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M269 Exam Revision
Agenda & Aims

1. Welcome and introductions
2. Revision strategies
3. M269 Exam — Part 1 has 15 questions 65%
4. M269 Exam — Part 2 has 2 questions 35%
5. M269 Exam — 3 hours, Part 1 80 mins, Part 2 90 mins
6. M269 2016J exam (June 2017)
7. Topics and discussion for each question
8. Exam techniques
9. These slides and notes are at http://www.pmolyneux.

co.uk/OU/M269FolderSync/M269ExamRevision/ at
M269ExamRevision2018J/M269ExamRevision2018JA

10. Recording Meeting Record Meeting. . . 4
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M269 Exam Revision
Introductions & Revision strategies

I Introductions
I What other exams are you doing this year ?
I Each give one exam tip to the group
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M269 Exam
Presentation 2016J

I Not examined this presentation:
I Unit 4, Section 2 String search
I Unit 7, Section 2 Logic Revisited
I Unit 7, Section 4 Beyond the Limits
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Adobe Connect
Interface — Student Quick Reference
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Adobe Connect
Interface — Student View
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Adobe Connect
Settings

I Everybody: Audio Settings Meeting Audio Setup Wizard. . .

I Audio Menu bar Audio Microphone rights for Participants 4

I Do not Enable single speaker mode
I Drawing Tools Share pod menu bar Draw (1 slide/screen)
I Share pod menu bar Menu icon Enable Participants to draw 4 gray
I Meeting Preferences Whiteboard Enable Participants to draw 4

I Cancel hand tool
I Do not enable green pointer. . .
I Meeting Preferences Attendees Pod Disable Raise Hand

notification
I Cursor Meeting Preferences General tab Host Cursors

Show to all attendees 4 (default Off)
I Meeting Preferences Screen Share Cursor Show Application Cursor

I Webcam Menu bar Webcam Enable Webcam for Participants 4

I Recording Meeting Record Meeting. . . 4
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Adobe Connect
Access

I Tutor Access
I TutorHome M269 Website Tutorials

I Cluster Tutorials M269 Online tutorial room

I Tutor Groups M269 Online tutor group room

I Module-wide Tutorials M269 Online module-wide room

I Attendance
TutorHome Students View your tutorial timetables

I Beamer Slide Scaling 440% (422 x 563 mm)
I Clear Everyone’s Status

Attendee Pod Menu Clear Everyone’s Status

I Grant Access
Meeting Manage Access & Entry Invite Participants. . . and send
link via email
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Adobe Connect
Keystroke Shortcuts

I Keyboard shortcuts in Adobe Connect
I Toggle Mic + M (Mac), Ctrl + M (Win)

(On/Disconnect)
I Toggle Raise-Hand status + E

I Close dialog box (Mac), Esc (Win)
I End meeting + \
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Adobe Connect Interface
Student View (default)
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Adobe Connect Interface
Sharing Screen & Applications

I Share My Screen Application tab Terminal for Terminal
I Share menu Change View Zoom in for mismatch of screen

size/resolution (Participants)
I (Presenter) Change to 75% and back to 100% (solves

participants with smaller screen image overlap)
I Leave the application on the original display
I Beware blued hatched rectangles — from other

(hidden) windows or contextual menus
I Presenter screen pointer affects viewer display —

beware of moving the pointer away from the application
I First time: System Preferences Security & Privacy Privacy

Accessibility
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Adobe Connect
Ending a Meeting

I Notes for the tutor only
I Student: Meeting Exit Adobe Connect

I Tutor:
I Recording Meeting Stop Recording 4

I Remove Participants Meeting End Meeting. . . 4

I Dialog box allows for message with default message:
I The host has ended this meeting. Thank you for

attending.
I Recording availability In course Web site for joining

the room, click on the eye icon in the list of recordings
under your recording — edit description and name

I Meeting Information Meeting Manage Meeting Information

— can access a range of information in Web page.
I Attendance Report see course Web site for joining

room
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M269 2016J Exam
Q s

I M269 Algorithms, Data Structures and Computability
I Presentation 2016J Exam
I Date Wednesday, 7 June 2017 Time 14:30–17:30
I There are TWO parts to this examination. You should

attempt all questions in both parts
I Part 1 carries 65 marks — 80 minutes
I Part 2 carries 35 marks — 90 minutes
I Note see the original exam paper for exact wording and

formatting — these slides and notes may change some
wording and formatting

I Note 2015J and before had Part 1 with 60 marks (100
minutes), Part 2 with 40 marks (70 minutes)
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M269 2016J Exam
Q Part1

I Answer every question in this part.
I The marks for each question are given below the

question number.
I Answers to questions in this Part should be written on

this paper in the spaces provided, or in the case of
multiple-choice questions you should tick the
appropriate box(es).

I If you tick more boxes than indicated for a multiple
choice question, you will receive no marks for your
answer to that question.

I Use the provided answer books for any rough working.
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M269 Specimen Exam
Unit 1 Topics, Q1, Q2

I Unit 1 Introduction
I Computation, computable, tractable
I Introducing Python
I What are the three most important concepts in

programming ?
1.
2.
3.

I Quote from Paul Hudak (1952–2015)
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M269 Specimen Exam
Unit 1 Topics, Q1, Q2

I Unit 1 Introduction
I Computation, computable, tractable
I Introducing Python
I What are the three most important concepts in

programming ?
1. Abstraction
2.
3.

I Quote from Paul Hudak (1952–2015)
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M269 Specimen Exam
Unit 1 Topics, Q1, Q2

I Unit 1 Introduction
I Computation, computable, tractable
I Introducing Python
I What are the three most important concepts in

programming ?
1. Abstraction
2. Abstraction
3.
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M269 Specimen Exam
Unit 1 Topics, Q1, Q2

I Unit 1 Introduction
I Computation, computable, tractable
I Introducing Python
I What are the three most important concepts in

programming ?
1. Abstraction
2. Abstraction
3. Abstraction

I Quote from Paul Hudak (1952–2015)
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M269 2016J Exam
Q 1

I Which two of the following statements are true? (Tick
two boxes.) (2 marks)

A. A problem is computable if it possible to build an
algorithm which solves any instance of the problem in a
finite number of steps.

B. An effective procedure is an algorithm which, for every
instance of a given problem, solves that instance in the
most efficient way — minimising the use of resources
such as memory.

C. A decision problem is decidable if it is computable.
D. A decision problem is any problem stated in a formal

language.

Go to Soln 1

18/162 (21/173)



M269 Revision
2019

Phil Molyneux

Agenda

Adobe Connect

M269 16J Exam

Units 1 & 2
Unit 1 Introduction

Q 1

Soln 1

Q 2

Soln 2

Unit 2 From Problems to
Programs

Q 3

Soln 3

Q 4

Soln 4

Units 3, 4 & 5

Units 6 & 7

Q Part 2

Soln Part 2

Exam Reminders

White Slide

M269 2016J Exam
Soln 1

A. A problem is computable if it possible to build an
algorithm which solves any instance of the problem in a
finite number of steps. Yes

B. An effective procedure is an algorithm which, for every
instance of a given problem, solves that instance in the
most efficient way — minimising the use of resources
such as memory. No An effective procedure is an
algorithm that solves any instance of a decision problem
in a finite number of steps (Reader, page 91)

C. A decision problem is decidable if it is computable. Yes
D. A decision problem is any problem stated in a formal

language. No Problems where the answer is yes or no
(Unit 1)

Go to Q 1
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M269 2016J Exam
Q 2

I Complete these paragraphs correctly using words or
phrases from the list below. (2 marks)

I Abstraction as can be understood in terms of
the relationship between a and a .
The latter represents the details of interest and captures
the essentials, ignoring certain irrelevant details.

I Abstraction as generally involves two
layers — the (which is a layer through which
users interact with the model) and the
(a layer that automates the model)

I Possible words and phrases to insert:
encapsulation model modelling procedural
algorithm process automation interface
part of reality data simulation implementation

Go to Soln 2
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M269 2016J Exam
Soln 2

I Abstraction as modelling can be understood in terms of
the relationship between a part of reality and a model.
The latter represents the details of interest and captures
the essentials, ignoring certain irrelevant details.

I Abstraction as encapsulation generally involves two
layers — the interface (which is a layer through which
users interact with the model) and the implementation
(a layer that automates the model).

