M269 Revision 2019
Exam 2017]

Contents

1 Agenda
1.1 Introductions 0 e e e e e e e e e e
1.2 M269 Exam 2017) . . . o o o e e e e e e e e e e e e e e

2 Adobe Connect
2.1 StudentView e e e e e e e e
2.2 Settings i e
2.3 Student & Tutor Views o i i i e e e e e e e e
2.4 Sharing Screen & Applications e
2.5 EndingaMeeting i e e e e e e

3 M269 17) Exam
3.1 EXam QS . v vt e
3.2 Part 1 .. e e e e e e e e e e e e e e e e

4 Units 1 &2

4.1 Unit 1 Introduction. e e e e
4.2 QT o o e e e e e e e
4.3 Soln 1 . . . e e e e e e e e
4.4 Q 2 . e e e e e e
4.5 Soln 2 . . e e e e
4.6 Unit 2 From Problems to Programs

4.6.1 Example Algorithm Design — Searching
4.7 Q 3 . e e e e
4.8 Soln 3 . . L e e e e e
4.9 Q4 . . e e e
4.10S0In 4 . . . e e e

5 Units 3,4&5
5.1 Unit3Sorting e e e e e e e e
5.2 Unit4 Searching e e e e e
5.3 Q5 . . e e e e e e
5.4 Soln 5 . . e e e e e e e e e e e e
5.5 Qb . . e e e e
5.6 SoIn 6 . . . L e e e e e e e
5.7 Q7 . e e e e e e e e
5.8 Soln 7 . . L e e e e e e
5.9 Q8 . . . e e e e
5.10S0ln 8 e e e e e e e e e e e e e e
5.11Unit 5 Optimisation e e e e e e
5.12Q 9 . . e e e e e e e e
5.13S0In 9 . . . L e e e e e e
5.14Q 10 . . . o e e e e e e e e e
5.15S0ln 10 e e e e e e e e e

2 M269 Revision 2019 25 May 2019
6 Units6 &7 22
6.1 Propositional Logic. e e e 22
6.2 Q11 . e e e e e e e e 22
6.3 Soln T1 . . . e e e e e e e e e 22
6.4 Predicate LOGiC e e e e e e e e 23
6.5 Q12 . . e e e e e 23
6.6 Soln 12 e e e e e 24
6.7 SQL QUErIeS o e e e e e e e e e e e e e e 24
6.8 Q 13 . . o e e e e e 24
6.9 Soln 13 . . . e e e e e 25
6.10L0gIC e e e e e e e e e e e e e e 25
B.11Q 14 . . e e e e 29
6.12S0In T4 e e e e e e e e e e e e 30
6.13Computability e e e e e 30
6.13.1Non-Computability — Halting Problem 35
6.13.2Reductions & Non-Computability 35

B6.14Q 15 . . . e e e e e e e 40
6.15S0In 15 e e e e e e 41
6.16Complexity e e e e e e e e e e e 41
6.16.1NP-Completeness and Boolean Satisfiability 43

7 QPart?2 46
7.1 Q16 . e e e e e e e e e e e e e e e e 46
7.2 Q17 e e e e e e e 47

8 Soln Part 2 48
8.1 Soln 16 e e e e e e e e e 48
8.2 Soln 17 . . e e e e e e 49

9 Exam Reminders 50
10 White Slide 50
11 References 50
T1.1Web Sites o e e e e e e e e e e e e e e 50
References e e e e 51

1 M269 Exam Revision Agenda & Aims

1. Welcome and introductions

. Revision strategies

. M269 Exam — Part 1 has 15 questions 65%

. M269 Exam — Part 2 has 2 questions 35%

M269 Exam — 3 hours, Part 1 80 mins, Part 2 90 mins
M269 2017) exam (June 2018)

N OO v~ WwWN

Topics and discussion for each question

Phil Molyneux Exam 2017] 3

8. Exam techniques

9. These slides and notes are at http://www.pmolyneux.co.uk/0U/M269/M269ExamRevision/

1.1 Introductions & Revision Strategies

e Introductions
e What other exams are you doing this year ?

e Each give one exam tip to the group

1.2 M269 Exam 2017)

e Not examined this presentation:
e Unit 4, Section 2 String search
e Unit 7, Section 2 Logic Revisited

e Unit 7, Section 4 Beyond the Limits

http://www.pmolyneux.co.uk/OU/M269/M269ExamRevision/

4 M269 Revision 2019

25 May 2019

2 Adobe Connect Interface and Settings

2.1 Adobe Connect Interface — Student View

Adobe Connect Interface — Student Quick Reference

Participant Quick Reference Guide

Speaker volume
Audio set up Webcam

Video pod

- Attendee pod

1~ Chat pod

Phil Molyneux Exam 2017] 5

Adobe Connect Interface — Student View

* ® M269-17J M269-17J Online tutorial room London/SE (1,13) CG [2311] M269-17J (1) - Adobe Connect

[\! Meeting “w-r & - &~ Help
N ————y—— &

Start My Webcam

M269 Overview

Phil Molyneux

Attendees (1)

M269 Overview
M269 Overview A

&

» Hosts (0)

e speakers

» Presenters (0)
* Participants (1)
8 Phit motyneux]

Phil Molyneux

15 October 2017

Chat (Everyone)

Everyone

2.2 Adobe Connect Settings

Adobe Connect Settings

Everybody: Audio Settings [Meeting)) Audio Setup Wizard. ... |

Audio {Menu bar>> Audio>> Microphone rights for Participants} v

Do not Enable single speaker mode

Drawing Tools [Share pod menu bar)) Draw| (1 slide/screen)

[Share pod menu bar>> Menu icon>> Enable Participants to draw] v gray

{Meeting>> Preferences>> Whiteboard>> Enable Participants to draw} v

Cancel hand tool

Do not enable green pointer...

{Meeting>> Preferences>> Attendees Pod} Disable Raise Hand notification

Cursor {Meeting>> Preferences>> General tab>> Host Cursors>> Show to all attendees} v (default Off)

[Meeting>> Preferences>> Screen Share>> Cursor>> Show Application Cursor}

Webcam {Menu bar>> Webcam>> Enable Webcam for Participants} v

Recording [Meeting>> Record Meeting. . } v

6 M269 Revision 2019 25 May 2019

Adobe Connect — Access

e Tutor Access

) TutorHome>> M269 Website>> Tutorials}

@ |Cluster Tutorials>> M269 Online tutorial room}

{
{

) {Tutor Groups>> M269 Online tutor group room}
{

® |Module-wide Tutorials>> M269 Online module-wide room}

e Attendance

{TutorHome>> Students>> View your tutorial timetables}

e Beamer Slide Scaling 440% (422 x 563 mm)

e Clear Everyone’s Status

{Attendee Pod>> Menu>> Clear Everyone’s Status}

e Grant Access

{Meeting>> Manage Access & Entry>> Invite Participants. . } and send link via email

Adobe Connect — Keystroke Shortcuts
e Keyboard shortcuts in Adobe Connect
Toggle Mic [8])+M] (Mac), [ceri)+(M] (Win) (On/Disconnect)
Toggle Raise-Hand status [32])+E
Close dialog box [®] (Mac), [Esc] (win)
End meeting [32])+\]

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html

Phil Molyneux Exam 2017] 7

2.3 Adobe Connect Interface — Student & Tutor Views

Adobe Connect Interface — Student View (default)

Al Meeting
ke

17)TutorialOr

AAC3A.beamer.pdf

Start My Webcam

M269 Overview

Phil Molyneux

Attendees (1)

M269 Overview
M269 Overview A

e speakers

» Hosts (0)

» Presenters (0)

v Participants (1)

8 ehil molyneux

Phil Molyneux

15 October 2017

Chat (Everyone)

Everyone

8 M269 Revision 2019 25 May 2019

Adobe Connect Interface — Tutor Quick Reference

Host Quick Reference Guide Adobe®Connect

Status: raise hand, agree, disagree,
Control participant step away, speak louder, speak
mics & audio softer, speed up, slow down,
conferencing laughter, applause

Manage meeting: audio
set up, recording, roles Speaker Webcam Adobe Connect Help

Connection

JV Meeting Layouts Pods Audio
status

Share
pod

Share

Video pod

Attendee
Status View

Breakout
Room View

» Presenters (0)

»_Participants (0)

Attendee
pod

Chat (everyone)

Chat pod

Layout panel

Adobe Connect Interface — Tutor View

LA! Meeting Layouts Pods Audio

AAC3A.beamer.pdf

Start My Webcam
M269 Overview

Phil Molyneux

Attendees (1)

M269 Overview
M269 Overview A

R e speaters

= Hosts (1)

&) Phit Molyneux

'+ Presenters (0)

Phil Molyneux + Participants (0)

15 October 2017

Chat (Everyone)

® & [1]iee | = & [ox -] | @ Everyone

Phil Molyneux Exam 2017] 9

2.4

Adobe Connect — Sharing Screen & Applications

) {Share My Screen>> Application tab>> Terminal} for Terminal

e [Share menu)) Change View)) Zoom in| for mismatch of screen size/resolution (Participants)

2.5

Leave the application on the original display

Beware blued hatched rectangles — from other (hidden) windows or contextual
menus

Presenter screen pointer affects viewer display — beware of moving the pointer away
from the application

First time: {System Preferences>> Security & Privacy>> Privacy>> Accessibility}

Adobe Connect — Ending a Meeting

Notes for the tutor only

Student: {Meeting>> Exit Adobe Connect]

Tutor:

Recording {Meeting) Stop Recording} v

Remove Participants [Meeting) End Meeting. .. | v/

- Dialog box allows for message with default message:
- The host has ended this meeting. Thank you for attending.

Recording availability In course Web site for joining the room, click on the eye icon
in the list of recordings under your recording — edit description and name

Meeting Information [Meeting)) Manage Meeting Information]| — can access a range of informa-
tion in Web page.

Attendance Report see course Web site for joining room

Go to Table of Contents

3 M269 Prsntn 2017) Exam Qs

3.1

M269 2017) Exam Qs

M269 Algorithms, Data Structures and Computability
Presentation 2017) Exam
Date Thursday, 7 June 2018 Time 10:00-13:00

There are TWO parts to this examination. You should attempt all questions in both
parts

Part 1 carries 65 marks — 80 minutes

10 M269 Revision 2019 25 May 2019

e Part 2 carries 35 marks — 90 minutes

e Note see the original exam paper for exact wording and formatting — these slides
and notes may change some wording and formatting

e Note The 2015) exam and before had Part 1 with 60 marks (100 minutes), Part 2
with 40 marks (70 minutes)

3.2 M269 2017) Exam Q Partl

e Answer every question in this part.
e The marks for each question are given below the question number.

e Answers to questions in this Part should be written on this paper in the spaces
provided, or in the case of multiple-choice questions you should tick the appropriate
box(es).

e If you tick more boxes than indicated for a multiple choice question, you will receive
no marks for your answer to that question.

e Use the provided answer books for any rough working.

