M269 Revision
2018

Phil Molyneux

M269 Revision 2018
Exam 2015

Phil Molyneux

20 May 2018

1/134 (1/145)

M269 Exam Revision

Agenda & Aims

p—
-

© ® N O U AW N e

Revision strategies

Exam techniques

reconnect (or send you

. Welcome and introductions

M269 Exam — Part 1 has 15 questions 60%

M269 Exam — Part 2 has 2 questions 40%

M269 Exam — 3 hours, Part 1 100 mins, Part 2 70 mins
M269 2015J exam (June 2016)

. Topics and discussion for each question

. Adobe Connect — it you or | get cut off, wait till we

an email)

. These slides and notes are at http://www.pmolyneux.

co.uk/0U/M269/M269:.

xamRevision/

M269 Revision
2018

Phil Molyneux

M269 Exam
Revision Agenda &
Aims

2/134 (2/145)

http://www.pmolyneux.co.uk/OU/M269/M269ExamRevision/
http://www.pmolyneux.co.uk/OU/M269/M269ExamRevision/

. M Revision
M269 Exam Revision o oLs

Introductions & Revision strategies Phil Molyneux

» Introductions
» What other exams are you doing this year 7 ntroductions & Revision

Strategies

» Each give one exam tip to the group

3/134 (3/145)

M269 Revision
M 269 Exa m 2018

Presentation 2016J Phil Molyneux

» Not examined this presentation:

» Unit 4, Section 2 String search

» Unit 7, Section 2 Logic Revisited

» Unit 7, Section 4 Beyond the Limits

M269 Exam 2016J

4/134 (4/145)

M269 Tutorial 269 Reision

Adobe Connect Interface — Student View Phil Molyneux

® ® M269-17J M269-17J Online tutorial room London/SE (1,13) CG [2311] M269-17J (1) - Adobe Connect

[‘u! Meeting d) ~ & - o - » - Help

M269Prsntn2017TutorialOverviewAAC3A. beamer.pdf ot

Adobe Connect

Start My Webcam

M269 Overview

Phil Molyneux

Attendees (1)

M269 Overview
M269 Overview A

%;\ Active Speakers

» Hosts (0)

» Presenters (0)

* Participants (1)

B phil Molyneux @

Phil Molyneux

15 October 2017

Chat (Everyone)

Everyone

5/134 (5/145)

M269 Revision

Adobe Con nect 2018

Settings Phil Molyneux

= Everybody: Audio Settings [Meeting>> Audio Setup Wizard. ..]

» Audio [Menu bar>> Audio>> Microphone rights for Participants] V4 Adobe Connect

» Do not Enable single speaker mode

» Drawing Tools |Share pod menu bar)) Draw| (1 slide/screen)

> :Share pod menu bar>> Menu icon >> Enable Participants to draw] v gray

> iMeeting>> Preferences>> Whiteboard >> Enable Participants to draw] v

» Cancel hand tool

» Do not enable green pointer. . .

» Cursor Meeting>> Preferences>> General tab>> Host Cursors>
>Show to all attendees] v (default Off)

> [I\/Ieeting>> Preferences>> Screen Share >> Cursor>> Show Application Cursor]

» Webcam [Menu bar>> Webcam>> Enable Webcam for Participants| ¢/

= Recording [Meeting>> Record Meeting. . .] V4

6/134 (6/145)

M269 Revision
Adobe Con nect 2018
Access Phil Molyneux

» Tutor Access

> :TutorHome>> M269 Website >> Tutorials] Adobe Connect

[iCIuster Tutorials>> M269 Online tutorial room]

> :Tutor Groups>> M269 Online tutor group room]

= :Module—wide utorials>> M269 Online module-wide room]

» Attendance

[TutorHome>> Students >> View your tutorial timetables]

» Beamer Slide Scaling 379% (363 x 485 mm)

» Clear Everyone’s Status

[Attendee Pod >> I\/Ienu>> Clear Everyone's Status]

» Grant Access

[Meeting>> Manage Access & Entry>> Invite Participants. . .] and

send link via email

7/134 (7/145)

Adobe Connect M269 Revisior

Keystroke Shortcuts Phil Molyneux

» Keyboard shortcuts in Adobe Connect

» Toggle Mic + (Mac), + (Win) Adobe Connect

(On/Disconnect)

» Toggle Raise-Hand status +
> Close dialog box (Mac), (Win)
> End meeting | 38 |+| \ |

8/134 (8/145)

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html

M269 Revision

Adobe Connect Interface 2018

Student View (default) Phil Molyneux

TV meeting W 0+ P

M269Prsntn2017)TutorialOverviewAAC3A.beamer. pdf

Adobe Connect

Start My Webcam

M269 Owverview

Phil Molyneux

Attendees (1)

M269 Overview
M269 Overview A

@i\ Active Speakers

» Hosts (D)

» Presenters (0)

* Participants (1)

}::1, Pl Malymeux

Phil Molyneux

15 October 2017

Chat (Everyone)

9/134 (9/145)

Adobe Connect Interface
Tutor View

Lﬁ! Meeting Layouts Pods Audio

M269Prsntn2017]TutorialOverviewAAC3A.beamer. pdf

M269 Overview
M269 Overview A

Phil Molyneux

15 October 2017

186 | = o [s7% [~] | @)

M269 Overview

Phil Molyneux

Start My Webcam

Attendees (1)

%ﬁ! Aclive Speakers

¥ Hosts (1)

A2, Phil Molyneux

¥ Presenters (0)

¢ Participants (0)

Chat (Everyone)

Everyone

M269 Revision
2018

Phil Molyneux

Adobe Connect

10/134 (10/145)

M269 2015J Exam

Q s

M269 Algorithms, Data Structures and Computability
Presentation 2015J Exam

Date Thursday, 2 June 2016 Time 14:30-17:30

There are TWO parts to this examination. You should
attempt all questions in both parts

Part 1 carries 60 marks — 100 minutes
Part 2 carries 40 marks — 70 minutes

Note see the original exam paper for exact wording and
formatting — these slides and notes may change some
wording and formatting

M269 Revision
2018

Phil Molyneux

M269 2015J Exam Qs

11/134 (11/145)

M269 2015J Exam

Q Partl

>

>

Answer every question in this part.

The marks for each question are given below the
question number.

Answers to questions in this Part should be written on
this paper in the spaces provided, or in the case of
multiple-choice questions you should tick the
appropriate box(es).

If you tick more boxes than indicated for a multiple
choice question, you will receive no marks for your
answer to that question.

Use the provided answer books for any rough working.

M269 Revision
2018

Phil Molyneux

M269 2015J) Exam Q Partl

12/134 (12/145)

. M269 Revision
M269 SpeC|men Exam 2018
Unit 1 Topics, Q1, Q2 Phil Molyneux

» Unit 1 Introduction
» Computation, computable, tractable

> Introducing Python

» What are the three most important concepts in
programming ? Unit 1 ntroductio

1.
2.
3.

» Quote from Paul Hudak (1952-2015)

13/134 (13/145)

http://en.wikipedia.org/wiki/Paul_Hudak

. M269 Revision
M269 SpeC|men Exam 2018
Unit 1 Topics, Q1, Q2 Phil Molyneux

» Unit 1 Introduction
» Computation, computable, tractable

> Introducing Python

» What are the three most important concepts in
programming ? Unit 1 ntroductio

1. Abstraction
2.
3.

» Quote from Paul Hudak (1952-2015)

13/134 (14/145)

http://en.wikipedia.org/wiki/Paul_Hudak

. M269 Revision
M269 SpeC|men Exam 2018
Unit 1 Topics, Q1, Q2 Phil Molyneux

» Unit 1 Introduction
» Computation, computable, tractable

> Introducing Python

» What are the three most important concepts in
programming ? Unit 1 ntroductio

1. Abstraction
2. Abstraction
3.

» Quote from Paul Hudak (1952-2015)

13/134 (15/145)

http://en.wikipedia.org/wiki/Paul_Hudak

. M269 Revision
M269 SpeC|men Exam 2018
Unit 1 Topics, Q1, Q2 Phil Molyneux

» Unit 1 Introduction
» Computation, computable, tractable

> Introducing Python

» What are the three most important concepts in
programming ? Unit 1 ntroductio

1. Abstraction
2. Abstraction
3.

» Quote from Paul Hudak (1952-2015)

13/134 (16/145)

http://en.wikipedia.org/wiki/Paul_Hudak

M269 Revision

M269 2015J Exam 2018

Q 1 Phil Molyneux

» Question 1 Which two of the following statements are
true? (2 marks)

A. Computational thinking consists of the skills to
formulate a problem as a computational problem and
then construct a good computational solution to solve
it or explain why there is no such solution.

M269 2015J Exam Q 1

B. Every computable problem can be solved in a practical
way using existing computers.

C. A computational problem is computable if it is possible
to build an algorithm which solves every instance of the
problem in a finite number of steps.

D. An algorithm consists of a computer program that will
solve a computable problem.

14/134 (17/145)

M269 2015J Exam

Soln 1

» A, C

M269 Exam 2015J
Soln Part2

Exam Reminders
15/134 (18/145)

M269 2015J Exam M269 Revision

Q 2 Phil Molyneux

» Question 2 Which two of the following statements are
true? (2 marks)

A. Abstraction allows us to manage complexity.

B. In abstraction as modelling, we hide the details of an
implementation behind an interface.

C. Every algorithm can be expressed as some combination
of sequence, iteration and selection.

M269 2015J Exam Q 2

D. If a polynomial algorithm is executed, it will quickly
overwhelm the resources of a computer and exceed any
reasonable time limits.

