) and ((3− 2)− 1)

• Evaluate (3/(2/2)) and ((3/2)/2)

• We have the syntactic ideas of left (and right) associativity

• We choose (−) and (÷) to be left associative

• 3− 2− 1 means ((3− 2)− 1)

• 3/2/2 means ((3/2)/2)

https://en.wikipedia.org/wiki/Addition
https://en.wikipedia.org/wiki/Subtraction
https://en.wikipedia.org/wiki/Multiplication
https://en.wikipedia.org/wiki/Division_(mathematics)
https://en.wikipedia.org/wiki/Exponentiation
https://en.wikipedia.org/wiki/Logarithm
https://en.wikipedia.org/wiki/Commutative_property
https://en.wikipedia.org/wiki/Associative_property

Phil Molyneux M269 Python, ADTs Prsntn2021J 23

• Operator precedence is also a choice (remember BIDMAS or BODMAS ?)

• If in doubt, put the brackets in

Exponentials and Logarithm — Associativity

• What should 234
mean ?

• Let b ^ x ≡ bx

• Evaluate (2 ^ 3) ^ 4 and 2 ^ (3 ^ 4)

• Evaluate c = logb(logb((b ^ b) ^ x))

• Evaluate d = logb(logb(b ^ (b ^ x)))

• Beware spreadsheets Excel and LibreOffice here

• (23)4 = 212 and 234 = 281

• Exponentiation is not semantically associative

• We choose the syntactic left or right associativity to make the syntax nicer.

• Evaluate c = logb(logb((b ^ b) ^ x))

• c = logb(x logb(bb)) = logb(x · (b logb b)) = logb(x · b · 1)

• Hence c = logb x + logb b = logb x + 1

• Not symmetrical (unless b and x are both 2)

• Evaluate d = logb(logb(b ^ (b ^ x)))

• d = logb((b ^ x)(logb b)) = logb((b ^ x)× 1)

• Hence d = logb(b ^ x) = x(logb b) = x

• Which is what we want — so exponentiation is chosen to be right associative

6.7 Change of Base

• Change of base

logax =
logb x
logb a

Proof: Let y = logax
ay = x

logb ay = logb x
y logb a = logb x

y = logb x
logb a

• Given x, logb x, find the base b

– b = x
1

logb x

https://en.wikipedia.org/wiki/Order_of_operations

24 M269 Python, Logic, ADTs 28 November 2021

• loga b =
1

logb a

7 Before Calculators and Computers

• We had computers before 1950 — they were humans with pencil, paper and some
further aids:

• Slide rule invented by William Oughtred in the 1620s — major calculating tool until
pocket calculators in 1970s

• Log tables in use from early 1600s — method of logarithms propounded by John
Napier

• Logarithm from Greek logos ratio, and arithmos number

https://en.wikipedia.org/wiki/Slide_rule
https://en.wikipedia.org/wiki/William_Oughtred
https://en.wikipedia.org/wiki/Calculator
https://en.wikipedia.org/wiki/Mathematical_table
https://en.wikipedia.org/wiki/John_Napier
https://en.wikipedia.org/wiki/John_Napier
https://en.wikipedia.org/wiki/Logarithm

Phil Molyneux M269 Python, ADTs Prsntn2021J 25

7.1 Log Tables

Knott’s Four-Figure Mathematical Tables

26 M269 Python, Logic, ADTs 28 November 2021

Logarithms of Numbers

Antilogarithms

Phil Molyneux M269 Python, ADTs Prsntn2021J 27

7.2 Slide Rules

Pickett N 3-ES from 1967

• See Oughtred Society

• UKSRC

• Rod Lovett’s Slide Rules

• Slide Rule Museum

http://www.oughtred.org
http://www.uksrc.org.uk
http://sliderules.lovett.com
http://sliderulemuseum.com

28 M269 Python, Logic, ADTs 28 November 2021

Pickett log log Slide Rules Manual 1953

Phil Molyneux M269 Python, ADTs Prsntn2021J 29

7.3 Calculators

HP HP-21 Calculator from 1975 £69

Casio fx-85GT PLUS Calculator from 2013 £10

30 M269 Python, Logic, ADTs 28 November 2021

Calculator links

• HP Calculator Museum http://www.hpmuseum.org

• HP Calculator Emulators http://nonpareil.brouhaha.com

• HP Calculator Emulators for OS X http://www.bartosiak.org/nonpareil/

• Vintage Calculators Web Museum http://www.vintagecalculators.com

7.4 Example Calculation

• Evaluate 89.7× 597

• Knott’s Tables

• log10 89.7 = 1.9528 and log10 597 = 2.7760

• Shows mantissa (decimal) & characteristic (integral)

• Add 4.7288, take antilog to get 5346+ 10 = 5.356× 104

• HP-21 Calculator — set display to 4 decimal places

• 89.7 log = 1.9528 and 597 log = 2.7760

• + displays 4.7288

• 10 ENTER , x m y and yx displays 53550.9000

• Casio fx-85GT PLUS

• log 89.7) = 1.952792443 + log 597) = 2.775974331 =

• 4.728766774 Ans + 10x gives 53550.9

8 Logic and Truth Tables

8.1 Boolean Expressions and Truth Tables

Traffic Lights Example

• Consider traffic light at the intersection of roads AC and BD with the following rules
for the AC controller

• Vehicles should not wait on red on BD for too long.

• If there is a long queue on AC then BD is only given a green for a short interval.

• If both queues are long the usual flow times are used.

• We use the following propositions:

– w Vehicles have been waiting on red on BD for too long

– q Queue on AC is too long

– r Queue on BD is too long

http://www.hpmuseum.org
http://nonpareil.brouhaha.com
http://www.bartosiak.org/nonpareil/
http://www.vintagecalculators.com

Phil Molyneux M269 Python, ADTs Prsntn2021J 31

• Given the following events:

– ToBD Change flow to BD

– ToBDShort Change flow to BD for short time

– NoChange No Change to lights

• Express above as truth table, outcome tree, boolean expression

• Traffic Lights outcome table

w q r Event

T T T ToBD
T T F ToBDShort
T F T ToBD
T F F ToBD
F T T NoChange
F T F NoChange
F F T NoChange
F F F NoChange

• Traffic lights outcome tree

NoChange¬r

NoChanger¬q

NoChange¬r

NoChanger

q¬w

ToBD¬r

ToBDr¬q

ToBDShort¬r

ToBDr

q

w

• Traffic lights outcome tree simplified

NoChange

¬w

ToBD
¬q

ToBDShort¬r

ToBDr

q

w

• Traffic Lights code 01

• See M269TutorialProgPythonADT01.py� �
3 def trafficLights01(w,q,r) :
4 """

http://www.pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269TutorialProgPythonADT/M269TutorialProgPythonADT01.py

32 M269 Python, Logic, ADTs 28 November 2021

5 Input 3 Booleans
6 Return Event string
7 """
8 if w :
9 if q :

10 if r :
11 evnt = "ToBD"
12 else :
13 evnt = "ToBDShort"
14 else :
15 evnt = "ToBD"
16 else :
17 evnt = "NoChange"
18 return evnt� �

• Traffic Lights test code 01� �
22 trafficLights01Evnts = [((w,q,r), trafficLights01(w,q,r))
23 for w in [True,False]
24 for q in [True,False]
25 for r in [True,False]]

27 assert trafficLights01Evnts \
28 == [((True, True, True), ’ToBD’)
29 ,((True, True, False), ’ToBDShort’)
30 ,((True, False, True), ’ToBD’)
31 ,((True, False, False), ’ToBD’)
32 ,((False, True, True), ’NoChange’)
33 ,((False, True, False), ’NoChange’)
34 ,((False, False, True), ’NoChange’)
35 ,((False, False, False), ’NoChange’)]� �

• Traffic Lights code 02 compound Boolean conditions� �
37 def trafficLights02(w,q,r) :
38 """
39 Input 3 Booleans
40 Return Event string
41 """
42 if ((w and q and r) or (w and not q)) :
43 evnt = "ToBD"
44 elif (w and q and not r) :
45 evnt = "ToBDShort"
46 else :
47 evnt = "NoChange"
48 return evnt� �

• What objectives do we have for our code ?