4 Units1 &2

4.1 Unit 1 Introduction

e Unit 1 Introduction

e Computation, computable, tractable

Introducing Python

What are the three most important concepts in programming ?
1. Abstraction
2. Abstraction
3.

Quote from Paul Hudak (1952-2015)

42 M269 2017) Exam Q 1

e Which one of the following statements is true? (Tick one box.) (2 marks)

A. An Abstract Data Type is the definition of a data structure in terms of the pre- and
postconditions on the data structure.

B. A more complex algorithm will always take more time to execute than a less complex
one.

http://en.wikipedia.org/wiki/Paul_Hudak

Phil Molyneux Exam 2017] 11

4.3

4.4

. Abstraction as modelling involves two layers — the interface and the implementa-

tion.

. A problem is computable if it is possible to build an algorithm which solves any

instance of the problem in a finite number of steps.

Go to Soln 1

M269 2017) Exam Soln 1

An Abstract Data Type is the definition of a data structure in terms of the pre- and
postconditions on the data structure. No ADT defined by operations that may be
performed on it and the pre- and postconditions on the operations

. A more complex algorithm will always take more time to execute than a less complex

one. No The less complex one could have a bigger problem

. Abstraction as modelling involves two layers — the interface and the implementa-

tion. No Models represent reality in sufficient detail

. A problem is computable if it is possible to build an algorithm which solves any

instance of the problem in a finite number of steps. Yes

GotoQ 1

M269 2017) Exam Q 2

The general idea of abstraction as modelling can be shown with the following dia-
gram.

The picture in the top is of a Ford Anglia in the real world, and the picture in the
bottom is of a Matchbox model of a Ford Anglia.

e Complete the diagram by adding an appropriate label in the space indicated by A

4.5

and one in the space indicated by B. (2 marks)

Go to Soln 2

M269 2017) Exam Soln 2

A (Model) ignores detail of

12 M269 Revision 2019 25 May 2019

e B (Actual car) represented by

GotoQ?2

4.6 Unit 2 From Problems to Programs

e Unit 2 From Problems to Programs
e Abstract Data Types
e Pre and Post Conditions

e Logic for loops

4.6.1 Example Algorithm Design — Searching

e Given an ordered list (xs) and a value (val), return
- Position of val in xs or
- Some indication if val is not present

e Simple strategy: check each value in the list in turn

e Better strategy: use the ordered property of the list to reduce the range of the list to
be searched each turn

Set a range of the list

If val equals the mid point of the list, return the mid point

Otherwise half the range to search

If the range becomes negative, report not present (return some distinguished
value)

Binary Search lterative

def binarySearchIter(xs,val):
To 0
hi Ten(xs) - 1

while 1o <= hi:
mid = (To + hi) // 2
guess = xs[mid]

if val == guess:
return mid
elif val < guess:
hi = mid - 1
else:
Jo = mid + 1

return None

A w N =

0 N O

11
12
13
14

0 N O VA WwWN =

Phil Molyneux Exam 2017] 13

Binary Search Recursive

def binarySearchRec(xs,val,lo=0,hi=-1):
if (hi == -1):
hi = Ten(xs) - 1

mid = (To + hi) // 2

if hi < lo:
return None
else:
guess = xs[mid]
if val == guess:
return mid
elif val < guess:
return binarySearchRec(xs,val,lo,mid-1)
else:
return binarySearchRec(xs,val,mid+1,hi)

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,10) by 7ine 13
Xs = [67,69,75,]
binarySearchRec(xs,67,8,8) by 7ine 13
xs = [67,]

Return value: 8 by 1ine 11

Binary Search Iterative — Miller & Ranum

def binarySearchIterMR(alist, item):
first = 0
last = Ten(alist)-1
found = False

while first<=last and not found:
midpoint = (first + last)//2

if alist[midpoint] == item:
found = True
else:

if item < alist[midpoint]:
last = midpoint-1

else:
first = midpoint+l

return found

Miller and Ranum (2011, page 192)

Binary Search Recursive — Miller & Ranum

def binarySearchRecMR(alist, item):
if Ten(alist) ==
return False
else:
midpoint = Ten(alist)//2
if alist[midpoint]==item:
return True
else:

14 M269 Revision 2019 25 May 2019

9 if ditem<alist[midpoint]:

10 return binarySearchRecMR(alist[:midpoint],item)
11 else:

12 return binarySearchRecMR(alist[midpoint+1:],1item)

Miller and Ranum (2011, page 193)

4.7 M269 2017) Exam Q 3

e A binary search is being carried out on the list shown below for item 41: (4 marks)
[2,16,17,25,31,39,41,52,67,69,77,83,89,91,99]

e For each pass of the algorithm, draw a box around the items in the partition to be
searched during that pass, continuing for as many passes as you think are needed.

e We have done the first pass for you showing that the search starts with the whole
list. Draw your boxes below for each pass needed; you may not need to use all the
lines below. (The question had 8 rows)

(Pass 1) [[2,16,17,25,31,39,41,52,67,69,77,83,89,91,99]]
(Pass 2) [2,16,17,25,31,39,41,52,67,69,77,83,89,91, 99]
(Pass 3) [2,16,17,25,31,39,41,52,67,69,77,83,89,91,99]

Go to Soln 3

4.8 M269 2017) Exam Soln 3

e The complete binary search:

(Pass 1) [2,16,17,25,31,39,41,52,67,69,77,83,89,91,99‘]
(Pass 2) [|2,16,17,25,31,39,41|,52,67,69,77,83,89,91,99]

(Pass 3) [2,16,17,25,/31,39,41|,52,67,69,77,83,89,91,99]

(Pass 4) [2,16,17,25,31,39,[41],52,67,69,77,83,89,91,99]

GotoQ3

4.9 M269 2017) Exam Q 4

e A Python program contains a loop with the following guard

[whi]e not (x >>2ory=<=2)or (x<2andy> 2):

e Complete the following truth table, where:
P represents x < 2

Q represents y > 2

Phil Molyneux Exam 2017] 15

PIQ|-P| Q| Pv-Q|~(=PV~-Q |PAQ| ~(=PV-QV(PAQ
FIF
FIT
T|F
T|T

e Use the results from your truth table to choose which one of the following expres-

m O 0N = »

sions could be used as the simplest equivalent to the above guard. (Tick one box.)

(5 marks)
not (x <2 andy> 2)
(x>=2o0ry<=2)
(x<2andy>2)
(x>=2andy<=2)
(x<2andy<=2)
Go to Soln 4

4.10 M269 2017) Exam Soln 4

PIQ| -P| Q|- Pv-Q|(=PV-Q |PAQ|(=PV-QV(FPAQ
FIF| T | T T F F F
FIT| T | F T F F F
TIF| F | T T F F F
T|T| F | F F T T T

e The equivalent expression is C.

A.

not (x <2 andy> 2)
— not Pand not Q
(x>=2o0ry<=2)

— not Por notQ

C. (x<2andy>2)—~Pand Q

D. (x>=2and y<=2)

— not Pand not Q
(x<2andy<=2)
— Pand not Q
not (not P or not Q) or (P and Q)
— (Pand Q) or (P and Q)
— (Pand Q)
GCotoQ4

16 M269 Revision 2019

25 May 2019

5 Units 3,4 &5

5.1 Unit 3 Sorting

e Unit 3 Sorting

Elementary methods: Bubble sort, Selection sort, Insertion sort

Recursion — base case(s) and recursive case(s) on smaller data

Quicksort, Merge sort

Sorting with data structures: Tree sort, Heap sort

See sorting notes for abstract sorting algorithm

Abstract Sorting Algorithm

(unsorted list xs)

!

if (length xs > 1) then
(xs1,xs2) = split xs

o .

xs1 XSs2

[ys] = sort xslj [ysZ = sort xsZ]

N -

[ys = join (ys1 ,ysZ)]

!

[sorted list st

Sorting Algorithms
Using the Abstract sorting algorithm, describe the split and join for:
e Insertion sort

Selection sort

Merge sort

Quicksort

Bubble sort (the odd one out)

5.2 Unit 4 Searching

e Unit 4 Searching

Phil Molyneux Exam 2017] 17

e String searching: Quick search Sunday algorithm, Knuth-Morris-Pratt algorithm
e Hashing and hash tables
e Search trees: Binary Search Trees

e Search trees: Height balanced trees: AVL trees

5.3 M269 2017) Exam Q5

e Consider the diagrams in A-H, where nodes are represented by black dots and edges
by arrows. The numbers are the keys for the corresponding nodes.

A B c D

5 2 3

2 /?\/\3. > -9/\7 G:/i\{i 7\ 4/

e On each line, write one or more letters, or write None. (4 marks)
(a) Which of A, B, C and D, if any, are not a tree?
(b) Which of E, F, G and H, if any, are binary trees?
(c) Which of C, D, G and H, if any, are complete binary trees?
(d) Which of C, D, G and H, if any, are not a heap?

Go to Soln 5

5.4 M269 2017) Exam Soln 5

(a) Which of A, B, C and D, if any, are not a tree?
A is not a tree since 4 has two parents
(b) Which of E, F, G and H, if any, are binary trees?

E, Gand H — F is not a binary tree since 7 has three sub-trees — note E has duplicate
nodes

18

M269 Revision 2019 25 May 2019

(c) Which of C, D, G and H, if any, are complete binary trees?

(d)

d
v

0 N O VA WN =

N — O W

5.6

G and H — E is not a complete binary tree since the last level is not filled from left
to right

Which of C, D, G and H, if any, are not a heap?

C (since not a complete binary tree), D (since misses both properties), H (since does
not have ordering property)

GotoQ>5

M269 2017) Exam Q 6

Consider the following function, which takes a non-empty list as an argument.

def variance(alList):

n = Ten(aList)

total = 0

for item 1in alList:
total = total + item

mean = total / n

ssdev = 0

for item 1in alList:
deviation = item - mean
ssdev = ssdev + (deviation * deviation)

var = ssdev / n

return var

From the options below, select the two that represent the correct combination of
T(n) and Big-O complexity for this function.

You may assume that a step (i.e. the basic unit of computation) is the assignment
statement. (6 marks)

(Tick one box for T(n) and one box for Big-O complexity.)

