### M269 Exams

Phil Molyneux

Prsntn 2017J Exam Qs

Prsntn 2017J Exam Solns

# M269 Exams Prsntn 2017J Exam

Phil Molyneux

7 June 2018

- M269 Algorithms, Data Structures and Computability
- Presentation 2017 J Exam.
- ▶ Date Thursday, 7 June 2018 Time 10:00–13:00
- ▶ There are **TWO** parts to this examination. You should attempt all questions in **both** parts
- ▶ Part 1 carries 65 marks 80 minutes
- ▶ Part 2 carries 35 marks 90 minutes
- ▶ **Note** see the original exam paper for exact wording and formatting — these slides and notes may change some wording and formatting
- ▶ Note The 2015J exam and before had Part 1 with 60 marks (100 minutes), Part 2 with 40 marks (70 minutes)



### Q Part1

- Answer every question in this part.
- ► The marks for each question are given below the question number.
- Answers to questions in this Part should be written on this paper in the spaces provided, or in the case of multiple-choice questions you should tick the appropriate box(es).
- If you tick more boxes than indicated for a multiple choice question, you will receive no marks for your answer to that question.
- Use the provided answer books for any rough working.

► Go to Soln Part1

#### M269 Exams

Phil Molyneux

Prsntn 2017J Exam Qs

Part 1

0.1

Q 1

Q 2

2 4

) 5

6

Q /

Q 9

Q 10

11

13

14

15 art 2

16

### Q 1 (2 marks)

- ▶ Which **one** of the following statements is true? (Tick one box.)
- A. An Abstract Data Type is the definition of a data structure in terms of the pre- and postconditions on the data structure.
- B. A more complex algorithm will always take more time to execute than a less complex one.
- C. Abstraction as modelling involves two layers the interface and the implementation.
- D. A problem is computable if it is possible to build an algorithm which solves any instance of the problem in a finite number of steps.



Q 2 (2 marks)

- ► The general idea of abstraction as modelling can be shown with the following diagram.
- The picture in the top is of a Ford Anglia in the real world, and the picture in the bottom is of a Matchbox model of a Ford Anglia.



► Complete the diagram by adding an appropriate label in the space indicated by **A** and one in the space indicated by **B**.

Part :

Q 1

Q 2

23

~ "

6

7

8 9

) 9 . . . .

Q 10 Q 11

2 12

Q 13

15

rt 2

17



Q 3 (4 marks)

► A binary search is being carried out on the list shown below for item 41:

[2,16,17,25,31,39,41,52,67,69,77,83,89,91,99]

- For each pass of the algorithm, draw a box around the items in the partition to be searched during that pass, continuing for as many passes as you think are needed.
- ▶ We have done the first pass for you showing that the search starts with the whole list. Draw your boxes below for each pass needed; you may not need to use all the lines below. (The question had 8 rows)

```
(Pass 1) [ 2,16,17,25,31,39,41,52,67,69,77,83,89,91,99 ]
(Pass 2) [2,16,17,25,31,39,41,52,67,69,77,83,89,91,99]
```

(Pass 3) [2,16,17,25,31,39,41,52,67,69,77,83,89,91,99]

Q 4 (5 marks)

► A Python program contains a loop with the following guard

```
while not (x \ge 2 \text{ or } y \le 2) \text{ or } (x \le 2 \text{ and } y \ge 2):
```

Complete the following truth table, where:

$$P$$
 represents  $x < 2$   $Q$  represents  $y > 2$ 

| Р | Q | $\neg P$ | $\neg Q$ | $\neg P \lor \neg Q$ | $\neg(\neg P \lor \neg Q)$ | $P \wedge Q$ | $\neg(\neg P \vee \neg Q) \vee (P \wedge Q)$ |
|---|---|----------|----------|----------------------|----------------------------|--------------|----------------------------------------------|
| F | F |          |          |                      |                            |              |                                              |
| F | T |          |          |                      |                            |              |                                              |
| T | F |          |          |                      |                            |              |                                              |
| Т | Т |          |          |                      |                            |              |                                              |

Q 4 continued on next slide

M269 Exams

Phil Molyneux

Prsntn 2017J Exam Qs

art 1

Q 1

Q 2

Q 4

6

8 9

Q 9

Q 11

13

15 art 2

.6 .7

Q 4 (contd)

- ▶ Use the results from your truth table to choose which one of the following expressions could be used as the simplest equivalent to the above guard. (Tick **one** box.)
- A. **not** (x < 2 and y > 2)
- B. (x >= 2 or y <= 2)
- C. (x < 2 and y > 2)
- D. (x >= 2 and y <= 2)
- E. (x < 2 and y <= 2)

▶ Go to Soln 4

#### M269 Exams

### Phil Molyneux

Prsntn 2017J Exam Qs

Part O 1

Q 1 Q 2

> Q 3 Q 4

> > 5 (

6

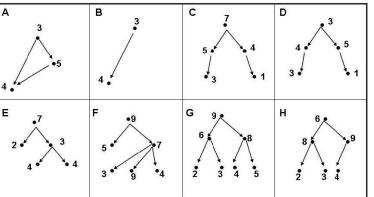
8 9

9

Q 10

12

13


15

16

17

Q 5 (4 marks)

Consider the diagrams in A–H, where nodes are represented by black dots and edges by arrows. The numbers are the keys for the corresponding nodes.



