M269 Revision 2018
Exam 2016)

Contents

1 M269 Exam Revision Agenda & Aims

1.1
1.2

Introductions & Revision Strategies
M269 Exam 20T16) o e e e e e e e e e e e

2 M269 Prsntn 2016) Exam Qs

2.1
2.2

M269 2016 EXam QS v o o e e e e e e e e e e e e e e e
M269 2016) Exam Q Part] e e e e e e e

3 Units 1 &2

3.1
3.2
3.3
3.4
3.5
3.6

3.7
3.8
3.9

Unit 1 Introduction e e
M269 2016) Exam Q 1 e e e e e e e e e e e e e
M269 2016) Exam Soln 1 e e e e e
M269 2016) Exam Q 2 e e e e e e e
M269 2016J Exam Soln 2 e e e
Unit 2 From Problems to Programs,
3.6.1 Example Algorithm Design — Searching
M269 2016) Exam Q 3 e e e e e
M269 2016) Exam Soln 3 e e e e e e e
M269 2016) Exam Q4 e e e e e

3.10M269 2016) Exam Soln 4 e e e e e e e e e

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Units 3,4 &5

Unit 3Sorting L o e e e e e e e
Unit 4 Searching e e
M269 2016 Exam Q5 e e e e e e e e
M269 2016J Exam Soln 5 e e e e e e e e e
M269 2016)J EXam Q 6 e e e e e e e e
M269 2016 Exam Soln 6 i i e e e e e e e
M269 2016 EXam Q 7 e e e e e e e e e e e e e
M269 2016 Exam Soln 7 e e e e
M269 2016 Exam Q 8 e e e e e

4.10M269 2016)J ExamSoln 8
4.1TUnit 5 Optimisation 0 i e e e e e e e e e e e
4.12M269 2016) Exam Q9 e e e e e e e e e
4.13M269 2016) Exam Soln 9 e e e e e
4.14M269 2016 Exam Q 10 i i e e e e e e e e e e e e e
4.15M269 2016) Exam Soln 10 i i i e e e e e e e e

5.1
5.2
5.3
5.4
5.5

Units 6 & 7

Propositional Logic. e e
M269 2016) Exam Q 11 e e e e e e e e e e e
M269 2016) Exam Soln 11 e
Predicate LOgiC o o e e
M269 2016) Exam Q 12 e e e e e e

2 M269 Revision 2018 26 May 2018

5.6 M269 2016J ExamSoln 12 e 18
5.7 SQL QUErIES . . . o i e e e e e e e e e e e e e 19
5.8 M269 2016J Exam Q 13 i i e e e e e 19
5.9 M269 2016J Exam Soln 13 e 20
5.10L0gIC . & o o e e e e e e e e e e e 20
5.11TM269 2016) Exam Q T4 i e e e e e e e e e e e e e 24
5.12M269 2016) Exam Soln 14 e 24
5.13Computability e e e e 25
5.13.1TNon-Computability — Halting Problem 29
5.13.2Reductions & Non-Computability 30
5.14M269 2016) Exam Q 15 o e e e e e e e e 35
5.15M269 2016) Exam Soln 15 e 35
5.16Complexity e e e e e e e e e e e 35
5.16.1NP-Completeness and Boolean Satisfiability 37

6 M269 Exam 2016) Q Part2 40
6.1 M2692016JExam Q 16 i i e e e e e 40
6.2 M269 2016)J Exam Q 17 e e e e e 42

7 M269 Exam 2016]J Soln Part2 42
7.1 M269 2016JExamSoln 16 42
7.2 M269 2016)J Exam Soln 17 e e e e e 43

8 Exam Reminders 44
9 White Slide 45
10 Web Sites & References 45
10.1TWeb Sites o e e e e e e e 45
References i e e e e e e e e e e e e e 45

1 M269 Exam Revision Agenda & Aims

J—

. Welcome and introductions

Revision strategies

M269 Exam — Part 1 has 15 questions 65%

M269 Exam — Part 2 has 2 questions 35%

M269 Exam — 3 hours, Part 1 80 mins, Part 2 90 mins
M269 2016) exam (June 2017)

Topics and discussion for each question

Exam techniques

© ® N O U A W N

These slides and notes are at http://www.pmolyneux.co.uk/0OU/M269/M269ExamRevision/

http://www.pmolyneux.co.uk/OU/M269/M269ExamRevision/

Phil Molyneux Exam 2016) 3

1.1

Introductions & Revision Strategies

e Introductions

e What other exams are you doing this year ?

e Each give one exam tip to the group

1.2

M269 Exam 2016]

e Not examined this presentation:

e Unit 4, Section 2 String search

e Unit 7, Section 2 Logic Revisited

e Unit 7, Section 4 Beyond the Limits

2 M269 Prsntn 2016) Exam Qs

2.1

2.2

M269 2016) Exam Qs

M269 Algorithms, Data Structures and Computability
Presentation 2016J Exam
Date Wednesday, 7 June 2017 Time 14:30-17:30

There are TWO parts to this examination. You should attempt all questions in both
parts

Part 1 carries 65 marks — 80 minutes
Part 2 carries 35 marks — 90 minutes

Note see the original exam paper for exact wording and formatting — these slides
and notes may change some wording and formatting

Note 2015J and before had Part 1 with 60 marks (100 minutes), Part 2 with 40 marks
(70 minutes)

M269 2016) Exam Q Partl

Answer every question in this part.
The marks for each question are given below the question number.

Answers to questions in this Part should be written on this paper in the spaces
provided, or in the case of multiple-choice questions you should tick the appropriate
box(es).

If you tick more boxes than indicated for a multiple choice question, you will receive
no marks for your answer to that question.

M269 Revision 2018 26 May 2018

e Use the provided answer books for any rough working.

3 Units 1 &2

3.1

3.2

Unit 1 Introduction

Unit T Introduction

Computation, computable, tractable

Introducing Python

What are the three most important concepts in programming ?
1. Abstraction
2. Abstraction
3.

Quote from Paul Hudak (1952-2015)

M269 2016) Exam Q 1

Which two of the following statements are true? (Tick two boxes.) (2 marks)

A problem is computable if it possible to build an algorithm which solves any in-
stance of the problem in a finite number of steps.

. An effective procedure is an algorithm which, for every instance of a given problem,

solves that instance in the most efficient way — minimising the use of resources
such as memory.

C. A decision problem is decidable if it is computable.

D. A decision problem is any problem stated in a formal language.

3.3

Go to Soln 1

M269 2016) Exam Soln 1

. A problem is computable if it possible to build an algorithm which solves any in-

stance of the problem in a finite number of steps. Yes

. An effective procedure is an algorithm which, for every instance of a given problem,

solves that instance in the most efficient way — minimising the use of resources
such as memory. No An effective procedure is an algorithm that solves any instance
of a decision problem in a finite number of steps (Reader, page 91)

C. A decision problem is decidable if it is computable. Yes

D. A decision problem is any problem stated in a formal language. No Problems where

the answer is yes or no (Unit 1)

http://en.wikipedia.org/wiki/Paul_Hudak

Phil Molyneux Exam 2016) 5

GotoQ1

3.4 M269 2016) Exam Q 2

3.5

3.6

3.6.1

Complete these paragraphs correctly using words or phrases from the list below.

(2 marks)
Abstraction as can be understood in terms of the relationship between a
and a . The latter represents the details of interest and captures
the essentials, ignoring certain irrelevant details.
Abstraction as generally involves two layers — the (which is
a layer through which users interact with the model) and the (a layer
that automates the model)
Possible words and phrases to insert:
encapsulation model modelling procedural
algorithm process automation interface
part of reality data simulation implementation
Go to Soln 2

M269 2016) Exam Soln 2

Abstraction as modelling can be understood in terms of the relationship between a
part of reality and a model.

The latter represents the details of interest and captures the essentials, ignoring
certain irrelevant details.

Abstraction as encapsulation generally involves two layers — the interface (which
is a layer through which users interact with the model) and the implementation (a
layer that automates the model).

GotoQ?2

Unit 2 From Problems to Programs

Unit 2 From Problems to Programs
Abstract Data Types
Pre and Post Conditions

Logic for loops

Example Algorithm Design — Searching

e Given an ordered list (xs) and a value (val), return

- Position of val in xs or

6 M269 Revision 2018 26 May 2018

- Some indication if val is not present
e Simple strategy: check each value in the list in turn

e Better strategy: use the ordered property of the list to reduce the range of the list to
be searched each turn

Set a range of the list

If val equals the mid point of the list, return the mid point

Otherwise half the range to search

If the range becomes negative, report not present (return some distinguished
value)

Binary Search lterative

def binarySearchIter(xs,val):
lo =0
hi = Ten(xs) - 1

while 1o <= hi:
mid = (To + hi) // 2
guess = xs[mid]

if val == guess:
return mid
elif val < guess:
hi = mid - 1
else:
o = mid + 1

return None

Binary Search Recursive

def binarySearchRec(xs,val,lo=0,hi=-1):
if (hi == -1):
hi = Ten(xs) - 1

mid = (To + hi) // 2

if hi < lo:
return None
else:
guess = xs[mid]
if val == guess:
return mid
elif val < guess:
return binarySearchRec(xs,val,lo,mid-1)
else:
return binarySearchRec(xs,val,mid+1,hi)

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by Tine 15

xs = [67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,10) by 7ine 13

A w N =

0 N O

11
12
13
14

0 N O VA W=

N — O W

Phil Molyneux Exam 2016)

xs = [67,69,75,
binarySearchRec(xs,67,8,8) by 7ine 13
xs = [67,

Return value: 8 by Tine 11

Binary Search Iterative — Miller & Ranum

def binarySearchIterMR(alist, item):
first = 0
last = Ten(alist)-1
found = False

while first<=last and not found:
midpoint = (first + last)//2

if alist[midpoint] == item:
found = True
else:

if item < alist[midpoint]:
last = midpoint-1

else:
first = midpoint+l

return found

Miller and Ranum (2011, page 192)

Binary Search Recursive — Miller & Ranum

def binarySearchRecMR(alist, item):
if len(alist) ==
return False
else:
midpoint = len(alist)//2
if alist[midpoint]==item:
return True
else:
if ditem<alist[midpoint]:
return binarySearchRecMR(alist[:midpoint],item)
else:
return binarySearchRecMR(alist[midpoint+1:],item)

Miller and Ranum (2011, page 193)

3.7 M269 2016) Exam Q 3

e This question is about bubble sort and selection sort, where we are sorting numbers
(6 marks)

in ascending order.