A. T(h)=2n+5 i. O(n)

B. T(nN)=3n+5 ii. O(2n)
C. T(n) = 3n+6 iii. O(3n)
D. T(n) = iv. O(n?)
E. T(n) = 3n +6 v. 0(3n?)

Explain how you arrived at T(n) and the associated Big-O

Go to Soln 6

M269 2017) Exam Soln 6

Options B and i

There are two loops (not nested) with 3 assignments which contribute 3n to T(n)
The remainder of the code has 5 assignments

Hence T(n) =3n+5

and complexity is O(n) from the leading term

GotoQ6

Phil Molyneux Exam 2017] 19

5.7

(@)
A.

M269 2017) Exam Q 7

Which one of the following statements are true? (Tick one box.)

Hash tables store unique (i.e. non-duplicate) keys in an arbitrary order and are there-
fore an implementation of the Set ADT.

B. A hash function maps a value to a key in the table.

C. The higher the load factor on a hash table, the higher the risk of collisions.

D. Linear Probing is a chaining technique designed to resolve collisions.

(b)

Goto Soln 7

Calculate the load factor for the hash table below. Show your working. (4 marks)

Alice Nisha | Bob Ali
0 1 2 3 4 5 6 7 8 9 10 11
Goto Soln 7
5.8 M269 2017) Exam Soln 7
A. Hash tables store unique (i.e. non-duplicate) keys in an arbitrary order and are there-
fore an implementation of the Set ADT. No — the order is not arbitrary, it is a result
of the hash function and any collision resolution
B. A hash function maps a value to a key in the table. No — a hash function maps
values to integer indices of a table, but that position may be occupied.
C. The higher the load factor on a hash table, the higher the risk of collisions. Yes — a
high load factor means a high proportion of the hash table is occupied
D. Linear Probing is a chaining technique designed to resolve collisions. No — Linear
probing and chaining are different techniques
(b) The load factor is 4/12 or 0.3333
GotoQ7
5.9 M269 2017)J Exam Q8

In the following binary search tree, label each node with its balance factor.

20 M269 Revision 2019 25 May 2019

e Would this tree need to be rebalanced to be a valid AVL tree? Explain your answer.
(4 marks)

Go to Soln 8

5.10 M269 2017) Exam Soln 8

e Binary tree with balance factors and heights — note: here empty trees have height 0
(not -1)

e The tree would not need rebalancing to be an AVL tree — the tree is a binary search
tree and every node has balance factor in the range {-1,0, +1}

GotoQ8

5.11 Unit 5 Optimisation

e Unit 5 Optimisation
e Graphs searching: DFS, BFS

Distance: Dijkstra’s algorithm

Greedy algorithms: Minimum spanning trees, Prim’s algorithm

Dynamic programming: Knapsack problem, Edit distance

Phil Molyneux Exam 2017] 21

e See Graphs Tutorial Notes

5.12 M269 2017) Exam Q9

e A water distribution network can be represented as a weighted directed graph.

e The nodes represent the reservoirs, water treatment centres and consumers (homes,
factories, etc.).

e The directed edges represent the water pipes, showing the flow of water, from the
reservoirs to the consumers, via the treatment centres.

e The edge weights indicate the maximum flow (in cubic metres per second) of the

pipes.
e Complete the following statements, and include in the justification any assumptions
you make. (4 marks)

e For a typical water distribution network, the graph is (choose from CYCLIC/ACYCLIC)
because:

e and it is (choose from SPARSE/DENSE) because:

Go to Soln 9

5.13 M269 2017) Exam Soln 9

e The network is acyclic since water does not return to the sources (in this network)
— no mention is made of waste water and sewerage collection and recycling.

e A sparse network since most nodes are only connected to one other node.

GotoQ9

5.14 M269 2017) Exam Q10

e Consider the following undirected graph: (4 marks)

e Complete the table below to show one order in which the vertices of the above graph
could be visited in a Breadth First Search (BFS) starting at vertex 3:

Vertices visited | 3

http://www.pmolyneux.co.uk/OU/M269/M269TutorialNotes/M269TutorialGraphs/M269TutorialGraphs2017J.beamer.pdf

22

M269 Revision 2019 25 May 2019

Go to Soln 10
5.15 M269 2017) Exam Soln 10
Possible answers:
Vertices visited| 3 | 1 | 4 | 2 | 5
Vertices visited| 3 [4 | 1 | 2 | 5
GotoQ10

6 Units6 &7

6.1

Propositional Logic

M269 Specimen Exam Q11 Topics

6.2

6.3

Unit 6

Sets

Propositional Logic
Truth tables

Valid arguments

Infinite sets

M269 2017) Exam Q 11

In propositional logic, what does it mean to say that a well-formed formula is contin-
gent?

Is the well-formed formula (P — Q) — (-Q — —P) contingent? Explain. (4 marks)

Goto Soln 11

M269 2017) Exam Soln 11

A WFF is contingent if it is true in some interpretations and false in others — a tau-
tology is true in every interpretation, a contradiction is false in every interpretation.

(P—- Q) — (—mQ — —P) is a tautology
= -(—=Pv Q) Vv (—mQ V —P) by rewriting —
= (=P Vv Q) V (=P Vv Q) by negation and commutativity

= True by negation

Phil Molyneux Exam 2017] 23

6.4

(@)

(b)

PlQ[P-Q Q- -P[P-Q- Q- P
T|T T T T
T|F F F T
FI T T T T
F|F T T T

GotoQ 11

Predicate Logic

Unit 6
Predicate Logic
Translation to/from English

Interpretations

M269 2017) Exam Q 12

Consider the following particular interpretation 7 for predicate logic allowing facts to
be expressed about people and the computer games they own and play. (6 marks)

The domain of individuals is D = {Jane, John, Saira, Gran Turismo, Kessen, Pacman,
The Sims, Pop Idol}.

The constants jane, john, saira, gran_turismo, kessen, pacman, the_sims and pop_-
idol are assigned to the corresponding individuals.

Two predicate symbols are assigned binary relations as follows:

d(owns) = {(Jane, Gran Turismo), (Jane, Kessen), (John, Pacman), (John, The Sims),
(John, Pop Idol), (Saira, Pop Idol), (Saira, Kessen)}

I(has_played) = {(Jane, Gran Turismo), (Jane, Pop Idol), (Jane, Kessen), (John, The
Sims), (John, Pop Idol), (Saira, Gran Turismo), (Saira, The Sims)}

Consider the sentence in English: Jane owns all the games she has played.

Which one of these well-formed formulae is a translation of the sentence into predi-
cate logic?

A. VX.(owns (jane, X) — has_played (jane, X))

B. VX.(has_played (jane, X) — owns (jane, X))

C. VX.(has_played (jane, X) A owns (jane, X))
Give an appropriate translation of the well-formed formula below into English
AX.(—owns (saira, X) A has_played (jane, X))

This formula is (choose from TRUE/FALSE), under the interpretation given on the
previous page.

Explain why in the box below.

24 M269 Revision 2019 25 May 2019

You need to consider any relevant values for the variables, and show, using the
domain and interpretation on the previous page, whether they make the formula
TRUE or FALSE.

In your explanation, make sure that you use formal notation.

For example, instead of stating John doesn’t own Kessen you need to write (John, Kessen) ¢
J(owns)

Go to Soln 12

6.6 M269 2017) Exam Soln 12

(@) Jane owns all the games she has played means
If Jane has played X then Jane owns X
so the answer is
B. VX.(has_played (jane, X) — owns (jane, X))
e A. VX.(owns (jane,X) — has_played (jane, X)) means
Jane has played all the games she owns
e B. VX.(has_played (jane, X) A owns (jane, X)) means
Jane owns all games and has played all of them
(b) IX.(—mowns(saira,X) A has_played (jane, X)) means
There is at least one game that Saira does not own that Jane has played
e True
because Jane has played Gran Turismo but Saira does not own it

e (Saira, Gran Turismo) ¢ 7(owns)
A (Jane, Gran Turismo) € 1(has_played)

GotoQ 12

6.7 SQL Queries

M269 Specimen Exam Q13 Topics
e Unit 6
e SQL queries

6.8 M269 2017) Exam Q 13

e A database contains the following tables: (6 marks)

Phil Molyneux Exam 2017] 25

oilfield operator

name production company | field
Warga 3 Amarco Warga
Lolli 5 Bratape Lolli
Tolstoi | 0.5 Rosbif Tolstoi
Dakhun | 2 Tagar Dakhun
Sugar 3 Bratape Sugar

(@) For the following SQL query, give the table returned by the query.

SELECT name, company
FROM o0i1field CROSS JOIN operator
WHERE name = field ;

e Write the question that the above query is answering.
(b) Write an SQL query that answers the question
What is the name and the operating company of each oil field operated by Bratape?

Your query should return the following table.

company | field
Bratape Lolli
Bratape Sugar

Go to Soln 13

6.9 M269 2017) Exam Soln 13

SELECT name, company
FROM o0iT1field CROSS JOIN operator
WHERE name = field ;

e Table returned by the query

Warga | Amarco
Lolli Bratape
Tolstoi | Rosbif
Dakhun | Tagar
Sugar Bratape

e SQL for What is the name and the operating company of each oil field operated by
Bratape?

SELECT company, field
FROM operator
WHERE company = ’Bratape’

GotoQ 13

6.10 Logic

M269 Exam — Q14 topics
e Unit7

26 M269 Revision 2019 25 May 2019

e Proofs

e Natural deduction

Logicians, Logics, Notations
e A plethora of logics, proof systems, and different notations can be puzzling.

e Martin Davis, Logician When | was a student, even the topologists regarded mathe-
matical logicians as living in outer space. Today the connections between logic and
computers are a matter of engineering practice at every level of computer organiza-
tion

e Various logics, proof systems , were developed well before programming languages
and with different motivations,

References: Davis (1995, page 289)

Logic and Programming Languages

e Turing machines, Von Neumann architecture and procedural languages Fortran, C,
Java, Perl, Python, JavaScript

e Resolution theorem proving and logic programming — Prolog

e Logic and database query languages — SQL (Structured Query Language) and QBE
(Query-By-Example) are syntactic sugar for first order logic

e Lambda calculus and functional programming with Miranda, Haskell, ML, Scala

Reference: Halpern et al. (2001)

Validity and Justification
e There are two ways to model what counts as a logically good argument:
- the semantic view
- the syntactic view
e The notion of a valid argument in propositional logic is rooted in the semantic view.

e It is based on the semantic idea of interpretations: assignments of truth values to
the propositional variables in the sentences under discussion.

e A valid argument is defined as one that preserves truth from the premises to the
conclusions

e The syntactic view focuses on the syntactic form of arguments.

e Arguments which are correct according to this view are called justified arguments.