• Traffic Lights test code 02� �
52 trafficLights02Evnts = [((w,q,r), trafficLights02(w,q,r))
53 for w in [True,False]
54 for q in [True,False]
55 for r in [True,False]]

57 assert trafficLights02Evnts == trafficLights01Evnts� �
w q

r

BD

BD

BD

BDS

NoC

NoC

NoC

NoC

Phil Molyneux M269 Python, ADTs Prsntn2021J 33

• Traffic Lights Venn diagram

• OK using a fill colour would look better but didn’t have the time to hack the package

8.2 Conditional Expressions and Validity

• Validity of Boolean expressions

• Complete every outcome returns an event (or error message, raises an exception)

• Consistent — we do not want two nested if statements or expressions resulting in
different events

• We check this by ensuring that the events form a disjoint partition of the set of
outcomes — see the Venn diagram

• We would quite like the programming language processor to warn us otherwise —
not always possible

8.3 Boolean Expressions Exercise

Rail Ticket Exercise

• Rail ticket discounts for:

– c Rail card

– q Off-peak time

– s Special offer

• 4 fares: Standard, Reduced, Special, Super Special

• Rules:

1. Reduced fare if rail card or at off-peak time

2. Without rail card no reduction for both special offer and off-peak.

3. Rail card always has reduced fare but cannot get off-peak discount as well.

4. Rail card gets super special discount for journey with special offer

• Draw up truth table, outcome tree, Venn diagram and conditional statement (or ex-
pression) for this

• Rail ticket outcome table

c q s Event

T T T Super Special
T T F Reduced
T F T Super Special
T F F Reduced
F T T Special
F T F Reduced
F F T Special
F F F Standard

34 M269 Python, Logic, ADTs 28 November 2021

• Rail ticket outcome table

• Note that it may be more convenient to change columns

c s q Event

T T T Super Special
T T F Super Special
T F T Reduced
T F F Reduced
F T T Special
F T F Special
F F T Reduced
F F F Standard

• Real fares are a little more complex — see brfares.com

• Rail Ticket outcome tree

Standard¬q

Reducedq
¬s

Special¬q

Specialq

s¬c

Reduced¬q

Reducedq
¬s

Super Special¬q

Super Specialq

s

c

• Rail Ticket outcome tree simplified

Standard¬q

Reducedq
¬s

Special
s¬c

Reduced
¬s

Super Special
s

c

http://www.brfares.com

Phil Molyneux M269 Python, ADTs Prsntn2021J 35

c s

q

SSP

RD

RD

SSP

STD

SP

RD

SP

• Rail Ticket Venn diagram

• Rail Ticket code 01� �
61 def railTicket01(c,s,q) :
62 """
63 Input 3 Booleans
64 Return Event string
65 """
66 if c :
67 if s :
68 evnt = "SSP"
69 else :
70 evnt = "RD"
71 else :
72 if s :
73 evnt = "SP"
74 else :
75 if q :
76 evnt = "RD"
77 else :
78 evnt = "STD"
79 return evnt� �

• Rail Ticket test code 01� �
83 railTicket01Evnts = [((c,s,q), railTicket01(c,s,q))
84 for c in [True,False]
85 for s in [True,False]
86 for q in [True,False]]

88 assert railTicket01Evnts \
89 == [((True, True, True), ’SSP’)
90 ,((True, True, False), ’SSP’)
91 ,((True, False, True), ’RD’)
92 ,((True, False, False), ’RD’)
93 ,((False, True, True), ’SP’)
94 ,((False, True, False), ’SP’)
95 ,((False, False, True), ’RD’)
96 ,((False, False, False), ’STD’)]� �

• Rail Ticket code 02 compound Boolean expressions� �
98 def railTicket02(c,s,q) :
99 """

100 Input 3 Booleans
101 Return Event string
102 """
103 if (c and s) :
104 evnt = "SSP"
105 elif ((c and not s) or (not c and not s and q)) :
106 evnt = "RD"
107 elif (not c and s) :
108 evnt = "SP"
109 else :
110 evnt = "STD"
111 return evnt� �

36 M269 Python, Logic, ADTs 28 November 2021

• Rail Ticket test code 02� �
115 railTicket02Evnts = [((c,s,q), railTicket02(c,s,q))
116 for c in [True,False]
117 for s in [True,False]
118 for q in [True,False]]

120 assert railTicket02Evnts == railTicket01Evnts� �
8.4 Propositional Calculus

• Unit 2 section 3.2 A taste of formal logic introduces Propositional calculus

• A language for calculating about Booleans — truth values

• Gives operators (connectives) conjunction (∧) AND, disjunction (∨) OR, negation (¬)
NOT, implication (⇒) IF

• There are 16 possible functions (B,B) → B — see below — defined by their truth
tables

• Discussion Did you find the truth table for implication weird or surprising ?

• Implication has a negative definition — we accept its truth unless we have contrary
evidence

• T ⇒ T == T and T ⇒ F == F

• Hence 4 possibilities for truth table

p q p
⇒
q

q p
a
q

p
∧
q

T T T T T T
T F F F F F
F T T T F F
F F T F T F

• (⇒) must have the entry shown — the others are taken

• Do not think of p causing q

• Functionally complete set of connectives is one which can be used to express all
possible connectives

• p ⇒ q ≡ ¬p ∨ q so we could just use {¬,∧,∨}

• Boolean programming — we have to have a functionally complete set but choose
more to make the programming easier

• Expressiveness is an issue in programming language design

• NAND p∧q, p ↑ q, Sheffer stroke

• NOR p∨q, p ↓ q, Pierce’s arrow

• See truth tables below — both {↑}, {↓} are functionally complete

• Exercise verify

https://en.wikipedia.org/wiki/Propositional_calculus
https://en.wikipedia.org/wiki/Logical_conjunction
https://en.wikipedia.org/wiki/Logical_disjunction
https://en.wikipedia.org/wiki/Negation
https://en.wikipedia.org/wiki/Negation
https://en.wikipedia.org/wiki/Material_conditional
https://en.wikipedia.org/wiki/Functional_completeness
https://en.wikipedia.org/wiki/Sheffer_stroke
https://en.wikipedia.org/wiki/Logical_NOR

Phil Molyneux M269 Python, ADTs Prsntn2021J 37

– ¬p ≡ p ↑ p

– p ∧ q ≡ ¬(p ↑ q) = (p ↑ q) ↑ (p ↑ q)

– p ∨ q ≡ (p ↑ p) ↑ (q ↑ q)

– ¬p ≡ p ↓ p

– p ∧ q ≡ (p ↓ p) ↓ (q ↓ q)

– p ∨ q ≡ ¬(p ↓ q) = (p ↓ q) ↓ (p ↓ q)

• Not a novelty — the Apollo Guidance Computer was implemented in NOR gates alone.

