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1 M269 Exam Revision Agenda & Aims

1. Welcome and introductions

2. Revision strategies

3. M269 Exam — Part 1 has 15 questions 60%

4. M269 Exam — Part 2 has 2 questions 40%

5. M269 Exam — 3 hours, Part 1 100 mins, Part 2 70 mins

6. M269 2015J exam (June 2016)

7. Topics and discussion for each question

8. Exam techniques

9. Adobe Connect — if you or I get cut off, wait till we reconnect (or send you an email)

10. These slides and notes are at http://www.pmolyneux.co.uk/OU/M269/M269ExamRevision/

http://www.pmolyneux.co.uk/OU/M269/M269ExamRevision/
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1.1 Introductions & Revision Strategies

• Introductions

• What other exams are you doing this year ?

• Each give one exam tip to the group

1.2 M269 Exam 2016J

• Not examined this presentation:

• Unit 4, Section 2 String search

• Unit 7, Section 2 Logic Revisited

• Unit 7, Section 4 Beyond the Limits

2 Adobe Connect Interface and Settings

Adobe Connect Interface — Student View

Adobe Connect Settings

• Everybody: Audio Settings Meeting Audio Setup Wizard. . .

• Audio Menu bar Audio Microphone rights for Participants 4

• Do not Enable single speaker mode
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• Drawing Tools Share pod menu bar Draw (1 slide/screen)

• Share pod menu bar Menu icon Enable Participants to draw 4 gray

• Meeting Preferences Whiteboard Enable Participants to draw 4

• Cancel hand tool

• Do not enable green pointer. . .

• Cursor Meeting Preferences General tab Host Cursors Show to all attendees 4 (default Off )

• Meeting Preferences Screen Share Cursor Show Application Cursor

• Webcam Menu bar Webcam Enable Webcam for Participants 4

• Recording Meeting Record Meeting. . . 4

Adobe Connect — Access

• Tutor Access

• TutorHome M269 Website Tutorials

• Cluster Tutorials M269 Online tutorial room

• Tutor Groups M269 Online tutor group room

• Module-wide Tutorials M269 Online module-wide room

• Attendance

TutorHome Students View your tutorial timetables

• Beamer Slide Scaling 379% (363 x 485 mm)

• Clear Everyone’s Status

Attendee Pod Menu Clear Everyone’s Status

• Grant Access

Meeting Manage Access & Entry Invite Participants. . . and send link via email

Adobe Connect — Keystroke Shortcuts

• Keyboard shortcuts in Adobe Connect

• Toggle Mic + M (Mac), Ctrl + M (Win) (On/Disconnect)

• Toggle Raise-Hand status + E

• Close dialog box (Mac), Esc (Win)

• End meeting + \

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html
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Adobe Connect Interface — Student View (default)

Adobe Connect Interface — Tutor View

Go to Table of Contents
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3 M269 Prsntn 2015J Exam Qs

3.1 M269 2015J Exam Qs

• M269 Algorithms, Data Structures and Computability

• Presentation 2015J Exam

• Date Thursday, 2 June 2016 Time 14:30–17:30

• There are TWO parts to this examination. You should attempt all questions in both
parts

• Part 1 carries 60 marks — 100 minutes

• Part 2 carries 40 marks — 70 minutes

• Note see the original exam paper for exact wording and formatting — these slides
and notes may change some wording and formatting

3.2 M269 2015J Exam Q Part1

• Answer every question in this part.

• The marks for each question are given below the question number.

• Answers to questions in this Part should be written on this paper in the spaces
provided, or in the case of multiple-choice questions you should tick the appropriate
box(es).

• If you tick more boxes than indicated for a multiple choice question, you will receive
no marks for your answer to that question.

• Use the provided answer books for any rough working.

4 Units 1 & 2

4.1 Unit 1 Introduction

• Unit 1 Introduction

• Computation, computable, tractable

• Introducing Python

• What are the three most important concepts in programming ?

1. Abstraction

2. Abstraction

3. Abstraction

• Quote from Paul Hudak (1952–2015)

http://en.wikipedia.org/wiki/Paul_Hudak
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4.2 M269 2015J Exam Q 1

• Question 1 Which two of the following statements are true? (2 marks)

A. Computational thinking consists of the skills to formulate a problem as a compu-
tational problem and then construct a good computational solution to solve it or
explain why there is no such solution.

B. Every computable problem can be solved in a practical way using existing computers.

C. A computational problem is computable if it is possible to build an algorithm which
solves every instance of the problem in a finite number of steps.