16/134 (19/145)

M269 2015J Exam

Soln 2

» A, C

M269 Exam 2015J
Soln Part2

Exam Reminders
17/134 (20/145)

. M Revision
M269 SpeC|men Exam 2692018
Unit 2 Topics, Q3, Q4 Phil Molyneux

» Unit 2 From Problems to Programs
» Abstract Data Types
» Pre and Post Conditions

» Logic for loops

Unit 2 From Problems to
Programs

18/134 (21/145)

Example Algorithm Design

Searching

» Given an ordered list (xs) and a value (val), return

» Position of val in xs or
» Some indication if val is not present

» Simple strategy: check each value in the list in turn

» Better strategy: use the ordered property of the list to
reduce the range of the list to be searched each turn

» Set a range of the list

» |If val equals the mid point of the list, return the mid
point

» Otherwise half the range to search

» If the range becomes negative, report not present
(return some distinguished value)

M269 Revision
2018

Phil Molyneux

Example Algorithm Design
— Searching

19/134 (22/145)

Example Algorithm Design

Binary Search lterative

1 def binarySearchIter (xs,val):

lo = O
hi = len(xs) - 1

while lo <= hi:
mid = (lo + hi) // 2

guess = xs[mid]
9 if val == guess:
10 return mid
11 elif val < guess:
12 hi = mid - 1
13 else:
14 lo = mid + 1
16 return None

M269 Revision
2018

Phil Molyneux

Example Algorithm Design
— Searching

20/134 (23/145)

Divide and Conquer

Binary Search Recursive

10
11
12
13
14
15
16

def binarySearchRec(xs,val,lo=0,hi=-1):
if (hi == -1):
hi = len(xs) - 1

mid = (lo + hi) // 2

if hi < 1lo:
return None
else:
guess = xs[mid]
if val == guess:
return mid
elif val < guess:
return binarySearchRec(xs,val,lo,mid-1)
else:
return binarySearchRec (xs,val ,mid+1,hi)

M269 Revision
2018

Phil Molyneux

Example Algorithm Design
— Searching

21/134 (24/145)

Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)

XS = Highlight the mid value and search
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search

Return wvalue:

?7?

range

range

range

range

M269 Revision
2018

Phil Molyneux

Example Algorithm Design
— Searching

22 /134 (25/145)

Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range
binarySearchRec(xs,25,77,77)

XS = Highlight the mid wvalue and search range
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range

Return wvalue:

?7?

M269 Revision
2018

Phil Molyneux

Example Algorithm Design
— Searching

22 /134 (26/145)

Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

XS = Highlight the mid value and search range
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range

Return wvalue: 77

M269 Revision
2018

Phil Molyneux

Example Algorithm Design
— Searching

22 /134 (27/145)

Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [

binarySearchRec(xs,25,77,77)

67,69,75,80,89,97,101]

XS = Highlight the mid value and search range

binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range

Return wvalue:

?7?

M269 Revision
2018

Phil Molyneux

Example Algorithm Design
— Searching

22/134 (28/145)

Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [

67,69,75,80,89,97,101]

binarySearchRec(xs,67,8,10) by line 13
XS = Highlight the mid value and search range

binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range

Return wvalue:

?7?

M269 Revision
2018

Phil Molyneux

Example Algorithm Design
— Searching

22 /134 (29/145)

- o M269 Revision
DIVIde and Conquer 2018
Binary Search Recursive — Solution Phil Molyneux

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,10) by line 13
xs = [67,69,75,]

binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range

Return wvalue: 77

Example Algorithm Design
— Searching

22 /134 (30/145)

- o M269 Revision
DIVIde and Conquer 2018
Binary Search Recursive — Solution Phil Molyneux

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,10) by line 13
xs = [67,69,75,]

binarySearchRec(xs,67,8,8) by line 13

XS = Highlight the mid value and search range

Return wvalue: 77

Example Algorithm Design
— Searching

22/134 (31/145)

- o M269 Revision
DIVIde and Conquer 2018
Binary Search Recursive — Solution Phil Molyneux

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,10) by line 13
xs = [67,69,75,]
binarySearchRec(xs,67,8,8) by line 13
xs = [67,]

Return wvalue: 77

Example Algorithm Design
— Searching

22/134 (32/145)

- o M269 Revision
DIVIde and Conquer 2018
Binary Search Recursive — Solution Phil Molyneux

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,10) by line 13
xs = [67,69,75,]
binarySearchRec(xs,67,8,8) by line 13
xs = [67,]

Return wvalue: 8 by line 11

Example Algorithm Design
— Searching

22/134 (33/145)

Example Algorithm Design

Binary Search lterative — Miller & Ranum

~ W N -

© O ~N O

10
11
12
13
14

16

def binarySearchIterMR(alist, item):

first = O
last = len(alist) -1
found = False

while first<=1last and not found:

midpoint = (first + last)//2

if alist[midpoint] == item:
found = True

else:

if item < alist[midpoint]:
last = midpoint -1

else:
first = midpoint+1

return found

M269 Revision
2018

Phil Molyneux

Example Algorithm Design
— Searching

23/134 (34/145)

Divide and Conquer

Binary Search Recursive — Miller & Ranum

© 00 N O 01 b W N =

—_ =
N = O

def binarySearchRecMR (alist, item):
if len(alist) == O0:
return False
else:
midpoint = len(alist)//2
if alist[midpoint]==item:
return True
else:
if item<alist[midpoint]:
return binarySearchRecMR(alist[:midpoint],item)
else:
return binarySearchRecMR(alist[midpoint+1:],item)

M269 Revision
2018

Phil Molyneux

Example Algorithm Design
— Searching

24/134 (35/145)

M269 2015J Exam

Q3

>

Question 3 In roughly three or four sentences (in total)

explain what is meant by the following terms:

Abstract data type (ADT)

Encapsulation

Data structure

(4 marks)

M269 Revision
2018

Phil Molyneux

M269 2015J Exam Q 3

25/134 (36/145)

M269 Revision

M269 2015J Exam 2018

Soln 3 Phil Molyneux

» An abstract data type is a logical description of how we
view the data and the operations that are allowed
without regard to how they will be implemented. See
Miller and Ranum chp 1 and Wikipedia: Abstract data

type
» Encapsulation hides the implementation of an ADT so a
user must only access data via the interface and not

directly.

» A data structure is a concrete implementation of some M269 2015 Exam Soln 3
ADT

26/134 (37/145)

http://interactivepython.org/runestone/static/pythonds/Introduction/WhyStudyDataStructuresandAbstractDataTypes.html
https://en.wikipedia.org/wiki/Abstract_data_type
https://en.wikipedia.org/wiki/Abstract_data_type

M269 2015J Exam M269 Revision

Q il Phil Molyneux

» Question 4 Consider the guard in the following Python
while loop header: (4 marks)

while (s < 5 and t > 3) or not(s >= 5 or t <= 3):

(a) Make the following substitutions:

P represents s < 5
Q represents t > 3

Then complete the following truth table:

-P | =Q | PANQ | PV —-Q —I(—lP\/—IQ) (P/\Q)\/—I(—IP\/_IQ)

M269 2015J Exam Q 4

T 1| O

Q
F
-
F
T
» Q 4 continued on next slide

27 /134 (38/145)

M269 2015J Exs Exam M269 Revision

Q 4 (contd) Phil Molyneux

(b) Use the results from your truth table to choose which
one of the following expressions could be used as the
simplest equivalent to the above guard.

A. not (s < 5 and t > 3)
(s >= 5 or t <= 3)

< 5and t > 3)

(s > 5 and t <= 3)

(s < 5 and t <= 3)

m Y O W
~
n

M269 2015J Exam Q 4

28/134 (39/145)

M269 2015J Exam M269 Revision

Soln 4 Phil Molyneux

(a) Truth table

Pl Q|—-P|-Q|PANQR|-PV-Q|-(-PV-Q)| (PANQ)V-(-PV-Q)
FIF| T | T - T - -

FI|T| T | F - T - -

T F|F | T - T - -

T | T | F F T F T T

(b) C

(s < 5 and t > 3) is equivalent to

(s < 5 and t > 3) or not(s >= 5 or t <= 3)
M269 2015J Exam Soln 4

20/134 (40/145)

M269 SpeC|men Exam M26920R1e§/ision
Unit 3 TOpiCS, Q5’ Q6 Phil Molyneux

» Unit 3 Sorting

» Elementary methods: Bubble sort, Selection sort,
Insertion sort

» Recursion — base case(s) and recursive case(s) on
smaller data

> QUleSOrt, Merge Sort Unit 3 Sorting
» Sorting with data structures: Tree sort, Heap sort

» See sorting notes for abstract sorting algorithm

30/134 (41/145)

. : M269 Revision
Unit 3 Sorting) e
Abstract Sorting Algorithm Phil Molyneux

(u nsorted list xs)

v

if (length xs > 1) then
(xs1,xs2) = split xs

\. J

(xsl) (XSQJ

v v

[ysl = sort xslj [ys2 = sort xs2]

. o

[ys — join (ysl,ysQ)]

v

[sorted list ys]

31/134 (42/145)

. : M269 Revision
Unit 3 Sorting 2018
Sorting Algorithms Phil Molyneux

Using the Abstract sorting algorithm, describe the split and
join for:

» Insertion sort

» Selection sort

> Merge sort

» Quicksort Ui 9 Sari

» Bubble sort (the odd one out)

32/134 (43/145)

M269 Revision

M269 Specimen Exam 2018

Unit 4 Topics, Q7, Q8 Phil Molyneux

» Unit 4 Searching

» String searching: Quick search Sunday algorithm,
Knuth-Morris-Pratt algorithm

» Hashing and hash tables
» Search trees: Binary Search Trees

» Search trees: Height balanced trees: AVL trees Unit 4 Searching

33/134 (44/145)

M269 2015J Exam M269 Revision

Q 5 Phil Molyneux

» Question 5 Consider the following diagrams A—-H.
Nodes are represented by black dots and edges by
arrows. The numbers represent a node's key. (4 marks)

M269 2015J Exam Q 5

» Q 5 continued on next slide

34/134 (45/145)

M269 2015J Exs Exam M269 Revision

Q 5 (COntd) Phil Molyneux

» Answer the following questions. Write your answer on
the line that follows each question. In each case there is
at least one diagram in the answer but there may be
more than one. Explanations are not required.