8.5 Truth Function

• The following appendix notes illustrate the 16 binary functions of two Boolean vari-
ables

• See Truth function

• See Functional completeness

• See Sheffer stroke

• See Logical NOR

Table of Binary Truth Functions

p q > p
∨
q

p
⇐
q

p p
⇒
q

q p
a
q

p
∧
q

T T T T T T T T T T
T F T T T T F F F F
F T T T F F T T F F
F F T F T F T F T F

p q ⊥ p
∨
q

p
f
q

¬
p

p
h
q

¬
q

p
g
q

p
ö
q

T T F F F F F F F F
T F F F F F T T T T
F T F F T T F F T T
F F F T F T F T F T

• Tautology True, >, Top

U

p q

https://en.wikipedia.org/wiki/Apollo_Guidance_Computer
https://en.wikipedia.org/wiki/Truth_function
https://en.wikipedia.org/wiki/Functional_completeness
https://en.wikipedia.org/wiki/Sheffer_stroke
https://en.wikipedia.org/wiki/Logical_NOR

38 M269 Python, Logic, ADTs 28 November 2021

• Contradiction False, ⊥, Bottom

U

p q

• Disjunction OR, p ∨ q

U

p q

• Joint Denial NOR, p∨q, p ↓ q, Pierce’s arrow

U

p q

• Converse Implication p ⇐ q

U

p q

• Converse Nonimplication p f q

U

p q

• Proposition p

https://en.wikipedia.org/wiki/Logical_NOR

Phil Molyneux M269 Python, ADTs Prsntn2021J 39

U

p q

• Negation of p

U

p q

• Material Implication p ⇒ q

U

p q

• Material Nonimplication p h q

U

p q

• Proposition q q

U

p q

• Negation of q ¬q

40 M269 Python, Logic, ADTs 28 November 2021

U

p q

• Biconditional If and only if, IFF, pa q

U

p q

• Exclusive disjunction XOR, p g q

U

p q

• Conjunction AND, p ∧ q

U

p q

• Alternative denial NAND, p ö q, p ↑ q, Sheffer stroke

U

p q

https://en.wikipedia.org/wiki/Sheffer_stroke

Phil Molyneux M269 Python, ADTs Prsntn2021J 41

9 Abstract Data Types

9.1 Abstract Data Types — Overview

• Abstract data type is a type with associated operations, but whose representation
is hidden (or not accessible)

• Common examples in most programming languages are Integer and Characters and
other built in types such as tuples and lists

• Abstract data types are modeled on Algebraic structures

– A set of values

– Collection of operations on the values

– Axioms for the operations may be specified as equations or pre and post con-
ditions

• Health Warning different languages provide different ways of doing data abstraction
with similar names that may mean subtly different things

• Abstract Data Types and Object-Oriented Programming

• Example: Shape with Circles, Squares, . . . and operations draw, moveTo, . . .

• ADT approach centres on the data type — that tells you what shapes exist

• For each operation on shapes, you describe what they do for different shapes.

• OO you declare that to be a shape, you have to have some operations (draw, moveTo)

• For each kind of shape you provide an implementation of the operations

• OO easier to answer What is a circle? and add new shapes

• ADT easier to answer How do you draw a shape? and add new operations

• Health Warning and Optional Material Discussions about the merits of Functional
programming and Object-oriented programming tend to look like the disputes be-
tween Lilliput and Blefuscu

• Abstract data type article contrasts ADT and OO as algebra compared to co-algebra

• What does coalgebra mean in the context of programming? is a fairly technical but
accessible article.

• What does the forall keyword in Haskell do? — is an accessible article on Existential
Quantification

• Bart Jacobs Coalgebra

• nLab Coalgebra

• Beware the distinction between concepts and features in programming languages —
see OOP Disaster

• Not for this session — this slide is here just in case

https://en.wikipedia.org/wiki/Abstract_data_type
https://wiki.haskell.org/Abstract_data_type
https://en.wikipedia.org/wiki/Algebraic_structure
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Lilliput_and_Blefuscu
https://wiki.haskell.org/Abstract_data_type
http://stackoverflow.com/questions/16015020/what-does-coalgebra-mean-in-the-context-of-programming
http://stackoverflow.com/questions/3071136/what-does-the-forall-keyword-in-haskell-ghc-do
http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf
https://ncatlab.org/nlab/show/coalgebra
http://www.smashcompany.com/technology/object-oriented-programming-is-an-expensive-disaster-which-must-end

42 M269 Python, Logic, ADTs 28 November 2021

Further Links on ADT/OOP

• Object Oriented Programming in Haskell (15 October 2018)

• Object-Oriented Haskell (15 October 2018)� �
1 data Shape
2 = Circle Point Radius
3 | Square Point Size

5 draw :: Shape -> Pict
6 draw (Circle p r) = drawCircle p r
7 draw (Square p s) = drawRectangle p s s

9 moveTo :: Point -> Shape -> Shape
10 moveTo p2 (Circle p1 r) = Circle p2 r
11 moveTo p2 (Square p1 s) = Square p2 s

13 shapes :: [Shape]
14 shapes = [Circle (0,0) 1, Square (1,1) 2]

16 shapes01 :: [Shape]
17 shapes01 = map (moveTo (2,2)) shapes� �

• Example based on Lennart Augustsson email of 23 June 2005 on Haskell list� �
1 class IsShape shape where
2 draw :: shape -> Pict
3 moveTo :: Point -> shape -> shape

5 data Shape = forall a . (IsShape a) => Shape a

7 data Circle = Circle Point Radius
8 instance IsShape Circle where
9 draw (Circle p r) = drawCircle p r

10 moveTo p2 (Circle p1 r) = Circle p2 r

12 data Square = Square Point Size
13 instance IsShape Square where
14 draw (Square p s) = drawRectangle p s s
15 moveTo p2 (Square p1 s) = Square p2 s

17 shapes :: [Shape]
18 shapes = [Shape (Circle (0,0) 10), Shape (Square (1,1) 2)]

20 shapes01 :: [Shape]
21 shapes01 = map (moveShapeTo (2,2)) shapes
22 where
23 moveShapeTo p (Shape s) = Shape (moveTo p s)� �

The Expression Problem

• The Expression Problem describes a dual problem that neither Object Oriented Pro-
gramming nor Functional Programming fully addresses.