(a) Selection sort improves on bubble sort by making only one exchange for every pass

through the list.

In selection sort, given the starting list below, indicate which two elements are to be
swapped at each stage, and complete below as necessary.

You have space to indicate up to 5 swaps and the resulting list.

If selection sort requires fewer than 5 swaps for this list, leave any remaining step(s)

blank.
(116[2[3]5]

M269 Revision 2018

26 May 2018

1. Swap elements and
NN

2. Swap elements and
LT

3. Swap elements and
LT

4. Swap elements and
NN

5. Swap elements and

LTI

to give

to give

to give

to give

to give

(b) Although both bubble sort and selection sort make the same number of comparisons
for a list of the same length, they do not make the same number of swaps.

How many swaps are made in a worst case, with a list of length 5, for each of bubble

sort and selection sort?

Explain how you arrived at the number of swaps for each. There is no need to refer

to Big-O in your answer.

3.8 M269 2016J) Exam Soln 3

Go to Soln 3

e Selection sort: sorting ascending and selecting largest first

def selSortAscByMax(xs):

for fil11STot in range(len(xs) - 1, 0, -1):

maxIndex = 0
for index in range(1l, fillSlot + 1):
if xs[index] > xs[maxIndex]:
maxIndex = index

temp = xs[fil1STot]
xs[fi11ST1ot] = xs[maxIndex]
xs[maxIndex] = temp

e Here is an informal version

for fi11STot = len(xs) - 1 down to 1 do
find the maximum of
xs[0] .. xs[fil1STot]
and swap with xs[fi11STot]

[1]6]2]3]5]

1. Swap elements 6 and 5 to give
(1[5]2[3[6]

2. Swap elements 5 and 3 to give
(1[3]2]5]6]

Phil Molyneux Exam 2016) 9

3. Swap elements 3 and 2 to give
[1[2]3[5]6]

4. Swap elements 2 and 2 to give
(1[2]3]5]6]

e Note the last swap would not be there if there was a test for fi11STot == maxIndex

e Selection sort: sorting ascending and selecting smallest first

def selectionSort(xs):
for fil11Slot 1in range(0,len(xs)-1):
minIx = fi11STot
for ix in range(fil11STot + 1, len(xs)):
if xs[ix] < xs[minIx]:
minIx = ix

if fillSlot != minIx: # swap if different
xs[fi11STot],xs[minIx] = xs[minIx],xs[fil11S1ot]

e Here is an informal version

for fi11Slot = 0 to (len(xs) - 2) do
find the minimum of
xs[fi11STot]..xs[len(xs) - 1]
and swap with xs[fil1STot]

[1]6]2]3]5]

1. Swap elements 1 and 1 to give

[1]6]2]3]5]

2. Swap elements 6 and 2 to give
(1[2]6[3[5]

3. Swap elements 6 and 3 to give

[1]2]3]6]5]

4. Swap elements 6 and 5 to give
(1]2[3]5]6]

e Note the swap at stage 1. would not be there if there was a test for fill1STot ==
maxIx

(b) Bubble sort does 10 swaps in a worst case since it does n- 1 swaps iterating over n
items sototal=4+3+2+1 =10 swaps

e Selection sort does 4 swaps in a worst case since it does (at most) one swap per pass
and n-1 passes

3.9 M269 2016) Exam Q 4

e A Python program contains a loop with the following guard (4 marks)

(while a <= 3 or b > 8: J

Make the following substitutions:

10 M269 Revision 2018 26 May 2018

P represents a > 3
Q represents b <= 8

Complete the following table

PIQ|-P|-Q|-Pv-Q|PvQ | (PAQ)

=
=
F
F

e N |

Based on the table, which of the following expressions is equivalent to the above
guard? (Tick one box.)

A. not a < 3
B. not b <= 8
C. not (a <= 3 and b > 8)
D.a > 3 and b <= 8
E. not (a > 3 and b <= 8)
Go to Soln 4
3.10 M269 2016) Exam Soln 4
PIQ|-P| Q| -PVv-Q|PVQ | ~(PAQ
T|T|F|F F T F
T|F| F T T F T
FIT| T F T F T
FIF| T | T T F T
e The equivalent expression is E.
GotoQ4

4 Units 3,4&5

4.1 Unit 3 Sorting

e Unit 3 Sorting

Elementary methods: Bubble sort, Selection sort, Insertion sort

Recursion — base case(s) and recursive case(s) on smaller data

Quicksort, Merge sort

Sorting with data structures: Tree sort, Heap sort

Phil Molyneux Exam 2016) 11

e See sorting notes for abstract sorting algorithm

Abstract Sorting Algorithm

[unsorted list xs]

}

if length xs > 1) then
(xs1,xs2) = split xs

o .

Xxs1 Xs2

[ys] = sort xs]] [ysZ = sort xsZ]

N /

[ys = join (ys1 ,ysZ)]

!

[sorted list ys]

Sorting Algorithms
Using the Abstract sorting algorithm, describe the split and join for:
e Insertion sort
e Selection sort
e Merge sort
e Quicksort

e Bubble sort (the odd one out)

4.2 Unit 4 Searching

e Unit 4 Searching

e String searching: Quick search Sunday algorithm, Knuth-Morris-Pratt algorithm
e Hashing and hash tables

e Search trees: Binary Search Trees

e Search trees: Height balanced trees: AVL trees

4.3 M269 2016) Exam Q 5

e Consider the diagrams in A-H, where nodes are represented by black dots and edges
by arrows. The numbers are the keys for the corresponding nodes.

12 M269 Revision 2018 26 May 2018

*
[J==)
[=7]

Ne
e
we
i -8
o
-~

e On the following lines, write the letter(s) of the diagram(s) that satisfies (satisfy) the
condition, or write “None” if no diagram satisfies the condition. (4 marks)

(@) Which of A, B, C and D, if any, are not a tree?
(b) Which of E, F, G and H, if any, are binary trees?
(c) Which of C, D, G and H, if any, are complete binary trees?
(d) Which of C, D, G and H, if any, are (min or max) heap?
Go to Soln 5

4.4 M269 2016) Exam Soln 5

(a) Bis not a tree since node 5 has two parents — A is a node with two empty sub-trees
(b) F, G, H are binary trees — E is not a binary tree since node 6 has three sub-trees

(c) C, G, H are complete binary trees — D is not a complete binary tree since the last
level is not filled from left to right

(d) Cis a max heap, H is a min heap — G is not a heap since node 8 is greater than
node 7

GotoQ5

4.5 M269 2016) Exam Q6

e Consider the following function, which takes a list as an argument.

1 def someFunction(aList):
2 n = lTen(aList)

3 counterOne = 0

4 counterTwo = 0

5 for i 1in range(n):

Phil Molyneux Exam 2016) 13

0 N O

11
12

4.6

4.7

(@)

counterOne = counterOne + 1
for j 1in range(n):
counterTwo = counterTwo + 1
for k in range(n):
counterOne = counterOne + 1
counterTwo = counterTwo + 1
return counterOne + counterTwo

From the options below, select the two that represent the correct combination of
T(n) and Big-O complexity for this function.

You may assume that a step (i.e. the basic unit of computation) is the assignment
statement.

A. T(n)=4n+3 i. o(1)
B. TN)=2n3+n2+n+3 . O(n)
C. T(n) = 2n +n+3 iii. O(n2)
D. T(n) = n3+n%+n+3 iv. O(n)
E. T(n) = 3Iogn+n3 +n2+n+3 v. O(ogn)

Explain how you arrived at T(n) and the associated Big-O

Go to Soln 6

M269 2016) Exam Soln 6

Options B and IV

There are three levels of nested loops with each loop executing n times.
The innermost loop has 2 assignments giving 2n3 assignments

The middle loop has one assignment giving a further n? assignments
The outer loop has one assignment giving n assignments

A further 3 assignments precedes all the loops
2

Total 2n3 +n2+n+3

GotoQ6
M269 2016) Exam Q 7
Which two of the following statements are true? (Tick two boxes.) (4 marks)

Hash tables are an implementation of Map ADTs because they are searchable struc-
tures that contain key-value pairs, which allow searching for the key in order to find
a value.

Chaining, where a slot in the hash table may be associated with a collection of items,
is a standard way of implementing hash functions.

Clustering occurs when the number of unoccupied slots in a hash table exceeds the
number of occupied slots.

. The efficiency of inserting new items into a hash table decreases as the load factor

becomes greater.

14 M269 Revision 2018 26 May 2018

(b) Calculate the load factor for the hash table below. Show your working.

AlQ S|F u N
o1 2 3 4 5 6 7 8 9

Go to Soln 7

4.8 M269 2016) Exam Soln 7

(@) A and D are true
e B is not true — chaining is a way of resolving collisions

e C is not true — see What is primary and secondary clustering in hash?, Primary
clustering

(b) The load factor is 0.6 = %
GotoQ7

49 M269 2016) Exam Q 8

(a) Lay out the keys [51, 22, 73, 65, 81, 92] as a Binary Search Tree, adding the nodes
in the order in which they appear in the list, i.e. starting with 51 as the root node.

(b) Label each node with its balance factor. Is the tree balanced? Explain. (5 marks)

Go to Soln 8

4.10 M269 2016) Exam Soln 8

(@)

(b) The tree is not balanced since node 51 has balance factor -2 which is outside -1,0,1

e Note the height definition here is from my notes not M269
GotoQ8

https://stackoverflow.com/questions/27742285/what-is-primary-and-secondary-clustering-in-hash
https://en.wikipedia.org/wiki/Primary_clustering
https://en.wikipedia.org/wiki/Primary_clustering

Phil Molyneux Exam 2016) 15

4.11 Unit 5 Optimisation

e Unit 5 Optimisation
e Graphs searching: DFS, BFS

Distance: Dijkstra’s algorithm

Greedy algorithms: Minimum spanning trees, Prim’s algorithm

Dynamic programming: Knapsack problem, Edit distance

See Graphs Tutorial Notes

4.12 M269 2016) Exam Q9

(@) Consider the food web in a certain ecosystem. It can be modelled by a graph in which
each node represents an animal or plant species, and where an edge indicates that
one species eats another species.

