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1 M269 Overview Tutorial Agenda

• Introductions

• M269 Overview

• Basic Computational Components

• Course material and software: Anaconda and Jupyter Notebooks

• Learning Software Packages

• How to Program (in two slides)
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• How to survive learning software packages

• Adobe Connect — if you or I get cut off, wait till we reconnect (or send you an email)

• Time: about 1 hour

• Do ask questions or raise points.

• Slides/Notes M269Tutorial01Overview

Introductions — Me

• Name Phil Molyneux

• Background

– Undergraduate: Physics and Maths (Sussex)

– Postgraduate: Physics (Sussex), Operational Research (Brunel), Computer Sci-
ence (University College, London)

– Worked in Operational Research, Business IT, Web technologies, Functional Pro-
gramming

• First programming languages Fortran, BASIC, Pascal

• Favourite Software

– Haskell — pure functional programming language

– Text editors TextMate, Sublime Text — previously Emacs

– Word processing in LATEX — all these slides and notes

– Mac OS X

• Learning style — I read the manual before using the software

Introductions — You

• Name ?

• Favourite software/Programming language ?

• Favourite text editor or integrated development environment (IDE)

• List of text editors, Comparison of text editors and Comparison of integrated devel-
opment environments

• Other OU courses ?

• Anything else ?

http://pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269Tutorial01Overview/
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://www.haskell.org/
https://macromates.com
http://www.sublimetext.com
https://www.emacswiki.org/
https://www.latex-project.org/
https://developer.apple.com/
https://en.wikipedia.org/wiki/Text_editor
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/List_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments
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2 Adobe Connect Interface and Settings

2.1 Adobe Connect Interface

Adobe Connect Interface — Host View

Adobe Connect Interface — Participant View

2.2 Adobe Connect Settings

Adobe Connect — Settings
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• Everybody Menu bar Meeting Speaker & Microphone Setup

• Menu bar Microphone Allow Participants to Use Microphone 4

• Check Participants see the entire slide including slide numbers bottom right Workaround

– Disable Draw Share pod Menu bar Draw icon

– Fit Width Share pod Bottom bar Fit Width icon 4

• Meeting Preferences General Host Cursor Show to all attendees

• Menu bar Video Enable Webcam for Participants 4

• Do not Enable single speaker mode

• Cancel hand tool

• Do not enable green pointer

• Recording Meeting Record Session 4

• Documents Upload PDF with drag and drop to share pod

• Delete Meeting Manage Meeting Information Uploaded Content and check filename click on delete

Adobe Connect — Access

• Tutor Access

TutorHome M269 Website Tutorials

Cluster Tutorials M269 Online tutorial room

Tutor Groups M269 Online tutor group room

Module-wide Tutorials M269 Online module-wide room

• Attendance

TutorHome Students View your tutorial timetables

• Beamer Slide Scaling 440% (422 x 563 mm)

• Clear Everyone’s Status

Attendee Pod Menu Clear Everyone’s Status

• Grant Access and send link via email

Meeting Manage Access & Entry Invite Participants. . .

• Presenter Only Area

Meeting Enable/Disable Presenter Only Area

Adobe Connect — Keystroke Shortcuts

• Keyboard shortcuts in Adobe Connect

• Toggle Mic + M (Mac), Ctrl + M (Win) (On/Disconnect)

• Toggle Raise-Hand status + E

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html
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• Close dialog box (Mac), Esc (Win)

• End meeting + \

2.3 Adobe Connect — Sharing Screen & Applications

• Share My Screen Application tab Terminal for Terminal

• Share menu Change View Zoom in for mismatch of screen size/resolution (Participants)

• (Presenter) Change to 75% and back to 100% (solves participants with smaller screen
image overlap)

• Leave the application on the original display

• Beware blued hatched rectangles — from other (hidden) windows or contextual
menus

• Presenter screen pointer affects viewer display — beware of moving the pointer away
from the application

• First time: System Preferences Security & Privacy Privacy Accessibility

2.4 Adobe Connect — Ending a Meeting

• Notes for the tutor only

• Student: Meeting Exit Adobe Connect

• Tutor:

• Recording Meeting Stop Recording 4

• Remove Participants Meeting End Meeting. . . 4

– Dialog box allows for message with default message:

– The host has ended this meeting. Thank you for attending.