Go to Q 2
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M269 Specimen Exam
Unit 2 Topics, Q3, Q4

I Unit 2 From Problems to Programs
I Abstract Data Types
I Pre and Post Conditions
I Logic for loops
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Example Algorithm Design
Searching

I Given an ordered list (xs) and a value (val), return
I Position of val in xs or
I Some indication if val is not present

I Simple strategy: check each value in the list in turn
I Better strategy: use the ordered property of the list to

reduce the range of the list to be searched each turn
I Set a range of the list
I If val equals the mid point of the list, return the mid

point
I Otherwise half the range to search
I If the range becomes negative, report not present

(return some distinguished value)
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Example Algorithm Design
Binary Search Iterative

1 def binarySearchIter(xs,val):
2 lo = 0
3 hi = len(xs) - 1

5 while lo <= hi:
6 mid = (lo + hi) // 2
7 guess = xs[mid]

9 if val == guess:
10 return mid
11 elif val < guess:
12 hi = mid - 1
13 else:
14 lo = mid + 1

16 return None
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Divide and Conquer
Binary Search Recursive

1 def binarySearchRec(xs,val ,lo=0,hi=-1):
2 if (hi == -1):
3 hi = len(xs) - 1

5 mid = (lo + hi) // 2

7 if hi < lo:
8 return None
9 else:
10 guess = xs[mid]
11 if val == guess:
12 return mid
13 elif val < guess:
14 return binarySearchRec(xs,val ,lo ,mid -1)
15 else:
16 return binarySearchRec(xs,val ,mid+1,hi)
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Divide and Conquer
Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)
xs = Highlight the mid value and search range

binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range

binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range

binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range

Return value: ??
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xs = Highlight the mid value and search range
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xs = Highlight the mid value and search range

Return value: ??
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Divide and Conquer
Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = Highlight the mid value and search range

binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range

binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range

Return value: ??
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Divide and Conquer
Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,10) by line 13

xs = Highlight the mid value and search range

binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range

Return value: ??
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Divide and Conquer
Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,10) by line 13

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range

Return value: ??
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Divide and Conquer
Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,10) by line 13

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,8) by line 13

xs = Highlight the mid value and search range

Return value: ??
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Divide and Conquer
Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,10) by line 13

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,8) by line 13

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
Return value: ??
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Divide and Conquer
Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,10) by line 13

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,8) by line 13

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
Return value: 8 by line 11
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Example Algorithm Design
Binary Search Iterative — Miller & Ranum

1 def binarySearchIterMR(alist , item):
2 first = 0
3 last = len(alist)-1
4 found = False

6 while first <=last and not found:
7 midpoint = (first + last )//2
8 if alist[midpoint] == item:
9 found = True
10 else:
11 if item < alist[midpoint ]:
12 last = midpoint -1
13 else:
14 first = midpoint +1

16 return found
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Divide and Conquer
Binary Search Recursive — Miller & Ranum

1 def binarySearchRecMR(alist , item):
2 if len(alist) == 0:
3 return False
4 else:
5 midpoint = len(alist )//2
6 if alist[midpoint ]== item:
7 return True
8 else:
9 if item <alist[midpoint ]:
10 return binarySearchRecMR(alist[: midpoint],item)
11 else:
12 return binarySearchRecMR(alist[midpoint +1:], item)
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Q 3

I This question is about bubble sort and selection sort,
where we are sorting numbers in ascending order.

(6 marks)
(a) Selection sort improves on bubble sort by making only

one exchange for every pass through the list.
In selection sort, given the starting list below, indicate
which two elements are to be swapped at each stage,
and complete below as necessary.
You have space to indicate up to 5 swaps and the
resulting list.
If selection sort requires fewer than 5 swaps for this list,
leave any remaining step(s) blank.

I Q 3 continued on next slide

Go to Soln 3
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Q 3 (contd)

1 6 2 3 5
1. Swap elements and to give

2. Swap elements and to give

3. Swap elements and to give

4. Swap elements and to give

5. Swap elements and to give

I Q 3 continued on next slide

Go to Soln 3
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M269 2016J Exam
Q 3 (contd)

(b) Although both bubble sort and selection sort make the
same number of comparisons for a list of the same
length, they do not make the same number of swaps.
How many swaps are made in a worst case, with a list
of length 5, for each of bubble sort and selection sort?
Explain how you arrived at the number of swaps for
each. There is no need to refer to Big-O in your answer.

Go to Soln 3
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M269 2016J Exam
Soln 3

I Selection sort: sorting ascending and selecting largest
first

def selSortAscByMax(xs):
for fillSlot in range(len(xs) - 1, 0, -1):

maxIndex = 0
for index in range(1, fillSlot + 1):

if xs[index] > xs[maxIndex ]:
maxIndex = index

temp = xs[fillSlot]
xs[fillSlot] = xs[maxIndex]
xs[maxIndex] = temp

I Soln 3 continued on next slide

Go to Q 3
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Soln 3 (contd)

I Here is an informal version

for fillSlot = len(xs) - 1 down to 1 do
find the maximum of

xs[0] .. xs[fillSlot]
and swap with xs[fillSlot]

I Soln 3 continued on next slide

Go to Q 3
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Soln 3 (contd)

1 6 2 3 5

1. Swap elements 6 and 5 to give
1 5 2 3 6

2. Swap elements 5 and 3 to give
1 3 2 5 6

3. Swap elements 3 and 2 to give
1 2 3 5 6

4. Swap elements 2 and 2 to give
1 2 3 5 6

I Note the last swap would not be there if there was a
test for fillSlot == maxIndex

Go to Q 3
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Soln 3 (cond)

I Selection sort: sorting ascending and selecting smallest
first

def selectionSort(xs):
for fillSlot in range(0,len(xs)-1):

minIx = fillSlot
for ix in range(fillSlot + 1, len(xs)):

if xs[ix] < xs[minIx]:
minIx = ix

# if fillSlot != minIx : # swap if different
xs[fillSlot],xs[minIx] = xs[minIx],xs[fillSlot]

I Soln 3 continued on next slide

Go to Q 3
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Soln 3 (contd)

I Here is an informal version

for fillSlot = 0 to (len(xs) - 2) do
find the minimum of

xs[fillSlot ]..xs[len(xs) - 1]
and swap with xs[fillSlot]

I Soln 3 continued on next slide

Go to Q 3
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Soln 3 (contd)

1 6 2 3 5

1. Swap elements 1 and 1 to give
1 6 2 3 5

2. Swap elements 6 and 2 to give
1 2 6 3 5

3. Swap elements 6 and 3 to give
1 2 3 6 5

4. Swap elements 6 and 5 to give
1 2 3 5 6

I Note the swap at stage 1. would not be there if there
was a test for fillSlot == maxIx

Go to Q 3
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M269 2016J Exam
Soln 3 (contd)

(b) Bubble sort does 10 swaps in a worst case since it does
n − 1 swaps iterating over n items so total =
4 + 3 + 2 + 1 = 10 swaps

I Selection sort does 4 swaps in a worst case since it does
(at most) one swap per pass and n − 1 passes

Go to Q 3
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Q 4

I A Python program contains a loop with the following
guard (4 marks)� �

while a <= 3 or b > 8:� �
Make the following substitutions:

P represents a > 3
Q represents b <= 8

Complete the following table
P Q ¬P ¬Q ¬P ∨ ¬Q P ∨ Q ¬(P ∧ Q)
T T
T F
F T
F F

I Q 4 continued on next slide

Go to Soln 4
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Q 4 (contd)

I Based on the table, which of the following expressions is
equivalent to the above guard? (Tick one box.)

A. not a < 3

B. not b <= 8

C. not (a <= 3 and b > 8)

D. a > 3 and b <= 8

E. not (a > 3 and b <= 8)

Go to Soln 4
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Soln 4

P Q ¬P ¬Q ¬P ∨ ¬Q P ∨ Q ¬(P ∧ Q)
T T F F F T F
T F F T T T T
F T T F T T T
F F T T T F T

I The equivalent expression is E.

Go to Q 4
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M269 Specimen Exam
Unit 3 Topics, Q5, Q6

I Unit 3 Sorting
I Elementary methods: Bubble sort, Selection sort,

Insertion sort
I Recursion — base case(s) and recursive case(s) on

smaller data
I Quicksort, Merge sort
I Sorting with data structures: Tree sort, Heap sort
I See sorting notes for abstract sorting algorithm
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Unit 3 Sorting
Abstract Sorting Algorithm

unsorted list xs

if (length xs > 1) then
(xs1,xs2) = split xs

xs1 xs2

ys1 = sort xs1 ys2 = sort xs2

ys = join (ys1,ys2)

sorted list ys
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Unit 3 Sorting
Sorting Algorithms

Using the Abstract sorting algorithm, describe the split and
join for:
I Insertion sort
I Selection sort
I Merge sort
I Quicksort
I Bubble sort (the odd one out)
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M269 Specimen Exam
Unit 4 Topics, Q7, Q8

I Unit 4 Searching
I String searching: Quick search Sunday algorithm,

Knuth-Morris-Pratt algorithm
I Hashing and hash tables
I Search trees: Binary Search Trees
I Search trees: Height balanced trees: AVL trees
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M269 2016J Exam
Q 5

I Consider the diagrams in A–H, where nodes are
represented by black dots and edges by arrows. The
numbers are the keys for the corresponding nodes.