• If you want to add a new thing, Object Oriented Programming makes it easy (since
you can simply create a new class) but Functional Programming makes it harder
(since you have to edit every function that accepts a thing of that type)

• If you want to add a new function, Functional Programming makes it easy (simply
add a new function) while Object Oriented Programming makes it harder (since you
have to edit every class to add the function)

• Wikipedia: Expression problem

• Bendersky: The Expression Problem and More thoughts

• C2 Wiki: Expression Problem

https://www.well-typed.com/blog/2018/03/oop-in-haskell/
https://programming.tobiasdammers.nl/blog/2017-10-17-object-oriented-haskell/
https://en.wikipedia.org/wiki/Expression_problem
https://eli.thegreenplace.net/2016/the-expression-problem-and-its-solutions/
https://eli.thegreenplace.net/2018/more-thoughts-on-the-expression-problem-in-haskell/
https://wiki.c2.com/?ExpressionProblem

Phil Molyneux M269 Python, ADTs Prsntn2021J 43

• What is the ’expression problem’?

• Philip Wadler: The Expression Problem

9.2 Abstract Data Type — Queue

• Queue Abstract Data Type — operations

• makeEmptyQ returns empty queue

• isEmptyQ takes queue, returns Boolean

• addToQ takes queue, item, returns queue with item added at back

• headOfQ takes queue, returns item at front

• tailOfQ takes queue, returns queue without front item

• Other operations

• removeFrontQ takes queue, returns pair of item on the front and queue with item
removed

• sizeQ to save calculating it

• isFullQ for a bounded queue

• Pre, Post Conditions, Axioms should be complete

• They define all permissable inputs to the functions (or methods)

• They define the outcome of all applications of the functions

• Composition of the functions constructs all possible members of the ADT set

• Pre-conditions, Post-conditions, Axioms

• makeEmptyQ()

• Pre True

• Post Return value q is an empty queue

• Axiom makeEmptyQ() == EmptyQ

• isEmptyQ()

• Pre True

• Post Returns True if q is empty, otherwise False

• Axiom isEmptyQ(makeEmptyQ()) == True

• isEmptyQ(addToQ(q,x)) == False

• Exercise complete this for the other operations

• Pre-conditions, Post-conditions, Axioms

• addToQ()

• Pre True

• Post Returns queue with x at back, front part is input queue

https://stackoverflow.com/questions/3596366/what-is-the-expression-problem
https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
https://en.wikipedia.org/wiki/Queue_(abstract_data_type)

44 M269 Python, Logic, ADTs 28 November 2021

• headOfQ()

• Pre Argument q is non-empty

• Post Return value is item at the front (queue is unchanged)

• Axioms headOfQ(makeEmptyQ()) == error

• headOfQ(addToQ(makeEmptyQ(),x)) == x

• headOfQ(addToQ(q,x)) == headOfQ(q)

• Pre-conditions, Post-conditions, Axioms

• tailOfQ()

• Pre True

• Post Returns queue without first item

• Axioms tailOfQ(makeEmptyQ()) == error

• tailOfQ(addToQ(makeEmptyQ(),x)) == EmptyQ

• tailOfQ(addToQ(q,x)) == addToQ(tailOfQ(q),x)

• Queue Implementation

• Using Lists as Queues section 5.1.2 of the Tutorial

• Quote: It is also possible to use a list as a queue, where the first element added is the first element retrieved (first-in,

first-out); however, lists are not efficient for this purpose. While appends and pops from the end of list are fast, doing

inserts or pops from the beginning of a list is slow (because all of the other elements have to be shifted by one).

• Could use collections.deque but we will use a pair of lists — See (Okasaki, 1998,
page 42)

• Queue Implementation 1

• Using a namedtuple()

• A factory function for creating tuple subclasses with named fields� �
5 from collections import namedtuple

7 Qp1 = namedtuple(’Qp1’,[’frs’,’rbks’])� �
• Queue Implementation 1 main operations� �

9 def makeEmptyQp1():
10 return Qp1([],[])

12 def isEmptyQp1(q):
13 return q.frs == []

15 def addToQp1(q,x):
16 return checkQp1(q.frs, [x] + q.rbks[:])

18 def headOfQp1(q):
19 if q.frs == [] :
20 RunTimeError("headOfQp1 applied to empty queue")
21 else:
22 return q.frs[0]

24 def tailOfQp1(q):
25 if q.frs == [] :
26 RunTimeError("tailOfQp1 applied to empty queue")
27 else:
28 return checkQp1(q.frs[1:], q.rbks[:])� �

https://docs.python.org/3/tutorial/datastructures.html#using-lists-as-queues
https://docs.python.org/3/library/collections.html#collections.deque

Phil Molyneux M269 Python, ADTs Prsntn2021J 45

• Queue Implementation 1 checkOp1()� �
30 def checkQp1(frs, rbks):
31 if frs == [] :
32 bks = rbks[:]
33 bks.reverse()
34 return Qp1(bks, [])
35 else :
36 return Qp1(frs, rbks)� �

• Note copying of arguments — see below for reason

• Note also in stringQp1Items below at line 47 on page 45

• implicit line joining using (()) (why is this needed ??)

• Note use of recursion

Python Argument Passing

• Functions, Immutable and Mutable Arguments

• Immutable arguments are passed by value

• Mutable arguments are passed by reference

• Immutable: numbers, strings, tuples

• Mutable: Lists, dictionaries, sets, and most objects in user classes� �
>>> def changer (a,b) :
... a = 2
... b[0] = ’spam’
...
>>> n = 1
>>> xs = [1,2]
>>> changer(n, xs)
>>> (n,xs)
(1, [’spam’, 2])� �
• Queue Implementation 1 conversion operations� �

38 def stringQp1(q) :
39 return ("<" + stringQp1Items(q) + ">")

41 def stringQp1Items(q) :
42 if isEmptyQp1(q) :
43 return ""
44 elif isEmptyQp1(tailOfQp1(q)) :
45 return str(headOfQp1(q))
46 else :
47 return (str(headOfQp1(q))
48 + ", " + stringQp1Items(tailOfQp1(q)))

50 def buildQp1(xs,q) :
51 if xs == [] :
52 return q
53 else :
54 return buildQp1(xs[1:],addToQp1(q,xs[0]))

56 def listToQp1(xs) :
57 return buildQp1(xs, makeEmptyQp1())� �

• Queue Implementation 1 test code� �
61 q11 = listToQp1([1,2,3,1])

63 q12 = tailOfQp1(q11)

https://docs.python.org/3/reference/lexical_analysis.html#implicit-line-joining

46 M269 Python, Logic, ADTs 28 November 2021

65 assert q11 == Qp1(frs=[1], rbks=[1, 3, 2])

67 assert stringQp1(q11) == ’<1, 2, 3, 1>’

69 assert q12 == Qp1(frs=[2, 3, 1], rbks=[])

71 assert stringQp1(q12) == ’<2, 3, 1>’� �
• Queue Implementation 2

• Modify to add size

• Store in tuple to save calculating each time� �
75 Qp2 = namedtuple(’Qp2’,[’frs’,’rbks’,’sz’])� �

• Exercise Add size() operation and other modifications

• Queue Implementation 2 main operations� �
77 def makeEmptyQp2():
78 return Qp2([],[], 0)

80 def isEmptyQp2(q):
81 return q.frs == []

83 def addToQp2(q,x):
84 return checkQp2(q.frs, [x] + q.rbks[:], q.sz + 1)

86 def headOfQp2(q):
87 if q.frs == [] :
88 RunTimeError("headOfQp2 applied to empty queue")
89 else:
90 return q.frs[0]

92 def tailOfQp2(q):
93 if q.frs == [] :
94 RunTimeError("tailOfQp2 applied to empty queue")
95 else:
96 return checkQp2(q.frs[1:], q.rbks[:], q.sz - 1)� �

• Queue Implementation 2 sizeQp2(), checkOp1()� �
98 def sizeOfQp2(q) :
99 return q.sz

101 def checkQp2(frs, rbks, sz):
102 if frs == [] :
103 bks = rbks[:]
104 bks.reverse()
105 return Qp2(bks, [], sz)
106 else :
107 return Qp2(frs, rbks, sz)� �

• Note also in stringQp2Items below at line 118 on page 47

• implicit line joining using (()) (why is this needed ??)