• Recording availability In course Web site for joining the room, click on the eye icon
in the list of recordings under your recording — edit description and name

• Meeting Information Meeting Manage Meeting Information — can access a range of informa-
tion in Web page.

• Attendance Report see course Web site for joining room

2.5 Adobe Connect — Invite Attendees

• Provide Meeting URL Menu Meeting Manage Access & Entry Invite Participants. . .

• Allow Access without Dialog Menu Meeting Manage Meeting Information provides new browser
window with Meeting Information Tab bar Edit Information

• Check Anyone who has the URL for the meeting can enter the room

• Default Only registered users and accepted guests may enter the room

https://en.wikipedia.org/wiki/Terminal_(macOS)
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• Reverts to default next session but URL is fixed

• Guests have blue icon top, registered participants have yellow icon top — same icon
if URL is open

• See Start, attend, and manage Adobe Connect meetings and sessions

2.6 Layouts

• Creating new layouts example Sharing layout

• Menu Layouts Create New Layout. . . Create a New Layout dialog Create a new blank layout and name it
PMolyMain

• New layout has no Pods but does have Layouts Bar open (see Layouts menu)

• Pods

• Menu Pods Share Add New Share and resize/position — initial name is Share n

• Rename Pod Menu Pods Manage Pods. . . Manage Pods Select Rename or Double-click & rename

• Add Video pod and resize/reposition

• Add Attendance pod and resize/reposition

• Add Chat pod — name it PMolyChat — and resize/reposition

• Dimensions of Sharing layout (on 27-inch iMac)

– Width of Video, Attendees, Chat column 14 cm

– Height of Video pod 9 cm

– Height of Attendees pod 12 cm

– Height of Chat pod 8 cm

• Duplicating Layouts does not give new instances of the Pods and is probably not a
good idea (apart from local use to avoid delay in reloading Pods)

2.7 Chat Pods

• Format Chat text

• Chat Pod menu icon My Chat Color

• Choices: Red, Orange, Green, Brown, Purple, Pink, Blue, Black

• Note: Color reverts to Black if you switch layouts

• Chat Pod menu icon Show Timestamps

2.8 Graphics Conversion for Web

• Conversion of the screen snaps for the installation of Anaconda on 1 May 2020

• Using GraphicConverter 11

https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html
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• File Convert & Modify Conversion Convert

• Select files to convert and destination folder

• Click on Start selected Function or +

Go to Table of Contents

3 M269 Overview

M269 Algorithms, data structures and computability
Aims

• Ideas of computational thinking

• Introduction to algorithms and data structures (using Python)

• Logic and the limits of computation

• Computability

• Complexity

M269 Algorithms, data structures and computability
Topics

• Numbers and sequences — functions, complexity, data types

• Booleans and selection — Abstract Data Type (ADT), Decision problems

• Sequences and iteration — control structures for iteration, lists, tuples

• Implementing sequences — arrays as primitives, lists in arrays

• Stack and queues — example ADTs

• Unordered collections — maps, dictionaries, hash tables, sets, bags

• Exhaustive search

• Recursion — some historical context

• Divide and conquer

• Sorting

• Tree data structures

• Graph algorithms

• Greedy algorithms

• M269 Units 6 Sets, logic and databases

• Propositional and predicate logic — first order logic

• M269 Unit 7 Computation

• Computability and complexity

• NP-compeleteness
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4 Basic Computational Components

Computational Components — Imperative

Imperative or procedural programming has statements which can manipulate global mem-
ory, have explicit control flow and can be organised into procedures (or functions)

• Sequence of statements� �
stmnt ; stmnt� �

• Iteration to repeat statements� �
while expr :
suite

for targetList in exprList :
suite� �

• Selection choosing between statements� �
if expr : suite
elif expr : suite
else : suite� �

Functional programming treats computation as the evaluation of expressions and the
definition of functions (in the mathematical sense)

• Function composition to combine the application of two or more functions — like
sequence but from right to left (notation accident of history)� �

(f . g) x = f (g x)� �
• Recursion — function definition defined in terms of calls to itself (with smaller ar-

guments) and base case(s) which do not call itself.

• Conditional expressions choosing between alternatives expressions� �
if expr then expr else expr� �

4.1 Computation, Programming, Programming Languages

• M269 is not a programming course but . . .

• The course uses Python to illustrate various algorithms and data structures

• The final unit addresses the question:

• What is an algorithm ? What is programming ? What is a programming language ?