I Q 5 continued on next slide

Go to Soln 5 46/162 (57/173)
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Q 5 (contd)

I On the following lines, write the letter(s) of the
diagram(s) that satisfies (satisfy) the condition, or write
“None” if no diagram satisfies the condition. (4 marks)

(a) Which of A, B, C and D, if any, are not a tree?
(b) Which of E, F, G and H, if any, are binary trees?
(c) Which of C, D, G and H, if any, are complete binary

trees?
(d) Which of C, D, G and H, if any, are (min or max)

heap?

Go to Soln 5
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M269 2016J Exam
Soln 5

(a) B is not a tree since node 5 has two parents — A is a
node with two empty sub-trees

(b) F, G, H are binary trees — E is not a binary tree since
node 6 has three sub-trees

(c) C, G, H are complete binary trees — D is not a
complete binary tree since the last level is not filled
from left to right

(d) C is a max heap, H is a min heap — G is not a heap
since node 8 is greater than node 7

Go to Q 5
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Q 6

I Consider the following function, which takes a list as an
argument.

1 def someFunction(aList):
2 n = len(aList)
3 counterOne = 0
4 counterTwo = 0
5 for i in range(n):
6 counterOne = counterOne + 1
7 for j in range(n):
8 counterTwo = counterTwo + 1
9 for k in range(n):

10 counterOne = counterOne + 1
11 counterTwo = counterTwo + 1
12 return counterOne + counterTwo

I Q 6 continued on next slide

Go to Soln 6
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Q 6

I From the options below, select the two that represent
the correct combination of T (n) and Big-O complexity
for this function.
You may assume that a step (i.e. the basic unit of
computation) is the assignment statement.
A. T (n) = 4n + 3 i. O(1)
B. T (n) = 2n3 + n2 + n + 3 ii. O(n)
C. T (n) = 2n2 + n + 3 iii. O(n2)
D. T (n) = n3 + n2 + n + 3 iv. O(n3)
E. T (n) = 3 log n + n3 + n2 + n + 3 v. O(log n)

I Explain how you arrived at T (n) and the associated
Big-O

Go to Soln 6
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Soln 6

I Options B and IV
I There are three levels of nested loops with each loop

executing n times.
I The innermost loop has 2 assignments giving 2n3

assignments
I The middle loop has one assignment giving a further n2

assignments
I The outer loop has one assignment giving n assignments
I A further 3 assignments precedes all the loops
I Total 2n3 + n2 + n + 3

Go to Q 6
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M269 2016J Exam
Q 7

(a) Which two of the following statements are true? (Tick
two boxes.) (4 marks)

A. Hash tables are an implementation of Map ADTs
because they are searchable structures that contain
key-value pairs, which allow searching for the key in
order to find a value.

B. Chaining, where a slot in the hash table may be
associated with a collection of items, is a standard way
of implementing hash functions.

C. Clustering occurs when the number of unoccupied slots
in a hash table exceeds the number of occupied slots.

D. The efficiency of inserting new items into a hash table
decreases as the load factor becomes greater.

I Q 7 continued on next slide

Go to Soln 7
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M269 2016J Exam
Q 7 (contd)

(b) Calculate the load factor for the hash table below. Show
your working.
A Q S F U N
0 1 2 3 4 5 6 7 8 9

Go to Soln 7
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M269 2016J Exam
Soln 7

(a) A and D are true
I B is not true — chaining is a way of resolving collisions
I C is not true — see What is primary and secondary

clustering in hash?, Primary clustering
(b) The load factor is 0.6 = 6

10

Go to Q 7
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Q 8

(a) Lay out the keys [51, 22, 73, 65, 81, 92] as a Binary
Search Tree, adding the nodes in the order in which they
appear in the list, i.e. starting with 51 as the root node.

(b) Label each node with its balance factor. Is the tree
balanced? Explain. (5 marks)

Go to Soln 8
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Soln 8

(a)
51bf=−2 h=4

220 1 73−1 3

650 1 81−1 2

920 1

(b) The tree is not balanced since node 51 has balance
factor −2 which is outside −1,0,1

I Note the height definition here is from my notes not
M269

Go to Q 8
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M269 Specimen Exam
Unit 5 Topics, Q9, Q10

I Unit 5 Optimisation
I Graphs searching: DFS, BFS
I Distance: Dijkstra’s algorithm
I Greedy algorithms: Minimum spanning trees, Prim’s

algorithm
I Dynamic programming: Knapsack problem, Edit

distance
I See Graphs Tutorial Notes
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M269 2016J Exam
Q 9

(a) Consider the food web in a certain ecosystem. It can be
modelled by a graph in which each node represents an
animal or plant species, and where an edge indicates
that one species eats another species.
For a typical food web, e.g. all animals and plants
living in and around a lake, the graph is
(choose from UNDIRECTED/DIRECTED) because
insert answer here

(b) Is an adjacency matrix a good data structure for a
sparse graph? Explain. (4 marks)

Go to Soln 9
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Soln 9

(a) For a typical food web, the graph is directed because
the relation is not symmetric: if A eats B, B doesn’t
necessarily eat A.

(b) An adjacency matrix is not a good data structure
because it would waste memory: only few of the n2
matrix cells would be non-zero

Go to Q 9
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Q 10

I The graph showing the dependencies of tasks in a
project has been lost. The project manager remembers
that there were 5 tasks (let’s call them A, B, C, D and
E) and that ABCDE and ABEDC were not possible
schedules (i.e. topological sorts of the graph), but
ABDEC and ADBEC were.

I Draw a directed acyclic graph that is compatible with
the given information.

I Each node has to be connected to or from at least one
other node. (4 marks)

Go to Soln 10
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Soln 10

A

B

C

D

E

I ABDEC, ADBEC are topological sorts
I ABCDE, ABEDC are not topological sorts
I The graph must be shown with directed edges (arrows)

Go to Q 10
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M269 Specimen Exam
Q11 Topics

I Unit 6
I Sets
I Propositional Logic
I Truth tables
I Valid arguments
I Infinite sets
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M269 2016J Exam
Q 11

(a) In propositional logic, a tautology is a well-formed
formula (WFF) that is TRUE in every possible
interpretation.

I It follows that if a WFF is a tautology, it is satisfiable.
I Explain what “satisfiable” means, and why a tautology

must be satisfiable.

I Q 11 continued on next slide

Go to Soln 11
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Q 11 (contd)

(b) The following WFF is satisfiable. Complete the truth
table.
(P ∨ Q)→ Q
P Q (P ∨ Q) (P ∨ Q)→ Q
T T
T F
F T
F F

I State whether the WFF is a tautology or not, and
explain why. (4 marks)

Go to Soln 11
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M269 2016J Exam
Soln 11

(a) A WFF is satisfiable if there is at least one
interpretation under which the formula is true — hence
a tautology is satisfiable

(b) The WFF is not a tautology because the formula is not
true under all interpretations — it is false when P is
true and q is false
P Q (P ∨ Q) (P ∨ Q)→ Q
T T T T
T F T F
F T T T
F F F T

Go to Q 11
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I Predicate Logic
I Translation to/from English
I Interpretations
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Q 12

I A particular interpretation of predicate logic allows facts
to be expressed about people and their pets. Some of
the assignments in the interpretation are given below
(where the symbol I is used to show assignment).

I The domain of individuals is D = {Clara, Nicky, Mark,
Rex, Fifo, Henny, Admiral}.

I The constants clara, nicky, mark, rex, fifo, henny and
admiral are assigned to the individuals Clara, Nicky,
Mark, Rex, Fifo, Henny and Admiral respectively.

I Q 12 continued on next slide

Go to Soln 12
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M269 2016J Exam
Q 12 (contd)

I Four unary predicate symbols are assigned to individuals
as follows:
I I(person) = {Clara,Nicky,Mark}
I I(pet) = {Rex,Fifo,Henny,Admiral}
I I(dog) = {Rex,Fifo}
I I(chicken) = {Henny}

I Two further predicate symbols are assigned binary
relations as follows:
I I(has-pet) = {(Nicky,Rex),(Nicky,Fifo),(Mark,Henny)}
I I(feeds) = {(Clara,Rex),(Nicky,Fifo)}

I Q 12 continued on next slide

Go to Soln 12
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Q 12 (contd)

I On the next page, you will be asked whether a given
sentence is true or false. In your explanation, you need
to consider any relevant values for the variables, and
show, using the domain and interpretation above,
whether they make the quantified expression TRUE or
FALSE.