Q 5 continued on next slide

### M269 Exams

Phil Molyneux

Prsntn 2017J Exam Qs

Part 1

Q 1

Q 3

? <del>\*</del> } 5

Q 6 Q 7

Q 9

Q 11 Q 12

Q 13 Q 14

15 rt 2

Q 16 Q 17



Q 5

- ▶ On each line, write one or more letters, or write *None*.
- (a) Which of **A**, **B**, **C** and **D**, if any, are **not** a tree?
- (b) Which of **E**, **F**, **G** and **H**, if any, are binary trees?
- (c) Which of **C**, **D**, **G** and **H**, if any, are complete binary trees?
- (d) Which of C, D, G and H, if any, are not a heap?



### M269 Exams

Phil Molyneux

Prsntn 2017J Exam Qs

Part 1

Q 1

0.0

3

Q 4

Q 5

Ь

. .

9

Q 10

11

13

1.5

15

t 2 16

16

Consider the following function, which takes a non-empty list as an argument.

```
def variance(aList):
       n = len(aList)
       total = 0
       for item in aList:
            total = total + item
       mean = total / n
6
       ssdev = 0
       for item in aList:
8
9
            deviation = item - mean
            ssdev = ssdev + (deviation * deviation)
10
       var = ssdev / n
11
12
       return var
```

Q 6 continued on next slide

M269 Exams

Phil Molyneux

Prsntn 2017J Exam Qs

Questi Part 1

Q 1

Q 4

Q 6

Q 8 Q 9

Q 10 Q 11

> 12 13

> > 14 15

rt 2 16

Q 6 (contd)

From the options below, select the two that represent the correct combination of T(n) and Big-O complexity for this function.

You may assume that a step (i.e. the basic unit of computation) is the assignment statement.

(Tick **one** box for T(n) and **one** box for Big-O complexity.)

A. 
$$T(n) = 2n + 5$$
 i.  $O(n)$ 

B. 
$$T(n) = 3n + 5$$
 ii.  $O(2n)$ 

C. 
$$T(n) = 3n + 6$$
 iii.  $O(3n)$ 

D. 
$$T(n) = n^2 + 5$$
 iv.  $O(n^2)$ 

E. 
$$T(n) = 3n^2 + 6$$
 v.  $O(3n^2)$ 

 $\triangleright$  Explain how you arrived at T(n) and the associated Big-O

0.6

A. Hash tables store unique (i.e. non-duplicate) keys in an arbitrary order and are therefore an implementation of the Set ADT.

- B. A hash function maps a value to a key in the table.
- C. The higher the load factor on a hash table, the higher the risk of collisions.
- D. Linear Probing is a chaining technique designed to resolve collisions.



#### M269 Exams

Phil Molyneux

Prsntn 2017J Exam Qs

Part :

0.1

2

2 3

. 4 -

. .

07

0

9

Q 10

111

13

14

15

16

17

Q 7 (contd)

(b) Calculate the load factor for the hash table below. Show your working.

|   | Alice |   |   | Nisha | Bob |   |   |   | Ali |    |    |
|---|-------|---|---|-------|-----|---|---|---|-----|----|----|
| 0 | 1     | 2 | 3 | 4     | 5   | 6 | 7 | 8 | 9   | 10 | 11 |

▶ Go to Soln 7

### M269 Exams

Phil Molyneux

Prsntn 2017J Exam Qs

uestion:

Part 1

Q 1

2

3

ν » Ο 5

Q 6

Q 7

8 (

10

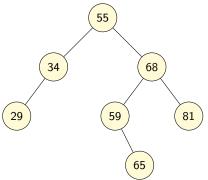
Q 11

Q 12

0 13

2 13

14


t 2

16

17

Q 8 (4 marks)

▶ In the following binary search tree, label each node with its balance factor.



Would this tree need to be rebalanced to be a valid AVL tree? Explain your answer.

▶ Go to Soln 8

### M269 Exams

Phil Molyneux

Prsntn 2017J Exam Qs

Part 1

O 1

Q 1

2 2

23

5

0.6

7

Q 8

10

0 11

12

13

14

art 2

16

- A water distribution network can be represented as a weighted directed graph.
- ► The nodes represent the reservoirs, water treatment centres and consumers (homes, factories, etc.).
- ► The directed edges represent the water pipes, showing the flow of water, from the reservoirs to the consumers, via the treatment centres.
- The edge weights indicate the maximum flow (in cubic metres per second) of the pipes.
- Complete the following statements, and include in the justification any assumptions you make.
- ► For a typical water distribution network, the graph is (choose from CYCLIC/ACYCLIC) because:
- ▶ and it is (*choose from SPARSE/DENSE*) because:

Prentn 2017 I

M269 Exams

Exam Qs

Part

Q 1

Q 2

0.4

Q 5

Q 6

Q 7

0.9

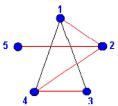
10

11

12

13

14


rt 2

16



Q 10 (4 marks)

► Consider the following undirected graph:



► Complete the table below to show **one** order in which the vertices of the above graph could be visited in a **Breadth** First Search (BFS) starting at vertex 3:

| Vertices visited | 3 |  |  |  |  |  |
|------------------|---|--|--|--|--|--|
|------------------|---|--|--|--|--|--|



### M269 Exams

Phil Molyneux

Prsntn 2017J Exam Qs

Part

Q:

0 2

Q 4

Q 6

Q 7

9

Q 10

0 12

13

14

art 2

16 17

Q 11 (4 marks)

- ▶ In propositional logic, what does it mean to say that a well-formed formula is contingent?
- ▶ Is the well-formed formula  $(P \rightarrow Q) \rightarrow (\neg Q \rightarrow \neg P)$  contingent? Explain.