• Note use of recursion

• Queue Implementation 2 conversion operations� �
109 def stringQp2(q) :
110 return ("<" + stringQp2Items(q) + ">")

112 def stringQp2Items(q) :
113 if isEmptyQp2(q) :
114 return ""
115 elif isEmptyQp2(tailOfQp2(q)) :
116 return str(headOfQp2(q))
117 else :

https://docs.python.org/3/reference/lexical_analysis.html#implicit-line-joining

Phil Molyneux M269 Python, ADTs Prsntn2021J 47

118 return (str(headOfQp2(q))
119 + ", " + stringQp2Items(tailOfQp2(q)))

121 def buildQp2(xs,q) :
122 if xs == [] :
123 return q
124 else :
125 return buildQp2(xs[1:],addToQp2(q,xs[0]))

127 def listToQp2(xs) :
128 return buildQp2(xs, makeEmptyQp2())� �

• Queue Implementation 2 test code� �
132 q21 = listToQp2([1,2,3,1])

134 q22 = tailOfQp2(q21)

136 assert q21 == Qp2(frs=[1], rbks=[1, 3, 2], sz=4)

138 assert stringQp2(q21) == ’<1, 2, 3, 1>’

140 assert q22 == Qp2(frs=[2, 3, 1], rbks=[], sz=3)

142 assert stringQp2(q22) == ’<2, 3, 1>’� �
9.3 ADT Lists in Lists

• Lists implemented naively as linked lists have some operations that take constant
time and some that are linear in the length of the list

• Adding an element to the front of a list takes constant time while adding an element
to the rear takes linear time

• This section reimplements lists using a pair of lists that overcomes this asymmetry
in efficiency giving constant time for all operations.

• The basic idea is quite simple: break the list in two and reverse the second half

• This means that the last element is the first element of the second list

• A problem arises when one attempts to remove an element — in some cases the list
has to be reorganised into two halves

• The criteria for reorganising gives the clue in how to write the code

• This implementation is based on Bird and Gibbons (2020, chp 3)

• The idea is attributed to Gries (1981, page 250) and Hood and Melville (1980)

• See also Hoogerwoord (1992)

• We give the code in Python from SymmetricLists.py with Haskell type specifica-
tions and declarations given as comments

• Here is the type alias declaration as a comment along with fromSL which converts
back from symmetric lists to standard lists — this is known as the abstraction func-
tion� �

12 # type SymList a = ([a],[a])

14 # Abstraction function

16 # fromSL :: SymList a -> [a]

48 M269 Python, Logic, ADTs 28 November 2021

18 def fromSL (pr) :
19 xs = pr[0]
20 ys = pr[1]
21 return xs + reverseF (ys)

23 def reverseF (xs) :
24 ys = xs[:]
25 ys.reverse()
26 return ys� �

• The abstraction function captures the relationship between the implementation
of an operation on the representing type and its abstract type with an equation

• The Eureka bit of the implementation is spotting the representation invariant that
our definitions both exploit and maintain� �

28 # repInvSL :: SymList a -> Bool

30 def repInvSL (pr) :
31 xs = pr[0]
32 ys = pr[1]
33 xsTest = ((not isEmpty (xs))
34 or (isEmpty (ys) or singleton (ys)))
35 ysTest = ((not isEmpty (ys))
36 or (isEmpty (xs) or singleton (xs)))
37 return (xsTest and ysTest)� �

• This says if one list is empty then the other must be either empty or a singleton

• This tells us when we need to reorganise the lists

• Here are the service operations for empty lists and singletons� �
39 # isEmpty :: [a] -> Bool

41 def isEmpty (xs) :
42 return (xs == [])

44 # isEmptySL :: SymList a -> Bool

46 def isEmptySL (pr) :
47 xs = pr[0]
48 ys = pr[1]
49 return (isEmpty (xs) and isEmpty (ys))

51 # singleton :: [a] -> Bool

53 def singleton (xs) :
54 return (len(xs) == 1)

56 # singletonSL :: SymList a -> Bool

58 def singletonSL (pr) :
59 xs = pr[0]
60 ys = pr[1]
61 return ((isEmpty (xs) and singleton (ys))
62 or (isEmpty (ys) and singleton (xs)))� �

• Constructor operations

• Both of these definitions make use of the representation invariant� �
64 # Constructor functions

66 # consSL :: a -> SymList a -> SymList a

68 def consSL (x, pr) :
69 xs = pr[0]
70 ys = pr[1]
71 if isEmpty (ys) :
72 return ([x],xs)

Phil Molyneux M269 Python, ADTs Prsntn2021J 49

73 else :
74 return ([x] + xs, ys)

76 # snocSL :: a -> SymList a -> SymList a

78 def snocSL (x, pr) :
79 xs = pr[0]
80 ys = pr[1]
81 if isEmpty (xs) :
82 return (ys,[x])
83 else :
84 return (xs, [x] + ys)� �

• Inspectors� �
88 # headSL :: SymList a -> a

90 def headSL (pr) :
91 xs = pr[0]
92 ys = pr[1]
93 if isEmpty (xs) :
94 if isEmpty (ys) :
95 raise RuntimeError("headSL ([],[])")
96 else :
97 return ys[0]
98 else :
99 return xs[0]

101 # lastSL :: SymList a -> a

103 def lastSL (pr) :
104 xs = pr[0]
105 ys = pr[1]
106 if isEmpty (ys) :
107 if isEmpty (xs) :
108 raise RuntimeError("tailSL ([],[])")
109 else :
110 return xs[0]
111 else :
112 return ys[0]� �

• tailSL

• Notice how the representation invariant is maintained� �
115 # tailSL :: SymList a -> SymList a

117 def tailSL (pr) :
118 xs = pr[0]
119 ys = pr[1]
120 if isEmpty (xs) :
121 if isEmpty (ys):
122 raise RuntimeError("tailSL ([],[])")
123 else:
124 return ([],[])
125 elif singleton (xs) :
126 splitPt = len(ys) // 2
127 (us,vs) = (ys[:splitPt],ys[splitPt:])
128 return (reverseF (vs), us)
129 else :
130 return (xs[1:],ys)� �

• initSL� �
132 # initSL :: SymList a -> SymList a

134 def initSL (pr) :
135 xs = pr[0]
136 ys = pr[1]
137 if isEmpty (ys) :
138 if isEmpty (xs):
139 raise RuntimeError("initSL ([],[])")
140 else:
141 return ([],[])

50 M269 Python, Logic, ADTs 28 November 2021

142 elif singleton (ys) :
143 splitPt = len(xs) // 2
144 (us,vs) = (xs[:splitPt],xs[splitPt:])
145 return (us, reverseF (vs))
146 else :
147 return (xs,ys[1:])� �

• The implementations are designed to satisfy the six equations:

• The equations are expressed here in Haskell notation� �
1 # -- The implementation satifies the following
2 # --
3 # -- (cons x . fromSL) ps == (fromSL . consSL x) ps
4 # -- (snoc x . fromSL) ps == (fromSL . snocSL x) ps
5 # -- (tail . fromSL) ps == (fromSL . tailSL) ps
6 # -- (init . fromSL) ps == (fromSL . initSL) ps
7 # -- (head . fromSL) ps == headSL ps
8 # -- (last . fromSL) ps == lastSL ps� �

• Each of the operations apart from tailSL and initSL take constant time

• tailSL and initSL can take linear time in the worst case but they take amortised
constant time — see the references for derivation

• Note that Haskell Data.Sequence uses 2-3 Finger Trees for better performance

• Ex (1) Write down all the ways "abcd" can be represented as a symmetric list.

Give examples to show how each of these representations can be generated.

• Ex (2) Define lengthSL

• Ex (3) Implement dropWhileSL so that� �
dropWhile . fromSL = fromSL . dropWhileSL� �

• Ex (4) Define initsSL with the type� �
initsSL :: SymList a -> SymList (SymList a)� �

Write down the equation which expresses the relationship between fromSL, initsSL,
and inits.

• Ans (1) There are three ways:� �
("a","dcb"),("ab","dc"),("abc","d")� �� �
Python3>>> prs1 = consSL(’a’,([],[]))
Python3>>> prs1
([’a’], [])
Python3>>> prs2 = snocSL(’b’,prs1)
Python3>>> prs2
([’a’], [’b’])
Python3>>> prs3 = snocSL(’c’,prs2)
Python3>>> prs3
([’a’], [’c’, ’b’])
Python3>>> prs4 = snocSL(’d’,prs3)
Python3>>> prs4
([’a’], [’d’, ’c’, ’b’])

Python3>>> prs1a = snocSL(’a’,([],[]))
Python3>>> prs1a
([], [’a’])
Python3>>> prs2a = snocSL(’b’,prs1a)
Python3>>> prs2a
([’a’], [’b’])� �

Phil Molyneux M269 Python, ADTs Prsntn2021J 51

• Ans (1) There are three ways:� �
("a","dcb"),("ab","dc"),("abc","d")� �� �
Python3>>> prs1 = consSL(’d’,([],[]))
Python3>>> prs1
([’d’], [])
Python3>>> prs2 = consSL(’c’,prs1)
Python3>>> prs2
([’c’], [’d’])
Python3>>> prs3 = consSL(’b’,prs2)
Python3>>> prs3
([’b’, ’c’], [’d’])
Python3>>> prs4 = consSL(’a’,prs3)
Python3>>> prs4
([’a’, ’b’, ’c’], [’d’])� �

• Functional programmers will spot that the first is an instance of a foldl while the
third is an instance of a foldr

10 Future Work

Programming, Debugging, Psychology

Although programming techniques have improved immensely since the early days, the
process of finding and correcting errors in programming — known graphically if inele-
gantly as debugging — still remains a most difficult, confused and unsatisfactory opera-
tion. The chief impact of this state of affairs is psychological. Although we are happy to
pay lip-service to the adage that to err is human, most of us like to make a small pri-
vate reservation about our own performance on special occasions when we really try. It
is somewhat deflating to be shown publicly and incontrovertibly by a machine that even
when we do try, we in fact make just as many mistakes as other people. If your pride
cannot recover from this blow, you will never make a programmer.

Christopher Strachey, Scientific American 1966 vol 215 (3) September pp112–124

• To err is human, to really foul things up requires a computer.

• Attributed to Paul R. Ehrlich in 101 Great Programming Quotes

• Attributed to Bill Vaughn in Quote Investigator

• Derived from Alexander Pope (1711, An Essay on Criticism)

• To Err is Humane; to Forgive, Divine

• This also contains

A little learning is a dangerous thing;

Drink deep, or taste not the Pierian Spring

• In programming, this means you have to read the fabulous manual (RTFM)

Sorting, Searching, Binary Trees

• Recursive function definitions

• Inductive data type definitions

https://en.wikipedia.org/wiki/Christopher_Strachey
https://en.wikipedia.org/wiki/Paul_R._Ehrlich
http://www.devtopics.com/101-great-computer-programming-quotes/
https://en.wikipedia.org/wiki/William_E._Vaughan
http://quoteinvestigator.com/2010/12/07/foul-computer/
https://en.wikipedia.org/wiki/Alexander_Pope
https://en.wikipedia.org/wiki/An_Essay_on_Criticism
https://en.wikipedia.org/wiki/Pierian_Spring
https://lmgtfy.com/?q=rtfm

52 M269 Python, Logic, ADTs 28 November 2021

– A list is either an empty list or a first item followed by the rest of the list

– A binary tree is either an empty tree or a node with an item and two sub-trees

• Recursive definitions often easier to find than iterative

• Sorting

• Searching

• Both use binary tree structure

• 9 December 2021 TMA01

• Sunday 9 January 2022 Tutorial Online Sorting

• Sunday 6 February 2022 Tutorial Online Binary Trees

• 8 March 2022 TMA02

11 Example Algorithm Design — Haskell

Binary Search — Haskell

• The notes following give two implementations of Binary Search in Haskell

• Note: these are not part of M269 and are purely for comparison for those interested

• The first is a direct translation of the recursive Python version

• The second is derived from http://rosettacode.org/wiki/Binary_search and
is more idiomatic Haskell

• The code for both implementations is in the file M269BinarySearch.hs (which
should be near the file of these slides)

11.1 Binary Search — Haskell — version 1

Binary Search — Haskell — 1 (a)� �
1 module M269BinarySearch where

3 import Data.Array
4 import Data.List� �

• A Haskell script starts with a module header which starts with the reserved identifier,
module followed by the module name, M269BinarySearch

• The module name must start with an upper case letter and is the same as the file
name (without its extension of .hs or .lhs)

• Haskell uses layout (or the off-side rule) to determine scope of definitions, similar to
Python

• The body of the module follows the reserved identifier where and starts with import
declarations

• This imports the libraries Data.List, Data.Array

http://haskell.org
http://rosettacode.org/wiki/Binary_search

Phil Molyneux M269 Python, ADTs Prsntn2021J 53

Binary Search — Haskell — 1 (b)� �
6 binarySearch :: Ord a => [a] -> a -> Maybe Int

8 binarySearch xs val
9 = binarySearch01 xs val (lo,hi)

10 where
11 lo = 0
12 hi = length xs - 1� �

• Line 8 is the definition of binarySearch

• The preceding line, 6, is the type signature

• binarySearch takes a list and a value of type a (in the class Ord for ordering) and
returns a Maybe Int — a is a type variable

• The Maybe a type is an algebraic data type which is the union of the data construc-
tors Nothing and Just a� �

data Maybe a = Nothing | Just a� �
Code Description 1

• f :: t is a type signature for variable f that reads f is of type t

• f :: t1 -> t2 means that f has the type of a function that takes elements of type
t1 and returns elements of type t2

• The function type arrow -> associates to the right

– f :: t1 -> t2 -> t3 means

– f :: t1 -> (t2 -> t3)

• f x — function application is denoted by juxtaposition and is more binding than
(almost) any other operation.