For a typical food web, e.g. all animals and plants living in and around a lake, the
graph is (choose from UNDIRECTED/DIRECTED) because

insert answer here
(b) Is an adjacency matrix a good data structure for a sparse graph? Explain. (4 marks)

Go to Soln 9

4.13 M269 2016J) Exam Soln 9

(a) For a typical food web, the graph is directed because the relation is not symmetric:
if A eats B, B doesnaAZt necessarily eat A.

(b) An adjacency matrix is not a good data structure because it would waste memory:
only few of the n2 matrix cells would be non-zero

GotoQ9

4.14 M269 2016) Exam Q 10

e The graph showing the dependencies of tasks in a project has been lost. The project
manager remembers that there were 5 tasks (let’s call them A, B, C, D and E) and that
ABCDE and ABEDC were not possible schedules (i.e. topological sorts of the graph),
but ABDEC and ADBEC were.

e Draw a directed acyclic graph that is compatible with the given information.
e Each node has to be connected to or from at least one other node. (4 marks)

GotoSoln10

http://www.pmolyneux.co.uk/OU/M269/M269TutorialNotes/M269TutorialGraphs/M269TutorialGraphs2017J.beamer.pdf

16 M269 Revision 2018 26 May 2018

4.15 M269 2016J) Exam Soln 10

e ABDEC, ADBEC are topological sorts
e ABCDE, ABEDC are not topological sorts

e The graph must be shown with directed edges (arrows)
GotoQ 10

5 Units6 & 7

5.1 Propositional Logic

M269 Specimen Exam Q11 Topics
e Unit 6

e Sets

Propositional Logic

Truth tables

Valid arguments

Infinite sets

5.2 M269 2016) Exam Q11

(@) In propositional logic, a tautology is a well-formed formula (WFF) that is TRUE in
every possible interpretation.

e It follows that if a WFF is a tautology, it is satisfiable.
e Explain what “satisfiable” means, and why a tautology must be satisfiable.
(b) The following WFF is satisfiable. Complete the truth table.
PvQ-Q
PIQ|(PVvQ|(PVQ~-Q

=
=
F
F

M| | T -

Phil Molyneux Exam 2016) 17

e State whether the WFF is a tautology or not, and explain why. (4 marks)

Goto Soln 11

5.3 M269 2016) Exam Soln 11

(@) A WFF is satisfiable if there is at least one interpretation under which the formula is
true — hence a tautology is satisfiable

(b) The WFF is not a tautology because the formula is not true under all interpretations
— it is false when P is true and q is false

PIQ(PvQ | (PVQ-Q
T|T| T T
TIF| T F
FIT] T T
FIF| F T

GotoQ 11

5.4 Predicate Logic

e Unit 6
e Predicate Logic
e Translation to/from English

e Interpretations

5.5 M269 2016) Exam Q 12

e A particular interpretation of predicate logic allows facts to be expressed about peo-
ple and their pets. Some of the assignments in the interpretation are given below
(where the symbol 7 is used to show assignment).

e The domain of individuals is D = {Clara, Nicky, Mark, Rex, Fifo, Henny, Admiral}.

e The constants clara, nicky, mark, rex, fifo, henny and admiral are assigned to the
individuals Clara, Nicky, Mark, Rex, Fifo, Henny and Admiral respectively.

e Four unary predicate symbols are assigned to individuals as follows:

I(person) = {Clara,Nicky,Mark}

I(pet) = {Rex,Fifo,Henny,Admiral}
1(dog) = {Rex,Fifo}
I(chicken) = {Henny}

e Two further predicate symbols are assigned binary relations as follows:

- (has-pet) = {(Nicky,Rex),(Nicky,Fifo),(Mark,Henny)}

)

18 M269 Revision 2018 26 May 2018
- I(feeds) = {(Clara,Rex),(Nicky,Fifo)}

e On the next page, you will be asked whether a given sentence is true or false. In
your explanation, you need to consider any relevant values for the variables, and
show, using the domain and interpretation above, whether they make the quantified
expression TRUE or FALSE.

¢ In your answer, when you explain why a sentence is true or false, make sure
that you use formal notation. So instead of stating that “Henny is a chicken in the
interpretation”, write Henny € 1(chicken). Similarly, instead of “Henny is not a dog’
you would need to write Henny ¢ 7(dog) (6 marks)

(@) Consider the following sentence in English: “All dogs are Nicky’s pets”. Which one
well-formed formula is a translation of this sentence into predicate logic?
A. VX.(dog(X) A has-pet(nicky, X))
B. VX.(dog(X) — has-pet(nicky, X))
C. 3IX.(dog(X) A has-pet(nicky, X))
(b) Give an appropriate translation of the well-formed formula VX.3Y.(dog(X) — feeds(Y, X))
into English

e This well-formed formula is (choose from TRUE/FALSE), under the interpretation
on the previous page, because:

Goto Soln 12
5.6 M269 2016J) Exam Soln 12

(@)

B. All dogs are Nicky’s pets translates to:

V X.(dog(X) — has-pet(nicky, X))

A. VX.(dog(X) A has-pet(nicky, X)) means

All objects are dogs and are Nicky’s pets

C. IX.(dog(X) A has-pet(nicky, X)) means

There is some object which is a dog and is Nicky’s pet
VX.3Y.(dog(X) — feeds(Y, X)) means

All dogs are fed by someone

But not Somebody feeds all dogs which would be
AY.VX.(dog(X) — feeds(Y, X))

This is true because

Phil Molyneux Exam 2016) 19

(i) If X is not a dog then the implication is true

(i) We have 7(dog) = {Rex, Fifo} and we have (Clara,Rex) € 7(feeds) and (Nicky,Fifo)

€ 1(feeds)
GotoQ 12
5.7 SQL Queries
M269 Specimen Exam Q13 Topics
e Unit 6
e SQL queries
5.8 M269 2016) Exam Q 13
e A database contains the following tables, lawnmower and brand. (6 marks)
lawnmower brand
make model type manufacturer | location
Mowlt Bella push Mamouth France
Mowlt Speedy electric Mowlt USA
Mamouth | Kodiak petrol Blades China
Mamouth | Pachyderm | petrol Scythes China
Blades Meadow petrol
Blades Nibble robot
Blades Yard electric

(@) For the following SQL query, give the table returned by the query.

SELECT make, model
FROM Tawnmower
WHERE type = ’electric’;

e Write the question that the above query is answering.

(b) Write an SQL query that answers the question Which lawnmowers are from manu-
facturers located in China? The answer should be the following table:

manufacturer | model
Blades Meadow
Blades Nibble
Blades Yard

20 M269 Revision 2018 26 May 2018

Go to Soln 13

5.9 M269 2016) Exam Soln 13

make | model
(a) | Mowlt | Speedy
Blades | Yard

e Which models of which makes are electric lawnmowers ?

(b)

SELECT manufacturer, model

FROM Tawnmower CROSS JOIN brand
WHERE make = manufacturer

AND location = ’'China’;

e Also allow

E FROM Tlawnmower, brand J

GotoQ 13

5.10 Logic

M269 Exam — Q14 topics
e Unit7
e Proofs

e Natural deduction

Logicians, Logics, Notations
e A plethora of logics, proof systems, and different notations can be puzzling.

e Martin Davis, Logician When | was a student, even the topologists regarded mathe-
matical logicians as living in outer space. Today the connections between logic and

computers are a matter of engineering practice at every level of computer organiza-
tion

e Various logics, proof systems , were developed well before programming languages
and with different motivations,

References: Davis (1995, page 289)

Logic and Programming Languages

e Turing machines, Von Neumann architecture and procedural languages Fortran, C,
Java, Perl, Python, JavaScript

e Resolution theorem proving and logic programming — Prolog

http://en.wikipedia.org/wiki/Martin_Davis
http://en.wikipedia.org/wiki/Von_Neumann_architecture

Phil Molyneux Exam 2016) 21

e Logic and database query languages — SQL (Structured Query Language) and QBE
(Query-By-Example) are syntactic sugar for first order logic

e Lambda calculus and functional programming with Miranda, Haskell, ML, Scala

Reference: Halpern et al. (2001)

Validity and Justification
e There are two ways to model what counts as a logically good argument:
- the semantic view

- the syntactic view

The notion of a valid argument in propositional logic is rooted in the semantic view.

It is based on the semantic idea of interpretations: assignments of truth values to
the propositional variables in the sentences under discussion.

A valid argument is defined as one that preserves truth from the premises to the
conclusions

The syntactic view focuses on the syntactic form of arguments.

Arguments which are correct according to this view are called justified arguments.

Proof Systems, Soundness, Completeness

e Semantic validity and syntactic justification are different ways of modelling the same
intuitive property: whether an argument is logically good.

A proof system is sound if any statement we can prove (justify) is also valid (true)

A proof system is adequate if any valid (true) statement has a proof (justification)

A proof system that is sound and adequate is said to be complete

Propositional and predicate logic are complete — arguments that are valid are also
justifiable and vice versa

e Unit 7 section 2.4 describes another logic where there are valid arguments that are
not justifiable (provable)

Reference: Chiswell and Hodges (2007, page 86)

Valid arguments
P

Unit 6 defines valid arguments with the notation

Pn

C
The argument is valid if and only if the value of C is True in each interpretation for
which the value of each premise Pjis Truefor 1 <i <n

In some texts you see the notation {Py,...,Pn} = C

The expression denotes a semantic sequent or semantic entailment

http://en.wikipedia.org/wiki/Lambda_calculus

22

M269 Revision 2018 26 May 2018

The |= symbol is called the double turnstile and is often read as entails or models

In LaTeX = and |= are produced from \vDash and \models — see also the turnstile
package

In Unicode |= is called TRUE and is U+22A8, HTML ⊨
The argument {} = C is valid if and only if C is True in all interpretations
That is, if and only if C is a tautology
Beware different notations that mean the same thing
- Alternate symbol for empty set: @ = C
- Null symbol for empty set: |= C

- Original M269 notation with null axiom above the line:

C

Justified Arguments and Natural Deduction

Definition 7.1 An argument {P1,P5,...,Pn} ~ C s a justified argument if and only if
either the argument is an instance of an axiom or it can be derived by means of an
inference rule from one or more other justified arguments.