Proof Systems, Soundness, Completeness

e Semantic validity and syntactic justification are different ways of modelling the same
intuitive property: whether an argument is logically good.

http://en.wikipedia.org/wiki/Martin_Davis
http://en.wikipedia.org/wiki/Von_Neumann_architecture
http://en.wikipedia.org/wiki/Lambda_calculus

Phil Molyneux Exam 2017] 27

A proof system is sound if any statement we can prove (justify) is also valid (true)

A proof system is adequate if any valid (true) statement has a proof (justification)

A proof system that is sound and adequate is said to be complete

Propositional and predicate logic are complete — arguments that are valid are also
justifiable and vice versa

e Unit 7 section 2.4 describes another logic where there are valid arguments that are
not justifiable (provable)

Reference: Chiswell and Hodges (2007, page 86)

Valid arguments
P

Unit 6 defines valid arguments with the notation
Pn
C

e The argument is valid if and only if the value of C is True in each interpretation for
which the value of each premise Pjis Truefor 1 <i<n

e In some texts you see the notation {Py,...,Pn} = C
e The expression denotes a semantic sequent or semantic entailment
e The |= symbol is called the double turnstile and is often read as entails or models

e In LaTeX = and |= are produced from \vDash and \models — see also the turnstile
package

e In Unicode = is called TRUE and is U+22A8, HTML ⊨
e The argument {} = C is valid if and only if C is True in all interpretations
e That is, if and only if C is a tautology
e Beware different notations that mean the same thing
- Alternate symbol for empty set: @ = C
- Null symbol for empty set: |= C

- Original M269 notation with null axiom above the line:

C

Justified Arguments and Natural Deduction

e Definition 7.1 An argument {P1,P>,...,Pn} + Cis a justified argument if and only if
either the argument is an instance of an axiom or it can be derived by means of an
inference rule from one or more other justified arguments.

e Axioms
I' U{A}+~ A (axiom schema)

e This can be read as: any formula A can be derived from the assumption (premise) of
{A} itself

28 M269 Revision 2019 25 May 2019

e The +— symbol is called the turnstile and is often read as proves, denoting syntactic
entailment

e In LaTeX + is produced from \vdash
e In Unicode + is called RIGHT TACK and is U+22A2, HTML ⊢
See (Thompson, 1991, Chp 1)

e Section 2.3 of Unit 7 (not the Unit 6, 7 Reader) gives the inference rules for —, A,
and v — only dealing with positive propositional logic so not making use of negation
— see List of logic systems

e Usually (Classical logic) have a functionally complete set of logical connectives —
that is, every binary Boolean function can be expressed in terms the functions in the
set

Inference Rules — Notation

e Inference rule notation:

Argument; ... Argumentn(

label)
Argument e

Inference Rules — Conjunction

I'-A T+—B
I'-AAB

.rFAAB
'-A

.FFAAB
I'-B

(A-introduction)
(A-elimination left)

(A-elimination right)

Inference Rules — Implication
. Tu{A}~-B
I'-A—-B

e The above should be read as: If there is a proof (justification, inference) for B un-

der the set of premises, I', augmented with A, then we have a proof (justification.
inference) of A — B, under the unaugmented set of premises, T'.

(—-introduction)

The unaugmented set of premises, I' may have contained A already so we cannot
assume
Tu{A})-{Alisequaltol

.F»—A F»—A—»B(
I'—B

—-elimination)

Inference Rules — Disjunction

'-A (
I'-AVB

I'-B
I'-AVB

e Disjunction elimination

V-introduction left)

(v-introduction right)

http://en.wikipedia.org/wiki/List_of_logic_systems
http://en.wikipedia.org/wiki/Functional_completeness

Phil Molyneux Exam 2017] 29

I''-AvB TU{A}-C TuU{B}~C
I'-C

(v-elimination)

e The above should be read: if a set of premises I justifies the conclusion Av Band T
augmented with each of A or B separately justifies C, then I justifies C

Proofs in Tree Form
e The syntax of proofs is recursive:

e A proof is either an axiom, or the result of applying a rule of inference to one, two
or three proofs.

e We can therefore represent a proof by a tree diagram in which each node have one,
two or three children

e For example, the proof of {P A (P — Q)} - Q in Question 4 (in the Logic tutorial notes)
can be represented by the following diagram:

PAP-QIFPAP-Q 0 PAP-QIFPAP-Q

PAP—QIrP PAP—QIrP-Q
PAP-QIFQ

(=-E)

Self-Assessment activity 7.4 — tree layout

o letI'={P—-R,Q—-R,PVvQ}
. 'PvQ Tu{P}+R Tui{Q}-R

(v-elimination)

I'-R
. Tru{Pl-P TU{P}-P-R (. -elimination)
Fu{P}~-R
® rv {Q} = Q L {Q} - Q —~R (—-elimination)
ru{Qi+R
e Complete tree layout
Tu{P} Tu{P} ruv{Q} rui{qj
° P FP-R o FQ I—Q—-R(H_E)
I'-PvQ Tu{P}-R FU{Q}FR(

V-E)
'R

Self-assessment activity 7.4 — Linear Layout

1. P-RQ-RPVQ}-HPVQ [Axiom]

2. P-R,Q—-R,PVQlU{P}+-P [Axiom]

3. {P-R,Q-RPVQU{P}-P—-R [Axiom]

4. {P-R,Q-R,PvQluU{Q}+Q [Axiom]

5. P-R,Q-R,PvQluUu{Q}+Q—R [Axiom]

6. P-RQ-RPVQIU{P}I-R [2, 3, —-E]
7. P-R,Q—-R,PVvQlU{Q}-R [4, 5, —-E]
8. P-R,Q—-R,PVQ}+R [1, 6, 7, v-E]

6.11 M269 2017) Exam Q 14

e Consider the following decision problems: (6 marks)

30 M269 Revision 2019 25 May 2019

1. The Equivalence Problem
Is a given list not empty?

The Halting Problem

> W

Is a given binary tree balanced?

e On each line, write one or more of the above problem numbers, or write None.
e Which problems, if any, are decidable?

e Which problems, if any, are tractable?

e Which problems, if any, are NP-hard?

Go to Soln 14
6.12 M269 2017) Exam Soln 14
e Decidable: 2. (Empty list), 4. (Balanced binary tree)
e Tractable: 2. (Empty list), 4. (Balanced binary tree)
e NP-hard: 3. (Halting problem)
See StackOverflow: Proof that the halting problem is NP-hard?
GotoQ 14

6.13 Computability

M269 Specimen Exam — Q15 Topics
e Unit 7

e Computability and ideas of computation

Complexity
P and NP

NP-complete

Ideas of Computation
e The idea of an algorithm and what is effectively computable

e Church-Turing thesis Every function that would naturally be regarded as com-
putable can be computed by a deterministic Turing Machine. (Unit 7 Section 4)

e See Phil Wadler on computability theory performed as part of the Bright Club at The
Strand in Edinburgh, Tuesday 28 April 2015

https://stackoverflow.com/questions/6990683/proof-that-the-halting-problem-is-np-hard
http://wadler.blogspot.co.uk/2015/05/bright-club-computability.html

Phil Molyneux Exam 2017] 31

Reducing one problem to another

e To reduce problem P; to Py, invent a construction that converts instances of Py to
P> that have the same answer. That is:

- any string in the language Py is converted to some string in the language P;

- any string over the alphabet of Py that is not in the language of Py is converted
to a string that is not in the language P;

e With this construction we can solve P

- Given an instance of Py, that is, given a string w that may be in the language
P1, apply the construction algorithm to produce a string x

- Test whether x is in P and give the same answer for w in P;
(Hopcroft et al., 2007, page 322)
e The direction of reduction is important

e If we can reduce P71 to P, then (in some sense) P> is at least as hard as Py (since a
solution to P> will give us a solution to Py)

e So, if P, is decidable then Py is decidable

e To show a problem is undecidable we have to reduce from an known undecidable
problem to it

e Vx(dpp, (x) = dpp, (reduce(x)))

e Since, if Py is undecidable then P; is undecidable

Computability — Models of Computation

e In automata theory, a problem is the question of deciding whether a given string is
a member of some particular language

e If X is an alphabet, and L is a language over X, that is L < =*, where X* is the set
of all strings over the alphabet > then we have a more formal definition of decision
problem

e Given a string w € =*, decide whetherw € L

e Example: Testing for a prime number — can be expressed as the language Lp con-
sisting of all binary strings whose value as a binary number is a prime number (only
divisible by 1 or itself)

(Hopcroft et al., 2007, section 1.5.4)

Computability — Church-Turing Thesis

e Church-Turing thesis Every function that would naturally be regarded as com-
putable can be computed by a deterministic Turing Machine.

e physical Church-Turing thesis Any finite physical system can be simulated (to any
degree of approximation) by a Universal Turing Machine.

32

M269 Revision 2019 25 May 2019

e strong Church-Turing thesis Any finite physical system can be simulated (to any
degree of approximation) with polynomial slowdown by a Universal Turing Machine.

e Shor’s algorithm (1994) — quantum algorithm for factoring integers — an NP prob-
lem that is not known to be P — also not known to be NP-complete and we have no

proof that it is not in P

Reference: Section 4 of Unit 6 & 7 Reader

Computability — Turing Machine

e Finite control which can be in any of a finite number of states

e Tape divided into cells, each of which can hold one of a finite number of symbols

placed on the tape

blank

Initially, the input, which is a finite-length string of symbols in the input alphabet, is

All other tape cells (extending infinitely left and right) hold a special symbol called

A tape head which initially is over the leftmost input symbol

e A move of the Turing Machine depends on the state and the tape symbol scanned

e A move can change state, write a symbol in the current cell, move left, right or stay

References: Hopcroft et al. (2007, page 326), Unit 6 & 7 Reader (section 5.3)

Turing Machine Diagram

b

b

a

a

@ p

Reading and Writing Head

(moves in both directions)

a1

C Y

do

Un

Finite Control

Input/Output Tape

Source: Sebastian Sardina http://www.texample.net/tikz/examples/turing-machine-

2/

Date: 18 February 2012 (seen Sunday, 24 August 2014)

Further Source: Partly based on Ludger Humbert’s pics of Universal Turing Machine at
https://haspe.homeip.net/projekte/ddi/browser/tex/pgf2/turingmaschine-schema.
tex (not found) — http://www.texample.net/tikz/examples/turing-machine/

http://en.wikipedia.org/wiki/Shor's_algorithm
http://www.texample.net/tikz/examples/turing-machine-2/
http://www.texample.net/tikz/examples/turing-machine-2/
https://haspe.homeip.net/projekte/ddi/browser/tex/pgf2/turingmaschine-schema.tex
https://haspe.homeip.net/projekte/ddi/browser/tex/pgf2/turingmaschine-schema.tex
http://www.texample.net/tikz/examples/turing-machine/