• So it is a programming course (sort of)

Computation, Syntax and Semantics

• Syntax and Semantics (1)

• What is each of the following — first reaction !

• 4 + 6

https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Control_flow
https://en.wikipedia.org/wiki/Structured_programming
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Function_composition_(computer_science)
https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/Conditional_(computer_programming)
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• 4 + 6× 3

• 4

• 19370721× 761838257287

• The above are expressions in arithmetic

– Most students read what is as evaluate

– Not easy for the last one

– But you can say:

– They are expressions which when evaluated, evaluate to some number

– 19370721× 761838257287

– = 147573952589676412927 = 267 – 1

– demonstrated in a famous meeting of the New York AMS in October 1903 by
F.N.Cole (Cole, 1903)

Computation — Cartesian Close Comic Cartoon

• Syntax and Semantics (2)

• Evaluate

• 6 + 4× 3

https://en.wikipedia.org/wiki/Frank_Nelson_Cole
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• 6 – 4 – 1

• False or True (in Python)

• 5 // 3 (integer division in Python)

• 1 // 0 (in Python)

• False or True or 1 // 0 (in Python)

Syntax and Sematics — Elementary Concepts

• An expression can be thought of as a program (and vice versa)

• A set of instructions to find a value.

• Operator precedence and associativity are there to get rid of some brackets

• (to make the code more user friendly!)

• Precedence — which operator to use first. This is also called binding power or oper-
ator fixity

• Associativity — for the same operator, whether to evaluate from left to right or right
to left (or it doesn’t matter)

• Lazy Evaluation — don’t do today what you can put off til tomorrow, because you
might never have to do it (useful in computation — not useful for doing TMAs)

• Sharp edges

• Evaluate (in Maths) 22 and 222
and 2222

• In Python 2**2**2**2

• Alternate in Python pow(2,pow(2,pow(2,2)))

• Microsoft Excel =2^2^2^2

• or use LibreOffice, Numbers, . . .

• Sharp edges

• Evaluate (in Maths) 22 and 222
and 2222

• 222
= 16 and 2222

= 216 = 65536 (or 64K in computing)

• Python 2**2**2**2 == 65536

• Python pow(2,pow(2,pow(2,2))) == 65536

• Casio fx-85GT Plus 2^2^2^2 shows 65536

• Haskell 2^2^2^2 == 65536

• Microsoft Excel =2^2^2^2 == 256

• Beware language semantics

• Microsoft Excel =2^2^2^2^2 == 65536

• Haskell length (show (2^2^2^2^2)) == 19729
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• 22222

has 19729 digits

• What is Excel doing differently ?

4.2 Programming Languages

• Add a tick on the slide next to languages used

• FORTRAN

• BASIC

• Pascal

• SASL

• C

• Miranda

• Prolog

• JavaScript

• Java

• Haskell

• Add names of other languages used

• Are the following programming languages ?

• Excel

• HTML

• Word

• LATEX

• SQL

• Excel

• Excel has conditional expressions and indirections (so can have loops)

• An Excel Turing Machine is described in Felienne’s blog

• Excel see Improving the world’s most popular functional language: user-defined
functions in Excel

• Announcing LAMBDA: Turn Excel formulas into custom functions (3 December 2020)

• HTML

• HyperText Markup Language is the standard markup language for Web pages — it
describes the structure of the content.

• It can contain CSS (for describing appearance) and

• JavaScript (for describing behaviour)

• HTML is not a programming language

https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://en.wikipedia.org/wiki/SASL_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
http://miranda.org.uk/
https://en.wikipedia.org/wiki/Prolog
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Java_(programming_language)
https://www.haskell.org/
http://www.felienne.com/archives/2974
http://www.felienne.com/about-3
http://research.microsoft.com/en-us/um/people/simonpj/Papers/excel/
http://research.microsoft.com/en-us/um/people/simonpj/Papers/excel/
https://techcommunity.microsoft.com/t5/excel-blog/announcing-lambda-turn-excel-formulas-into-custom-functions/ba-p/1925546
https://en.wikipedia.org/wiki/HTML
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• JavaScript is a Turing complete programming language but embedded in a host en-
vironment.

• CSS could be extended to be Turing complete — see Is CSS Turing complete

• Word

• Microsoft Word interface to text formatting

• Serialised with the markup language Office Open XML

• Visual Basic for Applications is embedded and is a programming language

• LATEX

• LaTeX is a format of TeX

• Markup technology for typesetting documents — oriented towards mathematics and
technical documents.