• Function application is left associative

– f x y means

– (f x) y

Binary Search — Haskell — 1 (c)� �
14 binarySearch01 :: Ord a
15 => [a] -> a -> (Int, Int) -> Maybe Int

17 binarySearch01 xs val (lo,hi)
18 = if hi < lo then Nothing
19 else
20 let mid = (lo + hi) ‘div‘ 2
21 guess = xs !! mid
22 in
23 if val == guess
24 then Just mid
25 else if val < guess
26 then binarySearch01 xs val (lo,mid-1)
27 else binarySearch01 xs val (mid + 1, hi)� �

54 M269 Python, Logic, ADTs 28 November 2021

Code Description 2

• A let expression has the form� �
let decls in expr� �

• decls is a number of declarations

• expr is an expression (which is the scope of the declarations)

• div is the integer division function

• In `div`, the grave accents (`) make a function into an infix operator (OK, that
is syntactic sugar I need not have introduced — and my formatting program has
coerced the grave accent to a left single quotation mark Unicode U+2018, not the
grave accent U+0060)

• (!!) is the list index operator — first item has index 0

11.2 Binary Search — Haskell — version 2

Binary Search — Haskell — 2 (a)� �
29 binarySearchGen :: Integral a
30 => (a -> Ordering) -> (a, a) -> Maybe a
31 binarySearchGen p (lo,hi)
32 | hi < lo = Nothing
33 | otherwise =
34 let mid = (lo + hi) ‘div‘ 2 in
35 case p mid of
36 LT -> binarySearchGen p (lo, mid - 1)
37 GT -> binarySearchGen p (mid + 1, hi)
38 EQ -> Just mid� �

Code Description 3

• A case expression has the form� �
case expr of alts� �

expr is evaluated and whichever alternative of alts matches is the result

• The lines starting with (|) are guarded definitions — if the boolean expression to
the right is True then the following expression is used

• otherwise is a synonym for True

• A conditional expression has the form� �
if expr then expr else expr� �

The first expr must be of type Bool

• Guards and conditionals are alternative styles in programming

Phil Molyneux M269 Python, ADTs Prsntn2021J 55

Binary Search — Haskell — 2 (b)� �
40 binarySearchArray :: (Ix i, Integral i, Ord a)
41 => Array i a -> a -> Maybe i
42 binarySearchArray ary x
43 = binarySearchGen p (bounds ary)
44 where
45 p m = x ‘compare‘ (ary ! m)

47 binarySearchList :: Ord a
48 => [a] -> a -> Maybe Int
49 binarySearchList xs val
50 = binarySearchGen p (0, length xs - 1)
51 where
52 p m = val ‘compare‘ (xs !! m)� �

Code Description 4

• compare is a method of the Ord class, for ordering, defined in the standard Prelude� �
class (Eq a) => Ord a where
compare :: a -> a -> Ordering
(<),(<=),(>=),(>) :: a -> a -> Bool
max, min :: a -> a -> a

compare x y
| x == y = EQ
| x <= y = LT
| otherwise = GT

data Ordering = LT | EQ | GT
deriving (Eq,Ord,Enum,Read,Show,Bounded)� �

• Minimal type-specific definitions required are compare or (==) and (<=)

• ! and !! are the array and list indexing operators

11.3 Binary Search — Haskell — Comparison

• The first version with binarySearch and binarySearch01 is very similar to the
Python recursive version binarySearchRec

• In the Haskell case an explicit helper function is used

• The second version is more general: binarySearchGen can be used with any type
that is indexed by a data type in the Integral class

• binarySearchArray and binarySearchList specialise the function to arrays or
lists.

• For the Haskell Array data type see the Haskell Report

• Idiomatic Haskell tends to be more general and make use of higher order functions,
type classes and advanced features.

12 Web Links & References

• Python Online IDEs

– Repl.it https://repl.it/languages/python3 (Read-eval-print loop)

http://www.haskell.org/haskellwiki/Language_and_library_specification
https://repl.it/languages/python3

56 M269 Python, Logic, ADTs 28 November 2021

– TutorialsPoint CodingGround Python 3 https://www.tutorialspoint.com/
execute_python3_online.php

– TutorialsPoint CodingGround Haskell ghci https://www.tutorialspoint.
com/compile_haskell_online.php

• The offside rule (using layout to determine the start and end of code blocks) comes
originally from Landin (1966) — see Off-side rule for other programming languages
that use this.

• The step-by-step approach to writing programs is described in Glaser et al. (2000)

• The difficulty in learning programs is described in many articles — see, for example,
Dehnadi and Bornat (2006)

• Inductive data type

– Algebraic data type composite type — possibly recursive sum type of product
types — common in modern functional languages.

– Recursive data type from Type theory

References

Bentley, Jon (1984). Programming pearls: Algorithm design techniques. Commun. ACM,
27(9):865–873. ISSN 0001-0782. doi:10.1145/358234.381162. URL http://doi.acm.
org/10.1145/358234.381162.

Bentley, Jon (1986). Programming Pearls. Addison Wesley. ISBN 0201103311.

Bentley, Jon (2000). Programming Pearls. Addison Wesley, second edition. ISBN
0201657880.

Bird, Richard (1998). Introduction to Functional Programming using Haskell. Prentice Hall,
second edition. ISBN 0134843460.

Bird, Richard (2010). Pearls of Functional Algorithm Design. Cambridge University Press.
ISBN 0521513383.

Bird, Richard (2014). Thinking Functionally with Haskell. Cambridge University Press. ISBN
1107452643. URL http://www.cs.ox.ac.uk/publications/books/functional/.

Bird, Richard and Jeremy Gibbons (2020). Algorithm Design with Haskell. Cambridge Uni-
versity Press. ISBN 9781108869041. URL http://www.cs.ox.ac.uk/publications/
books/adwh/.

Dehnadi, Saeed and Richard Bornat (2006). The camel has two humps. Web (Last
checked 22 October 2015). URL http://www.eis.mdx.ac.uk/research/PhDArea/
saeed/paper1.pdf.

Gibbons, Jeremy (2008). Unfolding abstract datatypes. In Mathematics of Program Con-
struction. Springer. doi:10.1007/978-3-540-70594-9_8. URL http://www.comlab.ox.
ac.uk/jeremy.gibbons/publications/adt.pdf.