Phil Molyneux Exam 2017] 33

Turing Machine notation
¢ Q finite set of states of the finite control
e 3 finite set of input symbols (M269 S)
e I complete set of tape symbols 3 C T

e 0 Transition function (M269 instructions,)
0::QxTI' - QxTIx{L,R,S}
0(g,X) = (p,Y,D)

e 0(q,X) takes a state, q and a tape symbol, X and returns (p, Y, D) where p is a state,
Y is a tape symbol to overwrite the current cell, D is a direction, Left, Right or Stay

e (o Start state qg € Q
e B blank symbol B €T and B ¢ X

e F set of final or accepting states F < Q

Computability — Decidability

e Decidable — there is a TM that will halt with yes/no for a decision problem — that
is, given a string w over the alphabet of P the TM with halt and return yes.no the
string is in the language P (same as recursive in Recursion theory — old use of the
word)

e Semi-decidable — there is a TM will halt with yes if some string is in P but may loop
forever on some inputs (same as recursively enumerable) — Halting Problem

e Highly-undecidable — no outcome for any input — Totality, Equivalence Problems

Undecidable Problems

e Halting problem — the problem of deciding, given a program and an input, whether
the program will eventually halt with that input, or will run forever — term first used
by Martin Davis 1952

e Entscheidungsproblem — the problem of deciding whether a given statement is
provable from the axioms using the rules of logic — shown to be undecidable by
Turing (1936) by reduction from the Halting problem to it

e Type inference and type checking in the second-order lambda calculus (important
for functional programmers, Haskell, GHC implementation)

e Undecidable problem — see link to list

(Turing, 1936, 1937)

Why undecidable problems must exist
e A problem is really membership of a string in some language

e The number of different languages over any alphabet of more than one symbol is
uncountable

http://en.wikipedia.org/wiki/Recursion_theory
http://en.wikipedia.org/wiki/Halting_problem
http://en.wikipedia.org/wiki/Entscheidungsproblem
http://en.wikipedia.org/wiki/System_F
http://en.wikipedia.org/wiki/Undecidable_problem

34

M269 Revision 2019 25 May 2019

Programs are finite strings over a finite alphabet (ASCII or Unicode) and hence count-
able.

There must be an infinity (big) of problems more than programs.
Computational problem — defined by a function

Computational problem is computable if there is a Turing machine that will calcu-
late the function.

Reference: Hopcroft et al. (2007, page 318)

Computability and Terminology

The idea of an algorithm dates back 3000 years to Euclid, Babylonians. ..

In the 1930s the idea was made more formal: which functions are computable?
A function a set of pairs f = {(x, f(x)) : x € X A f(x) € Y} with the function property
Function property: (a,b) e fA(a,c) ef=>b==c

Function property: Same input implies same output

Note that maths notation is deeply inconsistent here — see Function and History of
the function concept

What do we mean by computing a function — an algorithm ?

In the 1930s three definitions:

A-Calculus, simple semantics for computation — Alonzo Church
General recursive functions — Kurt Godel

Universal (Turing) machine — Alan Turing

Terminology:

Recursive, recursively enumerable — Church, Kleene

Computable, computably enumerable — Godel, Turing

Decidable, semi-decidable, highly undecidable

In the 1930s, computers were human

Unfortunate choice of terminology
Turing and Church showed that the above three were equivalent

Church-Turing thesis — function is intuitively computable if and only if Turing ma-
chine computable

Sources on Computability Terminology

Soare (1996) on the history of the terms computable and recursive meaning calcula-
ble

e See also Soare (2013, sections 9.9-9.15) in Copeland et al. (2013)

http://en.wikipedia.org/wiki/Computable_function
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/History_of_the_function_concept
http://en.wikipedia.org/wiki/History_of_the_function_concept
http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Alonzo_Church
https://en.wikipedia.org/wiki/%CE%9C-recursive_function
https://en.wikipedia.org/wiki/Kurt_G%C3%B6del
http://en.wikipedia.org/wiki/Universal_Turing_machine
http://en.wikipedia.org/wiki/Alan_Turing
http://en.wikipedia.org/wiki/Stephen_Cole_Kleene
http://en.wikipedia.org/wiki/Church\T1\textendash Turing_thesis

Phil Molyneux Exam 2017] 35

6.13.1 Non-Computability — Halting Problem

Halting Problem — Sketch Proof

e Halting problem — is there a program that can determine if any arbitrary program
will halt or continue forever ?

e Assume we have such a program (Turing Machine) h(f,x) that takes a program f
and input x and determines if it halts or not

h(f,x)
= if f(x) runs forever
return True
else
return False

e We shall prove this cannot exist by contradiction
e Now invent two further programs:
e q(f) that takes a program f and runs h with the input to f being a copy of f

e r(f) that runs q(f) and halts if g(f) returns True, otherwise it loops

q(f)
= h(f,f)

r(f)
= if q(f)
return
else
while True: continue

e What happens if we run r(r) ?

e If it loops, q(r) returns True and it does not loop — contradiction.

6.13.2 Reductions & Non-Computability

,,

e A reduction of problem P; to problem P,
- transforms inputs to Py into inputs to P;
- runs algorithm A2 (which solves P,) and
- interprets the outputs from A2 as answers to P

e More formally: A problem Py is reducible to a problem P, if there is a function f that
takes any input x to P71 and transforms it to an input f(x) of P,

such that the solution of P, on f(x) is the solution of Py on x

https://simple.wikipedia.org/wiki/Halting_problem

36 M269 Revision 2019 25 May 2019

Source: Bridge Theory of Computation, 2007

,,

e Given an algorithm (A2) for matrix multiplication (P)
- Input: pair of matrices, (M1, M>)
- Output: matrix result of multiplying M7 and M,
e Py is the problem of squaring a matrix
- Input: matrix M
- Output: matrix M2
e Algorithm A1 has
f(M) = (M, M)

uses A2 to calculate M x M = M?

Non-Computable Problems

,,

f(input)
input —— f > A2 ———— output
,,,,,,,,,,,,,,,,,,,,,, g
e If P, is computable (A2 exists) then Py is computable (f being simple or polynomial)

Equivalently If Py is non-computable then P, is non-computable

Exercise: showB — A= -A — —B

Proof by Contrapositive

e B—-A=-BVA by truth table or equivalences
= _'(_'A) V =B commutativity and negation laws
=-A—- B equivalences

Common error: switching the order round

http://www.cs.ucc.ie/~dgb/courses/toc.html
https://en.wikipedia.org/wiki/Proof_by_contrapositive

Phil Molyneux Exam 2017]

37

Totality Problem

\ 4

TP

e Totality Problem
- Input: program Q

- Output: YES if Q terminates for all inputs else NO

e Assume we have algorithm TP to solve the Totality Problem

e Now reduce the Halting Problem to the Totality Problem

v

TP

e Define f to transform inputs to HP to TP pseudo-Python

def f(P,x) :
def Q(y):
ignore y
PO

return Q

e Run TPon Q
- If TP returns YES then P halts on x

- If TP returns NO then P does not halt on x

e We have solved the Halting Problem — contradiction

Negative Value Problem

,,

\ 4

NVP

e Negative Value Problem

- Input: program Q which has no input and variable v used in Q

- Output: YES if v ever gets assigned a negative value else NO

38 M269 Revision 2019 25 May 2019

e Assume we have algorithm NVP to solve the Negative Value Problem

e Now reduce the Halting Problem to the Negative Value Problem

,,

(P,X) —————— f > NVP - » YES/NO

e Define f to transform inputs to HP to NVP pseudo-Python

def f(P,x) :
def Q(y):
ignore y
P(x)
v =-1
return (Q,var(v))

e Run NVP on (Q, var(v)) var(v) gets the variable name
- If NVP returns YES then P halts on x
- If NVP returns NO then P does not halt on x

e We have solved the Halting Problem — contradiction

Squaring Function Problem

(P, X) ————— f > SEP - » YES/NO

e Squaring Function Problem
- Input: program Q which takes an integer, y
- Output: YES if Q always returns the square of y else NO
e Assume we have algorithm SFP to solve the Squaring Function Problem

e Now reduce the Halting Problem to the Squaring Function Problem

,,

(P,X) —————— f > SFP - » YES/NO

e Define f to transform inputs to HP to SFP pseudo-Python

Phil Molyneux Exam 2017] 39

def f(P,x) :
def Q(y):
P(x)
return y = y
return Q

e Run SFPon Q
- If SFP returns YES then P halts on x
- If SFP returns NO then P does not halt on x

e We have solved the Halting Problem — contradiction

Equivalence Problem

,,

e Equivalence Problem
- Input: two programs P1 and P2

- Output: YES if P1 and P2 solve the ame problem (same output for same input)
else NO

e Assume we have algorithm EP to solve the Equivalence Problem

e Now reduce the Totality Problem to the Equivalence Problem

(P1,P2)

e Define f to transform inputs to TP to EP pseudo-Python

def f(P) :
def P1(x):
P(x)
return "Same_string"
def P2(x)
return "Same_string"
return (P1,P2)

e Run EP on (P1,P2)
- If EP returns YES then P halts on all inputs
- If EP returns NO then P does not halt on all inouts

e We have solved the Totality Problem — contradiction

40

M269 Revision 2019 25 May 2019

Rice’s Theorem

,,

Rice’s Theorem all non-trivial, semantic properties of programs are undecidable. Hc
Rice 1951 PhD Thesis

Equivalently: For any non-trivial property of partial functions, no general and effec-
tive method can decide whether an algorithm computes a partial function with that

property.

A property of partial functions is called trivial if it holds for all partial computable
functions or for none.

Rice’s Theorem and computability theory
Let S be a set of languages that is nontrivial, meaning
- there exists a Turing machine that recognizes a language in S
- there exists a Turing machine that recognizes a language not in S

Then, itis undecidable to determine whether the language recognized by an arbitrary
Turing machine lies in S.

This has implications for compilers and virus checkers

Note that Rice’s theorem does not say anything about those properties of machines
or programs that are not also properties of functions and languages.

For example, whether a machine runs for more than 100 steps on some input is a
decidable property, even though it is non-trivial.

6.14 M269 2017) Exam Q 15

e Which two of the following statements are true? (Tick two boxes.) (4 marks)

A.

If a programming language, let’s call it PL, is Turing complete, then any computa-
tional problem can be solved with a program written in PL.

B. The Equivalence Problem is not computable.

Problems in the class NP are defined as problems for which it is not known whether
they’re tractable.

. There are non-computable computational problems because: There are more deci-

sion problems with the natural numbers as their domain (DPN) than Turing Machines
that solve instances of DPN.

