M269 Revision
2019

Phil Molyneux

M269 Revision 2019
Exam 2017J

Phil Molyneux

25 May 2019

1/153 (1/164)

M269 Exam Revision 2sD Reision

Agenda & Aims Phil Molyneux
1. Welcome and introductions e
2. Revision strategies
3. M269 Exam — Part 1 has 15 questions 65%
4. M269 Exam — Part 2 has 2 questions 35%
5. M269 Exam — 3 hours, Part 1 80 mins, Part 2 90 mins
6. M269 2017J exam (June 2018)
7. Topics and discussion for each question
8. Exam techniques
9. These slides and notes are at http://www.pmolyneux.

co.uk/0U/M269/M269ExamRevision/

2/153 (2/164)

http://www.pmolyneux.co.uk/OU/M269/M269ExamRevision/
http://www.pmolyneux.co.uk/OU/M269/M269ExamRevision/

M269 Exam Revision 2sD Reision

Introductions & Revision strategies Phil Molyneux

» Introductions ——
> What other exams are you doing this year 7

» Each give one exam tip to the group

3/153 (3/164)

M 269 Exa m M2692(|)?1e9vision

Presentation 2016J Phil Molyneux

> Not examined this presentation:

» Unit 4, Section 2 String search

» Unit 7, Section 2 Logic Revisited

» Unit 7, Section 4 Beyond the Limits

M269 Exam 2017J

4/153 (4/164)

Adobe Connect

Interface — Student Quick Reference

Participant Quick Reference Guide

Speaker volume

. Adobe® Connect

Adobe Connect Help

Connection status

Video pod

- Attendee pod

|- chat pod

M269 Revision
2019

Phil Molyneux

Student View
Settings
Student & Tutor Views

Sharing Screen &
Applications

Ending a Meeting

5/153 (5/164)

Adobe Connect M269 Revision

2019
Interface — Student View Phil Molyneux

1126517 M269-17. Onine o room Loncon/SE (1.13) CG (23111268173 (1) - Adooe Connect
T w6 - & -

M269Prsntn017TutorisloverviewAAC3A beam

Student View

Settings
1269 Overvs Student & Tutor Views
G Sharing Screen &
Applic

M269 Overview
M269 Overview A

Phil Molyneux

15 October 2017

6/153 (6/164)

M269 Revision

Adobe Connect 2010

Settings Phil Molyneux

» Everybody: Audio Settings [Meeting)) Audio Setup Wizard. .. |
» Audio {Menu bar>> Audio>> Microphone rights for Participants} v

Settings

» Do not Enable single speaker mode

» Drawing Tools [Share pod menu bar)) Draw] (1 slide/screen)

> [Share pod menu bar>> Menu icon>> Enable Participants to draw} v gray

> [Meeting>> Preferences>> Whiteboard >> Enable Participants to draw} (4

» Cancel hand tool

» Do not enable green pointer. ..

> [Meeting>> Preferences>> Attendees Pod} Disable Raise Hand
notification

> CUI‘SOr [Meeting» Preferences>> General tab>> Host Cursors>

) Show to all attendees| v/ (default Off)
> [Meeting>> Preferences>> Screen Share>> Cursor>> Show Application Cursor]
» Webcam {Menu bar>> Webcam>> Enable Webcam for Participants} (4
ReCOrding [Meeting>> Record Meeting. . . } v

v

7/153 (7/164)

M269 Revision

Adobe Connect 2019
Access Phil Molyneux

» Tutor Access

> [TutorHome >> M269 Website>> Tutorials} et

> [Cluster Tutoria|s>> M269 Online tutorial room]

> [Tutor Groups>> M269 Online tutor group room}

> [Module—wide Tutoria|s>> M269 Online module-wide room]

> Attendance

{TutorHome >> Students>> View your tutorial timetables}

Beamer Slide Scaling 440% (422 x 563 mm)
Clear Everyone’s Status

vy

{Attendee Pod >> Menu>> Clear Everyone's Status}

» Grant Access

[Meeting>> Manage Access & Entry>> Invite Participants. .. } and send
link via email

8/153 (8/164)

M269 Revision

Adobe Connect 2010

Keystroke Shortcuts Phil Molyneux

» Keyboard shortcuts in Adobe Connect

Toggle Mic [32]+(M] (Mac), [Cerl)+[M] (Win) o
(On/Disconnect)

Toggle Raise-Hand status [3¢]+[E)
Close dialog box [®] (Mac), (Win)
» End meeting []+ \]

v

vy

9/153 (9/164)

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html

M269 Revision

Adobe Connect Interface 2010

Student View (default) Phil Molyneux

Help

0 e @-

Student View
Settings
Student & Tutor Views

Sharing Screen &
Applicat

Ending

M269 Overview
M269 Overview A

Phil Molyneux

15 October 2017

10/153 (10/164)

Adobe Connect Interface

Tutor View

Host Quick Reference Guide

Manage meeting: audio
setup, recording, roles

Status: raise hand, agree, disagree.

Control participant
udio
conferencing

Speaker
volume

step away, speak louder, speak
softer, speed up, slow down,
laughter, applause

Webcam

. Adobe® Connect

Adobe Connect Help

Status View

Layout panel

Phil Molyneux

Student View
Settings
Student & Tutor Views

Sharing Screen &
Applications

Ending a Meeting

11/153 (11/164)

Adobe Connect Interface
Tutor View

M269Prsnn2017 TutorsloverviewAACIA beamer pdf

M269 Overview
M269 Overview A

Phil Molyneux

15 October 2017

% [1 Jiss | = & [0 -] | @

Mo Overven

P Mpna

M269 Revision
2019

Phil Molyneux

Student View

Settings

12/153 (12/164)

M269 Revision

Adobe Connect Interface 2010

Sharing Screen & Applications Phil Molyneux

> [Share My Screen>> Application tab>> Terminal] for Terminal

P [Share menu) Change View)) Zoom in] for mismatch of screen
size/resolution (Participants)

Sharing Screen &
Applications

» Leave the application on the original display

» Beware blued hatched rectangles — from other
(hidden) windows or contextual menus

» Presenter screen pointer affects viewer display —
beware of moving the pointer away from the application

» First time: [System Preferences) Security & Privacy)) Privacy)

Accessibility

13/153 (13/164)

Adobe Connect Rarivias
Ending a Meeting Phil Molyneux
» Notes for the tutor only
» Student: [Meeting) Exit Adobe Connect]
> Tutor:
» Recording [Meeting) Stop Recording| v/ g o Meting
» Remove Participants Meeting) End Meeting. .. | v/

» Dialog box allows for message with default message:
» The host has ended this meeting. Thank you for
attending.
» Recording availability /n course Web site for joining
the room, click on the eye icon in the list of recordings
under your recording — edit description and name

> Meeting Information [Meeting)) Manage Meeting Information |
— can access a range of information in Web page.

> Attendance Report see course Web site for joining
room

14/153 (14/164)

M269 2017J Exam M269 Revision

Qs

vvyyypy

vy

Phil Molyneux

M269 Algorithms, Data Structures and Computability
Presentation 2017J Exam
Date Thursday, 7 June 2018 Time 10:00-13:00

There are TWO parts to this examination. You should
attempt all questions in both parts

Part 1 carries 65 marks — 80 minutes
Part 2 carries 35 marks — 90 minutes

Note see the original exam paper for exact wording and
formatting — these slides and notes may change some
wording and formatting

Note The 2015J exam and before had Part 1 with 60
marks (100 minutes), Part 2 with 40 marks (70
minutes)

15/153 (15/164)

M269 2017J Exam M269 Revision

Q Partl Phil Molyneux

>
>

Answer every question in this part.

The marks for each question are given below the
question number.

Answers to questions in this Part should be written on
this paper in the spaces provided, or in the case of
multiple-choice questions you should tick the
appropriate box(es).

If you tick more boxes than indicated for a multiple
choice question, you will receive no marks for your
answer to that question.

Use the provided answer books for any rough working.

16/153 (16/164)

M269 Specimen Exam 269 Revsion
Unit 1 Topics, Q1, Q2 Phil Molyneux

» Unit 1 Introduction
» Computation, computable, tractable

» Introducing Python

Unit 1 Introduction

» What are the three most important concepts in
programming 7
1.
2.
3.

17/153 (17/164)

http://en.wikipedia.org/wiki/Paul_Hudak

M269 Specimen Exam 269 Revsion
Unit 1 Topics, Q1, Q2 Phil Molyneux

» Unit 1 Introduction
» Computation, computable, tractable

» Introducing Python

Unit 1 Introduction

» What are the three most important concepts in
programming 7
1. Abstraction
2.
3.

17/153 (18/164)

http://en.wikipedia.org/wiki/Paul_Hudak

M269 Specimen Exam 269 Revsion
Unit 1 Topics, Q1, Q2 Phil Molyneux

» Unit 1 Introduction
» Computation, computable, tractable

» Introducing Python

Unit 1 Introduction

» What are the three most important concepts in
programming 7
1. Abstraction
2. Abstraction
3.

17/153 (19/164)

http://en.wikipedia.org/wiki/Paul_Hudak

M269 Specimen Exam 269 Revsion

Unit 1 Topics, Q1, Q2 Phil Molyneux
» Unit 1 Introduction
» Computation, computable, tractable
» Introducing Python e
» What are the three most important concepts in

programming 7
1. Abstraction
2. Abstraction
3.

» Quote from Paul Hudak (1952-2015)

17/153 (20/164)

http://en.wikipedia.org/wiki/Paul_Hudak

M269 2017J Exam M269 Revision

Q 1 (2 marks) Phil Molyneux

» Which one of the following statements is true? (Tick
one box.)

A. An Abstract Data Type is the definition of a data
structure in terms of the pre- and postconditions on the o
data structure.

B. A more complex algorithm will always take more time to
execute than a less complex one.

C. Abstraction as modelling involves two layers — the
interface and the implementation.

D. A problem is computable if it is possible to build an
algorithm which solves any instance of the problem in a
finite number of steps.

18/153 (21/164)

M269 2017J Exam

Soln 1

A.

An Abstract Data Type is the definition of a data
structure in terms of the pre- and postconditions on the
data structure. No ADT defined by operations that may
be performed on it and the pre- and postconditions on
the operations

A more complex algorithm will always take more time to
execute than a less complex one. No The less complex
one could have a bigger problem

. Abstraction as modelling involves two layers — the

interface and the implementation. No Models represent
reality in sufficient detail

. A problem is computable if it is possible to build an

algorithm which solves any instance of the problem in a
finite number of steps. Yes

M269 Revision

2019

Phil Molyneux

Soln

19/153 (22/164)

M269 2017J Exam M269 Revision

Q 2 (2 marks) Phil Molyneux

» The general idea of abstraction as modelling can be
shown with the following diagram.

