
M269 Overview

M269 Overview Prsntn 2021J

Contents

1 M269 Overview Tutorial Agenda 1

2 Adobe Connect 3
2.1 Interface . 3
2.2 Settings . 3
2.3 Sharing Screen & Applications . 5
2.4 Ending a Meeting . 5
2.5 Invite Attendees . 5
2.6 Layouts . 6
2.7 Chat Pods . 6
2.8 Web Graphics . 6

3 M269 Overview 7

4 Basic Computational Components 8
4.1 Computation, Programming, Programming Languages 8
4.2 Programming Languages . 11

5 Python & Jupyter Notebook 12
5.1 Anaconda . 12
5.2 Jupyter Notebook . 13
5.3 Notebook File Format . 14

6 Software & Programming 16
6.1 Learning Software Packages . 16
6.2 Writing Programs & Thinking . 19

7 What Next ? 20

8 References 21
References . 21

1 M269 Overview Tutorial Agenda

• Introductions

• M269 Overview

• Basic Computational Components

• Course material and software: Anaconda and Jupyter Notebooks

• Learning Software Packages

• How to Program (in two slides)

1

2 M269 Overview 10 October 2021

• How to survive learning software packages

• Adobe Connect — if you or I get cut off, wait till we reconnect (or send you an email)

• Time: about 1 hour

• Do ask questions or raise points.

• Slides/Notes M269Tutorial01Overview

Introductions — Me

• Name Phil Molyneux

• Background

– Undergraduate: Physics and Maths (Sussex)

– Postgraduate: Physics (Sussex), Operational Research (Brunel), Computer Sci-
ence (University College, London)

– Worked in Operational Research, Business IT, Web technologies, Functional Pro-
gramming

• First programming languages Fortran, BASIC, Pascal

• Favourite Software

– Haskell — pure functional programming language

– Text editors TextMate, Sublime Text — previously Emacs

– Word processing in LATEX — all these slides and notes

– Mac OS X

• Learning style — I read the manual before using the software

Introductions — You

• Name ?

• Favourite software/Programming language ?

• Favourite text editor or integrated development environment (IDE)

• List of text editors, Comparison of text editors and Comparison of integrated devel-
opment environments

• Other OU courses ?

• Anything else ?

http://pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269Tutorial01Overview/
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://www.haskell.org/
https://macromates.com
http://www.sublimetext.com
https://www.emacswiki.org/
https://www.latex-project.org/
https://developer.apple.com/
https://en.wikipedia.org/wiki/Text_editor
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/List_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments

Phil Molyneux M269 Overview Prsntn 2021J 3

2 Adobe Connect Interface and Settings

2.1 Adobe Connect Interface

Adobe Connect Interface — Host View

Adobe Connect Interface — Participant View

2.2 Adobe Connect Settings

Adobe Connect — Settings

4 M269 Overview 10 October 2021

• Everybody Menu bar Meeting Speaker & Microphone Setup

• Menu bar Microphone Allow Participants to Use Microphone 4

• Check Participants see the entire slide including slide numbers bottom right Workaround

– Disable Draw Share pod Menu bar Draw icon

– Fit Width Share pod Bottom bar Fit Width icon 4

• Meeting Preferences General Host Cursor Show to all attendees

• Menu bar Video Enable Webcam for Participants 4

• Do not Enable single speaker mode

• Cancel hand tool

• Do not enable green pointer

• Recording Meeting Record Session 4

• Documents Upload PDF with drag and drop to share pod

• Delete Meeting Manage Meeting Information Uploaded Content and check filename click on delete

Adobe Connect — Access

• Tutor Access

TutorHome M269 Website Tutorials

Cluster Tutorials M269 Online tutorial room

Tutor Groups M269 Online tutor group room

Module-wide Tutorials M269 Online module-wide room

• Attendance

TutorHome Students View your tutorial timetables

• Beamer Slide Scaling 440% (422 x 563 mm)

• Clear Everyone’s Status

Attendee Pod Menu Clear Everyone’s Status

• Grant Access and send link via email

Meeting Manage Access & Entry Invite Participants. . .