(a) Which of A, B, C and D do not show trees 7

(b) Which of E, F, G and H are binary trees 7

(c) Which of C, D, G and H are complete binary trees ? 1208 20151 Beam @
(d) Which of C, D, G and H are binary heaps ?

35/134 (46/145)

M269 2015J Exam M269 Revision

Soln 5 Phil Molyneux

(a) B is not a tree; it has more than one route from node 3
to node O.

(b) E, G, and H are binary trees; (no more than 2 children
per node).

(c) G, and H are complete binary trees.

(d) Only H is a heap; (complete binary tree, and parent
nOdeS > Children)' M269 2015J Exam Soln 5

36/134 (47/145)

M269 2015J Exam M269 Revision

Q 0 Phil Molyneux

» Question 6 Consider the following function, which
takes an integer argument n. You can assume that n is

positive. (4 marks)
1 def calculate(n):
2 a = b
3 ans = 0
4 for i in range(n):
5 X = 1 % 1
6 for j in range(n):
7 y = x + J X J M269 2015J Exam Q 6
8 for k in range(n):
9 z =y + 1 % k
10 ans = ans + z * a

p—t
p—t

return ans

» (Q 6 continued on next slide

37/134 (48/145)

M269 2015J Exam

Q 6 (contd)

» From the five options below, select the one that
represents the correct combination of T(n) and Big-O
complexity for this function. You may assume that a
step (i.e. the basic unit of computation) is the
assignment statement.

T(n) = n>+ n?+ n+ 3 and O(n’)

T(n) =2n>+ n?* +2 and O(2n°)

T(n) =2n°+ n+2 and O(n?)

T(n) =2n>+ n*>+n+2 and O(n?)

T(n) =3n+6 and O(n)

Now explain how you obtained T(n) and the Big-O
complexity.

vy MU O W =

M269 Revision
2018

Phil Molyneux

M269 2015J Exam Q 6

38/134 (49/145)

M269 2015J Exam M269 Revision

Soln 6 Phil Molyneux

D. T(n)=2n>+n*+n+2 and O(n°)

» 2 assignment statements outside the loops
» 1 assignment statement in the outer loop

» 1 assighment statement in the middle loop
> 2 assignment statements in the inner loop

» n3 is the dominant term

M269 2015J Exam Soln 6

39/134 (50/145)

M269 2015J Exam

Q7

Question 7 In the KMP algorithm, for each character
in turn, as it appears in the target string T, we identify
the longest substring of T ending with that character
which matches a prefix of T.

These lengths are stored in what is known as a prefix
table (which in Unit 4 we represented as a list).

Consider the target string T
CDCECDCECE
Below is an incomplete prefix table for the target string

given above. Complete the prefix table by writing the

missing numbers in the appropriate boxes. (4 marks)
c D ¢ E C¢C D C E C E

0 110 2 4 0

M269 Revision
2018

Phil Molyneux

M269 2015J Exam Q 7

40/134 (51/145)

M269 2015J Exam

Soln 7

M269 Revision
2018

Phil Molyneux

Unit 3 Sorting

Unit 4 Searching

M269 2015J
M269 2015J
M269 2015J
M269 2015J
M269 2015J
M269 2015J
M269 2015J
M269 2015J

Exam Q 5
Exam Soln 5
Exam Q 6
Exam Soln 6
Exam Q 7
Exam Soln 7
Exam Q 8

Exam Soln 8

Unit 5 Optimisation

M269 2015J
M269 2015J
M269 2015J
M269 2015J

Exam Q 9
Exam Soln 9
Exam Q 10
Exam Soln 10

41/134 (52/145)

M269 2015J Exam M269 Revision

Q 8 Phil Molyneux

» Consider the following Binary Search Tree. (4 marks)

@ M269 2015J Exam Q 8

(a) Calculate the balance factors of each node in the above
tree and annotate the above tree to show these balance
factors.

(b) Redraw the tree after node 51 has been deleted.

42/134 (53/145)

M269 2015J Exam M269 Revision

Soln 8 Phil Molyneux

(a) Balance factors

@ M269 2015J Exam Soln 8

» Soln 8 continued on next slide

43/134 (54/145)

M269 2015J Exs Exam

Soln 8 (b)

(b) Delete 51

» Go to Exam Q 8

M269 Revision
2018

Phil Molyneux

Unit 3 Sorting

Unit 4 Searching

M269 2015J Exam Q 5
M269 2015J Exam Soln 5
M269 2015J Exam Q 6
M269 2015J Exam Soln 6
M269 2015J Exam Q 7
M269 2015J Exam Soln 7
M269 2015J Exam Q 8
M269 2015J Exam Soln 8
Unit 5 Optimisation
M269 2015J Exam Q 9
M269 2015J Exam Soln 9
M269 2015J Exam Q 10
M269 2015J Exam Soln 10

44/134 (55/145)

M269 Revision

M269 Specimen Exam 2018

Unit 5 Topics, Q9, Q10 Phil Molyneux

» Unit 5 Optimisation
» Graphs searching: DFS, BFS
» Distance: Dijkstra’s algorithm

» Greedy algorithms: Minimum spanning trees, Prim’s
algorithm

» Dynamic programming: Knapsack problem, Edit
distance

Unit 5 Optimisation

45/134 (56/145)

M269 2015J Exam M269 Revision

Q o) Phil Molyneux

» Question 9 In Python a dictionary of dictionaries can
be used to represent a graph’s adjacency list. Consider

the following: (4 marks)
graph2 = {

O:{’neighbours’ 1,2,3,41},

1:{’neighbours’ 0,3,41}%},

2:{’neighbours’ 0,51},

3:{’neighbours’ 0,1,5]},

4:{’neighbours’ 0,111},

5:{’neighbours’ 2,3]1}%

» Q 9 continued on next slide

M269 2015J Exam Q 9

46/134 (57/145)

M269 2015J Exam M269 Revision

Q O (COntd) Phil Molyneux

> In the space provided below, complete the graph
corresponding to the adjacency list given above.

@ : : M269 2015J Exam Q 9

47/134 (58/145)

M269 2015J Exam M269 Revision

Soln 9 Phil Molyneux

» Here is a representation with unidirectional edges

M269 2015J Exam Soln 9

» Soln 9 continued on next slide

48/134 (59/145)

M269 2015J Exam M269 Revision

Soln 9 (contd) Phil Molyneux

» Here is a representation with unidirectional edges

M269 2015J Exam Soln 9

» Soln 9 continued on next slide

49/134 (60/145)

M269 2015J Exs Exam M269 Revision

Soln 9 (contd) Phil Molyneux

» Here is a representation with bidirectional edges (but
we have not been told that every edge has a reverse
edge and of the same weight or length)

@ M269 2015J Exam Soln 9

50/134 (61/145)

M269 2015J Exam M269 Revision

Q 10 Phil Molyneux

» Question 10 Consider the following graph: (4 marks)

1 2

3 DN O

» In the space provided below, draw one spanning tree
that could be generated from a Breadth First Search
of the above graph starting at vertex 2.

M269 2015J Exam Q 10

51/134 (62/145)

M269 2015J Exam M269 Revision

Soln 10 Phil Molyneux

» Spanning tree from breadth first search from vertex 2 (1
of 2, in red)

» Soln 10 continued on next slide

M269 2015J) Exam Soln 10

52/134 (63/145)

M269 2015J Exs Exam M269 Revision

Soln 10 Phil Molyneux

» Spanning tree from breadth first search from vertex 2 (2
of 2, in red)

D

(3) 4

M269 2015J) Exam Soln 10

53/134 (64/145)

. M269 Revision
M269 SpeC|men Exam 2018

Q].]_ TOpiCS Phil Molyneux

» Unit 6

> Sets

» Propositional Logic
» Truth tables

» Valid arguments

> I n fl n ite Sets Propositional Logic

54/134 (65/145)

M269 Revision

M269 2015J Exam 2018
Q 11 Phil Molyneux
» Question 11 (4 marks)

(a) What does it mean to say that two well-formed
formulas (WFFs) are logically equivalent ? Use the
space below for your answer.

