
M269 Revision
2019

Phil Molyneux

Agenda

Adobe Connect

M269 17J Exam

Units 1 & 2

Units 3, 4 & 5

Units 6 & 7

Q Part 2

Soln Part 2

Exam Reminders

White Slide

M269 Revision 2019
Exam 2017J

Phil Molyneux

25 May 2019

1/153 (1/164)



M269 Revision
2019

Phil Molyneux

Agenda
Introductions

M269 Exam 2017J

Adobe Connect

M269 17J Exam

Units 1 & 2

Units 3, 4 & 5

Units 6 & 7

Q Part 2

Soln Part 2

Exam Reminders

White Slide

M269 Exam Revision
Agenda & Aims

1. Welcome and introductions
2. Revision strategies
3. M269 Exam — Part 1 has 15 questions 65%
4. M269 Exam — Part 2 has 2 questions 35%
5. M269 Exam — 3 hours, Part 1 80 mins, Part 2 90 mins
6. M269 2017J exam (June 2018)
7. Topics and discussion for each question
8. Exam techniques
9. These slides and notes are at http://www.pmolyneux.

co.uk/OU/M269/M269ExamRevision/
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M269 Exam Revision
Introductions & Revision strategies

I Introductions
I What other exams are you doing this year ?
I Each give one exam tip to the group
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M269 Exam
Presentation 2016J

I Not examined this presentation:
I Unit 4, Section 2 String search
I Unit 7, Section 2 Logic Revisited
I Unit 7, Section 4 Beyond the Limits
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Adobe Connect
Interface — Student Quick Reference
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Interface — Student View
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Adobe Connect
Settings

I Everybody: Audio Settings Meeting Audio Setup Wizard. . .

I Audio Menu bar Audio Microphone rights for Participants 4

I Do not Enable single speaker mode
I Drawing Tools Share pod menu bar Draw (1 slide/screen)
I Share pod menu bar Menu icon Enable Participants to draw 4 gray
I Meeting Preferences Whiteboard Enable Participants to draw 4

I Cancel hand tool
I Do not enable green pointer. . .
I Meeting Preferences Attendees Pod Disable Raise Hand

notification
I Cursor Meeting Preferences General tab Host Cursors

Show to all attendees 4 (default Off)
I Meeting Preferences Screen Share Cursor Show Application Cursor

I Webcam Menu bar Webcam Enable Webcam for Participants 4

I Recording Meeting Record Meeting. . . 4
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Adobe Connect
Access

I Tutor Access
I TutorHome M269 Website Tutorials

I Cluster Tutorials M269 Online tutorial room

I Tutor Groups M269 Online tutor group room

I Module-wide Tutorials M269 Online module-wide room

I Attendance
TutorHome Students View your tutorial timetables

I Beamer Slide Scaling 440% (422 x 563 mm)
I Clear Everyone’s Status

Attendee Pod Menu Clear Everyone’s Status

I Grant Access
Meeting Manage Access & Entry Invite Participants. . . and send
link via email

8/153 (8/164)



M269 Revision
2019

Phil Molyneux

Agenda

Adobe Connect
Student View

Settings

Student & Tutor Views

Sharing Screen &
Applications

Ending a Meeting

M269 17J Exam

Units 1 & 2

Units 3, 4 & 5

Units 6 & 7

Q Part 2

Soln Part 2

Exam Reminders

White Slide

Adobe Connect
Keystroke Shortcuts

I Keyboard shortcuts in Adobe Connect
I Toggle Mic + M (Mac), Ctrl + M (Win)

(On/Disconnect)
I Toggle Raise-Hand status + E

I Close dialog box (Mac), Esc (Win)
I End meeting + \
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Adobe Connect Interface
Student View (default)
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Adobe Connect Interface
Sharing Screen & Applications

I Share My Screen Application tab Terminal for Terminal
I Share menu Change View Zoom in for mismatch of screen

size/resolution (Participants)
I Leave the application on the original display
I Beware blued hatched rectangles — from other

(hidden) windows or contextual menus
I Presenter screen pointer affects viewer display —

beware of moving the pointer away from the application
I First time: System Preferences Security & Privacy Privacy

Accessibility

13/153 (13/164)



M269 Revision
2019

Phil Molyneux

Agenda

Adobe Connect
Student View

Settings

Student & Tutor Views

Sharing Screen &
Applications

Ending a Meeting

M269 17J Exam

Units 1 & 2

Units 3, 4 & 5

Units 6 & 7

Q Part 2

Soln Part 2

Exam Reminders

White Slide

Adobe Connect
Ending a Meeting

I Notes for the tutor only
I Student: Meeting Exit Adobe Connect

I Tutor:
I Recording Meeting Stop Recording 4

I Remove Participants Meeting End Meeting. . . 4

I Dialog box allows for message with default message:
I The host has ended this meeting. Thank you for

attending.
I Recording availability In course Web site for joining

the room, click on the eye icon in the list of recordings
under your recording — edit description and name

I Meeting Information Meeting Manage Meeting Information

— can access a range of information in Web page.
I Attendance Report see course Web site for joining

room
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M269 2017J Exam
Qs

I M269 Algorithms, Data Structures and Computability
I Presentation 2017J Exam
I Date Thursday, 7 June 2018 Time 10:00–13:00
I There are TWO parts to this examination. You should

attempt all questions in both parts
I Part 1 carries 65 marks — 80 minutes
I Part 2 carries 35 marks — 90 minutes
I Note see the original exam paper for exact wording and

formatting — these slides and notes may change some
wording and formatting

I Note The 2015J exam and before had Part 1 with 60
marks (100 minutes), Part 2 with 40 marks (70
minutes)
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M269 2017J Exam
Q Part1

I Answer every question in this part.
I The marks for each question are given below the

question number.
I Answers to questions in this Part should be written on

this paper in the spaces provided, or in the case of
multiple-choice questions you should tick the
appropriate box(es).

I If you tick more boxes than indicated for a multiple
choice question, you will receive no marks for your
answer to that question.

I Use the provided answer books for any rough working.
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M269 Specimen Exam
Unit 1 Topics, Q1, Q2

I Unit 1 Introduction
I Computation, computable, tractable
I Introducing Python
I What are the three most important concepts in

programming ?
1.
2.
3.

I Quote from Paul Hudak (1952–2015)
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M269 Specimen Exam
Unit 1 Topics, Q1, Q2

I Unit 1 Introduction
I Computation, computable, tractable
I Introducing Python
I What are the three most important concepts in

programming ?
1. Abstraction
2.
3.

I Quote from Paul Hudak (1952–2015)
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M269 Specimen Exam
Unit 1 Topics, Q1, Q2

I Unit 1 Introduction
I Computation, computable, tractable
I Introducing Python
I What are the three most important concepts in

programming ?
1. Abstraction
2. Abstraction
3.
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M269 Specimen Exam
Unit 1 Topics, Q1, Q2

I Unit 1 Introduction
I Computation, computable, tractable
I Introducing Python
I What are the three most important concepts in

programming ?
1. Abstraction
2. Abstraction
3. Abstraction

I Quote from Paul Hudak (1952–2015)
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M269 2017J Exam
Q 1 (2 marks)

I Which one of the following statements is true? (Tick
one box.)

A. An Abstract Data Type is the definition of a data
structure in terms of the pre- and postconditions on the
data structure.

B. A more complex algorithm will always take more time to
execute than a less complex one.

C. Abstraction as modelling involves two layers — the
interface and the implementation.

D. A problem is computable if it is possible to build an
algorithm which solves any instance of the problem in a
finite number of steps.

Go to Soln 1
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M269 2017J Exam
Soln 1

A. An Abstract Data Type is the definition of a data
structure in terms of the pre- and postconditions on the
data structure. No ADT defined by operations that may
be performed on it and the pre- and postconditions on
the operations

B. A more complex algorithm will always take more time to
execute than a less complex one. No The less complex
one could have a bigger problem

C. Abstraction as modelling involves two layers — the
interface and the implementation. No Models represent
reality in sufficient detail

D. A problem is computable if it is possible to build an
algorithm which solves any instance of the problem in a
finite number of steps. Yes

Go to Q 1
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M269 2017J Exam
Q 2 (2 marks)

I The general idea of abstraction as modelling can be
shown with the following diagram.

I The picture in the top is of a Ford Anglia in the real
world, and the picture in the bottom is of a Matchbox
model of a Ford Anglia.

I Complete the diagram by adding an appropriate label in
the space indicated by A and one in the space indicated
by B.

