M269 Revision
2019

Phil Molyneux

M269 Revision 2019
Exam 2016J

Phil Molyneux

19 May 2019

1/162 (1/173)

M269 Exam Revision 2sD Reision

Agenda & Aims Phil Molyneux
1. Welcome and introductions e
2. Revision strategies
3. M269 Exam — Part 1 has 15 questions 65%
4. M269 Exam — Part 2 has 2 questions 35%
5. M269 Exam — 3 hours, Part 1 80 mins, Part 2 90 mins
6. M269 2016J exam (June 2017)
7. Topics and discussion for each question
8. Exam techniques
9. These slides and notes are at http://www.pmolyneux.

10.

co.uk/0U/M269FolderSync/M269ExamRevision/ at
M269ExamRevision2018J/M269ExamRevision2018JA

Recording [Meeting>> Record Meeting. . .] v

2/162 (2/173)

http://www.pmolyneux.co.uk/OU/M269FolderSync/M269ExamRevision/
http://www.pmolyneux.co.uk/OU/M269FolderSync/M269ExamRevision/
http://www.pmolyneux.co.uk/OU/M269FolderSync/M269ExamRevision/M269ExamRevision2018J/M269ExamRevision2018JA/

M269 Exam Revision 2sD Reision

Introductions & Revision strategies Phil Molyneux

» Introductions ——
> What other exams are you doing this year 7

» Each give one exam tip to the group

3/162 (3/173)

M 269 Exa m M2692(|)?1e9vision

Presentation 2016J Phil Molyneux

> Not examined this presentation:

» Unit 4, Section 2 String search

» Unit 7, Section 2 Logic Revisited

» Unit 7, Section 4 Beyond the Limits

M269 Exam 2016J

4/162 (4/173)

Adobe Connect

Interface — Student Quick Reference

Participant Quick Reference Guide

Speaker volume

. Adobe® Connect

Adobe Connect Help

Connection status

Video pod

- Attendee pod

|- chat pod

M269 Revision
2019

Phil Molyneux

Student View
Settings
Student & Tutor Views

Sharing Screen &
Applications

Ending a Meeting

5/162 (5/173)

Adobe Connect M269 Revision

2019
Interface — Student View Phil Molyneux

1126517 M269-17. Onine o room Loncon/SE (1.13) CG (23111268173 (1) - Adooe Connect
T w6 - & -

M269Prsntn017TutorisloverviewAAC3A beam

Student View

Settings
1269 Overvs Student & Tutor Views
G Sharing Screen &
Applic

M269 Overview
M269 Overview A

Phil Molyneux

15 October 2017

6/162 (6/173)

M269 Revision

Adobe Connect 2010

Settings Phil Molyneux

» Everybody: Audio Settings [Meeting)) Audio Setup Wizard. .. |
» Audio {Menu bar>> Audio>> Microphone rights for Participants} v

Settings

» Do not Enable single speaker mode

» Drawing Tools [Share pod menu bar)) Draw] (1 slide/screen)

> [Share pod menu bar>> Menu icon>> Enable Participants to draw} v gray

> [Meeting>> Preferences>> Whiteboard >> Enable Participants to draw} (4

» Cancel hand tool

» Do not enable green pointer. ..

> [Meeting>> Preferences>> Attendees Pod} Disable Raise Hand
notification

> CUI‘SOr [Meeting» Preferences>> General tab>> Host Cursors>

) Show to all attendees| v/ (default Off)
> [Meeting>> Preferences>> Screen Share>> Cursor>> Show Application Cursor]
» Webcam {Menu bar>> Webcam>> Enable Webcam for Participants} (4
ReCOrding [Meeting>> Record Meeting. . . } v

v

7/162 (7/173)

M269 Revision

Adobe Connect 2019
Access Phil Molyneux

» Tutor Access

> [TutorHome >> M269 Website>> Tutorials} et

> [Cluster Tutoria|s>> M269 Online tutorial room]

> [Tutor Groups>> M269 Online tutor group room}

> [Module—wide Tutoria|s>> M269 Online module-wide room]

> Attendance

{TutorHome >> Students>> View your tutorial timetables}

Beamer Slide Scaling 440% (422 x 563 mm)
Clear Everyone’s Status

vy

{Attendee Pod >> Menu>> Clear Everyone's Status}

» Grant Access

[Meeting>> Manage Access & Entry>> Invite Participants. .. } and send
link via email

8/162 (8/173)

M269 Revision

Adobe Connect 2010

Keystroke Shortcuts Phil Molyneux

» Keyboard shortcuts in Adobe Connect

Toggle Mic [32]+(M] (Mac), [Cerl)+[M] (Win) o
(On/Disconnect)

Toggle Raise-Hand status [3¢]+[E)
Close dialog box [®] (Mac), (Win)
» End meeting []+ \]

v

vy

9/162 (9/173)

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html

M269 Revision

Adobe Connect Interface 2010

Student View (default) Phil Molyneux

Help

0 e @-

Student View
Settings
Student & Tutor Views

Sharing Screen &
Applicat

Ending

M269 Overview
M269 Overview A

Phil Molyneux

15 October 2017

10/162 (10/173)

Adobe Connect Interface

Tutor View

Host Quick Reference Guide

Manage meeting: audio
setup, recording, roles

Status: raise hand, agree, disagree.

Control participant
udio
conferencing

Speaker
volume

step away, speak louder, speak
softer, speed up, slow down,
laughter, applause

Webcam

. Adobe® Connect

Adobe Connect Help

Status View

Layout panel

Phil Molyneux

Student View
Settings
Student & Tutor Views

Sharing Screen &
Applications

Ending a Meeting

11/162 (11/173)

Adobe Connect Interface
Tutor View

M269Prsnn2017 TutorsloverviewAACIA beamer pdf

M269 Overview
M269 Overview A

Phil Molyneux

15 October 2017

% [1 Jiss | = & [0 -] | @

Mo Overven

P Mpna

M269 Revision
2019

Phil Molyneux

Student View

Settings

12/162 (12/173)

Adobe Connect Interface D) R
Sharing Screen & Applications Phil Molyneux

> [Share My Screen>> Application tab>> Terminal] for Terminal

v

(Share menu) Change View)) Zoom in| for mismatch of screen
size/resolution (Participants)

» (Presenter) Change to 75% and back to 100% (solves
participants with smaller screen image overlap)

Sharing Screen &
Applications

P Leave the application on the original display

» Beware blued hatched rectangles — from other
(hidden) windows or contextual menus

P> Presenter screen pointer affects viewer display —
beware of moving the pointer away from the application

» First time: [System Preferences)) Security & Privacy)) Privacy)

Accessibility

13/162 (13/173)

https://en.wikipedia.org/wiki/Terminal_(macOS)

Adobe Connect Rarivias
Ending a Meeting Phil Molyneux
» Notes for the tutor only
» Student: [Meeting) Exit Adobe Connect]
> Tutor:
» Recording [Meeting) Stop Recording| v/ g o Meting
» Remove Participants Meeting) End Meeting. .. | v/

» Dialog box allows for message with default message:
» The host has ended this meeting. Thank you for
attending.
» Recording availability /n course Web site for joining
the room, click on the eye icon in the list of recordings
under your recording — edit description and name

> Meeting Information [Meeting)) Manage Meeting Information |
— can access a range of information in Web page.

> Attendance Report see course Web site for joining
room

14/162 (14/173)

M269 2016J Exam M269 Revision

Q S Phil Molyneux

M269 Algorithms, Data Structures and Computability
Presentation 2016J Exam
Date Wednesday, 7 June 2017 Time 14:30-17:30

There are TWO parts to this examination. You should
attempt all questions in both parts

vvyyypy

v

Part 1 carries 65 marks — 80 minutes

v

Part 2 carries 35 marks — 90 minutes

> Note see the original exam paper for exact wording and
formatting — these slides and notes may change some
wording and formatting

» Note 2015J and before had Part 1 with 60 marks (100
minutes), Part 2 with 40 marks (70 minutes)

15/162 (15/173)

M269 2016J Exam M269 Revision

Q Partl Phil Molyneux

>
>

Answer every question in this part.

The marks for each question are given below the
question number.

QP
Answers to questions in this Part should be written on

this paper in the spaces provided, or in the case of
multiple-choice questions you should tick the

appropriate box(es).

If you tick more boxes than indicated for a multiple

choice question, you will receive no marks for your

answer to that question.

Use the provided answer books for any rough working.

16/162 (16/173)

M269 Specimen Exam 269 Revsion
Unit 1 Topics, Q1, Q2 Phil Molyneux

» Unit 1 Introduction
» Computation, computable, tractable

» Introducing Python

Unit 1 Introduction

» What are the three most important concepts in
programming 7
1.
2.
3.

17/162 (17/173)

http://en.wikipedia.org/wiki/Paul_Hudak

M269 Specimen Exam 269 Revsion
Unit 1 Topics, Q1, Q2 Phil Molyneux

» Unit 1 Introduction
» Computation, computable, tractable

» Introducing Python

Unit 1 Introduction

» What are the three most important concepts in
programming 7
1. Abstraction
2.
3.

17/162 (18/173)

http://en.wikipedia.org/wiki/Paul_Hudak

M269 Specimen Exam 269 Revsion
Unit 1 Topics, Q1, Q2 Phil Molyneux

» Unit 1 Introduction
» Computation, computable, tractable

» Introducing Python

Unit 1 Introduction

» What are the three most important concepts in
programming 7
1. Abstraction
2. Abstraction
3.

17/162 (19/173)

http://en.wikipedia.org/wiki/Paul_Hudak

M269 Specimen Exam 269 Revsion

Unit 1 Topics, Q1, Q2 Phil Molyneux
» Unit 1 Introduction
» Computation, computable, tractable
» Introducing Python e
» What are the three most important concepts in

programming 7
1. Abstraction
2. Abstraction
3.

» Quote from Paul Hudak (1952-2015)

17/162 (20/173)

http://en.wikipedia.org/wiki/Paul_Hudak

M269 2016J Exam M269 Revision

Q1

Phil Molyneux

» Which two of the following statements are true? (Tick

A.

two boxes.) (2 marks)

A problem is computable if it possible to build an
algorithm which solves any instance of the problem in a an
finite number of steps.

. An effective procedure is an algorithm which, for every

instance of a given problem, solves that instance in the
most efficient way — minimising the use of resources
such as memory.

. A decision problem is decidable if it is computable.

. A decision problem is any problem stated in a formal

language.

18/162 (21/173)

M269 2016J Exam M269 Revision

Soln 1 Phil Molyneux

A. A problem is computable if it possible to build an
algorithm which solves any instance of the problem in a
finite number of steps. Yes

B. An effective procedure is an algorithm which, for every
instance of a given problem, solves that instance in the
most efficient way — minimising the use of resources
such as memory. No An effective procedure is an
algorithm that solves any instance of a decision problem
in a finite number of steps (Reader, page 91)

Soln 1

C. A decision problem is decidable if it is computable. Yes

D. A decision problem is any problem stated in a formal
language. No Problems where the answer is yes or no
(Unit 1)

19/162 (22/173)

M269 2016J Exam M269 Revision

Q 2 Phil Molyneux

» Complete these paragraphs correctly using words or

phrases from the list below. (2 marks)
» Abstraction as can be understood in terms of
the relationship between a and a

The latter represents the details of interest and captures
the essentials, ignoring certain irrelevant details.