▶ Go to Soln 11

### M269 Exams

### Phil Molyneux

Prsntn 2017J Exam Qs

Question

0.1

QI

3

Q 4

\_

-

8

10

Q 11

12

13

14

5

t 2

16

Q 12 (6 marks)

- Consider the following particular interpretation \( \mathcal{I} \) for predicate logic allowing facts to be expressed about people and the computer games they own and play.
- The domain of individuals is  $\mathcal{D} = \{ \text{Jane, John, Saira,} \}$ Gran Turismo, Kessen, Pacman, The Sims, Pop Idol $\}$ .
- ► The constants jane, john, saira, gran\_turismo, kessen, pacman, the\_sims and pop\_idol are assigned to the corresponding individuals.
- Q 12 continued on next slide

▶ Go to Soln 12

#### M269 Exams

Phil Molyneux

Prsntn 2017J Exam Qs

Part

Q:

Q 3

Q 4

Q 6

7

Q 9

Q 10

Q 12

13

15

16

17 entn 201

Q 12 (contd)

- ► Two predicate symbols are assigned binary relations as follows:
- \(\mathcal{I}(\text{owns}) = \{(\text{Jane, Gran Turismo}), (\text{Jane, Kessen}), (\text{John, Pacman}), (\text{John, The Sims}), (\text{John, Pop Idol}), (\text{Saira, Pop Idol}), (\text{Saira, Kessen})\}\)
- $\mathcal{I}(has\_played) = \{(Jane, Gran Turismo), (Jane, Pop Idol), (Jane, Kessen), (John, The Sims), (John, Pop Idol), (Saira, Gran Turismo), (Saira, The Sims)\}$
- Q 12 continued on next slide

▶ Go to Soln 12

#### M269 Exams

Phil Molyneux

Prsntn 2017J Exam Qs

Part

Q 1

Q 2

Q 4 Q 5

Q 6

8 8

Q 10

Q 11 Q 12

13

14

t 2

.6 .7

Which **one** of these well-formed formulae is a translation of the sentence into predicate logic?

- A.  $\forall X.(owns(jane, X) \rightarrow has\_played(jane, X))$
- B.  $\forall X.(has\_played(jane, X) \rightarrow owns(jane, X))$
- C.  $\forall X.(has\_played(jane, X) \land owns(jane, X))$
- Q 12 continued on next slide



#### M269 Exams

Phil Molyneux

Prsntn 2017J Exam Qs

Part

Q I

0 2

Q 3

Q 5

6

7

Q 8

10

0 11

Q 12

13

14

t 2

16

.7

 $\exists X. (\neg owns(saira, X) \land has\_played(jane, X))$ 

- ► This formula is (*choose from TRUE/FALSE*), under the interpretation given on the previous page.
- Explain why in the box below.

You need to consider any relevant values for the variables, and show, using the domain and interpretation on the previous page, whether they make the formula TRUE or FALSE.

In your explanation, make sure that you use formal notation.

For example, instead of stating John doesn't own Kessen you need to write (John, Kessen)  $\notin \mathcal{I}(owns)$ 

→ Go to Soln 12

#### M269 Exams

Phil Molyneux

Prsntn 2017J Exam Qs

Part

Q 1

Q 2

0 4

2 5

0.6

2 2

Q 8

2 9

0.11

Q 12

Q 13

Q 14

2 15

16

17

Q 13 (6 marks)

► A database contains the following tables:

### oilfield

| name    | production |
|---------|------------|
| Warga   | 3          |
| Lolli   | 5          |
| Tolstoi | 0.5        |
| Dakhun  | 2          |
| Sugar   | 3          |

Q 13 continued on next slide

### operator

| - p     |         |
|---------|---------|
| company | field   |
| Amarco  | Warga   |
| Bratape | Lolli   |
| Rosbif  | Tolstoi |
| Taqar   | Dakhun  |
| Bratape | Sugar   |
|         |         |

M269 Exams

Phil Molyneux

Prsntn 2017J Exam Qs

Part 1

Q 1

2 3

5

Q 8 Q 9

Q 11 Q 12

Q 12

14

t 2

6

Q 13 (contd)

(a) For the following SQL query, give the table returned by the query.

```
SELECT name, company
FROM oilfield CROSS JOIN operator
WHERE name = field :
```

- Write the question that the above query is answering.
- Q 13 continued on next slide

### M269 Exams

Phil Molyneux

Q 13

Q 13 (contd)

(b) Write an SQL query that answers the question What is the name and the operating company of each oil field operated by Bratape?