Go to Soln 2
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M269 2017J Exam
Soln 2

I A (Model) ignores detail of
I B (Actual car) represented by

Go to Q 2
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M269 Specimen Exam
Unit 2 Topics, Q3, Q4

I Unit 2 From Problems to Programs
I Abstract Data Types
I Pre and Post Conditions
I Logic for loops

22/153 (25/164)



M269 Revision
2019

Phil Molyneux

Agenda

Adobe Connect

M269 17J Exam

Units 1 & 2
Unit 1 Introduction

Q 1

Soln 1

Q 2

Soln 2

Unit 2 From Problems to
Programs

Example Algorithm Design
— Searching

Q 3

Soln 3

Q 4

Soln 4

Units 3, 4 & 5

Units 6 & 7

Q Part 2

Soln Part 2

Exam Reminders

White Slide

Example Algorithm Design
Searching

I Given an ordered list (xs) and a value (val), return
I Position of val in xs or
I Some indication if val is not present

I Simple strategy: check each value in the list in turn
I Better strategy: use the ordered property of the list to

reduce the range of the list to be searched each turn
I Set a range of the list
I If val equals the mid point of the list, return the mid

point
I Otherwise half the range to search
I If the range becomes negative, report not present

(return some distinguished value)
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Example Algorithm Design
Binary Search Iterative

1 def binarySearchIter(xs,val):
2 lo = 0
3 hi = len(xs) - 1

5 while lo <= hi:
6 mid = (lo + hi) // 2
7 guess = xs[mid]

9 if val == guess:
10 return mid
11 elif val < guess:
12 hi = mid - 1
13 else:
14 lo = mid + 1

16 return None
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Divide and Conquer
Binary Search Recursive

1 def binarySearchRec(xs,val ,lo=0,hi=-1):
2 if (hi == -1):
3 hi = len(xs) - 1

5 mid = (lo + hi) // 2

7 if hi < lo:
8 return None
9 else:
10 guess = xs[mid]
11 if val == guess:
12 return mid
13 elif val < guess:
14 return binarySearchRec(xs,val ,lo ,mid -1)
15 else:
16 return binarySearchRec(xs,val ,mid+1,hi)
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Divide and Conquer
Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)
xs = Highlight the mid value and search range

binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range

binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range

binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range

Return value: ??

26/153 (29/164)



M269 Revision
2019

Phil Molyneux

Agenda

Adobe Connect

M269 17J Exam

Units 1 & 2
Unit 1 Introduction

Q 1

Soln 1

Q 2

Soln 2

Unit 2 From Problems to
Programs

Example Algorithm Design
— Searching

Q 3

Soln 3

Q 4

Soln 4

Units 3, 4 & 5

Units 6 & 7

Q Part 2

Soln Part 2

Exam Reminders

White Slide

Divide and Conquer
Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,25,??,??)
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Divide and Conquer
Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = Highlight the mid value and search range

binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range

binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range

Return value: ??
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Divide and Conquer
Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,10) by line 13

xs = Highlight the mid value and search range

binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range

Return value: ??
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Divide and Conquer
Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,10) by line 13

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,8) by line 13

xs = Highlight the mid value and search range

Return value: ??
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Divide and Conquer
Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,10) by line 13

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,8) by line 13

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
Return value: ??
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Divide and Conquer
Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,10) by line 13

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,8) by line 13

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
Return value: 8 by line 11
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Example Algorithm Design
Binary Search Iterative — Miller & Ranum

1 def binarySearchIterMR(alist , item):
2 first = 0
3 last = len(alist)-1
4 found = False

6 while first <=last and not found:
7 midpoint = (first + last )//2
8 if alist[midpoint] == item:
9 found = True
10 else:
11 if item < alist[midpoint ]:
12 last = midpoint -1
13 else:
14 first = midpoint +1

16 return found
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Divide and Conquer
Binary Search Recursive — Miller & Ranum

1 def binarySearchRecMR(alist , item):
2 if len(alist) == 0:
3 return False
4 else:
5 midpoint = len(alist )//2
6 if alist[midpoint ]== item:
7 return True
8 else:
9 if item <alist[midpoint ]:
10 return binarySearchRecMR(alist[: midpoint],item)
11 else:
12 return binarySearchRecMR(alist[midpoint +1:], item)
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Q 3 (4 marks)

I A binary search is being carried out on the list shown
below for item 41:

[2,16,17,25,31,39,41,52,67,69,77,83,89,91,99]

I For each pass of the algorithm, draw a box around the
items in the partition to be searched during that pass,
continuing for as many passes as you think are needed.

I We have done the first pass for you showing that the
search starts with the whole list. Draw your boxes below
for each pass needed; you may not need to use all the
lines below. (The question had 8 rows)
(Pass 1) [ 2,16,17,25,31,39,41,52,67,69,77,83,89,91,99 ]
(Pass 2) [2,16,17,25,31,39,41,52,67,69,77,83,89,91,99]
(Pass 3) [2,16,17,25,31,39,41,52,67,69,77,83,89,91,99]

Go to Soln 3
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M269 2017J Exam
Soln 3

I The complete binary search:
(Pass 1) [ 2,16,17,25,31,39,41,52,67,69,77,83,89,91,99 ]

(Pass 2) [ 2,16,17,25,31,39,41 ,52,67,69,77,83,89,91,99]

(Pass 3) [2,16,17,25, 31,39,41 ,52,67,69,77,83,89,91,99]

(Pass 4) [2,16,17,25,31,39, 41 ,52,67,69,77,83,89,91,99]

Go to Q 3
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M269 2017J Exam
Q 4 (5 marks)

I A Python program contains a loop with the following
guard
while not (x >= 2 or y <= 2) or (x < 2 and y > 2):

I Complete the following truth table, where:
P represents x < 2
Q represents y > 2

P Q ¬P ¬Q ¬P ∨ ¬Q ¬(¬P ∨ ¬Q) P ∧ Q ¬(¬P ∨ ¬Q) ∨ (P ∧ Q)

F F

F T

T F

T T

I Q 4 continued on next slide

Go to Soln 4
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M269 2017J Exam
Q 4 (contd)

I Use the results from your truth table to choose which
one of the following expressions could be used as the
simplest equivalent to the above guard. (Tick one box.)

A. not (x < 2 and y > 2)
B. (x >= 2 or y <= 2)
C. (x < 2 and y > 2)
D. (x >= 2 and y <= 2)
E. (x < 2 and y <= 2)

Go to Soln 4
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Soln 4

P Q ¬P ¬Q ¬P ∨ ¬Q ¬(¬P ∨ ¬Q) P ∧ Q ¬(¬P ∨ ¬Q) ∨ (P ∧ Q)

F F T T T F F F

F T T F T F F F

T F F T T F F F

T T F F F T T T

I The equivalent expression is C.

I Soln 4 continued on next slide

Go to Q 4
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M269 2017J Exam
Soln 4

A. not (x < 2 and y > 2)
→ not P and not Q

B. (x >= 2 or y <= 2)
→ not P or not Q

C. (x < 2 and y > 2)→ P and Q
D. (x >= 2 and y <= 2)
→ not P and not Q

E. (x < 2 and y <= 2)
→ P and not Q

I not (not P or not Q) or (P and Q)
→ (P and Q) or (P and Q)
→ (P and Q)

Go to Q 4
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M269 Specimen Exam
Unit 3 Topics, Q5, Q6

I Unit 3 Sorting
I Elementary methods: Bubble sort, Selection sort,

Insertion sort
I Recursion — base case(s) and recursive case(s) on

smaller data
I Quicksort, Merge sort
I Sorting with data structures: Tree sort, Heap sort
I See sorting notes for abstract sorting algorithm
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Unit 3 Sorting
Abstract Sorting Algorithm

unsorted list xs

if (length xs > 1) then
(xs1,xs2) = split xs

xs1 xs2

ys1 = sort xs1 ys2 = sort xs2

ys = join (ys1,ys2)

sorted list ys
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Unit 3 Sorting
Sorting Algorithms

Using the Abstract sorting algorithm, describe the split and
join for:
I Insertion sort
I Selection sort
I Merge sort
I Quicksort
I Bubble sort (the odd one out)
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M269 Specimen Exam
Unit 4 Topics, Q7, Q8

I Unit 4 Searching
I String searching: Quick search Sunday algorithm,

Knuth-Morris-Pratt algorithm
I Hashing and hash tables
I Search trees: Binary Search Trees
I Search trees: Height balanced trees: AVL trees
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M269 2017J Exam
Q 5 (4 marks)

I Consider the diagrams in A–H, where nodes are
represented by black dots and edges by arrows. The
numbers are the keys for the corresponding nodes.

I Q 5 continued on next slide

Go to Soln 5
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M269 2017J Exam
Q 5

I On each line, write one or more letters, or write None.
(a) Which of A, B, C and D, if any, are not a tree?
(b) Which of E, F, G and H, if any, are binary trees?
(c) Which of C, D, G and H, if any, are complete binary

trees?
(d) Which of C, D, G and H, if any, are not a heap?

