M269 Overview
M269 Overview Prsntn 2021)

Contents

1 M269 Overview Tutorial Agenda

2 Adobe Connect
2.1 Interface e e e e e e e e e e
2.2 Settings e e e e e e e e e e e e e e e
2.3 Sharing Screen & Applications L oo
2.4 EndingaMeeting e e e e e e e e
2.5 Invite Attendees e e e e e e e e e e e e
2.6 Layouls e e e e e e e e e e e e e e
2.7 Chat Pods e e e e e e e e e
2.8 Web Graphics i i e e e e e e e e e e e e e e

3 M269 Overview

4 Basic Computational Components
4.1 Computation, Programming, Programming Languages
4.2 Programming Languages o o v it e e e e e e e e e e e e e e e e

5 Python & Jupyter Notebook
5.1 Anaconda L e e e e e e e e e e e e
5.2 Jupyter Notebook
5.3 Notebook File Format e e e

6 Software & Programming
6.1 Learning Software Packageso
6.2 Writing Programs & Thinking

7 What Next ?

8 References
References e e e e

1 M269 Overview Tutorial Agenda

Introductions

M269 Overview

Basic Computational Components

Course material and software: Anaconda and Jupyter Notebooks

Learning Software Packages

How to Program (in two slides)

12
12
13
14

16
16
19

20

21

2 M269 Overview 10 October 2021

How to survive learning software packages

Adobe Connect — if you or | get cut off, wait till we reconnect (or send you an email)

Time: about 1 hour

Do ask questions or raise points.

Slides/Notes M269Tutorial010verview

Introductions — Me

Name Phil Molyneux

Background

- Undergraduate: Physics and Maths (Sussex)

- Postgraduate: Physics (Sussex), Operational Research (Brunel), Computer Sci-
ence (University College, London)

- Worked in Operational Research, Business IT, Web technologies, Functional Pro-
gramming

e First programming languages Fortran, BASIC, Pascal

Favourite Software

Haskell — pure functional programming language

Text editors TextMate, Sublime Text — previously Emacs

Word processing in IATEX — all these slides and notes

Mac OS X

Learning style — | read the manual before using the software

Introductions — You
e Name?
e Favourite software/Programming language ?
e Favourite text editor or integrated development environment (IDE)

e List of text editors, Comparison of text editors and Comparison of integrated devel-
opment environments

e Other OU courses?

e Anything else?

http://pmolyneux.co.uk/OU/M269FolderSync/M269TutorialNotes/M269Tutorial01Overview/
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://www.haskell.org/
https://macromates.com
http://www.sublimetext.com
https://www.emacswiki.org/
https://www.latex-project.org/
https://developer.apple.com/
https://en.wikipedia.org/wiki/Text_editor
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/List_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments

Phil Molyneux M269 Overview Prsntn 2021) 3

2 Adobe Connect Interface and Settings

2.1 Adobe Connect Interface

Adobe Connect Interface — Host View

jo— B Adobe Comect.app

M250 Units 10, 11
Phil Molyneux
M250 Units 10, 11
Tutorial Agenda
Adobe Connect

Classes and
Interfaces

M250 Units 10, 11 sets

Maps

Collections, Arrays, Sets, Maps, Lists

Lists

Collection
Implementations

TMAO3 Practice

Phil Molyneux Quiz
Common Mistakes
JShell
What Next ?

18 Aprll 2021 References

Adobe Connect Interface — Participant View

‘ece B Adobe Comect.app

M250 Units 10, 11

M250 Units 10, 11 Tutorial

Introductions

Phil Molyneux

M250 Units 10, 11
> Introductions [utoril Aqenda
Adobe Connect
Name Phil Molyneux Classes and
Learning Style: Reads the manual s
Learnt last month Framework for Teaching Recursion
and wrote notes on Recursion Teaching

Lists

You ?
Collection
Implementations

Sets

Maps

TMAO3 Practice
Quiz

Common Mistakes
JShell
What Next ?

References

2.2 Adobe Connect Settings

Adobe Connect — Settings

4 M269 Overview 10 October 2021

Everybody [Menu bar>> Meeting>> Speaker & Microphone Setup}

{Menu bar>> Microphone>> Allow Participants to Use Microphone} v

Check Participants see the entire slide including slide numbers bottom right Workaround

- Disable Draw [Share pod>> Menu bar>> Draw icon}

- Fit Width [Share pod>> Bottom bar>> Fit Width icon} 4

{Meeting>> Preferences>> General>> Host Cursor>> Show to all attendees

{Menu bar>> Video>> Enable Webcam for Participants} v

Do not Enable single speaker mode

Cancel hand tool

Do not enable green pointer

Recording {Meeting) Record Session} v

Documents Upload PDF with drag and drop to share pod

Delete [Meeting>> Manage Meeting Information>> Uploaded Content} and [check ﬁlename>> click on delete