Q2

» Abstraction as generally involves two
layers — the (which is a layer through which
users interact with the model) and the
(a layer that automates the model)

P Possible words and phrases to insert:

encapsulation model modelling procedural
algorithm process automation interface
part of reality data simulation implementation

20/162 (23/173)

M269 2016J Exam M269 Revision

Soln 2 Phil Molyneux

» Abstraction as modelling can be understood in terms of
the relationship between a part of reality and a model.
The latter represents the details of interest and captures
the essentials, ignoring certain irrelevant details.

» Abstraction as encapsulation generally involves two
layers — the interface (which is a layer through which son2
users interact with the model) and the implementation
(a layer that automates the model).

21/162 (24/173)

M269 Specimen Exam 269 Revsion
Unit 2 Topics, Q3, Q4 Phil Molyneux

» Unit 2 From Problems to Programs
» Abstract Data Types

» Pre and Post Conditions

» Logic for loops

Unit 2 From Problems to
Programs

22/162 (25/173)

Example Algorithm Design

Searching

» Given an ordered list (xs) and a value (val), return
» Position of val in xs or
» Some indication if val is not present

» Simple strategy: check each value in the list in turn

» Better strategy: use the ordered property of the list to
reduce the range of the list to be searched each turn
» Set a range of the list
» If val equals the mid point of the list, return the mid
point
Otherwise half the range to search
If the range becomes negative, report not present
(return some distinguished value)

vy

M269 Revision
2019

Phil Molyneux

Example Algorithm Design
— Searching

23/162 (26/173)

Example Algorithm Design

Binary Search lterative

1 def binarySearchIter(xs,val):

2 lo = 0

3 hi = len(xs) - 1

5 while lo <= hi:

6 mid = (lo + hi) // 2
7 guess = xs[mid]

9 if val == guess:
10 return mid

11 elif val < guess:
12 hi = mid - 1

13 else:

14 lo = mid + 1

16 return None

M269 Revision
2019

Phil Molyneux

Example Algorithm Design
— Searching

24/162 (27/173)

Divide and Conquer

Binary Search Recursive

10
11
12
13
14
15
16

def binarySea

rchRec (xs,val,lo=0,hi=-1):

if (hi == -1):

hi = len(
mid = (lo +

if hi < lo:
return No
else:
guess = X
if val ==
return
elif wval
return
else:
return

xs) - 1

hi) // 2

ne

s[mid]
guess:
mid
< guess:
binarySearchRec (xs,val,lo,mid-1)

binarySearchRec (xs,val ,mid+1,hi)

M269 Revision
2019

Phil Molyneux

Example Algorithm Design
— Searching

25/162 (28/173)

Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)

XS = Highlight the mid value and search
binarySearchRec(xs,25,77,77)
XS = Highlight the mid value and search
binarySearchRec(xs,25,77,77)
X8 = Highlight the mid wvalue and search
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search

Return value:

77

range

range

range

range

M269 Revision
2019

Phil Molyneux

Example Algorithm Design
— Searching

26/162 (29/173)

Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs,25,77,77)
X8 = Highlight the mid value and search range
binarySearchRec(xs,25,77,77)

X8 = Highlight the mid wvalue and search range
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range
Return value: 77

M269 Revision
2019

Phil Molyneux

Example Algorithm Design
— Searching

26/162 (30/173)

Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs,67,8,14) by line 15

X8 = Highlight the mid value and search range
binarySearchRec(xs,25,77,77)

X8 = Highlight the mid wvalue and search range
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range
Return value: 77

M269 Revision
2019

Phil Molyneux

Example Algorithm Design
— Searching

26/162 (31/173)

. . M269 Revision
Divide and Conquer 2019
Binary Search Recursive — Solution Phil Molyneux

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [67,69,75,80,89,97,101]
binarySearchRec(xs,25,77,77)

X8 = Highlight the mid wvalue and search range
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range Example Algorithm Design

— Searching

Return value: 77

26/162 (32/173)

Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs,67,8,14) by line 15

xs = [67,69,75,80,89,97,101]

binarySearchRec(xs,67,8,10) by line 13

X8 = Highlight the mid wvalue and search range
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range
Return value: 77

M269 Revision
2019

Phil Molyneux

Example Algorithm Design
— Searching

26/162 (33/173)

. . M269 Revision
Divide and Conquer 2019
Binary Search Recursive — Solution Phil Molyneux

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,10) by line 13

xs = [67,69,75,]
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range Eap it Pt

— Searching

Return value: 77

26/162 (34/173)

Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,10) by line 13
xs = [67,69,75,]

binarySearchRec(xs,67,8,8) by line 13

XS = Highlight the mid value and search range
Return value: 77

M269 Revision
2019

Phil Molyneux

Example Algorithm Design
— Searching

26/162 (35/173)

Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,10) by line 13
xs = [67,69,75,]
binarySearchRec(xs,67,8,8) by line 13
xs = [67,]

Return value: 77

M269 Revision
2019

Phil Molyneux

Example Algorithm Design
— Searching

26/162 (36/173)

Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,10) by line 13
xs = [67,69,75,]
binarySearchRec(xs,67,8,8) by line 13
xs = [67,]

Return value: 8 by line 11

M269 Revision
2019

Phil Molyneux

Example Algorithm Design
— Searching

26/162 (37/173)

M269 Revision

Example Algorithm Design 2019

Binary Search Iterative — Miller & Ranum (Pl el
1 def binarySearchIterMR(alist, item):

2 first = 0

3 last = len(alist)-1

4 found = False

6 while first<=last and not found:

7 midpoint = (first + last)//2

8 if alist[midpoint] == item:

9 found = True

10 © 1 BHO8 Example Algorithm Design
11 if item < alist[midpoint]: — Searching

12 last = midpoint-1

13 else:

14 first = midpoint+1

16 return found

27/162 (38/173)

Divide and Conquer Rt
Binary Search Recursive — Miller & Ranum (Pl el
1 def binarySearchRecMR(alist, item):

2 if len(alist) == O0:

3 return False

4 else:

5 midpoint = len(alist)//2

6 if alist[midpoint]l==item:

7 return True

8 else:

9 if item<alist[midpoint]:

10 return binarySearchRecMR(alist [:midpoint],item) Eeample Algoritm Desgn
1 else: — Searching

12 return binarySearchRecMR(alist[midpoint+1:],item)

28/162 (39/173)

M269 2016J Exam M269 Revision

Q3

>

(a)

>

Phil Molyneux

This question is about bubble sort and selection sort,
where we are sorting numbers in ascending order.
(6 marks)

Selection sort improves on bubble sort by making only
one exchange for every pass through the list.

In selection sort, given the starting list below, indicate
which two elements are to be swapped at each stage, a3
and complete below as necessary.

You have space to indicate up to 5 swaps and the
resulting list.

If selection sort requires fewer than 5 swaps for this list,
leave any remaining step(s) blank.

Q 3 continued on next slide

29/162 (40/173)

M269 2016J Exam

Q 3 (contd)

(1][6[2[3]5]

1. Swap elements and
LT[]

2. Swap elements and
L[]

3. Swap elements and
LT[]

4. Swap elements and
L[]

5. Swap elements and

LT[

P Q 3 continued on next slide

to give

to give

to give

to give

to give

M269 Revision
2019

Phil Molyneux

Q3

30/162 (41/173)

hA269 2016J Exam M269 Revision

2019
Q 3 (contd) Phil Molyneux

(b) Although both bubble sort and selection sort make the
same number of comparisons for a list of the same
length, they do not make the same number of swaps.

How many swaps are made in a worst case, with a list
of length 5, for each of bubble sort and selection sort?

Explain how you arrived at the number of swaps for
each. There is no need to refer to Big-O in your answer. Qs

31/162 (42/173)

M269 2016J Exam M269 Revision

Soln 3 Phil Molyneux

» Selection sort: sorting ascending and selecting largest
first

def selSortAscByMax(xs):
for fillSlot in range(len(xs) - 1, 0, -1):
maxIndex = 0
for index in range(l, fillSlot + 1):
if xs[index] > xs[maxIndex]:
maxIndex = index
Soln 3

temp = xs[fillSlot]

xs[£fill1Slot] = xs[maxIndex]

xs [maxIndex] = temp

P Soln 3 continued on next slide

32/162 (43/173)

M269 2016J Exam M269 Revision

Soln 3 (contd) Phil Molyneux

» Here is an informal version

for fillSlot = len(xs) - 1 down to 1 do
find the maximum of
xs[0] .. xs[fillSlot]
and swap with xs[fillSlot]

P Soln 3 continued on next slide

Soln 3

33/162 (44/173)

M269 Revision

M269 2016.] Exam 2019

Soln 3 (contd) Phil Molyneux

(t]ef[2][3]5]

1. Swap elements 6 and 5 to give
[t]ef2]3]6]

2. Swap elements 5 and 3 to give
HEEIEE

3. Swap elements 3 and 2 to give
HEIEED

4. Swap elements 2 and 2 to give
HEIEIED

» Note the last swap would not be there if there was a
test for fillSlot == maxIndex

34/162 (45/173)

M269 2016J Exam M269 Revision

Soln 3 (cond) Phil Molyneux

» Selection sort: sorting ascending and selecting smallest
first

def selectionSort(xs):
for fillSlot in range(0,len(xs)-1):
minIx = fillSlot
for ix in range(fillSlot + 1, len(xs)):
if xs[ix] < xs[minIx]:
minlIx = ix
Soln 3
4if fillSlot != minIxz: # swap tf different
xs[fi11Slot],xs[minIx] = xs[minIx],xs[fillSlot]

P Soln 3 continued on next slide

35/162 (46/173)

M269 2016J Exam

Soln 3 (contd)

» Here is an informal version

M269 Revision
2019

Phil Molyneux

for £fillSlot = 0 to (len(xs)
find the minimum of

xs[fillSlot]..xs[len(xs)

and swap with xs[fillSlot]

- 2) do

P Soln 3 continued on next slide

Soln 3

36/162 (47/173)

M269 Revision

M269 2016.] Exam 2019

Soln 3 (contd) Phil Molyneux

(t]ef[2][3]5]

1. Swap elements 1 and 1 to give
[t]ef2][3]5]

2. Swap elements 6 and 2 to give
(t]2]6]3]5]

3. Swap elements 6 and 3 to give
[t]2]3][6]5]

4. Swap elements 6 and 5 to give
HEIEIE

> Note the swap at stage 1. would not be there if there
was a test for £i11Slot == maxIx

37/162 (48/173)

M269 Revision

M269 2016.] Exam 2019

Soln 3 (contd) Phil Molyneux

(b) Bubble sort does 10 swaps in a worst case since it does
n — 1 swaps iterating over n items so total =
44342+ 1=10 swaps

» Selection sort does 4 swaps in a worst case since it does
(at most) one swap per pass and n — 1 passes

Soln 3

38/162 (49/173)

M269 2016J Exam M269 Revision

Q 4 Phil Molyneux

» A Python program contains a loop with the following
guard (4 marks)

[while a <= 3 or b > 8: J

Make the following substitutions:
P represents a > 3
Q represents b <= 8
Complete the following table

PIlQ|-P|-Q|-PV-Q|PVQR|-(PAQ) o
T|T
T|F
FIT
FI|F

P Q 4 continued on next slide

39/162 (50/173)

M269 2016J Exam

Q 4 (contd)

» Based on the table, which of the following expressions

moO o ® >

equivalent to the above guard? (Tick one box.)
not a < 3

not b <= 8

not (a <= 3 and b > 8)

a >3 and b <= 8

not (a > 3 and b <= 8)

S

M269 Revision
2019

Phil Molyneux

40/162 (51/173)

M269 2016J Exam M269 Revision

Soln 4 Phil Molyneux
PIlQ|-P|-Q|-PV-Q|PVQ|-(PAQ)
T T F F F T F
T|F F T T T T
F|T| T F T T T
FIF| T T T F T

» The equivalent expression is E.