Go to Soln 5
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M269 2017J Exam
Soln 5

(a) Which of A, B, C and D, if any, are not a tree?
A is not a tree since 4 has two parents

(b) Which of E, F, G and H, if any, are binary trees?
E, G and H — F is not a binary tree since 7 has three
sub-trees — note E has duplicate nodes

(c) Which of C, D, G and H, if any, are complete binary
trees?
G and H — E is not a complete binary tree since the
last level is not filled from left to right

(d) Which of C, D, G and H, if any, are not a heap?
C (since not a complete binary tree), D (since misses
both properties), H (since does not have ordering
property)

Go to Q 5
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M269 2017J Exam
Q 6 (6 marks)

I Consider the following function, which takes a
non-empty list as an argument.

1 def variance(aList):
2 n = len(aList)
3 total = 0
4 for item in aList:
5 total = total + item
6 mean = total / n
7 ssdev = 0
8 for item in aList:
9 deviation = item - mean

10 ssdev = ssdev + (deviation * deviation)
11 var = ssdev / n
12 return var

I Q 6 continued on next slide

Go to Soln 6
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Q 6 (contd)

I From the options below, select the two that represent
the correct combination of T (n) and Big-O complexity
for this function.
You may assume that a step (i.e. the basic unit of
computation) is the assignment statement.
(Tick one box for T(n) and one box for Big-O
complexity.)
A. T (n) = 2n + 5 i. O(n)
B. T (n) = 3n + 5 ii. O(2n)
C. T (n) = 3n + 6 iii. O(3n)
D. T (n) = n2 + 5 iv. O(n2)
E. T (n) = 3n2 + 6 v. O(3n2)

I Explain how you arrived at T (n) and the associated
Big-O

Go to Soln 6
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M269 2017J Exam
Soln 6

I Options B and i
I There are two loops (not nested) with 3 assignments

which contribute 3n to T (n)
I The remainder of the code has 5 assignments
I Hence T (n) = 3n + 5
I and complexity is O(n) from the leading term

Go to Q 6
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Q 7 (4 marks)

(a) Which one of the following statements are true? (Tick
one box.)

A. Hash tables store unique (i.e. non-duplicate) keys in an
arbitrary order and are therefore an implementation of
the Set ADT.

B. A hash function maps a value to a key in the table.
C. The higher the load factor on a hash table, the higher

the risk of collisions.
D. Linear Probing is a chaining technique designed to

resolve collisions.

Go to Soln 7
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M269 2017J Exam
Q 7 (contd)

(b) Calculate the load factor for the hash table below. Show
your working.
Alice Nisha Bob Ali

0 1 2 3 4 5 6 7 8 9 10 11

Go to Soln 7
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M269 2017J Exam
Soln 7

A. Hash tables store unique (i.e. non-duplicate) keys in an
arbitrary order and are therefore an implementation of
the Set ADT. No — the order is not arbitrary, it is a
result of the hash function and any collision resolution

B. A hash function maps a value to a key in the table. No
— a hash function maps values to integer indices of a
table, but that position may be occupied.

C. The higher the load factor on a hash table, the higher
the risk of collisions. Yes — a high load factor means a
high proportion of the hash table is occupied

D. Linear Probing is a chaining technique designed to
resolve collisions. No — Linear probing and chaining
are different techniques

(b) The load factor is 4/12 or 0.3333
Go to Q 7
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Q 8 (4 marks)

I In the following binary search tree, label each node with
its balance factor.

55

34

29

68

59

65

81

I Would this tree need to be rebalanced to be a valid
AVL tree? Explain your answer.

Go to Soln 8
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Soln 8

I Binary tree with balance factors and heights — note:
here empty trees have height 0 (not −1)

55bf=−1 h=4

341 2

290 1

681 3

59−1 2

650 1

810 1

I The tree would not need rebalancing to be an AVL tree
— the tree is a binary search tree and every node has
balance factor in the range {−1, 0,+1}

Go to Q 8
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M269 Specimen Exam
Unit 5 Topics, Q9, Q10

I Unit 5 Optimisation
I Graphs searching: DFS, BFS
I Distance: Dijkstra’s algorithm
I Greedy algorithms: Minimum spanning trees, Prim’s

algorithm
I Dynamic programming: Knapsack problem, Edit

distance
I See Graphs Tutorial Notes
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M269 2017J Exam
Q 9 (4 marks)

I A water distribution network can be represented as a
weighted directed graph.

I The nodes represent the reservoirs, water treatment
centres and consumers (homes, factories, etc.).

I The directed edges represent the water pipes, showing
the flow of water, from the reservoirs to the consumers,
via the treatment centres.

I The edge weights indicate the maximum flow (in cubic
metres per second) of the pipes.

I Complete the following statements, and include in the
justification any assumptions you make.

I For a typical water distribution network, the graph is
(choose from CYCLIC/ACYCLIC) because:

I and it is (choose from SPARSE/DENSE) because:
Go to Soln 9
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M269 2017J Exam
Soln 9

I The network is acyclic since water does not return to
the sources (in this network) — no mention is made of
waste water and sewerage collection and recycling.

I A sparse network since most nodes are only connected
to one other node.

Go to Q 9
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M269 2017J Exam
Q 10 (4 marks)

I Consider the following undirected graph:

I Complete the table below to show one order in which
the vertices of the above graph could be visited in a
Breadth First Search (BFS) starting at vertex 3:

Vertices visited 3

Go to Soln 10
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M269 2017J Exam
Soln 10

I Possible answers:
Vertices visited 3 1 4 2 5

Vertices visited 3 4 1 2 5

Go to Q 10

54/153 (65/164)



M269 Revision
2019

Phil Molyneux

Agenda

Adobe Connect

M269 17J Exam

Units 1 & 2

Units 3, 4 & 5

Units 6 & 7
Propositional Logic

Q 11

Soln 11

Predicate Logic

Q 12

Soln 12

SQL Queries

Q 13

Soln 13

Logic

Q 14

Soln 14

Computability

Q 15

Soln 15

Complexity

Q Part 2

Soln Part 2

Exam Reminders

White Slide

M269 Specimen Exam
Q11 Topics

I Unit 6
I Sets
I Propositional Logic
I Truth tables
I Valid arguments
I Infinite sets
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M269 2017J Exam
Q 11 (4 marks)

I In propositional logic, what does it mean to say that a
well-formed formula is contingent?

I Is the well-formed formula (P → Q)→ (¬Q → ¬P)
contingent? Explain.

Go to Soln 11
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M269 2017J Exam
Soln 11

I A WFF is contingent if it is true in some interpretations
and false in others — a tautology is true in every
interpretation, a contradiction is false in every
interpretation.

I (P → Q)→ (¬Q → ¬P) is a tautology
≡ ¬(¬P ∨ Q) ∨ (¬¬Q ∨ ¬P) by rewriting →

≡ ¬(¬P ∨ Q) ∨ (¬P ∨ Q) by negation and commutativity

≡ True by negation

P Q (P → Q) (¬Q → ¬P) (P → Q)→ (¬Q → ¬P)

T T T T T

T F F F T

F T T T T

F F T T T

Go to Q 11
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M269 Specimen Exam
Q12 Topics

I Unit 6
I Predicate Logic
I Translation to/from English
I Interpretations
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M269 2017J Exam
Q 12 (6 marks)

I Consider the following particular interpretation I for
predicate logic allowing facts to be expressed about
people and the computer games they own and play.

I The domain of individuals is D = {Jane, John, Saira,
Gran Turismo, Kessen, Pacman, The Sims, Pop Idol}.

I The constants jane, john, saira, gran_turismo, kessen,
pacman, the_sims and pop_idol are assigned to the
corresponding individuals.

I Q 12 continued on next slide

Go to Soln 12
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M269 2017J Exam
Q 12 (contd)

I Two predicate symbols are assigned binary relations as
follows:

I I(owns) = {(Jane, Gran Turismo), (Jane, Kessen),
(John, Pacman), (John, The Sims), (John, Pop Idol),
(Saira, Pop Idol), (Saira, Kessen)}

I I(has_played) = {(Jane, Gran Turismo), (Jane, Pop
Idol), (Jane, Kessen), (John, The Sims), (John, Pop
Idol), (Saira, Gran Turismo), (Saira, The Sims)}

I Q 12 continued on next slide

Go to Soln 12
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M269 2017J Exam
Q 12 (contd)

(a) Consider the sentence in English: Jane owns all the
games she has played.
Which one of these well-formed formulae is a
translation of the sentence into predicate logic?
A. ∀X .(owns (jane,X )→ has_played (jane,X ))
B. ∀X .(has_played (jane,X )→ owns (jane,X ))
C. ∀X .(has_played (jane,X ) ∧ owns (jane,X ))

I Q 12 continued on next slide

Go to Soln 12
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M269 2017J Exam
Q 12 (contd)

(b) Give an appropriate translation of the well-formed
formula below into English
∃X .(¬owns (saira,X ) ∧ has_played (jane,X ))

I This formula is (choose from TRUE/FALSE), under the
interpretation given on the previous page.