Your query should return the following table.

| company | field |
|---------|-------|
| Bratape | Lolli |
| Bratape | Sugar |

→ Go to Soln 13

### M269 Exams

Phil Molyneux

Prsntn 2017J Exam Qs

Part 1

0.1

Q I

03

Q 4

Q 5

6

8 (

10

Q 11

12

Q 13

14

5

16

17

Q 14 (6 marks)

- Consider the following decision problems:
- 1. The Equivalence Problem
- 2. Is a given list not empty?
- 3. The Halting Problem
- 4. Is a given binary tree balanced?
- On each line, write one or more of the above problem numbers, or write None.
- ▶ Which problems, if any, are decidable?
- ▶ Which problems, if any, are tractable?
- ► Which problems, if any, are NP-hard?

#### M269 Exams

Phil Molyneux

Prsntn 2017J Exam Qs

Question

rar

Q:

3 3

Q 4

2 5

6

0

9

Q 10

12

2 13

Q 14

art 2

16



- Which two of the following statements are true? (Tick two boxes.)
- A. If a programming language, let's call it PL, is Turing complete, then any computational problem can be solved with a program written in PL.
- B. The Equivalence Problem is not computable.
- C. Problems in the class NP are defined as problems for which it is not known whether they're tractable.
- D. There are non-computable computational problems because: There are more decision problems with the natural numbers as their domain (DPN) than Turing Machines that solve instances of DPN.
- E. The Totality Problem is definitely in the class P.

Prsntn 2017J Exam Qs

Part

Q 1

0 2

0.4

Q 5

6

0.7

5 8

10

0 11

Q 12

13

Q 15

art 2

Q 17



Q Part2

- Answer every question in this Part.
- Answers to questions in this Part must be written in the separate answer books, which you should also use for your rough working.

▶ Go to Soln Part2

### M269 Exams

Phil Molyneux

Prsntn 2017J Exam Qs

Questions

Part

Q 1

2

3

2 4

\_

7

0

10

5 11

) 13

14

Part 2

16

17

Q 16 (20 marks)

- Consider an ADT for undirected graphs, named UGraph, that includes these operations:
- nodes, which returns a sequence of all nodes in the graph, in no particular order;
- has\_edge, which takes two nodes and returns true if there is an edge between those nodes;
- edges, which returns a sequence of node-node pairs (tuples), in no particular order. Each edge only appears once in the returned sequence, i.e. if the pair (node1, node2) is in the sequence, the pair (node2, node1) is not.
- How each node is represented is irrelevant.
- You can assume the graph is connected and has no edge between a node and itself.
- Q 16 continued on next slide

#### M269 Exams

Phil Molyneux

Prsntn 2017J Exam Qs

Part !

Q 1

2

₹3

2 4

) 6

7 7

2 0

9

Q 10

12

2 13

14

t 2

Q 16



(a) The following stand-alone Python function checks if an undirected graph is complete, i.e. if each node is connected to every other node.

It assumes the ADT is implemented as a Python class.

```
def is_complete(graph):
  nodes = graph.nodes()
  for node1 in nodes:
    for node2 in nodes:
      edge_exists = graph.has_edge(node1, node2)
      if node1 != node2 and not edge_exists:
        return False
  return True
```

Q 16 continued on next slide

M269 Exams

Phil Molyneux

Prsntn 2017J Exam Qs

Part Q 1

> Q 3 Q 4

Q 5 Q 6

Q 8 Q 9

Q 10 Q 11

> Q 12 Q 13

> > 15 art 2

Q 16 Q 17

Q 16 (contd)

- ▶ Assume that graph.nodes has complexity O(n), where n is the number of nodes, and graph.has\_edge has complexity O(1).
- State and justify a bestcase scenario and a worst-case scenario for the above function, and their corresponding Big-O complexities.
- Assume the basic computational step is the assignment.
- ▶ State explicitly any other assumptions you make.

(7 marks)

Q 16 continued on next slide

Go to Soln 16

#### M269 Exams

Phil Molyneux

Prsntn 2017J Exam Qs

Part

Q 1

χ 2 Q 3

Q 4 O 5

6

8 (8

2 10

Q 11

Q 13

15

t 2

Q 16 Q 17

Q 16 (contd)

(b) In graph theory, the number of nodes in a graph is called the order of the graph.

The term *order* is unrelated to sorting.

 (i) Specify the problem of calculating the order of an undirected graph by completing the following template.
 Note that it is specified as an independent problem, not as a UGraph operation.

You may write the specification in English and/or formally with mathematical notation. (4 marks)

Name: order

Inputs

**Preconditions:** 

Outputs:

Postconditions:

Q 16 continued on next slide

Phil Molyneux

Prsntn 2017J Exam Qs

Part :

Q 1

Q 2

2 4

Q 5

6

27

0

10

11

12

1.0

15

O 16

17

Q 16 (contd)

(ii) Give your initial insight for an algorithm that solves the problem.

Of the ADT operations given above you may only use edges. (4 marks)

Q 16 continued on next slide

▶ Go to Soln 16

### M269 Exams

Phil Molyneux

Prsntn 2017J Exam Qs

Part 1

Q 1

2

) 4

5

6

8

9

2 10 2 11

12

13

15

t 2

Q 16

(c) A city council is planning the city's bus routes. It has decided which places will have a bus stop (schools, cinemas, hospital, etc.).