• Is also a Turing complete programming language (Unit 7)

• Used in MST125 Essential Mathematics 2 Unit 2 Mathematical typesetting

• SQL

• Structured Query Language based on relational algebra and tuple relational calculus

• Syntactic sugar for first order logic (Unit 6)

• Originally not a Turing complete programming language (Unit 7)

• but extensions are Turing complete

• Turing completeness is not everything

• Data languages such as XML, HTML, JSON

• Regular languages for regular expressions in your favourite text editor (and some
programming languages)

• Pushdown automata and Context-free grammars used in program compiling.

• Total Functional Programming requires all programs to be provably terminating.

5 Python & Jupyter Notebook

5.1 Anaconda

• Anaconda Individual Edition

• Anaconda documentation Documentation

• Anaconda documentation Quick Start Guide

• Anaconda Troubleshooting Troubleshooting

• You have to pay attention to your configuration: Windows, macOS, Linux

• macOS bash

https://stackoverflow.com/questions/2497146/is-css-turing-complete
https://en.wikipedia.org/wiki/Microsoft_Word
https://en.wikipedia.org/wiki/Office_Open_XML
https://en.wikipedia.org/wiki/Visual_Basic_for_Applications
https://en.wikipedia.org/wiki/LaTeX
https://en.wikipedia.org/wiki/TeX
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/Turing_completeness
https://en.wikipedia.org/wiki/Turing_completeness
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Regular_language
https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Pushdown_automaton
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Total_functional_programming
https://www.anaconda.com/products/individual
https://docs.anaconda.com/anaconda/
https://docs.anaconda.com/anaconda/user-guide
https://docs.anaconda.com/anaconda/user-guide/troubleshooting/
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• The install sets up .bash_profile which then bypasses .profile and .bashrc

• /Users/molyneux/opt/anaconda3/bin is prepended to your PATH (with your user
name not mine, molyneux)

• I have the following set in .profile and .bashrc

• .profile� �
export PYTHONSTARTUP="$HOME/.PythonStartupRC/PythonStartupRC.py"
# Sets the prompts for several Python distributions� �

• .bashrc� �
# Python aliases for alternate Python distributions

alias anPython="$HOME/opt/anaconda3/bin/python"
alias acPython="/usr/local/bin/python3"
alias apPython="/usr/bin/python"� �

5.2 Jupyter Notebook

• Jupyter Notebook is a Web application that allows the sharing of documents contain-
ing live code, equations and other Maths, visualisations and narrative text

• Jupyter Notebook documentation

• Launch Jupyter Notebook

• Navigate to the folder containing the notebooks in a command terminal (macOS
Terminal)� �
jupyter notebook &� �

• Your default Web browser opens with Notebook Dashboard

• Navigate to a Notebook file (*.pynb) to launch a Notebook Editor on the Notebook
file

• Help User Interface Tour

• Help Keyboard Shortcuts

• Halt a Notebook Editor with File Close and Halt

• The supplied file custom.css (with the book files) changes some styles

• The file has to be placed at ~/.jupyter/custom/custom.css — note the (.) in
.jupyter

• Some files and folders in macOS are not displayed by default in Finder or Terminal

• These are files with names starting with a dot (.), Library folders (there are several)
and some system folders

• Here are several ways of making these files visible

• Finder (1) with Finder selected, type + + . — the keystroke command is a
toggle so to turn viewing off just re-type the same

• Finder (2) to make the change permanent, type the following in Terminal

.bash_profile
.profile
.bashrc
/Users/molyneux/opt/anaconda3/bin
.profile
.bashrc
.profile
.bashrc
https://jupyter.org/
https://jupyter-notebook.readthedocs.io/en/stable/index.html
~/.jupyter/custom/custom.css
.jupyter
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� �
defaults write com.apple.Finder AppleShowAllFiles true
killall Finder� �

• Finder (3) to make a permanent change without using Terminal have a look at Tin-
kerTool (free) — the Finder tab first item is Show hidden and system files

• Also make sure you display filename extensions with Finder Preferences Advanced and
check Show all filename extensions

• Obtaining a folder or file path in Finder:

• (1) Drag the folder or file into a Terminal window

the file path is displayed at the command prompt

most often used with cd to change to a new folder

• (2) Ensure you have the Path Bar visible

View Show Path Bar

Right-click on the folder in the Path Bar and go Copy Folder as Pathname

• (3) In Terminal use the pwd command

• Question What folders are represented by

(.)