• Presenter Only Area

Meeting Enable/Disable Presenter Only Area

Adobe Connect — Keystroke Shortcuts

• Keyboard shortcuts in Adobe Connect

• Toggle Mic + M (Mac), Ctrl + M (Win) (On/Disconnect)

• Toggle Raise-Hand status + E

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html

Phil Molyneux M269 Overview Prsntn 2021J 5

• Close dialog box (Mac), Esc (Win)

• End meeting + \

2.3 Adobe Connect — Sharing Screen & Applications

• Share My Screen Application tab Terminal for Terminal

• Share menu Change View Zoom in for mismatch of screen size/resolution (Participants)

• (Presenter) Change to 75% and back to 100% (solves participants with smaller screen
image overlap)

• Leave the application on the original display

• Beware blued hatched rectangles — from other (hidden) windows or contextual
menus

• Presenter screen pointer affects viewer display — beware of moving the pointer away
from the application

• First time: System Preferences Security & Privacy Privacy Accessibility

2.4 Adobe Connect — Ending a Meeting

• Notes for the tutor only

• Student: Meeting Exit Adobe Connect

• Tutor:

• Recording Meeting Stop Recording 4

• Remove Participants Meeting End Meeting. . . 4

– Dialog box allows for message with default message:

– The host has ended this meeting. Thank you for attending.

• Recording availability In course Web site for joining the room, click on the eye icon
in the list of recordings under your recording — edit description and name

• Meeting Information Meeting Manage Meeting Information — can access a range of informa-
tion in Web page.

• Attendance Report see course Web site for joining room

2.5 Adobe Connect — Invite Attendees

• Provide Meeting URL Menu Meeting Manage Access & Entry Invite Participants. . .

• Allow Access without Dialog Menu Meeting Manage Meeting Information provides new browser
window with Meeting Information Tab bar Edit Information

• Check Anyone who has the URL for the meeting can enter the room

• Default Only registered users and accepted guests may enter the room

https://en.wikipedia.org/wiki/Terminal_(macOS)

6 M269 Overview 10 October 2021

• Reverts to default next session but URL is fixed

• Guests have blue icon top, registered participants have yellow icon top — same icon
if URL is open

• See Start, attend, and manage Adobe Connect meetings and sessions

2.6 Layouts

• Creating new layouts example Sharing layout

• Menu Layouts Create New Layout. . . Create a New Layout dialog Create a new blank layout and name it
PMolyMain

• New layout has no Pods but does have Layouts Bar open (see Layouts menu)

• Pods

• Menu Pods Share Add New Share and resize/position — initial name is Share n

• Rename Pod Menu Pods Manage Pods. . . Manage Pods Select Rename or Double-click & rename

• Add Video pod and resize/reposition

• Add Attendance pod and resize/reposition

• Add Chat pod — name it PMolyChat — and resize/reposition

• Dimensions of Sharing layout (on 27-inch iMac)

– Width of Video, Attendees, Chat column 14 cm

– Height of Video pod 9 cm

– Height of Attendees pod 12 cm

– Height of Chat pod 8 cm

• Duplicating Layouts does not give new instances of the Pods and is probably not a
good idea (apart from local use to avoid delay in reloading Pods)

2.7 Chat Pods

• Format Chat text

• Chat Pod menu icon My Chat Color

• Choices: Red, Orange, Green, Brown, Purple, Pink, Blue, Black

• Note: Color reverts to Black if you switch layouts

• Chat Pod menu icon Show Timestamps

2.8 Graphics Conversion for Web

• Conversion of the screen snaps for the installation of Anaconda on 1 May 2020

• Using GraphicConverter 11

https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html

Phil Molyneux M269 Overview Prsntn 2021J 7

• File Convert & Modify Conversion Convert

• Select files to convert and destination folder

• Click on Start selected Function or +

Go to Table of Contents

3 M269 Overview

M269 Algorithms, data structures and computability
Aims

• Ideas of computational thinking

• Introduction to algorithms and data structures (using Python)

• Logic and the limits of computation

• Computability

• Complexity

M269 Algorithms, data structures and computability
Topics

• Numbers and sequences — functions, complexity, data types

• Booleans and selection — Abstract Data Type (ADT), Decision problems

• Sequences and iteration — control structures for iteration, lists, tuples

• Implementing sequences — arrays as primitives, lists in arrays

• Stack and queues — example ADTs

• Unordered collections — maps, dictionaries, hash tables, sets, bags

• Exhaustive search

• Recursion — some historical context

• Divide and conquer

• Sorting

• Tree data structures

• Graph algorithms

• Greedy algorithms

• M269 Units 6 Sets, logic and databases

• Propositional and predicate logic — first order logic

• M269 Unit 7 Computation

• Computability and complexity

• NP-compeleteness

8 M269 Overview 10 October 2021

4 Basic Computational Components

Computational Components — Imperative

Imperative or procedural programming has statements which can manipulate global mem-
ory, have explicit control flow and can be organised into procedures (or functions)

• Sequence of statements� �
stmnt ; stmnt� �

• Iteration to repeat statements� �
while expr :
suite

for targetList in exprList :
suite� �

• Selection choosing between statements� �
if expr : suite
elif expr : suite
else : suite� �

Functional programming treats computation as the evaluation of expressions and the
definition of functions (in the mathematical sense)

• Function composition to combine the application of two or more functions — like
sequence but from right to left (notation accident of history)� �

(f . g) x = f (g x)� �
• Recursion — function definition defined in terms of calls to itself (with smaller ar-

guments) and base case(s) which do not call itself.