Each bus route will start from the train station, visit a number of bus stops, and then return through the same streets to the station, visiting the same bus stops in reverse order. Each bus stop has to be served by at least one bus route. The council wants to minimize the total amount of time that all buses are on the road when following their routes.

State and justify which data structure(s) and algorithm(s) you would adopt or adapt to solve this problem.

State explicitly any assumptions you make. (5 marks)

▶ Go to Soln 16

Prsntn 2017J

uestions)

Pan

Q 1

Q 2

0.4

) 6

0.0

2 7

Q 8

0 10

Q 11

12

13

15

rt 2

Q 16

Q 17 (15 marks)

- Imagine you are working for a logistics company that currently uses heuristic algorithms to send their trucks on round trips that use as little fuel as possible.
- ► The morning paper reports that P=NP has been proved through the discovery of a tractable algorithm for the SAT problem.
- What does this news mean for the company?
- Q 17 continued on next slide

→ Go to Soln 17

### M269 Exams

Phil Molyneux

Prsntn 2017J Exam Qs

Part

Q:

0.2

23

Q 4

) 6

7

8 (

2 9

0.11

Q 12

13

.5

t 2

Q 16 Q 17

Q 17 (contd)

Write a brief memo with your advice on this matter to the board of the company, which doesn't include any computing experts.

The memo must have the following structure:

- 1. A suitable title.
- 2. A paragraph *setting the scene* and introducing the key question.
- 3. A paragraph in which you describe in layperson's terms what P=NP means.
- A paragraph describing briefly how P=NP may impact on the company's main business objective (the cost-effective use of their trucks).
- 5. A conclusion on what you propose the company should do in face of this news, if anything.
- Q 17 continued on next slide

Phil Molyneux

Prsntn 2017J Exam Qs

Part 1

Q I

2 2

Q 4

5

\_

,

8

9

10

12

13

14

15 rt 2

Q 10 Q 17



Q 17 (contd)

➤ Some marks will be awarded for a clear coherent text that is appropriate for its audience, so avoid unexplained technical jargon and abrupt changes of topic, and make sure your sentences fit together to tell an overall *story*. As a guide, you should aim to write roughly two to five sentences per paragraph.



#### M269 Exams

Phil Molyneux

Prsntn 2017J Exam Qs

Par

Q

Q 2

0.4

Q 5

6

7

9

10

12

13

14 15

rt 2

Q 16 Q 17

Prsntn 2017J Exam Solns

### Solns

- ► The solutions given below are not official solutions
- For some questions, alternatives are given a student would only have to provide one



#### M269 Exams

#### Phil Molyneux

Prsntn 2017J Exam Qs

# Prsntn 2017J

#### Solutions

Part :

Soln

50IN 2

ln 4

In 5

In 7

ıln 8

n 9

n 10

1 11

n 13

in 13 In 14

ln 15

art 2

Soln Part1

▶ Part 1 solutions



#### M269 Exams

#### Phil Molyneux

Prsntn 2017J Exam Os

Prsntn 2017J

#### Solutions

Part 1

Soln 2

Soln 3

Soln E

ioln 6

Soln 8

oln 9

oln 10

oln 11

oln 12

ln 13

oln 14

oln 15 art 2

Soln 16

In 17

A. An Abstract Data Type is the definition of a data structure in terms of the pre- and postconditions on the data structure. **No** *ADT* defined by operations that may be performed on it and the pre- and postconditions on the operations

- B. A more complex algorithm will always take more time to execute than a less complex one. **No** *The less complex one could have a bigger problem*
- C. Abstraction as modelling involves two layers the interface and the implementation. No Models represent reality in sufficient detail
- D. A problem is computable if it is possible to build an algorithm which solves any instance of the problem in a finite number of steps. **Yes**

Prsntn 2017J Exam Os

> Prsntn 2017J Exam Solns

Part 1

Soln

ioln 3

oln 4

oln 6

Soln 7 Soln 8

ln 9

oln 10 oln 11

12

In 13 In 14

n 15



### Soln 2

- ► A (Model) ignores detail of
- ▶ **B** (Actual car) represented by



#### M269 Exams

### Phil Molyneux

Prsntn 2017J

Prsntn 2017J

#### Solutions

Part 1

Soln 1

Soln 2

Soln 3

oln 4

oln 6

oln /

In 9

In 10

n 11

n 12 n 13

n 13 n 14

oln 14

art 2

### Soln 3

► The complete binary search:

```
(Pass 1) [2,16,17,25,31,39,41,52,67,69,77,83,89,91,99]
(Pass 2) [2,16,17,25,31,39,41],52,67,69,77,83,89,91,99]
(Pass 3) [2,16,17,25,31,39,41],52,67,69,77,83,89,91,99]
(Pass 4) [2,16,17,25,31,39,41],52,67,69,77,83,89,91,99]
```