» The picture in the top is of a Ford Anglia in the real
world, and the picture in the bottom is of a Matchbox
model of a Ford Anglia.

» Complete the diagram by adding an appropriate label in
the space indicated by A and one in the space indicated
by B.

20/153 (23/164)

M269 2017J Exam M269 Revision

Soln 2 Phil Molyneux

» A (Model) ignores detail of
» B (Actual car) represented by

21/153 (24/164)

M269 Specimen Exam 269 Revsion
Unit 2 Topics, Q3, Q4 Phil Molyneux

» Unit 2 From Problems to Programs
» Abstract Data Types

» Pre and Post Conditions

» Logic for loops

Unit 2 From Problems to
Programs

22/153 (25/164)

Example Algorithm Design

Searching

» Given an ordered list (xs) and a value (val), return
» Position of val in xs or
» Some indication if val is not present

» Simple strategy: check each value in the list in turn

» Better strategy: use the ordered property of the list to
reduce the range of the list to be searched each turn
» Set a range of the list
» If val equals the mid point of the list, return the mid
point
Otherwise half the range to search
If the range becomes negative, report not present
(return some distinguished value)

vy

M269 Revision
2019

Phil Molyneux

Example Algorithm Design
— Searching

23/153 (26/164)

Example Algorithm Design

Binary Search lterative

1 def binarySearchIter(xs,val):

2 lo = 0

3 hi = len(xs) - 1

5 while lo <= hi:

6 mid = (lo + hi) // 2
7 guess = xs[mid]

9 if val == guess:
10 return mid

11 elif val < guess:
12 hi = mid - 1

13 else:

14 lo = mid + 1

16 return None

M269 Revision
2019

Phil Molyneux

Example Algorithm Design
— Searching

24/153 (27/164)

Divide and Conquer

Binary Search Recursive

10
11
12
13
14
15
16

def binarySea

rchRec (xs,val,lo=0,hi=-1):

if (hi == -1):

hi = len(
mid = (lo +

if hi < lo:
return No
else:
guess = X
if val ==
return
elif wval
return
else:
return

xs) - 1

hi) // 2

ne

s[mid]
guess:
mid
< guess:
binarySearchRec (xs,val,lo,mid-1)

binarySearchRec (xs,val ,mid+1,hi)

M269 Revision
2019

Phil Molyneux

Example Algorithm Design
— Searching

25/153 (28/164)

Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)

XS = Highlight the mid value and search
binarySearchRec(xs,25,77,77)
XS = Highlight the mid value and search
binarySearchRec(xs,25,77,77)
X8 = Highlight the mid wvalue and search
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search

Return value:

77

range

range

range

range

M269 Revision
2019

Phil Molyneux

Example Algorithm Design
— Searching

26/153 (29/164)

Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs,25,77,77)
X8 = Highlight the mid value and search range
binarySearchRec(xs,25,77,77)

X8 = Highlight the mid wvalue and search range
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range
Return value: 77

M269 Revision
2019

Phil Molyneux

Example Algorithm Design
— Searching

26/153 (30/164)

Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs,67,8,14) by line 15

X8 = Highlight the mid value and search range
binarySearchRec(xs,25,77,77)

X8 = Highlight the mid wvalue and search range
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range
Return value: 77

M269 Revision
2019

Phil Molyneux

Example Algorithm Design
— Searching

26/153 (31/164)

. . M269 Revision
Divide and Conquer 2019
Binary Search Recursive — Solution Phil Molyneux

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [67,69,75,80,89,97,101]
binarySearchRec(xs,25,77,77)

X8 = Highlight the mid wvalue and search range
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range Example Algorithm Design

— Searching

Return value: 77

26/153 (32/164)

Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs,67,8,14) by line 15

xs = [67,69,75,80,89,97,101]

binarySearchRec(xs,67,8,10) by line 13

X8 = Highlight the mid wvalue and search range
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range
Return value: 77

M269 Revision
2019

Phil Molyneux

Example Algorithm Design
— Searching

26/153 (33/164)

. . M269 Revision
Divide and Conquer 2019
Binary Search Recursive — Solution Phil Molyneux

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,10) by line 13

xs = [67,69,75,]
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range Eap it Pt

— Searching

Return value: 77

26/153 (34/164)

Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,10) by line 13
xs = [67,69,75,]

binarySearchRec(xs,67,8,8) by line 13

XS = Highlight the mid value and search range
Return value: 77

M269 Revision
2019

Phil Molyneux

Example Algorithm Design
— Searching

26/153 (35/164)

Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,10) by line 13
xs = [67,69,75,]
binarySearchRec(xs,67,8,8) by line 13
xs = [67,]

Return value: 77

M269 Revision
2019

Phil Molyneux

Example Algorithm Design
— Searching

26/153 (36/164)

Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,10) by line 13
xs = [67,69,75,]
binarySearchRec(xs,67,8,8) by line 13
xs = [67,]

Return value: 8 by line 11

M269 Revision
2019

Phil Molyneux

Example Algorithm Design
— Searching

26/153 (37/164)

M269 Revision

Example Algorithm Design 2019

Binary Search Iterative — Miller & Ranum (Pl el
1 def binarySearchIterMR(alist, item):

2 first = 0

3 last = len(alist)-1

4 found = False

6 while first<=last and not found:

7 midpoint = (first + last)//2

8 if alist[midpoint] == item:

9 found = True

10 © 1 BHO8 Example Algorithm Design
11 if item < alist[midpoint]: — Searching

12 last = midpoint-1

13 else:

14 first = midpoint+1

16 return found

27/153 (38/164)

Divide and Conquer Rt
Binary Search Recursive — Miller & Ranum (Pl el
1 def binarySearchRecMR(alist, item):

2 if len(alist) == O0:

3 return False

4 else:

5 midpoint = len(alist)//2

6 if alist[midpoint]l==item:

7 return True

8 else:

9 if item<alist[midpoint]:

10 return binarySearchRecMR(alist [:midpoint],item) Eeample Algoritm Desgn
1 else: — Searching

12 return binarySearchRecMR(alist[midpoint+1:],item)

28/153 (39/164)

M269 2017J Exam M269 Revision

Q 3 (4 marks) Phil Molyneux

» A binary search is being carried out on the list shown
below for item 41:
[2,16,17,25,31,39,41,52,67,69,77,83,89,91,99]
» For each pass of the algorithm, draw a box around the
items in the partition to be searched during that pass,
continuing for as many passes as you think are needed.

» We have done the first pass for you showing that the
search starts with the whole list. Draw your boxes below
for each pass needed; you may not need to use all the

lines below. (The question had 8 rows)

(Pass 1) [2,16,17,25,31,39,41,52,67,69,77,83,89,91,99 [l
(Pass 2) [2,16,17,25,31,39,41,52,67,69,77,83,89,91,99]
(Pass 3) [2,16,17,25,31,39,41,52,67,69,77,83,89,91,99]

Q3

29/153 (40/164)

M269 2017J Exam M269 Revision

Soln 3 Phil Molyneux

» The complete binary search:
(Pass 1) [2,16,17,25,31,39,41,52,67,69,77,83,89,91,99 [l

(Pass 2) [[2,16,17,25,31,39,41 |,52,67,69,77,83,89,91,99]
(Pass 3) [2,16,17,25,[31,39,41 |,52,67,69,77,83,89,91,99]
(Pass 4) [2,16,17,25,31,39,| 41 |,52,67,69,77,83,89,91,99]

Soln 3

30/153 (41/164)

M269 2017J Exam M269 Revision

Q 4 (5 marks) Phil Molyneux

» A Python program contains a loop with the following
guard

while not (x >= 2 or y <= 2) or (x < 2 and y > 2):

» Complete the following truth table, where:
P represents x < 2
Q represents y > 2

P | =Q | =PV=Q | =(=PV=Q) | PAQ | =(=PV =Q)V (P A Q)

BRI
EIRIEIRIE

P Q 4 continued on next slide

31/153 (42/164)

M269 2017J Exam M269 Revision

Q 4 (contd) Phil Molyneux

» Use the results from your truth table to choose which
one of the following expressions could be used as the
simplest equivalent to the above guard. (Tick one box.)

not (x <2 and y > 2)
(x>=2o0ry<=2)
x <2andy>?2)

mUow>»

(
(x >=2and y <=2)
(x <2and y <=2)

32/153 (43/164)

M269 2017J Exam M269 Revision

Soln 4 Phil Molyneux
P Q -P -Q -PV -Q (=P V =Q) PAQ =(=PV-Q)V(PAQ)
F | F T T F F F
F T T F T F F F
T | F F T T F F F
TI| T F F F T T T

» The equivalent expression is C.

P Soln 4 continued on next slide

Soln 4

33/153 (44/164)

M269 2017J Exam M269 Revision

Soln 4

A.

Phil Molyneux

not (x <2 and y > 2)
— not P and not Q

. (x>=20ry<=2)

— not P or not Q

. (x<2and y >2) - Pand Q
. (x>=2and y <=2)

— not P and not Q

— P and not Q

not (not P or not Q) or (P and Q)
— (P and Q) or (P and Q)

— (P and Q)

34/153 (45/164)

M269 Revision

M269 Specimen Exam 2010

Unit 3 Topics, Q5, Q6 Phil Molyneux

» Unit 3 Sorting
» Elementary methods: Bubble sort, Selection sort,
Insertion sort

» Recursion — base case(s) and recursive case(s) on
smaller data

Unit 3 Sorting

» Quicksort, Merge sort

v

Sorting with data structures: Tree sort, Heap sort

> See sorting notes for abstract sorting algorithm

35/153 (46/164)

. . M269 Revision
Unit 3 Sorting 2015
Abstract Sorting Algorithm Phil Molyneux

[u nsorted list xs]

if (length xs > 1) then
(xs1,xs2) = split xs

/ N

xsl XS2

[ys = join (ysl,ys2)]

sorted list ys

Unit 3 Sorting

36/153 (47/164)

M269 Revision

Unit 3 Sorting 2015

Sorting Algorithms Phil Molyneux

Using the Abstract sorting algorithm, describe the split and
Jjoin for:
P Insertion sort
Selection sort
Merge sort Uit 3 oring
Quicksort

>
>
>
» Bubble sort (the odd one out)

37/153 (48/164)

M269 Specimen Exam 269 Revsion
Unit 4 Topics, Q7, Q8 Phil Molyneux

» Unit 4 Searching

» String searching: Quick search Sunday algorithm,
Knuth-Morris-Pratt algorithm

v

Hashing and hash tables

Unit 4 Searching

v

Search trees: Binary Search Trees

v

Search trees: Height balanced trees: AVL trees

38/153 (49/164)

M269 2017J Exam

Q 5 (4 marks)

» Consider the diagrams in A—H, where nodes are
represented by black dots and edges by arrows. The
numbers are the keys for the corresponding nodes.