• Conditional expressions choosing between alternatives expressions� �
if expr then expr else expr� �

4.1 Computation, Programming, Programming Languages

• M269 is not a programming course but . . .

• The course uses Python to illustrate various algorithms and data structures

• The final unit addresses the question:

• What is an algorithm ? What is programming ? What is a programming language ?

• So it is a programming course (sort of)

Computation, Syntax and Semantics

• Syntax and Semantics (1)

• What is each of the following — first reaction !

• 4 + 6

https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Control_flow
https://en.wikipedia.org/wiki/Structured_programming
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Function_composition_(computer_science)
https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/Conditional_(computer_programming)

Phil Molyneux M269 Overview Prsntn 2021J 9

• 4 + 6× 3

• 4

• 19370721× 761838257287

• The above are expressions in arithmetic

– Most students read what is as evaluate

– Not easy for the last one

– But you can say:

– They are expressions which when evaluated, evaluate to some number

– 19370721× 761838257287

– = 147573952589676412927 = 267 – 1

– demonstrated in a famous meeting of the New York AMS in October 1903 by
F.N.Cole (Cole, 1903)

Computation — Cartesian Close Comic Cartoon

• Syntax and Semantics (2)

• Evaluate

• 6 + 4× 3

https://en.wikipedia.org/wiki/Frank_Nelson_Cole

10 M269 Overview 10 October 2021

• 6 – 4 – 1

• False or True (in Python)

• 5 // 3 (integer division in Python)

• 1 // 0 (in Python)

• False or True or 1 // 0 (in Python)

Syntax and Sematics — Elementary Concepts

• An expression can be thought of as a program (and vice versa)

• A set of instructions to find a value.

• Operator precedence and associativity are there to get rid of some brackets

• (to make the code more user friendly!)

• Precedence — which operator to use first. This is also called binding power or oper-
ator fixity

• Associativity — for the same operator, whether to evaluate from left to right or right
to left (or it doesn’t matter)

• Lazy Evaluation — don’t do today what you can put off til tomorrow, because you
might never have to do it (useful in computation — not useful for doing TMAs)

• Sharp edges

• Evaluate (in Maths) 22 and 222
and 2222

• In Python 2**2**2**2

• Alternate in Python pow(2,pow(2,pow(2,2)))

• Microsoft Excel =2^2^2^2

• or use LibreOffice, Numbers, . . .

• Sharp edges

• Evaluate (in Maths) 22 and 222
and 2222

• 222
= 16 and 2222

= 216 = 65536 (or 64K in computing)

• Python 2**2**2**2 == 65536

• Python pow(2,pow(2,pow(2,2))) == 65536

• Casio fx-85GT Plus 2^2^2^2 shows 65536

• Haskell 2^2^2^2 == 65536

• Microsoft Excel =2^2^2^2 == 256

• Beware language semantics

• Microsoft Excel =2^2^2^2^2 == 65536

• Haskell length (show (2^2^2^2^2)) == 19729

Phil Molyneux M269 Overview Prsntn 2021J 11

• 22222

has 19729 digits

• What is Excel doing differently ?

4.2 Programming Languages

• Add a tick on the slide next to languages used

• FORTRAN

• BASIC

• Pascal

• SASL

• C

• Miranda

• Prolog

• JavaScript

• Java

• Haskell

• Add names of other languages used

• Are the following programming languages ?

• Excel

• HTML

• Word

• LATEX

• SQL

• Excel

• Excel has conditional expressions and indirections (so can have loops)

• An Excel Turing Machine is described in Felienne’s blog

• Excel see Improving the world’s most popular functional language: user-defined
functions in Excel

• Announcing LAMBDA: Turn Excel formulas into custom functions (3 December 2020)

• HTML

• HyperText Markup Language is the standard markup language for Web pages — it
describes the structure of the content.

• It can contain CSS (for describing appearance) and

• JavaScript (for describing behaviour)

• HTML is not a programming language

https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://en.wikipedia.org/wiki/SASL_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
http://miranda.org.uk/
https://en.wikipedia.org/wiki/Prolog
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Java_(programming_language)
https://www.haskell.org/
http://www.felienne.com/archives/2974
http://www.felienne.com/about-3
http://research.microsoft.com/en-us/um/people/simonpj/Papers/excel/
http://research.microsoft.com/en-us/um/people/simonpj/Papers/excel/
https://techcommunity.microsoft.com/t5/excel-blog/announcing-lambda-turn-excel-formulas-into-custom-functions/ba-p/1925546
https://en.wikipedia.org/wiki/HTML

12 M269 Overview 10 October 2021

• JavaScript is a Turing complete programming language but embedded in a host en-
vironment.