Adobe Connect — Access

e Tutor Access

TutorHome>> M269 Website>> Tutorials}

Cluster Tutorials>> M269 Online tutorial room}

{
{
{Tutor Groups>> M269 Online tutor group room}
{

Module-wide Tutorials>> M269 Online module-wide room}

Attendance

{TutorHome>> Students>> View your tutorial timetables}

Beamer Slide Scaling 440% (422 x 563 mm)

Clear Everyone’s Status

{Attendee Pod>> Menu>> Clear Everyone’s Status}

Grant Access and send link via email

{Meeting>> Manage Access & Entry>> Invite Participants. . . }

Presenter Only Area

[Meeting>> Enable/Disable Presenter Only Area}

Adobe Connect — Keystroke Shortcuts
e Keyboard shortcuts in Adobe Connect

e Toggle Mic [3¢]+(M] (Mac), [ctrl]+[M] (win) (On/Disconnect)
e Toggle Raise-Hand status [3¢]+[E

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html

Phil Molyneux M269 Overview Prsntn 2021) 5

e Close dialog box [©] (Mac), [Esc] (Win)
e End meeting [3)+\]

2.3 Adobe Connect — Sharing Screen & Applications

° {Share My Screen>> Application tab>> Terminal} for Terminal

e [Share menu)) Change View)) Zoom in| for mismatch of screen size/resolution (Participants)

e (Presenter) Change to 75% and back to 100% (solves participants with smaller screen
image overlap)

e Leave the application on the original display

e Beware blued hatched rectangles — from other (hidden) windows or contextual
menus

e Presenter screen pointer affects viewer display — beware of moving the pointer away
from the application

e First time: [System Preferences>> Security & Privacy>> Privacy>> Accessibility}

2.4 Adobe Connect — Ending a Meeting

e Notes for the tutor only

e Student: {Meeting) Exit Adobe Connect]

e Tutor:

e Recording {Meeting) Stop Recording} v

e Remove Participants [Meeting)) End Meeting. .. | o/

- Dialog box allows for message with default message:
- The host has ended this meeting. Thank you for attending.

e Recording availability In course Web site for joining the room, click on the eye icon
in the list of recordings under your recording — edit description and name

e Meeting Information Meeting)) Manage Meeting Information| — can access a range of informa-
tion in Web page.

e Attendance Report see course Web site for joining room

2.5 Adobe Connect — Invite Attendees

e Provide Meeting URL {Menu>> Meeting>> Manage Access & Entry>> Invite Participants. . . }

e Allow Access without Dialog Menu) Meeting) Manage Meeting Information| provides new browser
window with Meeting Information [Tab bar)) Edit Information|

e Check Anyone who has the URL for the meeting can enter the room

e Default Only registered users and accepted guests may enter the room

https://en.wikipedia.org/wiki/Terminal_(macOS)

M269 Overview 10 October 2021

2.6

2.7

Reverts to default next session but URL is fixed

Guests have blue icon top, registered participants have yellow icon top — same icon
if URL is open

See Start, attend, and manage Adobe Connect meetings and sessions

Layouts

Creating new layouts example Sharing layout

[Menu>> Layouts>> Create New Layout. .. } {Create a New Layout dialog>> Create a new blank Iayout} and name it
PMolyMain

New layout has no Pods but does have Layouts Bar open (see Layouts menu)

Pods

[Menu)) Pods)) Share)) Add New Share| and resize/position — initial name is Share n

Rename Pod {Menu>> Pods>> Manage Pods. .. } [Manage Pods>> Select>> Rename} or [Double-click & rename

Add Video pod and resize/reposition
Add Attendance pod and resize/reposition
Add Chat pod — name it PMolyChat — and resize/reposition

Dimensions of Sharing layout (on 27-inch iMac)

Width of Video, Attendees, Chat column 14 cm

Height of Video pod 9 cm

Height of Attendees pod 12 cm

Height of Chat pod 8 cm

Duplicating Layouts does not give new instances of the Pods and is probably not a
good idea (apart from local use to avoid delay in reloading Pods)

Chat Pods

Format Chat text

{Chat Pod>> menu icon>> My Chat CoIor}

Choices: Red, Orange, Green, Brown, Purple, Pink, Blue, Black

Note: Color reverts to Black if you switch layouts

{Chat Pod>> menu icon>> Show Timestamps}

Graphics Conversion for Web

Conversion of the screen snaps for the installation of Anaconda on 1 May 2020

Using GraphicConverter 11

https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html

Phil Molyneux M269 Overview Prsntn 2021)

) > Convert & Modify>> Conversion>> Convert}

Select files to convert and destination folder

Click on [Start selected Function] or +

Go to Table of Contents

3 M269 Overview

M269 Algorithms, data structures and computability

Aims

Ideas of computational thinking

Introduction to algorithms and data structures (using Python)
Logic and the limits of computation