I Explain why in the box below.
You need to consider any relevant values for the
variables, and show, using the domain and
interpretation on the previous page, whether they make
the formula TRUE or FALSE.
In your explanation, make sure that you use formal
notation.
For example, instead of stating John doesn’t own
Kessen you need to write (John,Kessen) /∈ I(owns)

Go to Soln 12
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M269 2017J Exam
Soln 12

(a) Jane owns all the games she has played means
If Jane has played X then Jane owns X
so the answer is
B. ∀X .(has_played (jane,X )→ owns (jane,X ))

I A. ∀X .(owns (jane,X )→ has_played (jane,X )) means
Jane has played all the games she owns

I B. ∀X .(has_played (jane,X ) ∧ owns (jane,X )) means
Jane owns all games and has played all of them

I Soln 12 continued on next slide

Go to Q 12
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M269 2017J Exam
Soln 12 (contd)

(b) ∃X .(¬owns (saira,X ) ∧ has_played (jane,X )) means
There is at least one game that Saira does not own that
Jane has played

I True
because Jane has played Gran Turismo but Saira does
not own it

I (Saira,Gran Turismo) /∈ I(owns)
∧ (Jane,Gran Turismo) ∈ I(has_played)

Go to Q 12
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M269 Specimen Exam
Q13 Topics

I Unit 6
I SQL queries
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M269 2017J Exam
Q 13 (6 marks)

I A database contains the following tables:
oilfield
name production
Warga 3
Lolli 5
Tolstoi 0.5
Dakhun 2
Sugar 3

operator
company field
Amarco Warga
Bratape Lolli
Rosbif Tolstoi
Taqar Dakhun
Bratape Sugar

I Q 13 continued on next slide

Go to Soln 13
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M269 2017J Exam
Q 13 (contd)

(a) For the following SQL query, give the table returned by
the query.

SELECT name , company
FROM oilfield CROSS JOIN operator
WHERE name = field ;

I Write the question that the above query is answering.

I Q 13 continued on next slide

Go to Soln 13
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M269 2017J Exam
Q 13 (contd)

(b) Write an SQL query that answers the question
What is the name and the operating company of each
oil field operated by Bratape?
Your query should return the following table.
company field
Bratape Lolli
Bratape Sugar

Go to Soln 13
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M269 2017J Exam
Soln 13

SELECT name , company
FROM oilfield CROSS JOIN operator
WHERE name = field ;

I Table returned by the query
Warga Amarco
Lolli Bratape
Tolstoi Rosbif
Dakhun Taqar
Sugar Bratape

I SQL for What is the name and the operating company
of each oil field operated by Bratape?

SELECT company , field
FROM operator
WHERE company = ’Bratape ’

Go to Q 13
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M269 Specimen Exam
Q14 topics

I Unit 7
I Proofs
I Natural deduction
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Logic
Logicians, Logics, Notations

I A plethora of logics, proof systems, and different
notations can be puzzling.

I Martin Davis, Logician When I was a student, even the
topologists regarded mathematical logicians as living in
outer space. Today the connections between logic and
computers are a matter of engineering practice at every
level of computer organization

I Various logics, proof systems , were developed well
before programming languages and with different
motivations,
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Logic
Logic and Programming Languages

I Turing machines, Von Neumann architecture and
procedural languages Fortran, C, Java, Perl, Python,
JavaScript

I Resolution theorem proving and logic programming —
Prolog

I Logic and database query languages — SQL (Structured
Query Language) and QBE (Query-By-Example) are
syntactic sugar for first order logic

I Lambda calculus and functional programming with
Miranda, Haskell, ML, Scala
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Logical Arguments
Validity and Justification

I There are two ways to model what counts as a logically
good argument:
I the semantic view
I the syntactic view

I The notion of a valid argument in propositional logic is
rooted in the semantic view.

I It is based on the semantic idea of interpretations:
assignments of truth values to the propositional
variables in the sentences under discussion.

I A valid argument is defined as one that preserves truth
from the premises to the conclusions

I The syntactic view focuses on the syntactic form of
arguments.

I Arguments which are correct according to this view are
called justified arguments.
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Logical Arguments
Proof Systems, Soundness, Completeness

I Semantic validity and syntactic justification are different
ways of modelling the same intuitive property: whether
an argument is logically good.

I A proof system is sound if any statement we can prove
(justify) is also valid (true)

I A proof system is adequate if any valid (true) statement
has a proof (justification)

I A proof system that is sound and adequate is said to be
complete

I Propositional and predicate logic are complete —
arguments that are valid are also justifiable and vice
versa

I Unit 7 section 2.4 describes another logic where there
are valid arguments that are not justifiable (provable)
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Logical Arguments
Valid arguments

I Unit 6 defines valid arguments with the notation

P1
...
Pn
C

I The argument is valid if and only if the value of C is
True in each interpretation for which the value of each
premise Pi is True for 1 ≤ i ≤ n

I In some texts you see the notation {P1, . . . ,Pn} |= C
I The expression denotes a semantic sequent or semantic

entailment
I The |= symbol is called the double turnstile and is often

read as entails or models
I In LaTeX � and |= are produced from \vDash and

\models — see also the turnstile package
I In Unicode |= is called TRUE and is U+22A8, HTML

&#8872;
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Logical Arguments
Valid arguments — Tautology

I The argument {} |= C is valid if and only if C is True in
all interpretations

I That is, if and only if C is a tautology
I Beware different notations that mean the same thing

I Alternate symbol for empty set: ∅ |= C
I Null symbol for empty set: |= C
I Original M269 notation with null axiom above the line:

C
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Logic
Justified Arguments

I Definition 7.1 An argument {P1,P2, . . . ,Pn} ` C is a
justified argument if and only if either the argument is
an instance of an axiom or it can be derived by means
of an inference rule from one or more other justified
arguments.

I Axioms
Γ ∪ {A} ` A (axiom schema)

I This can be read as: any formula A can be derived from
the assumption (premise) of {A} itself

I The ` symbol is called the turnstile and is often read as
proves, denoting syntactic entailment

I In LaTeX ` is produced from \vdash
I In Unicode ` is called RIGHT TACK and is U+22A2,

HTML &#8866;
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Logic
Justified Arguments

I Section 2.3 of Unit 7 (not the Unit 6, 7 Reader) gives
the inference rules for →, ∧, and ∨ — only dealing with
positive propositional logic so not making use of
negation — see List of logic systems

I Usually (Classical logic) have a functionally complete
set of logical connectives — that is, every binary
Boolean function can be expressed in terms the
functions in the set
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Justified Arguments
Inference Rules — Notation

I Inference rule notation:
Argument1 . . . Argumentn (label)

Argument
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Justified Arguments
Inference Rules — Conjunction

I Γ ` A Γ ` B (∧-introduction)
Γ ` A ∧ B

I Γ ` A ∧ B (∧-elimination left)
Γ ` A

I Γ ` A ∧ B (∧-elimination right)
Γ ` B
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Justified Arguments
Inference Rules — Implication

I Γ ∪ {A} ` B
(→-introduction)

Γ ` A→ B
I The above should be read as: If there is a proof

(justification, inference) for B under the set of premises,
Γ, augmented with A, then we have a proof
(justification. inference) of A→ B, under the
unaugmented set of premises, Γ.
The unaugmented set of premises, Γ may have
contained A already so we cannot assume

(Γ ∪ {A})− {A} is equal to Γ

I Γ ` A Γ ` A→ B (→-elimination)
Γ ` B
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Justified Arguments
Inference Rules — Disjunction

I Γ ` A (∨-introduction left)
Γ ` A ∨ B

I Γ ` B (∨-introduction right)
Γ ` A ∨ B

I Disjunction elimination

Γ ` A ∨ B Γ ∪ {A} ` C Γ ∪ {B} ` C
(∨-elimination)

Γ ` C
I The above should be read: if a set of premises Γ

justifies the conclusion A ∨ B and Γ augmented with
each of A or B separately justifies C , then Γ justifies C
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Proofs in Tree Form

I The syntax of proofs is recursive:
I A proof is either an axiom, or the result of applying a

rule of inference to one, two or three proofs.
I We can therefore represent a proof by a tree diagram in

which each node have one, two or three children
I For example, the proof of {P ∧ (P → Q)} ` Q in

Question 4 (in the Logic tutorial notes) can be
represented by the following diagram:

{P ∧ (P → Q)} ` P ∧ (P → Q)
(∧-E left)

{P ∧ (P → Q)} ` P
{P ∧ (P → Q)} ` P ∧ (P → Q)