Soln 4

41/162 (52/173)

M269 Revision

M269 Specimen Exam 2010

Unit 3 Topics, Q5, Q6 Phil Molyneux

» Unit 3 Sorting
» Elementary methods: Bubble sort, Selection sort,
Insertion sort

» Recursion — base case(s) and recursive case(s) on
smaller data

Unit 3 Sorting

» Quicksort, Merge sort

v

Sorting with data structures: Tree sort, Heap sort

> See sorting notes for abstract sorting algorithm

42/162 (53/173)

. . M269 Revision
Unit 3 Sorting 2015
Abstract Sorting Algorithm Phil Molyneux

[u nsorted list xs]

if (length xs > 1) then
(xs1,xs2) = split xs

/ N

xsl XS2

[ys = join (ysl,ys2)]

sorted list ys

Unit 3 Sorting

43/162 (54/173)

M269 Revision

Unit 3 Sorting 2015

Sorting Algorithms Phil Molyneux

Using the Abstract sorting algorithm, describe the split and
Jjoin for:
P Insertion sort
Selection sort
Merge sort Uit 3 oring
Quicksort

>
>
>
» Bubble sort (the odd one out)

44/162 (55/173)

M269 Specimen Exam 269 Revsion
Unit 4 Topics, Q7, Q8 Phil Molyneux

» Unit 4 Searching

» String searching: Quick search Sunday algorithm,
Knuth-Morris-Pratt algorithm

v

Hashing and hash tables

Unit 4 Searching

v

Search trees: Binary Search Trees

v

Search trees: Height balanced trees: AVL trees

45/162 (56/173)

M269 2016J Exam

Q5

» Consider the diagrams in A—H, where nodes are
represented by black dots and edges by arrows. The
numbers are the keys for the corresponding nodes.

F
2

/N
AW

Ne

A R

Ue
we
a

" .1\ 5./\.7 3"/\6'4
AN IND

» Q5 continued on next slide

M269 Revision
2019

Phil Molyneux

Qs

46/162 (57/173)

M269 Revision

M269 2016.] Exam 2019

Q 5 (contd) Phil Molyneux

» On the following lines, write the letter(s) of the
diagram(s) that satisfies (satisfy) the condition, or write
“None" if no diagram satisfies the condition. (4 marks)

(a) Which of A, B, C and D, if any, are not a tree?
(b) Which of E, F, G and H, if any, are binary trees?

(c) Which of C, D, G and H, if any, are complete binary
trees?

(d) Which of C, D, G and H, if any, are (min or max)
heap?

Qs

47/162 (58/173)

M269 Revision

M269 2016.] Exam 2019

Soln 5 Phil Molyneux

(a) B is not a tree since node 5 has two parents — A is a
node with two empty sub-trees
(b) F, G, H are binary trees — E is not a binary tree since
node 6 has three sub-trees
(c) C, G, H are complete binary trees — D is not a
complete binary tree since the last level is not filled San's
from left to right
(d) Cis a max heap, H is a min heap — G is not a heap
since node 8 is greater than node 7

48/162 (59/173)

M269 2016J Exam M269 Revision

Q 6 Phil Molyneux

» Consider the following function, which takes a list as an
argument.

def someFunction(alist):
n = len(alList)
counterOne = 0
counterTwo = O
for i in range(n):
counterOne = counterOne + 1 Qs
for j in range(n):
counterTwo = counterTwo + 1
for k in range(n):
10 counterOne = counterOne + 1
11 counterTwo = counterTwo + 1
12 return counterOne + counterTwo

© ® N oA W N R

P Q 6 continued on next slide

49/162 (60/173)

M269 Revision

M269 2016.] Exam 2019

Q 6 Phil Molyneux

» From the options below, select the two that represent
the correct combination of T(n) and Big-O complexity
for this function.

You may assume that a step (i.e. the basic unit of
computation) is the assignment statement.

A. T(n)=4n+3 i. O(1)

B. T(n)=2nm+n?>+n+3 i. O(n) o7
C. T(n)=2n>+n+3 iii. O(n?)
D.T(n)=n*+n*+n+3 iv. O(n3)

E. T(n)=3logn+n®+n?>+n+3 v. O(logn)

» Explain how you arrived at T(n) and the associated
Big-O

50/162 (61/173)

M269 2016J Exam M269 Revision

Soln 6

>
>

v

Phil Molyneux

Options B and IV

There are three levels of nested loops with each loop
executing n times.

The innermost loop has 2 assignments giving 2n°
assignments

The middle loop has one assignment giving a further n?
assignments sein©

The outer loop has one assignment giving n assignments
A further 3 assignments precedes all the loops
Total 2n + n? + n+3

51/162 (62/173)

M269 2016J Exam M269 Revision

Q 7 Phil Molyneux
(a) Which two of the following statements are true? (Tick
two boxes.) (4 marks)
A. Hash tables are an implementation of Map ADTs
because they are searchable structures that contain
key-value pairs, which allow searching for the key in
order to find a value.
B. Chaining, where a slot in the hash table may be
associated with a collection of items, is a standard way a7
of implementing hash functions.
C. Clustering occurs when the number of unoccupied slots
in a hash table exceeds the number of occupied slots.
D. The efficiency of inserting new items into a hash table

decreases as the load factor becomes greater.

P Q 7 continued on next slide

52/162 (63/173)

M269 2016J Exam
Q 7 (contd)

(b) Calculate the load factor for the hash table below. Show
your working.

A

Q

S

0

1

2

3

4

5

M269 Revision

2019

Phil Molyneux

53/162 (64/173)

M269 2016J Exam M269 Revision

Soln 7 Phil Molyneux

(a) A and D are true
» B is not true — chaining is a way of resolving collisions

» Cis not true — see What is primary and secondary
clustering in hash?, Primary clustering

(b) The load factor is 0.6 = %

54/162 (65/173)

https://stackoverflow.com/questions/27742285/what-is-primary-and-secondary-clustering-in-hash
https://stackoverflow.com/questions/27742285/what-is-primary-and-secondary-clustering-in-hash
https://en.wikipedia.org/wiki/Primary_clustering

M269 2016J Exam M269 Revision

Q 8 Phil Molyneux

(a) Lay out the keys [51, 22, 73, 65, 81, 92] as a Binary
Search Tree, adding the nodes in the order in which they
appear in the list, i.e. starting with 51 as the root node.

(b) Label each node with its balance factor. Is the tree
balanced? Explain. (5 marks)

Qs

55/162 (66/173)

M269 2016J Exam M269 Revision

Soln 8 Phil Molyneux

Soln 8

(b) The tree is not balanced since node 51 has balance
factor —2 which is outside —1,0,1

> Note the height definition here is from my notes not
M269

56/162 (67/173)

M269 Specimen Exam 269 Revsion
Unit 5 TOpiCS' Q9, Q].O Phil Molyneux

Unit 5 Optimisation
Graphs searching: DFS, BFS

Distance: Dijkstra's algorithm

vvyyypy

Greedy algorithms: Minimum spanning trees, Prim's
algorithm

v

Dynamic programming: Knapsack problem, Edit
distance
» See Graphs Tutorial Notes

Unit 5 Optimisation

57/162 (68/173)

http://www.pmolyneux.co.uk/OU/M269/M269TutorialNotes/M269TutorialGraphs/M269TutorialGraphs2017J.beamer.pdf

M269 2016J Exam M269 Revision

Q9

Phil Molyneux

(a) Consider the food web in a certain ecosystem. It can be

modelled by a graph in which each node represents an
animal or plant species, and where an edge indicates
that one species eats another species.

For a typical food web, e.g. all animals and plants
living in and around a lake, the graph is
(choose from UNDIRECTED/DIRECTED) because

insert answer here

Is an adjacency matrix a good data structure for a
sparse graph? Explain. (4 marks) o

58/162 (69/173)

M269 2016J Exam M269 Revision

Soln 9 Phil Molyneux

(a) For a typical food web, the graph is directed because
the relation is not symmetric: if A eats B, B doesn't
necessarily eat A.

(b) An adjacency matrix is not a good data structure
because it would waste memory: only few of the n?
matrix cells would be non-zero

Soln 9

59/162 (70/173)

M269 2016J Exam M269 Revision

Q 10 Phil Molyneux

» The graph showing the dependencies of tasks in a
project has been lost. The project manager remembers
that there were 5 tasks (let’s call them A, B, C, D and
E) and that ABCDE and ABEDC were not possible
schedules (i.e. topological sorts of the graph), but
ABDEC and ADBEC were.

» Draw a directed acyclic graph that is compatible with
the given information.

» Each node has to be connected to or from at least one
other node. (4 marks)

60/162 (71/173)

M269 2016J Exam M269 Revision

Soln 10 Phil Molyneux

» ABDEC, ADBEC are topological sorts
» ABCDE, ABEDC are not topological sorts
» The graph must be shown with directed edges (arrows)

Soln 10

61/162 (72/173)

M269 Specimen Exam 269 Revsion

Q].]. TOpiCS Phil Molyneux

> Unit 6

> Sets

» Propositional Logic
» Truth tables

» Valid arguments Proposidena Logi
>

Infinite sets

62/162 (73/173)

M269 2016J Exam
Q11

(a) In propositional logic, a tautology is a well-formed
formula (WFF) that is TRUE in every possible
interpretation.

> [t follows that if a WFF is a tautology, it is satisfiable.

» Explain what “satisfiable” means, and why a tautology
must be satisfiable.