Glaser, H; P J Hartel; and P W Garratt (2000). Programming by numbers: a programming
method for complete novices. The Computer Journal, 43(4):252–265. A functional
approach to learning programming.

https://www.tutorialspoint.com/execute_python3_online.php
https://www.tutorialspoint.com/execute_python3_online.php
https://www.tutorialspoint.com/compile_haskell_online.php
https://www.tutorialspoint.com/compile_haskell_online.php
https://en.wikipedia.org/wiki/Off-side_rule
https://en.wikipedia.org/wiki/Algebraic_data_type
https://en.wikipedia.org/wiki/Tagged_union
https://en.wikipedia.org/wiki/Product_type
https://en.wikipedia.org/wiki/Product_type
https://en.wikipedia.org/wiki/Recursive_data_type
https://en.wikipedia.org/wiki/Type_theory
http://doi.acm.org/10.1145/358234.381162
http://doi.acm.org/10.1145/358234.381162
http://www.cs.ox.ac.uk/publications/books/functional/
http://www.cs.ox.ac.uk/publications/books/adwh/
http://www.cs.ox.ac.uk/publications/books/adwh/
http://www.eis.mdx.ac.uk/research/PhDArea/saeed/paper1.pdf
http://www.eis.mdx.ac.uk/research/PhDArea/saeed/paper1.pdf
http://www.comlab.ox.ac.uk/jeremy.gibbons/publications/adt.pdf
http://www.comlab.ox.ac.uk/jeremy.gibbons/publications/adt.pdf

Phil Molyneux M269 Python, ADTs Prsntn2021J 57

Goguen, J A; J W Thatcher; E G Wagner; and J B Wright (1977). Initial algebra semantics and
continuous algebras. Journal of the Association for Computing Machinery, 24(1):68–95.

Gries, David (1981). The Science of Programming. Springer. ISBN 0387964800. URL
https://www.cs.cornell.edu/gries/July2016/The-Science-Of-Programming-
Gries-038790641X.pdf.

Gries, David (1982). A note on a standard strategy for developing loop invariants and
loops. Science of Computer Programming, 2(3):207–214.

Gries, David (1989). The maximum-segment-sum problem. In Formal development pro-
grams and proofs, pages 33–36. Addison-Wesley Longman Publishing Co., Inc.

Guttag, John (1977). Abstract data types and the development of data structures. Com-
munications of the ACM, 20(6):396–404.

Guttag, John (1980). Notes on type abstraction (version 2). Software Engineering, IEEE
Transactions on, 6(1):13–23.

Guttag, John V. and James J. Horning (1978). The algebraic specification of abstract data
types. Acta informatica, 10(1):27–52.

Guttag, John V; Ellis Horowitz; and David R Musser (1978). Abstract data types and soft-
ware validation. Communications of the ACM, 21(12):1048–1064.

Hood, Robert T and Robert C Melville (1980). Real time queue operations in pure Lisp.
Technical report, Cornell University.

Hoogerwoord, Rob R (1992). Functional pearls a symmetric set of efficient list operations.
Journal of Functional Programming, 2(4):505–513.

Jacobs, Bart and Jan Rutten (1997). A tutorial on (co) algebras and (co) induction. Bulletin-
European Association for Theoretical Computer Science, 62:222–259.

Landin, Peter J. (1966). The next 700 programming languages. Communications of the
Association for Computing Machinery, 9:157–166.

Liskov, Barbara and Stephen Zilles (1974). Programming with abstract data types. ACM
Sigplan Notices, 9(4):50–59.

Lutz, Mark (2011). Programming Python. O’Reilly, fourth edition. ISBN 0596158106. URL
http://learning-python.com/books/about-pp4e.html.

Lutz, Mark (2013). Learning Python. O’Reilly, fifth edition. ISBN 1449355730. URL
http://learning-python.com/books/about-lp5e.html.

Miller, Bradley W. and David L. Ranum (2011). Problem Solving with Algorithms and
Data Structures Using Python. Franklin, Beedle Associates Inc, second edition. ISBN
1590282574. URL http://interactivepython.org/courselib/static/pythonds/
index.html.

Mu, Shin-Cheng (2008). Maximum segment sum is back: deriving algorithms for two
segment problems with bounded lengths. In Proceedings of the 2008 ACM SIGPLAN
symposium on Partial evaluation and semantics-based program manipulation, pages
31–39. ACM.

Okasaki, Chris (1995). Simple and efficient purely functional queues and deques. Journal
of functional programming, 5(04):583–592.

https://www.cs.cornell.edu/gries/July2016/The-Science-Of-Programming-Gries-038790641X.pdf
https://www.cs.cornell.edu/gries/July2016/The-Science-Of-Programming-Gries-038790641X.pdf
http://learning-python.com/books/about-pp4e.html
http://learning-python.com/books/about-lp5e.html
http://interactivepython.org/courselib/static/pythonds/index.html
http://interactivepython.org/courselib/static/pythonds/index.html

58 M269 Python, Logic, ADTs 28 November 2021

Okasaki, Chris (1998). Purely Functional Data Structures. Cambridge University Press.
ISBN 0-521-63124-6.

Rutten, Jan JMM (2000). Universal coalgebra: a theory of systems. Theoretical Computer
Science, 249(1):3–80.

van Rossum, Guido and Fred Drake (2003a). An Introduction to Python. Network Theory
Limited. ISBN 0954161769.

van Rossum, Guido and Fred Drake (2003b). The Python Language Reference Manual.
Network Theory Limited. ISBN 0954161785.

van Rossum, Guido and Fred Drake (2011a). An Introduction to Python. Network Theory
Limited, revised edition. ISBN 1906966133.

van Rossum, Guido and Fred Drake (2011b). The Python Language Reference Manual.
Network Theory Limited, revised edition. ISBN 1906966141.

Author Phil Molyneux Written 28 November 2021 Printed 26th November 2021
Subject dir: 〈baseURL〉/OU/Courses/Computing/M269/M269Presentations/M269Prsntn2021J
Topic path:
/M269Prsntn2021JTutorials/M269Tutorial02Prsntn2021JProgPythonADT/M269Tutorial02Prsntn2021JProgPythonADT.pdf

	Agenda
	Adobe Connect
	Interface
	Settings
	Sharing Screen & Applications
	Ending a Meeting
	Invite Attendees
	Layouts
	Chat Pods
	Web Graphics

	Programming
	Computational Components
	Computation, Programming, Programming Languages
	Example Algorithm Design
	Binary Search — Exercise
	Binary Search — Comparison
	Writing Programs & Thinking

	Python
	Learning Python
	Basic Python
	Python Workflows

	Complexity
	Complexity Example
	Complexity & Python Data Types

	Logarithms
	Exponentials and Logarithms — Definitions
	Rules of Indices
	Logarithms — Motivation
	Exponentials and Logarithms — Graphs
	Laws of Logarithms
	Arithmetic and Inverses
	Change of Base

	Before Calculators
	Log Tables
	Slide Rules
	Calculators
	Example Calculation

	Logic Introduction
	Boolean Expressions and Truth Tables
	Conditional Expressions and Validity
	Boolean Expressions Exercise
	Propositional Calculus
	Truth Function

	ADTs
	Abstract Data Types — Overview
	Abstract Data Type — Queue
	ADT Lists in Lists

	Future Work
	Haskell Example
	Binary Search — Haskell — version 1
	Binary Search — Haskell — version 2
	Binary Search — Haskell — Comparison

	References
	References