AVEEAEA
2.4;\3“‘ :?ﬂ z?@i 5@.9

» Q5 continued on next slide

M269 Revision
2019

Phil Molyneux

Qs

39/153 (50/164)

M269 Revision

M269 2017.] Exam 2019

Q 5 Phil Molyneux

» On each line, write one or more letters, or write None.
(a) Which of A, B, C and D, if any, are not a tree?
(b) Which of E, F, G and H, if any, are binary trees?

)

(c) Which of C, D, G and H, if any, are complete binary
trees? qs

(d) Which of C, D, G and H, if any, are not a heap?

40/153 (51/164)

M269 2017J Exam M269 Revision

Soln 5

(a)
(b)

()

(d)

Phil Molyneux

Which of A, B, C and D, if any, are not a tree?

A is not a tree since 4 has two parents

Which of E, F, G and H, if any, are binary trees?

E, G and H — F is not a binary tree since 7 has three
sub-trees — note E has duplicate nodes

Which of C, D, G and H, if any, are complete binary
trees?

G and H — E is not a complete binary tree since the
last level is not filled from left to right

Which of C, D, G and H, if any, are not a heap?

C (since not a complete binary tree), D (since misses
both properties), H (since does not have ordering
property)

41/153 (52/164)

M269 2017J Exam M269 Revision

Q 6 (6 marks) Phil Molyneux

» Consider the following function, which takes a
non-empty list as an argument.

1 def variance(alList):

2 n = len(alList)

3 total = 0

4 for item in alList:

5 total = total + item

6 mean = total / n Q6
7 ssdev = 0

8 for item in alist:

9 deviation = item - mean

10 ssdev = ssdev + (deviation * deviation)
11 var = ssdev / n

12 return var

P Q 6 continued on next slide

42/153 (53/164)

M269 2017J Exam M269 Revision

Q 6 (contd) Phil Molyneux

» From the options below, select the two that represent
the correct combination of T(n) and Big-O complexity
for this function.

You may assume that a step (i.e. the basic unit of
computation) is the assignment statement.

(Tick one box for T(n) and one box for Big-O

complexity.) o
A. T(n)=2n+5 i. O(n)
B. T(n)=3n+5 ii. O(2n)
C. T(n)=3n+6 iii. O(3n)
D. T(n)=n?*+5 iv. O(n?)
2

E. T(n)=3n>+6 v. O(3n?)
» Explain how you arrived at T(n) and the associated
Big-O

43/153 (54/164)

M269 2017J Exam M269 Revision

Soln 6 Phil Molyneux

» Options B and i

» There are two loops (not nested) with 3 assignments
which contribute 3n to T(n)

» The remainder of the code has 5 assignments
Hence T(n) =3n+5
» and complexity is O(n) from the leading term

v

Soln 6

44/153 (55/164)

M269 2017J Exam M269 Revision

Q 7 (4 marks) Phil Molyneux

(a) Which one of the following statements are true? (Tick
one box.)

A. Hash tables store unique (i.e. non-duplicate) keys in an
arbitrary order and are therefore an implementation of
the Set ADT.

B. A hash function maps a value to a key in the table.

C. The higher the load factor on a hash table, the higher
the risk of collisions.

D. Linear Probing is a chaining technique designed to
resolve collisions.

45/153 (56/164)

M269 2017J Exam M269 Revision

Q 7 (contd) Phil Molyneux

(b) Calculate the load factor for the hash table below. Show
your working.

\ \ Alice \ \ \ Nisha‘ Bob \ \ \ \ Ali \ \ \
0 1 2 3 4 5 6 7 8 9 10 11

46/153 (57/164)

M269 2017J Exam M269 Revision

Soln 7 Phil Molyneux

A. Hash tables store unique (i.e. non-duplicate) keys in an
arbitrary order and are therefore an implementation of
the Set ADT. No — the order is not arbitrary, it is a
result of the hash function and any collision resolution

B. A hash function maps a value to a key in the table. No
— a hash function maps values to integer indices of a
table, but that position may be occupied.

C. The higher the load factor on a hash table, the higher
the risk of collisions. Yes — a high load factor means a
high proportion of the hash table is occupied

Soln 7

D. Linear Probing is a chaining technique designed to
resolve collisions. No — Linear probing and chaining
are different techniques

(b) The load factor is 4/12 or 0.3333

47/153 (58/164)

M269 2017J Exam M269 Revision

Q 8 (4 marks) Phil Molyneux

» In the following binary search tree, label each node with
its balance factor.

Qs

» Would this tree need to be rebalanced to be a valid
AVL tree? Explain your answer.

48/153 (59/164)

M269 2017J Exam M269 Revision

Soln 8 Phil Molyneux

» Binary tree with balance factors and heights — note:
here empty trees have height 0 (not —1)

Soln 8

» The tree would not need rebalancing to be an AVL tree
— the tree is a binary search tree and every node has
balance factor in the range {—1,0,+1}

49/153 (60/164)

M269 Specimen Exam 269 Revsion
Unit 5 TOpiCS' Q9, Q].O Phil Molyneux

Unit 5 Optimisation
Graphs searching: DFS, BFS

Distance: Dijkstra's algorithm

vvyyypy

Greedy algorithms: Minimum spanning trees, Prim's
algorithm

v

Dynamic programming: Knapsack problem, Edit
distance
» See Graphs Tutorial Notes

Unit 5 Optimisation

50/153 (61/164)

http://www.pmolyneux.co.uk/OU/M269/M269TutorialNotes/M269TutorialGraphs/M269TutorialGraphs2017J.beamer.pdf

M269 2017J Exam M269 Revision

Q 9 (4 marks) Phil Molyneux

> A water distribution network can be represented as a
weighted directed graph.

» The nodes represent the reservoirs, water treatment
centres and consumers (homes, factories, etc.).

» The directed edges represent the water pipes, showing
the flow of water, from the reservoirs to the consumers,
via the treatment centres.

» The edge weights indicate the maximum flow (in cubic
metres per second) of the pipes.

» Complete the following statements, and include in the
justification any assumptions you make.

Q9

» For a typical water distribution network, the graph is
(choose from CYCLIC/ACYCLIC) because:

» and it is (choose from SPARSE/DENSE) because:

51/153 (62/164)

M269 2017J Exam M269 Revision

Soln 9 Phil Molyneux

» The network is acyclic since water does not return to
the sources (in this network) — no mention is made of
waste water and sewerage collection and recycling.

P> A sparse network since most nodes are only connected
to one other node.

Soln 9

52/153 (63/164)

M269 2017J Exam

Q 10 (4 marks)

» Consider the following undirected graph:

» Complete the table below to show one order in which
the vertices of the above graph could be visited in a
Breadth First Search (BFS) starting at vertex 3:

Vertices visited

3

M269 Revision
2019

Phil Molyneux

53/153 (64/164)

M269 2017J Exam M269 Revision

Soln 10 Phil Molyneux

» Possible answers:
Vertices visited | 3 | 1 | 4 | 2 | 5

Vertices visited| 3 | 4 | 1 | 2 | 5

Soln 10

54/153 (65/164)

M269 Specimen Exam 269 Revsion

Q].]. TOpiCS Phil Molyneux

> Unit 6

> Sets

» Propositional Logic
» Truth tables

» Valid arguments Proposidena Logi
>

Infinite sets

55 /153 (66/164)

M269 Revision

M269 2017.] Exam 2019

Q 11 (4— marks) Phil Molyneux

» In propositional logic, what does it mean to say that a
well-formed formula is contingent?

» |s the well-formed formula (P — Q) — (-Q — —P)
contingent? Explain.

56 /153 (67/164)

M269 2017J Exam M269 Revision

Soln 11 Phil Molyneux

> A WFF is contingent if it is true in some interpretations
and false in others — a tautology is true in every
interpretation, a contradiction is false in every
interpretation.

» (P — Q) — (-Q — —P) is a tautology
= —|(—|P V Q) V (—|—|Q vV —|P) by rewriting —
= —|(—|P V Q) V (‘!P \Y Q) by negation and commutativity

= True by negation

Soln 11

Pl Q| P—-Q | (-Q——-P) | (P>Q)—(-Q——P)
T | T T T T
T|F F F T
F 1T T T T
F | F T T T

57 /153 (68/164)

M269 Specimen Exam 269 Revsion

Q12 TOpiCS Phil Molyneux

> Unit 6

> Predicate Logic

» Translation to/from English
» Interpretations

Predicate Logic

58/153 (69/164)

M269 2017J Exam M269 Revision

Q 12 (6 marks) Phil Molyneux

» Consider the following particular interpretation Z for
predicate logic allowing facts to be expressed about
people and the computer games they own and play.

» The domain of individuals is D = {Jane, John, Saira,
Gran Turismo, Kessen, Pacman, The Sims, Pop Idol}.

» The constants jane, john, saira, gran_turismo, kessen,
pacman, the_sims and pop_idol are assigned to the
corresponding individuals.

P Q 12 continued on next slide

59 /153 (70/164)

M269 2017J Exam M269 Revision

Q12 (contd) Phil Molyneux

> Two predicate symbols are assigned binary relations as
follows:

» Z(owns) = {(Jane, Gran Turismo), (Jane, Kessen),
(John, Pacman), (John, The Sims), (John, Pop Idol),
(Saira, Pop Idol), (Saira, Kessen)}

» 7(has_played) = {(Jane, Gran Turismo), (Jane, Pop
Idol), (Jane, Kessen), (John, The Sims), (John, Pop
Idol), (Saira, Gran Turismo), (Saira, The Sims)}

P Q 12 continued on next slide

60/153 (71/164)

M269 Revision

M269 2017.] Exam 2019

Q12 (contd) Phil Molyneux

(a) Consider the sentence in English: Jane owns all the
games she has played.

Which one of these well-formed formulae is a
translation of the sentence into predicate logic?