P Q 11 continued on next slide

M269 Revision
2019

Phil Molyneux

63/162 (74/173)

M269 2016J Exam M269 Revision

Q11 (contd) Phil Molyneux

(b) The following WFF is satisfiable. Complete the truth

table.

(PVQ)—Q
Pl Q|(PVQ)|(PVQ)—Q
T|T o
T|F
F| T
F|F

» State whether the WFF is a tautology or not, and
explain why. (4 marks)

64/162 (75/173)

M269 2016J Exam M269 Revision

Soln 11 Phil Molyneux

(a) A WFF is satisfiable if there is at least one
interpretation under which the formula is true — hence
a tautology is satisfiable

(b) The WFF is not a tautology because the formula is not
true under all interpretations — it is false when P is
true and q is false

PlQ|(PVQ)| (PVQ)—Q
T T T T
T|F T F
FI|T T T
FIF F T

65/162 (76/173)

M269 Specimen Exam 269 Revsion

Q12 TOpiCS Phil Molyneux

> Unit 6

> Predicate Logic

» Translation to/from English
» Interpretations

Predicate Logic

66 /162 (77/173)

M269 2016J Exam M269 Revision

Q 12 Phil Molyneux

» A particular interpretation of predicate logic allows facts
to be expressed about people and their pets. Some of
the assignments in the interpretation are given below
(where the symbol Z is used to show assignment).

» The domain of individuals is D = {Clara, Nicky, Mark,
Rex, Fifo, Henny, Admiral}.

» The constants clara, nicky, mark, rex, fifo, henny and
admiral are assigned to the individuals Clara, Nicky,
Mark, Rex, Fifo, Henny and Admiral respectively.

P Q 12 continued on next slide

67/162 (78/173)

M269 2016J Exam M269 Revision

Q12 (contd) Phil Molyneux

» Four unary predicate symbols are assigned to individuals
as follows:
» T(person) = {Clara,Nicky,Mark}
» T(pet) = {Rex,Fifo,Henny,Admiral}
» 7(dog) = {Rex,Fifo}
» 7Z(chicken) = {Henny}
» Two further predicate symbols are assigned binary
relations as follows:
» T(has-pet) = {(Nicky,Rex),(Nicky,Fifo),(Mark,Henny)}
» 7(feeds) = {(Clara,Rex),(Nicky,Fifo)}

| 4 Q 12 continued on next slide

68/162 (79/173)

M269 Revision

M269 2016.] Exam 2019

Q12 (contd) Phil Molyneux

» On the next page, you will be asked whether a given
sentence is true or false. In your explanation, you need
to consider any relevant values for the variables, and
show, using the domain and interpretation above,
whether they make the quantified expression TRUE or
FALSE.

> In your answer, when you explain why a sentence
is true or false, make sure that you use formal
notation. So instead of stating that “Henny is a
chicken in the interpretation”, write Henny
€ Z(chicken). Similarly, instead of “Henny is not a dog”
you would need to write Henny ¢ Z(dog) (6 marks)

Q12

P Q 12 continued on next slide

69/162(80/173)

M269 2016J Exam M269 Revision

Q12 (contd) Phil Molyneux

(a) Consider the following sentence in English: “All dogs are
Nicky's pets”. Which one well-formed formula is a
translation of this sentence into predicate logic?

A. VX.(dog(X) A has-pet(nicky, X))
B. VX.(dog(X) — has-pet(nicky, X))
C. 3X.(dog(X) A has-pet(nicky, X))

> Q 12 continued on next slide

70/162 (81/173)

M269 2016J Exam M269 Revision

Q12 (contd) Phil Molyneux

(b) Give an appropriate translation of the well-formed
formula VX.3Y.(dog(X) — feeds(Y, X)) into English

» This well-formed formula is (choose from
TRUE/FALSE), under the interpretation on the
previous page, because: o

71/162 (82/173)

M269 2016J Exam M269 Revision

Soln 12 Phil Molyneux

(

a) B. All dogs are Nicky's pets translates to:

» VX.(dog(X) — has-pet(nicky, X))

> A. VX.(dog(X) A has-pet(nicky, X)) means

» All objects are dogs and are Nicky's pets

» C. 3X.(dog(X) A has-pet(nicky, X)) means

» There is some object which is a dog and is Nicky's pet
>

. . Soln 12
Soln 12 continued on next slide !

72/162 (83/173)

M269 2016J Exam M269 Revision

Soln 12 (contd) Phil Molyneux

(b) ¥X.3Y.(dog(X) — feeds(Y, X)) means
All dogs are fed by someone
» But not Somebody feeds all dogs which would be
Y.V X.(dog(X) — feeds(Y, X))
» This is true because
(i) If X is not a dog then the implication is true

(i) We have Z(dog) = {Rex, Fifo} and we have Son 2
(Clara,Rex) € Z(feeds) and (Nicky,Fifo) € Z(feeds)

73/162 (84/173)

M269 Specimen Exam 269 Revsion

Q13 Topics Phil Molyneux

> Unit 6
» SQL queries

Proposition:

Q11

Predicate Logic
Q

Soln 12

SQL Queries

74 /162 (85/173)

M269 2016J Exam

Q13

> A database contains the following tables, lawnmower

and brand. (6 marks)
lawnmower brand
make model type manufacturer | location
Mowlt Bella push Mamouth France
Mowlt Speedy electric Mowlt USA
Mamouth | Kodiak petrol Blades China
Mamouth | Pachyderm | petrol Scythes China
Blades Meadow petrol
Blades Nibble robot
Blades Yard electric

P> Q 13 continued on next slide

M269 Revision
2019

Phil Molyneux

75 /162 (86/173)

M269 2016J Exam M269 Revision

Q 13 (contd) Phil Molyneux

(a) For the following SQL query, give the table returned by
the query.

SELECT make, model
FROM lawnmower
WHERE type = ’electric’;

> Write the question that the above query is answering. Q1

» Q 13 continued on next slide

76 /162 (87/173)

M269 2016J Exam

Q 13 (contd)

(b) Write an SQL query that answers the question Which
lawnmowers are from manufacturers located in China?
The answer should be the following table:

manufacturer | model
Blades Meadow
Blades Nibble
Blades Yard

M269 Revision
2019

Phil Molyneux

77/162 (88/173)

M269 2016J Exam

Soln 13

make model
(a) | Mowlt | Speedy
Blades | Yard

» Which models of which makes are electric lawnmowers ?

(b)

SELECT manufacturer , model

FROM lawnmower CROSS JOIN brand
WHERE make = manufacturer

AND location = ’China’;

> Also allow

FROM lawnmower , brand

M269 Revision
2019

Phil Molyneux

Soln 13

78/162 (89/173)

M269 Specimen Exam M269 Revision

2019
Q14 topics

Phil Molyneux
» Unit 7
» Proofs
» Natural deduction

79/162'(90/173)

M269 Revision

LOgiC 2019

Logicians, Logics, Notations Phil Molyneux

» A plethora of logics, proof systems, and different
notations can be puzzling.

» Martin Davis, Logician When | was a student, even the
topologists regarded mathematical logicians as living in
outer space. Today the connections between logic and
computers are a matter of engineering practice at every
level of computer organization

» Various logics, proof systems , were developed well
before programming languages and with different
motivations,

Logic

80/162(91/173)

http://en.wikipedia.org/wiki/Martin_Davis

. M269 Revision
LOgIC 2019
Logic and Programming Languages Phil Molyneux

» Turing machines, Von Neumann architecture and
procedural languages Fortran, C, Java, Perl, Python,
JavaScript

» Resolution theorem proving and logic programming —
Prolog

» Logic and database query languages — SQL (Structured
Query Language) and QBE (Query-By-Example) are
syntactic sugar for first order logic

» Lambda calculus and functional programming with
Miranda, Haskell, ML, Scala e

81/162(92/173)

http://en.wikipedia.org/wiki/Von_Neumann_architecture
http://en.wikipedia.org/wiki/Lambda_calculus

. M269 Revision
Logical Arguments 2019
Validity and Justification Phil Molyneux

» There are two ways to model what counts as a logically
good argument:
> the semantic view
> the syntactic view
» The notion of a valid argument in propositional logic is
rooted in the semantic view.
> It is based on the semantic idea of interpretations:
assignments of truth values to the propositional
variables in the sentences under discussion.
» A valid argument is defined as one that preserves truth
from the premises to the conclusions =
» The syntactic view focuses on the syntactic form of
arguments.
» Arguments which are correct according to this view are
called justified arguments.

82/162(93/173)

. M269 Revision
Logical Arguments 2019
Proof Systems, Soundness, Completeness Phil Molyneux

» Semantic validity and syntactic justification are different

ways of modelling the same intuitive property: whether
an argument is logically good.

A proof system is sound if any statement we can prove
(justify) is also valid (true)

A proof system is adequate if any valid (true) statement
has a proof (justification)

A proof system that is sound and adequate is said to be
complete

Logic

Propositional and predicate logic are complete —
arguments that are valid are also justifiable and vice
versa

Unit 7 section 2.4 describes another logic where there
are valid arguments that are not justifiable (provable)

83/162(94/173)

M269 Revision

Logical Arguments 2019

Valid arguments Phil Molyneux

>

>

Py

Unit 6 defines valid arguments with the notation
Pn

The argument is valid if and only if the value of C is
True in each interpretation for which the value of each
premise P;is Truefor 1 <j<n

In some texts you see the notation {P1,...,Pp} = C
The expression denotes a semantic sequent or semantic
entailment

The |= symbol is called the double turnstile and is often e
read as entails or models

In LaTeX F and = are produced from \vDash and
\models — see also the turnstile package

In Unicode = is called TRUE and is U+22A8, HTML
⊨

84/162(95/173)

LOgical Arguments M269 Revision

2019

Valid arguments — Tautology Phil Molyneux

» The argument {} = C is valid if and only if C is True in
all interpretations

» That is, if and only if C is a tautology

» Beware different notations that mean the same thing

> Alternate symbol for empty set: () = C

» Null symbol for empty set: = C

» Original M269 notation with null axiom above the line:
C

Logic

85/162(96/173)

M269 Revision

LOgiC 2019

Justified Arguments Phil Molyneux

» Definition 7.1 An argument {P1,P>,...,P,} F Cis a
justified argument if and only if either the argument is
an instance of an axiom or it can be derived by means
of an inference rule from one or more other justified
arguments.