Computability

Complexity

M269 Algorithms, data structures and computability
Topics

Numbers and sequences — functions, complexity, data types
Booleans and selection — Abstract Data Type (ADT), Decision problems
Sequences and iteration — control structures for iteration, lists, tuples
Implementing sequences — arrays as primitives, lists in arrays

Stack and queues — example ADTs

Unordered collections — maps, dictionaries, hash tables, sets, bags
Exhaustive search

Recursion — some historical context

Divide and conquer

Sorting

Tree data structures

Graph algorithms

Greedy algorithms

M269 Units 6 Sets, logic and databases

Propositional and predicate logic — first order logic

M269 Unit 7 Computation

Computability and complexity

NP-compeleteness

8 M269 Overview 10 October 2021

4 Basic Computational Components

Computational Components — Imperative

Imperative or procedural programming has statements which can manipulate global mem-
ory, have explicit control flow and can be organised into procedures (or functions)

e Sequence of statements

[stmnt ; stmnt J

e Iteration to repeat statements

while expr :
suite

for targetList in exprList :
suite

e Selection choosing between statements

if expr : suite
elif expr : suite
else : suite

Functional programming treats computation as the evaluation of expressions and the
definition of functions (in the mathematical sense)

e Function composition to combine the application of two or more functions — like
sequence but from right to left (notation accident of history)

[(F. g x="F(@x j

e Recursion — function definition defined in terms of calls to itself (with smaller ar-
guments) and base case(s) which do not call itself.

e Conditional expressions choosing between alternatives expressions

[if expr then expr else expr }

4.1 Computation, Programming, Programming Languages

M269 is not a programming course but ...

The course uses Python to illustrate various algorithms and data structures

The final unit addresses the question:

What is an algorithm ? What is programming ? What is a programming language ?

So it is a programming course (sort of)

Computation, Syntax and Semantics
e Syntax and Semantics (1)
e What is each of the following — first reaction !

e 4+6

https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Control_flow
https://en.wikipedia.org/wiki/Structured_programming
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Function_composition_(computer_science)
https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/Conditional_(computer_programming)

Phil Molyneux M269 Overview Prsntn 2021) 9

4+6x3
e 4
19370721 x 761838257287

The above are expressions in arithmetic

Most students read what is as evaluate

Not easy for the last one

But you can say:

They are expressions which when evaluated, evaluate to some number
19370721 x 761838257287
= 147573952589676412927 = 267 - 1

demonstrated in a famous meeting of the New York AMS in October 1903 by
F.N.Cole (Cole, 1903)

Computation — Cartesian Close Comic Cartoon

Mickey, what
does two plus
= -9 three equal?

It equals two
plus threel

N

i

M

That's the wrong
answer, Mickey.
You have one more

Wreng againl You
get an Fl

31W0J Pas0|) UDISA40T

Sad fact: many math teachers do not know
the difference between equality and reduction.

e Syntax and Semantics (2)
e Evaluate

e 6+4X%3

https://en.wikipedia.org/wiki/Frank_Nelson_Cole

10 M269 Overview 10 October 2021

e 6-4-1

False or True (in Python)

5 // 3 (integer division in Python)
1 // 0 (in Python)

False or True or 1 // 0 (in Python)

Syntax and Sematics — Elementary Concepts
e An expression can be thought of as a program (and vice versa)
e A set of instructions to find a value.
e Operator precedence and associativity are there to get rid of some brackets
e (to make the code more user friendly!)

e Precedence — which operator to use first. This is also called binding power or oper-
ator fixity

e Associativity — for the same operator, whether to evaluate from left to right or right
to left (or it doesn’t matter)

e Lazy Evaluation — don’t do today what you can put off til tomorrow, because you
might never have to do it (useful in computation — not useful for doing TMAs)

e Sharp edges

e Evaluate (in Maths) 22 and 222 and 2222

e In Python 2222

e Alternate in Python pow(2,pow(2,pow(2,2)))
e Microsoft Excel =2A2A2A2

e or use LibreOffice, Numbers, ...

e Sharp edges
2
e Evaluate (in Maths) 22 and 222 and 222

e 222 _ 16 and 222 =216 65536 (or 64K in computing)
e Python 2#%2%%2%%2 == 65536

e Python pow(2,pow(2,pow(2,2))) == 65536

e Casio fx-85GT Plus 2A2A2A2 shows 65536

e Haskell 2A2A2A2 == 65536

e Microsoft Excel =2A2A2A2 == 256

e Beware language semantics

e Microsoft Excel =2A2A2A2A2 == 65536

e Haskell Tength (show (2A2A2A2A2)) == 19729

Phil Molyneux M269 Overview Prsntn 2021)

11

22°
22 has 19729 digits
What is Excel doing differently ?