(b) Is the following set of propositional WFFs satisfiable ?
{(P—=Q),(QR—P)}

» Explain how you arrived at your answer in the space M269 2015 Exam Q 11
below:

55/134 (66/145)

M269 Revision

M269 2015J Exam 2018

Soln 11 Phil Molyneux

(a) Two well-formed formulas (WFFs) A and B are logically
equivalent if and only if A and B have the same value

in all interpretations.

(b) The sets of WFFs is satisfiable if each member has the
value True for some interpretation

PlQIP=-Q|QR—P

T T T T

T F F T M269 2015) Exam Soln 11
F | T T F

F | F T T

» [he set is satisfiable

56/134 (67/145)

M269 SpeC|men Exam M2692c|)?1e2;/ision
Q12 TOpiCS Phil Molyneux

» Unit 6
» Predicate Logic
» Translation to/from English

» |Interpretations

Predicate Logic

57/134 (68/145)

M269 2015J Exam

Q 12

>

Question 12 Consider a domain with some board
games and people. (6 marks)
D = {Backgammon, Chess, Draughts, Joe, Mary, Sue}

An interpretation assigns people to corresponding
constants (you won't need the constants for games).

Z(joe) = Joe
Z(mary) = Mary
Z(sue) = Sue

The predicates owns and likes are assigned to binary
relations with the following comprehensions:

Z(owns) = {(P, G): the person P owns the game G}
Z(likes) = {(P, G): the person P likes the game G}

» (Q 12 continued on next slide

M269 Revision
2018

Phil Molyneux

M269 2015J Exam Q 12

58/134 (69/145)

M269 2015J Exam M269 Revision

Q 12 (COntd) Phil Molyneux

» [he enumerations of the relations are:

» Z(owns) = {(Joe, Chess), (Mary, Backgammon), (Sue,
Draughts)}

» 7(likes) = {(Joe, Backgammon), (Mary, Backgammon),
(Mary, Draughts), (Sue, Backgammon), (Sue, Chess)}

» You will find the questions on the next page.

» You are asked to translate a sentence of predicate logic
to English or vice-versa.

M269 2015J Exam Q 12

> You also need to state whether the sentence is TRUE or
FALSE in the interpretation that is provided on this
page, and give an explanation of your answer.

» Q 12 continued on next slide

59/134 (70/145)

M269 Revision

M269 2015J Exam 2018

Q 12 (COntd) Phil Molyneux

» In your explanation you need to consider any relevant
values for the variables, and show, using the
interpretation above, whether they make the quantified

expression TRUE or FALSE.

» When your explanation refers to the interpretation,
make sure that you use formal notation.

» So instead of saying that Joe likes Backgammon
according to the interpretation, write:

(JOe, BaCkgammon) - I(//kes) M269 2015) Exam Q 12

» Similarly, instead of Joe doesn'’t like Backgammon you
would need to write:

(Joe, Backgammon) ¢ Z(likes).

» (Q 12 continued on next slide

60/134 (71/145)

M269 2015J Exam M269 Revision

Q 12 (COntd) Phil Molyneux

(a) VX.(owns(joe, X) — likes(joe, X))
can be translated into English as:

» This sentence is (choose from TRUE/FALSE),
because:

(b) There's something that both Mary and Sue like

can be translated into predicate logic as: 269 2015) Exam Q 1
> This sentence is (choose from TRUE/FALSE),
because:

61/134 (72/145)

M269 2015J Exam M269 Revision

Soln 12 Phil Molyneux

(a) Joe likes the games he owns
» False — Joe owns Chess but does not like it
» (Joe, Chess) € Z(owns)
» but (Joe, Chess) ¢ Z(likes)
(b) 3X.(likes(mary, X) A likes(sue, X))
» [rue — they both like Backgammon

M269 2015J Exam Soln 12

62/134 (73/145)

M?269 Specimen Exam M269 Revisor
Q13 Topics Phil Molyneux

» Unit 6
» SQL queries

Propositional Logic

M269 2015J Exam Q 11
M269 2015J Exam Soln 11
Predicate Logic

M269 2015J Exam Q 12
M269 2015J Exam Soln 12
SQL Queries

M269 2015J Exam Q 13
M269 2015J Exam Soln 13
Logic

M269 2015J Exam Q 14
M269 2015J Exam Soln 14
Computability

M269 2015J Exam Q 15
M269 2015J Exam Soln 15

Complexity

63/134 (74/145)

M269 2015J Exam M269 Revision

Q 13 Phil Molyneux

» Question 13 The interpretation of the previous
question can also be represented by a database with the

following tables, owns and likes. (6 marks)
owns likes
owner | boardgame person | game
Joe Chess Joe Backgammon
Mary | Backgammon Mary Backgammon
Sue Draughts Mary | Draughts
Sue Backgammon
Sue Chess M269 2015) Exam Q 13

» (Q 13 continued on next slide

64/134 (75/145)

M269 2015J Exam M269 Revision

Q 13 (COntd) Phil Molyneux

(a) For the following SQL query, give the table returned by
the query.

SELECT person
FROM owns CROSS JOIN 1likes
WHERE game = boardgame AND person = owner;

» Write the question that the above query is answering.

(b) Write an SQL query that answers the question
Which games does Sue like? 1260 20153 Erarn G 13
» The answer should be the following table:
game

Backgammon
Chess

65/134 (76/145)

M269 2015J Exam M269 Revision

Soln 13 Phil Molyneux

(a) The table

Mary
Sue

» \WWho owns games they like ?
(b) The SQL query

SELECT game
FROM 1likes
WHERE person = ’Sue’;

M269 2015J) Exam Soln 13

66/134 (77/145)

M269 Specimen Exam M269 Revisor

Q14 topics Phil Molyneux

» Unit 7
» Proofs

» Natural deduction

Propositional Logic

M269 2015J Exam Q 11
M269 2015J Exam Soln 11
Predicate Logic

M269 2015J Exam Q 12
M269 2015J Exam Soln 12
SQL Queries

M269 2015J Exam Q 13
M269 2015J Exam Soln 13
Logic

M269 2015J Exam Q 14
M269 2015J Exam Soln 14
Computability

M269 2015J Exam Q 15
M269 2015J Exam Soln 15

Complexity

67/134 (78/145)

Logic

Logicians, Logics, Notations

> A plethora of logics, proof systems, and different
notations can be puzzling.

» Martin Davis, Logician When | was a student, even the
topologists regarded mathematical logicians as living in
outer space. Today the connections between logic and
computers are a matter of engineering practice at every
level of computer organization

» Various logics, proof systems , were developed well
before programming languages and with different
motivations,

M269 Revision

2018

Phil Molyneux

68/134 (79/145)

http://en.wikipedia.org/wiki/Martin_Davis

. M269 Revision
I_O g |C 2018

Logic and Programming Languages Phil Molyneux

» Turing machines, Von Neumann architecture and

procedural languages Fortran, C, Java, Perl, Python,
JavaScript

» Resolution theorem proving and logic programming —
Prolog

» Logic and database query languages — SQL (Structured
Query Language) and QBE (Query-By-Example) are
syntactic sugar for first order logic

» Lambda calculus and functional programming with
Miranda, Haskell, ML, Scala

69/134 (80/145)

http://en.wikipedia.org/wiki/Von_Neumann_architecture
http://en.wikipedia.org/wiki/Lambda_calculus

Logical Arguments
Validity and Justification

>

There are two ways to model what counts as a logically
good argument:

» the semantic view

» the syntactic view
The notion of a valid argument in propositional logic is
rooted in the semantic view.

It is based on the semantic idea of interpretations:
assignments of truth values to the propositional
variables in the sentences under discussion.

A valid argument is defined as one that preserves truth
from the premises to the conclusions

The syntactic view focuses on the syntactic form of
arguments.

Arguments which are correct according to this view are
called justified arguments.

M269 Revision

2018

Phil Molyneux

70/134 (81/145)

Logical Arguments

Proof Systems, Soundness, Completeness

>

Semantic validity and syntactic justification are different
ways of modelling the same intuitive property: whether
an argument is logically good.

A proof system is sound it any statement we can prove
(justify) is also valid (true)

A proof system is adequate if any valid (true) statement
has a proof (justification)

A proof system that is sound and adequate is said to be
complete

Propositional and predicate logic are complete —
arguments that are valid are also justifiable and vice
Versa

Unit 7 section 2.4 describes another logic where there
are valid arguments that are not justifiable (provable)

M269 Revision

2018

Phil Molyneux

71/134 (82/145)

Logical Arguments

Valid arguments

» Unit 6 defines valid arguments with the notation

Fn

C

» The argument is valid if and only if the value of C is
True in each interpretation for which the value of each
premise P;is Truefor 1 < i <n

> |In some texts you see the notation {P1,...,P,} = C

» [he expression denotes a semantic sequent or semantic

entailment

» The = symbol is called the double turnstile and is often
read as entails or models

» In LaTeX F and = are produced from \vDash and
\models — see also the turnstile package

» |In Unicode
& #8872;

— s called TRUE and is U4+22A8, HTML

M269 Revision

2018

Phil Molyneux

72/134 (83/145)

. M269 Revision
Logical Arguments 2018
Valid arguments — Tautology Phil Molyneux

» The argument {} = C is valid if and only if Cis True in
all interpretations

» Thatis, if and only if C is a tautology
» Beware different notations that mean the same thing

» Alternate symbol for empty set:) = C
> Null symbol for empty set: = C
» Original M269 notation with null axiom above the line:

C

73/134 (84/145)

. M269 Revision
Logic e
Justified Arguments Phil Molyneux

» Definition 7.1 An argument {P1,P>,...,P,} = Cis a
justified argument if and only if either the argument is
an instance of an axiom or it can be derived by means
of an inference rule from one or more other justified
arguments.