> Axioms

U {A} F A (axiom schema)

» This can be read as: any formula A can be derived from
the assumption (premise) of {A} itself

» The I symbol is called the turnstile and is often read as o
proves, denoting syntactic entailment

» In LaTeX I is produced from \vdash

» In Unicode I is called RIGHT TACK and is U+22A2,
HTML & #38866;

86/162 (97/173)

M269 Revision

LOgiC 2019

Justified Arguments Phil Molyneux

» Section 2.3 of Unit 7 (not the Unit 6, 7 Reader) gives
the inference rules for —, A, and V — only dealing with
positive propositional logic so not making use of
negation — see List of logic systems

» Usually (Classical logic) have a functionally complete
set of logical connectives — that is, every binary
Boolean function can be expressed in terms the
functions in the set

Logic

87/162(98/173)

http://en.wikipedia.org/wiki/List_of_logic_systems
http://en.wikipedia.org/wiki/Functional_completeness

e M269 Revision
Justified Arguments 2019
Inference Rules — Notation Phil Molyneux

» Inference rule notation:
Argument; ... Argument,
Argument

(label)

Logic

88/162(99/173)

Justified Arguments

Inference Rules — Conjunction

[FA r+-B
r-AAB
> TFANB
r-A
r-A\B
p LT AND
r-B

(A-introduction)
(A-elimination left)

(A-elimination right)

M269 Revision
2019

Phil Molyneux

Logic

897162 (100/173)

M269 Revision

Justified Arguments 2019
Inference Rules — Implication Phil Molyneux
-
> rl_Ul_{:‘LBB (—-introduction)

» The above should be read as: If there is a proof
(justification, inference) for B under the set of premises,
I, augmented with A, then we have a proof
(justification. inference) of A — B, under the
unaugmented set of premises, T .
The unaugmented set of premises, I may have
contained A already so we cannot assume

(Tu{A})—{A}isequalto I Logie

r-r-A r-A—B
r-B

(—-elimination)

>

907162 (101/173)

Justified Arguments

Inference Rules — Disjunction

_rFA
r-AvB
=B
r-AvB
» Disjunction elimination

(\v-introduction left)

(\-introduction right)

rH-AvB TU{A}FC TU{B}rC
r- c
» The above should be read: if a set of premises I'
justifies the conclusion AV B and I augmented with
each of A or B separately justifies C, then I' justifies C

(\V-elimination)

M269 Revision
2019

Phil Molyneux

Logic

917162 (102/173)

M269 Revision

Proofs in Tree Form 2010

Phil Molyneux
» The syntax of proofs is recursive:

» A proof is either an axiom, or the result of applying a
rule of inference to one, two or three proofs.

» We can therefore represent a proof by a tree diagram in
which each node have one, two or three children

» For example, the proof of {PA (P — Q)} F Q in
Question 4 (in the Logic tutorial notes) can be
represented by the following diagram:

{P/\(P—>Q)}}—P/\(P—>Q) (AE et {P/\(P—>Q)}I—P/\(P—>Q) (A-E right)
{(PA(P=Q)}FP ” {PA(PHQ)}FPHQ(— 8

{PA(P—=Q)}HFQ

—F) Logic

927162 (103/173)

Justified Arguments

Self-Assessment activity 7.4

>

>

Let T ={P = R,Q— R,PVQ}
r-PvQ TU{P}FR TU{Q}FR

- R (\-elimination)
ru{P}FpP TU{P}FP—R o
(—-elimination)
ry{P}+~R
ru{+Q Tu{RIrQ—R o
(—-elimination)
rU{Qjr-R
Complete tree layout
ru{p} ru{pr} ru{Q}y ru{Q}
P FP—R g BQ FQoR g
rEPvQ ru{P}-R rU{Q}rR
rFR o

M269 Revision
2019

Phil Molyneux

Logic

93/162(104/173)

M269 Revision

Justified Arguments 2019

Self-assessment activity 7.4 — Linear Layout Phil Molyneux

1. (PR Q—>RPVQIFPVQ [Axiom]

2. {P>R Q=R PVQIU{P}IFP [Axiom]

3. PR Q=R PVQIU{P}FP =R [Axiom]|

4. PR Q=R PVQIU{Q}FQ [Axiom]

5. {P>R,Q—R,PVQIU{Q}FQ— R [Axiom]

6. {P>R Q=R PVQIU{PIFR [2, 3, —-E]

7. PR Q>R PVQU{QIFR [4, 5, —-F]

8. {P>RQ—>RPVQIFR [1, 6, 7, V-E]

Logic

947162 (105/173)

M269 2016J Exam M269 Revision

Q 14

Phil Molyneux

» Which two of the following statements are true? (Tick

A.
B.

. If an NP-hard problem A can be Karp-reduced to a

two boxes.) (4 marks)
If a decision problem is in NP, then it is computable.

The complexity of an algorithm that solves a problem
places a lower bound on the complexity of the problem
itself.

. If the best algorithm we currently have for solving a

decision problem has complexity O(2"), then we know
that problem can't be in P.

problem B, then problem B is NP-hard too.

. Every NP-hard problem is also NP-complete.

95/162(106/173)

M269 2016J Exam M269 Revision

Soln 14 Phil Molyneux

A. ¢ If a decision problem is in NP, then it is computable.

B. The complexity of an algorithm that solves a problem
places a lower bound on the complexity of the problem
itself.

C. If the best algorithm we currently have for solving a
decision problem has complexity O(2"), then we know
that problem can't be in P.

D. ¢ If an NP-hard problem A can be Karp-reduced to a
problem B, then problem B is NP-hard too.

E. Every NP-hard problem is also NP-complete.

Soln 14

967162 (107/173)

M269 Specimen Exam 269 Revsion

Q15 Topics Phil Molyneux

Unit 7

Computability and ideas of computation

P and NP

>
>
» Complexity
>
> NP-complete

Computability

977162 (108/173)

M269 Revision

Computability 2019

Ideas of Computation Phil Molyneux

» The idea of an algorithm and what is effectively
computable

» Church-Turing thesis Every function that would
naturally be regarded as computable can be computed
by a deterministic Turing Machine. (Unit 7 Section 4)

» See Phil Wadler on computability theory performed as
part of the Bright Club at The Strand in Edinburgh,
Tuesday 28 April 2015

Computability

987162 (109/173)

http://wadler.blogspot.co.uk/2015/05/bright-club-computability.html

M269 Revision

Computability o

Reducing one problem to another Phil Molyneux

» To reduce problem P; to P», invent a construction that
converts instances of P; to P> that have the same
answer. That is:

» any string in the language P; is converted to some
string in the language P>

» any string over the alphabet of P; that is not in the
language of P; is converted to a string that is not in the
language P>

» With this construction we can solve P;

» Given an instance of Py, that is, given a string w that
may be in the language P;, apply the construction
algorithm to produce a string x

» Test whether x is in P, and give the same answer for w Computabilty
in Pl

997162 (110/173)

M269 Revision

Computability 2019

Direction of Reduction Phil Molyneux

» The direction of reduction is important

» If we can reduce P; to P, then (in some sense) P, is at
least as hard as P; (since a solution to P, will give us a
solution to Pp)

» So, if P, is decidable then P; is decidable

» To show a problem is undecidable we have to reduce
from an known undecidable problem to it

> x(dpp, (x) = dpp, (reduce(x)))
» Since, if Py is undecidable then P, is undecidable

Computability

1007162 (111/173)

M269 Revision

Computability 2019

Models of Computation Phil Molyneux

» In automata theory, a problem is the question of
deciding whether a given string is a member of some
particular language

» If X is an alphabet, and L is a language over X, that is
L C X*, where ¥* is the set of all strings over the
alphabet X then we have a more formal definition of
decision problem

» Given a string w € L*, decide whether w € L

» Example: Testing for a prime number — can be
expressed as the language L, consisting of all binary
strings whose value as a binary number is a prime
number (only divisible by 1 or itself)

Computability

1017162 (112/173)

M269 Revision

Computability 2019

Church-Turing Thesis & Quantum Computing Phil Molyneux

» Church-Turing thesis Every function that would
naturally be regarded as computable can be computed
by a deterministic Turing Machine.

» physical Church-Turing thesis Any finite physical
system can be simulated (to any degree of
approximation) by a Universal Turing Machine.

» strong Church-Turing thesis Any finite physical
system can be simulated (to any degree of
approximation) with polynomial slowdown by a
Universal Turing Machine.

» Shor’s algorithm (1994) — quantum algorithm for
factoring integers — an NP problem that is not known
to be P — also not known to be NP-complete and we
have no proof that it is not in P

Computability

1027162 (113/173)

http://en.wikipedia.org/wiki/Shor's_algorithm

M269 Revision

Computability 2019

Turing Machine Phil Molyneux

» Finite control which can be in any of a finite number
of states

» Tape divided into cells, each of which can hold one of a
finite number of symbols

» Initially, the input, which is a finite-length string of
symbols in the input alphabet, is placed on the tape

» All other tape cells (extending infinitely left and right)
hold a special symbol called blank

» A tape head which initially is over the leftmost input
symbol

» A move of the Turing Machine depends on the state Computabtty
and the tape symbol scanned

> A move can change state, write a symbol in the current
cell, move left, right or stay

1037162 (114/173)

Turing Machine Diagram D) R
Turing Machine Diagram Phil Molyneux
b|bf|lalal]al]a .-~ 1/0 Tape

Reading and Writing Head

(moves in both directions)

a3

q2 an
/ Computability

a1 qo

Finite Control

1047162 (115/173)

Computability M e
Turing Machine notation (Pl el
> Q@ finite set of states of the finite control
» 3 finite set of input symbols (M269 S)
» [complete set of tape symbols . C
» ¢ Transition function (M269 instructions, /)

v

du:QxIN—@xTIx{LR,S}

(g, X) =~ (p, Y, D)

d(q, X) takes a state, g and a tape symbol, X and
returns (p, Y, D) where p is a state, Y is a tape symbol
to overwrite the current cell, D is a direction, Left,
Right or Stay

go start state qp € Q Computaitty
B blank symbol B €T and B ¢ ©
F set of final or accepting states F C Q

1057162 (116/173)

M269 Revision

Computability 2019

Decidability Phil Molyneux

» Decidable — there is a TM that will halt with yes/no
for a decision problem — that is, given a string w over
the alphabet of P the TM with halt and return yes.no
the string is in the language P (same as recursive in
Recursion theory — old use of the word)

» Semi-decidable — there is a TM will halt with yes if
some string is in P but may loop forever on some inputs
(same as recursively enumerable) — Halting Problem

» Highly-undecidable — no outcome for any input —
Totality, Equivalence Problems

Computability

1067162 (117/173)

http://en.wikipedia.org/wiki/Recursion_theory

ape M269 Revision
Computability 2019
Undecidable Problems Phil Molyneux

» Halting problem — the problem of deciding, given a
program and an input, whether the program will
eventually halt with that input, or will run forever —
term first used by Martin Davis 1952

» Entscheidungsproblem — the problem of deciding
whether a given statement is provable from the axioms
using the rules of logic — shown to be undecidable by
Turing (1936) by reduction from the Halting problem to
it

> Type inference and type checking in the
second-order lambda calculus (important for functional
programmers, Haskell, GHC implementation)

Computability

» Undecidable problem — see link to list

1077162 (118/173)

http://en.wikipedia.org/wiki/Halting_problem
http://en.wikipedia.org/wiki/Entscheidungsproblem
http://en.wikipedia.org/wiki/System_F
http://en.wikipedia.org/wiki/Undecidable_problem

Computability M e
Why undecidable problems must exist Phil Molyneux
» A problem is really membership of a string in some
language
» The number of different languages over any alphabet of
more than one symbol is uncountable
» Programs are finite strings over a finite alphabet (ASCII
or Unicode) and hence countable.
» There must be an infinity (big) of problems more than
programs.
» Computational problem — defined by a function
» Computational problem is computable if there is a

Turing machine that will calculate the function. Computabtty

1087162 (119/173)

M269 Revision

Computability 2019

Computability and Terminology (1) Phil Molyneux

>

>

v

The idea of an algorithm dates back 3000 years to
Euclid, Babylonians. ..