A. VX.(owns(jane, X) — has_played (jane, X))
B. VX.(has_played (jane, X) — owns (jane, X))
C. VX.(has_played (jane, X) N owns (jane, X))

P Q 12 continued on next slide

61 /153 (72/164)

M269 2017J Exam M269 Revision

Q12 (contd) Phil Molyneux

(b) Give an appropriate translation of the well-formed
formula below into English

X .(—owns (saira, X) A has_played (jane, X))

» This formula is (choose from TRUE/FALSE), under the
interpretation given on the previous page.

» Explain why in the box below.
You need to consider any relevant values for the
variables, and show, using the domain and

interpretation on the previous page, whether they make
the formula TRUE or FALSE.

In your explanation, make sure that you use formal
notation.

For example, instead of stating John doesn’t own
Kessen you need to write (John, Kessen) ¢ Z(owns)

62/153 (73/164)

M269 2017J Exam M269 Revision

Soln 12 Phil Molyneux

(a) Jane owns all the games she has played means

If Jane has played X then Jane owns X
so the answer is
B. VX.(has_played (jane, X) — owns (jane, X))

» A. VX.(owns(jane, X) — has_played (jane, X)) means
Jane has played all the games she owns
» B. VX.(has_played (jane, X) A owns(jane, X)) means

Jane owns all games and has played all of them

Soln 12

P Soln 12 continued on next slide

63/153 (74/164)

M269 2017J Exam M269 Revision

Soln 12 (contd) Phil Molyneux

(b) 3X.(—owns(saira, X) A has_played (jane, X)) means
There is at least one game that Saira does not own that
Jane has played

» True
because Jane has played Gran Turismo but Saira does
not own it

» (Saira, Gran Turismo) ¢ Z(owns)
A (Jane, Gran Turismo) € Z(has_played)

Soln 12

64 /153 (75/164)

M269 Specimen Exam 269 Revsion

Q13 Topics Phil Molyneux

> Unit 6
» SQL queries

Proposition:

Q11

Predicate Logic
Q

Soln 12

SQL Queries

65/153'(76/164)

M269 2017J Exam

Q 13 (6 marks)

> A database contains the following tables:

oilfield

name production
Warga | 3

Lolli 5

Tolstoi | 0.5

Dakhun | 2

Sugar 3

P Q 13 continued on next slide

operator

company | field
Amarco Warga
Bratape Lolli
Rosbif Tolstoi
Tagar Dakhun
Bratape Sugar

M269 Revision
2019

Phil Molyneux

66/153 (77/164)

M269 2017J Exam M269 Revision

Q 13 (contd) Phil Molyneux

(a) For the following SQL query, give the table returned by
the query.

SELECT name, company
FROM oilfield CROSS JOIN operator
WHERE name = field ;

» Write the question that the above query is answering.

P Q 13 continued on next slide

67/153 (78/164)

M269 2017J Exam

Q 13 (contd)

(b) Write an SQL query that answers the question

What is the name and the operating company of each
oil field operated by Bratape?

Your query should return the following table.

company | field
Bratape Lolli
Bratape Sugar

M269 Revision
2019

Phil Molyneux

68/153 (79/164)

M269 2017J Exam M269 Revision

2019
Soln 13 Phil Molyneux

SELECT name, company

FROM oilfield CROSS JOIN operator
WHERE name = field

>

» Table returned by the query
Warga | Amarco
Lolli Bratape
Tolstoi | Rosbif
Dakhun | Taqar
Sugar Bratape
» SQL for What is the name and the operating company o
of each oil field operated by Bratape?

SELECT company, field
FROM operator
WHERE company = ’Bratape’

69 /153 (80/164)

M269 Specimen Exam M269 Revision

2019
Q14 topics

Phil Molyneux
» Unit 7
» Proofs
» Natural deduction

70/153'(81/164)

M269 Revision

LOgiC 2019

Logicians, Logics, Notations Phil Molyneux

» A plethora of logics, proof systems, and different
notations can be puzzling.

» Martin Davis, Logician When | was a student, even the
topologists regarded mathematical logicians as living in
outer space. Today the connections between logic and
computers are a matter of engineering practice at every
level of computer organization

» Various logics, proof systems , were developed well
before programming languages and with different
motivations,

Logic

71/153 (82/164)

http://en.wikipedia.org/wiki/Martin_Davis

. M269 Revision
LOgIC 2019
Logic and Programming Languages Phil Molyneux

» Turing machines, Von Neumann architecture and
procedural languages Fortran, C, Java, Perl, Python,
JavaScript

» Resolution theorem proving and logic programming —
Prolog

» Logic and database query languages — SQL (Structured
Query Language) and QBE (Query-By-Example) are
syntactic sugar for first order logic

» Lambda calculus and functional programming with
Miranda, Haskell, ML, Scala e

72/153 (83/164)

http://en.wikipedia.org/wiki/Von_Neumann_architecture
http://en.wikipedia.org/wiki/Lambda_calculus

. M269 Revision
Logical Arguments 2019
Validity and Justification Phil Molyneux

» There are two ways to model what counts as a logically
good argument:
> the semantic view
> the syntactic view
» The notion of a valid argument in propositional logic is
rooted in the semantic view.
> It is based on the semantic idea of interpretations:
assignments of truth values to the propositional
variables in the sentences under discussion.
» A valid argument is defined as one that preserves truth
from the premises to the conclusions =
» The syntactic view focuses on the syntactic form of
arguments.
» Arguments which are correct according to this view are
called justified arguments.

73/153 (84/164)

. M269 Revision
Logical Arguments 2019
Proof Systems, Soundness, Completeness Phil Molyneux

» Semantic validity and syntactic justification are different

ways of modelling the same intuitive property: whether
an argument is logically good.

A proof system is sound if any statement we can prove
(justify) is also valid (true)

A proof system is adequate if any valid (true) statement
has a proof (justification)

A proof system that is sound and adequate is said to be
complete

Logic

Propositional and predicate logic are complete —
arguments that are valid are also justifiable and vice
versa

Unit 7 section 2.4 describes another logic where there
are valid arguments that are not justifiable (provable)

74 /153 (85/164)

M269 Revision

Logical Arguments 2019

Valid arguments Phil Molyneux

>

>

Py

Unit 6 defines valid arguments with the notation
Pn

The argument is valid if and only if the value of C is
True in each interpretation for which the value of each
premise P;is Truefor 1 <j<n

In some texts you see the notation {P1,...,Pp} = C
The expression denotes a semantic sequent or semantic
entailment

The |= symbol is called the double turnstile and is often e
read as entails or models

In LaTeX F and = are produced from \vDash and
\models — see also the turnstile package

In Unicode = is called TRUE and is U+22A8, HTML
⊨

75 /153 (86/164)

LOgical Arguments M269 Revision

2019

Valid arguments — Tautology Phil Molyneux

» The argument {} = C is valid if and only if C is True in
all interpretations

» That is, if and only if C is a tautology

» Beware different notations that mean the same thing

> Alternate symbol for empty set: () = C

» Null symbol for empty set: = C

» Original M269 notation with null axiom above the line:
C

Logic

76 /153 (87/164)

M269 Revision

LOgiC 2019

Justified Arguments Phil Molyneux

» Definition 7.1 An argument {P1,P>,...,P,} F Cis a
justified argument if and only if either the argument is
an instance of an axiom or it can be derived by means
of an inference rule from one or more other justified
arguments.

> Axioms

U {A} F A (axiom schema)

» This can be read as: any formula A can be derived from
the assumption (premise) of {A} itself

» The I symbol is called the turnstile and is often read as o
proves, denoting syntactic entailment

» In LaTeX I is produced from \vdash

» In Unicode I is called RIGHT TACK and is U+22A2,
HTML & #38866;

77/153 (88/164)

M269 Revision

LOgiC 2019

Justified Arguments Phil Molyneux

» Section 2.3 of Unit 7 (not the Unit 6, 7 Reader) gives
the inference rules for —, A, and V — only dealing with
positive propositional logic so not making use of
negation — see List of logic systems

» Usually (Classical logic) have a functionally complete
set of logical connectives — that is, every binary
Boolean function can be expressed in terms the
functions in the set

Logic

78/153 (89/164)

http://en.wikipedia.org/wiki/List_of_logic_systems
http://en.wikipedia.org/wiki/Functional_completeness

e M269 Revision
Justified Arguments 2019
Inference Rules — Notation Phil Molyneux

» Inference rule notation:
Argument; ... Argument,
Argument

(label)

Logic

79/153 (90/164)

Justified Arguments

Inference Rules — Conjunction

[FA r+-B
r-AAB
> TFANB
r-A
r-A\B
p LT AND
r-B

(A-introduction)
(A-elimination left)

(A-elimination right)

M269 Revision

2019

Phil Molyneux

Logic

80/153(91/164)

M269 Revision

Justified Arguments 2019
Inference Rules — Implication Phil Molyneux
-
> rl_Ul_{:‘LBB (—-introduction)

» The above should be read as: If there is a proof
(justification, inference) for B under the set of premises,
I, augmented with A, then we have a proof
(justification. inference) of A — B, under the
unaugmented set of premises, T .
The unaugmented set of premises, I may have
contained A already so we cannot assume

(Tu{A})—{A}isequalto I Logie

r-r-A r-A—B
r-B

(—-elimination)

>

81/153(92/164)

Justified Arguments

Inference Rules — Disjunction

_rFA
r-AvB
=B
r-AvB
» Disjunction elimination

(\v-introduction left)

(\-introduction right)

rH-AvB TU{A}FC TU{B}rC
r- c
» The above should be read: if a set of premises I'
justifies the conclusion AV B and I augmented with
each of A or B separately justifies C, then I' justifies C

(\V-elimination)

M269 Revision
2019

Phil Molyneux

Logic

82/153(93/164)

M269 Revision

Proofs in Tree Form 2010

Phil Molyneux
» The syntax of proofs is recursive:

» A proof is either an axiom, or the result of applying a
rule of inference to one, two or three proofs.