I In your answer, when you explain why a sentence
is true or false, make sure that you use formal
notation. So instead of stating that “Henny is a
chicken in the interpretation”, write Henny
∈ I(chicken). Similarly, instead of “Henny is not a dog”
you would need to write Henny /∈ I(dog) (6 marks)

I Q 12 continued on next slide

Go to Soln 12
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M269 2016J Exam
Q 12 (contd)

(a) Consider the following sentence in English: “All dogs are
Nicky’s pets”. Which one well-formed formula is a
translation of this sentence into predicate logic?
A. ∀X .(dog(X ) ∧ has-pet(nicky,X ))
B. ∀X .(dog(X )→ has-pet(nicky,X ))
C. ∃X .(dog(X ) ∧ has-pet(nicky,X ))

I Q 12 continued on next slide

Go to Soln 12
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Q 12 (contd)

(b) Give an appropriate translation of the well-formed
formula ∀X .∃Y .(dog(X )→ feeds(Y ,X )) into English

I This well-formed formula is (choose from
TRUE/FALSE), under the interpretation on the
previous page, because:

Go to Soln 12
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M269 2016J Exam
Soln 12

(a) B. All dogs are Nicky’s pets translates to:
I ∀X .(dog(X )→ has-pet(nicky,X ))
I A. ∀X .(dog(X ) ∧ has-pet(nicky,X )) means
I All objects are dogs and are Nicky’s pets
I C. ∃X .(dog(X ) ∧ has-pet(nicky,X )) means
I There is some object which is a dog and is Nicky’s pet

I Soln 12 continued on next slide

Go to Q 12
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M269 2016J Exam
Soln 12 (contd)

(b) ∀X .∃Y .(dog(X )→ feeds(Y ,X )) means
All dogs are fed by someone

I But not Somebody feeds all dogs which would be
∃Y .∀X .(dog(X )→ feeds(Y ,X ))

I This is true because
(i) If X is not a dog then the implication is true
(ii) We have I(dog) = {Rex, Fifo} and we have

(Clara,Rex) ∈ I(feeds) and (Nicky,Fifo) ∈ I(feeds)

Go to Q 12
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Q13 Topics

I Unit 6
I SQL queries
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Q 13

I A database contains the following tables, lawnmower
and brand. (6 marks)

lawnmower
make model type
MowIt Bella push
MowIt Speedy electric
Mamouth Kodiak petrol
Mamouth Pachyderm petrol
Blades Meadow petrol
Blades Nibble robot
Blades Yard electric

brand
manufacturer location
Mamouth France
MowIt USA
Blades China
Scythes China

I Q 13 continued on next slide

Go to Soln 13
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Q 13 (contd)

(a) For the following SQL query, give the table returned by
the query.

SELECT make , model
FROM lawnmower
WHERE type = ’electric ’;

I Write the question that the above query is answering.

I Q 13 continued on next slide

Go to Soln 13
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Q 13 (contd)

(b) Write an SQL query that answers the question Which
lawnmowers are from manufacturers located in China?
The answer should be the following table:
manufacturer model
Blades Meadow
Blades Nibble
Blades Yard

Go to Soln 13
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Soln 13

(a)
make model
MowIt Speedy
Blades Yard

I Which models of which makes are electric lawnmowers ?
(b)

SELECT manufacturer , model
FROM lawnmower CROSS JOIN brand
WHERE make = manufacturer
AND location = ’China ’;

I Also allow
FROM lawnmower , brand

Go to Q 13
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Q14 topics

I Unit 7
I Proofs
I Natural deduction
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Logic
Logicians, Logics, Notations

I A plethora of logics, proof systems, and different
notations can be puzzling.

I Martin Davis, Logician When I was a student, even the
topologists regarded mathematical logicians as living in
outer space. Today the connections between logic and
computers are a matter of engineering practice at every
level of computer organization

I Various logics, proof systems , were developed well
before programming languages and with different
motivations,

80/162 (91/173)
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Logic
Logic and Programming Languages

I Turing machines, Von Neumann architecture and
procedural languages Fortran, C, Java, Perl, Python,
JavaScript

I Resolution theorem proving and logic programming —
Prolog

I Logic and database query languages — SQL (Structured
Query Language) and QBE (Query-By-Example) are
syntactic sugar for first order logic

I Lambda calculus and functional programming with
Miranda, Haskell, ML, Scala
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Logical Arguments
Validity and Justification

I There are two ways to model what counts as a logically
good argument:
I the semantic view
I the syntactic view

I The notion of a valid argument in propositional logic is
rooted in the semantic view.

I It is based on the semantic idea of interpretations:
assignments of truth values to the propositional
variables in the sentences under discussion.

I A valid argument is defined as one that preserves truth
from the premises to the conclusions

I The syntactic view focuses on the syntactic form of
arguments.

I Arguments which are correct according to this view are
called justified arguments.
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Logical Arguments
Proof Systems, Soundness, Completeness

I Semantic validity and syntactic justification are different
ways of modelling the same intuitive property: whether
an argument is logically good.

I A proof system is sound if any statement we can prove
(justify) is also valid (true)

I A proof system is adequate if any valid (true) statement
has a proof (justification)

I A proof system that is sound and adequate is said to be
complete

I Propositional and predicate logic are complete —
arguments that are valid are also justifiable and vice
versa

I Unit 7 section 2.4 describes another logic where there
are valid arguments that are not justifiable (provable)
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Logical Arguments
Valid arguments

I Unit 6 defines valid arguments with the notation

P1
...
Pn
C

I The argument is valid if and only if the value of C is
True in each interpretation for which the value of each
premise Pi is True for 1 ≤ i ≤ n

I In some texts you see the notation {P1, . . . ,Pn} |= C
I The expression denotes a semantic sequent or semantic

entailment
I The |= symbol is called the double turnstile and is often

read as entails or models
I In LaTeX � and |= are produced from \vDash and

\models — see also the turnstile package
I In Unicode |= is called TRUE and is U+22A8, HTML

&#8872;
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Logical Arguments
Valid arguments — Tautology

I The argument {} |= C is valid if and only if C is True in
all interpretations

I That is, if and only if C is a tautology
I Beware different notations that mean the same thing

I Alternate symbol for empty set: ∅ |= C
I Null symbol for empty set: |= C
I Original M269 notation with null axiom above the line:

C
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Logic
Justified Arguments

I Definition 7.1 An argument {P1,P2, . . . ,Pn} ` C is a
justified argument if and only if either the argument is
an instance of an axiom or it can be derived by means
of an inference rule from one or more other justified
arguments.

I Axioms
Γ ∪ {A} ` A (axiom schema)

I This can be read as: any formula A can be derived from
the assumption (premise) of {A} itself

I The ` symbol is called the turnstile and is often read as
proves, denoting syntactic entailment

I In LaTeX ` is produced from \vdash
I In Unicode ` is called RIGHT TACK and is U+22A2,

HTML &#8866;
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Logic
Justified Arguments

I Section 2.3 of Unit 7 (not the Unit 6, 7 Reader) gives
the inference rules for →, ∧, and ∨ — only dealing with
positive propositional logic so not making use of
negation — see List of logic systems

I Usually (Classical logic) have a functionally complete
set of logical connectives — that is, every binary
Boolean function can be expressed in terms the
functions in the set
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Justified Arguments
Inference Rules — Notation

I Inference rule notation:
Argument1 . . . Argumentn (label)

Argument
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Justified Arguments
Inference Rules — Conjunction

I Γ ` A Γ ` B (∧-introduction)
Γ ` A ∧ B

I Γ ` A ∧ B (∧-elimination left)
Γ ` A

I Γ ` A ∧ B (∧-elimination right)
Γ ` B
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Justified Arguments
Inference Rules — Implication

I Γ ∪ {A} ` B
(→-introduction)

Γ ` A→ B
I The above should be read as: If there is a proof

(justification, inference) for B under the set of premises,
Γ, augmented with A, then we have a proof
(justification. inference) of A→ B, under the
unaugmented set of premises, Γ.
The unaugmented set of premises, Γ may have
contained A already so we cannot assume

(Γ ∪ {A})− {A} is equal to Γ

I Γ ` A Γ ` A→ B (→-elimination)
Γ ` B
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Justified Arguments
Inference Rules — Disjunction

I Γ ` A (∨-introduction left)
Γ ` A ∨ B

I Γ ` B (∨-introduction right)
Γ ` A ∨ B

I Disjunction elimination

Γ ` A ∨ B Γ ∪ {A} ` C Γ ∪ {B} ` C
(∨-elimination)

Γ ` C
I The above should be read: if a set of premises Γ

justifies the conclusion A ∨ B and Γ augmented with
each of A or B separately justifies C , then Γ justifies C
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Proofs in Tree Form

I The syntax of proofs is recursive:
I A proof is either an axiom, or the result of applying a

rule of inference to one, two or three proofs.
I We can therefore represent a proof by a tree diagram in

which each node have one, two or three children
I For example, the proof of {P ∧ (P → Q)} ` Q in