Axioms
I' U{A}+~ A (axiom schema)

This can be read as: any formula A can be derived from the assumption (premise) of
{A} itself

The + symbol is called the turnstile and is often read as proves, denoting syntactic
entailment

In LaTeX + is produced from \vdash

In Unicode + is called RIGHT TACK and is U+22A2, HTML ⊢

See (Thompson, 1991, Chp 1)

Section 2.3 of Unit 7 (not the Unit 6, 7 Reader) gives the inference rules for —, A,
and v — only dealing with positive propositional logic so not making use of negation
— see List of logic systems

Usually (Classical logic) have a functionally complete set of logical connectives —
that is, every binary Boolean function can be expressed in terms the functions in the
set

Inference Rules — Notation

Inference rule notation:

Argumenty ... Argumenty
Argument

(label)

http://en.wikipedia.org/wiki/List_of_logic_systems
http://en.wikipedia.org/wiki/Functional_completeness

Phil Molyneux Exam 2016) 23

Inference Rules — Conjunction

o I'-A T+HB
I'-AAB

JI-AAB
A

.FFAAB
I'-B

(A-introduction)

(A-elimination left)

(A-elimination right)

Inference Rules — Implication
. ru{A}+- B
I'-A—-B

e The above should be read as: If there is a proof (justification, inference) for B un-

der the set of premises, I', augmented with A, then we have a proof (justification.
inference) of A — B, under the unaugmented set of premises, I.

(—-introduction)

The unaugmented set of premises, I' may have contained A already so we cannot

assume
Tu{A})-{AlisequaltoTl

o I'-A F»—A—»B(
I'—B

—-elimination)

Inference Rules — Disjunction

o I'-A
I'-AVB

o I'-B
I'-AVB

e Disjunction elimination

(v-introduction left)

(v-introduction right)

'-AvB TU{A}-C Tu{B}+~C
I'-cC

(v-elimination)

e The above should be read: if a set of premises I justifies the conclusion Av B and T
augmented with each of A or B separately justifies C, then I justifies C

Proofs in Tree Form
e The syntax of proofs is recursive:

e A proof is either an axiom, or the result of applying a rule of inference to one, two
or three proofs.

e We can therefore represent a proof by a tree diagram in which each node have one,
two or three children

e For example, the proof of {P A (P — Q)} - Q in Question 4 (in the Logic tutorial notes)
can be represented by the following diagram:

PAP—-Q}-PAP—-Q PAP-Q}-PA(P-Q

Pr®P-Qtrp " ppa-qirP-q_ """

{PAP-Q}+Q

24 M269 Revision 2018 26 May 2018

Self-Assessment activity 7.4 — tree layout

o letI'={P-R,Q—-R,PVQ}
. '-PvQ Tu{P}+R Tui{Q}+R

(v-elimination)

I'-R
. Tru{Pl-P TU{P}-P—-R (. -elimination)
Fu{P}~-R
o, L uiQirQ DM@FQaR(...
—-elimination)
ru{Qi~R
e Complete tree layout
Tu{P} TuU{P} ru{Q rui{q}
° P FP-R o FQ FQ“R(A_E)
I'-PvQ TFu{P}+R FU{Q}FR(

V-E)
'R

Self-assessment activity 7.4 — Linear Layout

1. P-RQ—-RPVQ}I-PVQ [Axiom]

2. P-R,Q—-R,PVQlU{P}-P [Axiom]

3. P-R,Q—-RPVQU{P}-P—-R [Axiom]

4. {P-R,Q-R,PvQluU{Q}+Q [Axiom]

5. P-R,Q—-RPVvQlU{Q}+-Q—~R [Axiom]

6. {P-RQ—-R,PVQIU{P}-R [2, 3, —-E]
7. P-R,Q-R,PVQlU{Q}-R [4, 5, —-E]
8. {P~R,Q—-RPVQ}IFR [1,6, 7, V-E]

5.11 M269 2016) Exam Q 14

e Which two of the following statements are true? (Tick two boxes.) (4 marks)
A. If a decision problem is in NP, then it is computable.

B. The complexity of an algorithm that solves a problem places a lower bound on the
complexity of the problem itself.

C. If the best algorithm we currently have for solving a decision problem has complexity
O(2M), then we know that problem can’t be in P.

D. If an NP-hard problem A can be Karp-reduced to a problem B, then problem B is
NP-hard too.

E. Every NP-hard problem is also NP-complete.
Go to Soln 14

5.12 M269 2016J) Exam Soln 14

A. v If a decision problem is in NP, then it is computable.

B. The complexity of an algorithm that solves a problem places a lower bound on the
complexity of the problem itself.

Phil Molyneux Exam 2016) 25

C. If the best algorithm we currently have for solving a decision problem has complexity
O(2M), then we know that problem can’t be in P.

D. ¢ If an NP-hard problem A can be Karp-reduced to a problem B, then problem B is
NP-hard too.

E. Every NP-hard problem is also NP-complete.
GotoQ 14

5.13 Computability

M269 Specimen Exam — Q15 Topics
e Unit7

e Computability and ideas of computation

Complexity
P and NP

NP-complete

Ideas of Computation
e The idea of an algorithm and what is effectively computable

e Church-Turing thesis Every function that would naturally be regarded as com-
putable can be computed by a deterministic Turing Machine. (Unit 7 Section 4)

e See Phil Wadler on computability theory performed as part of the Bright Club at The
Strand in Edinburgh, Tuesday 28 April 2015

Reducing one problem to another

e To reduce problem P; to Py, invent a construction that converts instances of Py to
P> that have the same answer. That is:

- any string in the language Py is converted to some string in the language P;

- any string over the alphabet of P; that is not in the language of Py is converted
to a string that is not in the language P>

e With this construction we can solve P

- Given an instance of Py, that is, given a string w that may be in the language
P1, apply the construction algorithm to produce a string x

- Test whether x is in P, and give the same answer for w in Py
(Hopcroft et al., 2007, page 322)
e The direction of reduction is important

e If we can reduce P7 to P, then (in some sense) P> is at least as hard as Py (since a
solution to P> will give us a solution to Py)

http://wadler.blogspot.co.uk/2015/05/bright-club-computability.html

26 M269 Revision 2018 26 May 2018

So, if P, is decidable then Py is decidable

To show a problem is undecidable we have to reduce from an known undecidable
problem to it

V x(dpp, (x) = dpp, (reduce(x)))

Since, if Py is undecidable then P is undecidable

Computability — Models of Computation

e In automata theory, a problem is the question of deciding whether a given string is
a member of some particular language

e If 3 is an alphabet, and L is a language over X, that is L € =*, where X* is the set
of all strings over the alphabet X then we have a more formal definition of decision
problem

e Given a stringw € *, decide whetherw € L

e Example: Testing for a prime number — can be expressed as the language Lp con-
sisting of all binary strings whose value as a binary number is a prime number (only
divisible by 1 or itself)

(Hopcroft et al., 2007, section 1.5.4)

Computability — Church-Turing Thesis

e Church-Turing thesis Every function that would naturally be regarded as com-
putable can be computed by a deterministic Turing Machine.

e physical Church-Turing thesis Any finite physical system can be simulated (to any
degree of approximation) by a Universal Turing Machine.

e strong Church-Turing thesis Any finite physical system can be simulated (to any
degree of approximation) with polynomial slowdown by a Universal Turing Machine.

e Shor’s algorithm (1994) — quantum algorithm for factoring integers — an NP prob-
lem that is not known to be P — also not known to be NP-complete and we have no
proof that it is not in P

Reference: Section 4 of Unit 6 & 7 Reader

Computability — Turing Machine
e Finite control which can be in any of a finite number of states

e Tape divided into cells, each of which can hold one of a finite number of symbols

Initially, the input, which is a finite-length string of symbols in the input alphabet, is
placed on the tape

All other tape cells (extending infinitely left and right) hold a special symbol called
blank

A tape head which initially is over the leftmost input symbol

A move of the Turing Machine depends on the state and the tape symbol scanned

http://en.wikipedia.org/wiki/Shor's_algorithm

Phil Molyneux Exam 2016) 27

e A move can change state, write a symbol in the current cell, move left, right or stay

References: Hopcroft et al. (2007, page 326), Unit 6 & 7 Reader (section 5.3)

Turing Machine Diagram

blblalal|]a]a -+ Input/Output Tape

Reading and Writing Head

(moves in both directions)

a / Un

a1 do

Finite Control

Source: Sebastian Sardina http://www.texample.net/tikz/examples/turing-machine-

2/

Date: 18 February 2012 (seen Sunday, 24 August 2014)

Further Source: Partly based on Ludger Humbert’s pics of Universal Turing Machine at
https://haspe.homeip.net/projekte/ddi/browser/tex/pgf2/turingmaschine-schema.tex
(not found) — http://www.texample.net/tikz/examples/turing-machine/

Turing Machine notation
e Q finite set of states of the finite control
e > finite set of input symbols (M269 S)

e I' complete set of tape symbols >. C T

O Transition function (M269 instructions, |)
0::QxTI'-QxTIx{L,R,S}
0(g,X) = (p,Y,D)

6(qg, X) takes a state, g and a tape symbol, X and returns (p, Y, D) where p is a state,
Y is a tape symbol to overwrite the current cell, D is a direction, Left, Right or Stay

qo Start state qg € Q

B blank symbol B €T and B ¢ X

F set of final or accepting states F < Q

Computability — Decidability

e Decidable — there is a TM that will halt with yes/no for a decision problem — that
is, given a string w over the alphabet of P the TM with halt and return yes.no the

http://www.texample.net/tikz/examples/turing-machine-2/
http://www.texample.net/tikz/examples/turing-machine-2/
https://haspe.homeip.net/projekte/ddi/browser/tex/pgf2/turingmaschine-schema.tex
http://www.texample.net/tikz/examples/turing-machine/

28 M269 Revision 2018 26 May 2018

string is in the language P (same as recursive in Recursion theory — old use of the
word)

e Semi-decidable — there is a TM will halt with yes if some string is in P but may loop
forever on some inputs (same as recursively enumerable) — Halting Problem

e Highly-undecidable — no outcome for any input — Totality, Equivalence Problems

Undecidable Problems

e Halting problem — the problem of deciding, given a program and an input, whether
the program will eventually halt with that input, or will run forever — term first used
by Martin Davis 1952

e Entscheidungsproblem — the problem of deciding whether a given statement is
provable from the axioms using the rules of logic — shown to be undecidable by
Turing (1936) by reduction from the Halting problem to it

e Type inference and type checking in the second-order lambda calculus (important
for functional programmers, Haskell, GHC implementation)

e Undecidable problem — see link to list

(Turing, 1936, 1937)

Why undecidable problems must exist
e A problem is really membership of a string in some language

e The number of different languages over any alphabet of more than one symbol is
uncountable

e Programs are finite strings over a finite alphabet (ASCII or Unicode) and hence count-
able.

e There must be an infinity (big) of problems more than programs.
e Computational problem — defined by a function

e Computational problem is computable if there is a Turing machine that will calcu-
late the function.