(∧-E right)
{P ∧ (P → Q)} ` P → Q

(→-E)
{P ∧ (P → Q)} ` Q
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Justified Arguments
Self-Assessment activity 7.4

I Let Γ = {P → R,Q → R,P ∨ Q}

I Γ ` P ∨ Q Γ ∪ {P} ` R Γ ∪ {Q} ` R
(∨-elimination)

Γ ` R
I Γ ∪ {P} ` P Γ ∪ {P} ` P → R

(→-elimination)
Γ ∪ {P} ` R

I Γ ∪ {Q} ` Q Γ ∪ {Q} ` Q → R
(→-elimination)

Γ ∪ {Q} ` R
I Complete tree layout

I
Γ ` P ∨ Q

Γ ∪ {P}
` P

Γ ∪ {P}
` P → R (→-E)

Γ ∪ {P} ` R

Γ ∪ {Q}
` Q

Γ ∪ {Q}
` Q → R

(→-E)
Γ ∪ {Q} ` R

(∨-E)
Γ ` R
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Justified Arguments
Self-assessment activity 7.4 — Linear Layout

1. {P → R,Q → R,P ∨ Q} ` P ∨ Q [Axiom]
2. {P → R,Q → R,P ∨ Q} ∪ {P} ` P [Axiom]
3. {P → R,Q → R,P ∨ Q} ∪ {P} ` P → R [Axiom]
4. {P → R,Q → R,P ∨ Q} ∪ {Q} ` Q [Axiom]
5. {P → R,Q → R,P ∨ Q} ∪ {Q} ` Q → R [Axiom]
6. {P → R,Q → R,P ∨ Q} ∪ {P} ` R [2, 3, →-E]
7. {P → R,Q → R,P ∨ Q} ∪ {Q} ` R [4, 5, →-E]
8. {P → R,Q → R,P ∨ Q} ` R [1, 6, 7, ∨-E]
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M269 2017J Exam
Q 14 (6 marks)

I Consider the following decision problems:
1. The Equivalence Problem
2. Is a given list not empty?
3. The Halting Problem
4. Is a given binary tree balanced?
I On each line, write one or more of the above problem

numbers, or write None.
I Which problems, if any, are decidable?
I Which problems, if any, are tractable?
I Which problems, if any, are NP-hard?

Go to Soln 14

86/153 (97/164)



M269 Revision
2019

Phil Molyneux

Agenda

Adobe Connect

M269 17J Exam

Units 1 & 2

Units 3, 4 & 5

Units 6 & 7
Propositional Logic

Q 11

Soln 11

Predicate Logic

Q 12

Soln 12

SQL Queries

Q 13

Soln 13

Logic

Q 14

Soln 14

Computability

Q 15

Soln 15

Complexity

Q Part 2

Soln Part 2

Exam Reminders

White Slide

M269 2017J Exam
Soln 14

I Decidable: 2. (Empty list), 4. (Balanced binary tree)
I Tractable: 2. (Empty list), 4. (Balanced binary tree)
I NP-hard: 3. (Halting problem)

See StackOverflow: Proof that the halting problem is
NP-hard?

Go to Q 14
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M269 Specimen Exam
Q15 Topics

I Unit 7
I Computability and ideas of computation
I Complexity
I P and NP
I NP-complete
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Computability
Ideas of Computation

I The idea of an algorithm and what is effectively
computable

I Church-Turing thesis Every function that would
naturally be regarded as computable can be computed
by a deterministic Turing Machine. (Unit 7 Section 4)

I See Phil Wadler on computability theory performed as
part of the Bright Club at The Strand in Edinburgh,
Tuesday 28 April 2015
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Computability
Reducing one problem to another

I To reduce problem P1 to P2, invent a construction that
converts instances of P1 to P2 that have the same
answer. That is:
I any string in the language P1 is converted to some

string in the language P2
I any string over the alphabet of P1 that is not in the

language of P1 is converted to a string that is not in the
language P2

I With this construction we can solve P1
I Given an instance of P1, that is, given a string w that

may be in the language P1, apply the construction
algorithm to produce a string x

I Test whether x is in P2 and give the same answer for w
in P1
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Computability
Direction of Reduction

I The direction of reduction is important
I If we can reduce P1 to P2 then (in some sense) P2 is at

least as hard as P1 (since a solution to P2 will give us a
solution to P1)

I So, if P2 is decidable then P1 is decidable
I To show a problem is undecidable we have to reduce

from an known undecidable problem to it
I ∀x(dpP1(x) = dpP2(reduce(x)))
I Since, if P1 is undecidable then P2 is undecidable
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Computability
Models of Computation

I In automata theory, a problem is the question of
deciding whether a given string is a member of some
particular language

I If Σ is an alphabet, and L is a language over Σ, that is
L ⊆ Σ∗, where Σ∗ is the set of all strings over the
alphabet Σ then we have a more formal definition of
decision problem

I Given a string w ∈ Σ∗, decide whether w ∈ L
I Example: Testing for a prime number — can be

expressed as the language Lp consisting of all binary
strings whose value as a binary number is a prime
number (only divisible by 1 or itself)
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Computability
Church-Turing Thesis & Quantum Computing

I Church-Turing thesis Every function that would
naturally be regarded as computable can be computed
by a deterministic Turing Machine.

I physical Church-Turing thesis Any finite physical
system can be simulated (to any degree of
approximation) by a Universal Turing Machine.

I strong Church-Turing thesis Any finite physical
system can be simulated (to any degree of
approximation) with polynomial slowdown by a
Universal Turing Machine.

I Shor’s algorithm (1994) — quantum algorithm for
factoring integers — an NP problem that is not known
to be P — also not known to be NP-complete and we
have no proof that it is not in P
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Computability
Turing Machine

I Finite control which can be in any of a finite number
of states

I Tape divided into cells, each of which can hold one of a
finite number of symbols

I Initially, the input, which is a finite-length string of
symbols in the input alphabet, is placed on the tape

I All other tape cells (extending infinitely left and right)
hold a special symbol called blank

I A tape head which initially is over the leftmost input
symbol

I A move of the Turing Machine depends on the state
and the tape symbol scanned

I A move can change state, write a symbol in the current
cell, move left, right or stay
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Turing Machine Diagram
Turing Machine Diagram

. . . b b a a a a . . . I/O Tape

q0q1

q2

q3 . . .

qn

Finite Control

q1

Reading and Writing Head
(moves in both directions)
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Computability
Turing Machine notation

I Q finite set of states of the finite control
I Σ finite set of input symbols (M269 S)
I Γ complete set of tape symbols Σ ⊂ Γ
I δ Transition function (M269 instructions, I)
δ :: Q × Γ→ Q × Γ× {L,R, S}
δ(q,X ) 7→ (p,Y ,D)

I δ(q,X ) takes a state, q and a tape symbol, X and
returns (p,Y ,D) where p is a state, Y is a tape symbol
to overwrite the current cell, D is a direction, Left,
Right or Stay

I q0 start state q0 ∈ Q
I B blank symbol B ∈ Γ and B /∈ Σ
I F set of final or accepting states F ⊆ Q
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Computability
Decidability

I Decidable — there is a TM that will halt with yes/no
for a decision problem — that is, given a string w over
the alphabet of P the TM with halt and return yes.no
the string is in the language P (same as recursive in
Recursion theory — old use of the word)

I Semi-decidable — there is a TM will halt with yes if
some string is in P but may loop forever on some inputs
(same as recursively enumerable) — Halting Problem

I Highly-undecidable — no outcome for any input —
Totality, Equivalence Problems

97/153 (108/164)

http://en.wikipedia.org/wiki/Recursion_theory


M269 Revision
2019

Phil Molyneux

Agenda

Adobe Connect

M269 17J Exam

Units 1 & 2

Units 3, 4 & 5

Units 6 & 7
Propositional Logic

Q 11

Soln 11

Predicate Logic

Q 12

Soln 12

SQL Queries

Q 13

Soln 13

Logic

Q 14

Soln 14

Computability

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Q 15

Soln 15

Complexity

Q Part 2

Soln Part 2

Exam Reminders

White Slide

Computability
Undecidable Problems

I Halting problem — the problem of deciding, given a
program and an input, whether the program will
eventually halt with that input, or will run forever —
term first used by Martin Davis 1952

I Entscheidungsproblem — the problem of deciding
whether a given statement is provable from the axioms
using the rules of logic — shown to be undecidable by
Turing (1936) by reduction from the Halting problem to
it

I Type inference and type checking in the
second-order lambda calculus (important for functional
programmers, Haskell, GHC implementation)

I Undecidable problem — see link to list
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Computability
Why undecidable problems must exist

I A problem is really membership of a string in some
language

I The number of different languages over any alphabet of
more than one symbol is uncountable

I Programs are finite strings over a finite alphabet (ASCII
or Unicode) and hence countable.

I There must be an infinity (big) of problems more than
programs.