> Axioms
F'u{A}F A (axiom schema)

» This can be read as: any formula A can be derived from
the assumption (premise) of {A} itself

» The - symbol is called the turnstile and is often read as
proves, denoting syntactic entailment

» In LaTeX I is produced from \vdash

» In Unicode I~ is called RIGHT TACK and is U+22A2,
HTML ⊢

74/134 (85/145)

. M269 Revision
Logic e
Justified Arguments Phil Molyneux

» Section 2.3 of Unit 7 (not the Unit 6, 7 Reader) gives
the inference rules for —, A, and V — only dealing with
positive propositional logic so not making use of
negation — see List of logic systems

» Usually (Classical logic) have a functionally complete
set of logical connectives — that is, every binary
Boolean function can be expressed in terms the
functions in the set

75/134 (86/145)

http://en.wikipedia.org/wiki/List_of_logic_systems
http://en.wikipedia.org/wiki/Functional_completeness

= " M269 Revision
JUStIfled Arguments 2018
Inference Rules — Notation Phil Molyneux

» |nference rule notation:

Argument; ... Argument,
(/abel)

Argument

76/134 (87/145)

Justified Arguments

Inference Rules — Conjunction

F-A I+B
r-AAB
T-AAB
r-A
T-AA\B
r-B

(A-introduction)

(A-elimination left)

(A-elimination right)

M269 Revision

2018

Phil Molyneux

77/134 (88/145)

JUStiﬁed Argu ments M269 Revision

2018
Inference Rules — Implication Phil Molyneux

ru{A}+ B
I'-A— B
» [he above should be read as: If there is a proof
(justification, inference) for B under the set of premises,
I, augmented with A, then we have a proof

(justification. inference) of A — B, under the
unaugmented set of premises, T .

The unaugmented set of premises, I' may have
contained A already so we cannot assume

>

(—-introduction)

(TU{A}) —{A} isequal to T

I-A THFA—+ B
I'-B

>

(—-elimination) e

78/134 (89/145)

Justified Arguments e
Inference Rules — Disjunction Phil Molyneux
> - A (V-introduction left)
I-AV B
> r [; 5 B (V-introduction right)

» Disjunction elimination

r’-AvB TU{A'-C TU{BYFC

' C
» [he above should be read: if a set of premises I
justifies the conclusion AV B and I' augmented with

each of A or B separately justifies C, then I' justifies C

(V-elimination)

79/134 (90/145)

M269 Revision

Proofs in Tree Form 2018

Phil Molyneux

» The syntax of proofs is recursive:

» A proof is either an axiom, or the result of applying a
rule of inference to one, two or three proofs.

» We can therefore represent a proof by a tree diagram in
which each node have one, two or three children

» For example, the proof of {PA (P — Q)} F Q in
Question 4 (in the Logic tutorial notes) can be
represented by the following diagram:

{(PA(P—= Q)}PA(P— Q) (AE left) {PAN(P—>Q)}PA(P— Q) (A-E right)
Prpoaire Y Taroairroe

PAPSQ)IFQ (=8

80/134 (91/145)

L. M269 Revision
JUStIfled Arguments 2018
Self-Assessment activity 7.4 Phil Molyneux

> letT={P—-R,Q— R,PV Q}
N [FPVQR TU{P}FR TU{Q}FR

(V-elimination)

[R
. [U{P} P I’U{P}I—P%R(elimination)
rU{P}FR ’
> I_U{Q}I_Q I_U{Q}I_Q%R(>-elimination)
[U{Q}F R
» Complete tree layout
ru{pP} T uU{P} rU{Q} TuU{Q}
> - PR - Q FQ—>R(>_E)
r-pPvQ rU{P}rFR rU{Q}r R i
M- R e s

81/134 (92/145)

Justified Arguments
Self-assessment activity 7.4 — Linear Layout
{P—-R,Q—R,PVQRIFPVQ
{P—-R,Q— R,PVQ}L

1.

NSO AE W

{P—-R,Q— R,PVQ}
{P—-R,Q— R,PV Q}
{P—-R,Q— R,PV Q}
{P—>R,Q— R,PVQ}
{P—>R,Q@—R,PVQ}L

\—/

\—/

\—/

\—/

1P}
1P}
1@}
1Q}

- P

- P =R
- Q
{d—R

{P} mR

1@}

{P—-R,Q—R,PVQ}FR

- R

Axiom
Axiom
Axiom
Axiom
Axiom

4,5 —-E
1, 6,7, V-E

23%E

M269 Revision

2018

Phil Molyneux

82 /134 (93/145)

M269 2015J Exam M269 Revision

Q 14 Phil Molyneux

» Question 14 Consider the following axiom schema and

rules: (4 marks)
» Axiom schema {A,B} - A
> Rules
> -ANDE (A-elimination left)
- A
> FAANB (A-elimination right)
- B
> FA I'™B (A-introduction)
I'-AANB
ruU{A}+-B
> (—-introduction)
I'-A— B
> I" I_ A I" I_ A % B (>_e|imination) M269 2015J Exam Q 14
I'-B

» Q 14 continued on next slide

83/134 (94/145)

M269 2015J Exam M269 Revision

Q 14 Phil Molyneux

» Complete the following proof by filling in the two boxes.
You can use any of the above as appropriate.

1. {V.W}FV Axiom schemal]
2. |77 77 Axiom schemal]
3. {V.W}-VAW |77 77

M269 2015J Exam Q 14

84/134 (95/145)

M269 2015J Exam M269 Revision

Soln 14 Phil Molyneux

» Completed proof
1. {V.W}FV Axiom schemal]
2. ({V,.W}+W Axiom schemal]
3. {V,W}FVAW ||[A-introduction]

M269 2015J) Exam Soln 14

85/134 (96/145)

M269 SpeC|men Exam M2692c|)?1eé/ision
Q15 TOpiCS Phil Molyneux

> Unit 7

» Computability and ideas of computation
» Complexity

» P and NP

» NP-complete

Computability

86/134 (97/145)

. M269 Revision
COmputablllty 2018
ldeas of Computation Phil Molyneux

» The idea of an algorithm and what is effectively
computable

» Church-Turing thesis Every function that would
naturally be regarded as computable can be computed
by a deterministic Turing Machine. (Unit 7 Section 4)

» See Phil Wadler on computability theory performed as
part of the Bright Club at The Strand in Edinburgh,
Tuesday 28 April 2015

Computability

87 /134 (98/145)

http://wadler.blogspot.co.uk/2015/05/bright-club-computability.html

Computability

Reducing one problem to another

» To reduce problem P; to P>, invent a construction that
converts instances of P; to P> that have the same
answer. That is:

> any string in the language P; is converted to some
string in the language P»

» any string over the alphabet of P; that is not in the
language of P; is converted to a string that is not in the
language P>

» With this construction we can solve P;

» Given an instance of P, that is, given a string w that
may be in the language P;, apply the construction
algorithm to produce a string x

» Test whether x is in P> and give the same answer for w
N Pl

M269 Revision
2018

Phil Molyneux

Computability

88/134 (99/145)

M269 Revision

COm putablllty 2018

Direction of Reduction Phil Molyneux

» T[he direction of reduction is important

> |f we can reduce P; to P> then (in some sense) P, is at
least as hard as P; (since a solution to P, will give us a

solution to P;)
» So, if P5 is decidable then Py is decidable

» To show a problem is undecidable we have to reduce
from an known undecidable problem to it

~ x(dpp, (x) = dpp, (reduce(x)))
» Since, if P7 is undecidable then P, is undecidable

Computability

89/134 (100/145)

M269 Revision

COm putablllty 2018

Models of Computation Phil Molyneux

» In automata theory, a problem is the question of
deciding whether a given string is a member of some
particular language

» If 2 is an alphabet, and L is a language over 2, that is
[C 2", where 2* is the set of all strings over the
alphabet > then we have a more formal definition of
decision problem

» Given a string w € 2.*, decide whether w € L

» Example: Testing for a prime number — can be
expressed as the language L, consisting of all binary
strings whose value as a binary number is a prime
number (only divisible by 1 or itself)

Computability

90/134 (101/145)

M269 Revision

COm putablllty 2018

Church-Turing Thesis & Quantum Computing Phil Molyneux

» Church-Turing thesis Every function that would
naturally be regarded as computable can be computed
by a deterministic Turing Machine.

» physical Church-Turing thesis Any finite physical
system can be simulated (to any degree of
approximation) by a Universal Turing Machine.

» strong Church-Turing thesis Any finite physical
system can be simulated (to any degree of
approximation) with polynomial slowdown by a
Universal Turing Machine.