Programming Languages

Add a tick on the slide next to languages used
FORTRAN

BASIC

Pascal

SASL

C

Miranda

Prolog

JavaScript

Java

Haskell

Add names of other languages used

Are the following programming languages ?
Excel

HTML

Word

IATEX

SQL

Excel

Excel has conditional expressions and indirections (so can have loops)

An Excel Turing Machine is described in Felienne’s blog

Excel see Improving the world’s most popular functional language: user-defined

functions in Excel

Announcing LAMBDA: Turn Excel formulas into custom functions (3 December 2020)

HTML

HyperText Markup Language is the standard markup language for Web pages — it

describes the structure of the content.

It can contain CSS (for describing appearance) and

JavaScript (for describing behaviour)

HTML is not a programming language

https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://en.wikipedia.org/wiki/SASL_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
http://miranda.org.uk/
https://en.wikipedia.org/wiki/Prolog
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Java_(programming_language)
https://www.haskell.org/
http://www.felienne.com/archives/2974
http://www.felienne.com/about-3
http://research.microsoft.com/en-us/um/people/simonpj/Papers/excel/
http://research.microsoft.com/en-us/um/people/simonpj/Papers/excel/
https://techcommunity.microsoft.com/t5/excel-blog/announcing-lambda-turn-excel-formulas-into-custom-functions/ba-p/1925546
https://en.wikipedia.org/wiki/HTML

12

M269 Overview 10 October 2021

JavaScript is a Turing complete programming language but embedded in a host en-
vironment.

CSS could be extended to be Turing complete — see Is CSS Turing complete
Word

Microsoft Word interface to text formatting

Serialised with the markup language Office Open XML

Visual Basic for Applications is embedded and is a programming language
IATEX

LaTeX is a format of TeX

Markup technology for typesetting documents — oriented towards mathematics and
technical documents.

Is also a Turing complete programming language (Unit 7)

Used in MST125 Essential Mathematics 2 Unit 2 Mathematical typesetting

SQL

Structured Query Language based on relational algebra and tuple relational calculus
Syntactic sugar for first order logic (Unit 6)

Originally not a Turing complete programming language (Unit 7)

but extensions are Turing complete

Turing completeness is not everything

Data languages such as XML, HTML, JSON

Regular languages for regular expressions in your favourite text editor (and some
programming languages)

Pushdown automata and Context-free grammars used in program compiling.

Total Functional Programming requires all programs to be provably terminating.

5 Python & Jupyter Notebook

5.1

Anaconda

Anaconda Individual Edition

Anaconda documentation Documentation

Anaconda documentation Quick Start Guide

Anaconda Troubleshooting Troubleshooting

You have to pay attention to your configuration: Windows, macOS, Linux

macOS bash

https://stackoverflow.com/questions/2497146/is-css-turing-complete
https://en.wikipedia.org/wiki/Microsoft_Word
https://en.wikipedia.org/wiki/Office_Open_XML
https://en.wikipedia.org/wiki/Visual_Basic_for_Applications
https://en.wikipedia.org/wiki/LaTeX
https://en.wikipedia.org/wiki/TeX
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/Turing_completeness
https://en.wikipedia.org/wiki/Turing_completeness
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Regular_language
https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Pushdown_automaton
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Total_functional_programming
https://www.anaconda.com/products/individual
https://docs.anaconda.com/anaconda/
https://docs.anaconda.com/anaconda/user-guide
https://docs.anaconda.com/anaconda/user-guide/troubleshooting/

Phil Molyneux M269 Overview Prsntn 2021) 13

5.2

The install sets up .bash_profile which then bypasses .profile and .bashrc

/Users/molyneux/opt/anaconda3/bin is prepended to your PATH (with your user
name not mine, molyneux)

| have the following set in .profile and .bashrc

.profile

export PYTHONSTARTUP="$HOME/.PythonStartupRC/PythonStartupRC.py"
Sets the prompts for several Python distributions

.bashrc

Python aliases for alternate Python distributions

alias anPython="$HOME/opt/anaconda3/bin/python"
alias acPython="/usr/local/bin/python3"
alias apPython="/usr/bin/python"

Jupyter Notebook

Jupyter Notebook is a Web application that allows the sharing of documents contain-
ing live code, equations and other Maths, visualisations and narrative text

Jupyter Notebook documentation
Launch Jupyter Notebook

Navigate to the folder containing the notebooks in a command terminal (macOS
Terminal)

(jupyter notebook &

Your default Web browser opens with Notebook Dashboard

Navigate to a Notebook file (x.pynb) to launch a Notebook Editor on the Notebook
file

[Help>> User Interface Tour}

{Help>> Keyboard Shortcuts}

Halt a Notebook Editor with

The supplied file custom.css (with the book files) changes some styles

The file has to be placed at ~/.jupyter/custom/custom.css — note the (.) in
.jupyter

Some files and folders in macOS are not displayed by default in Finder or Terminal