In the 1930s the idea was made more formal: which
functions are computable?

A function a set of pairs

f={(x,f(x)): x € XA f(x)€ Y} with the function
property

Function property: (a,b) € f A(a,c) e f = b==c¢
Function property: Same input implies same output

Note that maths notation is deeply inconsistent here —
see Function and History of the function concept Computabtty

What do we mean by computing a function — an
algorithm ?

1097162 (120/173)

http://en.wikipedia.org/wiki/Computable_function
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/History_of_the_function_concept

M269 Revision

Computability 2019

Computability and Terminology (2) Phil Molyneux

>
>

v

In the 1930s three definitions:

A-Calculus, simple semantics for computation — Alonzo
Church

General recursive functions — Kurt Godel

Universal (Turing) machine — Alan Turing
Terminology:
» Recursive, recursively enumerable — Church, Kleene
» Computable, computably enumerable — Godel, Turing
Decidable, semi-decidable, highly undecidable
» In the 1930s, computers were human
» Unfortunate choice of terminology

v

Turing and Church showed that the above three were Computabilty
equivalent

Church-Turing thesis — function is intuitively
computable if and only if Turing machine computable

1107162 (121/173)

http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Alonzo_Church
http://en.wikipedia.org/wiki/Alonzo_Church
https://en.wikipedia.org/wiki/%CE%9C-recursive_function
https://en.wikipedia.org/wiki/Kurt_G%C3%B6del
http://en.wikipedia.org/wiki/Universal_Turing_machine
http://en.wikipedia.org/wiki/Alan_Turing
http://en.wikipedia.org/wiki/Stephen_Cole_Kleene
http://en.wikipedia.org/wiki/Church\T1\textendash Turing_thesis

M269 Revision

Computability 2019

Halting Problem — Sketch Proof (1) (P (Yelrmere
» Halting problem — is there a program that can
determine if any arbitrary program will halt or continue
forever 7
» Assume we have such a program (Turing Machine)
h(f,x) that takes a program f and input x and
determines if it halts or not
h(f,x)
= if f(x) runs forever
return True
else
return False
» We shall prove this cannot exist by contradiction Loty —

1117162 (122/173)

https://simple.wikipedia.org/wiki/Halting_problem

Computability
Halting Problem — Sketch Proof (2)

» Now invent two further programs:

> q(f) that takes a program f and runs h with the input

to £ being a copy of f
» r(f) that runs q(£) and halts if q(£) returns True,
otherwise it loops

a(f)
= h(f,f)

r(f)
= if q(f)
return
else
while True: continue

» What happens if we run r(r) ?

> If it loops, q(r) returns True and it does not loop —

contradiction.

M269 Revision
2019

Phil Molyneux

Non-Computability —
Halting Problem

1127162 (123/173)

Reductions & Non-Computable Rt
Reductions Phil Molyneux
| f(input) |
input ———p| f » A2 ———> output
,,,,,,,,,,,,,, VR,

» A reduction of problem P; to problem P,
» transforms inputs to P; into inputs to P»
» runs algorithm A2 (which solves P,) and
P interprets the outputs from A2 as answers to P;
» More formally: A problem P; is reducible to a problem
P if there is a function f that takes any input x to P;
and transforms it to an input f(x) of P,

such that the solution of P, on f(x) is the solution of :
P 1 on x EZi?Eifn";uﬁbmw

1137162 (124/173)

Reductions & Non-Computible Rt
Example: Squaring a Matrix Phil Molyneux
1 (M, M) 1
M — f > A2 ———> M2
,,,,,,,,,,,,, U

» Given an algorithm (A2) for matrix multiplication (P7)

» Input: pair of matrices, (M, M)
» Output: matrix result of multiplying My and M,

» P is the problem of squaring a matrix

» Input: matrix M
» Output: matrix M?

» Algorithm Al has
f(M) = (M, M)
uses A2 to calculate M x M = M?

Reductions &
Non-Computability

1147162 (125/173)

M269 Revision

Reductions & Non-Computable 2019
Non-Computable Problems Phil Molyneux
| f(input) |
input —— f » A2 [——» output
,,,,,,,,,,,,,, A, 1,,,,,,,,,,,,,,

» If P, is computable (A2 exists) then P; is computable
(f being simple or polynomial)

» Equivalently If P; is non-computable then P; is
non-computable

» Exercise: show B—+ A=-A— —-B

Reductions &
Non-Computability

1157162 (126/173)

M269 Revision
2019

Reductions & Non-Computable
Phil Molyneux

Contrapositive

» Proof by Contrapositive
» B — A= —BV A by truth table or equivalences

—|(—|A) V =B commutativity and negation laws

= - A — =B equivalences
» Common error: switching the order round -

Reductions &
Non-Computability

1167162 (127/173)

https://en.wikipedia.org/wiki/Proof_by_contrapositive

Reductions & Non-Computable Rt
Totality Problem Phil Molyneux
1 Q ‘
(P,x) ——» f » TP |——» YES/NO
77 REREEEEEEEES

> Totality Problem
» Input: program @
» Qutput: YES if Q terminates for all inputs else NO

» Assume we have algorithm TP to solve the Totality
Problem

> Now reduce the Halting Problem to the Totality
Problem

Reductions &
Non-Computability

1177162 (128/173)

Reductions & Non-Computable 269 Revision

Totality Problem Phil Molyneux

- » YES/NO

~
=
-
v
\'
e

» Define f to transform inputs to HP to TP pseudo-Python

def f(P,x)
def Q(y):
ignore y
P(x)
return Q

» Run TP on @
» If TP returns YES then P halts on x
» If TP returns NO then P does not halt on x e

» We have solved the Halting Problem — contradiction

1187162 (129/173)

Reductions & Non-Computable Rt
Negative Value Problem Phil Molyneux
I (Q7 V) :
(P,x) ———» f » NVP ——» YES/NO
e

> Negative Value Problem
» Input: program Q which has no input and variable v
used in @
» Output: YES if v ever gets assigned a negative value
else NO
> Assume we have algorithm NVP to solve the Negative
Value Problem

» Now reduce the Halting Problem to the Negative Value
Problem Non-Computailty

1197162 (130/173)

M269 Revision

Reductions & Non-Computable 2019

Negative Value Problem Phil Molyneux

- » YES/NO

~
=
-
v
S
By

» Define f to transform inputs to HP to NVP pseudo-Python

def f(P,x)
def Q(y):
ignore y
P(x)
v = -1
return (Q,var(v))

» Run NVP on (Q, var(v)) var(v) gets the variable name
» |f NVP returns YES then P halts on x —
» If NVP returns NO then P does not halt on x N a—
> We have solved the Halting Problem — contradiction

1207162 (131/173)

Reductions & Non-Computable Rt
Squaring Function Problem Phil Molyneux
l Q ‘
(P,x) ——» f » SFP ——» YES/NO
B TEEEEEEEEEEEEE,

» Squaring Function Problem

» Input: program Q which takes an integer, y
» Output: YES if Q always returns the square of y else
NO

» Assume we have algorithm SFP to solve the Squaring
Function Problem

» Now reduce the Halting Problem to the Squaring
Function Problem

Reductions &
Non-Computability

1217162 (132/173)

Reductions & Non-Computable 269 Revision

Squaring Function Problem Phil Molyneux

- » YES/NO

S
RS
-
\ 4
%
e

» Define f to transform inputs to HP to SFP pseudo-Python

def f(P,x)
def Q(y):
P(x)
return y * y
return Q

» Run SFP on @

» If SFP returns YES then P halts on x
» If SFP returns NO then P does not halt on x Reductions &

Non-Computability

» We have solved the Halting Problem — contradiction

1227162 (133/173)

Reductions & Non-Computable Rt
Equivalence Problem Phil Molyneux
| (P1, P2) |
P ——» f » EP |——» YES/NO
77 REREEEEEEEES

» Equivalence Problem

» Input: two programs P1 and P2
» Output: YES if P1 and P2 solve the ame problem
(same output for same input) else NO

» Assume we have algorithm EP to solve the Equivalence
Problem

» Now reduce the Totality Problem to the Equivalence
Problem

Reductions &
Non-Computability

1237162 (134/173)

Reductions & Non-Computable 269 Revision

Equivalence Problem Phil Molyneux

| (P1, P2) |
P ——» f » FEP |——» YES/NO

» Define f to transform inputs to TP to EP pseudo-Python

def f(P)
def P1(x):
P(x)
return "Same_ string"
def P2(x)
return "Samegstring"
return (P1,P2)

» Run EP on (Pl,PQ)
» If EP returns YES then P halts on all inputs Retutions &
» If EP returns NO then P does not halt on all inouts e

> We have solved the Totality Problem — contradiction

1247162 (135/173)

M269 Revision

Reductions & Non-Computable 2019
Rice’s Theorem (Pl el
| f(input) |
input ———p| f » A2 ———> output
,,,,,,,,,,,,,, VR,

» Rice's Theorem all non-trivial, semantic properties of
programs are undecidable. H G Rice 1951 PhD Thesis
» Equivalently: For any non-trivial property of partial
functions, no general and effective method can decide
whether an algorithm computes a partial function with
that property.
> A property of partial functions is called trivial if it holds
for all partial computable functions or for none. Ao

Non-Computability

1257162 (136/173)

https://en.wikipedia.org/wiki/Rice%27s_theorem

Reductions & Non-Computable 269 Revision
Rice's Theorem T

» Rice's Theorem and computability theory
» Let S be a set of languages that is nontrivial, meaning
» there exists a Turing machine that recognizes a
language in S
> there exists a Turing machine that recognizes a
language not in S
» Then, it is undecidable to determine whether the
language recognized by an arbitrary Turing machine lies
in S.
» This has implications for compilers and virus checkers
P> Note that Rice's theorem does not say anything about
those properties of machines or programs that are not
also properties of functions and languages.
» For example, whether a machine runs for more than 100 Reducions &
steps on some input is a decidable property, even jiae
though it is non-trivial.

126/162 (137/173)

https://en.wikipedia.org/wiki/Rice%27s_theorem

M269 2016J Exam M269 Revision

Q15 Phil Molyneux
» Consider the following decision problems: (4 marks)
1. The 3SAT Problem
2. s a given list of numbers already sorted?
3. The Totality Problem
4. |s a given path from A to B in a given undirected graph

the shortest path from A to B?