The Totality Problem is definitely in the class P.
Go to Soln 15

https://en.wikipedia.org/wiki/Rice%27s_theorem
https://en.wikipedia.org/wiki/Rice%27s_theorem

Phil Molyneux Exam 2017] 41

6.15 M269 2017) Exam Soln 15

A.

False PL, Turing complete programming language can compute anything that is com-
putable but there are some computational problems that are not computable

B. True Equivalence Problem is not computable — see Computability notes

False The class P is a subset of NP — we just do not know whether it is a proper
subset or equal

True Programs are finite strings over a finite alphabet (ASCIl or Unicode) hence
countable — however the number of different languages over any alphabet of more
than one symbol is uncountable — a problem is really membership of a string in
some language

False Totality Problem is not computable — see Computability notes — so not in the
class P

GotoQ 15

6.16 Complexity

P and NP

P, the set of all decision problems that can be solved in polynomial time on a deter-
ministic Turing machine

NP, the set of all decision problems whose solutions can be verified (certificate) in
polynomial time

Equivalently, NP, the set of all decision problems that can be solved in polynomial
time on a non-deterministic Turing machine

A decision problem, dp is NP-complete if
1. dpis in NP and
2. Every problem in NP is reducible to dp in polynomial time

NP-hard — a problem satisfying the second condition, whether or not it satisfies the
first condition. Class of problems which are at least as hard as the hardest problems
in NP. NP-hard problems do not have to be in NP and may not be decision problems

Euler diagram for P, NP, NP-complete and NP-hard set of problems

http://en.wikipedia.org/wiki/P_(complexity)
http://en.wikipedia.org/wiki/NP_(complexity)
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/Euler_diagram

42 M269 Revision 2019 25 May 2019

NP-Complete

P=NP=
NP-Complete

Complexity

Source: Wikipedia NP-complete entry

NP-complete problems
e Boolean satisfiability (SAT) Cook-Levin theorem

e Conjunctive Normal Form 3SAT
e Hamiltonian path problem
e Travelling salesman problem

e NP-complete — see list of problems

XKCD on NP-Complete Problems

MY HOBBY:
EMBEDDING NP-(DMPLETE PROBLEMS IN RESTAURANT (ORDERS

«— APPENZERS —~ 1 L EXACTLY? UMK ...
MIXED FRUIT 2.15 HERE, THESE PAPERS ON THE KNAPSACK }
PROBLEM MIGHT HELP YOU OUT.
FRENCH FRIES 275 \ LISTEN, T HAVE Six OHER
CIDE SALAD 235 TABLES T0 GET T0 —
— AS FAST AS POSSIBLE, (F (DURSE. WANT
HOT WINGS L SOMETHING ON TRAVELING SALESHAN? /

MOZZARELLA STICKS 4.20
SAMPLER PLATE 5.80

— SANDWICHES ~—
BARBENE L B

\
Fh e

http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Cook-Levin_theorem
http://en.wikipedia.org/wiki/3-satisfiability
http://en.wikipedia.org/wiki/Hamiltonian_path_problem
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/NP-complete

Phil Molyneux Exam 2017] 43

Source & Explanation: XKCD 287

6.16.1 NP-Completeness and Boolean Satisfiability
e The Boolean satisfiability problem (SAT) was the first decision problem shown to be
NP-Complete
e This section gives a sketch of an explanation

e Health Warning different texts have different notations and there will be some in-
consistency in these notes

e Health warning these notes use some formal notation to make the ideas more pre-
cise — computation requires precise notation and is about manipulating strings ac-
cording to precise rules.

Alphabets, Strings and Languages
e Notation:
e 3 is a set of symbols — the alphabet
e K is the set of all string of length k, which each symbol from X
e Example: if X ={0, 1}
- sl ={0,1}
- 32 ={00,01,10,11}
e 30 = {¢} where € is the empty string
e X* is the set of all possible strings over
o ¥=30yuslyus2uy...
e A Language, L, over T is a subset of =*

Lc>*

Language Accepted by a Turing Machine
e Language accepted by Turing Machine, M denoted by L(M)
e L(M) is the set of strings w € =* accepted by M

e For Final States F = {Y,N}, a string w € * is accepted by M < (if and only if) M
starting in qg with w on the tape halts in state Y

e Calculating a function (function problem) can be turned into a decision problem by
asking whether f(x) =y

The NP-Complete Class
e If we do not know if P = NP, what can we say ?

e Alanguage L is NP-Complete if:

http://www.explainxkcd.com/wiki/index.php/287:_NP-Complete
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Function_problem
http://en.wikipedia.org/wiki/Decision_problem

44

M269 Revision 2019 25 May 2019

The

- L e NP and

- for all other L’ € NP there is a polynomial time transformation (Karp reducible,
reduction) from L’ to L

Problem Py polynomially reduces (Karp reduces, transforms) to P,, written Py o P
or Py <p Py, iff 3f : dpp, — dpp, such that

- Ve dpp, [l € Yp, & f() € Yp,]
- f can be computed in polynomial time

More formally, L1 < ZT polynomially transforms to Ly < Zik, written Ly oc Ly or
Ly <p Lp, iff 3f: F — =F such that

- Vx e Ifx € L1 < f(x) € L]
- There is a polynomial time TM that computes f
Transitivity If Ly oc Ly and L) oc L3 then Ly oc L3
If Lis NP-Hard and L € P then P = NP
If Lis NP-Complete, then L € P if and only if P = NP
If Ly is NP-Complete and L € NP and Lg o« L then L is NP-Complete
Hence if we find one NP-Complete problem, it may become easier to find more

In 1971/1973 Cook-Levin showed that the Boolean satisfiability problem (SAT) is
NP-Complete

Boolean Satisfiability Problem

A propositional logic formula or Boolean expression is built from variables, opera-
tors: AND (conjunction, A), OR (disjunction, v), NOT (negation, —)

A formula is said to be satisfiable if it can be made True by some assignment to its
variables.

The Boolean Satisfiability Problem is, given a formula, check if it is satisfiable.
- Instance: a finite set U of Boolean variables and a finite set C of clauses over U
- Question: Is there a satisfying truth assignment for C?

A clause is is a disjunction of variables or negations of variables

Conjunctive normal form (CNF) is a conjunction of clauses

Any Boolean expression can be transformed to CNF

Given a set of Boolean variable U ={uy,up,...,un}

A literal from U is either any uj or the negation of some u; (written uj)

A clause is denoted as a subset of literals from U — {uy, uz, us}

A clause is satisfied by an assignment to the variables if at least one of the literals
evaluates to True (just like disjunction of the literals)

Let C be a set of clauses over U — C is satisfiable iff there is some assignment of
truth values to the variables so that every clause is satisfied (just like CNF)

http://en.wikipedia.org/wiki/Cook\T1\textendash Levin_theorem
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem

Phil Molyneux Exam 2017] 45

o C={{u1,up,u3},{uz,u3},{uy,uzl}is satisfiable

C={{uy,up},{uy,uz}, {ur}} is not satisfiable

e Proof that SAT is NP-Complete looks at the structure of NDTMs and shows you can
transform any NDTM to SAT in polynomial time (in fact logarithmic space suffices)

e SAT is in NP since you can check a solution in polynomial time

e To show that VL € NP : L oc SAT invent a polynomial time algorithm for each polyno-
mial time NDTM, M, which takes as input a string x and produces a Boolean formula
Ex which is satisfiable iff M accepts x

e See Cook-Levin theorem

Sources

e Garey and Johnson (1979, page 34) has the notation Ly oc L) for polynomial trans-
formation

e Arora and Barak (2009, page 42) has the notation Ly <p L, for polynomial-time Karp
reducible

e The sketch of Cook’s theorem is from Garey and Johnson (1979, page 38)
e For the satisfiable C we could have assignments (uy, up,u3) € {(T, T,F),(T,F,F), (F, T, F)}

Coping with NP-Completeness
e What does it mean if a problem is NP-Complete ?
- There is a P time verification algorithm.
- There is a P time algorithm to solve it iff P = NP (?)
- No one has yet found a P time algorithm to solve any NP-Complete problem

- So what do we do ?

Improved exhaustive search — Dynamic Programming; Branch and Bound

Heuristic methods — acceptable solutions in acceptable time — compromise on op-
timality

Average time analysis — look for an algorithm with good average time — compro-
mise on generality (see Big-O Algorithm Complexity Cheatsheet)

Probabilistic or Randomized algorithms — compromise on correctness

Sources
e Practical Solutions for Hard Problems Rich (2007, chp 30)
e Coping with NP-Complete Problems Garey and Johnson (1979, chp 6)

http://en.wikipedia.org/wiki/Cook-Levin_theorem
http://bigocheatsheet.com

46

M269 Revision 2019 25 May 2019

7 M269 Exam 2017]) Q Part2

7.1

(@)

(b)

Answer every question in this Part.
The marks for each question are given below the question number.
Marks for a part of a question are given after the question.

Answers to questions in this Part must be written in the additional answer books,
which you should also use for your rough working.

Go to Soln Part2

M269 2017) Exam Q 16

Consider an ADT for undirected graphs, named UGraph, that includes these opera-
tions:

nodes, which returns a sequence of all nodes in the graph, in no particular order;

has_edge, which takes two nodes and returns true if there is an edge between those
nodes;

edges, which returns a sequence of node-node pairs (tuples), in no particular order.
Each edge only appears once in the returned sequence, i.e. if the pair (nodel, node2)
is in the sequence, the pair (node2, nodel) is not.

How each node is represented is irrelevant.
You can assume the graph is connected and has no edge between a node and itself.

The following stand-alone Python function checks if an undirected graph is complete,
i.e. if each node is connected to every other node.

It assumes the ADT is implemented as a Python class.

def is_complete(graph):
nodes = graph.nodes()
for nodel 1in nodes:
for node2 in nodes:
edge_exists = graph.has_edge(nodel, node2)
if nodel != node2 and not edge_exists:
return False
return True

Assume that graph.nodes has complexity O(n), where n is the number of nodes,
and graph.has_edge has complexity O(1).

State and justify a bestcase scenario and a worst-case scenario for the above func-
tion, and their corresponding Big-O complexities.

Assume the basic computational step is the assignment.
State explicitly any other assumptions you make. (7 marks)
In graph theory, the number of nodes in a graph is called the order of the graph.

The term order is unrelated to sorting.

Phil Molyneux Exam 2017] 47

(i)

(if)

(©)

7.2

1.
2.
3.

Specify the problem of calculating the order of an undirected graph by completing
the following template. Note that it is specified as an independent problem, not as a
UGraph operation.