» We can therefore represent a proof by a tree diagram in
which each node have one, two or three children

» For example, the proof of {PA (P — Q)} F Q in
Question 4 (in the Logic tutorial notes) can be
represented by the following diagram:

{P/\(P—>Q)}}—P/\(P—>Q) (AE et {P/\(P—>Q)}I—P/\(P—>Q) (A-E right)
{(PA(P=Q)}FP ” {PA(PHQ)}FPHQ(— 8

{PA(P—=Q)}HFQ

—F) Logic

83/153(94/164)

Justified Arguments

Self-Assessment activity 7.4

>

>

Let T ={P = R,Q— R,PVQ}
r-PvQ TU{P}FR TU{Q}FR

- R (\-elimination)
ru{P}FpP TU{P}FP—R o
(—-elimination)
ry{P}+~R
ru{+Q Tu{RIrQ—R o
(—-elimination)
rU{Qjr-R
Complete tree layout
ru{p} ru{pr} ru{Q}y ru{Q}
P FP—R g BQ FQoR g
rEPvQ ru{P}-R rU{Q}rR
rFR o

M269 Revision

2019

Phil Molyneux

Logic

84 /153 (95/164)

M269 Revision

Justified Arguments 2019

Self-assessment activity 7.4 — Linear Layout Phil Molyneux

1. (PR Q—>RPVQIFPVQ [Axiom]

2. {P>R Q=R PVQIU{P}IFP [Axiom]

3. PR Q=R PVQIU{P}FP =R [Axiom]|

4. PR Q=R PVQIU{Q}FQ [Axiom]

5. {P>R,Q—R,PVQIU{Q}FQ— R [Axiom]

6. {P>R Q=R PVQIU{PIFR [2, 3, —-E]

7. PR Q>R PVQU{QIFR [4, 5, —-F]

8. {P>RQ—>RPVQIFR [1, 6, 7, V-E]

Logic

85/153(96/164)

M269 2017J Exam M269 Revision

Q 14 (6 marks) Phil Molyneux

» Consider the following decision problems:
The Equivalence Problem

Is a given list not empty?

The Halting Problem

Is a given binary tree balanced?

Ve wbh =

On each line, write one or more of the above problem
numbers, or write None.

v

Which problems, if any, are decidable?

v

Which problems, if any, are tractable?
» Which problems, if any, are NP-hard?

86/153 (97/164)

M269 Revision

M269 2017.] Exam 2019

Soln 14 Phil Molyneux

» Decidable: 2. (Empty list), 4. (Balanced binary tree)
» Tractable: 2. (Empty list), 4. (Balanced binary tree)
» NP-hard: 3. (Halting problem)

See StackOverflow: Proof that the halting problem is
NP-hard?

Soln 14

87/153(98/164)

https://stackoverflow.com/questions/6990683/proof-that-the-halting-problem-is-np-hard
https://stackoverflow.com/questions/6990683/proof-that-the-halting-problem-is-np-hard

M269 Specimen Exam 269 Revsion

Q15 Topics Phil Molyneux

Unit 7

Computability and ideas of computation

P and NP

>
>
» Complexity
>
> NP-complete

Computability

88/153 (99/164)

M269 Revision

Computability 2019

Ideas of Computation Phil Molyneux

» The idea of an algorithm and what is effectively
computable

» Church-Turing thesis Every function that would
naturally be regarded as computable can be computed
by a deterministic Turing Machine. (Unit 7 Section 4)

» See Phil Wadler on computability theory performed as
part of the Bright Club at The Strand in Edinburgh,
Tuesday 28 April 2015

Computability

897153 (100/164)

http://wadler.blogspot.co.uk/2015/05/bright-club-computability.html

M269 Revision

Computability o

Reducing one problem to another Phil Molyneux

» To reduce problem P; to P», invent a construction that
converts instances of P; to P> that have the same
answer. That is:

» any string in the language P; is converted to some
string in the language P>

» any string over the alphabet of P; that is not in the
language of P; is converted to a string that is not in the
language P>

» With this construction we can solve P;

» Given an instance of Py, that is, given a string w that
may be in the language P;, apply the construction
algorithm to produce a string x

» Test whether x is in P, and give the same answer for w Computabilty
in Pl

907153 (101/164)

M269 Revision

Computability 2019

Direction of Reduction Phil Molyneux

» The direction of reduction is important

» If we can reduce P; to P, then (in some sense) P, is at
least as hard as P; (since a solution to P, will give us a
solution to Pp)

» So, if P, is decidable then P; is decidable

» To show a problem is undecidable we have to reduce
from an known undecidable problem to it

> x(dpp, (x) = dpp, (reduce(x)))
» Since, if Py is undecidable then P, is undecidable

Computability

917153 (102/164)

M269 Revision

Computability 2019

Models of Computation Phil Molyneux

» In automata theory, a problem is the question of
deciding whether a given string is a member of some
particular language

» If X is an alphabet, and L is a language over X, that is
L C X*, where ¥* is the set of all strings over the
alphabet X then we have a more formal definition of
decision problem

» Given a string w € L*, decide whether w € L

» Example: Testing for a prime number — can be
expressed as the language L, consisting of all binary
strings whose value as a binary number is a prime
number (only divisible by 1 or itself)

Computability

927153 (103/164)

M269 Revision

Computability 2019

Church-Turing Thesis & Quantum Computing Phil Molyneux

» Church-Turing thesis Every function that would
naturally be regarded as computable can be computed
by a deterministic Turing Machine.

» physical Church-Turing thesis Any finite physical
system can be simulated (to any degree of
approximation) by a Universal Turing Machine.

» strong Church-Turing thesis Any finite physical
system can be simulated (to any degree of
approximation) with polynomial slowdown by a
Universal Turing Machine.

» Shor’s algorithm (1994) — quantum algorithm for
factoring integers — an NP problem that is not known
to be P — also not known to be NP-complete and we
have no proof that it is not in P

Computability

937153 (104/164)

http://en.wikipedia.org/wiki/Shor's_algorithm

M269 Revision

Computability 2019

Turing Machine Phil Molyneux

» Finite control which can be in any of a finite number
of states

» Tape divided into cells, each of which can hold one of a
finite number of symbols

» Initially, the input, which is a finite-length string of
symbols in the input alphabet, is placed on the tape

» All other tape cells (extending infinitely left and right)
hold a special symbol called blank

» A tape head which initially is over the leftmost input
symbol

» A move of the Turing Machine depends on the state Computabtty
and the tape symbol scanned

> A move can change state, write a symbol in the current
cell, move left, right or stay

947153 (105/164)

. . . M269 Revision
Turing Machine Diagram 2019
Turing Machine Diagram Phil Molyneux

blblalal]lala .-+ 1/0O Tape

Reading and Writing Head

(moves in both directions)

a3

q2 an
/ Computability

a1 qo

Finite Control

957153 (106/164)

Computability M e
Turing Machine notation (Pl el
> Q@ finite set of states of the finite control
» 3 finite set of input symbols (M269 S)
» [complete set of tape symbols . C
» ¢ Transition function (M269 instructions, /)

v

du:QxIN—@xTIx{LR,S}

(g, X) =~ (p, Y, D)

d(q, X) takes a state, g and a tape symbol, X and
returns (p, Y, D) where p is a state, Y is a tape symbol
to overwrite the current cell, D is a direction, Left,
Right or Stay

go start state qp € Q Computaitty
B blank symbol B €T and B ¢ ©
F set of final or accepting states F C Q

967153 (107/164)

M269 Revision

Computability 2019

Decidability Phil Molyneux

» Decidable — there is a TM that will halt with yes/no
for a decision problem — that is, given a string w over
the alphabet of P the TM with halt and return yes.no
the string is in the language P (same as recursive in
Recursion theory — old use of the word)

» Semi-decidable — there is a TM will halt with yes if
some string is in P but may loop forever on some inputs
(same as recursively enumerable) — Halting Problem

» Highly-undecidable — no outcome for any input —
Totality, Equivalence Problems

Computability

977153 (108/164)

http://en.wikipedia.org/wiki/Recursion_theory

ape M269 Revision
Computability 2019
Undecidable Problems Phil Molyneux

» Halting problem — the problem of deciding, given a
program and an input, whether the program will
eventually halt with that input, or will run forever —
term first used by Martin Davis 1952

» Entscheidungsproblem — the problem of deciding
whether a given statement is provable from the axioms
using the rules of logic — shown to be undecidable by
Turing (1936) by reduction from the Halting problem to
it

> Type inference and type checking in the
second-order lambda calculus (important for functional
programmers, Haskell, GHC implementation)

Computability

» Undecidable problem — see link to list

987153 (109/164)

http://en.wikipedia.org/wiki/Halting_problem
http://en.wikipedia.org/wiki/Entscheidungsproblem
http://en.wikipedia.org/wiki/System_F
http://en.wikipedia.org/wiki/Undecidable_problem

Computability M e
Why undecidable problems must exist Phil Molyneux
» A problem is really membership of a string in some
language
» The number of different languages over any alphabet of
more than one symbol is uncountable
» Programs are finite strings over a finite alphabet (ASCII
or Unicode) and hence countable.
» There must be an infinity (big) of problems more than
programs.
» Computational problem — defined by a function
» Computational problem is computable if there is a

Turing machine that will calculate the function. Computabtty

997153 (110/164)

M269 Revision

Computability 2019

Computability and Terminology (1) Phil Molyneux

>

>

v

The idea of an algorithm dates back 3000 years to
Euclid, Babylonians. ..

In the 1930s the idea was made more formal: which
functions are computable?

A function a set of pairs

f={(x,f(x)): x € XA f(x)€ Y} with the function
property

Function property: (a,b) € f A(a,c) e f = b==c¢
Function property: Same input implies same output

Note that maths notation is deeply inconsistent here —
see Function and History of the function concept Computabtty

What do we mean by computing a function — an
algorithm ?

1007153 (111/164)

http://en.wikipedia.org/wiki/Computable_function
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/History_of_the_function_concept

M269 Revision

Computability 2019

Computability and Terminology (2) Phil Molyneux

>
>

v

In the 1930s three definitions:

A-Calculus, simple semantics for computation — Alonzo
Church

General recursive functions — Kurt Godel

Universal (Turing) machine — Alan Turing
Terminology:
» Recursive, recursively enumerable — Church, Kleene
» Computable, computably enumerable — Godel, Turing
Decidable, semi-decidable, highly undecidable
» In the 1930s, computers were human
» Unfortunate choice of terminology

v

Turing and Church showed that the above three were Computabilty
equivalent

Church-Turing thesis — function is intuitively
computable if and only if Turing machine computable

1017153 (112/164)

http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Alonzo_Church
http://en.wikipedia.org/wiki/Alonzo_Church
https://en.wikipedia.org/wiki/%CE%9C-recursive_function
https://en.wikipedia.org/wiki/Kurt_G%C3%B6del
http://en.wikipedia.org/wiki/Universal_Turing_machine
http://en.wikipedia.org/wiki/Alan_Turing
http://en.wikipedia.org/wiki/Stephen_Cole_Kleene
http://en.wikipedia.org/wiki/Church\T1\textendash Turing_thesis

M269 Revision

Computability 2019

Halting Problem — Sketch Proof (1) (P (Yelrmere
» Halting problem — is there a program that can
determine if any arbitrary program will halt or continue
forever 7
» Assume we have such a program (Turing Machine)
h(f,x) that takes a program f and input x and
determines if it halts or not
h(f,x)
= if f(x) runs forever
return True
else
return False
» We shall prove this cannot exist by contradiction Loty —

1027153 (113/164)

https://simple.wikipedia.org/wiki/Halting_problem

Computability
Halting Problem — Sketch Proof (2)

» Now invent two further programs:

> q(f) that takes a program f and runs h with the input

to £ being a copy of f
» r(f) that runs q(£) and halts if q(£) returns True,
otherwise it loops

a(f)
= h(f,f)

r(f)
= if q(f)
return
else
while True: continue

» What happens if we run r(r) ?