» Shor's algorithm (1994) — quantum algorithm for
factoring integers — an NP problem that is not known
to be P — also not known to be NP-complete and we Computabity
have no proof that it is not in P

91/134 (102/145)

http://en.wikipedia.org/wiki/Shor's_algorithm

. M269 Revision
COmputablllty 2018
Turing Machine Flalll Jelyeu

» Finite control which can be in any of a finite number
of states

» Tape divided into cells, each of which can hold one of a
finite number of symbols

> Initially, the input, which is a finite-length string of
symbols in the input alphabet, is placed on the tape

> All other tape cells (extending infinitely left and right)
hold a special symbol called blank

» A tape head which initially is over the leftmost input
symbol

» A move of the Turing Machine depends on the state
and the tape symbol scanned

Computability

» A move can change state, write a symbol in the current
cell, move left, right or stay

92/134 (103/145)

Turing Machine Diagram

Turing Machine Diagram

OE

Reading and Writing Head

(moves in both directions)

a3

-/

di

do

dn

Finite Control

/O Tape

M269 Revision
2018

Phil Molyneux

Computability

93/134 (104/145)

. M269 Revision
COm putablllty 2018
Turing Machine notation Phil Molyneux

» (finite set of states of the finite control
» 3 finite set of input symbols (M269 S)
» [complete set of tape symbols > C I

» o Transition function (M269 instructions, /)
0 QxlI—QxIx{LR,S}
0(q, X) = (p, Y, D)

> 0(qg, X) takes a state, g and a tape symbol, X and
returns (p, Y, D) where p is a state, Y is a tape symbol
to overwrite the current cell, D is a direction, Left,
Right or Stay

> qo Start state qg € Q
» B blank symbol B €T and B ¢ X
» [set of final or accepting states F C

Computability

94/134 (105/145)

Computability
Decidability

» Decidable — there is a TM that will halt with yes/no
for a decision problem — that is, given a string w over
the alphabet of P the TM with halt and return yes.no
the string is in the language P (same as recursive in
Recursion theory — old use of the word)

» Semi-decidable — there is a TM will halt with yes if
some string is in P but may loop forever on some inputs
(same as recursively enumerable) — Halting Problem

» Highly-undecidable — no outcome for any input —
Totality, Equivalence Problems

M269 Revision
2018

Phil Molyneux

Computability

95/134 (106/145)

http://en.wikipedia.org/wiki/Recursion_theory

- M269 Revision
COmputablllty 2018
Undecidable Problems Phil Molyneux

» Halting problem — the problem of deciding, given a
program and an input, whether the program will
eventually halt with that input, or will run forever —
term first used by Martin Davis 1952

» Entscheidungsproblem — the problem of deciding
whether a given statement is provable from the axioms
using the rules of logic — shown to be undecidable by
Turing (1936) by reduction from the Halting problem to
it

» Type inference and type checking in the
second-order lambda calculus (important for functional
programmers, Haskell, GHC implementation)

» Undecidable problem — see link to list Computabity

96/134 (107/145)

http://en.wikipedia.org/wiki/Halting_problem
http://en.wikipedia.org/wiki/Entscheidungsproblem
http://en.wikipedia.org/wiki/System_F
http://en.wikipedia.org/wiki/Undecidable_problem

a = M269 Revision
COmputablllty 2018

Why undecidable problems must exist Phil Molyneux

» A problem is really membership of a string in some
language

» The number of different languages over any alphabet of
more than one symbol is uncountable

» Programs are finite strings over a finite alphabet (ASCI
or Unicode) and hence countable.

» There must be an infinity (big) of problems more than
programs.

Computability

97/134 (108/145)

. M269 Revision
COm putablllty 2018
Computability and Terminology (1) Phil Molyneux

» The idea of an algorithm dates back 3000 years to
Euclid, Babylonians. . .

> In the 1930s the idea was made more formal: which
functions are computable’

» A function a set of pairs
f={(x,f(x)): x € XA f(x)e€ Y} with the function
property
» Function property: (a,b) € f AN(a,c) e f = b==c
» Function property: Same input implies same output

» Note that maths notation is deeply inconsistent here —
see Function and History of the function concept

» What do we mean by computing a function — an
algorithm 7

Computability

98/134 (109/145)

http://en.wikipedia.org/wiki/Computable_function
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/History_of_the_function_concept

Computability
Computability and Terminology (2)

>

>

In the 1930s three definitions:

A-Calculus, simple semantics for computation — Alonzo
Church

General recursive functions — Kurt Godel

» Universal (Turing) machine — Alan Turing

Terminology:

» Recursive, recursively enumerable — Church, Kleene

» Computable, computably enumerable — Godel, Turing
Decidable, semi-decidable, highly undecidable

In the 1930s, computers were human

» Unfortunate choice of terminology

v

v

Turing and Church showed that the above three were
equivalent

Church-Turing thesis — function is intuitively
computable if and only it Turing machine computable

M269 Revision
2018

Phil Molyneux

Computability

99/134 (110/145)

http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Alonzo_Church
http://en.wikipedia.org/wiki/Alonzo_Church
http://en.wikipedia.org/wiki/Μ-recursive_function
http://en.wikipedia.org/wiki/Kurt_Gödel
http://en.wikipedia.org/wiki/Universal_Turing_machine
http://en.wikipedia.org/wiki/Alan_Turing
http://en.wikipedia.org/wiki/Stephen_Cole_Kleene
http://en.wikipedia.org/wiki/Church–Turing_thesis

M269 2015J Exam M269 Revision

Q 15 Phil Molyneux

» Question 15 Which two of the following statements
are true? (Tick two boxes.)

(a) The Halting Problem is semi-decidable.
(b) The Equivalence Problem is computable.

(c) The Church-Turing Thesis proves that all definitions of
an algorithm are equivalent.

(d) A reduction from a non-computable problem A to a
problem B proves that B is not computable.

> Note that the original exam did not have labels for the boxes

M269 2015J Exam Q 15

100/134 (111/145)

M269 2015J Exam

Soln 15

(a)
(b)
(c)

(d)

Question 15 Which two of the following statements
are true? (Tick two boxes.)

The Halting Problem is semi-decidable. True
The Equivalence Problem is computable. False

The Church-Turing Thesis proves that all definitions of
an algorithm are equivalent. False

A reduction from a non-computable problem A to a
problem B proves that B is not computable. True

M269 Revision
2018

Phil Molyneux

M269 2015J Exam Soln 15

101/134 (112/145)

M269 Revision

COm pleX|ty 2018

P and NP Phil Molyneux

» P, the set of all decision problems that can be solved in
polynomial time on a deterministic Turing machine

» NP, the set of all decision problems whose solutions can
be verified (certificate) in polynomial time

» Equivalently, NP, the set of all decision problems that
can be solved in polynomial time on a non-deterministic

Turing machine
» A decision problem, dp is NP-complete if

1. dpisin NP and
2. Every problem in NP is reducible to dp in polynomial

time
» NP-hard — a problem satistying the second condition,
whether or not it satisfies the first condition. Class of
problems which are at least as hard as the hardest
problems in NP. NP-hard problems do not have to be in
NP and may not be decision problems Complexiy

102/134 (113/145)

http://en.wikipedia.org/wiki/P_(complexity)
http://en.wikipedia.org/wiki/NP_(complexity)
http://en.wikipedia.org/wiki/NP-complete

Complexity
P and NP — Diagram

Euler diagram for P, NP, NP-complete and NP-hard set of

problems

NP-Hard

NP-Complete

NP

ECompIexity

NP-Hard

P=NP=
NP-Complete

Source: Wikipedia NP-complete entry

M269 Revision
2018

Phil Molyneux

Complexity

103/134 (114/145)

http://en.wikipedia.org/wiki/Euler_diagram
http://en.wikipedia.org/wiki/NP-complete

, M269 Revision
Com pleX|ty 2018
NP-complete problems Phil Molyneux

» Boolean satisfiability (SAT) Cook-Levin theorem
» Conjunctive Normal Form 3SAT

» Hamiltonian path problem

» Travelling salesman problem

» NP-complete — see list of problems

Complexity

104 /134 (115/145)

http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Cook-Levin_theorem
http://en.wikipedia.org/wiki/3-satisfiability
http://en.wikipedia.org/wiki/Hamiltonian_path_problem
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/NP-complete

Complexity

Knapsack Problem

MY HOBBY:

EMBEDDING NP-(DMPLETE PROBLEMS IN RESTAURANT ORDERS

|
|

| ¢+ CHOTCHKIES RESTAURANT

«— APPENZERS ——
MIXED FRUIT 2.15
FRENCH FRIES 2.75
SIDE 5ALAD 335
HOT WINGS 3.55

MOZZAREULA STICKS 4.20
SAMPLER PLATE 5.80

— SANDWICHES ~—
BARRENNE L B

WED LIKE EXACTLY §15.05
WORTH OF APPETIZERS, PLEASE..

1 L EXACTLY? UK.

HERE, THESE PAPERS ON THE KNAPSACK
PROBLEM MIGHT HELP YOU OUT.

LISTEN, I HAVE SIx OTHER
TABLES TO GET TD —

~AG FAST AS POSSIRLE, (F (OURSE. WANT
COMETHING ON TRAVELING SALESNANT /

\
(YILR

Source & Explanation: XKCD 287

M269 Revision
2018

Phil Molyneux

Complexity

105/134 (116/145)

http://www.explainxkcd.com/wiki/index.php/287:_NP-Complete

NP-Completeness and Boolean Satisfiability

Points on Notes

» The Boolean satisfiability problem (SAT) was the first
decision problem shown to be NP-Complete

» This section gives a sketch of an explanation

» Health Warning different texts have different notations
and there will be some inconsistency in these notes

» Health warning these notes use some formal notation
to make the ideas more precise — computation requires

precise notation and is about manipulating strings
according to precise rules.