You may write the specification in English and/or formally with mathematical nota-
tion. (4 marks)

Name: order
Inputs
Preconditions:
Outputs:
Postconditions:
Give your initial insight for an algorithm that solves the problem.
Of the ADT operations given above you may only use edges. (4 marks)
A city council is planning the city’s bus routes.
It has decided which places will have a bus stop (schools, cinemas, hospital, etc.).

Each bus route will start from the train station, visit a number of bus stops, and then
return through the same streets to the station, visiting the same bus stops in reverse
order. Each bus stop has to be served by at least one bus route. The council wants
to minimize the total amount of time that all buses are on the road when following
their routes.

State and justify which data structure(s) and algorithm(s) you would adopt or adapt
to solve this problem.

State explicitly any assumptions you make. (5 marks)

Goto Soln 16

M269 2017) Exam Q 17

Imagine you are working for a logistics company that currently uses heuristic algo-
rithms to send their trucks on round trips that use as little fuel as possible.

The morning paper reports that P=NP has been proved through the discovery of a
tractable algorithm for the SAT problem.

What does this news mean for the company?

Write a brief memo with your advice on this matter to the board of the company,
which doesn’t include any computing experts.

The memo must have the following structure:
A suitable title.
A paragraph setting the scene and introducing the key question.

A paragraph in which you describe in layperson’s terms what P=NP means.

48 M269 Revision 2019 25 May 2019

4. A paragraph describing briefly how P=NP may impact on the company’s main busi-
ness objective (the cost-effective use of their trucks).

5. A conclusion on what you propose the company should do in face of this news, if
anything.

e Some marks will be awarded for a clear coherent text that is appropriate for its
audience, so avoid unexplained technical jargon and abrupt changes of topic, and
make sure your sentences fit together to tell an overall story. (15 marks)

As a guide, you should aim to write roughly two to five sentences per paragraph.

GotoSoln 17

8 M269 Exam 2017]) Soln Part2

e Part 2 solutions

Go to Q Part2

8.1 M269 2017) Exam Soln 16

(a) Best case: First node in nodes has no edge to the second node in nodes (the first
being itself) — hence returns False with only two calls in the inner loop — so O(n)

Worst case: The graph is complete and O(n2) since both loops fully traversed
(b) (i) Specification of order function
Name: order
Inputs: undirected graph, g
Preconditions: g is connected
Outputs: Integer, n
Postconditions: n is the size of the set of nodes in g
e (ii) Use edges to give a sequence of edges;
extract a list of the first and second nodes in each edge;
remove duplicates in the list (making a set);
the size of the result is the order of the graph (assumes connected graph)

(c) Data structures: graph with bus stops as nodes and weighted edges as distance
between stops;

e Algorithm(s): Some variant on Prim’s algorithm for minimum spanning tree.

GotoQ 16

Phil Molyneux Exam 2017] 49

8.2 M269 2017) Exam Soln 17

e Follow the given structure:
e Title: given at the end
e Setting the scene:

e P as the class of problems with solutions that are found in time which is a fixed
polynomial of the input size O(nk)

e NP as the class of problems with solutions that can be checked in polynomial time
e Give examples of both:

e Pairing problem: given a group of students and knowledge of which are compati-
ble, place them in compatible groups of 2 — Edmonds (1965) showed there is a
polynomial time algorithm for this (so we do not have to use brute force search)

e Partition into Triangles: make groups of three with each pair in the group compatible
e Find a large group of students who are compatible — Clique problem

e Sit the students round a large table so that no incompatible students are next to
each other (Hamiltonian Cycle)

e The first problem is in P, the others are in NP (we can check a solution) but it is not
known if they are in P

e Define NP complete problems, dp: (a) In NP; (b) Every problem in NP is reducible to
dp in polynomial time

e If P=NP then every NP problem would have a polynomial time solution — possibly via
reduction to the SAT problem

e However proving P=NP (a) may not actually give an algorithm in polynomial time for
solving an NP complete problem (the newspaper says there is a tractable algorithm
for SAT) (b) Even with a tractable algorithm for SAT, the O(nk) may be very large.

e Give example of linear programming: standard simplex algorithm is exponential
(worst case) while the ellipsoid algorithm is polynomial — however in practice sim-
plex is used (because it is good enough) (see Wikipedia: LP)

e Implications: Good: all optimisation problems become tractable including vehicle
routing

e Implications: Bad: Public key cryptography becomes impossible, banking transac-
tions become tricky to carry out securely, the same applies to secure Web transac-
tions

e Conclusion: prepare for huge disruption — this is bigger that the Internet or the Web
e Title: P=NP — a Disruptive Discovery

e Reading

e StackExchange: What would be the impact of P=NP?

e Lance Fortnow: The Status of the P Versus NP Problem readable article in 2009 CACM
(Fortnow, 2009)

https://en.wikipedia.org/wiki/Ellipsoid_method
https://en.wikipedia.org/wiki/Linear_programming
https://softwareengineering.stackexchange.com/questions/148836/what-would-be-the-impact-of-p-np
https://cacm.acm.org/magazines/2009/9/38904-the-status-of-the-p-versus-np-problem/fulltext

50 M269 Revision 2019 25 May 2019

e The International SAT Competitions Web Page

e Lance Fortnow: The Golden Ticket: P, NP and the Search for the Impossible (2013,2017)
(Fortnow, 2017)

e Lance Fortnow, Steve Homer: A Short History of Computational Complexity (Fortnow
and Homer, 2003)

e Computational Complexity blog from Lance Fortnow and Bill Gasarch

GotoQ 17

9 Exam Reminders

e Read the Exam arrangements booklet

e Before the exam — check the date, time and location (and how to get there)
e At the exam centre - arrive early

e Bring photo ID with signature

e Use black or blue pens (not erasable and not pencil) — see Cult Pens for choices —
pencils for preparing diagrams (HB or blacker)

e Practice writing by hand

e In the exam — Read the questions — carefully — before and after answering them
e Don’t get stuck on a question — move on, come back later

e But do make sure you have attempted all questions

e ... and finally Good Luck

10 White Slide

11 Web Sites & References

11.1 Web Sites

e Logic

- WFF, WFF’N Proof online http://www.oercommons.org/authoring/1364-basic-
wff-n-proof-a-teaching-guide/view

e Computability
- Computability
- Computable function
- Decidability (logic)

- Turing Machines

http://www.satcompetition.org/
https://lance.fortnow.com/papers/
https://blog.computationalcomplexity.org/
http://www2.open.ac.uk/students/help/exam-arrangements-booklet
http://www.cultpens.com/
http://en.wikipedia.org/wiki/Well-formed_formula
http://www.oercommons.org/authoring/1364-basic-wff-n-proof-a-teaching-guide/view
http://www.oercommons.org/authoring/1364-basic-wff-n-proof-a-teaching-guide/view
http://en.wikipedia.org/wiki/Computability
http://en.wikipedia.org/wiki/Computable_function
http://en.wikipedia.org/wiki/Decidability_(logic)
http://en.wikipedia.org/wiki/Turing_machine

Phil Molyneux Exam 2017] 51

- Universal Turing Machine
- Turing machine simulator
- Lambda Calculus

- Von Neumann Architecture

- Turing Machine XKCD http://www.explainxkcd.com/wiki/index.php/205:
_Candy_Button_Paper

- Turing Machine XKCD http://www.explainxkcd.com/wiki/index.php/505:
_A_Bunch_of_Rocks

- Phil Wadler Bright Club on Computability http://wadler.blogspot.co.uk/
2015/05/bright-club-computability.html

e Complexity

Complexity class

NP complexity

NP complete

Reduction (complexity)

P versus NP problem

Graph of NP-Complete Problems

Note on References — the list of references is mainly to remind me where | obtained
some of the material and is not required reading.

References

Adelson-Velskii, G M and E M Landis (1962). An algorithm for the organization of infor-
mation. In Doklady Akademia Nauk SSSR, volume 146, pages 263-266. Translated
from Soviet Mathematics — Doklady; 3(5), 1259-1263.

Arora, Sanjeev and Boaz Barak (2009). Computational Complexity: A Modern Approach.
Cambridge University Press. ISBN 0521424267. URL http://www.cs.princeton.
edu/theory/complexity/.

Chiswell, lan and Wilfrid Hodges (2007). Mathematical Logic. Oxford University Press.
ISBN 0199215626.

Church, Alonzo et al. (1937). Review: AM Turing, On Computable Numbers, with an Ap-
plication to the Entscheidungsproblem. Journal of Symbolic Logic, 2(1):42-43.

Cook, Stephen A. (1971). The Complexity of Theorem-proving Procedures. In Pro-
ceedings of the Third Annual ACM Symposium on Theory of Computing, STOC '71,
pages 151-158. ACM, New York, NY, USA. doi:10.1145/800157.805047. URL http:
//doi.acm.org/10.1145/800157.805047.

Copeland, B. Jack; Carl J. Posy; and Oron Shagrir (2013). Computability: Turing, Godel,
Church, and Beyond. The MIT Press. ISBN 0262018993.

http://en.wikipedia.org/wiki/Universal_Turing_machine
http://morphett.info/turing/turing.html
http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Von_Neumann_architecture
http://www.explainxkcd.com/wiki/index.php/205:_Candy_Button_Paper
http://www.explainxkcd.com/wiki/index.php/205:_Candy_Button_Paper
http://www.explainxkcd.com/wiki/index.php/505:_A_Bunch_of_Rocks
http://www.explainxkcd.com/wiki/index.php/505:_A_Bunch_of_Rocks
http://wadler.blogspot.co.uk/2015/05/bright-club-computability.html
http://wadler.blogspot.co.uk/2015/05/bright-club-computability.html
http://en.wikipedia.org/wiki/Complexity_class
http://en.wikipedia.org/wiki/NP_(complexity)
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/Reduction_(complexity)
http://en.wikipedia.org/wiki/P_%3D_NP_problem
http://adriann.github.io/npc/npc.html
http://www.cs.princeton.edu/theory/complexity/
http://www.cs.princeton.edu/theory/complexity/
http://doi.acm.org/10.1145/800157.805047
http://doi.acm.org/10.1145/800157.805047

52 M269 Revision 2019 25 May 2019

Cormen, Thomas H.; Charles E. Leiserson; Ronald L. Rivest; and Clifford Stein (2009). In-
troduction to Algorithms. MIT Press, third edition. ISBN 0262533057. URL http:
//mitpress.mit.edu/books/introduction-algorithms.

Davis, Martin (1995). Influences of mathematical logic on computer science. In The Uni-
versal Turing Machine A Half-Century Survey, pages 289-299. Springer.

Davis, Martin (2012). The Universal Computer: The Road from Leibniz to Turing. A K
Peters/CRC Press. ISBN 1466505192.