Question 4 (in the Logic tutorial notes) can be
represented by the following diagram:

{P ∧ (P → Q)} ` P ∧ (P → Q)
(∧-E left)

{P ∧ (P → Q)} ` P
{P ∧ (P → Q)} ` P ∧ (P → Q)

(∧-E right)
{P ∧ (P → Q)} ` P → Q

(→-E)
{P ∧ (P → Q)} ` Q

92/162 (103/173)



M269 Revision
2019

Phil Molyneux

Agenda

Adobe Connect

M269 16J Exam

Units 1 & 2

Units 3, 4 & 5

Units 6 & 7
Propositional Logic

Q 11

Soln 11

Predicate Logic

Q 12

Soln 12

SQL Queries

Q 13

Soln 13

Logic

Q 14

Soln 14

Computability

Q 15

Soln 15

Complexity

Q Part 2

Soln Part 2

Exam Reminders

White Slide

Justified Arguments
Self-Assessment activity 7.4

I Let Γ = {P → R,Q → R,P ∨ Q}

I Γ ` P ∨ Q Γ ∪ {P} ` R Γ ∪ {Q} ` R
(∨-elimination)

Γ ` R
I Γ ∪ {P} ` P Γ ∪ {P} ` P → R

(→-elimination)
Γ ∪ {P} ` R

I Γ ∪ {Q} ` Q Γ ∪ {Q} ` Q → R
(→-elimination)

Γ ∪ {Q} ` R
I Complete tree layout

I
Γ ` P ∨ Q

Γ ∪ {P}
` P

Γ ∪ {P}
` P → R (→-E)

Γ ∪ {P} ` R

Γ ∪ {Q}
` Q

Γ ∪ {Q}
` Q → R

(→-E)
Γ ∪ {Q} ` R

(∨-E)
Γ ` R
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Justified Arguments
Self-assessment activity 7.4 — Linear Layout

1. {P → R,Q → R,P ∨ Q} ` P ∨ Q [Axiom]
2. {P → R,Q → R,P ∨ Q} ∪ {P} ` P [Axiom]
3. {P → R,Q → R,P ∨ Q} ∪ {P} ` P → R [Axiom]
4. {P → R,Q → R,P ∨ Q} ∪ {Q} ` Q [Axiom]
5. {P → R,Q → R,P ∨ Q} ∪ {Q} ` Q → R [Axiom]
6. {P → R,Q → R,P ∨ Q} ∪ {P} ` R [2, 3, →-E]
7. {P → R,Q → R,P ∨ Q} ∪ {Q} ` R [4, 5, →-E]
8. {P → R,Q → R,P ∨ Q} ` R [1, 6, 7, ∨-E]
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M269 2016J Exam
Q 14

I Which two of the following statements are true? (Tick
two boxes.) (4 marks)

A. If a decision problem is in NP, then it is computable.
B. The complexity of an algorithm that solves a problem

places a lower bound on the complexity of the problem
itself.

C. If the best algorithm we currently have for solving a
decision problem has complexity O(2n), then we know
that problem can’t be in P.

D. If an NP-hard problem A can be Karp-reduced to a
problem B, then problem B is NP-hard too.

E. Every NP-hard problem is also NP-complete.

Go to Soln 14
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M269 2016J Exam
Soln 14

A. 4 If a decision problem is in NP, then it is computable.
B. The complexity of an algorithm that solves a problem

places a lower bound on the complexity of the problem
itself.

C. If the best algorithm we currently have for solving a
decision problem has complexity O(2n), then we know
that problem can’t be in P.

D. 4 If an NP-hard problem A can be Karp-reduced to a
problem B, then problem B is NP-hard too.

E. Every NP-hard problem is also NP-complete.

Go to Q 14
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M269 Specimen Exam
Q15 Topics

I Unit 7
I Computability and ideas of computation
I Complexity
I P and NP
I NP-complete
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Computability
Ideas of Computation

I The idea of an algorithm and what is effectively
computable

I Church-Turing thesis Every function that would
naturally be regarded as computable can be computed
by a deterministic Turing Machine. (Unit 7 Section 4)

I See Phil Wadler on computability theory performed as
part of the Bright Club at The Strand in Edinburgh,
Tuesday 28 April 2015

98/162 (109/173)

http://wadler.blogspot.co.uk/2015/05/bright-club-computability.html


M269 Revision
2019

Phil Molyneux

Agenda

Adobe Connect

M269 16J Exam

Units 1 & 2

Units 3, 4 & 5

Units 6 & 7
Propositional Logic

Q 11

Soln 11

Predicate Logic

Q 12

Soln 12

SQL Queries

Q 13

Soln 13

Logic

Q 14

Soln 14

Computability

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Q 15

Soln 15

Complexity

Q Part 2

Soln Part 2

Exam Reminders

White Slide

Computability
Reducing one problem to another

I To reduce problem P1 to P2, invent a construction that
converts instances of P1 to P2 that have the same
answer. That is:
I any string in the language P1 is converted to some

string in the language P2
I any string over the alphabet of P1 that is not in the

language of P1 is converted to a string that is not in the
language P2

I With this construction we can solve P1
I Given an instance of P1, that is, given a string w that

may be in the language P1, apply the construction
algorithm to produce a string x

I Test whether x is in P2 and give the same answer for w
in P1
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Computability
Direction of Reduction

I The direction of reduction is important
I If we can reduce P1 to P2 then (in some sense) P2 is at

least as hard as P1 (since a solution to P2 will give us a
solution to P1)

I So, if P2 is decidable then P1 is decidable
I To show a problem is undecidable we have to reduce

from an known undecidable problem to it
I ∀x(dpP1(x) = dpP2(reduce(x)))
I Since, if P1 is undecidable then P2 is undecidable
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Computability
Models of Computation

I In automata theory, a problem is the question of
deciding whether a given string is a member of some
particular language

I If Σ is an alphabet, and L is a language over Σ, that is
L ⊆ Σ∗, where Σ∗ is the set of all strings over the
alphabet Σ then we have a more formal definition of
decision problem

I Given a string w ∈ Σ∗, decide whether w ∈ L
I Example: Testing for a prime number — can be

expressed as the language Lp consisting of all binary
strings whose value as a binary number is a prime
number (only divisible by 1 or itself)
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Computability
Church-Turing Thesis & Quantum Computing

I Church-Turing thesis Every function that would
naturally be regarded as computable can be computed
by a deterministic Turing Machine.

I physical Church-Turing thesis Any finite physical
system can be simulated (to any degree of
approximation) by a Universal Turing Machine.

I strong Church-Turing thesis Any finite physical
system can be simulated (to any degree of
approximation) with polynomial slowdown by a
Universal Turing Machine.

I Shor’s algorithm (1994) — quantum algorithm for
factoring integers — an NP problem that is not known
to be P — also not known to be NP-complete and we
have no proof that it is not in P
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Computability
Turing Machine

I Finite control which can be in any of a finite number
of states

I Tape divided into cells, each of which can hold one of a
finite number of symbols

I Initially, the input, which is a finite-length string of
symbols in the input alphabet, is placed on the tape

I All other tape cells (extending infinitely left and right)
hold a special symbol called blank

I A tape head which initially is over the leftmost input
symbol

I A move of the Turing Machine depends on the state
and the tape symbol scanned

I A move can change state, write a symbol in the current
cell, move left, right or stay
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Turing Machine Diagram
Turing Machine Diagram

. . . b b a a a a . . . I/O Tape

q0q1

q2

q3 . . .

qn

Finite Control

q1

Reading and Writing Head
(moves in both directions)
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Computability
Turing Machine notation

I Q finite set of states of the finite control
I Σ finite set of input symbols (M269 S)
I Γ complete set of tape symbols Σ ⊂ Γ
I δ Transition function (M269 instructions, I)
δ :: Q × Γ→ Q × Γ× {L,R, S}
δ(q,X ) 7→ (p,Y ,D)

I δ(q,X ) takes a state, q and a tape symbol, X and
returns (p,Y ,D) where p is a state, Y is a tape symbol
to overwrite the current cell, D is a direction, Left,
Right or Stay

I q0 start state q0 ∈ Q
I B blank symbol B ∈ Γ and B /∈ Σ
I F set of final or accepting states F ⊆ Q
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Computability
Decidability

I Decidable — there is a TM that will halt with yes/no
for a decision problem — that is, given a string w over
the alphabet of P the TM with halt and return yes.no
the string is in the language P (same as recursive in
Recursion theory — old use of the word)

I Semi-decidable — there is a TM will halt with yes if
some string is in P but may loop forever on some inputs
(same as recursively enumerable) — Halting Problem

I Highly-undecidable — no outcome for any input —
Totality, Equivalence Problems
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Computability
Undecidable Problems

I Halting problem — the problem of deciding, given a
program and an input, whether the program will
eventually halt with that input, or will run forever —
term first used by Martin Davis 1952

I Entscheidungsproblem — the problem of deciding
whether a given statement is provable from the axioms
using the rules of logic — shown to be undecidable by
Turing (1936) by reduction from the Halting problem to
it

I Type inference and type checking in the
second-order lambda calculus (important for functional
programmers, Haskell, GHC implementation)

I Undecidable problem — see link to list
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Computability
Why undecidable problems must exist

I A problem is really membership of a string in some
language

I The number of different languages over any alphabet of
more than one symbol is uncountable

I Programs are finite strings over a finite alphabet (ASCII
or Unicode) and hence countable.