▶ Go to Q 3

#### M269 Exams

#### Phil Molyneux

Prsntn 2017J Exam Os

#### Prsntn 2017J Exam Solns

Solutions

Soln 1

Soln 2

Soln 3

oln 4 oln 5

oln 6 oln 7

oln 8 oln 9

ln 10

11

13

ln 14 ln 15

art 2

### Soln 4

| Р | Q | $\neg P$ | $\neg Q$ | $\neg P \lor \neg Q$ | $\neg(\neg P \lor \neg Q)$ | $P \wedge Q$ | $\neg(\neg P \lor \neg Q) \lor (P \land Q)$ |
|---|---|----------|----------|----------------------|----------------------------|--------------|---------------------------------------------|
| F | F | Т        | T        | Т                    | F                          | F            | F                                           |
| F | Т | Т        | F        | Т                    | F                          | F            | F                                           |
| Т | F | F        | T        | T                    | F                          | F            | F                                           |
| Т | Т | F        | F        | F                    | T                          | T            | Т                                           |

- ► The equivalent expression is C.
- Soln 4 continued on next slide

▶ Go to Q 4

#### M269 Exams

#### Phil Molyneux

Prsntn 2017J

### Prsntn 2017J Exam Solns

### olutions

### Soln 1

### Soln 2

#### oln 3

### Soln 4

#### ln 5

### oln 6

### oln 7

### ln 8

### ıln 10

### n 11

### n 12

### 13

### ln 14

#### oin 15 art 2

- A. not (x < 2 and y > 2)
  - $\rightarrow$  not P and not Q
- B. (x >= 2 or y <= 2)
  - $\rightarrow$  not P or not Q
- C.  $(x < 2 \text{ and } y > 2) \rightarrow P \text{ and } Q$
- D. (x >= 2 and y <= 2)
  - $\rightarrow$  not P and not Q
- E. (x < 2 and y <= 2)
  - $\rightarrow P$  and not Q
- ▶ not (not P or not Q) or (P and Q)
  - $\rightarrow$  (P and Q) or (P and Q)
  - $\rightarrow$  (P and Q)

Phil Molyneux

Danie 2017 I

Prsntn 2017J Exam Solns

art 1

Soln 1

Soln 2

Soln 4

In 5

ıln 6

ln 7

ln 8

n 9

n 10

12

13

in 14

art 2

oln 16

Soln 5

- (a) Which of **A**, **B**, **C** and **D**, if any, are **not** a tree? A is not a tree since 4 has two parents
- (b) Which of **E**, **F**, **G** and **H**, if any, are binary trees? **E**, **G** and **H** — **F** is not a binary tree since 7 has three sub-trees — note E has duplicate nodes
- (c) Which of **C**, **D**, **G** and **H**, if any, are complete binary trees?
  - **G** and **H E** is not a complete binary tree since the last level is not filled from left to right
- (d) Which of **C**, **D**, **G** and **H**, if any, are not a heap? **C** (since not a complete binary tree), **D** (since misses both properties), H (since does not have ordering property)

### Soln 6

- Options B and i
- There are two loops (not nested) with 3 assignments which contribute 3n to T(n)
- ▶ The remainder of the code has 5 assignments
- ▶ Hence T(n) = 3n + 5
- ightharpoonup and complexity is O(n) from the leading term



#### M269 Exams

#### Phil Molyneux

Prsntn 2017J Exam Qs

## Prsntn 2017J

olutions

Soln

Soln

Soln 4

Soln 5

Soln 6

Soln 7

Soln 9

In 10 In 11

n 12

n 13 n 14

oln 15

Soln 16

oin 10 oln 17

Soln 7

- A. Hash tables store unique (i.e. non-duplicate) keys in an arbitrary order and are therefore an implementation of the Set ADT. No the order is not arbitrary, it is a result of the hash function and any collision resolution
- B. A hash function maps a value to a key in the table. No
   a hash function maps values to integer indices of a table, but that position may be occupied.
- C. The higher the load factor on a hash table, the higher the risk of collisions. Yes — a high load factor means a high proportion of the hash table is occupied
- D. Linear Probing is a chaining technique designed to resolve collisions. No — Linear probing and chaining are different techniques
- (b) The load factor is 4/12 or 0.3333

Soln 1 Soln 2

Soln 3

Soln 4

oln 5

Soln 7

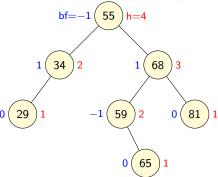
Soln 8

oln 9

n 11 n 12

n 13

n 15


art 2

oln 16 oln 17



#### Soln 8

Binary tree with balance factors and heights — note: here empty trees have height 0 (not -1)



▶ The tree would not need rebalancing to be an AVL tree — the tree is a binary search tree and every node has balance factor in the range  $\{-1, 0, +1\}$ 

Phil Molvneux

#### Soln 9

- The network is acyclic since water does not return to the sources (in this network) — no mention is made of waste water and sewerage collection and recycling.
- ▶ A *sparse* network since most nodes are only connected to one other node.