M269 Revision
2018

Phil Molyneux

NP-Completeness and
Boolean Satisfiability

106/134 (117/145)

http://en.wikipedia.org/wiki/Boolean_satisfiability_problem

: - JE M?269 Revision
NP-Completeness and Boolean Satisfiability 2018
Alphabets, Strings and Languages Phil Molyneux
» Notation:

») is a set of symbols — the alphabet

» Y X is the set of all string of length k, which each
symbol from 2

» Example: if ¥ ={0,1}

» Y1 =1{0,1}
» ¥2 — {00,01,10, 11}

> >0 = e} where € is the empty string

> > ™ is the set of all possible strings over X
» Y =3Yuxtux?u...

» A Language, L, over 2 is a subset of 2*
» [C 2"

NP-Completeness and
Boolean Satisfiability

107/134 (118/145)

NP-Completeness and Boolean Satisfiability
Language Accepted by a Turing Machine

» Language accepted by Turing Machine, M denoted by
L(M)

» L(M) is the set of strings w € L* accepted by M

» For Final States F = {Y, N}, a string w € L% is

accepted by M < (if and only if) M starting in gg with
w on the tape halts in state Y

» Calculating a function (function problem) can be turned
into a decision problem by asking whether f(x) =y

M269 Revision
2018

Phil Molyneux

NP-Completeness and
Boolean Satisfiability

108/134 (119/145)

http://en.wikipedia.org/wiki/Function_problem
http://en.wikipedia.org/wiki/Decision_problem

o - “ - M269 Revision
NP-Completeness and Boolean Satisfiability 2018
The NP-Complete Class Phil Molyneux

» |f we do not know if P = NP, what can we say ?
» A language L is NP-Complete if:

» L € NP and

» for all other L” € NP there is a polynomial time
transformation (Karp reducible, reduction) from L’ to L

» Problem P; polynomially reduces (Karp reduces,
transforms) to P, written Py o< Py or P1 <, Py, iff
df : dpp, — dpp, such that
> VI cdpp [/ € Yp, & f(I) € Yp,]
» f can be computed in polynomial time

NP-Completeness and
Boolean Satisfiability

109/134 (120/145)

. e ay - M Revision
NP-Completeness and Boolean Satisfiability " ors
The NP-Complete Class (2) Phil Molyneux

> More formally, L; C X7 polynomially transforms to
[>» C 2%, written L1 o< Ly or L4 Sp [~ iff If : ZT — Z;
such that
» Vx € Xi|x € L1 & f(x) € Ly
» Thereis a polynomial time TM that computes f

» [ransitivity If L1 o< Ly and Ly o< L3 then L1 o< L3
» If L is NP-Hard and L € P then P = NP
» It L is NP-Complete, then L € P if and only if P = NP

> If Lg is NP-Complete and L € NP and Lg oc L then L is
NP-Complete

» Hence if we find one NP-Complete problem, it may
become easier to find more

> In 1971/1973 Cook-Levin showed that the Boolean
satisfiability problem (SAT) is NP-Complete

NP-Completeness and
Boolean Satisfiability

110/134 (121/145)

http://en.wikipedia.org/wiki/Cook–Levin_theorem
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem

. e ay - M Revision
NP-Completeness and Boolean Satisfiability " ors
The Boolean Satisfiability Problem Phil Molyneux

> A propositional logic formula or Boolean expression is

built from variables, operators: AND (conjunction, A),
OR (disjunction, V), NOT (negation, —)

» A formula is said to be satisfiable if it can be made True
by some assignment to its variables.

» The Boolean Satisfiability Problem is, given a formula,
check it it is satisfiable.

» [nstance: a finite set U of Boolean variables and a finite
set C of clauses over U
» Question: |s there a satisfying truth assignment for C 7

» A clause is is a disjunction of variables or negations of
variables

» Conjunctive normal form (CNF) is a conjunction of
clauses

» Any Boolean expression can be transformed to CNF

NPC mpleteness and
n Sati f bIt
1117134 (122)145)

- g -y M Revision
NP-Completeness and Boolean Satisfiability " ors
The Boolean Satisfiability Problem (2) Phil Molyneux
» Given a set of Boolean variable U = {uy, up,...,un}

> A literal from U is either any u; or the negation of some
u; (written ;)

» A clause is denoted as a subset of literals from U —
U2, Ug, Us |

» A clause is satisfied by an assignment to the variables if

at least one of the literals evaluates to True (just like
disjunction of the literals)

> Let C be a set of clauses over U — C is satistiable iff
there is some assignment of truth values to the
variables so that every clause is satisfied (just like CNF)

» C={{u,u,u3},{n,u3},{ur,u3}} is satisfiable
> C ={{u1,wm},{u, o}, {ur}} is not satisfiable

NP C mpleteness and
n Sati f bIt
112/134 (123/145)

. - J L M269 Revision
NP-Completeness and Boolean Satisfiability 2018
The Boolean Satisfiability Problem (3) A biteleus

» Proof that SAT is NP-Complete looks at the structure
of NDTMs and shows you can transtorm any NDTM to
SAT in polynomial time (in fact logarithmic space
suffices)

» SAT is in NP since you can check a solution in
polynomial time

» To show that VL € NP : L o« SAT invent a polynomial
time algorithm for each polynomial time NDTM, M,
which takes as input a string x and produces a Boolean
formula E, which is satisfiable iff M accepts x

» See Cook-Levin theorem

NP-Completeness and
Boolean Satisfiability

113/134 (124/145)

http://en.wikipedia.org/wiki/Cook-Levin_theorem

5 - “ - M269 Revision
NP-Completeness and Boolean Satisfiability 2018
Coping with NP-Completeness Phil Molyneux

» What does it mean if a problem is NP-Complete ?

» Thereis a P time verification algorithm.

> There is a P time algorithm to solve it iff P = NP (?)

» No one has yet found a P time algorithm to solve any
NP-Complete problem

» So what do we do 7

» Improved exhaustive search — Dynamic Programming;
Branch and Bound

» Heuristic methods — acceptable solutions in acceptable
time — compromise on optimality

» Average time analysis — look for an algorithm with
good average time — compromise on generality (see
Big-O Algorithm Complexity Cheatsheet)

» Probabilistic or Randomized algorithms — compromise
on correctness

NP-Completeness and
Boolean Satisfiability

114/134 (125/145)

http://bigocheatsheet.com

M269 2015J Exam

Q Part2

> Answer every question in this Part.

» [he marks for each question are given below the
question number.

» Marks for a part of a question are given after the
guestion.

» Answers to questions in this Part must be written in the
additional answer books, which you should also use for
your rough working.

M269 Revision
2018

Phil Molyneux

M269 Exam 2015J
Q Part2

115/134 (126/145)

M269 2015J Exam M269 Revision

Q 16 (25 marks) Phil Molyneux

» The Universal Product Corporation (UPC) keeps rather
primitive computerised records of its sales of a range of
world class products.

» These are contained in a sequence S of sales, where
each sale records the number sold of a particular
product, in the form of [productCode, numberSold].

» The sequence S lists the sales as they were processed,
from first to last.

M269 2015J Exam Q 16

» [he sequence has at least one sale. Each product has a
different productCode. There may be multiple sales for
the same product.

» () 16 continued on next slide

116/134 (127/145)

M269 2015J Exam

Q 16 (contd)

» An example sequence S is, in Python notation:
[[’PR1’, b], [’B20’, 10], [’PR1’, 3]]

(a) The company requires a function that returns a
sequence of how many sales were processed for each
product. For example, the example sequence S given
above would lead to an output of either:

[[’PR1’>, 2], [’B20’, 1]] or
[[’B20’, 1], [’PR1’, 2]]

» showing that there are two sales for product ’PR1’ and
one for product ’B20°.

» (Q 16 continued on next slide

M269 Revision
2018

Phil Molyneux

M269 2015J Exam Q 16

117/134 (128/145)

M269 2015J Exam M269 Revision

Q 16 (COntd) Phil Molyneux

» Using the following template, formally state this as a
computational problem, in the style adopted by M269.

(6 marks)

Name: SalesSummary

Inputs:

Preconditions: (indicate only one)
Outputs:

Postconditions: (indicate only one)

» Q 16 continued on next slide M269 2015) Exam Q 16

118/134 (129/145)

M269 2015J Exam

Q 16 (contd)

(b) UPC want a function that returns the code of the
product with the fewest sales processed, so that UPC

can start promoting It.

> If the lowest number of sales is shared by several
products, the function can return the product code of

any one of them.
» A UPC employee has the following initial insight:

> Take the sales summary sequence (i.e. the output of
SalesSummary) and use QuickSort to sort it in

ascending order by the number of sales.
» This will put one of the products with fewest sales in

the first position, so then just return the product code
of the first element of the sorted sequence.

» (16 continued on next slide

M269 Revision
2018

Phil Molyneux

M269 2015J Exam Q 16

119/134 (130/145)

M269 Revision

M269 2015J Exam 2018

Q 16 (COntd) Phil Molyneux

(i) What is the order of complexity, in Big-O notation, of
the algorithm described by the employee’s initial insight,

in the best case?
» Assume that SalesSummary has already run.