I There must be an infinity (big) of problems more than
programs.

I Computational problem — defined by a function
I Computational problem is computable if there is a

Turing machine that will calculate the function.
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Computability
Computability and Terminology (1)

I The idea of an algorithm dates back 3000 years to
Euclid, Babylonians. . .

I In the 1930s the idea was made more formal: which
functions are computable?

I A function a set of pairs
f = {(x , f (x)) : x ∈ X ∧ f (x) ∈ Y } with the function
property

I Function property: (a, b) ∈ f ∧ (a, c) ∈ f ⇒ b == c
I Function property: Same input implies same output
I Note that maths notation is deeply inconsistent here —

see Function and History of the function concept
I What do we mean by computing a function — an

algorithm ?
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Computability
Computability and Terminology (2)

I In the 1930s three definitions:
I λ-Calculus, simple semantics for computation — Alonzo

Church
I General recursive functions — Kurt Gödel
I Universal (Turing) machine — Alan Turing
I Terminology:

I Recursive, recursively enumerable — Church, Kleene
I Computable, computably enumerable — Gödel, Turing
I Decidable, semi-decidable, highly undecidable
I In the 1930s, computers were human
I Unfortunate choice of terminology

I Turing and Church showed that the above three were
equivalent

I Church-Turing thesis — function is intuitively
computable if and only if Turing machine computable
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Computability
Halting Problem — Sketch Proof (1)

I Halting problem — is there a program that can
determine if any arbitrary program will halt or continue
forever ?

I Assume we have such a program (Turing Machine)
h(f,x) that takes a program f and input x and
determines if it halts or not

h ( f , x )
= i f f ( x ) runs f o r e v e r

r e t u r n True
e l s e

r e t u r n F a l s e

I We shall prove this cannot exist by contradiction
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Computability
Halting Problem — Sketch Proof (2)

I Now invent two further programs:
I q(f) that takes a program f and runs h with the input

to f being a copy of f
I r(f) that runs q(f) and halts if q(f) returns True,

otherwise it loops

q ( f )
= h ( f , f )

r ( f )
= i f q ( f )

r e t u r n
e l s e

w h i l e True : cont inue

I What happens if we run r(r) ?
I If it loops, q(r) returns True and it does not loop —

contradiction.
112/162 (123/173)
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Reductions & Non-Computable
Reductions

A1

input outputf A2
f (input)

I A reduction of problem P1 to problem P2
I transforms inputs to P1 into inputs to P2
I runs algorithm A2 (which solves P2) and
I interprets the outputs from A2 as answers to P1

I More formally: A problem P1 is reducible to a problem
P2 if there is a function f that takes any input x to P1
and transforms it to an input f (x) of P2

such that the solution of P2 on f (x) is the solution of
P1 on x
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Reductions & Non-Computible
Example: Squaring a Matrix

A1

M M2f A2
(M, M)

I Given an algorithm (A2) for matrix multiplication (P2)
I Input: pair of matrices, (M1,M2)
I Output: matrix result of multiplying M1 and M2

I P1 is the problem of squaring a matrix
I Input: matrix M
I Output: matrix M2

I Algorithm A1 has
f (M) = (M,M)
uses A2 to calculate M ×M = M2
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Reductions & Non-Computable
Non-Computable Problems

A1

input outputf A2
f (input)

I If P2 is computable (A2 exists) then P1 is computable
(f being simple or polynomial)

I Equivalently If P1 is non-computable then P2 is
non-computable

I Exercise: show B → A ≡ ¬A→ ¬B

115/162 (126/173)
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Reductions & Non-Computable
Contrapositive

I Proof by Contrapositive
I B → A ≡ ¬B ∨ A by truth table or equivalences

≡ ¬(¬A) ∨ ¬B commutativity and negation laws

≡ ¬A→ ¬B equivalences

I Common error: switching the order round
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Reductions & Non-Computable
Totality Problem

HP

(P, x) YES/NOf TP
Q

I Totality Problem
I Input: program Q
I Output: YES if Q terminates for all inputs else NO

I Assume we have algorithm TP to solve the Totality
Problem

I Now reduce the Halting Problem to the Totality
Problem

117/162 (128/173)
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Reductions & Non-Computable
Totality Problem

HP

(P, x) YES/NOf TP
Q

I Define f to transform inputs to HP to TP pseudo-Python

def f(P,x) :
def Q(y):

# ignore y
P(x)

return Q

I Run TP on Q
I If TP returns YES then P halts on x
I If TP returns NO then P does not halt on x

I We have solved the Halting Problem — contradiction

118/162 (129/173)
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Reductions & Non-Computable
Negative Value Problem

HP

(P, x) YES/NOf NVP
(Q, v)

I Negative Value Problem
I Input: program Q which has no input and variable v

used in Q
I Output: YES if v ever gets assigned a negative value

else NO
I Assume we have algorithm NVP to solve the Negative

Value Problem
I Now reduce the Halting Problem to the Negative Value

Problem
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Reductions & Non-Computable
Negative Value Problem

HP

(P, x) YES/NOf NVP
(Q, v)

I Define f to transform inputs to HP to NVP pseudo-Python

def f(P,x) :
def Q(y):

# ignore y
P(x)
v = -1

return (Q,var(v))

I Run NVP on (Q, var(v)) var(v) gets the variable name
I If NVP returns YES then P halts on x
I If NVP returns NO then P does not halt on x

I We have solved the Halting Problem — contradiction
120/162 (131/173)
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Reductions & Non-Computable
Squaring Function Problem

HP

(P, x) YES/NOf SFP
Q

I Squaring Function Problem
I Input: program Q which takes an integer, y
I Output: YES if Q always returns the square of y else

NO
I Assume we have algorithm SFP to solve the Squaring

Function Problem
I Now reduce the Halting Problem to the Squaring

Function Problem
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Reductions & Non-Computable
Squaring Function Problem

HP

(P, x) YES/NOf SFP
Q

I Define f to transform inputs to HP to SFP pseudo-Python

def f(P,x) :
def Q(y):

P(x)
return y * y

return Q

I Run SFP on Q
I If SFP returns YES then P halts on x
I If SFP returns NO then P does not halt on x

I We have solved the Halting Problem — contradiction
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Reductions & Non-Computable
Equivalence Problem

HP

P YES/NOf EP
(P1, P2)

I Equivalence Problem
I Input: two programs P1 and P2
I Output: YES if P1 and P2 solve the ame problem

(same output for same input) else NO
I Assume we have algorithm EP to solve the Equivalence

Problem
I Now reduce the Totality Problem to the Equivalence

Problem
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Reductions & Non-Computable
Equivalence Problem

TP

P YES/NOf EP
(P1, P2)

I Define f to transform inputs to TP to EP pseudo-Python

def f(P) :
def P1(x):

P(x)
return "Same␣string"

def P2(x)
return "Same␣string"

return (P1 ,P2)

I Run EP on (P1,P2)
I If EP returns YES then P halts on all inputs
I If EP returns NO then P does not halt on all inouts

I We have solved the Totality Problem — contradiction
124/162 (135/173)



M269 Revision
2019

Phil Molyneux

Agenda

Adobe Connect

M269 16J Exam

Units 1 & 2

Units 3, 4 & 5

Units 6 & 7
Propositional Logic

Q 11

Soln 11

Predicate Logic

Q 12

Soln 12

SQL Queries

Q 13

Soln 13

Logic

Q 14

Soln 14

Computability

Non-Computability —
Halting Problem

Reductions &
Non-Computability

Q 15

Soln 15

Complexity

Q Part 2

Soln Part 2

Exam Reminders

White Slide

Reductions & Non-Computable
Rice’s Theorem

A1

input outputf A2
f (input)

I Rice’s Theorem all non-trivial, semantic properties of
programs are undecidable. H G Rice 1951 PhD Thesis

I Equivalently: For any non-trivial property of partial
functions, no general and effective method can decide
whether an algorithm computes a partial function with
that property.