#### M269 Exams

#### Phil Molyneux

Prsntn 2017J Exam Os

#### Prsntn 2017J Exam Solns

Part 1

Soln 2

Soln 3

oln 5

n o n 7

Soln 8

n 10

ln 10

n 11

1 13

ln 14

oln 15 art 2

oln 16

oln 16 oln 17

Soln 10

Possible answers:

| Vertices visited | 3 | 1 | 4 | 2 | 5 |
|------------------|---|---|---|---|---|
| Vertices visited | 3 | 4 | 1 | 2 | 5 |

▶ Go to Q 10

#### M269 Exams

### Phil Molyneux

Prsntn 2017J

# Prsntn 2017J

#### Solutions

Part 1

Soln

Soln

50IN 3

-I-- E

n o In 7

In 8

ln 9

Soln 10

n 11

12

ln 13

ln 14

rt 2

oln 16

#### Soln 11

▶ A WFF is contingent if it is true in some interpretations and false in others — a tautology is true in every interpretation, a contradiction is false in every interpretation.

$$\blacktriangleright$$
  $(P \rightarrow Q) \rightarrow (\neg Q \rightarrow \neg P)$  is a tautology

$$\equiv \neg \big( \neg P \lor Q \big) \lor \big( \neg \neg Q \lor \neg P \big) \text{ by rewriting } \rightarrow$$

$$\equiv \neg (\neg P \lor Q) \lor (\neg P \lor Q)$$
 by negation and commutativity

## ■ True by negation

| Р | Q | $(P \rightarrow Q)$ | $(\neg Q \rightarrow \neg P)$ | $(P 	o Q) 	o (\neg Q 	o \neg P)$ |
|---|---|---------------------|-------------------------------|----------------------------------|
| T | Т | Т                   | T                             | Т                                |
| T | F | F                   | F                             | Т                                |
| F | Т | Т                   | T                             | Т                                |
| F | F | Т                   | Т                             | Т                                |

M269 Exams

Phil Molyneux

Prsntn 2017J

Prsntn 2017J Exam Solns

Part 1 Soln 1

Soln

Soln

Soln 4

soln 5

oln 7

oln 8

n 9 n 10

Soln 10 Soln 11

oln 12

oln 13

ioln 15

oln 16

▶ Go to Q 11

Soln 12

- (a) Jane owns all the games she has played means If Jane has played X then Jane owns X so the answer is
  - B.  $\forall X.(has\_played(jane, X) \rightarrow owns(jane, X))$
  - ightharpoonup A.  $\forall X.(owns(jane, X) \rightarrow has\_played(jane, X))$  means Jane has played all the games she owns
  - ▶ B.  $\forall X.(has\_played(jane, X) \land owns(jane, X))$  means Jane owns all games and has played all of them
  - Soln 12 continued on next slide



#### M269 Exams

Phil Molvneux

Soln 12 (contd)

- (b)  $\exists X.(\neg owns(saira, X) \rightarrow has\_played(jane, X))$  means There is at least one game that Saira does not own that Jane has played
  - True

because Jane has played Gran Turismo but Saira does not own it

▶ (Saira, Gran Turismo)  $\notin \mathcal{I}(owns)$  $\land$  (Jane, Gran Turismo)  $\in \mathcal{I}(has\_played)$ 

#### M269 Exams

Phil Molvneux

Soln 13

```
SELECT name, company
FROM oilfield CROSS JOIN operator
WHERE name = field;
```

► Table returned by the query

| Warga   | Amarco  |
|---------|---------|
| Lolli   | Bratape |
| Tolstoi | Rosbif  |
| Dakhun  | Taqar   |
| Sugar   | Bratape |

► SQL for What is the name and the operating company of each oil field operated by Bratape?

```
SELECT company, field
FROM operator
WHERE company = 'Bratape'
```



#### M269 Exams

Phil Molyneux

Prsntn 2017J

Prsntn 2017J Exam Solns

Part 1 Soln 1

Soln :

Soln 3

Soln 6

ioln 8

ln 10 ln 11

Soln 12 Soln 13

oln 14

oln 15 Part 2

oln 16

54/65

#### Soln 14

- Decidable: 2. (Empty list), 4. (Balanced binary tree)
- ► Tractable: 2. (Empty list), 4. (Balanced binary tree)
- NP-hard: 3. (Halting problem)

See StackOverflow: Proof that the halting problem is NP-hard?

#### M269 Exams

#### Phil Molvneux

- A. False PL, Turing complete programming language can compute anything that is computable but there are some computational problems that are not computable
- B. **True** Equivalence Problem is not computable see Computability notes
- C. **False** The class P is a subset of NP we just do not know whether it is a proper subset or equal
- D. True Programs are finite strings over a finite alphabet (ASCII or Unicode) hence countable — however the number of different languages over any alphabet of more than one symbol is uncountable — a problem is really membership of a string in some language
- E. **False** Totality Problem is not computable see Computability notes so not in the class P

Prsntn 2017J

Prsntn 2017J Exam Solns

> olutions art 1

Soln 1

Soln :

oln 3

oln 5

ln 6

oln 7

oln 8 oln 9

In 10

n 11

13

Soln 15

Part 2

Soln 16 Soln 17



Soln Part2

▶ Part 2 solutions



#### M269 Exams

### Phil Molyneux

Prsntn 2017J Exam Qs

Prsntn 2017J

#### olutions

IOIULIONS

Soln 1

Soln 2

Soln 2

oln 4

oln 5

. -

oln 9

ıln 9

n 10

oln 11

oln 12

oln 13

oln 14

oln 15 art 2

Part 2

#### Soln 16

(a) Best case: First node in nodes has no edge to the second node in nodes (the first being itself) — hence returns False with only two calls in the inner loop — so O(n)

Worst case: The graph is complete and  $O(n^2)$  since both loops fully traversed