Reference: Hopcroft et al. (2007, page 318)

Computability and Terminology

e The idea of an algorithm dates back 3000 years to Euclid, Babylonians. ..

In the 1930s the idea was made more formal: which functions are computable?

A function a set of pairs f ={(x, f(x)) : x € X A f(x) € Y} with the function property

Function property: (a,b) e fA(a,c) ef=>b==c

Function property: Same input implies same output

Note that maths notation is deeply inconsistent here — see Function and History of
the function concept

http://en.wikipedia.org/wiki/Recursion_theory
http://en.wikipedia.org/wiki/Halting_problem
http://en.wikipedia.org/wiki/Entscheidungsproblem
http://en.wikipedia.org/wiki/System_F
http://en.wikipedia.org/wiki/Undecidable_problem
http://en.wikipedia.org/wiki/Computable_function
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/History_of_the_function_concept
http://en.wikipedia.org/wiki/History_of_the_function_concept

Phil Molyneux Exam 2016) 29

What do we mean by computing a function — an algorithm ?

In the 1930s three definitions:

A-Calculus, simple semantics for computation — Alonzo Church

General recursive functions — Kurt Godel

Universal (Turing) machine — Alan Turing

Terminology:

- Recursive, recursively enumerable — Church, Kleene

Computable, computably enumerable — Godel, Turing

Decidable, semi-decidable, highly undecidable

In the 1930s, computers were human

Unfortunate choice of terminology
e Turing and Church showed that the above three were equivalent

e Church-Turing thesis — function is intuitively computable if and only if Turing ma-
chine computable

Sources on Computability Terminology

e Soare (1996) on the history of the terms computable and recursive meaning calcula-
ble

e See also Soare (2013, sections 9.9-9.15) in Copeland et al. (2013)

5.13.1 Non-Computability — Halting Problem

Halting Problem — Sketch Proof

e Halting problem — is there a program that can determine if any arbitrary program
will halt or continue forever ?

e Assume we have such a program (Turing Machine) h(f,x) that takes a program f
and input x and determines if it halts or not

h(f,x)
= if f(x) runs forever
return True
else
return False

e We shall prove this cannot exist by contradiction
e Now invent two further programs:
e q(f) that takes a program f and runs h with the input to f being a copy of f

e r(f) that runs q(f) and halts if g(f) returns True, otherwise it loops

q(f)
= h(f,f)

r(f)
= if q(f)

http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Alonzo_Church
http://en.wikipedia.org/wiki/Μ-recursive_function
http://en.wikipedia.org/wiki/Kurt_Gödel
http://en.wikipedia.org/wiki/Universal_Turing_machine
http://en.wikipedia.org/wiki/Alan_Turing
http://en.wikipedia.org/wiki/Stephen_Cole_Kleene
http://en.wikipedia.org/wiki/Church–Turing_thesis
https://simple.wikipedia.org/wiki/Halting_problem

30 M269 Revision 2018 26 May 2018

return
else
while True: continue

e What happens if we run r(r) ?

e If it loops, q(r) returns True and it does not loop — contradiction.

5.13.2 Reductions & Non-Computability

,,,

e A reduction of problem Py to problem P>
- transforms inputs to Py into inputs to P;
- runs algorithm A2 (which solves P,) and

- interprets the outputs from A2 as answers to P

e More formally: A problem Py is reducible to a problem P, if there is a function f that
takes any input x to P71 and transforms it to an input f(x) of P,

such that the solution of P, on f(x) is the solution of Py on x

Source: Bridge Theory of Computation, 2007

(M, M)

e Given an algorithm (A2) for matrix multiplication (P)
- Input: pair of matrices, (M7, M>)
- Output: matrix result of multiplying M7 and M,
e P7 is the problem of squaring a matrix
- Input: matrix M
- Output: matrix M2
e Algorithm A1 has
f(M) = (M, M)

uses A2 to calculate M x M = M?

http://www.cs.ucc.ie/~dgb/courses/toc.html

Phil Molyneux Exam 2016) 31

Non-Computable Problems

,,

A2 - » output

5
©
c
—
—
\ 4

If P> is computable (A2 exists) then Py is computable (f being simple or polynomial)

Equivalently If Py is non-computable then P, is non-computable

Exercise: showB - A= -A - —B

Proof by Contrapositive
e B—-A=-BVA by truth table or equivalences
= _|(_'A) v —B commutativity and negation laws

= -A - —B equivalences

Common error: switching the order round

Totality Problem

,,

e Totality Problem
- Input: program Q
- Output: YES if Q terminates for all inputs else NO
e Assume we have algorithm TP to solve the Totality Problem

e Now reduce the Halting Problem to the Totality Problem

,,

e Define f to transform inputs to HP to TP pseudo-Python

def f(P,x) :
def Q(y):
ignore y

P(x)

https://en.wikipedia.org/wiki/Proof_by_contrapositive

32 M269 Revision 2018 26 May 2018

L return Q

e Run TPon Q
- If TP returns YES then P halts on x
- If TP returns NO then P does not halt on x

e We have solved the Halting Problem — contradiction

Negative Value Problem

,,

(P,Xx) —————— > f > NVP ———» YES/NO

e Negative Value Problem
- Input: program Q which has no input and variable v used in Q
- OQutput: YES if v ever gets assigned a negative value else NO

e Assume we have algorithm NVP to solve the Negative Value Problem

e Now reduce the Halting Problem to the Negative Value Problem

,,

(P,Xx) —————— > f > NVP ————» YES/NO

e Define f to transform inputs to HP to NVP pseudo-Python

def f(P,x) :
def Q(y):
ignore y
PO
v =-1
return (Q,var(v))

e Run NVP on (Q, var(v)) var(v) gets the variable name
- If NVP returns YES then P halts on x
- If NVP returns NO then P does not halt on x

e We have solved the Halting Problem — contradiction

Phil Molyneux Exam 2016)

33

Squaring Function Problem

,,,

e Squaring Function Problem

- Input: program Q which takes an integer, y

- Output: YES if Q always returns the square of y else NO

e Assume we have algorithm SFP to solve the Squaring Function Problem

e Now reduce the Halting Problem to the Squaring Function Problem

,,,

(P,X) ————» f > SFP

e Define f to transform inputs to HP to SFP pseudo-Python

def f(P,x) :
def Q(y):
P(x)
return y * y
return Q

e Run SFPon Q
- If SFP returns YES then P halts on x
- If SFP returns NO then P does not halt on x

e We have solved the Halting Problem — contradiction

Equivalence Problem

,,,

e Equivalence Problem

- Input: two programs P1 and P2

- Output: YES if P1 and P2 solve the ame problem (same output for same input)

else NO

34 M269 Revision 2018 26 May 2018

e Assume we have algorithm EP to solve the Equivalence Problem

e Now reduce the Totality Problem to the Equivalence Problem

,,

e Define f to transform inputs to TP to EP pseudo-Python

def f(P) :
def P1(x):
P(x)
return "Same_string"
def P2(x)
return "Same _string"
return (P1,P2)

e Run EP on (P1,P2)
- If EP returns YES then P halts on all inputs
- If EP returns NO then P does not halt on all inouts

e We have solved the Totality Problem — contradiction

Rice’s Theorem

,,

e Rice’s Theorem all non-trivial, semantic properties of programs are undecidable. Hc
Rice 1951 PhD Thesis

e Equivalently: For any non-trivial property of partial functions, no general and effec-
tive method can decide whether an algorithm computes a partial function with that
property.

e A property of partial functions is called trivial if it holds for all partial computable
functions or for none.

e Rice’s Theorem and computability theory
e Let S be a set of languages that is nontrivial, meaning
- there exists a Turing machine that recognizes a language in S
- there exists a Turing machine that recognizes a language not in S

e Then, itis undecidable to determine whether the language recognized by an arbitrary
Turing machine lies in S.

https://en.wikipedia.org/wiki/Rice%27s_theorem
https://en.wikipedia.org/wiki/Rice%27s_theorem

Phil Molyneux Exam 2016) 35

e This has implications for compilers and virus checkers

e Note that Rice’s theorem does not say anything about those properties of machines
or programs that are not also properties of functions and languages.

e For example, whether a machine runs for more than 100 steps on some input is a
decidable property, even though it is non-trivial.

5.14 M269 2016) Exam Q 15

e Consider the following decision problems: (4 marks)
1. The 3SAT Problem
Is a given list of numbers already sorted?

The Totality Problem

> W N

Is a given path from A to B in a given undirected graph the shortest path from A to
B?

e For each of the following groups of problems, write on the line the numbers of any
of the above problems that belong to that group, or write “none” if none of the above
problems belongs to that group.