» For each of the following groups of problems, write on
the line the numbers of any of the above problems that
belong to that group, or write “none” if none of the
above problems belongs to that group.

(a) undecidable
(b) tractable
(c) NP-complete

1277162 (138/173)

M269 2016J Exam M269 Revision

Soln 15 Phil Molyneux

(a) Undecidable: 3.Totality Problem
(b) Tractable: 2. Sorted?, 4. Path?
(c) NP-complete: 1. 3SAT Problem

Soln 15

1287162 (139/173)

M269 Revision

Complexity 2019

P and NP Phil Molyneux

> P, the set of all decision problems that can be solved in
polynomial time on a deterministic Turing machine
> NP, the set of all decision problems whose solutions can
be verified (certificate) in polynomial time
» Equivalently, NP, the set of all decision problems that
can be solved in polynomial time on a non-deterministic
Turing machine
» A decision problem, dp is NP-complete if
1. dpisin NP and
2. Every problem in NP is reducible to dp in polynomial
time
» NP-hard — a problem satisfying the second condition,
whether or not it satisfies the first condition. Class of
problems which are at least as hard as the hardest
problems in NP. NP-hard problems do not have to be in
NP and may not be decision problems

Complexity

129/162 (140/173)

http://en.wikipedia.org/wiki/P_(complexity)
http://en.wikipedia.org/wiki/NP_(complexity)
http://en.wikipedia.org/wiki/NP-complete

Complexity
P and NP — Diagram

Euler diagram for P, NP, NP-complete and NP-hard set of

problems

NP-Hard

NP-Complete

P = NP

Complexity

NP-Hard

P=NP=
NP-Complete

P =NP

Source: Wikipedia NP-complete entry

M269 Revision
2019

Phil Molyneux

Complexity

130/162 (141/173)

http://en.wikipedia.org/wiki/Euler_diagram
http://en.wikipedia.org/wiki/NP-complete

. M269 Revision
Complexity 2019
NP-complete problems Phil Molyneux

Boolean satisfiability (SAT) Cook-Levin theorem
Conjunctive Normal Form 3SAT

>

>

» Hamiltonian path problem
» Travelling salesman problem
>

NP-complete — see list of problems

Complexity

131/162 (142/173)

http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Cook-Levin_theorem
http://en.wikipedia.org/wiki/3-satisfiability
http://en.wikipedia.org/wiki/Hamiltonian_path_problem
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/NP-complete

Complexity
Knapsack Problem
MY HoBy:
EMBEDDING NP-(DMPLETE PROBLEMS IN RESTAURANT (RDERS
Eoome remonit] | | SRS
<~ APPENZERS —~ | L EXCY? UMK
MIXED FRUIT 2.15 HERE, THESE PAPERS ON THE KNASACK, }
PROBLEM MIGHT HELP YOU QUT.
FRENCH FRIES 275 \ LISTEN, I HAVE §1x OTHER
SIDE SALAD 335 TABLES T0 GET T0—
= A FAST A5 POSSIBLE, OF (DURSE. WANT
HOT WINGS 3.55 SOMETHING ON TRAVELING SALESHANE /
MOZZARELA STICKS 4.20 \
SAMPLER PLATE 580 % 0 %% %
—— SANDWICHES ~— {
RARBEC!IE £

Source & Explanation

: XKCD 287

M269 Revision
2019

Phil Molyneux

Complexity

132/162 (143/173)

http://www.explainxkcd.com/wiki/index.php/287:_NP-Complete

M269 Revision

NP-Completeness and Boolean Satisfiability 2019

Points on Notes Phil Molyneux

» The Boolean satisfiability problem (SAT) was the first
decision problem shown to be NP-Complete

P> This section gives a sketch of an explanation

» Health Warning different texts have different notations
and there will be some inconsistency in these notes

» Health warning these notes use some formal notation
to make the ideas more precise — computation requires
precise notation and is about manipulating strings
according to precise rules.

NP-Completeness and
Boolean Satisfiability

133/162 (144/173)

http://en.wikipedia.org/wiki/Boolean_satisfiability_problem

NP-Completeness and Boolean Satisfiability MO e
Alphabets, Strings and Languages Phil Molyneux
» Notation:

> > is a set of symbols — the alphabet
> Y is the set of all string of length k, which each
symbol from X
» Example: if ¥ = {0,1}
> 51 =1{0,1}
> ¥2 =1{00,01,10,11}
30 = {€} where ¢ is the empty string
2 * is the set of all possible strings over
Y =y0urtur?u...
A Language, L, over ¥ is a subset of L*
LCY*

vVvyYyyvyy

NP-Completeness and
Boolean Satisfiability

134 /162 (145/173)

NP-Completeness and Boolean Satisfiability MO e
Language Accepted by a Turing Machine Phil Molyneux

» Language accepted by Turing Machine, M denoted by
L(M)
» L(M) is the set of strings w € £* accepted by M

» For Final States F = {Y, N}, a string w € X* is
accepted by M < (if and only if) M starting in go with
w on the tape halts in state Y

» Calculating a function (function problem) can be turned
into a decision problem by asking whether f(x) =y

NP-Completeness and
Boolean Satisfiability

135 /162 (146/173)

http://en.wikipedia.org/wiki/Function_problem
http://en.wikipedia.org/wiki/Decision_problem

NP-Completeness and Boolean Satisfiability MO e
The NP-Complete Class Phil Molyneux

» If we do not know if P # NP, what can we say 7
> A language L is NP-Complete if:

» [€ NP and
» for all other L’ € NP there is a polynomial time
transformation (Karp reducible, reduction) from L’ to L

» Problem Py polynomially reduces (Karp reduces,
transforms) to P>, written Py o< P> or Py <, P>, iff
3f : dpp, — dpp, such that

> VI cdpp[l € Yp < f(I) € Yp,]
» f can be computed in polynomial time

NP-Completeness and
Boolean Satisfiability

136/162 (147/173)

NP-Completeness and Boolean Satisfiability MO e
The NP-Complete Class (2) Phil Molyneux

» More formally, L; C ¥ polynomially transforms to
Ly C X5, written Ly o< Lp or Ly <p Lp, iff 3f : X — X3
such that

> Vx e Xi[x € L1 & f(x) € Ly]

» There is a polynomial time TM that computes
Transitivity If L1 o< Ly and Ly o< L3 then L; o L3
If Lis NP-Hard and L € P then P = NP
If L is NP-Complete, then L € P if and only if P = NP

If Ly is NP-Complete and L € NP and Ly < L then L is
NP-Complete

Hence if we find one NP-Complete problem, it may
become easier to find more

» In 1971/1973 Cook-Levin showed that the Boolean L
satisfiability problem (SAT) is NP-Complete et S

vvyyy

v

137/162 (148/173)

http://en.wikipedia.org/wiki/Cook\T1\textendash Levin_theorem
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem

NP-Completeness and Boolean Satisfiability MO e
The Boolean Satisfiability Problem Phil Molyneux

» A propositional logic formula or Boolean expression is
built from variables, operators: AND (conjunction, A),
OR (disjunction, V), NOT (negation, —)

» A formula is said to be satisfiable if it can be made True
by some assignment to its variables.

» The Boolean Satisfiability Problem is, given a formula,
check if it is satisfiable.

» Instance: a finite set U of Boolean variables and a finite
set C of clauses over U
» Question: Is there a satisfying truth assignment for C ?
» A clause is is a disjunction of variables or negations of

variables
» Conjunctive normal form (CNF) is a conjunction of
C | auses NP-Completeness and
Boolean Satisfiability

» Any Boolean expression can be transformed to CNF

138/162 (149/173)

NP-Completeness and Boolean Satisfiability .
The Boolean Satisfiability Problem (2) Phil Molyneux
» Given a set of Boolean variable U = {uy, ua, ..., up}

> A literal from U is either any u; or the negation of some
u; (written T;)

> A clause is denoted as a subset of literals from U —
{u2, g, us }

» A clause is satisfied by an assignment to the variables if
at least one of the literals evaluates to True (just like
disjunction of the literals)

> Let C be a set of clauses over U — C is satisfiable iff
there is some assignment of truth values to the
variables so that every clause is satisfied (just like CNF)

» C = {{u1,uw,u3},{t2, T3}, {up, T3}} is satisfiable

> C = {{ul, Uz}, {ul,Tz}, {71}} is not satisfiable NP-Completeness and

Boolean Satisfiability

139/162 (150/173)

NP-Completeness and Boolean Satisfiability MO e
The Boolean Satisfiability Problem (3) Phil Molyneus

» Proof that SAT is NP-Complete looks at the structure
of NDTMs and shows you can transform any NDTM to
SAT in polynomial time (in fact logarithmic space
suffices)

» SAT is in NP since you can check a solution in
polynomial time

» To show that VL € NP : L o« SAT invent a polynomial
time algorithm for each polynomial time NDTM, M,
which takes as input a string x and produces a Boolean
formula E, which is satisfiable iff M accepts x

» See Cook-Levin theorem

NP-Completeness and
Boolean Satisfiability

140/162 (151/173)

http://en.wikipedia.org/wiki/Cook-Levin_theorem

NP-Completeness and Boolean Satisfiability MO e
Coping with NP-COmpleteness Phil Molyneux

» What does it mean if a problem is NP-Complete ?
» There is a P time verification algorithm.
» There is a P time algorithm to solve it iff P = NP (?)
» No one has yet found a P time algorithm to solve any
NP-Complete problem
» So what do we do ?
» Improved exhaustive search — Dynamic Programming;
Branch and Bound

» Heuristic methods — acceptable solutions in acceptable
time — compromise on optimality

» Average time analysis — look for an algorithm with
good average time — compromise on generality (see
Big-O Algorithm Complexity Cheatsheet)

» Probabilistic or Randomized algorithms — compromise NP-Complterss nd
on correctness

141 /162 (152/173)

http://bigocheatsheet.com

M269 2016J Exam M269 Revision

Q Part2 Phil Molyneux

» Answer every question in this Part.

» The marks for each question are given below the
question number.

» Marks for a part of a question are given after the

question.
Q Part 2
P> Answers to questions in this Part must be written in the

additional answer books, which you should also use for
your rough working.

142/162 (153/173)

M269 Revision

M269 2016J Exam 2019
Q 16 Phil Molyneux
» Question 16 (20 marks)

» Consider an ADT for undirected graphs, named
UGraph, which includes these two operations:

» nodes, which returns a sequence of all nodes in the
graph, in no particular order;

» neighbours, which takes a node and returns a Q1
sequence of all its adjacent nodes, in no particular order.

» How each node is represented is irrelevant.

143/162 (154/173)

M269 2016J Exam M269 Revision

Q 16 (contd) Phil Molyneux

(a) The following stand-alone Python function checks if a
graph has a loop (an edge from a node to itself),
assuming that UGraph is implemented as a Python
class.

def hasLoop(graph):
for node in graph.nodes ():
if node in graph.neighbours (node):
return True
return False

P> Assume that the if-statement guard does a linear search
of the sequence returned by neighbours.