> If it loops, q(r) returns True and it does not loop —

contradiction.

M269 Revision
2019

Phil Molyneux

Non-Computability —
Halting Problem

1037153 (114/164)

Reductions & Non-Computable Rt
Reductions Phil Molyneux
| f(input) |
input ———p| f » A2 ———> output
,,,,,,,,,,,,,, VR,

» A reduction of problem P; to problem P,
» transforms inputs to P; into inputs to P»
» runs algorithm A2 (which solves P,) and
P interprets the outputs from A2 as answers to P;
» More formally: A problem P; is reducible to a problem
P if there is a function f that takes any input x to P;
and transforms it to an input f(x) of P,

such that the solution of P, on f(x) is the solution of :
P 1 on x EZi?Eifn";uﬁbmw

1047153 (115/164)

Reductions & Non-Computible Rt
Example: Squaring a Matrix Phil Molyneux
1 (M, M) 1
M — f > A2 ———> M2
,,,,,,,,,,,,, U

» Given an algorithm (A2) for matrix multiplication (P7)

» Input: pair of matrices, (M, M)
» Output: matrix result of multiplying My and M,

» P is the problem of squaring a matrix

» Input: matrix M
» Output: matrix M?

» Algorithm Al has
f(M) = (M, M)
uses A2 to calculate M x M = M?

Reductions &
Non-Computability

1057153 (116/164)

M269 Revision

Reductions & Non-Computable 2019
Non-Computable Problems Phil Molyneux
| f(input) |
input —— f » A2 [——» output
,,,,,,,,,,,,,, A, 1,,,,,,,,,,,,,,

» If P, is computable (A2 exists) then P; is computable
(f being simple or polynomial)

» Equivalently If P; is non-computable then P; is
non-computable

» Exercise: show B—+ A=-A— —-B

Reductions &
Non-Computability

1067153 (117/164)

M269 Revision
2019

Reductions & Non-Computable
Phil Molyneux

Contrapositive

» Proof by Contrapositive
» B — A= —BV A by truth table or equivalences

—|(—|A) V =B commutativity and negation laws

= - A — =B equivalences
» Common error: switching the order round -

Reductions &
Non-Computability

1077153 (118/164)

https://en.wikipedia.org/wiki/Proof_by_contrapositive

Reductions & Non-Computable Rt
Totality Problem Phil Molyneux
1 Q ‘
(P,x) ——» f » TP |——» YES/NO
77 REREEEEEEEES

> Totality Problem
» Input: program @
» Qutput: YES if Q terminates for all inputs else NO

» Assume we have algorithm TP to solve the Totality
Problem

> Now reduce the Halting Problem to the Totality
Problem

Reductions &
Non-Computability

1087153 (119/164)

Reductions & Non-Computable 269 Revision

Totality Problem Phil Molyneux

- » YES/NO

~
=
-
v
\'
e

» Define f to transform inputs to HP to TP pseudo-Python

def f(P,x)
def Q(y):
ignore y
P(x)
return Q

» Run TP on @
» If TP returns YES then P halts on x
» If TP returns NO then P does not halt on x e

» We have solved the Halting Problem — contradiction

1097153 (120/164)

Reductions & Non-Computable Rt
Negative Value Problem Phil Molyneux
I (Q7 V) :
(P,x) ———» f » NVP ——» YES/NO
e

> Negative Value Problem
» Input: program Q which has no input and variable v
used in @
» Output: YES if v ever gets assigned a negative value
else NO
> Assume we have algorithm NVP to solve the Negative
Value Problem

» Now reduce the Halting Problem to the Negative Value
Problem Non-Computailty

1107153 (121/164)

M269 Revision

Reductions & Non-Computable 2019

Negative Value Problem Phil Molyneux

- » YES/NO

~
=
-
v
S
By

» Define f to transform inputs to HP to NVP pseudo-Python

def f(P,x)
def Q(y):
ignore y
P(x)
v = -1
return (Q,var(v))

» Run NVP on (Q, var(v)) var(v) gets the variable name
» |f NVP returns YES then P halts on x —
» If NVP returns NO then P does not halt on x N a—
> We have solved the Halting Problem — contradiction

1117153 (122/164)

Reductions & Non-Computable Rt
Squaring Function Problem Phil Molyneux
l Q ‘
(P,x) ——» f » SFP ——» YES/NO
B TEEEEEEEEEEEEE,

» Squaring Function Problem

» Input: program Q which takes an integer, y
» Output: YES if Q always returns the square of y else
NO

» Assume we have algorithm SFP to solve the Squaring
Function Problem

» Now reduce the Halting Problem to the Squaring
Function Problem

Reductions &
Non-Computability

1127153 (123/164)

Reductions & Non-Computable 269 Revision

Squaring Function Problem Phil Molyneux

- » YES/NO

S
RS
-
\ 4
%
e

» Define f to transform inputs to HP to SFP pseudo-Python

def f(P,x)
def Q(y):
P(x)
return y * y
return Q

» Run SFP on @

» If SFP returns YES then P halts on x
» If SFP returns NO then P does not halt on x Reductions &

Non-Computability

» We have solved the Halting Problem — contradiction

1137153 (124/164)

Reductions & Non-Computable Rt
Equivalence Problem Phil Molyneux
| (P1, P2) |
P ——» f » EP |——» YES/NO
77 REREEEEEEEES

» Equivalence Problem

» Input: two programs P1 and P2
» Output: YES if P1 and P2 solve the ame problem
(same output for same input) else NO

» Assume we have algorithm EP to solve the Equivalence
Problem

» Now reduce the Totality Problem to the Equivalence
Problem

Reductions &
Non-Computability

1147153 (125/164)

Reductions & Non-Computable 269 Revision

Equivalence Problem Phil Molyneux

| (P1, P2) |
P ——» f » FEP |——» YES/NO

» Define f to transform inputs to TP to EP pseudo-Python

def f(P)
def P1(x):
P(x)
return "Same_ string"
def P2(x)
return "Samegstring"
return (P1,P2)

» Run EP on (Pl,PQ)
» If EP returns YES then P halts on all inputs Retutions &
» If EP returns NO then P does not halt on all inouts e

> We have solved the Totality Problem — contradiction

1157153 (126/164)

M269 Revision

Reductions & Non-Computable 2019
Rice’s Theorem (Pl el
| f(input) |
input ———p| f » A2 ———> output
,,,,,,,,,,,,,, VR,

» Rice's Theorem all non-trivial, semantic properties of
programs are undecidable. H G Rice 1951 PhD Thesis
» Equivalently: For any non-trivial property of partial
functions, no general and effective method can decide
whether an algorithm computes a partial function with
that property.
> A property of partial functions is called trivial if it holds
for all partial computable functions or for none. Ao

Non-Computability

1167153 (127/164)

https://en.wikipedia.org/wiki/Rice%27s_theorem

Reductions & Non-Computable 269 Revision
Rice's Theorem T

» Rice's Theorem and computability theory
» Let S be a set of languages that is nontrivial, meaning
» there exists a Turing machine that recognizes a
language in S
> there exists a Turing machine that recognizes a
language not in S
» Then, it is undecidable to determine whether the
language recognized by an arbitrary Turing machine lies
in S.
» This has implications for compilers and virus checkers
P> Note that Rice's theorem does not say anything about
those properties of machines or programs that are not
also properties of functions and languages.
» For example, whether a machine runs for more than 100 Reducions &
steps on some input is a decidable property, even jiae
though it is non-trivial.

117/153 (128/164)

https://en.wikipedia.org/wiki/Rice%27s_theorem

M269 2017J Exam M269 Revision

Q 15 (4— marks) Phil Molyneux

» Which two of the following statements are true? (Tick

A.

two boxes.)

If a programming language, let's call it PL, is Turing
complete, then any computational problem can be
solved with a program written in PL.

. The Equivalence Problem is not computable.

. Problems in the class NP are defined as problems for

which it is not known whether they're tractable.

. There are non-computable computational problems

because: There are more decision problems with the
natural numbers as their domain (DPN) than Turing
Machines that solve instances of DPN. Sk

. The Totality Problem is definitely in the class P.

1187153 (120/164)

M269 2017J Exam M269 Revision

Soln 15 Phil Molyneux

A.