These are files with names starting with a dot (.), Library folders (there are several)
and some system folders

Here are several ways of making these files visible

Finder (1) with Finder selected, type [3¢]+(1]+(.] — the keystroke command is a
toggle so to turn viewing off just re-type the same

Finder (2) to make the change permanent, type the following in Terminal

.bash_profile
.profile
.bashrc
/Users/molyneux/opt/anaconda3/bin
.profile
.bashrc
.profile
.bashrc
https://jupyter.org/
https://jupyter-notebook.readthedocs.io/en/stable/index.html
~/.jupyter/custom/custom.css
.jupyter

O 00 N O VT h W N —

14 M269 Overview 10 October 2021

defaults write com.apple.Finder AppleShowAll1Files true
ki11all Finder

e Finder (3) to make a permanent change without using Terminal have a look at Tin-
kerTool (free) — the Finder tab first item is Show hidden and system files

e Also make sure you display filename extensions with [Finder)) Preferences)) Advanced| and
check [Show all filename extensions}

e Obtaining a folder or file path in Finder:

e (1) Drag the folder or file into a Terminal window
the file path is displayed at the command prompt
most often used with cd to change to a new folder

e (2) Ensure you have the Path Bar visible

{View>> Show Path Bar}

Right-click on the folder in the Path Bar and go [Copy Folder as Pathname

e (3) In Terminal use the pwd command
e Question What folders are represented by
D)
..)
./SomeFolder
/SomeFolder
. ./SomeFolder

5.3 Notebook File Format

e Optional topic from Notebook file format

e This is not part of the course for may be of interest
e Top-level structure

e metadat (dict)

e nbformat (int)

e nbformat_minor (int)

e cells (list)

e Top-level structure

"metadata" : {
"kernel_info": {
if kernel_info is defined, its name field is required.
"name" : "the_name_of_the_kernel"
i
"language_info": {
if language_info is defined, its name field is required.
"name" : "the_programming_language_of_the_kernel",

https://www.bresink.com/osx/TinkerTool.html
https://www.bresink.com/osx/TinkerTool.html
https://nbformat.readthedocs.io/en/latest/format_description.html

10
11
12
13
14
15
16
17
18
19

iAW =

iAW =

0 N O VA WwWN =

H W NN = O VO

Phil Molyneux M269 Overview Prsntn 2021) 15

"version": "the_version_of_the language",
"codemirror_mode": "The_name_of_the_codemirror_mode_to_use_ [optional]"
}
D
"nbformat": 4,
"nbformat_minor": 0,
"cells" : [
list of cell dictionaries, see below
],
}
e Cell Types
e Basic structure
{
"cell_type" : "type",
"metadata" : {},
"source" : "single_string_or_[1ist,_of, _strings]",
}
e Several basic cell types
e Markdown cells
e Code cells
e Raw NBConvert cells
e Markdown Cells
e Markdown cells are used for body-text, and contain markdown, as defined in GitHub-
flavored markdown, and implemented in marked.
{
"cell_type" : "markdown",
"metadata" : {},
"source" : "[multi-Tine_*markdown=]",
}
e It would be useful to learn some Markdown — and HTML, CSS
e Mastering Markdown
e Daring Fireball: Markdown the original reference
e MultiMarkdown there are lots of extensions
e Markdown Guide and references
e Python Markdown see Fenced Code Blocks
e Code Cells
{
"cell_type" : "code",
"execution_count": 1, # integer or null
"metadata" : {
"collapsed" : True, # whether the output of the cell is collapsed
"scrolled": False, # any of true, false or "auto"
}’

"source" : "[some_multi-line_code]",
"outputs": [{
list of output dicts (described below)
"output_type": "stream",

1,

https://docs.github.com/en/github/writing-on-github
https://docs.github.com/en/github/writing-on-github
https://github.com/markedjs/marked
https://guides.github.com/features/mastering-markdown/
https://daringfireball.net/projects/markdown/
https://fletcherpenney.net/multimarkdown/
https://www.markdownguide.org/
https://python-markdown.github.io/
https://python-markdown.github.io/extensions/fenced_code_blocks/

16 M269 Overview 10 October 2021

e Code Cell Outputs

e The output_type field defines the output

e stream output for text

e display_data data keyed by mime-type

e execute_result gives results of executing a cell
e error messages and traceback

e Raw NBConvert Cells

e content that should be included unmodified in nbconvert output

O 00 N O VT b W N —

{

"cell_type" : "raw",

"metadata" : {
the mime-type of the target nbconvert format.
nbconvert to formats other than this will exclude this cell.
"format" : "mime/type"

}1

"source" : "[some_nbformat_output_text]"

3

There are a lot more features than can be covered here

The main usage here will be adding effects to a cell

this will require some Markdown, HTML and CSS knowledge (but not much)

See the documentation

6 Software & Programming

6.1 Learning Software Packages

Key questions
1. Where is the package source ?
What version are you using ?
What documentation is available ?
What are the names for the parts of the interface ?
How do you leave the package ? How do you enter the package ?
Is there any on-line help and, if so, how is it used ?
Are there any initialisation files, configuration or preferences and how are they used ?