P> Q 16 continued on next slide

144/162 (155/173)

M269 2016J Exam M269 Revision

Q 16 (contd) Phil Molyneux

» If the graph has no node with a loop, is that a best-,
average-, or worst-case scenario for hasLoop?

» Assuming the graph has n nodes and e edges, what is
the Big-O complexity of that scenario? Justify your
answers.

> Note that the complexity is in terms of how many nodes
and edges haslLoop visits, because it has no
assignments. (5 marks)

P> Q 16 continued on next slide

145/162 (156/173)

M269 2016J Exam M269 Revision

Q 16 (contd) Phil Molyneux

(b) A node is isolated if it has no adjacent nodes. Isolated nodes cannot be
reached from any other node and hence won't be processed by some
graph algorithms.

» |t is therefore useful to first check if a graph has isolated nodes.

(i) Specify the problem of finding all isolated nodes in an undirected graph
by completing the following template.

» Note that isolatedNodes is specified as an independent problem, not
as a UGraph operation.
> You may write the specification in English and/or formally with
mathematical notation. (4 marks)
Name: isolatedNodes
Inputs:
Outputs:
Preconditions
Postconditions

> Q 16 continued on next slide

146/162 (157/173)

M269 Revision

M269 2016.] Exam 2019

Q 16 (contd) Phil Molyneux

(ii) If instead of being an independent problem,
isolatedNodes were an operation of the UGraph
ADT, would it be a creator, inspector or modifier?
Explain why. (2 marks)

(iii) Give your initial insight for an algorithm that solves the
problem, using the ADT's operations. (4 marks)

Q16

| 2 Q 16 continued on next slide

147/162 (158/173)

M269 2016J Exam M269 Revision

Q 16 (contd) Phil Molyneux

()

The ACME company used Prim’s algorithm to connect
its data centres with the least amount of fibre optic
cable necessary.

One of the centres is a gateway to the Internet.

ACME wants to know the maximum latency for an
Internet message to reach any centre.

In other words, they want to know which centre is the
furthest away from the gateway and what is the
distance.

State and justify which data structure(s) and
algorithm(s) you would adopt or adapt to solve this
problem efficiently.

State explicitly any assumptions you make. (5 marks)

148/162 (159/173)

M269 Revision

M269 2016.] Exam 2019

Q 17 Phil Molyneux

» Imagine you have been invited to write a guest post for
a technology blog, aimed at interested readers who
know little about computing.

» Write a draft of your blog post, which will explain
relational databases and the formal logic that underpins
them. (15 marks)

| 4 Q 17 continued on next slide

149/162 (160/173)

M269 Revision

M269 2016.] Exam 2019

Q 17 (contd) Phil Molyneux

> It should have

1. A suitable title and a short paragraph ‘setting the scene’
by explaining the practical importance of relational
databases.

2. A paragraph describing in layperson’s terms what a
relational database is and how it's organised.

3. A paragraph describing in layperson’s terms what
predicate logic is and its relationship with relational
databases.

4. A concluding paragraph stating your view on the
importance, or not, of information technologies having a
formal logic basis.

> Q 17 continued on next slide

150/162 (161/173)

M269 Revision

M269 2016.] Exam 2019

Q 17 (contd) Phil Molyneux

> Note that marks will be awarded for a clear coherent
text that is appropriate for its audience, so avoid
unexplained technical jargon and abrupt changes of
topic, and make sure your sentences fit together to tell
an overall ‘story’ to the reader.

» You may wish to use examples in your text to help
explain the concepts. ar

> As a guide, you should aim to write roughly three to
five sentences per paragraph.

151/162 (162/173)

M269 2016J Exam

Soln Part2

» Part 2 solutions

152/162 (163/173)

M269 2016J Exam M269 Revision

Soln 16 Phil Molyneux

(a) It is a worst-case scenario since there is no early exit
from the loop, before returning false.
» The complexity is O(n + e) since all nodes are visited
by the outer loop, and all edges are visited by the linear
search through the neighbours of each node.

» Note that the number of edges, e, could vary from 0 for

completely unconnected to n(n —1)/2 in a Complete Son 16
graph where every node is connected to every other
node

P Soln 16 continued on next slide

153/162 (164/173)

https://en.wikipedia.org/wiki/Complete_graph
https://en.wikipedia.org/wiki/Complete_graph

M269 2016J Exam M269 Revision

Soln 16 (contd) Phil Molyneux

(b) (i) Name: isolatedNodes

» Inputs: an undirected graph theGraph (or a Ugraph
theGraph)

» Outputs: isolated, a set of nodes

v

Preconditions: true

» Postconditions: all nodes without neighbours in
theGraph are in isolated; each node in isolated has no
neighbours in theGraph

Alternative: a node is in isolated if and only if it has no

neighbours in theGraph

P Soln 16 continued on next slide

154/162 (165/173)

M269 2016J Exam M269 Revision

Soln 16 (contd) Phil Molyneux

(b) (ii) It would be an inspector because theGraph is not in
the outputs.

Alternative: because the operation does not create or
modify a graph.

» (iii) Initialise isolated to the empty set.

Iterate over the nodes of theGraph and for each one
check if its neighbours is the empty sequence. Sain 16

If so, add the node to isolated.

P Soln 16 continued on next slide

155/162 (166/173)

M269 2016J Exam M269 Revision

Soln 16 (contd) Phil Molyneux

(c) The data structure is a weighted tree (alternative:
acyclic graph).
Prim — Minimum Spanning Tree
The nodes represent the data centres.
The edges represent the cables.
The weights represent the cable lengths.

Soln 16

» To compute the longest path, do any traversal of the
tree starting at the gateway node and add the weights
of the edges visited.

For an efficient, single-pass algorithm, when visiting a
leaf, check if its distance is the maximum so far.

» Alternative: calculate the height of the tree with cable
lengths

156/162 (167/173)

M269 2016J Exam M269 Revision

Soln 17 Phil Molyneux

» There is no definitive answer — here are some points:
1. Setting the scene with the importance of relational

databases:
» All retailers need to keep data on their products,

suppliers and clients, the properties of those entities

(e.g. current stock of a product) and their relationships

(e.g. who bought which product to issue invoices).

Soln 17

» Storing entities and their properties and relationships is

such a generic need across business, government

departments and other organisations that so-called

relational databases were invented for that purpose.
P> Soln 17 continued on next slide

157/162 (168/173)

M269 2016J Exam M269 Revision

Soln 17 Phil Molyneux

2. What are relational databases:

P It is a data structure that represents each entity type as
a table, with one column per property and one row per
entity, e.g. a table to represent customers may have
columns for their name and address.

> A table can also represent a relation, e.g. a table with
customer names and product ids would store who
bought what.

Soln 17

> A database can be queried to retrieve information from
the database, e.g. which other customers bought a
particular book

P Soln 17 continued on next slide

158/162 (169/173)

https://en.wikipedia.org/wiki/Relational_database

M269 Revision

M269 2016.] Exam 2019

Soln 17 Phil Molyneux

3. What is predicate logic and its relation to relational
databases:

» Predicate logic is a formal language to represent
unambiguously statements about entities and their
properties and relations, e.g. No customer in Yorkshire
bought a polka dot dress.

» Given information about the existing entities and their
properties/relations, it is possible to prove whether a
predicate logic statement is true or false.

» A database query is a particular form of a predicate
logic statement.

» Running a query is an automated proof: it returns the
entities stored in the database that make the statement
true; if no entities are returned, the statement is false.

Soln 17

P Soln 17 continued on next slide

159/162 (170/173)

M269 Revision

M269 2016.] Exam 2019

Soln 17 Phil Molyneux

4. Conclusion:

» Formal logic helps verifying the correctness of systems,
which is important for our daily reliance on them.

» There are limits on what is computable, and a system
may be correct but not fit for purpose, so formal logic
doesn't suffice for quality assurance.

Soln 17

160/162 (171/173)

M 269 Exa m M2692(|)?1e$/ision

Reminders Phil Molyneux

| 2
>

Read the Exam arrangements booklet
Before the exam — check the date, time and location
(and how to get there)
At the exam centre — arrive early
Bring photo ID with signature
Use black or blue pens (not erasable and not pencil) —
see Cult Pens for choices — pencils for preparing
diagrams (HB or blacker) Fxom Reminders
Practice writing by hand
In the exam — Read the questions — carefully —
before and after answering them
Don't get stuck on a question — move on, come back
later
But do make sure you have attempted all questions

. and finally Good Luck

161/162 (172/173)

http://www2.open.ac.uk/students/help/exam-arrangements-booklet
http://www.cultpens.com/

M269 Exam Revision

	M269 Exam Revision Agenda & Aims
	Introductions & Revision Strategies
	M269 Exam 2016J

	Adobe Connect Interface and Settings
	Adobe Connect Interface — Student View
	Adobe Connect Settings
	Adobe Connect Interface — Student & Tutor Views
	Adobe Connect — Sharing Screen & Applications
	Adobe Connect — Ending a Meeting

	M269 Prsntn 2016J Exam Qs
	M269 2016J Exam Qs
	M269 2016J Exam Q Part 1

	Units 1 & 2
	Unit 1 Introduction
	M269 2016J Exam Q 1
	M269 2016J Exam Soln 1
	M269 2016J Exam Q 2
	M269 2016J Exam Soln 2
	Unit 2 From Problems to Programs
	M269 2016J Exam Q 3
	M269 2016J Exam Soln 3
	M269 2016J Exam Q 4
	M269 2016J Exam Soln 4

	Units 3, 4 & 5
	Unit 3 Sorting
	Unit 4 Searching
	M269 2016J Exam Q 5
	M269 2016J Exam Soln 5
	M269 2016J Exam Q 6
	M269 2016J Exam Soln 6
	M269 2016J Exam Q 7
	M269 2016J Exam Soln 7
	M269 2016J Exam Q 8
	M269 2016J Exam Soln 8
	Unit 5 Optimisation
	M269 2016J Exam Q 9
	M269 2016J Exam Soln 9
	M269 2016J Exam Q 10
	M269 2016J Exam Soln 10

	Units 6 & 7
	Propositional Logic
	M269 2016J Exam Q 11
	M269 2016J Exam Soln 11
	Predicate Logic
	M269 2016J Exam Q 12
	M269 2016J Exam Soln 12
	SQL Queries
	M269 2016J Exam Q 13
	M269 2016J Exam Soln 13
	Logic
	M269 2016J Exam Q 14
	M269 2016J Exam Soln 14
	Computability
	M269 2016J Exam Q 15
	M269 2016J Exam Soln 15
	Complexity

	M269 Exam 2016J Q Part2
	M269 2016J Exam Q 16
	M269 2016J Exam Q 17

	M269 Exam 2016J Soln Part2
	M269 2016J Exam Soln 16
	M269 2016J Exam Soln 17

	Exam Reminders
	White Slide