. False Totality Problem is not computable — see

False PL, Turing complete programming language can
compute anything that is computable but there are
some computational problems that are not computable

. True Equivalence Problem is not computable — see

Computability notes

. False The class P is a subset of NP — we just do not

know whether it is a proper subset or equal

. True Programs are finite strings over a finite alphabet

(ASCII or Unicode) hence countable — however the
number of different languages over any alphabet of
more than one symbol is uncountable — a problem is
really membership of a string in some language

Soln 15

Computability notes — so not in the class P

1197153 (130/164)

M269 Revision

Complexity 2019

P and NP Phil Molyneux

> P, the set of all decision problems that can be solved in
polynomial time on a deterministic Turing machine
> NP, the set of all decision problems whose solutions can
be verified (certificate) in polynomial time
» Equivalently, NP, the set of all decision problems that
can be solved in polynomial time on a non-deterministic
Turing machine
» A decision problem, dp is NP-complete if
1. dpisin NP and
2. Every problem in NP is reducible to dp in polynomial
time
» NP-hard — a problem satisfying the second condition,
whether or not it satisfies the first condition. Class of
problems which are at least as hard as the hardest
problems in NP. NP-hard problems do not have to be in
NP and may not be decision problems

Complexity

120/153 (131/164)

http://en.wikipedia.org/wiki/P_(complexity)
http://en.wikipedia.org/wiki/NP_(complexity)
http://en.wikipedia.org/wiki/NP-complete

Complexity
P and NP — Diagram

Euler diagram for P, NP, NP-complete and NP-hard set of

problems

NP-Hard

NP-Complete

P = NP

Complexity

NP-Hard

P=NP=
NP-Complete

P =NP

Source: Wikipedia NP-complete entry

M269 Revision
2019

Phil Molyneux

Complexity

121/153 (132/164)

http://en.wikipedia.org/wiki/Euler_diagram
http://en.wikipedia.org/wiki/NP-complete

. M269 Revision
Complexity 2019
NP-complete problems Phil Molyneux

Boolean satisfiability (SAT) Cook-Levin theorem
Conjunctive Normal Form 3SAT

>

>

» Hamiltonian path problem
» Travelling salesman problem
>

NP-complete — see list of problems

Complexity

122/153 (133/164)

http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Cook-Levin_theorem
http://en.wikipedia.org/wiki/3-satisfiability
http://en.wikipedia.org/wiki/Hamiltonian_path_problem
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/NP-complete

Complexity
Knapsack Problem
MY HoBy:
EMBEDDING NP-(DMPLETE PROBLEMS IN RESTAURANT (RDERS
Eoome remonit] | | SRS
<~ APPENZERS —~ | L EXCY? UMK
MIXED FRUIT 2.15 HERE, THESE PAPERS ON THE KNASACK, }
PROBLEM MIGHT HELP YOU QUT.
FRENCH FRIES 275 \ LISTEN, I HAVE §1x OTHER
SIDE SALAD 335 TABLES T0 GET T0—
= A FAST A5 POSSIBLE, OF (DURSE. WANT
HOT WINGS 3.55 SOMETHING ON TRAVELING SALESHANE /
MOZZARELA STICKS 4.20 \
SAMPLER PLATE 580 % 0 %% %
—— SANDWICHES ~— {
RARBEC!IE £

Source & Explanation

: XKCD 287

M269 Revision
2019

Phil Molyneux

Complexity

123/153 (134/164)

http://www.explainxkcd.com/wiki/index.php/287:_NP-Complete

M269 Revision

NP-Completeness and Boolean Satisfiability 2019

Points on Notes Phil Molyneux

» The Boolean satisfiability problem (SAT) was the first
decision problem shown to be NP-Complete

P> This section gives a sketch of an explanation

» Health Warning different texts have different notations
and there will be some inconsistency in these notes

» Health warning these notes use some formal notation
to make the ideas more precise — computation requires
precise notation and is about manipulating strings
according to precise rules.

NP-Completeness and
Boolean Satisfiability

124 /153 (135/164)

http://en.wikipedia.org/wiki/Boolean_satisfiability_problem

NP-Completeness and Boolean Satisfiability MO e
Alphabets, Strings and Languages Phil Molyneux
» Notation:

> > is a set of symbols — the alphabet
> Y is the set of all string of length k, which each
symbol from X
» Example: if ¥ = {0,1}
> 51 =1{0,1}
> ¥2 =1{00,01,10,11}
30 = {€} where ¢ is the empty string
2 * is the set of all possible strings over
Y =y0urtur?u...
A Language, L, over ¥ is a subset of L*
LCY*

vVvyYyyvyy

NP-Completeness and
Boolean Satisfiability

125 /153 (136/164)

NP-Completeness and Boolean Satisfiability MO e
Language Accepted by a Turing Machine Phil Molyneux

» Language accepted by Turing Machine, M denoted by
L(M)
» L(M) is the set of strings w € £* accepted by M

» For Final States F = {Y, N}, a string w € X* is
accepted by M < (if and only if) M starting in go with
w on the tape halts in state Y

» Calculating a function (function problem) can be turned
into a decision problem by asking whether f(x) =y

NP-Completeness and
Boolean Satisfiability

126 /153 (137/164)

http://en.wikipedia.org/wiki/Function_problem
http://en.wikipedia.org/wiki/Decision_problem

NP-Completeness and Boolean Satisfiability MO e
The NP-Complete Class Phil Molyneux

» If we do not know if P # NP, what can we say 7
> A language L is NP-Complete if:

» [€ NP and
» for all other L’ € NP there is a polynomial time
transformation (Karp reducible, reduction) from L’ to L

» Problem Py polynomially reduces (Karp reduces,
transforms) to P>, written Py o< P> or Py <, P>, iff
3f : dpp, — dpp, such that

> VI cdpp[l € Yp < f(I) € Yp,]
» f can be computed in polynomial time

NP-Completeness and
Boolean Satisfiability

127/153 (138/164)

NP-Completeness and Boolean Satisfiability MO e
The NP-Complete Class (2) Phil Molyneux

» More formally, L; C ¥ polynomially transforms to
Ly C X5, written Ly o< Lp or Ly <p Lp, iff 3f : X — X3
such that

> Vx e Xi[x € L1 & f(x) € Ly]

» There is a polynomial time TM that computes
Transitivity If L1 o< Ly and Ly o< L3 then L; o L3
If Lis NP-Hard and L € P then P = NP
If L is NP-Complete, then L € P if and only if P = NP

If Ly is NP-Complete and L € NP and Ly < L then L is
NP-Complete

Hence if we find one NP-Complete problem, it may
become easier to find more

» In 1971/1973 Cook-Levin showed that the Boolean L
satisfiability problem (SAT) is NP-Complete et S

vvyyy

v

128/153 (139/164)

http://en.wikipedia.org/wiki/Cook\T1\textendash Levin_theorem
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem

NP-Completeness and Boolean Satisfiability MO e
The Boolean Satisfiability Problem Phil Molyneux

» A propositional logic formula or Boolean expression is
built from variables, operators: AND (conjunction, A),
OR (disjunction, V), NOT (negation, —)

» A formula is said to be satisfiable if it can be made True
by some assignment to its variables.

» The Boolean Satisfiability Problem is, given a formula,
check if it is satisfiable.

» Instance: a finite set U of Boolean variables and a finite
set C of clauses over U
» Question: Is there a satisfying truth assignment for C ?
» A clause is is a disjunction of variables or negations of

variables
» Conjunctive normal form (CNF) is a conjunction of
C | auses NP-Completeness and
Boolean Satisfiability

» Any Boolean expression can be transformed to CNF

129/153 (140/164)

NP-Completeness and Boolean Satisfiability .
The Boolean Satisfiability Problem (2) Phil Molyneux
» Given a set of Boolean variable U = {uy, ua, ..., up}

> A literal from U is either any u; or the negation of some
u; (written T;)

> A clause is denoted as a subset of literals from U —
{u2, g, us }

» A clause is satisfied by an assignment to the variables if
at least one of the literals evaluates to True (just like
disjunction of the literals)

> Let C be a set of clauses over U — C is satisfiable iff
there is some assignment of truth values to the
variables so that every clause is satisfied (just like CNF)

» C = {{u1,uw,u3},{t2, T3}, {up, T3}} is satisfiable

> C = {{ul, Uz}, {ul,Tz}, {71}} is not satisfiable NP-Completeness and

Boolean Satisfiability

130/153 (141/164)

NP-Completeness and Boolean Satisfiability MO e
The Boolean Satisfiability Problem (3) Phil Molyneus

» Proof that SAT is NP-Complete looks at the structure
of NDTMs and shows you can transform any NDTM to
SAT in polynomial time (in fact logarithmic space
suffices)

» SAT is in NP since you can check a solution in
polynomial time

» To show that VL € NP : L o« SAT invent a polynomial
time algorithm for each polynomial time NDTM, M,
which takes as input a string x and produces a Boolean
formula E, which is satisfiable iff M accepts x

» See Cook-Levin theorem

NP-Completeness and
Boolean Satisfiability

131/153 (142/164)

http://en.wikipedia.org/wiki/Cook-Levin_theorem

NP-Completeness and Boolean Satisfiability MO e
Coping with NP-COmpleteness Phil Molyneux

» What does it mean if a problem is NP-Complete ?
» There is a P time verification algorithm.
» There is a P time algorithm to solve it iff P = NP (?)
» No one has yet found a P time algorithm to solve any
NP-Complete problem
» So what do we do ?
» Improved exhaustive search — Dynamic Programming;
Branch and Bound

» Heuristic methods — acceptable solutions in acceptable
time — compromise on optimality

» Average time analysis — look for an algorithm with
good average time — compromise on generality (see
Big-O Algorithm Complexity Cheatsheet)

» Probabilistic or Randomized algorithms — compromise NP-Complterss nd
on correctness

132/153 (143/164)

http://bigocheatsheet.com

M269 2017J Exam M269 Revision

Q Part2 Phil Molyneux

» Answer every question in this Part.

» The marks for each question are given below the
question number.

» Marks for a part of a question are given after the

question.
Q Part 2
P> Answers to questions in this Part must be written in the

additional answer books, which you should also use for
your rough working.

133/153 (144/164)

M269 2017J Exam M269 Revision

Q 16 (20 marks) Phil Molyneux

» Consider an ADT for undirected graphs, named
UGraph, that includes these operations:

» nodes, which returns a sequence of all nodes in the
graph, in no particular order;

» has_edge, which takes two nodes and returns true if
there is an edge between those nodes;

» edges, which returns a sequence of node-node pairs Qi
(tuples), in no particular order. Each edge only appears
once in the returned sequence, i.e. if the pair (nodel,
node2) is in the sequence, the pair (node2, nodel) is
not.

» How each node is represented is irrelevant.

» You can assume the graph is connected and has no
edge between a node and itself.

P> Q 16 continued on next slide

134/153 (145/164)

M269 2017J Exam M269 Revision

Q 16 (contd) Phil Molyneux

(a) The following stand-alone Python function checks if an
undirected graph is complete, i.e. if each node is
connected to every other node.

It assumes the ADT is implemented as a Python class.

def is_complete(graph):
nodes = graph.nodes ()
for nodel in nodes:
for node2 in nodes:
edge_exists = graph.has_edge(nodel, node2)
if nodel != node2 and not edge_exists:
return False
return True

> Q 16 continued on next slide

135/153 (146/164)

M269 2017J Exam M269 Revision

Q 16 (contd) Phil Molyneux

» Assume that graph.nodes has complexity O(n), where
n is the number of nodes, and graph.has_edge has
complexity O(1).

> State and justify a bestcase scenario and a worst-case
scenario for the above function, and their corresponding
Big-O complexities.

P> Assume the basic computational step is the assignment.

» State explicitly any other assumptions you make.
(7 marks)

P Q 16 continued on next slide

136/153 (147/164)

M269 Revision

M269 2017.] Exam 2019

Q 16 (contd) Phil Molyneux

(b) In graph theory, the number of nodes in a graph is
called the order of the graph.