Dowsing, R.D.; V.J Rayward-Smith; and C.D Walter (1986). First Course in Formal Logic
and lIts Applications in Computer Science. Blackwells Scientific. ISBN 0632013087.

Fortnow, Lance (2009). The Status of the P Versus NP Problem. Communications of the
ACM, 52(9):78-86. ISSN 0001-0782. doi:10.1145/1562164.1562186. URL http://
doi.acm.org/10.1145/1562164.1562186.

Fortnow, Lance (2017). The Golden Ticket: P, NP, and the Search for the Impossible.
Princeton University Press. ISBN 0691175780. URL https://press.princeton.edu/
titles/9937.html.

Fortnow, Lance and Steve Homer (2003). A Short History of Computational Complexity.
Bulletin of the European Association for Theoretical Computer Science, 80. URL https:
//lance.fortnow.com/.

Franzén, Torkel (2005). Gdodel’s Theorem: An Incomplete Guide to Its Use and Abuse. A K
Peters, Ltd. ISBN 1568812388.

Fulop, Sean A. (2006). On the Logic and Learning of Language. Trafford Publishing. ISBN
1412023815.

Garey, Michael R. and David S. Johnson (1979). Computers and Intractability: A Guide to
the Theory of NP-completeness. W.H.Freeman Co Ltd. ISBN 0716710455.

Halbach, Volker (2010). The Logic Manual. OUP Oxford. ISBN 0199587841. URL http:
//1ogicmanual.philosophy.ox.ac.uk/index.html.

Halpern, Joseph Y; Robert Harper; Neil Immerman; Phokion G Kolaitis; Moshe Y Vardi;
and Victor Vianu (2001). On the unusual effectiveness of logic in computer science.
Bulletin of Symbolic Logic, pages 213-236.

Hindley, J. Roger and Jonathan P. Seldin (1986). Introduction to Combinators and A-
Calculus. Cambridge University Press. ISBN 0521318394. URL http://www-maths.
swan.ac.uk/staff/jrh/.

Hindley, J. Roger and Jonathan P. Seldin (2008). Lambda-Calculus and Combinators:
An Introduction. Cambridge University Press. ISBN 0521898854. URL http://www-
maths.swan.ac.uk/staff/jrh/.

Hodges, Wilfred (1977). Logic. Penguin. ISBN 0140219854.
Hodges, Wilfred (2001). Logic. Penguin, second edition. ISBN 0141003146.

Hopcroft, John E.; Rajeev Motwani; and Jeffrey D. Ullman (2001). Introduction to Au-
tomata Theory, Languages, and Computation. Addison-Wesley, second edition. ISBN
0-201-44124-1.

Hopcroft, John E.; Rajeev Motwani; and Jeffrey D. Ullman (2007). Introduction to

http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
http://doi.acm.org/10.1145/1562164.1562186
http://doi.acm.org/10.1145/1562164.1562186
https://press.princeton.edu/titles/9937.html
https://press.princeton.edu/titles/9937.html
https://lance.fortnow.com/
https://lance.fortnow.com/
http://logicmanual.philosophy.ox.ac.uk/index.html
http://logicmanual.philosophy.ox.ac.uk/index.html
http://www-maths.swan.ac.uk/staff/jrh/
http://www-maths.swan.ac.uk/staff/jrh/
http://www-maths.swan.ac.uk/staff/jrh/
http://www-maths.swan.ac.uk/staff/jrh/

Phil Molyneux Exam 2017] 53

Automata Theory, Languages, and Computation. Pearson, third edition. ISBN
0321514483. URL http://infolab.stanford.edu/~ulIman/ialc.html.

Hopcroft, John E. and Jeffrey D. Ullman (2001). Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, first edition. ISBN 020102988X.

Lemmon, Edward John (1965). Beginning Logic. Van Nostrand Reinhold. ISBN
0442306768.

Levin, Leonid A (1973). Universal sorting problems. Problemy Peredachi Informatsii,
9(3):265-266.

Manna, Zohar (1974). Mathematical Theory of Computation. McGraw-Hill. ISBN 0-07-
039910-7.

Miller, Bradley W. and David L. Ranum (2011). Problem Solving with Algorithms and
Data Structures Using Python. Franklin, Beedle Associates Inc, second edition. ISBN
1590282574. URL http://interactivepython.org/courselib/static/pythonds/
index.html.

Pelletier, Francis Jeffrey and Allen P Hazen (2012). A history of natural deduction. In
Gabbay, Dov M; Francis Jeffrey Pelletier; and John Woods, editors, Logic: A History of
Its Central Concepts, volume 11 of Handbook of the History of Logic, pages 341-414.
North Holland. ISBN 0444529373. URL http://www.ualberta.ca/~francisp/
papers/PelTHazenSubmittedv2. pdf.

Pelletier, Francis Jeffry (2000). A history of natural deduction and elementary logic text-
books. Logical consequence: Rival approaches, 1:105-138. URL http://www.sfu.ca/
~jeffpell/papers/pelletierNDtexts.pdf.

Rayward-Smith, V J (1983). A First Course in Formal Language Theory. Blackwells Scien-
tific. ISBN 06320117609.

Rayward-Smith, V J (1985). A First Course in Computability. Blackwells Scientific. ISBN
0632013079.

Rich, Elaine A. (2007). Automata, Computability and Complexity: Theory and Applica-
tions. Prentice Hall. ISBN 0132288060. URL http://www.cs.utexas.edu/~ear/
cs341/automatabook/.

Smith, Peter (2003). An Introduction to Formal Logic. Cambridge University Press. ISBN
0521008042. URL http://www.logicmatters.net/ifl/.

Smith, Peter (2007). An Introduction to Godel’s Theorems. Cambridge University Press,
first edition. ISBN 0521674530.

Smith, Peter (2013). An Introduction to Gédel’s Theorems. Cambridge University Press,
second edition. ISBN 1107606756. URL http://godelbook.net.

Smullyan, Raymond M. (1995). First-Order Logic. Dover Publications Inc. ISBN
0486683702.

Soare, Robert Irving (1996). Computability and Recursion. Bulletin of Symbolic Logic,
2:284-321. URL http://www.people.cs.uchicago.edu/~soare/History/.

Soare, Robert Irving (2013). Interactive computing and relativized computability. In
Computability: Turing, Gédel, Church, and Beyond, chapter 9, pages 203-260. The MIT
Press. URL http://www.people.cs.uchicago.edu/~soare/Turing/shagrir.pdf.

http://infolab.stanford.edu/~ullman/ialc.html
http://interactivepython.org/courselib/static/pythonds/index.html
http://interactivepython.org/courselib/static/pythonds/index.html
http://www.ualberta.ca/~francisp/papers/PellHazenSubmittedv2.pdf
http://www.ualberta.ca/~francisp/papers/PellHazenSubmittedv2.pdf
http://www.sfu.ca/~jeffpell/papers/pelletierNDtexts.pdf
http://www.sfu.ca/~jeffpell/papers/pelletierNDtexts.pdf
http://www.cs.utexas.edu/~ear/cs341/automatabook/
http://www.cs.utexas.edu/~ear/cs341/automatabook/
http://www.logicmatters.net/ifl/
http://godelbook.net
http://www.people.cs.uchicago.edu/~soare/History/
http://www.people.cs.uchicago.edu/~soare/Turing/shagrir.pdf

54 M269 Revision 2019 25 May 2019

Teller, Paul (1989a). A Modern Formal Logic Primer: Predicate and Metatheory: 2.
Prentice-Hall. ISBN 0139031960. URL http://tellerprimer.ucdavis.edu.

Teller, Paul (1989b). A Modern Formal Logic Primer: Sentence Logic: 1. Prentice-Hall.
ISBN 0139031707. URL http://tellerprimer.ucdavis.edu.

Thompson, Simon (1991). Type Theory and Functional Programming. Addison Wesley.
ISBN 0201416670. URL http://www.cs.kent.ac.uk/people/staff/sjt/TTFP/.

Tomassi, Paul (1999). Logic. Routledge. ISBN 0415166969. URL http://
emilkirkegaard.dk/en/wp-content/uploads/Paul-Tomassi-Logic.pdf.

Turing, Alan Mathison (1936). On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society, 42:230-265.

Turing, Alan Mathison (1937). On computable numbers, with an application to the
Entscheidungsproblem. A Correction. Proceedings of the London Methematical Soci-
ety, 43:544-546.

van Dalen, Dirk (1994). Logic and Structure. Springer-Verlag, third edition. ISBN
0387578390.

van Dalen, Dirk (2012). Logic and Structure. Springer-Verlag, fifth edition. ISBN
1447145577.

Author Phil Molyneux Written 25 May 2019 Printed 23rd May 2021
Subject dir: (baseURL)/0U/M269/M269Exams/M269ExamRevision
Topic path: /M269ExamRevision2018]/M269ExamRevision2018]B/M269ExamRevision2018IB.pdf

http://tellerprimer.ucdavis.edu
http://tellerprimer.ucdavis.edu
http://www.cs.kent.ac.uk/people/staff/sjt/TTFP/
http://emilkirkegaard.dk/en/wp-content/uploads/Paul-Tomassi-Logic.pdf
http://emilkirkegaard.dk/en/wp-content/uploads/Paul-Tomassi-Logic.pdf

	Agenda
	Introductions
	M269 Exam 2017J

	Adobe Connect
	Student View
	Settings
	Student & Tutor Views
	Sharing Screen & Applications
	Ending a Meeting

	M269 17J Exam
	Exam Qs
	Part 1

	Units 1 & 2
	Unit 1 Introduction
	Q 1
	Soln 1
	Q 2
	Soln 2
	Unit 2 From Problems to Programs
	Example Algorithm Design — Searching

	Q 3
	Soln 3
	Q 4
	Soln 4

	Units 3, 4 & 5
	Unit 3 Sorting
	Unit 4 Searching
	Q 5
	Soln 5
	Q 6
	Soln 6
	Q 7
	Soln 7
	Q 8
	Soln 8
	Unit 5 Optimisation
	Q 9
	Soln 9
	Q 10
	Soln 10

	Units 6 & 7
	Propositional Logic
	Q 11
	Soln 11
	Predicate Logic
	Q 12
	Soln 12
	SQL Queries
	Q 13
	Soln 13
	Logic
	Q 14
	Soln 14
	Computability
	Non-Computability — Halting Problem
	Reductions & Non-Computability

	Q 15
	Soln 15
	Complexity
	NP-Completeness and Boolean Satisfiability

	Q Part 2
	Q 16
	Q 17

	Soln Part 2
	Soln 16
	Soln 17

	Exam Reminders
	White Slide
	References
	Web Sites
	References