(ii) Give the initial insight of a more efficient solution and

state its order of complexity in Big-O notation.
(6 marks)

. . M269 2015J Exam Q 16
» () 16 continued on next slide

120/134 (131/145)

M269 2015J Exam

Q 16 (contd)

(c)

UPC introduce a further data sequence P, which is an
unsorted sequence of product prices, such that each
item in the sequence is in the form of [productCode,
price] and each product is included exactly once.

A function is required that will return the total value of

all sales for each product.

So given the sequence S of sales, each in the form [productCode,
numberSold]:

[[’PR1’, 5], [’B20’, 10], [’PR1’, 3]]

the output of the function would be:

[[’B20°, 49.9], [’PR1’, 28.0]]

or [[’PR1’, 27.5], [’B20’, 49.9]]

This is because 10 items of product ’B20’ (10 X 4.99 = 49.9) and 8
items of product ’PR1’ (8 x 3.50 = 28.0) were sold.

Write structured English or Python code for a
computational solution of this problem.

Q 16 continued on next slide

M269 Revision
2018

Phil Molyneux

M269 2015J Exam Q 16

121/134 (132/145)

M269 2015J Exam M269 Revision

Q 16 (COntd) Phil Molyneux

(ii) Estimate the run time T() and the order of complexity
in Big-O notation of your solution, in the worst case,
taking assignment as the unit of computation.

» Explain your reasoning. If you make any assumptions,
state them clearly. (9 marks)

» () 16 continued on next slide

M269 2015J Exam Q 16

122/134 (133/145)

M269 2015J Exam M269 Revision

Q 16 (COntd) Phil Molyneux

(d) Storing complex data items (e.g. product/price
combinations) in a list, as UPC have opted to do, can
be problematic, in particular because retrieval may be
slow when there are very large numbers of items. A
more suitable means of storage is in a structure such as
a hash table.

» Write roughly four to six sentences explaining:
(4 marks)

M269 2015J Exam Q 16

the basic principles of hash tables

and hashing,

how these could work with the UPC price data, and
outline one problem that can arise from hashing.

vV v v ¥V

123/134 (134/145)

M269 2015J Exam M269 Revision

Q 17 (15”73[’/(5) Phil Molyneux

» Your local secondary school runs a computer club for
sixth form students.

» You have been asked to give a talk on greedy
algorithms and, in preparation, to prepare a report for
the teachers summarising your talk.

» Assume that the students and teachers do not have a
background in computer science, but have been writing
programs in various computer languages and are |T
literate. 1269 2015 Bxam Q 17

» () 17 continued on next slide

124 /134 (135/145)

M269 2015J Exam

Q 17 (contd)

>

1

Your report must have the following structure:
A suitable title

2 A paragraph setting the scene: explain in layperson’s

>

terms what is meant by a greedy algorithm and give an
example of where greed is not always good.

A paragraph in which you describe a minimum spanning
tree (MST) and give an example of one. You don't need
to explain what are trees and graphs.

A paragraph in which you briefly describe what is Prim's
algorithm and some of its features. You do not need to
describe Prim’s algorithm completely.

A concluding paragraph, giving reasons, about the
benefits or otherwise of a greedy algorithm.

Q 17 continued on next slide

M269 Revision
2018

Phil Molyneux

M269 2015J Exam Q 17

125/134 (136/145)

M269 2015J Exam M269 Revision

Q 17 (Contd) Phil Molyneux

» Note that a significant number of marks will be awarded
for coherence and clarity, so avoid abrupt changes of
topic and make sure your sentences fit together to tell
an overall story.

» As a guide, you should aim to write roughly three to
flve sentences per paragraph.

M269 2015J Exam Q 17

126/134 (137/145)

M269 2015J) Exam M269 Revision

Soln Part2 Phil Molyneux

» Part 2 solutions

» Go to Q Part2 M269 Exam 2015J

Soln Part2

M269 2015J Exam Soln 16
M269 2015J Exam Soln 17

127/134 (138/145)

M269 Revision

M269 2015J Exam 2018

Soln 16 Phil Molyneux

(a) Name: SalesSummary

Inputs: An unsorted sequence of tuples

S =(s1,%,...,5,) where s, = (pn, qn) and
productCode, p, is a string, and numberSold, g, is
an integer.

Preconditions: length S > 1

Outputs: a list of tuples O = (01, 02,...,0mn) Where
0p = (Pm, rm) and pp, is a productCode and ry, is an
Integer.

M269 2015J Exam Soln 16

Postconditions: Length O equals number of product
codes

» Soln 16 continued on next slide

128/134 (139/145)

M269 2015J Exam M269 Revision

Soln 16 (contd) Phil Molyneux

(b) (i) Complexity of Quicksort in the best case is
O(nlog n) and worst case is O(n?) (see Big-O Cheat
Sheet)

> (ii) A linear search can find the smallest — O(n)

» Solnh 16 continued on next slide

M269 2015J Exam Soln 16

129/134 (140/145)

http://bigocheatsheet.com/
http://bigocheatsheet.com/

M269 2015J Exam M269 Revision

Soln 16 (contd) Phil Molyneux

(c) (i) Sketch of programming strategy

» Sort the sequence of sales using Python's Timsort —
worst case complexity O(nlog n)

» Group tuples for each product into sub-sequences —
one traversal of the sequence O(n)

» For each sub-sequence calculate the value of a sale and
sum the values — one traversal of each sub-sequence

O(n)
» (ii) Overall complexity O(nlog n)

M269 2015J Exam Soln 16

» Soln 16 continued on next slide

130/134 (141/145)

https://en.wikipedia.org/wiki/Timsort

M269 2015J Exam M269 Revision

Soln 16 (contd) Phil Molyneux

(d) Hash function and hash tables

» Hash function maps each input key to a hash value (or
slot)

» Perfect hash function maps each key to a different hash
value

» For UPC could translate productCode to an integer by
using Unicode or ASCII values for each character

» Limited storage leads to hash functions having collisions
— a hash function mapping two keys to the same slot

M269 2015J Exam Soln 16

» Hash function collisions result in the need to either
store multiple items in a single slot (closed table) or
open addressing/open tables that use some mechanism
to find a free slot

131/134 (142/145)

https://en.wikipedia.org/wiki/Hash_function

M269 2015J Exam M269 Revision

Soln 17 Phil Molyneux

» Title Greed is (sometimes) good
» Define Graph and Tree with example

» Define Minimum Spanning Tree of a graph is the
spanning tree (includes every node but may not include
every edge) that minimises total weight of edges

» Describe Prim’s algorithm — repeatedly add the next
safe edge — the only safe edge will be the one with the
smallest edge from the tree so far

» Greed is (hardly ever) good — give an example where it
dOeS Nnot WOrk — knapsack problem_ M269 2015) Exam Soln 17

132/134 (143/145)

I\/l 269 Exa m M26920R1e§/ision

Reminders Phil Molyneux

» Read the Exam arrangements booklet

» Before the exam — check the date, time and location
(and how to get there)

> At the exam centre — arrive early
» Bring photo ID with signature

» Use black or blue pens (not erasable and not pencil) —
see Cult Pens for choices — pencils for preparing
diagrams (HB or blacker)

» Practice writing by hand

> In the exam — Read the questions — carefully — ——
before and after answering them

» Don't get stuck on a question — move on, come back
later

» But do make sure you have attempted all questions
» ... and finally Good Luck

133/134 (144/145)

http://www2.open.ac.uk/students/help/exam-arrangements-booklet
http://www.cultpens.com/

M269 Exam Revision

	M269 Exam Revision Agenda & Aims
	Introductions & Revision Strategies
	M269 Exam 2016J

	Adobe Connect Interface and Settings
	M269 Prsntn 2015J Exam Qs
	M269 2015J Exam Qs
	M269 2015J Exam Q Part1

	Units 1 & 2
	Unit 1 Introduction
	M269 2015J Exam Q 1
	M269 2015J Exam Soln 1
	M269 2015J Exam Q 2
	M269 2015J Exam Soln 2
	Unit 2 From Problems to Programs
	M269 2015J Exam Q 3
	M269 2015J Exam Soln 3
	M269 2015J Exam Q 4
	M269 2015J Exam Soln 4

	Units 3, 4 & 5
	Unit 3 Sorting
	Unit 4 Searching
	M269 2015J Exam Q 5
	M269 2015J Exam Soln 5
	M269 2015J Exam Q 6
	M269 2015J Exam Soln 6
	M269 2015J Exam Q 7
	M269 2015J Exam Soln 7
	M269 2015J Exam Q 8
	M269 2015J Exam Soln 8
	Unit 5 Optimisation
	M269 2015J Exam Q 9
	M269 2015J Exam Soln 9
	M269 2015J Exam Q 10
	M269 2015J Exam Soln 10

	Units 6 & 7
	Propositional Logic
	M269 2015J Exam Q 11
	M269 2015J Exam Soln 11
	Predicate Logic
	M269 2015J Exam Q 12
	M269 2015J Exam Soln 12
	SQL Queries
	M269 2015J Exam Q 13
	M269 2015J Exam Soln 13
	Logic
	M269 2015J Exam Q 14
	M269 2015J Exam Soln 14
	Computability
	M269 2015J Exam Q 15
	M269 2015J Exam Soln 15
	Complexity

	M269 Exam 2015J Q Part2
	M269 2015J Exam Q 16
	M269 2015J Exam Q 17

	M269 Exam 2015J Soln Part2
	M269 2015J Exam Soln 16
	M269 2015J Exam Soln 17

	Exam Reminders
	White Slide