I A property of partial functions is called trivial if it holds
for all partial computable functions or for none.
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Reductions & Non-Computable
Rice’s Theorem

I Rice’s Theorem and computability theory
I Let S be a set of languages that is nontrivial, meaning

I there exists a Turing machine that recognizes a
language in S

I there exists a Turing machine that recognizes a
language not in S

I Then, it is undecidable to determine whether the
language recognized by an arbitrary Turing machine lies
in S.

I This has implications for compilers and virus checkers
I Note that Rice’s theorem does not say anything about

those properties of machines or programs that are not
also properties of functions and languages.

I For example, whether a machine runs for more than 100
steps on some input is a decidable property, even
though it is non-trivial.
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M269 2016J Exam
Q 15

I Consider the following decision problems: (4 marks)
1. The 3SAT Problem
2. Is a given list of numbers already sorted?
3. The Totality Problem
4. Is a given path from A to B in a given undirected graph

the shortest path from A to B?
I For each of the following groups of problems, write on

the line the numbers of any of the above problems that
belong to that group, or write “none” if none of the
above problems belongs to that group.

(a) undecidable
(b) tractable
(c) NP-complete

Go to Soln 15
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M269 2016J Exam
Soln 15

(a) Undecidable: 3.Totality Problem
(b) Tractable: 2. Sorted?, 4. Path?
(c) NP-complete: 1. 3SAT Problem

Go to Q 15
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Complexity
P and NP

I P, the set of all decision problems that can be solved in
polynomial time on a deterministic Turing machine

I NP, the set of all decision problems whose solutions can
be verified (certificate) in polynomial time

I Equivalently, NP, the set of all decision problems that
can be solved in polynomial time on a non-deterministic
Turing machine

I A decision problem, dp is NP-complete if
1. dp is in NP and
2. Every problem in NP is reducible to dp in polynomial

time
I NP-hard — a problem satisfying the second condition,

whether or not it satisfies the first condition. Class of
problems which are at least as hard as the hardest
problems in NP. NP-hard problems do not have to be in
NP and may not be decision problems
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Complexity
P and NP — Diagram

Euler diagram for P, NP, NP-complete and NP-hard set of
problems

Source: Wikipedia NP-complete entry
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Complexity
NP-complete problems

I Boolean satisfiability (SAT) Cook-Levin theorem
I Conjunctive Normal Form 3SAT
I Hamiltonian path problem
I Travelling salesman problem
I NP-complete — see list of problems
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Complexity
Knapsack Problem

Source & Explanation: XKCD 287
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NP-Completeness and Boolean Satisfiability
Points on Notes

I The Boolean satisfiability problem (SAT) was the first
decision problem shown to be NP-Complete

I This section gives a sketch of an explanation
I Health Warning different texts have different notations

and there will be some inconsistency in these notes
I Health warning these notes use some formal notation

to make the ideas more precise — computation requires
precise notation and is about manipulating strings
according to precise rules.
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NP-Completeness and Boolean Satisfiability
Alphabets, Strings and Languages

I Notation:
I Σ is a set of symbols — the alphabet
I Σk is the set of all string of length k, which each

symbol from Σ
I Example: if Σ = {0, 1}

I Σ1 = {0, 1}
I Σ2 = {00, 01, 10, 11}

I Σ0 = {ε} where ε is the empty string
I Σ∗ is the set of all possible strings over Σ
I Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ . . .
I A Language, L, over Σ is a subset of Σ∗

I L ⊆ Σ∗
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NP-Completeness and Boolean Satisfiability
Language Accepted by a Turing Machine

I Language accepted by Turing Machine, M denoted by
L(M)

I L(M) is the set of strings w ∈ Σ∗ accepted by M
I For Final States F = {Y ,N}, a string w ∈ Σ∗ is

accepted by M ⇔ (if and only if) M starting in q0 with
w on the tape halts in state Y

I Calculating a function (function problem) can be turned
into a decision problem by asking whether f (x) = y
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NP-Completeness and Boolean Satisfiability
The NP-Complete Class

I If we do not know if P 6= NP, what can we say ?
I A language L is NP-Complete if:

I L ∈ NP and
I for all other L′ ∈ NP there is a polynomial time

transformation (Karp reducible, reduction) from L′ to L
I Problem P1 polynomially reduces (Karp reduces,

transforms) to P2, written P1 ∝ P2 or P1 ≤p P2, iff
∃f : dpP1 → dpP2 such that
I ∀I ∈ dpP1 [I ∈ YP1 ⇔ f (I) ∈ YP2 ]
I f can be computed in polynomial time
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NP-Completeness and Boolean Satisfiability
The NP-Complete Class (2)

I More formally, L1 ⊆ Σ∗1 polynomially transforms to
L2 ⊆ Σ∗2, written L1 ∝ L2 or L1 ≤p L2, iff ∃f : Σ∗1 → Σ∗2
such that
I ∀x ∈ Σ∗1 [x ∈ L1 ⇔ f (x) ∈ L2]
I There is a polynomial time TM that computes f

I Transitivity If L1 ∝ L2 and L2 ∝ L3 then L1 ∝ L3
I If L is NP-Hard and L ∈ P then P = NP
I If L is NP-Complete, then L ∈ P if and only if P = NP
I If L0 is NP-Complete and L ∈ NP and L0 ∝ L then L is

NP-Complete
I Hence if we find one NP-Complete problem, it may

become easier to find more
I In 1971/1973 Cook-Levin showed that the Boolean

satisfiability problem (SAT) is NP-Complete

137/162 (148/173)

http://en.wikipedia.org/wiki/Cook\T1\textendash Levin_theorem
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem


M269 Revision
2019

Phil Molyneux

Agenda

Adobe Connect

M269 16J Exam

Units 1 & 2

Units 3, 4 & 5

Units 6 & 7
Propositional Logic

Q 11

Soln 11

Predicate Logic

Q 12

Soln 12

SQL Queries

Q 13

Soln 13

Logic

Q 14

Soln 14

Computability

Q 15

Soln 15

Complexity

NP-Completeness and
Boolean Satisfiability

Q Part 2

Soln Part 2

Exam Reminders

White Slide

NP-Completeness and Boolean Satisfiability
The Boolean Satisfiability Problem

I A propositional logic formula or Boolean expression is
built from variables, operators: AND (conjunction, ∧),
OR (disjunction, ∨), NOT (negation, ¬)

I A formula is said to be satisfiable if it can be made True
by some assignment to its variables.

I The Boolean Satisfiability Problem is, given a formula,
check if it is satisfiable.
I Instance: a finite set U of Boolean variables and a finite

set C of clauses over U
I Question: Is there a satisfying truth assignment for C ?

I A clause is is a disjunction of variables or negations of
variables

I Conjunctive normal form (CNF) is a conjunction of
clauses

I Any Boolean expression can be transformed to CNF
138/162 (149/173)
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NP-Completeness and Boolean Satisfiability
The Boolean Satisfiability Problem (2)

I Given a set of Boolean variable U = {u1, u2, . . . , un}
I A literal from U is either any ui or the negation of some

ui (written ui)
I A clause is denoted as a subset of literals from U —
{u2, u4, u5}

I A clause is satisfied by an assignment to the variables if
at least one of the literals evaluates to True (just like
disjunction of the literals)

I Let C be a set of clauses over U — C is satisfiable iff
there is some assignment of truth values to the
variables so that every clause is satisfied (just like CNF)

I C = {{u1, u2, u3}, {u2, u3}, {u2, u3}} is satisfiable
I C = {{u1, u2}, {u1, u2}, {u1}} is not satisfiable
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NP-Completeness and Boolean Satisfiability
The Boolean Satisfiability Problem (3)

I Proof that SAT is NP-Complete looks at the structure
of NDTMs and shows you can transform any NDTM to
SAT in polynomial time (in fact logarithmic space
suffices)

I SAT is in NP since you can check a solution in
polynomial time

I To show that ∀L ∈ NP : L ∝ SAT invent a polynomial
time algorithm for each polynomial time NDTM, M,
which takes as input a string x and produces a Boolean
formula Ex which is satisfiable iff M accepts x

I See Cook-Levin theorem
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NP-Completeness and Boolean Satisfiability
Coping with NP-Completeness

I What does it mean if a problem is NP-Complete ?
I There is a P time verification algorithm.
I There is a P time algorithm to solve it iff P = NP (?)
I No one has yet found a P time algorithm to solve any

NP-Complete problem
I So what do we do ?

I Improved exhaustive search — Dynamic Programming;
Branch and Bound

I Heuristic methods — acceptable solutions in acceptable
time — compromise on optimality

I Average time analysis — look for an algorithm with
good average time — compromise on generality (see
Big-O Algorithm Complexity Cheatsheet)

I Probabilistic or Randomized algorithms — compromise
on correctness
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M269 2016J Exam
Q Part2

I Answer every question in this Part.
I The marks for each question are given below the

question number.
I Marks for a part of a question are given after the

question.
I Answers to questions in this Part must be written in the

additional answer books, which you should also use for
your rough working.