(a) undecidable
(b) tractable

(c) NP-complete

Go to Soln 15
5.15 M269 2016J) Exam Soln 15
(a) Undecidable: 3.Totality Problem
(b) Tractable: 2. Sorted?, 4. Path?
(c) NP-complete: 1. 3SAT Problem
GotoQ 15

5.16 Complexity

P and NP

e P, the set of all decision problems that can be solved in polynomial time on a deter-
ministic Turing machine

e NP, the set of all decision problems whose solutions can be verified (certificate) in
polynomial time

e Equivalently, NP, the set of all decision problems that can be solved in polynomial
time on a non-deterministic Turing machine

http://en.wikipedia.org/wiki/P_(complexity)
http://en.wikipedia.org/wiki/NP_(complexity)

36 M269 Revision 2018 26 May 2018

e A decision problem, dp is NP-complete if
1. dpis in NP and
2. Every problem in NP is reducible to dp in polynomial time

e NP-hard — a problem satisfying the second condition, whether or not it satisfies the
first condition. Class of problems which are at least as hard as the hardest problems
in NP. NP-hard problems do not have to be in NP and may not be decision problems

Euler diagram for P, NP, NP-complete and NP-hard set of problems

NP-Complete

P=NP=
NP-Complete

Complexity

Source: Wikipedia NP-complete entry

NP-complete problems
e Boolean satisfiability (SAT) Cook-Levin theorem
e Conjunctive Normal Form 3SAT

Hamiltonian path problem

Travelling salesman problem

NP-complete — see list of problems

http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/Euler_diagram
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Cook-Levin_theorem
http://en.wikipedia.org/wiki/3-satisfiability
http://en.wikipedia.org/wiki/Hamiltonian_path_problem
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/NP-complete

Phil Molyneux Exam 2016) 37

XKCD on NP-Complete Problems

MY HOBBY:
EVBEDDING NP-(OMPLETE PROBLEMS IN RESTAURANT ORDERS

CHOTCHKIES RESTAURANT :ﬁ)ﬁ?gﬂﬁ:ﬂgﬁg

— APPENZERS —~ 1 . EXACTLY? UM
MIXED FRUIT 2.15 HERE, THESE PAPERS ON THE KNAPSACK }
PROBLEM MIGHT HELP YDOU OUT.
FRENCH FRIES 275 \ LISTEN, T HAVE Six OTHER
— AG FAST AS POSSIBLE, OF (URSE. WENT
HOT WINGS 3.55 SOMETHING ON TRAVELING SALESHAN?

MOZZAREUA STICKS 4.20

S N
e

—— SANDWICHES ~—
RAGEENNIE L B

Source & Explanation: XKCD 287

5.16.1 NP-Completeness and Boolean Satisfiability

e The Boolean satisfiability problem (SAT) was the first decision problem shown to be
NP-Complete
e This section gives a sketch of an explanation

e Health Warning different texts have different notations and there will be some in-
consistency in these notes

e Health warning these notes use some formal notation to make the ideas more pre-
cise — computation requires precise notation and is about manipulating strings ac-

cording to precise rules.

Alphabets, Strings and Languages

e Notation:
e X is a set of symbols — the alphabet
e 3K is the set of all string of length k, which each symbol from =

e Example: if X ={0, 1}
-3 =101}
- 32 ={00,01,10,11}

e 30 = {¢} where € is the empty string

http://www.explainxkcd.com/wiki/index.php/287:_NP-Complete
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem

38

M269 Revision 2018 26 May 2018

>* is the set of all possible strings over 3
sk =30yustus?u...
A Language, L, over X is a subset of =*

LcX*

Language Accepted by a Turing Machine

The

Language accepted by Turing Machine, M denoted by L(M)
L(M) is the set of strings w € X* accepted by M

For Final States F = {Y,N}, a string w € * is accepted by M < (if and only if) M
starting in qg with w on the tape halts in state Y

Calculating a function (function problem) can be turned into a decision problem by
asking whether f(x) =y

NP-Complete Class
If we do not know if P = NP, what can we say ?
A language L is NP-Complete if:

- L€ NP and

- for all other L” € NP there is a polynomial time transformation (Karp reducible,
reduction) from L" to L

Problem Py polynomially reduces (Karp reduces, transforms) to P,, written Py oc P>
or Py <p Py, iff 3f: dpp, — dpp, such that

- Vliedpp, [l € Yp, & f() € Yp,]
- f can be computed in polynomial time

More formally, L1 < Zi" polynomially transforms to L, < ZE", written L1 oc Ly or
L1 <p Lp, iff 3f : ZF — =F such that

- Vx € Ef[x € L1 & f(x) € L]
- There is a polynomial time TM that computes f
Transitivity If Ly oc Ly and Ly o< L3 then Ly oc L3
If Lis NP-Hard and L € P then P = NP
If Lis NP-Complete, then L € P if and only if P = NP
If Lo is NP-Complete and L € NP and Lg oc L then L is NP-Complete
Hence if we find one NP-Complete problem, it may become easier to find more

In 1971/1973 Cook-Levin showed that the Boolean satisfiability problem (SAT) is
NP-Complete

http://en.wikipedia.org/wiki/Function_problem
http://en.wikipedia.org/wiki/Decision_problem
http://en.wikipedia.org/wiki/Cook–Levin_theorem
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem

Phil Molyneux Exam 2016) 39

The Boolean Satisfiability Problem

e A propositional logic formula or Boolean expression is built from variables, opera-
tors: AND (conjunction, A), OR (disjunction, V), NOT (negation, —)

e A formula is said to be satisfiable if it can be made True by some assignment to its
variables.

e The Boolean Satisfiability Problem is, given a formula, check if it is satisfiable.
- Instance: a finite set U of Boolean variables and a finite set C of clauses over U
- Question: Is there a satisfying truth assignment for C?

e A clause is is a disjunction of variables or negations of variables

e Conjunctive normal form (CNF) is a conjunction of clauses

e Any Boolean expression can be transformed to CNF

e Given a set of Boolean variable U ={uy,up,...,un}

e A literal from U is either any u;j or the negation of some u;j (written uj)

e A clause is denoted as a subset of literals from U — {u, uz, us}

e A clause is satisfied by an assignment to the variables if at least one of the literals
evaluates to True (just like disjunction of the literals)

e Let C be a set of clauses over U — C is satisfiable iff there is some assignment of
truth values to the variables so that every clause is satisfied (just like CNF)

o C={{u1,uy,u3},{uz,u3},{uy,uzl}is satisfiable
o C={{uy,us},{uy,uz},{u7}}is not satisfiable

e Proof that SAT is NP-Complete looks at the structure of NDTMs and shows you can
transform any NDTM to SAT in polynomial time (in fact logarithmic space suffices)

e SAT is in NP since you can check a solution in polynomial time

e To show that VL € NP : L oc SAT invent a polynomial time algorithm for each polyno-
mial time NDTM, M, which takes as input a string x and produces a Boolean formula
Ex which is satisfiable iff M accepts x

e See Cook-Levin theorem

Sources

e Garey and Johnson (1979, page 34) has the notation Ly oc Ly for polynomial trans-
formation

e Arora and Barak (2009, page 42) has the notation Ly <p Ly for polynomial-time Karp
reducible

e The sketch of Cook’s theorem is from Garey and Johnson (1979, page 38)
e For the satisfiable C we could have assignments (uy,up,u3) € {(T, T,F),(T,F,F), (F, T, F)}

http://en.wikipedia.org/wiki/Cook-Levin_theorem

40 M269 Revision 2018 26 May 2018

Coping with NP-Completeness
e What does it mean if a problem is NP-Complete ?
- There is a P time verification algorithm.
- There is a P time algorithm to solve it iff P = NP (?)
- No one has yet found a P time algorithm to solve any NP-Complete problem

- So what do we do ?

Improved exhaustive search — Dynamic Programming; Branch and Bound

Heuristic methods — acceptable solutions in acceptable time — compromise on op-
timality

Average time analysis — look for an algorithm with good average time — compro-
mise on generality (see Big-O Algorithm Complexity Cheatsheet)

Probabilistic or Randomized algorithms — compromise on correctness

Sources
e Practical Solutions for Hard Problems Rich (2007, chp 30)
e Coping with NP-Complete Problems Garey and Johnson (1979, chp 6)

6 M269 Exam 2016]J Q Part2

e Answer every question in this Part.
e The marks for each question are given below the question number.
e Marks for a part of a question are given after the question.

e Answers to questions in this Part must be written in the additional answer books,
which you should also use for your rough working.

Go to Soln Part2

6.1 M269 2016) Exam Q 16

e Question 16 (20 marks)

e Consider an ADT for undirected graphs, named UGraph, which includes these two
operations:

e nodes, which returns a sequence of all nodes in the graph, in no particular order;

e neighbours, which takes a node and returns a sequence of all its adjacent nodes, in
no particular order.

e How each node is represented is irrelevant.

(@) The following stand-alone Python function checks if a graph has a loop (an edge
from a node to itself), assuming that UGraph is implemented as a Python class.

http://bigocheatsheet.com

Phil Molyneux Exam 2016) 41

(b)

(i)

(if)

(iii)

(©)

def hasLoop(graph):
for node in graph.nodes():
if node 1in graph.neighbours(node):
return True
return False

Assume that the if-statement guard does a linear search of the sequence returned
by neighbours.

If the graph has no node with a loop, is that a best-, average-, or worst-case scenario
for hasLoop?

Assuming the graph has n nodes and e edges, what is the Big-O complexity of that
scenario? Justify your answers.

Note that the complexity is in terms of how many nodes and edges hasLoop visits,
because it has no assignments. (5 marks)

A node is isolated if it has no adjacent nodes. Isolated nodes cannot be reached from
any other node and hence won’t be processed by some graph algorithms.

It is therefore useful to first check if a graph has isolated nodes.

Specify the problem of finding all isolated nodes in an undirected graph by complet-
ing the following template.

Note that isolatedNodes is specified as an independent problem, not as a UGraph
operation.

You may write the specification in English and/or formally with mathematical nota-
tion. (4 marks)

Name: isolatedNodes
Inputs:

Outputs:
Preconditions
Postconditions

If instead of being an independent problem, isolatedNodes were an operation of
the UGraph ADT, would it be a creator, inspector or modifier? Explain why. (2 marks)

Give your initial insight for an algorithm that solves the problem, using the ADT’s
operations. (4 marks)

The ACME company used Prim’s algorithm to connect its data centres with the least
amount of fibre optic cable necessary.