• CSS could be extended to be Turing complete — see Is CSS Turing complete

• Word

• Microsoft Word interface to text formatting

• Serialised with the markup language Office Open XML

• Visual Basic for Applications is embedded and is a programming language

• LATEX

• LaTeX is a format of TeX

• Markup technology for typesetting documents — oriented towards mathematics and
technical documents.

• Is also a Turing complete programming language (Unit 7)

• Used in MST125 Essential Mathematics 2 Unit 2 Mathematical typesetting

• SQL

• Structured Query Language based on relational algebra and tuple relational calculus

• Syntactic sugar for first order logic (Unit 6)

• Originally not a Turing complete programming language (Unit 7)

• but extensions are Turing complete

• Turing completeness is not everything

• Data languages such as XML, HTML, JSON

• Regular languages for regular expressions in your favourite text editor (and some
programming languages)

• Pushdown automata and Context-free grammars used in program compiling.

• Total Functional Programming requires all programs to be provably terminating.

5 Python & Jupyter Notebook

5.1 Anaconda

• Anaconda Individual Edition

• Anaconda documentation Documentation

• Anaconda documentation Quick Start Guide

• Anaconda Troubleshooting Troubleshooting

• You have to pay attention to your configuration: Windows, macOS, Linux

• macOS bash

https://stackoverflow.com/questions/2497146/is-css-turing-complete
https://en.wikipedia.org/wiki/Microsoft_Word
https://en.wikipedia.org/wiki/Office_Open_XML
https://en.wikipedia.org/wiki/Visual_Basic_for_Applications
https://en.wikipedia.org/wiki/LaTeX
https://en.wikipedia.org/wiki/TeX
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/Turing_completeness
https://en.wikipedia.org/wiki/Turing_completeness
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Regular_language
https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Pushdown_automaton
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Total_functional_programming
https://www.anaconda.com/products/individual
https://docs.anaconda.com/anaconda/
https://docs.anaconda.com/anaconda/user-guide
https://docs.anaconda.com/anaconda/user-guide/troubleshooting/

Phil Molyneux M269 Overview Prsntn 2021J 13

• The install sets up .bash_profile which then bypasses .profile and .bashrc

• /Users/molyneux/opt/anaconda3/bin is prepended to your PATH (with your user
name not mine, molyneux)

• I have the following set in .profile and .bashrc

• .profile� �
export PYTHONSTARTUP="$HOME/.PythonStartupRC/PythonStartupRC.py"
Sets the prompts for several Python distributions� �

• .bashrc� �
Python aliases for alternate Python distributions

alias anPython="$HOME/opt/anaconda3/bin/python"
alias acPython="/usr/local/bin/python3"
alias apPython="/usr/bin/python"� �

5.2 Jupyter Notebook

• Jupyter Notebook is a Web application that allows the sharing of documents contain-
ing live code, equations and other Maths, visualisations and narrative text

• Jupyter Notebook documentation

• Launch Jupyter Notebook

• Navigate to the folder containing the notebooks in a command terminal (macOS
Terminal)� �
jupyter notebook &� �

• Your default Web browser opens with Notebook Dashboard

• Navigate to a Notebook file (*.pynb) to launch a Notebook Editor on the Notebook
file

• Help User Interface Tour

• Help Keyboard Shortcuts

• Halt a Notebook Editor with File Close and Halt

• The supplied file custom.css (with the book files) changes some styles

• The file has to be placed at ~/.jupyter/custom/custom.css — note the (.) in
.jupyter

• Some files and folders in macOS are not displayed by default in Finder or Terminal

• These are files with names starting with a dot (.), Library folders (there are several)
and some system folders

• Here are several ways of making these files visible

• Finder (1) with Finder selected, type + + . — the keystroke command is a
toggle so to turn viewing off just re-type the same

• Finder (2) to make the change permanent, type the following in Terminal

.bash_profile
.profile
.bashrc
/Users/molyneux/opt/anaconda3/bin
.profile
.bashrc
.profile
.bashrc
https://jupyter.org/
https://jupyter-notebook.readthedocs.io/en/stable/index.html
~/.jupyter/custom/custom.css
.jupyter

14 M269 Overview 10 October 2021

� �
defaults write com.apple.Finder AppleShowAllFiles true
killall Finder� �

• Finder (3) to make a permanent change without using Terminal have a look at Tin-
kerTool (free) — the Finder tab first item is Show hidden and system files

• Also make sure you display filename extensions with Finder Preferences Advanced and
check Show all filename extensions

• Obtaining a folder or file path in Finder:

• (1) Drag the folder or file into a Terminal window

the file path is displayed at the command prompt

most often used with cd to change to a new folder

• (2) Ensure you have the Path Bar visible

View Show Path Bar

Right-click on the folder in the Path Bar and go Copy Folder as Pathname

• (3) In Terminal use the pwd command

• Question What folders are represented by

(.)