How do you import and export data from the package ?

W ® N o U A W N

When all else fails, how can you obtain advice ?
e Answer the Key Questions for Jupyter Notebook
e Where is the package source ?

e What version are you using ?

Phil Molyneux M269 Overview Prsntn 2021)

17

e Where is the package source ?
Anaconda Individual Edition
See also Installing the Jupyter Software

e What version are you using ?

<~><107> jupyter --version
jupyter core : 4.6.1
jupyter-notebook :
gtconsole

ipython

ipykernel

6.0.3
4.6.0
7.
: 5
jupyter client : 5.
1
5
7
5
4

N
o

jupyter lab
nbconvert
ipywidgets
nbformat
traitlets
<~><108>

WOoOuIo NWRREOO

WhRRODSN-

e What version are you using ? Conda information

<~><111> conda info
active environment : base
active env location : /Users/molyneux/opt/anaconda3
shell Tevel : 1
user config file : /Users/molyneux/.condarc
populated config files : /Users/molyneux/.condarc
conda version : 4.8.2
conda-build version : 3.18.11
python version : 3.7.6.final.0
virtual packages : __osx=10.14.6
base environment : /Users/molyneux/opt/anaconda3 (writable)
channel URLs : https://repo.anaconda.com/pkgs/main/osx-64
https://repo.anaconda.com/pkgs/main/noarch
https://repo.anaconda.com/pkgs/r/osx-64
https://repo.anaconda.com/pkgs/r/noarch
package cache : /Users/molyneux/opt/anaconda3/pkgs
/Users/molyneux/.conda/pkgs
envs directories : /Users/molyneux/opt/anaconda3/envs
/Users/molyneux/.conda/envs
platform : osx-64

user-agent : conda/4.8.2 requests/2.22.0 CPython/3.7.6 Darwin/18.7.0 0SX/10.14.6

UID:GID : 501:20
netrc file : None
offline mode : False
<~><112>

Answer the Key Questions for Jupyter Notebook

What documentation is available ?

Answer the Key Questions for Jupyter Notebook

What documentation is available ?

Jupyter Documentation
Jupyter Notebook Documentation The Jupyter Notebook

Anaconda Product Documentation

Anaconda User Guide

Conda documentation package manager

Jupyter Notebook Format
The JSON Data Interchange Standard

https://www.anaconda.com/products/individual
https://jupyter.org/install.html
https://jupyter.org/documentation
https://jupyter-notebook.readthedocs.io/en/stable/
https://anaconda.cloud/support-center/product-documentation
https://docs.anaconda.com/anacondaorg/user-guide/
https://docs.conda.io/projects/conda/en/latest/
https://nbformat.readthedocs.io/en/latest/index.html
https://www.json.org/json-en.html

18

M269 Overview 10 October 2021

e Answer the Key Questions for Jupyter Notebook
e What are the names for the parts of the interface ?
e Answer the Key Questions for Jupyter Notebook
e What are the names for the parts of the interface ?
User interface components
e Notebook Dashboard and Notebook Editor
e Command mode and Edit mode
e Answer the Key Questions for Jupyter Notebook
e How do you leave the package ? How do you enter the package ?
e Answer the Key Questions for Jupyter Notebook
e How do you leave the package ? How do you enter the package ?
e Enter

e Command line

cd whatEverFolder
jupyter notebook &

e GUI see Anaconda Navigator but beware slow launch and having to navigate folders
a lot

e Leave

e Notebook Editor

e Notebook Dashboard

e Note does something else and will lead to an odd requestto login
e Answer the Key Questions for Jupyter Notebook

e Is there any on-line help and, if so, how is it used ?

e Answer the Key Questions for Jupyter Notebook

e Is there any on-line help and, if so, how is it used ?

(jupyter --help J

but you will have to read the documentation
e Answer the Key Questions for Jupyter Notebook
e Are there any initialisation files, configuration or preferences and how are they used ?
e Answer the Key Questions for Jupyter Notebook
e Are there any initialisation files, configuration or preferences and how are they used ?
e See Config file and command line options
e Setin jupyter_notebook_config.py in ~/.jupyter (see earlier)

e See also

https://jupyter-notebook.readthedocs.io/en/stable/ui_components.html
https://docs.anaconda.com/anaconda/navigator/index.html
https://jupyter-notebook.readthedocs.io/en/stable/config.html
jupyter_notebook_config.py
~/.jupyter

Phil Molyneux M269 Overview Prsntn 2021) 19

(jupyter notebook --help J

e Answer the Key Questions for Jupyter Notebook
e How do you import and export data from the package ?