One of the centres is a gateway to the Internet.

ACME wants to know the maximum latency for an Internet message to reach any
centre.

In other words, they want to know which centre is the furthest away from the gateway
and what is the distance.

State and justify which data structure(s) and algorithm(s) you would adopt or adapt
to solve this problem efficiently.

42 M269 Revision 2018 26 May 2018

e State explicitly any assumptions you make. (5 marks)

Goto Soln 16
6.2 M269 2016)J Exam Q17

e Imagine you have been invited to write a guest post for a technology blog, aimed at
interested readers who know little about computing.

e Write a draft of your blog post, which will explain relational databases and the formal
logic that underpins them. (15 marks)

e It should have

1. A suitable title and a short paragraph ‘setting the scene’ by explaining the practical
importance of relational databases.

2. A paragraph describing in layperson’s terms what a relational database is and how
it’s organised.

3. A paragraph describing in layperson’s terms what predicate logic is and its relation-
ship with relational databases.

4. A concluding paragraph stating your view on the importance, or not, of information
technologies having a formal logic basis.

e Note that marks will be awarded for a clear coherent text that is appropriate for its
audience, so avoid unexplained technical jargon and abrupt changes of topic, and
make sure your sentences fit together to tell an overall ‘story’ to the reader.

e You may wish to use examples in your text to help explain the concepts.

e As a guide, you should aim to write roughly three to five sentences per paragraph.

Goto Soln 17
7 M269 Exam 2016]J Soln Part2
e Part 2 solutions
Go to Q Part2
7.1 M269 2016) Exam Soln 16

(@)

(b)

It is a worst-case scenario since there is no early exit from the loop, before returning
false.

The complexity is O(n+e) since all nodes are visited by the outer loop, and all edges
are visited by the linear search through the neighbours of each node.

(i) Name: isolatedNodes

Inputs: an undirected graph theGraph (or a Ugraph theGraph)

Phil Molyneux Exam 2016) 43

e Outputs: jsolated, a set of nodes

e Preconditions: true

(b)

(©)

7.2

Postconditions: all nodes without neighbours in theGraph are in isolated; each node
in isolated has no neighbours in theGraph

Alternative: a node is in isolated if and only if it has no neighbours in theGraph
(ii) It would be an inspector because theGraph is not in the outputs.
Alternative: because the operation does not create or modify a graph.

(iii) Initialise isolated to the empty set.

Iterate over the nodes of theGraph and for each one check if its neighbours is the
empty sequence.

If so, add the node to isolated.

The data structure is a weighted tree (alternative: acyclic graph).
Prim — Minimum Spanning Tree

The nodes represent the data centres.

The edges represent the cables.

The weights represent the cable lengths.

To compute the longest path, do any traversal of the tree starting at the gateway
node and add the weights of the edges visited.

For an efficient, single-pass algorithm, when visiting a leaf, check if its distance is
the maximum so far.

Alternative: calculate the height of the tree with cable lengths

GotoQ 16

M269 2016) Exam Soln 17

There is no definitive answer — here are some points:

. Setting the scene with the importance of relational databases:

All retailers need to keep data on their products, suppliers and clients, the properties
of those entities (e.g. current stock of a product) and their relationships (e.g. who
bought which product to issue invoices).

Storing entities and their properties and relationships is such a generic need across
business, government departments and other organisations that so-called relational
databases were invented for that purpose.

. What are relational databases:

It is a data structure that represents each entity type as a table, with one column
per property and one row per entity, e.g. a table to represent customers may have
columns for their name and address.

https://en.wikipedia.org/wiki/Relational_database

44 M269 Revision 2018 26 May 2018

e A table can also represent a relation, e.g. a table with customer names and product
ids would store who bought what.

e A database can be queried to retrieve information from the database, e.g. which
other customers bought a particular book

3. What is predicate logic and its relation to relational databases:

e Predicate logic is a formal language to represent unambiguously statements about
entities and their properties and relations, e.g. No customer in Yorkshire bought a
polka dot dress.

e Given information about the existing entities and their properties/relations, it is
possible to prove whether a predicate logic statement is true or false.

e A database query is a particular form of a predicate logic statement.

e Running a query is an automated proof: it returns the entities stored in the database
that make the statement true; if no entities are returned, the statement is false.

4. Conclusion:

e Formal logic helps verifying the correctness of systems, which is important for our
daily reliance on them.

e There are limits on what is computable, and a system may be correct but not fit for
purpose, so formal logic doesn’t suffice for quality assurance.

GotoQ 17

8 Exam Reminders

e Read the Exam arrangements booklet

e Before the exam — check the date, time and location (and how to get there)
e At the exam centre - arrive early

e Bring photo ID with signature

e Use black or blue pens (not erasable and not pencil) — see Cult Pens for choices —
pencils for preparing diagrams (HB or blacker)

e Practice writing by hand

e In the exam — Read the questions — carefully — before and after answering them
e Don’t get stuck on a question — move on, come back later

e But do make sure you have attempted all questions

e ... and finally Good Luck

http://www2.open.ac.uk/students/help/exam-arrangements-booklet
http://www.cultpens.com/

Phil Molyneux Exam 2016) 45

9 White Slide

10 Web Sites & References

10.1 Web Sites

e Logic

WFF, WFF’N Proof online http://www.oercommons.org/authoring/1364-basic-
wff-n-proof-a-teaching-guide/view

e Computability

Computability
Computable function
Decidability (logic)

Turing Machines

Universal Turing Machine
Turing machine simulator
Lambda Calculus

Von Neumann Architecture

Turing Machine XKCD http://www.explainxkcd.com/wiki/index.php/205:
_Candy_Button_Paper

Turing Machine XKCD http://www.explainxkcd.com/wiki/index.php/505:
_A_Bunch_of_Rocks

Phil Wadler Bright Club on Computability http://wadler.blogspot.co.uk/2015/05/br
club-computability.html

e Complexity

Complexity class

NP complexity

NP complete
Reduction (complexity)
P versus NP problem

Graph of NP-Complete Problems

Note on References — the list of references is mainly to remind me where | obtained
some of the material and is not required reading.

http://en.wikipedia.org/wiki/Well-formed_formula
http://www.oercommons.org/authoring/1364-basic-wff-n-proof-a-teaching-guide/view
http://www.oercommons.org/authoring/1364-basic-wff-n-proof-a-teaching-guide/view
http://en.wikipedia.org/wiki/Computability
http://en.wikipedia.org/wiki/Computable_function
http://en.wikipedia.org/wiki/Decidability_(logic)
http://en.wikipedia.org/wiki/Turing_machine
http://en.wikipedia.org/wiki/Universal_Turing_machine
http://morphett.info/turing/turing.html
http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Von_Neumann_architecture
http://www.explainxkcd.com/wiki/index.php/205:_Candy_Button_Paper
http://www.explainxkcd.com/wiki/index.php/205:_Candy_Button_Paper
http://www.explainxkcd.com/wiki/index.php/505:_A_Bunch_of_Rocks
http://www.explainxkcd.com/wiki/index.php/505:_A_Bunch_of_Rocks
http://wadler.blogspot.co.uk/2015/05/bright-club-computability.html
http://wadler.blogspot.co.uk/2015/05/bright-club-computability.html
http://en.wikipedia.org/wiki/Complexity_class
http://en.wikipedia.org/wiki/NP_(complexity)
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/Reduction_(complexity)
http://en.wikipedia.org/wiki/P_%3D_NP_problem
http://adriann.github.io/npc/npc.html

46 M269 Revision 2018 26 May 2018

References

Adelson-Velskii, G M and E M Landis (1962). An algorithm for the organization of infor-
mation. In Doklady Akademia Nauk SSSR, volume 146, pages 263-266. Translated
from Soviet Mathematics — Doklady; 3(5), 1259-1263.

Arora, Sanjeev and Boaz Barak (2009). Computational Complexity: A Modern
Approach. Cambridge University Press. ISBN 0521424267. URL http:
//www.cs.princeton.edu/theory/complexity/.

Chiswell, lan and Wilfrid Hodges (2007). Mathematical Logic. Oxford University Press.
ISBN 0199215626.

Church, Alonzo et al. (1937). Review: AM Turing, On Computable Numbers, with an Ap-
plication to the Entscheidungsproblem. Journal of Symbolic Logic, 2(1):42-43.

Cook, Stephen A. (1971). The Complexity of Theorem-proving Procedures. In Pro-
ceedings of the Third Annual ACM Symposium on Theory of Computing, STOC '71,
pages 151-158. ACM, New York, NY, USA. doi:10.1145/800157.805047. URL http:
//doi.acm.org/10.1145/800157.805047.

Copeland, B. Jack; Carl J. Posy; and Oron Shagrir (2013). Computability: Turing, Godel,
Church, and Beyond. The MIT Press. ISBN 0262018993.

Cormen, Thomas H.; Charles E. Leiserson; Ronald L. Rivest; and Clifford Stein (2009). In-
troduction to Algorithms. MIT Press, third edition. ISBN 0262533057. URL http:
//mitpress.mit.edu/books/introduction-algorithms.

Davis, Martin (1995). Influences of mathematical logic on computer science. In The Uni-
versal Turing Machine A Half-Century Survey, pages 289-299. Springer.

Davis, Martin (2012). The Universal Computer: The Road from Leibniz to Turing. A K
Peters/CRC Press. ISBN 1466505192.

Dowsing, R.D.; V.J Rayward-Smith; and C.D Walter (1986). First Course in Formal Logic
and Its Applications in Computer Science. Blackwells Scientific. ISBN 0632013087.

Franzén, Torkel (2005). Gddel’s Theorem: An Incomplete Guide to Its Use and Abuse. A K
Peters, Ltd. ISBN 1568812388.

Fulop, Sean A. (2006). On the Logic and Learning of Language. Trafford Publishing. ISBN
1412023815.

Garey, Michael R. and David S. Johnson (1979). Computers and Intractability: A Guide to
the Theory of NP-completeness. W.H.Freeman Co Ltd. ISBN 0716710455.