(..)

./SomeFolder

/SomeFolder

../SomeFolder

5.3 Notebook File Format

• Optional topic from Notebook file format

• This is not part of the course for may be of interest

• Top-level structure

• metadat (dict)

• nbformat (int)

• nbformat_minor (int)

• cells (list)

• Top-level structure� �
1 {
2 "metadata" : {
3 "kernel_info": {
4 # if kernel_info is defined, its name field is required.
5 "name" : "the name of the kernel"
6 },
7 "language_info": {
8 # if language_info is defined, its name field is required.
9 "name" : "the programming language of the kernel",

https://www.bresink.com/osx/TinkerTool.html
https://www.bresink.com/osx/TinkerTool.html
https://nbformat.readthedocs.io/en/latest/format_description.html

Phil Molyneux M269 Overview Prsntn 2021J 15

10 "version": "the version of the language",
11 "codemirror_mode": "The name of the codemirror mode to use [optional]"
12 }
13 },
14 "nbformat": 4,
15 "nbformat_minor": 0,
16 "cells" : [
17 # list of cell dictionaries, see below
18],
19 }� �

• Cell Types

• Basic structure� �
1 {
2 "cell_type" : "type",
3 "metadata" : {},
4 "source" : "single string or [list, of, strings]",
5 }� �

• Several basic cell types

• Markdown cells

• Code cells

• Raw NBConvert cells

• Markdown Cells

• Markdown cells are used for body-text, and contain markdown, as defined in GitHub-
flavored markdown, and implemented in marked.� �

1 {
2 "cell_type" : "markdown",
3 "metadata" : {},
4 "source" : "[multi-line *markdown*]",
5 }� �

• It would be useful to learn some Markdown — and HTML, CSS

• Mastering Markdown

• Daring Fireball: Markdown the original reference

• MultiMarkdown there are lots of extensions

• Markdown Guide and references

• Python Markdown see Fenced Code Blocks

• Code Cells� �
1 {
2 "cell_type" : "code",
3 "execution_count": 1, # integer or null
4 "metadata" : {
5 "collapsed" : True, # whether the output of the cell is collapsed
6 "scrolled": False, # any of true, false or "auto"
7 },
8 "source" : "[some multi-line code]",
9 "outputs": [{

10 # list of output dicts (described below)
11 "output_type": "stream",
12 ...
13 }],
14 }� �

https://docs.github.com/en/github/writing-on-github
https://docs.github.com/en/github/writing-on-github
https://github.com/markedjs/marked
https://guides.github.com/features/mastering-markdown/
https://daringfireball.net/projects/markdown/
https://fletcherpenney.net/multimarkdown/
https://www.markdownguide.org/
https://python-markdown.github.io/
https://python-markdown.github.io/extensions/fenced_code_blocks/

16 M269 Overview 10 October 2021

• Code Cell Outputs

• The output_type field defines the output

• stream output for text

• display_data data keyed by mime-type

• execute_result gives results of executing a cell

• error messages and traceback

• Raw NBConvert Cells

• content that should be included unmodified in nbconvert output� �
1 {
2 "cell_type" : "raw",
3 "metadata" : {
4 # the mime-type of the target nbconvert format.
5 # nbconvert to formats other than this will exclude this cell.
6 "format" : "mime/type"
7 },
8 "source" : "[some nbformat output text]"
9 }� �

• There are a lot more features than can be covered here

• The main usage here will be adding effects to a cell

• this will require some Markdown, HTML and CSS knowledge (but not much)

• See the documentation

6 Software & Programming

6.1 Learning Software Packages

Key questions

1. Where is the package source ?

2. What version are you using ?

3. What documentation is available ?

4. What are the names for the parts of the interface ?

5. How do you leave the package ? How do you enter the package ?

6. Is there any on-line help and, if so, how is it used ?

7. Are there any initialisation files, configuration or preferences and how are they used ?

8. How do you import and export data from the package ?

9. When all else fails, how can you obtain advice ?

• Answer the Key Questions for Jupyter Notebook

• Where is the package source ?

• What version are you using ?

Phil Molyneux M269 Overview Prsntn 2021J 17

• Where is the package source ?