(..)

./SomeFolder

/SomeFolder

../SomeFolder

5.3 Notebook File Format

• Optional topic from Notebook file format

• This is not part of the course for may be of interest

• Top-level structure

• metadat (dict)

• nbformat (int)

• nbformat_minor (int)

• cells (list)

• Top-level structure� �
1 {
2 "metadata" : {
3 "kernel_info": {
4 # if kernel_info is defined, its name field is required.
5 "name" : "the name of the kernel"
6 },
7 "language_info": {
8 # if language_info is defined, its name field is required.
9 "name" : "the programming language of the kernel",

https://www.bresink.com/osx/TinkerTool.html
https://www.bresink.com/osx/TinkerTool.html
https://nbformat.readthedocs.io/en/latest/format_description.html
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10 "version": "the version of the language",
11 "codemirror_mode": "The name of the codemirror mode to use [optional]"
12 }
13 },
14 "nbformat": 4,
15 "nbformat_minor": 0,
16 "cells" : [
17 # list of cell dictionaries, see below
18 ],
19 }� �

• Cell Types

• Basic structure� �
1 {
2 "cell_type" : "type",
3 "metadata" : {},
4 "source" : "single string or [list, of, strings]",
5 }� �

• Several basic cell types

• Markdown cells

• Code cells

• Raw NBConvert cells

• Markdown Cells

• Markdown cells are used for body-text, and contain markdown, as defined in GitHub-
flavored markdown, and implemented in marked.� �

1 {
2 "cell_type" : "markdown",
3 "metadata" : {},
4 "source" : "[multi-line *markdown*]",
5 }� �

• It would be useful to learn some Markdown — and HTML, CSS

• Mastering Markdown

• Daring Fireball: Markdown the original reference

• MultiMarkdown there are lots of extensions

• Markdown Guide and references

• Python Markdown see Fenced Code Blocks

• Code Cells� �
1 {
2 "cell_type" : "code",
3 "execution_count": 1, # integer or null
4 "metadata" : {
5 "collapsed" : True, # whether the output of the cell is collapsed
6 "scrolled": False, # any of true, false or "auto"
7 },
8 "source" : "[some multi-line code]",
9 "outputs": [{

10 # list of output dicts (described below)
11 "output_type": "stream",
12 ...
13 }],
14 }� �

https://docs.github.com/en/github/writing-on-github
https://docs.github.com/en/github/writing-on-github
https://github.com/markedjs/marked
https://guides.github.com/features/mastering-markdown/
https://daringfireball.net/projects/markdown/
https://fletcherpenney.net/multimarkdown/
https://www.markdownguide.org/
https://python-markdown.github.io/
https://python-markdown.github.io/extensions/fenced_code_blocks/
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• Code Cell Outputs

• The output_type field defines the output

• stream output for text

• display_data data keyed by mime-type

• execute_result gives results of executing a cell

• error messages and traceback

• Raw NBConvert Cells

• content that should be included unmodified in nbconvert output� �
1 {
2 "cell_type" : "raw",
3 "metadata" : {
4 # the mime-type of the target nbconvert format.
5 # nbconvert to formats other than this will exclude this cell.
6 "format" : "mime/type"
7 },
8 "source" : "[some nbformat output text]"
9 }� �

• There are a lot more features than can be covered here

• The main usage here will be adding effects to a cell

• this will require some Markdown, HTML and CSS knowledge (but not much)

• See the documentation

6 Software & Programming

6.1 Learning Software Packages

Key questions

1. Where is the package source ?

2. What version are you using ?

3. What documentation is available ?

4. What are the names for the parts of the interface ?

5. How do you leave the package ? How do you enter the package ?

6. Is there any on-line help and, if so, how is it used ?

7. Are there any initialisation files, configuration or preferences and how are they used ?

8. How do you import and export data from the package ?

9. When all else fails, how can you obtain advice ?

• Answer the Key Questions for Jupyter Notebook

• Where is the package source ?

• What version are you using ?
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• Where is the package source ?