I Computational problem — defined by a function
I Computational problem is computable if there is a

Turing machine that will calculate the function.
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Computability
Computability and Terminology (1)

I The idea of an algorithm dates back 3000 years to
Euclid, Babylonians. . .

I In the 1930s the idea was made more formal: which
functions are computable?

I A function a set of pairs
f = {(x , f (x)) : x ∈ X ∧ f (x) ∈ Y } with the function
property

I Function property: (a, b) ∈ f ∧ (a, c) ∈ f ⇒ b == c
I Function property: Same input implies same output
I Note that maths notation is deeply inconsistent here —

see Function and History of the function concept
I What do we mean by computing a function — an

algorithm ?
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Computability
Computability and Terminology (2)

I In the 1930s three definitions:
I λ-Calculus, simple semantics for computation — Alonzo

Church
I General recursive functions — Kurt Gödel
I Universal (Turing) machine — Alan Turing
I Terminology:

I Recursive, recursively enumerable — Church, Kleene
I Computable, computably enumerable — Gödel, Turing
I Decidable, semi-decidable, highly undecidable
I In the 1930s, computers were human
I Unfortunate choice of terminology

I Turing and Church showed that the above three were
equivalent

I Church-Turing thesis — function is intuitively
computable if and only if Turing machine computable
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Computability
Halting Problem — Sketch Proof (1)

I Halting problem — is there a program that can
determine if any arbitrary program will halt or continue
forever ?

I Assume we have such a program (Turing Machine)
h(f,x) that takes a program f and input x and
determines if it halts or not

h ( f , x )
= i f f ( x ) runs f o r e v e r

r e t u r n True
e l s e

r e tu rn Fa l s e

I We shall prove this cannot exist by contradiction

102/153 (113/164)
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Computability
Halting Problem — Sketch Proof (2)

I Now invent two further programs:
I q(f) that takes a program f and runs h with the input

to f being a copy of f
I r(f) that runs q(f) and halts if q(f) returns True,

otherwise it loops

q ( f )
= h ( f , f )

r ( f )
= i f q ( f )

r e t u r n
e l s e

wh i l e True : cont inue

I What happens if we run r(r) ?
I If it loops, q(r) returns True and it does not loop —

contradiction.
103/153 (114/164)
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Reductions & Non-Computable
Reductions

A1

input outputf A2
f (input)

I A reduction of problem P1 to problem P2
I transforms inputs to P1 into inputs to P2
I runs algorithm A2 (which solves P2) and
I interprets the outputs from A2 as answers to P1

I More formally: A problem P1 is reducible to a problem
P2 if there is a function f that takes any input x to P1
and transforms it to an input f (x) of P2

such that the solution of P2 on f (x) is the solution of
P1 on x

104/153 (115/164)
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Reductions & Non-Computible
Example: Squaring a Matrix

A1

M M2f A2
(M, M)

I Given an algorithm (A2) for matrix multiplication (P2)
I Input: pair of matrices, (M1,M2)
I Output: matrix result of multiplying M1 and M2

I P1 is the problem of squaring a matrix
I Input: matrix M
I Output: matrix M2

I Algorithm A1 has
f (M) = (M,M)
uses A2 to calculate M ×M = M2
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Reductions & Non-Computable
Non-Computable Problems

A1

input outputf A2
f (input)

I If P2 is computable (A2 exists) then P1 is computable
(f being simple or polynomial)

I Equivalently If P1 is non-computable then P2 is
non-computable

I Exercise: show B → A ≡ ¬A→ ¬B

106/153 (117/164)
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Reductions & Non-Computable
Contrapositive

I Proof by Contrapositive
I B → A ≡ ¬B ∨ A by truth table or equivalences

≡ ¬(¬A) ∨ ¬B commutativity and negation laws

≡ ¬A→ ¬B equivalences

I Common error: switching the order round

107/153 (118/164)
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Reductions & Non-Computable
Totality Problem

HP

(P, x) YES/NOf TP
Q

I Totality Problem
I Input: program Q
I Output: YES if Q terminates for all inputs else NO

I Assume we have algorithm TP to solve the Totality
Problem

I Now reduce the Halting Problem to the Totality
Problem

108/153 (119/164)
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Reductions & Non-Computable
Totality Problem

HP

(P, x) YES/NOf TP
Q

I Define f to transform inputs to HP to TP pseudo-Python

def f(P,x) :
def Q(y):

# ignore y
P(x)

return Q

I Run TP on Q
I If TP returns YES then P halts on x
I If TP returns NO then P does not halt on x

I We have solved the Halting Problem — contradiction

109/153 (120/164)
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Reductions & Non-Computable
Negative Value Problem

HP

(P, x) YES/NOf NVP
(Q, v)

I Negative Value Problem
I Input: program Q which has no input and variable v

used in Q
I Output: YES if v ever gets assigned a negative value

else NO
I Assume we have algorithm NVP to solve the Negative

Value Problem
I Now reduce the Halting Problem to the Negative Value

Problem

110/153 (121/164)
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Reductions & Non-Computable
Negative Value Problem

HP

(P, x) YES/NOf NVP
(Q, v)

I Define f to transform inputs to HP to NVP pseudo-Python

def f(P,x) :
def Q(y):

# ignore y
P(x)
v = -1

return (Q,var(v))

I Run NVP on (Q, var(v)) var(v) gets the variable name
I If NVP returns YES then P halts on x
I If NVP returns NO then P does not halt on x

I We have solved the Halting Problem — contradiction
111/153 (122/164)
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Reductions & Non-Computable
Squaring Function Problem

HP

(P, x) YES/NOf SFP
Q

I Squaring Function Problem
I Input: program Q which takes an integer, y
I Output: YES if Q always returns the square of y else

NO
I Assume we have algorithm SFP to solve the Squaring

Function Problem
I Now reduce the Halting Problem to the Squaring

Function Problem

112/153 (123/164)
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Reductions & Non-Computable
Squaring Function Problem

HP

(P, x) YES/NOf SFP
Q

I Define f to transform inputs to HP to SFP pseudo-Python

def f(P,x) :
def Q(y):

P(x)
return y * y

return Q

I Run SFP on Q
I If SFP returns YES then P halts on x
I If SFP returns NO then P does not halt on x

I We have solved the Halting Problem — contradiction

113/153 (124/164)
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Reductions & Non-Computable
Equivalence Problem

HP

P YES/NOf EP
(P1, P2)

I Equivalence Problem
I Input: two programs P1 and P2
I Output: YES if P1 and P2 solve the ame problem

(same output for same input) else NO
I Assume we have algorithm EP to solve the Equivalence

Problem
I Now reduce the Totality Problem to the Equivalence

Problem
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Reductions & Non-Computable
Equivalence Problem

TP

P YES/NOf EP
(P1, P2)

I Define f to transform inputs to TP to EP pseudo-Python

def f(P) :
def P1(x):

P(x)
return "Same␣string"

def P2(x)
return "Same␣string"

return (P1 ,P2)

I Run EP on (P1,P2)
I If EP returns YES then P halts on all inputs
I If EP returns NO then P does not halt on all inouts

I We have solved the Totality Problem — contradiction
115/153 (126/164)
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Reductions & Non-Computable
Rice’s Theorem

A1

input outputf A2
f (input)

I Rice’s Theorem all non-trivial, semantic properties of
programs are undecidable. H G Rice 1951 PhD Thesis

I Equivalently: For any non-trivial property of partial
functions, no general and effective method can decide
whether an algorithm computes a partial function with
that property.

I A property of partial functions is called trivial if it holds
for all partial computable functions or for none.
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Reductions & Non-Computable
Rice’s Theorem

I Rice’s Theorem and computability theory
I Let S be a set of languages that is nontrivial, meaning

I there exists a Turing machine that recognizes a
language in S

I there exists a Turing machine that recognizes a
language not in S

I Then, it is undecidable to determine whether the
language recognized by an arbitrary Turing machine lies
in S.

I This has implications for compilers and virus checkers
I Note that Rice’s theorem does not say anything about

those properties of machines or programs that are not
also properties of functions and languages.

I For example, whether a machine runs for more than 100
steps on some input is a decidable property, even
though it is non-trivial.

117/153 (128/164)
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M269 2017J Exam
Q 15 (4 marks)

I Which two of the following statements are true? (Tick
two boxes.)

A. If a programming language, let’s call it PL, is Turing
complete, then any computational problem can be
solved with a program written in PL.

B. The Equivalence Problem is not computable.
C. Problems in the class NP are defined as problems for

which it is not known whether they’re tractable.
D. There are non-computable computational problems

because: There are more decision problems with the
natural numbers as their domain (DPN) than Turing
Machines that solve instances of DPN.