Anaconda Individual Edition

See also Installing the Jupyter Software

• What version are you using ?� �
<~><107> jupyter --version
jupyter core : 4.6.1
jupyter-notebook : 6.0.3
qtconsole : 4.6.0
ipython : 7.12.0
ipykernel : 5.1.4
jupyter client : 5.3.4
jupyter lab : 1.2.6
nbconvert : 5.6.1
ipywidgets : 7.5.1
nbformat : 5.0.4
traitlets : 4.3.3
<~><108>� �
• What version are you using ? Conda information� �

<~><111> conda info
active environment : base
active env location : /Users/molyneux/opt/anaconda3

shell level : 1
user config file : /Users/molyneux/.condarc

populated config files : /Users/molyneux/.condarc
conda version : 4.8.2

conda-build version : 3.18.11
python version : 3.7.6.final.0

virtual packages : __osx=10.14.6
base environment : /Users/molyneux/opt/anaconda3 (writable)

channel URLs : https://repo.anaconda.com/pkgs/main/osx-64
https://repo.anaconda.com/pkgs/main/noarch
https://repo.anaconda.com/pkgs/r/osx-64
https://repo.anaconda.com/pkgs/r/noarch

package cache : /Users/molyneux/opt/anaconda3/pkgs
/Users/molyneux/.conda/pkgs

envs directories : /Users/molyneux/opt/anaconda3/envs
/Users/molyneux/.conda/envs

platform : osx-64
user-agent : conda/4.8.2 requests/2.22.0 CPython/3.7.6 Darwin/18.7.0 OSX/10.14.6

UID:GID : 501:20
netrc file : None

offline mode : False
<~><112>� �

• Answer the Key Questions for Jupyter Notebook

• What documentation is available ?

• Answer the Key Questions for Jupyter Notebook

• What documentation is available ?

Jupyter Documentation

Jupyter Notebook Documentation The Jupyter Notebook

• Anaconda Product Documentation

• Anaconda User Guide

• Conda documentation package manager

• Jupyter Notebook Format

• The JSON Data Interchange Standard

https://www.anaconda.com/products/individual
https://jupyter.org/install.html
https://jupyter.org/documentation
https://jupyter-notebook.readthedocs.io/en/stable/
https://anaconda.cloud/support-center/product-documentation
https://docs.anaconda.com/anacondaorg/user-guide/
https://docs.conda.io/projects/conda/en/latest/
https://nbformat.readthedocs.io/en/latest/index.html
https://www.json.org/json-en.html

18 M269 Overview 10 October 2021

• Answer the Key Questions for Jupyter Notebook

• What are the names for the parts of the interface ?

• Answer the Key Questions for Jupyter Notebook

• What are the names for the parts of the interface ?

User interface components

• Notebook Dashboard and Notebook Editor

• Command mode and Edit mode

• Answer the Key Questions for Jupyter Notebook

• How do you leave the package ? How do you enter the package ?

• Answer the Key Questions for Jupyter Notebook

• How do you leave the package ? How do you enter the package ?

• Enter

• Command line� �
cd whatEverFolder
jupyter notebook &� �

• GUI see Anaconda Navigator but beware slow launch and having to navigate folders
a lot

• Leave

• Notebook Editor File Close and Halt

• Notebook Dashboard Quit

• Note Logout does something else and will lead to an odd requestto login

• Answer the Key Questions for Jupyter Notebook

• Is there any on-line help and, if so, how is it used ?

• Answer the Key Questions for Jupyter Notebook

• Is there any on-line help and, if so, how is it used ?� �
jupyter --help� �

but you will have to read the documentation

• Answer the Key Questions for Jupyter Notebook

• Are there any initialisation files, configuration or preferences and how are they used ?

• Answer the Key Questions for Jupyter Notebook

• Are there any initialisation files, configuration or preferences and how are they used ?

• See Config file and command line options

• Set in jupyter_notebook_config.py in ~/.jupyter (see earlier)

• See also

https://jupyter-notebook.readthedocs.io/en/stable/ui_components.html
https://docs.anaconda.com/anaconda/navigator/index.html
https://jupyter-notebook.readthedocs.io/en/stable/config.html
jupyter_notebook_config.py
~/.jupyter

Phil Molyneux M269 Overview Prsntn 2021J 19

� �
jupyter notebook --help� �

• Answer the Key Questions for Jupyter Notebook

• How do you import and export data from the package ?

• Answer the Key Questions for Jupyter Notebook

• How do you import and export data from the package ?