Halbach, Volker (2010). The Logic Manual. OUP Oxford. ISBN 0199587841. URL http:
//1ogicmanual.philosophy.ox.ac.uk/index.html.

Halpern, Joseph Y; Robert Harper; Neil Immerman; Phokion G Kolaitis; Moshe Y Vardi;
and Victor Vianu (2001). On the unusual effectiveness of logic in computer science.
Bulletin of Symbolic Logic, pages 213-236.

Hindley, J. Roger and Jonathan P. Seldin (1986). Introduction to Combinators and A-
Calculus. Cambridge University Press. ISBN 0521318394. URL http://www-
maths.swan.ac.uk/staff/jrh/.

http://www.cs.princeton.edu/theory/complexity/
http://www.cs.princeton.edu/theory/complexity/
http://doi.acm.org/10.1145/800157.805047
http://doi.acm.org/10.1145/800157.805047
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
http://logicmanual.philosophy.ox.ac.uk/index.html
http://logicmanual.philosophy.ox.ac.uk/index.html
http://www-maths.swan.ac.uk/staff/jrh/
http://www-maths.swan.ac.uk/staff/jrh/

Phil Molyneux Exam 2016) 47

Hindley, J. Roger and Jonathan P. Seldin (2008). Lambda-Calculus and Combinators:
An Introduction. Cambridge University Press. ISBN 0521898854. URL http://www-
maths.swan.ac.uk/staff/jrh/.

Hodges, Wilfred (1977). Logic. Penguin. ISBN 0140219854.
Hodges, Wilfred (2001). Logic. Penguin, second edition. ISBN 0141003146.

Hopcroft, John E.; Rajeev Motwani; and Jeffrey D. Ullman (2001). Introduction to Au-
tomata Theory, Languages, and Computation. Addison-Wesley, second edition. ISBN
0-201-44124-1.

Hopcroft, John E.; Rajeev Motwani; and Jeffrey D. Ullman (2007). Introduction to
Automata Theory, Languages, and Computation. Pearson, third edition. [ISBN
0321514483. URL http://infolab.stanford.edu/~ulIman/ialc.html.

Hopcroft, John E. and Jeffrey D. Ullman (2001). Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, first edition. ISBN 020102988X.

Lemmon, Edward John (1965). Beginning Logic. Van Nostrand Reinhold. ISBN
0442306768.

Levin, Leonid A (1973). Universal sorting problems. Problemy Peredachi Informatsii,
9(3):265-266.

Manna, Zohar (1974). Mathematical Theory of Computation. McGraw-Hill. ISBN 0-07-
039910-7.

Miller, Bradley W. and David L. Ranum (2011). Problem Solving with Al-
gorithms and Data Structures Using Python. Franklin, Beedle As-
sociates Inc, second edition. ISBN 1590282574. URL http:
//interactivepython.org/courselib/static/pythonds/index.html.

Pelletier, Francis Jeffrey and Allen P Hazen (2012). A history of natural deduc-
tion. In Gabbay, Dov M; Francis Jeffrey Pelletier; and John Woods, editors,
Logic: A History of Its Central Concepts, volume 11 of Handbook of the History
of Logic, pages 341-414. North Holland. ISBN 0444529373. URL http:
//www.ualberta.ca/~francisp/papers/PellHazenSubmittedv2.pdf.

Pelletier, Francis Jeffry (2000). A history of natural deduction and elementary logic
textbooks. Logical consequence: Rival approaches, 1:105-138. URL http:
//www.sfu.ca/~jeffpell/papers/pelletierNDtexts.pdf.

Rayward-Smith, V J (1983). A First Course in Formal Language Theory. Blackwells Scien-
tific. ISBN 06320117609.

Rayward-Smith, V J (1985). A First Course in Computability. Blackwells Scientific. ISBN
0632013079.

Rich, Elaine A. (2007). Automata, Computability and Complexity: The-
ory and Applications. Prentice Hall. ISBN 0132288060. URL http:
//www.cs.utexas.edu/~ear/cs341/automatabook/.

Smith, Peter (2003). An Introduction to Formal Logic. Cambridge University Press. ISBN
0521008042. URL http://www.logicmatters.net/ifl/.

Smith, Peter (2007). An Introduction to Godel’s Theorems. Cambridge University Press,
first edition. ISBN 0521674530.

http://www-maths.swan.ac.uk/staff/jrh/
http://www-maths.swan.ac.uk/staff/jrh/
http://infolab.stanford.edu/~ullman/ialc.html
http://interactivepython.org/courselib/static/pythonds/index.html
http://interactivepython.org/courselib/static/pythonds/index.html
http://www.ualberta.ca/~francisp/papers/PellHazenSubmittedv2.pdf
http://www.ualberta.ca/~francisp/papers/PellHazenSubmittedv2.pdf
http://www.sfu.ca/~jeffpell/papers/pelletierNDtexts.pdf
http://www.sfu.ca/~jeffpell/papers/pelletierNDtexts.pdf
http://www.cs.utexas.edu/~ear/cs341/automatabook/
http://www.cs.utexas.edu/~ear/cs341/automatabook/
http://www.logicmatters.net/ifl/

48 M269 Revision 2018 26 May 2018

Smith, Peter (2013). An Introduction to Godel’s Theorems. Cambridge University Press,
second edition. ISBN 1107606756. URL http://godelbook.net.

Smullyan, Raymond M. (1995). First-Order Logic. Dover Publications Inc. ISBN
0486683702.

Soare, Robert Irving (1996). Computability and Recursion. Bulletin of Symbolic Logic,
2:284-321. URL http://www.people.cs.uchicago.edu/~soare/History/.

Soare, Robert Irving (2013). Interactive computing and relativized computability. In
Computability: Turing, Godel, Church, and Beyond, chapter 9, pages 203-260. The MIT
Press. URL http://www.people.cs.uchicago.edu/~soare/Turing/shagrir.pdf.

Teller, Paul (1989a). A Modern Formal Logic Primer: Predicate and Metatheory: 2.
Prentice-Hall. ISBN 0139031960. URL http://tellerprimer.ucdavis.edu.

Teller, Paul (1989b). A Modern Formal Logic Primer: Sentence Logic: 1. Prentice-Hall.
ISBN 0139031707. URL http://tellerprimer.ucdavis.edu.

Thompson, Simon (1991). Type Theory and Functional Programming. Addison Wesley.
ISBN 0201416670. URL http://www.cs.kent.ac.uk/people/staff/sjt/TTFP/.

Tomassi, Paul (1999). Logic. Routledge. ISBN 0415166969. URL http:
//emilkirkegaard.dk/en/wp-content/uploads/Paul-Tomassi-Logic.pdf.

Turing, Alan Mathison (1936). On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society, 42:230-265.

Turing, Alan Mathison (1937). On computable numbers, with an application to the
Entscheidungsproblem. A Correction. Proceedings of the London Methematical Soci-
ety, 43:544-546.

van Dalen, Dirk (1994). Logic and Structure. Springer-Verlag, third edition. ISBN
0387578390.

van Dalen, Dirk (2012). Logic and Structure. Springer-Verlag, fifth edition. ISBN
1447145577.

Author Phil Molyneux Written 26 May 2018 Printed 28th May 2018
Subject dir: (baseURL)/0U/M269/M269Exams/M269ExamRevision
Topic path: /M269ExamRevision2017]/M269ExamRevision2017]B/M269ExamRevision2017IB.pdf

http://godelbook.net
http://www.people.cs.uchicago.edu/~soare/History/
http://www.people.cs.uchicago.edu/~soare/Turing/shagrir.pdf
http://tellerprimer.ucdavis.edu
http://tellerprimer.ucdavis.edu
http://www.cs.kent.ac.uk/people/staff/sjt/TTFP/
http://emilkirkegaard.dk/en/wp-content/uploads/Paul-Tomassi-Logic.pdf
http://emilkirkegaard.dk/en/wp-content/uploads/Paul-Tomassi-Logic.pdf

	M269 Exam Revision Agenda & Aims
	Introductions & Revision Strategies
	M269 Exam 2016J

	M269 Prsntn 2016J Exam Qs
	M269 2016J Exam Qs
	M269 2016J Exam Q Part1

	Units 1 & 2
	Unit 1 Introduction
	M269 2016J Exam Q 1
	M269 2016J Exam Soln 1
	M269 2016J Exam Q 2
	M269 2016J Exam Soln 2
	Unit 2 From Problems to Programs
	Example Algorithm Design — Searching

	M269 2016J Exam Q 3
	M269 2016J Exam Soln 3
	M269 2016J Exam Q 4
	M269 2016J Exam Soln 4

	Units 3, 4 & 5
	Unit 3 Sorting
	Unit 4 Searching
	M269 2016J Exam Q 5
	M269 2016J Exam Soln 5
	M269 2016J Exam Q 6
	M269 2016J Exam Soln 6
	M269 2016J Exam Q 7
	M269 2016J Exam Soln 7
	M269 2016J Exam Q 8
	M269 2016J Exam Soln 8
	Unit 5 Optimisation
	M269 2016J Exam Q 9
	M269 2016J Exam Soln 9
	M269 2016J Exam Q 10
	M269 2016J Exam Soln 10

	Units 6 & 7
	Propositional Logic
	M269 2016J Exam Q 11
	M269 2016J Exam Soln 11
	Predicate Logic
	M269 2016J Exam Q 12
	M269 2016J Exam Soln 12
	SQL Queries
	M269 2016J Exam Q 13
	M269 2016J Exam Soln 13
	Logic
	M269 2016J Exam Q 14
	M269 2016J Exam Soln 14
	Computability
	Non-Computability — Halting Problem
	Reductions & Non-Computability

	M269 2016J Exam Q 15
	M269 2016J Exam Soln 15
	Complexity
	NP-Completeness and Boolean Satisfiability

	M269 Exam 2016J Q Part2
	M269 2016J Exam Q 16
	M269 2016J Exam Q 17

	M269 Exam 2016J Soln Part2
	M269 2016J Exam Soln 16
	M269 2016J Exam Soln 17

	Exam Reminders
	White Slide
	Web Sites & References
	Web Sites
	References