E. The Totality Problem is definitely in the class P.

Go to Soln 15

118/153 (129/164)



M269 Revision
2019

Phil Molyneux

Agenda

Adobe Connect

M269 17J Exam

Units 1 & 2

Units 3, 4 & 5

Units 6 & 7
Propositional Logic

Q 11

Soln 11

Predicate Logic

Q 12

Soln 12

SQL Queries

Q 13

Soln 13

Logic

Q 14

Soln 14

Computability

Q 15

Soln 15

Complexity

Q Part 2

Soln Part 2

Exam Reminders

White Slide

M269 2017J Exam
Soln 15

A. False PL, Turing complete programming language can
compute anything that is computable but there are
some computational problems that are not computable

B. True Equivalence Problem is not computable — see
Computability notes

C. False The class P is a subset of NP — we just do not
know whether it is a proper subset or equal

D. True Programs are finite strings over a finite alphabet
(ASCII or Unicode) hence countable — however the
number of different languages over any alphabet of
more than one symbol is uncountable — a problem is
really membership of a string in some language

E. False Totality Problem is not computable — see
Computability notes — so not in the class P

Go to Q 15

119/153 (130/164)
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Complexity
P and NP

I P, the set of all decision problems that can be solved in
polynomial time on a deterministic Turing machine

I NP, the set of all decision problems whose solutions can
be verified (certificate) in polynomial time

I Equivalently, NP, the set of all decision problems that
can be solved in polynomial time on a non-deterministic
Turing machine

I A decision problem, dp is NP-complete if
1. dp is in NP and
2. Every problem in NP is reducible to dp in polynomial

time
I NP-hard — a problem satisfying the second condition,

whether or not it satisfies the first condition. Class of
problems which are at least as hard as the hardest
problems in NP. NP-hard problems do not have to be in
NP and may not be decision problems
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Complexity
P and NP — Diagram

Euler diagram for P, NP, NP-complete and NP-hard set of
problems

Source: Wikipedia NP-complete entry
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Complexity
NP-complete problems

I Boolean satisfiability (SAT) Cook-Levin theorem
I Conjunctive Normal Form 3SAT
I Hamiltonian path problem
I Travelling salesman problem
I NP-complete — see list of problems
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Complexity
Knapsack Problem

Source & Explanation: XKCD 287
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NP-Completeness and Boolean Satisfiability
Points on Notes

I The Boolean satisfiability problem (SAT) was the first
decision problem shown to be NP-Complete

I This section gives a sketch of an explanation
I Health Warning different texts have different notations

and there will be some inconsistency in these notes
I Health warning these notes use some formal notation

to make the ideas more precise — computation requires
precise notation and is about manipulating strings
according to precise rules.
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NP-Completeness and Boolean Satisfiability
Alphabets, Strings and Languages

I Notation:
I Σ is a set of symbols — the alphabet
I Σk is the set of all string of length k, which each

symbol from Σ
I Example: if Σ = {0, 1}

I Σ1 = {0, 1}
I Σ2 = {00, 01, 10, 11}

I Σ0 = {ε} where ε is the empty string
I Σ∗ is the set of all possible strings over Σ
I Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ . . .
I A Language, L, over Σ is a subset of Σ∗

I L ⊆ Σ∗

125/153 (136/164)
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NP-Completeness and Boolean Satisfiability
Language Accepted by a Turing Machine

I Language accepted by Turing Machine, M denoted by
L(M)

I L(M) is the set of strings w ∈ Σ∗ accepted by M
I For Final States F = {Y ,N}, a string w ∈ Σ∗ is

accepted by M ⇔ (if and only if) M starting in q0 with
w on the tape halts in state Y

I Calculating a function (function problem) can be turned
into a decision problem by asking whether f (x) = y
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NP-Completeness and Boolean Satisfiability
The NP-Complete Class

I If we do not know if P 6= NP, what can we say ?
I A language L is NP-Complete if:

I L ∈ NP and
I for all other L′ ∈ NP there is a polynomial time

transformation (Karp reducible, reduction) from L′ to L
I Problem P1 polynomially reduces (Karp reduces,

transforms) to P2, written P1 ∝ P2 or P1 ≤p P2, iff
∃f : dpP1 → dpP2 such that
I ∀I ∈ dpP1 [I ∈ YP1 ⇔ f (I) ∈ YP2 ]
I f can be computed in polynomial time
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NP-Completeness and Boolean Satisfiability
The NP-Complete Class (2)

I More formally, L1 ⊆ Σ∗1 polynomially transforms to
L2 ⊆ Σ∗2, written L1 ∝ L2 or L1 ≤p L2, iff ∃f : Σ∗1 → Σ∗2
such that
I ∀x ∈ Σ∗1 [x ∈ L1 ⇔ f (x) ∈ L2]
I There is a polynomial time TM that computes f

I Transitivity If L1 ∝ L2 and L2 ∝ L3 then L1 ∝ L3
I If L is NP-Hard and L ∈ P then P = NP
I If L is NP-Complete, then L ∈ P if and only if P = NP
I If L0 is NP-Complete and L ∈ NP and L0 ∝ L then L is

NP-Complete
I Hence if we find one NP-Complete problem, it may

become easier to find more
I In 1971/1973 Cook-Levin showed that the Boolean

satisfiability problem (SAT) is NP-Complete
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NP-Completeness and Boolean Satisfiability
The Boolean Satisfiability Problem

I A propositional logic formula or Boolean expression is
built from variables, operators: AND (conjunction, ∧),
OR (disjunction, ∨), NOT (negation, ¬)

I A formula is said to be satisfiable if it can be made True
by some assignment to its variables.

I The Boolean Satisfiability Problem is, given a formula,
check if it is satisfiable.
I Instance: a finite set U of Boolean variables and a finite

set C of clauses over U
I Question: Is there a satisfying truth assignment for C ?

I A clause is is a disjunction of variables or negations of
variables

I Conjunctive normal form (CNF) is a conjunction of
clauses

I Any Boolean expression can be transformed to CNF
129/153 (140/164)
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NP-Completeness and Boolean Satisfiability
The Boolean Satisfiability Problem (2)

I Given a set of Boolean variable U = {u1, u2, . . . , un}
I A literal from U is either any ui or the negation of some

ui (written ui)
I A clause is denoted as a subset of literals from U —
{u2, u4, u5}

I A clause is satisfied by an assignment to the variables if
at least one of the literals evaluates to True (just like
disjunction of the literals)

I Let C be a set of clauses over U — C is satisfiable iff
there is some assignment of truth values to the
variables so that every clause is satisfied (just like CNF)

I C = {{u1, u2, u3}, {u2, u3}, {u2, u3}} is satisfiable
I C = {{u1, u2}, {u1, u2}, {u1}} is not satisfiable
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NP-Completeness and Boolean Satisfiability
The Boolean Satisfiability Problem (3)

I Proof that SAT is NP-Complete looks at the structure
of NDTMs and shows you can transform any NDTM to
SAT in polynomial time (in fact logarithmic space
suffices)

I SAT is in NP since you can check a solution in
polynomial time

I To show that ∀L ∈ NP : L ∝ SAT invent a polynomial
time algorithm for each polynomial time NDTM, M,
which takes as input a string x and produces a Boolean
formula Ex which is satisfiable iff M accepts x

I See Cook-Levin theorem
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NP-Completeness and Boolean Satisfiability
Coping with NP-Completeness

I What does it mean if a problem is NP-Complete ?
I There is a P time verification algorithm.
I There is a P time algorithm to solve it iff P = NP (?)
I No one has yet found a P time algorithm to solve any

NP-Complete problem
I So what do we do ?

I Improved exhaustive search — Dynamic Programming;
Branch and Bound

I Heuristic methods — acceptable solutions in acceptable
time — compromise on optimality

I Average time analysis — look for an algorithm with
good average time — compromise on generality (see
Big-O Algorithm Complexity Cheatsheet)

I Probabilistic or Randomized algorithms — compromise
on correctness
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M269 2017J Exam
Q Part2

I Answer every question in this Part.
I The marks for each question are given below the

question number.
I Marks for a part of a question are given after the

question.
I Answers to questions in this Part must be written in the

additional answer books, which you should also use for
your rough working.

Go to Soln Part2
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M269 2017J Exam
Q 16 (20 marks)

I Consider an ADT for undirected graphs, named
UGraph, that includes these operations:

I nodes, which returns a sequence of all nodes in the
graph, in no particular order;

I has_edge, which takes two nodes and returns true if
there is an edge between those nodes;

I edges, which returns a sequence of node-node pairs
(tuples), in no particular order. Each edge only appears
once in the returned sequence, i.e. if the pair (node1,
node2) is in the sequence, the pair (node2, node1) is
not.