• Export

• See nbconvert — Using as a command line tool� �
jupyter nbconvert --to FORMAT myNotebook.ipynb� �

• Output formats — HTML, LaTeX, PDF, Markdown, WebPDF, Reveal.js HTML slideshow
and others

• Import

• Embedding images — use Markdown syntax� �
![title][Images/myPicture.png]� �

• Convert notebook to slides� �
jupyter nbconvert --to slides --post serve myNotebook.ipynb� �

• Convert slide myNotebook.slides.html to PDF version — replace # at end of URL
to ?print-pdf

• Answer the Key Questions for Jupyter Notebook

• When all else fails, how can you obtain advice ?

• Answer the Key Questions for Jupyter Notebook

• When all else fails, how can you obtain advice ?

M269 Forums

StackOverflow: Questions tagged [jupyter]

6.2 Writing Programs & Thinking

The Steps

1. Invent a name for the program (or function)

2. What is the type of the function ? What sort of input does it take and what sort of
output does it produce ? In Python a type is implicit; in other languages such as
Haskell a type signature can be explicit.

3. Invent names for the input(s) to the function (formal parameters) — this can involve
thinking about possible patterns or data structures

4. What restrictions are there on the input — state the preconditions.

5. What must be true of the output — state the postconditions.

https://nbconvert.readthedocs.io/en/latest/usage.html
https://stackoverflow.com/questions/tagged/jupyter

20 M269 Overview 10 October 2021

6. Think of the definition of the function body.

The Think Step

• How to Think

1. Think of an example or two — what should the program/function do ?

2. Break the inputs into separate cases.

3. Deal with simple cases.

4. Think about the result — try your examples again.

• Thinking Strategies

1. Don’t think too much at one go — break the problem down. Top down design,
step-wise refinement.

2. What are the inputs — describe all the cases.

3. Investigate choices. What data structures ? What algorithms ?

4. Use common tools — bottom up synthesis.

5. Spot common function application patterns — generalise & then specialise.

6. Look for good glue — to combine functions together.

7 What Next ?

Programming, Debugging, Psychology

Although programming techniques have improved immensely since the early days, the
process of finding and correcting errors in programming — known graphically if inele-
gantly as debugging — still remains a most difficult, confused and unsatisfactory opera-
tion. The chief impact of this state of affairs is psychological. Although we are happy to
pay lip-service to the adage that to err is human, most of us like to make a small pri-
vate reservation about our own performance on special occasions when we really try. It
is somewhat deflating to be shown publicly and incontrovertibly by a machine that even
when we do try, we in fact make just as many mistakes as other people. If your pride
cannot recover from this blow, you will never make a programmer.

Christopher Strachey, Scientific American 1966 vol 215 (3) September pp112–124

• To err is human, to really foul things up requires a computer.

• Attributed to Paul R. Ehrlich in 101 Great Programming Quotes

• Attributed to Bill Vaughn in Quote Investigator

• Derived from Alexander Pope (1711, An Essay on Criticism)

• To Err is Humane; to Forgive, Divine

• This also contains

A little learning is a dangerous thing;

https://en.wikipedia.org/wiki/Christopher_Strachey
https://en.wikipedia.org/wiki/Paul_R._Ehrlich
http://www.devtopics.com/101-great-computer-programming-quotes/
https://en.wikipedia.org/wiki/William_E._Vaughan
http://quoteinvestigator.com/2010/12/07/foul-computer/
https://en.wikipedia.org/wiki/Alexander_Pope
https://en.wikipedia.org/wiki/An_Essay_on_Criticism

Phil Molyneux M269 Overview Prsntn 2021J 21

Drink deep, or taste not the Pierian Spring

• In programming, this means you have to read the fabulous manual (RTFM)

Overview B and Unit 2

• Basic Python — selection and iteration

• Basic data types — arrays, sequences, lists, tuples

• Example Algorithm Design

• Writing Programs & Thinking — The Steps

• Abstract Data Types

• Tutorial online (PM) 10:00 Sunday 28 November 2021

8 Web Links & References

• The offside rule (using layout to determine the start and end of code blocks) comes
originally from Landin (1966) — see https://en.wikipedia.org/wiki/Off-side_
rule for other programming languages that use this.

• The step-by-step approach to writing programs is described in Glaser et al. (2000)

• The difficulty in learning programming is described in many articles — see, for ex-
ample, Dehnadi and Bornat (2006)

• UTF-8 is Unicode (or Universal Coded Character Set) Transformation Format — 8-bit
— one of the character encodings for the Unicode characters or code points

References

Cole, Frank N (1903). On the factoring of large numbers. Bulletin of the American Mathe-
matical Society, 10(3):134–137.

Dehnadi, Saeed and Richard Bornat (2006). The camel has two humps. Web (Last
checked 22 October 2015). URL http://www.eis.mdx.ac.uk/research/PhDArea/
saeed/paper1.pdf.