Soln 16 continued on next slide



#### M269 Exams

#### Phil Molyneux

#### Prsntn 2017J Exam Solns

| Part |  |
|------|--|
| Soln |  |

# Soln :

### Soln 2

### oln 4

### oln 6

### oln 7

### n 9

### 10

### n 12

### n 13

### ln 14

#### oin 15 art 2

Soln 16 (contd)

(b) (i) Specification of order function

Name: order

**Inputs:** undirected graph, g **Preconditions:** g is connected

Outputs: Integer, n

Postconditions: n is the size of the set of nodes in g

▶ (ii) Use edges to give a sequence of edges; extract a list of the first and second nodes in each edge; remove duplicates in the list (making a set); the size of the result is the order of the graph (assumes connected graph)

Soln 16 continued on next slide

M269 Exams

Phil Molyneux

Prsntn 2017J Exam Qs

Prsntn 2017J Exam Solns

Part 1 Soln 1

Soln

ioln 3

Soln 5

oln 0

oln 8 oln 9

oln 10 oln 11

oln 12

ln 14

Part 2

Soln 16



Soln 16 (contd)

- (c) Data structures: graph with bus stops as nodes and weighted edges as distance between stops;
  - Algorithm(s): Some variant on Prim's algorithm for minimum spanning tree.

▶ Go to Q 16

#### M269 Exams

#### Phil Molyneux

Prsntn 2017J Exam Os

# Prsntn 2017J

#### Solutions

Part 1

Soln

Soln

Soln 4

oln 5

ln 7

Soln 8

oln 9 oln 10

oln 11

n 12

oln 13 oln 14

oln 14

Part 2

Soln 16

#### Soln 17

- Follow the given structure:
- ► Title: given at the end
- Setting the scene:
- P as the class of problems with solutions that are found in time which is a fixed polynomial of the input size  $O(n^k)$
- ▶ NP as the class of problems with solutions that can be checked in polynomial time
- Soln 17 continued on next slide

#### M269 Exams

#### Phil Molvneux



### Soln 17 (contd)

- Give examples of both:
- ▶ Pairing problem: given a group of students and knowledge of which are compatible, place them in compatible groups of 2 Edmonds (1965) showed there is a polynomial time algorithm for this
- ▶ Partition into Triangles: make groups of three with each pair in the group compatible
- ► Find a large group of students who are compatible Clique problem
- Sit the students round a large table so that no incompatible students are next to each other (Hamiltonian Cycle)
- ► The first problem is in P, the others are in NP (we can check a solution) but it is not known if they are in P
- Soln 17 continued on next slide

#### M269 Exams

#### Phil Molyneux

Prsntn 2017J

#### rsntn 2017J xam Solns

Solutions Part 1

Soln 1

Soln 2

Soln 3

00III 4

oln 6

oin /

oln 9

ln 10

n 11 n 12

13

ln 14

art 2

Soln 16 Soln 17

### Soln 17 (contd)

- Define NP complete problems, dp: (a) In NP; (b) Every problem in NP is reducible to dp in polynomial time
- If P=NP then every NP problem would have a polynomial time solution — possibly via reduction to the SAT problem
- Nowever proving P=NP (a) may not actually give an algorithm in polynomial time for solving an NP complete problem (the newspaper says there is a tractable algorithm for SAT) (b) Even with a tractable algorithm for SAT, the  $O(n^k)$  may be very large.
- ▶ Give example of linear programming: standard simplex algorithm is exponential (worst case) while the ellipsoid algorithm is polynomial — however in practice simplex is used (because it is good enough) (see Wikipedia: LP)
- Soln 17 continued on next slide

#### M269 Exams

Phil Molyneux

Prsntn 2017J

Prsntn 2017J Exam Solns

olutions art 1

Soln

Soln 3

Soln 4

Soln 5

oln 6 oln 7

oln 8

ln 9 ln 10

n 12

n 13

n 15

Soln 16 Soln 17



# M269 2017 I Fxam

Soln 17 (contd)

- Implications: Good: all optimisation problems become tractable including vehicle routing
- ► Implications: Bad: Public key cryptography becomes impossible, banking transactions become tricky to carry out securely, the same applies to secure Web transactions
- Conclusion: prepare for huge disruption this is bigger that the Internet or the Web
- ► Title: P=NP a Disruptive Discovery
- Soln 17 continued on next slide

M269 Exams

Phil Molvneux

Soln 17 (contd)

# Reading

- ightharpoonup StackExchange: What would be the impact of P=NP?
- ► Lance Fortnow: The Status of the P Versus NP Problem readable article in 2009 CACM
- ▶ The International SAT Competitions Web Page
- ► Lance Fortnow: The Golden Ticket: P, NP and the Search for the Impossible (2013,2017)
- ► Lance Fortnow, Steve Homer: A Short History of Computational Complexity
- Computational Complexity blog from Lance Fortnow and Bill Gasarch

# Go to 0 17

#### M269 Exams

#### Phil Molyneux

Prsntn 2017J

#### Prsntn 2017J Exam Solns

Part 1

Solr

Soln

Soln 4

Soln 5

Soln 7

Soln 8

oln 9 oln 10

oln 11

n 12

In 13 In 14

In 15

oln 16