Answer the Key Questions for Jupyter Notebook

How do you import and export data from the package ?

Export

See nbconvert — Using as a command line tool

(jupyter nbconvert --to FORMAT myNotebook.1ipynb J

e Output formats — HTML, LaTeX, PDF, Markdown, WebPDF, Reveal.js HTML slideshow
and others

e Import

e Embedding images — use Markdown syntax

[I[title] [Images/myPicture.png] J

e Convert notebook to slides

(jupyter nbconvert --to slides --post serve myNotebook.ipynb J

e Convert slide myNotebook.s1lides.html to PDF version — replace # at end of URL
to ?print-pdf

e Answer the Key Questions for Jupyter Notebook
e When all else fails, how can you obtain advice ?
e Answer the Key Questions for Jupyter Notebook
e When all else fails, how can you obtain advice ?
M269 Forums
StackOverflow: Questions tagged [jupyter]

6.2 Writing Programs & Thinking

The Steps
1. Invent a name for the program (or function)

2. What is the type of the function ? What sort of input does it take and what sort of
output does it produce ? In Python a type is implicit; in other languages such as
Haskell a type signature can be explicit.

3. Invent names for the input(s) to the function (formal parameters) — this can involve
thinking about possible patterns or data structures

4. What restrictions are there on the input — state the preconditions.

5. What must be true of the output — state the postconditions.

https://nbconvert.readthedocs.io/en/latest/usage.html
https://stackoverflow.com/questions/tagged/jupyter

20

M269 Overview 10 October 2021

6. Think of the definition of the function body.

The Think Step

e How to Think

1.
2.
3.
4.

Think of an example or two — what should the program/function do ?
Break the inputs into separate cases.
Deal with simple cases.

Think about the result — try your examples again.

e Thinking Strategies

1.

(2 IV, B N CS A \Y)

Don’t think too much at one go — break the problem down. Top down design,
step-wise refinement.

What are the inputs — describe all the cases.

Investigate choices. What data structures ? What algorithms ?

Use common tools — bottom up synthesis.

Spot common function application patterns — generalise & then specialise.

Look for good glue — to combine functions together.

7 What Next ?

Programming, Debugging, Psychology

Although programming techniques have improved immensely since the early days, the
process of finding and correcting errors in programming — known graphically if inele-
gantly as debugging — still remains a most difficult, confused and unsatisfactory opera-
tion. The chief impact of this state of affairs is psychological. Although we are happy to
pay lip-service to the adage that to err is human, most of us like to make a small pri-
vate reservation about our own performance on special occasions when we really try. It
is somewhat deflating to be shown publicly and incontrovertibly by a machine that even
when we do try, we in fact make just as many mistakes as other people. If your pride
cannot recover from this blow, you will never make a programmer.

Christopher Strachey, Scientific American 1966 vol 215 (3) September pp112-124

e To err is human, to really foul things up requires a computer.

Attributed to Paul R. Ehrlich in 101 Great Programming Quotes
Attributed to Bill Vaughn in Quote Investigator

Derived from Alexander Pope (1711, An Essay on Criticism)

To Err is Humane; to Forgive, Divine

This also contains

A little learning is a dangerous thing;

https://en.wikipedia.org/wiki/Christopher_Strachey
https://en.wikipedia.org/wiki/Paul_R._Ehrlich
http://www.devtopics.com/101-great-computer-programming-quotes/
https://en.wikipedia.org/wiki/William_E._Vaughan
http://quoteinvestigator.com/2010/12/07/foul-computer/
https://en.wikipedia.org/wiki/Alexander_Pope
https://en.wikipedia.org/wiki/An_Essay_on_Criticism

Phil Molyneux M269 Overview Prsntn 2021) 21

Drink deep, or taste not the Pierian Spring

e In programming, this means you have to read the fabulous manual (RTFM)

Overview B and Unit 2

e Basic Python — selection and iteration

Basic data types — arrays, sequences, lists, tuples

Example Algorithm Design

Writing Programs & Thinking — The Steps

Abstract Data Types
Tutorial online (PM) 10:00 Sunday 28 November 2021

8 Web Links & References

e The offside rule (using layout to determine the start and end of code blocks) comes
originally from Landin (1966) — see https://en.wikipedia.org/wiki/Off-side_
rule for other programming languages that use this.

e The step-by-step approach to writing programs is described in Glaser et al. (2000)

e The difficulty in learning programming is described in many articles — see, for ex-
ample, Dehnadi and Bornat (2006)

e UTF-8 is Unicode (or Universal Coded Character Set) Transformation Format — 8-bit
— one of the character encodings for the Unicode characters or code points

References

Cole, Frank N (1903). On the factoring of large numbers. Bulletin of the American Mathe-
matical Society, 10(3):134-137.