Glaser, H; P J Hartel; and P W Garratt (2000). Programming by numbers: a programming
method for complete novices. The Computer Journal, 43(4):252–265. A functional
approach to learning programming.

Guttag, John V (2016). Introduction to Computation and Programming Using Python. MIT
Press. ISBN 0262529629. URL https://mitpress.mit.edu/books/introduction-
computation-and-programming-using-python-1.

Landin, Peter J. (1966). The next 700 programming languages. Communications of the
Association for Computing Machinery, 9:157–166.

Lutz, Mark (2011). Programming Python. O’Reilly, fourth edition. ISBN 0596158106. URL
http://learning-python.com/books/about-pp4e.html.

https://en.wikipedia.org/wiki/Pierian_Spring
https://lmgtfy.com/?q=rtfm
https://en.wikipedia.org/wiki/Off-side_rule
https://en.wikipedia.org/wiki/Off-side_rule
https://en.wikipedia.org/wiki/UTF-8
http://www.eis.mdx.ac.uk/research/PhDArea/saeed/paper1.pdf
http://www.eis.mdx.ac.uk/research/PhDArea/saeed/paper1.pdf
https://mitpress.mit.edu/books/introduction-computation-and-programming-using-python-1
https://mitpress.mit.edu/books/introduction-computation-and-programming-using-python-1
http://learning-python.com/books/about-pp4e.html

22 M269 Overview 10 October 2021

Lutz, Mark (2013). Learning Python. O’Reilly, fifth edition. ISBN 1449355730. URL
http://learning-python.com/books/about-lp5e.html.

Miller, Bradley W. and David L. Ranum (2011). Problem Solving with Algorithms and
Data Structures Using Python. Franklin, Beedle Associates Inc, second edition. ISBN
1590282574. URL http://interactivepython.org/courselib/static/pythonds/
index.html.

Pirnat, Mike (2015). How to Make Mistakes in Python. O’Reilly. ISBN 978-1-491-93447-
0. URL http://www.oreilly.com/programming/free/how-to-make-mistakes-in-
python.csp.

Strachey, Christopher (1966). Systems Analysis and Programming. Scientific American,
215(3):112–124.

Tollervey, Nicholas H. (2015). Python in Education. O’Reilly. ISBN 978-1-491-92462-4.
URL http://www.oreilly.com/programming/free/python-in-education.csp.

van Rossum, Guido and Fred Drake (2003a). An Introduction to Python. Network Theory
Limited. ISBN 0954161769.

van Rossum, Guido and Fred Drake (2003b). The Python Language Reference Manual.
Network Theory Limited. ISBN 0954161785.

van Rossum, Guido and Fred Drake (2011a). An Introduction to Python. Network Theory
Limited, revised edition. ISBN 1906966133.

van Rossum, Guido and Fred Drake (2011b). The Python Language Reference Manual.
Network Theory Limited, revised edition. ISBN 1906966141.

VanderPlas, Jake (2016). A Whirlwind Tour of Python. O’Reilly. ISBN 978-1-491-
96465-1. URL http://www.oreilly.com/programming/free/a-whirlwind-tour-
of-python.csp.

Wirth, Niklaus (1975). Algorithms Plus Data Structures Equals Programs. Prentice Hall.
ISBN 0130224189.

Author Phil Molyneux Written 10 October 2021 Printed 9th October 2021
Subject dir: 〈baseURL〉/OU/Courses/Computing/M269/M269TutorialNotes
Topic path: /M269TutorialOverview/M269Prsntn2021JTutorialOverview/M269Prsntn2021JTutorialOverview.pdf

http://learning-python.com/books/about-lp5e.html
http://interactivepython.org/courselib/static/pythonds/index.html
http://interactivepython.org/courselib/static/pythonds/index.html
http://www.oreilly.com/programming/free/how-to-make-mistakes-in-python.csp
http://www.oreilly.com/programming/free/how-to-make-mistakes-in-python.csp
http://www.oreilly.com/programming/free/python-in-education.csp
http://www.oreilly.com/programming/free/a-whirlwind-tour-of-python.csp
http://www.oreilly.com/programming/free/a-whirlwind-tour-of-python.csp

	M269 Overview Tutorial Agenda
	Adobe Connect
	Interface
	Settings
	Sharing Screen & Applications
	Ending a Meeting
	Invite Attendees
	Layouts
	Chat Pods
	Web Graphics

	M269 Overview
	Basic Computational Components
	Computation, Programming, Programming Languages
	Programming Languages

	Python & Jupyter Notebook
	Anaconda
	Jupyter Notebook
	Notebook File Format

	Software & Programming
	Learning Software Packages
	Writing Programs & Thinking

	What Next ?
	References
	References