Anaconda Individual Edition

See also Installing the Jupyter Software

• What version are you using ?� �
<~><107> jupyter --version
jupyter core : 4.6.1
jupyter-notebook : 6.0.3
qtconsole : 4.6.0
ipython : 7.12.0
ipykernel : 5.1.4
jupyter client : 5.3.4
jupyter lab : 1.2.6
nbconvert : 5.6.1
ipywidgets : 7.5.1
nbformat : 5.0.4
traitlets : 4.3.3
<~><108>� �
• What version are you using ? Conda information� �

<~><111> conda info
active environment : base
active env location : /Users/molyneux/opt/anaconda3

shell level : 1
user config file : /Users/molyneux/.condarc

populated config files : /Users/molyneux/.condarc
conda version : 4.8.2

conda-build version : 3.18.11
python version : 3.7.6.final.0

virtual packages : __osx=10.14.6
base environment : /Users/molyneux/opt/anaconda3 (writable)

channel URLs : https://repo.anaconda.com/pkgs/main/osx-64
https://repo.anaconda.com/pkgs/main/noarch
https://repo.anaconda.com/pkgs/r/osx-64
https://repo.anaconda.com/pkgs/r/noarch

package cache : /Users/molyneux/opt/anaconda3/pkgs
/Users/molyneux/.conda/pkgs

envs directories : /Users/molyneux/opt/anaconda3/envs
/Users/molyneux/.conda/envs

platform : osx-64
user-agent : conda/4.8.2 requests/2.22.0 CPython/3.7.6 Darwin/18.7.0 OSX/10.14.6

UID:GID : 501:20
netrc file : None

offline mode : False
<~><112>� �

• Answer the Key Questions for Jupyter Notebook

• What documentation is available ?

• Answer the Key Questions for Jupyter Notebook

• What documentation is available ?

Jupyter Documentation

Jupyter Notebook Documentation The Jupyter Notebook

• Anaconda Product Documentation

• Anaconda User Guide

• Conda documentation package manager

• Jupyter Notebook Format

• The JSON Data Interchange Standard

https://www.anaconda.com/products/individual
https://jupyter.org/install.html
https://jupyter.org/documentation
https://jupyter-notebook.readthedocs.io/en/stable/
https://anaconda.cloud/support-center/product-documentation
https://docs.anaconda.com/anacondaorg/user-guide/
https://docs.conda.io/projects/conda/en/latest/
https://nbformat.readthedocs.io/en/latest/index.html
https://www.json.org/json-en.html
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• Answer the Key Questions for Jupyter Notebook

• What are the names for the parts of the interface ?

• Answer the Key Questions for Jupyter Notebook

• What are the names for the parts of the interface ?

User interface components

• Notebook Dashboard and Notebook Editor

• Command mode and Edit mode

• Answer the Key Questions for Jupyter Notebook

• How do you leave the package ? How do you enter the package ?

• Answer the Key Questions for Jupyter Notebook

• How do you leave the package ? How do you enter the package ?

• Enter

• Command line� �
cd whatEverFolder
jupyter notebook &� �

• GUI see Anaconda Navigator but beware slow launch and having to navigate folders
a lot

• Leave

• Notebook Editor File Close and Halt

• Notebook Dashboard Quit

• Note Logout does something else and will lead to an odd requestto login

• Answer the Key Questions for Jupyter Notebook

• Is there any on-line help and, if so, how is it used ?

• Answer the Key Questions for Jupyter Notebook

• Is there any on-line help and, if so, how is it used ?� �
jupyter --help� �

but you will have to read the documentation

• Answer the Key Questions for Jupyter Notebook

• Are there any initialisation files, configuration or preferences and how are they used ?

• Answer the Key Questions for Jupyter Notebook

• Are there any initialisation files, configuration or preferences and how are they used ?

• See Config file and command line options

• Set in jupyter_notebook_config.py in ~/.jupyter (see earlier)

• See also

https://jupyter-notebook.readthedocs.io/en/stable/ui_components.html
https://docs.anaconda.com/anaconda/navigator/index.html
https://jupyter-notebook.readthedocs.io/en/stable/config.html
jupyter_notebook_config.py
~/.jupyter
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� �
jupyter notebook --help� �

• Answer the Key Questions for Jupyter Notebook

• How do you import and export data from the package ?

• Answer the Key Questions for Jupyter Notebook

• How do you import and export data from the package ?