I How each node is represented is irrelevant.
I You can assume the graph is connected and has no

edge between a node and itself.
I Q 16 continued on next slide

Go to Soln 16
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M269 2017J Exam
Q 16 (contd)

(a) The following stand-alone Python function checks if an
undirected graph is complete, i.e. if each node is
connected to every other node.
It assumes the ADT is implemented as a Python class.

def is_complete(graph):
nodes = graph.nodes ()
for node1 in nodes:

for node2 in nodes:
edge_exists = graph.has_edge(node1 , node2)
if node1 != node2 and not edge_exists:

return False
return True

I Q 16 continued on next slide

Go to Soln 16
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M269 2017J Exam
Q 16 (contd)

I Assume that graph.nodes has complexity O(n), where
n is the number of nodes, and graph.has_edge has
complexity O(1).

I State and justify a bestcase scenario and a worst-case
scenario for the above function, and their corresponding
Big-O complexities.

I Assume the basic computational step is the assignment.
I State explicitly any other assumptions you make.

(7 marks)

I Q 16 continued on next slide

Go to Soln 16
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M269 2017J Exam
Q 16 (contd)

(b) In graph theory, the number of nodes in a graph is
called the order of the graph.
The term order is unrelated to sorting.

(i) Specify the problem of calculating the order of an
undirected graph by completing the following template.
Note that it is specified as an independent problem, not
as a UGraph operation.
You may write the specification in English and/or
formally with mathematical notation. (4 marks)

Name: order
Inputs
Preconditions:
Outputs:
Postconditions:

I Q 16 continued on next slide

Go to Soln 16

137/153 (148/164)



M269 Revision
2019

Phil Molyneux

Agenda

Adobe Connect

M269 17J Exam

Units 1 & 2

Units 3, 4 & 5

Units 6 & 7

Q Part 2
Q 16

Q 17

Soln Part 2

Exam Reminders

White Slide

M269 2017J Exam
Q 16 (contd)

(ii) Give your initial insight for an algorithm that solves the
problem.
Of the ADT operations given above you may only use
edges. (4 marks)

I Q 16 continued on next slide

Go to Soln 16
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M269 2017J Exam
Q 16 (contd)

(c) A city council is planning the city’s bus routes.
It has decided which places will have a bus stop
(schools, cinemas, hospital, etc.).
Each bus route will start from the train station, visit a
number of bus stops, and then return through the same
streets to the station, visiting the same bus stops in
reverse order. Each bus stop has to be served by at least
one bus route. The council wants to minimize the total
amount of time that all buses are on the road when
following their routes.

I State and justify which data structure(s) and
algorithm(s) you would adopt or adapt to solve this
problem.
State explicitly any assumptions you make. (5 marks)

Go to Soln 16
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M269 2017J Exam
Q 17 (15 marks)

I Imagine you are working for a logistics company that
currently uses heuristic algorithms to send their trucks
on round trips that use as little fuel as possible.

I The morning paper reports that P=NP has been proved
through the discovery of a tractable algorithm for the
SAT problem.

I What does this news mean for the company?

I Q 17 continued on next slide

Go to Soln 17
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M269 2017J Exam
Q 17 (contd)

I Write a brief memo with your advice on this matter to
the board of the company, which doesn’t include any
computing experts.
The memo must have the following structure:

1. A suitable title.
2. A paragraph setting the scene and introducing the key

question.
3. A paragraph in which you describe in layperson’s terms

what P=NP means.
4. A paragraph describing briefly how P=NP may impact

on the company’s main business objective (the
cost-effective use of their trucks).

5. A conclusion on what you propose the company should
do in face of this news, if anything.

I Q 17 continued on next slide

Go to Soln 17
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M269 2017J Exam
Q 17 (contd)

I Some marks will be awarded for a clear coherent text
that is appropriate for its audience, so avoid unexplained
technical jargon and abrupt changes of topic, and make
sure your sentences fit together to tell an overall story.
As a guide, you should aim to write roughly two to five
sentences per paragraph.

Go to Soln 17
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M269 2017J Exam
Soln Part2

I Part 2 solutions

Go to Q Part2
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M269 2017J Exam
Soln 16

(a) Best case: First node in nodes has no edge to the
second node in nodes (the first being itself) — hence
returns False with only two calls in the inner loop —
so O(n)
Worst case: The graph is complete and O(n2) since
both loops fully traversed

I Soln 16 continued on next slide

Go to Q 16
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M269 2017J Exam
Soln 16 (contd)

(b) (i) Specification of order function
Name: order
Inputs: undirected graph, g
Preconditions: g is connected
Outputs: Integer, n
Postconditions: n is the size of the set of nodes in g

I (ii) Use edges to give a sequence of edges;
extract a list of the first and second nodes in each edge;
remove duplicates in the list (making a set);
the size of the result is the order of the graph (assumes
connected graph)

I Soln 16 continued on next slide

Go to Q 16
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M269 2017J Exam
Soln 16 (contd)

(c) Data structures: graph with bus stops as nodes and
weighted edges as distance between stops;

I Algorithm(s): Some variant on Prim’s algorithm for
minimum spanning tree.

Go to Q 16
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M269 2017J Exam
Soln 17

I Follow the given structure:
I Title: given at the end
I Setting the scene:
I P as the class of problems with solutions that are found

in time which is a fixed polynomial of the input size
O(nk)

I NP as the class of problems with solutions that can be
checked in polynomial time

I Soln 17 continued on next slide

Go to Q 17
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M269 2017J Exam
Soln 17 (contd)

I Give examples of both:
I Pairing problem: given a group of students and

knowledge of which are compatible, place them in
compatible groups of 2 — Edmonds (1965) showed
there is a polynomial time algorithm for this

I Partition into Triangles: make groups of three with each
pair in the group compatible

I Find a large group of students who are compatible —
Clique problem

I Sit the students round a large table so that no
incompatible students are next to each other
(Hamiltonian Cycle)

I The first problem is in P, the others are in NP (we can
check a solution) but it is not known if they are in P

I Soln 17 continued on next slide

Go to Q 17
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M269 2017J Exam
Soln 17 (contd)

I Define NP complete problems, dp: (a) In NP; (b) Every
problem in NP is reducible to dp in polynomial time

I If P=NP then every NP problem would have a
polynomial time solution — possibly via reduction to
the SAT problem

I However proving P=NP (a) may not actually give an
algorithm in polynomial time for solving an NP
complete problem (the newspaper says there is a
tractable algorithm for SAT) (b) Even with a tractable
algorithm for SAT, the O(nk) may be very large.

I Give example of linear programming: standard simplex
algorithm is exponential (worst case) while the ellipsoid
algorithm is polynomial — however in practice simplex
is used (because it is good enough) (see Wikipedia: LP)

I Soln 17 continued on next slide

Go to Q 17
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M269 2017J Exam
Soln 17 (contd)

I Implications: Good: all optimisation problems become
tractable including vehicle routing

I Implications: Bad: Public key cryptography becomes
impossible, banking transactions become tricky to carry
out securely, the same applies to secure Web
transactions

I Conclusion: prepare for huge disruption — this is bigger
that the Internet or the Web

I Title: P=NP — a Disruptive Discovery

I Soln 17 continued on next slide

Go to Q 17
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M269 2017J Exam
Soln 17 (contd)

I Reading
I StackExchange: What would be the impact of P=NP?
I Lance Fortnow: The Status of the P Versus NP

Problem readable article in 2009 CACM
I The International SAT Competitions Web Page
I Lance Fortnow: The Golden Ticket: P, NP and the

Search for the Impossible (2013,2017)
I Lance Fortnow, Steve Homer: A Short History of

Computational Complexity
I Computational Complexity blog from Lance Fortnow

and Bill Gasarch

Go to Q 17

151/153 (162/164)

https://softwareengineering.stackexchange.com/questions/148836/what-would-be-the-impact-of-p-np
https://cacm.acm.org/magazines/2009/9/38904-the-status-of-the-p-versus-np-problem/fulltext
https://cacm.acm.org/magazines/2009/9/38904-the-status-of-the-p-versus-np-problem/fulltext
http://www.satcompetition.org/
https://lance.fortnow.com/papers/
https://lance.fortnow.com/papers/
https://blog.computationalcomplexity.org/


M269 Revision
2019

Phil Molyneux

Agenda

Adobe Connect

M269 17J Exam

Units 1 & 2

Units 3, 4 & 5

Units 6 & 7

Q Part 2

Soln Part 2

Exam Reminders

White Slide

M269 Exam
Reminders

I Read the Exam arrangements booklet
I Before the exam — check the date, time and location

(and how to get there)
I At the exam centre – arrive early
I Bring photo ID with signature
I Use black or blue pens (not erasable and not pencil) —

see Cult Pens for choices — pencils for preparing
diagrams (HB or blacker)

I Practice writing by hand
I In the exam — Read the questions — carefully —

before and after answering them
I Don’t get stuck on a question — move on, come back

later
I But do make sure you have attempted all questions
I . . . and finally Good Luck
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