Go to Soln Part2
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M269 2016J Exam
Q 16

I Question 16 (20 marks)
I Consider an ADT for undirected graphs, named

UGraph, which includes these two operations:
I nodes, which returns a sequence of all nodes in the

graph, in no particular order;
I neighbours, which takes a node and returns a

sequence of all its adjacent nodes, in no particular order.
I How each node is represented is irrelevant.

Go to Soln 16
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M269 2016J Exam
Q 16 (contd)

(a) The following stand-alone Python function checks if a
graph has a loop (an edge from a node to itself),
assuming that UGraph is implemented as a Python
class.

def hasLoop(graph ):
for node in graph.nodes ():

if node in graph.neighbours(node):
return True

return False

I Assume that the if-statement guard does a linear search
of the sequence returned by neighbours.

I Q 16 continued on next slide

Go to Soln 16
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M269 2016J Exam
Q 16 (contd)

I If the graph has no node with a loop, is that a best-,
average-, or worst-case scenario for hasLoop?

I Assuming the graph has n nodes and e edges, what is
the Big-O complexity of that scenario? Justify your
answers.

I Note that the complexity is in terms of how many nodes
and edges hasLoop visits, because it has no
assignments. (5 marks)

I Q 16 continued on next slide

Go to Soln 16
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M269 2016J Exam
Q 16 (contd)

(b) A node is isolated if it has no adjacent nodes. Isolated nodes cannot be
reached from any other node and hence won’t be processed by some
graph algorithms.

I It is therefore useful to first check if a graph has isolated nodes.
(i) Specify the problem of finding all isolated nodes in an undirected graph

by completing the following template.
I Note that isolatedNodes is specified as an independent problem, not

as a UGraph operation.
I You may write the specification in English and/or formally with

mathematical notation. (4 marks)

Name: isolatedNodes
Inputs:
Outputs:
Preconditions
Postconditions

I Q 16 continued on next slide

Go to Soln 16
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M269 2016J Exam
Q 16 (contd)

(ii) If instead of being an independent problem,
isolatedNodes were an operation of the UGraph
ADT, would it be a creator, inspector or modifier?
Explain why. (2 marks)

(iii) Give your initial insight for an algorithm that solves the
problem, using the ADT’s operations. (4 marks)

I Q 16 continued on next slide

Go to Soln 16
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M269 2016J Exam
Q 16 (contd)

(c) The ACME company used Prim’s algorithm to connect
its data centres with the least amount of fibre optic
cable necessary.

I One of the centres is a gateway to the Internet.
I ACME wants to know the maximum latency for an

Internet message to reach any centre.
I In other words, they want to know which centre is the

furthest away from the gateway and what is the
distance.

I State and justify which data structure(s) and
algorithm(s) you would adopt or adapt to solve this
problem efficiently.

I State explicitly any assumptions you make. (5 marks)

Go to Soln 16
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M269 2016J Exam
Q 17

I Imagine you have been invited to write a guest post for
a technology blog, aimed at interested readers who
know little about computing.

I Write a draft of your blog post, which will explain
relational databases and the formal logic that underpins
them. (15 marks)

I Q 17 continued on next slide

Go to Soln 17
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M269 2016J Exam
Q 17 (contd)

I It should have
1. A suitable title and a short paragraph ‘setting the scene’

by explaining the practical importance of relational
databases.

2. A paragraph describing in layperson’s terms what a
relational database is and how it’s organised.

3. A paragraph describing in layperson’s terms what
predicate logic is and its relationship with relational
databases.

4. A concluding paragraph stating your view on the
importance, or not, of information technologies having a
formal logic basis.

I Q 17 continued on next slide

Go to Soln 17
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M269 2016J Exam
Q 17 (contd)

I Note that marks will be awarded for a clear coherent
text that is appropriate for its audience, so avoid
unexplained technical jargon and abrupt changes of
topic, and make sure your sentences fit together to tell
an overall ‘story’ to the reader.

I You may wish to use examples in your text to help
explain the concepts.

I As a guide, you should aim to write roughly three to
five sentences per paragraph.

Go to Soln 17
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M269 2016J Exam
Soln Part2

I Part 2 solutions

Go to Q Part2
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M269 2016J Exam
Soln 16

(a) It is a worst-case scenario since there is no early exit
from the loop, before returning false.

I The complexity is O(n + e) since all nodes are visited
by the outer loop, and all edges are visited by the linear
search through the neighbours of each node.

I Note that the number of edges, e, could vary from 0 for
completely unconnected to n(n − 1)/2 in a Complete
graph where every node is connected to every other
node

I Soln 16 continued on next slide

Go to Q 16
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M269 2016J Exam
Soln 16 (contd)

(b) (i) Name: isolatedNodes
I Inputs: an undirected graph theGraph (or a Ugraph

theGraph)
I Outputs: isolated, a set of nodes
I Preconditions: true
I Postconditions: all nodes without neighbours in

theGraph are in isolated; each node in isolated has no
neighbours in theGraph
Alternative: a node is in isolated if and only if it has no
neighbours in theGraph

I Soln 16 continued on next slide

Go to Q 16
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M269 2016J Exam
Soln 16 (contd)

(b) (ii) It would be an inspector because theGraph is not in
the outputs.
Alternative: because the operation does not create or
modify a graph.

I (iii) Initialise isolated to the empty set.
Iterate over the nodes of theGraph and for each one
check if its neighbours is the empty sequence.
If so, add the node to isolated.

I Soln 16 continued on next slide

Go to Q 16
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M269 2016J Exam
Soln 16 (contd)

(c) The data structure is a weighted tree (alternative:
acyclic graph).
Prim → Minimum Spanning Tree
The nodes represent the data centres.
The edges represent the cables.
The weights represent the cable lengths.

I To compute the longest path, do any traversal of the
tree starting at the gateway node and add the weights
of the edges visited.
For an efficient, single-pass algorithm, when visiting a
leaf, check if its distance is the maximum so far.

I Alternative: calculate the height of the tree with cable
lengths

Go to Q 16
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M269 2016J Exam
Soln 17

I There is no definitive answer — here are some points:
1. Setting the scene with the importance of relational

databases:
I All retailers need to keep data on their products,

suppliers and clients, the properties of those entities
(e.g. current stock of a product) and their relationships
(e.g. who bought which product to issue invoices).

I Storing entities and their properties and relationships is
such a generic need across business, government
departments and other organisations that so-called
relational databases were invented for that purpose.

I Soln 17 continued on next slide

Go to Q 17
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M269 2016J Exam
Soln 17

2. What are relational databases:
I It is a data structure that represents each entity type as

a table, with one column per property and one row per
entity, e.g. a table to represent customers may have
columns for their name and address.

I A table can also represent a relation, e.g. a table with
customer names and product ids would store who
bought what.

I A database can be queried to retrieve information from
the database, e.g. which other customers bought a
particular book

I Soln 17 continued on next slide

Go to Q 17

158/162 (169/173)

https://en.wikipedia.org/wiki/Relational_database


M269 Revision
2019

Phil Molyneux

Agenda

Adobe Connect

M269 16J Exam

Units 1 & 2

Units 3, 4 & 5

Units 6 & 7

Q Part 2

Soln Part 2
Soln 16

Soln 17

Exam Reminders

White Slide

M269 2016J Exam
Soln 17

3. What is predicate logic and its relation to relational
databases:

I Predicate logic is a formal language to represent
unambiguously statements about entities and their
properties and relations, e.g. No customer in Yorkshire
bought a polka dot dress.

I Given information about the existing entities and their
properties/relations, it is possible to prove whether a
predicate logic statement is true or false.

I A database query is a particular form of a predicate
logic statement.

I Running a query is an automated proof: it returns the
entities stored in the database that make the statement
true; if no entities are returned, the statement is false.

I Soln 17 continued on next slide

Go to Q 17
159/162 (170/173)
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4. Conclusion:
I Formal logic helps verifying the correctness of systems,

which is important for our daily reliance on them.
I There are limits on what is computable, and a system

may be correct but not fit for purpose, so formal logic
doesn’t suffice for quality assurance.

Go to Q 17
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M269 Exam
Reminders

I Read the Exam arrangements booklet
I Before the exam — check the date, time and location

(and how to get there)
I At the exam centre – arrive early
I Bring photo ID with signature
I Use black or blue pens (not erasable and not pencil) —

see Cult Pens for choices — pencils for preparing
diagrams (HB or blacker)

I Practice writing by hand
I In the exam — Read the questions — carefully —

before and after answering them
I Don’t get stuck on a question — move on, come back

later
I But do make sure you have attempted all questions
I . . . and finally Good Luck
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