• Export

• See nbconvert — Using as a command line tool� �
jupyter nbconvert --to FORMAT myNotebook.ipynb� �

• Output formats — HTML, LaTeX, PDF, Markdown, WebPDF, Reveal.js HTML slideshow
and others

• Import

• Embedding images — use Markdown syntax� �
![title][Images/myPicture.png]� �

• Convert notebook to slides� �
jupyter nbconvert --to slides --post serve myNotebook.ipynb� �

• Convert slide myNotebook.slides.html to PDF version — replace # at end of URL
to ?print-pdf

• Answer the Key Questions for Jupyter Notebook

• When all else fails, how can you obtain advice ?

• Answer the Key Questions for Jupyter Notebook

• When all else fails, how can you obtain advice ?

M269 Forums

StackOverflow: Questions tagged [jupyter]

6.2 Writing Programs & Thinking

The Steps

1. Invent a name for the program (or function)

2. What is the type of the function ? What sort of input does it take and what sort of
output does it produce ? In Python a type is implicit; in other languages such as
Haskell a type signature can be explicit.

3. Invent names for the input(s) to the function (formal parameters) — this can involve
thinking about possible patterns or data structures

4. What restrictions are there on the input — state the preconditions.

5. What must be true of the output — state the postconditions.

https://nbconvert.readthedocs.io/en/latest/usage.html
https://stackoverflow.com/questions/tagged/jupyter
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6. Think of the definition of the function body.

The Think Step

• How to Think

1. Think of an example or two — what should the program/function do ?

2. Break the inputs into separate cases.

3. Deal with simple cases.

4. Think about the result — try your examples again.

• Thinking Strategies

1. Don’t think too much at one go — break the problem down. Top down design,
step-wise refinement.

2. What are the inputs — describe all the cases.

3. Investigate choices. What data structures ? What algorithms ?

4. Use common tools — bottom up synthesis.

5. Spot common function application patterns — generalise & then specialise.

6. Look for good glue — to combine functions together.

7 What Next ?

Programming, Debugging, Psychology

Although programming techniques have improved immensely since the early days, the
process of finding and correcting errors in programming — known graphically if inele-
gantly as debugging — still remains a most difficult, confused and unsatisfactory opera-
tion. The chief impact of this state of affairs is psychological. Although we are happy to
pay lip-service to the adage that to err is human, most of us like to make a small pri-
vate reservation about our own performance on special occasions when we really try. It
is somewhat deflating to be shown publicly and incontrovertibly by a machine that even
when we do try, we in fact make just as many mistakes as other people. If your pride
cannot recover from this blow, you will never make a programmer.

Christopher Strachey, Scientific American 1966 vol 215 (3) September pp112–124

• To err is human, to really foul things up requires a computer.

• Attributed to Paul R. Ehrlich in 101 Great Programming Quotes

• Attributed to Bill Vaughn in Quote Investigator

• Derived from Alexander Pope (1711, An Essay on Criticism)

• To Err is Humane; to Forgive, Divine

• This also contains

A little learning is a dangerous thing;

https://en.wikipedia.org/wiki/Christopher_Strachey
https://en.wikipedia.org/wiki/Paul_R._Ehrlich
http://www.devtopics.com/101-great-computer-programming-quotes/
https://en.wikipedia.org/wiki/William_E._Vaughan
http://quoteinvestigator.com/2010/12/07/foul-computer/
https://en.wikipedia.org/wiki/Alexander_Pope
https://en.wikipedia.org/wiki/An_Essay_on_Criticism
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Drink deep, or taste not the Pierian Spring

• In programming, this means you have to read the fabulous manual (RTFM)

Overview B and Unit 2

• Basic Python — selection and iteration

• Basic data types — arrays, sequences, lists, tuples

• Example Algorithm Design

• Writing Programs & Thinking — The Steps

• Abstract Data Types

• Tutorial online (PM) 10:00 Sunday 28 November 2021

8 Web Links & References

• The offside rule (using layout to determine the start and end of code blocks) comes
originally from Landin (1966) — see https://en.wikipedia.org/wiki/Off-side_
rule for other programming languages that use this.

• The step-by-step approach to writing programs is described in Glaser et al. (2000)

• The difficulty in learning programming is described in many articles — see, for ex-
ample, Dehnadi and Bornat (2006)

• UTF-8 is Unicode (or Universal Coded Character Set) Transformation Format — 8-bit
— one of the character encodings for the Unicode characters or code points
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