Dehnadi, Saeed and Richard Bornat (2006). The camel has two humps. Web (Last
checked 22 October 2015). URL http://www.eis.mdx.ac.uk/research/PhDArea/
saeed/paperl.pdf.

Glaser, H; P J Hartel; and P W Garratt (2000). Programming by numbers: a programming
method for complete novices. The Computer Journal, 43(4):252-265. A functional
approach to learning programming.

Guttag, John V (2016). Introduction to Computation and Programming Using Python. MIT
Press. ISBN 0262529629. URL https://mitpress.mit.edu/books/introduction-
computation-and-programming-using-python-1.

Landin, Peter J. (1966). The next 700 programming languages. Communications of the
Association for Computing Machinery, 9:157-166.

Lutz, Mark (2011). Programming Python. O’Reilly, fourth edition. ISBN 0596158106. URL
http://learning-python.com/books/about-ppde.html.

https://en.wikipedia.org/wiki/Pierian_Spring
https://lmgtfy.com/?q=rtfm
https://en.wikipedia.org/wiki/Off-side_rule
https://en.wikipedia.org/wiki/Off-side_rule
https://en.wikipedia.org/wiki/UTF-8
http://www.eis.mdx.ac.uk/research/PhDArea/saeed/paper1.pdf
http://www.eis.mdx.ac.uk/research/PhDArea/saeed/paper1.pdf
https://mitpress.mit.edu/books/introduction-computation-and-programming-using-python-1
https://mitpress.mit.edu/books/introduction-computation-and-programming-using-python-1
http://learning-python.com/books/about-pp4e.html

22 M269 Overview 10 October 2021

Lutz, Mark (2013). Learning Python. O’Reilly, fifth edition. ISBN 1449355730. URL
http://learning-python.com/books/about-T1p5e.html.

Miller, Bradley W. and David L. Ranum (2011). Problem Solving with Algorithms and
Data Structures Using Python. Franklin, Beedle Associates Inc, second edition. ISBN
1590282574. URL http://interactivepython.org/courselib/static/pythonds/
index.html.

Pirnat, Mike (2015). How to Make Mistakes in Python. O’Reilly. ISBN 978-1-491-93447-
0. URL http://www.oreilly.com/programming/free/how-to-make-mistakes-in-
python.csp.

Strachey, Christopher (1966). Systems Analysis and Programming. Scientific American,
215(3):112-124.

Tollervey, Nicholas H. (2015). Python in Education. O’Reilly. ISBN 978-1-491-92462-4.
URL http://www.oreilly.com/programming/free/python-in-education.csp.

van Rossum, Guido and Fred Drake (2003a). An Introduction to Python. Network Theory
Limited. ISBN 0954161769.

van Rossum, Guido and Fred Drake (2003b). The Python Language Reference Manual.
Network Theory Limited. ISBN 0954161785.

van Rossum, Guido and Fred Drake (2011a). An Introduction to Python. Network Theory
Limited, revised edition. ISBN 1906966133.

van Rossum, Guido and Fred Drake (2011b). The Python Language Reference Manual.
Network Theory Limited, revised edition. ISBN 1906966141.

VanderPlas, Jake (2016). A Whirlwind Tour of Python. O’Reilly. ISBN 978-1-491-
96465-1. URL http://www.oreilly.com/programming/free/a-whirlwind-tour-
of-python.csp.

Wirth, Niklaus (1975). Algorithms Plus Data Structures Equals Programs. Prentice Hall.
ISBN 01302241 89.

Author Phil Molyneux Written 10 October 2021 Printed 9th October 2021
Subject dir: (baseURL)/0U/Courses/Computing/M269/M269TutorialNotes
Topic path: /M269TutorialOverview/M269Prsntn2021]JTutorialOverview/M269Prsntn2021]TutorialOverview.pdf

http://learning-python.com/books/about-lp5e.html
http://interactivepython.org/courselib/static/pythonds/index.html
http://interactivepython.org/courselib/static/pythonds/index.html
http://www.oreilly.com/programming/free/how-to-make-mistakes-in-python.csp
http://www.oreilly.com/programming/free/how-to-make-mistakes-in-python.csp
http://www.oreilly.com/programming/free/python-in-education.csp
http://www.oreilly.com/programming/free/a-whirlwind-tour-of-python.csp
http://www.oreilly.com/programming/free/a-whirlwind-tour-of-python.csp

	M269 Overview Tutorial Agenda
	Adobe Connect
	Interface
	Settings
	Sharing Screen & Applications
	Ending a Meeting
	Invite Attendees
	Layouts
	Chat Pods
	Web Graphics

	M269 Overview
	Basic Computational Components
	Computation, Programming, Programming Languages
	Programming Languages

	Python & Jupyter Notebook
	Anaconda
	Jupyter Notebook
	Notebook File Format

	Software & Programming
	Learning Software Packages
	Writing Programs & Thinking

	What Next ?
	References
	References