The term order is unrelated to sorting.

(i) Specify the problem of calculating the order of an
undirected graph by completing the following template.
Note that it is specified as an independent problem, not
as a UGraph operation.

You may write the specification in English and/or
formally with mathematical notation. (4 marks)
Name: order
Inputs
Preconditions:

Outputs:
Postconditions:

P Q 16 continued on next slide

137/153 (148/164)

M269 2017J Exam M269 Revision

Q 16 (contd) Phil Molyneux

(ii) Give your initial insight for an algorithm that solves the
problem.

Of the ADT operations given above you may only use
edges. (4 marks)

P Q 16 continued on next slide

138/153 (149/164)

M269 2017J Exam M269 Revision

Q 16 (contd) Phil Molyneux

(c) A city council is planning the city’s bus routes.

It has decided which places will have a bus stop
(schools, cinemas, hospital, etc.).
Each bus route will start from the train station, visit a
number of bus stops, and then return through the same
streets to the station, visiting the same bus stops in
reverse order. Each bus stop has to be served by at least
one bus route. The council wants to minimize the total
amount of time that all buses are on the road when
following their routes.

» State and justify which data structure(s) and
algorithm(s) you would adopt or adapt to solve this
problem.

State explicitly any assumptions you make. (5 marks)

139/153 (150/164)

M269 2017J Exam M269 Revision

Q 17 (15 marks) Phil Molyneux

» Imagine you are working for a logistics company that
currently uses heuristic algorithms to send their trucks
on round trips that use as little fuel as possible.

» The morning paper reports that P=NP has been proved
through the discovery of a tractable algorithm for the
SAT problem.

» What does this news mean for the company?

P Q 17 continued on next slide

140/153 (151/164)

M269 2017J Exam M269 Revision

Q 17 (contd) Phil Molyneux

» Write a brief memo with your advice on this matter to
the board of the company, which doesn’t include any
computing experts.

The memo must have the following structure:

1. A suitable title.

2. A paragraph setting the scene and introducing the key
question.

3. A paragraph in which you describe in layperson’s terms
what P=NP means.

4. A paragraph describing briefly how P=NP may impact
on the company’s main business objective (the
cost-effective use of their trucks).

5. A conclusion on what you propose the company should
do in face of this news, if anything.

P Q 17 continued on next slide

141/153 (152/164)

M269 2017J Exam M269 Revision

Q 17 (contd) Phil Molyneux

» Some marks will be awarded for a clear coherent text
that is appropriate for its audience, so avoid unexplained
technical jargon and abrupt changes of topic, and make
sure your sentences fit together to tell an overall story.

As a guide, you should aim to write roughly two to five
sentences per paragraph.

142/153 (153/164)

M269 2017J Exam

Soln Part2

» Part 2 solutions

143/153 (154/164)

M269 Revision

M269 2017.] Exam 2019

Soln 16 Phil Molyneux

(a) Best case: First node in nodes has no edge to the
second node in nodes (the first being itself) — hence
returns False with only two calls in the inner loop —
so O(n)

Worst case: The graph is complete and O(n?) since
both loops fully traversed

P Soln 16 continued on next slide Soln 16

144/153 (155/164)

M269 2017J Exam M269 Revision

Soln 16 (contd) Phil Molyneux

(b) (i) Specification of order function

Name: order

Inputs: undirected graph, g

Preconditions: g is connected

Outputs: Integer, n

Postconditions: n is the size of the set of nodes in g
» (ii) Use edges to give a sequence of edges;

extract a list of the first and second nodes in each edge; ™"

remove duplicates in the list (making a set);

the size of the result is the order of the graph (assumes
connected graph)

P Soln 16 continued on next slide

145/153 (156 /164)

M269 Revision

M269 2017.] Exam 2019

Soln 16 (contd) Phil Molyneux

(c) Data structures: graph with bus stops as nodes and
weighted edges as distance between stops;

» Algorithm(s): Some variant on Prim's algorithm for
minimum spanning tree.

Soln 16

146/153 (157/164)

M269 2017J Exam

Soln 17

vvyyypy

Follow the given structure:
Title: given at the end
Setting the scene:

P as the class of problems with solutions that are found
in time which is a fixed polynomial of the input size
o(n*)

NP as the class of problems with solutions that can be
checked in polynomial time

Soln 17 continued on next slide

M269 Revision
2019

Phil Molyneux

Soln 17

147/153 (158/164)

M269 2017J Exam M269 Revision

Soln 17 (contd) Phil Molyneux

» Give examples of both:

» Pairing problem: given a group of students and
knowledge of which are compatible, place them in
compatible groups of 2 — Edmonds (1965) showed
there is a polynomial time algorithm for this

» Partition into Triangles: make groups of three with each
pair in the group compatible

» Find a large group of students who are compatible —
Clique problem

» Sit the students round a large table so that no
incompatible students are next to each other
(Hamiltonian Cycle)

» The first problem is in P, the others are in NP (we can
check a solution) but it is not known if they are in P

Soln 17

P Soln 17 continued on next slide

148/153 (159/164)

M269 2017J Exam M269 Revision

Soln 17 (contd) Phil Molyneux

» Define NP complete problems, dp: (a) In NP; (b) Every
problem in NP is reducible to dp in polynomial time

» If P=NP then every NP problem would have a
polynomial time solution — possibly via reduction to
the SAT problem

» However proving P=NP (a) may not actually give an
algorithm in polynomial time for solving an NP
complete problem (the newspaper says there is a
tractable algorithm for SAT) (b) Even with a tractable
algorithm for SAT, the O(n¥) may be very large.

» Give example of linear programming: standard simplex
algorithm is exponential (worst case) while the ellipsoid
algorithm is polynomial — however in practice simplex
is used (because it is good enough) (see Wikipedia: LP)

Soln 17

P Soln 17 continued on next slide

149/153 (160/164)

https://en.wikipedia.org/wiki/Ellipsoid_method
https://en.wikipedia.org/wiki/Ellipsoid_method
https://en.wikipedia.org/wiki/Linear_programming

M269 2017J Exam

Soln 17 (contd)

>

| 2

Implications: Good: all optimisation problems become
tractable including vehicle routing

Implications: Bad: Public key cryptography becomes
impossible, banking transactions become tricky to carry
out securely, the same applies to secure Web
transactions

Conclusion: prepare for huge disruption — this is bigger
that the Internet or the Web

Title: P=NP — a Disruptive Discovery

Soln 17 continued on next slide

M269 Revision
2019

Phil Molyneux

Soln 17

150/153 (161/164)

M269 2017J Exam M269 Revision

Soln 17 (contd) Phil Molyneux

>
>
>

Reading
StackExchange: What would be the impact of P=NP?

Lance Fortnow: The Status of the P Versus NP
Problem readable article in 2009 CACM

The International SAT Competitions Web Page

Lance Fortnow: The Golden Ticket: P, NP and the
Search for the Impossible (2013,2017) o

Lance Fortnow, Steve Homer: A Short History of
Computational Complexity

Computational Complexity blog from Lance Fortnow
and Bill Gasarch

151/153 (162/164)

https://softwareengineering.stackexchange.com/questions/148836/what-would-be-the-impact-of-p-np
https://cacm.acm.org/magazines/2009/9/38904-the-status-of-the-p-versus-np-problem/fulltext
https://cacm.acm.org/magazines/2009/9/38904-the-status-of-the-p-versus-np-problem/fulltext
http://www.satcompetition.org/
https://lance.fortnow.com/papers/
https://lance.fortnow.com/papers/
https://blog.computationalcomplexity.org/

M 269 Exa m M2692(|)?1e$/ision

Reminders Phil Molyneux

| 2
>

Read the Exam arrangements booklet
Before the exam — check the date, time and location
(and how to get there)
At the exam centre — arrive early
Bring photo ID with signature
Use black or blue pens (not erasable and not pencil) —
see Cult Pens for choices — pencils for preparing
diagrams (HB or blacker) Fxom Reminders
Practice writing by hand
In the exam — Read the questions — carefully —
before and after answering them
Don't get stuck on a question — move on, come back
later
But do make sure you have attempted all questions

. and finally Good Luck

152/153 (163/164)

http://www2.open.ac.uk/students/help/exam-arrangements-booklet
http://www.cultpens.com/

M269 Exam Revision

	M269 Exam Revision Agenda & Aims
	Introductions & Revision Strategies
	M269 Exam 2017J

	Adobe Connect Interface and Settings
	Adobe Connect Interface — Student View
	Adobe Connect Settings
	Adobe Connect Interface — Student & Tutor Views
	Adobe Connect — Sharing Screen & Applications
	Adobe Connect — Ending a Meeting

	M269 Prsntn 2017J Exam Qs
	M269 2017J Exam Qs
	M269 2017J Exam Q Part1

	Units 1 & 2
	Unit 1 Introduction
	M269 2017J Exam Q 1
	M269 2017J Exam Soln 1
	M269 2017J Exam Q 2
	M269 2017J Exam Soln 2
	Unit 2 From Problems to Programs
	M269 2017J Exam Q 3
	M269 2017J Exam Soln 3
	M269 2017J Exam Q 4
	M269 2017J Exam Soln 4

	Units 3, 4 & 5
	Unit 3 Sorting
	Unit 4 Searching
	M269 2017J Exam Q 5
	M269 2017J Exam Soln 5
	M269 2017J Exam Q 6
	M269 2017J Exam Soln 6
	M269 2017J Exam Q 7
	M269 2017J Exam Soln 7
	M269 2017J Exam Q 8
	M269 2017J Exam Soln 8
	Unit 5 Optimisation
	M269 2017J Exam Q 9
	M269 2017J Exam Soln 9
	M269 2017J Exam Q 10
	M269 2017J Exam Soln 10

	Units 6 & 7
	Propositional Logic
	M269 2017J Exam Q 11
	M269 2017J Exam Soln 11
	Predicate Logic
	M269 2017J Exam Q 12
	M269 2017J Exam Soln 12
	SQL Queries
	M269 2017J Exam Q 13
	M269 2017J Exam Soln 13
	Logic
	M269 2017J Exam Q 14
	M269 2017J Exam Soln 14
	Computability
	M269 2017J Exam Q 15
	M269 2017J Exam Soln 15
	Complexity

	M269 Exam 2017J Q Part2
	M269 2017J Exam Q 16
	M269 2017J Exam Q 17

	M269 Exam 2017J Soln Part2
	M269 2017J Exam Soln 16
	M269 2017J Exam Soln 17

	Exam Reminders
	White Slide