D. An algorithm consists of a computer program that will solve a computable problem.

Go to Soln 1

4.3 M269 2015J Exam Soln 1

• A, C

Go to Q 1

4.4 M269 2015J Exam Q 2

• Question 2 Which two of the following statements are true? (2 marks)

A. Abstraction allows us to manage complexity.

B. In abstraction as modelling, we hide the details of an implementation behind an
interface.

C. Every algorithm can be expressed as some combination of sequence, iteration and
selection.

D. If a polynomial algorithm is executed, it will quickly overwhelm the resources of a
computer and exceed any reasonable time limits.

Go to Soln 2

4.5 M269 2015J Exam Soln 2

• A, C

Go to Q 2

4.6 Unit 2 From Problems to Programs

• Unit 2 From Problems to Programs

• Abstract Data Types

• Pre and Post Conditions
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• Logic for loops

4.6.1 Example Algorithm Design — Searching

• Given an ordered list (xs) and a value (val), return

– Position of val in xs or

– Some indication if val is not present

• Simple strategy: check each value in the list in turn

• Better strategy: use the ordered property of the list to reduce the range of the list to
be searched each turn

– Set a range of the list

– If val equals the mid point of the list, return the mid point

– Otherwise half the range to search

– If the range becomes negative, report not present (return some distinguished
value)

Binary Search Iterative� �
1 def binarySearchIter(xs,val):
2 lo = 0
3 hi = len(xs) - 1

5 while lo <= hi:
6 mid = (lo + hi) // 2
7 guess = xs[mid]

9 if val == guess:
10 return mid
11 elif val < guess:
12 hi = mid - 1
13 else:
14 lo = mid + 1

16 return None� �
Binary Search Recursive� �

1 def binarySearchRec(xs,val,lo=0,hi=-1):
2 if (hi == -1):
3 hi = len(xs) - 1

5 mid = (lo + hi) // 2

7 if hi < lo:
8 return None
9 else:

10 guess = xs[mid]
11 if val == guess:
12 return mid
13 elif val < guess:
14 return binarySearchRec(xs,val,lo,mid-1)
15 else:
16 return binarySearchRec(xs,val,mid+1,hi)� �
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Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,10) by line 13

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,8) by line 13

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
Return value: 8 by line 11

Binary Search Iterative — Miller & Ranum� �
1 def binarySearchIterMR(alist, item):
2 first = 0
3 last = len(alist)-1
4 found = False

6 while first<=last and not found:
7 midpoint = (first + last)//2
8 if alist[midpoint] == item:
9 found = True

10 else:
11 if item < alist[midpoint]:
12 last = midpoint-1
13 else:
14 first = midpoint+1

16 return found� �
Miller and Ranum (2011, page 192)

Binary Search Recursive — Miller & Ranum� �
1 def binarySearchRecMR(alist, item):
2 if len(alist) == 0:
3 return False
4 else:
5 midpoint = len(alist)//2
6 if alist[midpoint]==item:
7 return True
8 else:
9 if item<alist[midpoint]:

10 return binarySearchRecMR(alist[:midpoint],item)
11 else:
12 return binarySearchRecMR(alist[midpoint+1:],item)� �

Miller and Ranum (2011, page 193)

4.7 M269 2015J Exam Q 3

• Question 3 In roughly three or four sentences (in total) explain what is meant by the
following terms: (4 marks)

• Abstract data type (ADT)

• Encapsulation
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• Data structure

Go to Soln 3

4.8 M269 2015J Exam Soln 3

• An abstract data type is a logical description of how we view the data and the oper-
ations that are allowed without regard to how they will be implemented. See Miller
and Ranum chp 1 and Wikipedia: Abstract data type

• Encapsulation hides the implementation of an ADT so a user must only access data
via the interface and not directly.

• A data structure is a concrete implementation of some ADT

Go to Q 3

4.9 M269 2015J Exam Q 4

• Question 4 Consider the guard in the following Python while loop header:
(4 marks)� �

while (s < 5 and t > 3) or not(s >= 5 or t <= 3):� �
(a) Make the following substitutions:

P represents s < 5

Q represents t > 3

Then complete the following truth table:

P Q ¬P ¬Q P ∧Q ¬P ∨¬Q ¬(¬P ∨¬Q) (P ∧Q)∨¬(¬P ∨¬Q)
F F

F T

T F

T T

(b) Use the results from your truth table to choose which one of the following expres-
sions could be used as the simplest equivalent to the above guard.

A. not (s < 5 and t > 3)

B. (s >= 5 or t <= 3)

C. (s < 5 and t > 3)

D. (s >= 5 and t <= 3)

E. (s < 5 and t <= 3)

Go to Exam Soln 4

http://interactivepython.org/runestone/static/pythonds/Introduction/WhyStudyDataStructuresandAbstractDataTypes.html
http://interactivepython.org/runestone/static/pythonds/Introduction/WhyStudyDataStructuresandAbstractDataTypes.html
https://en.wikipedia.org/wiki/Abstract_data_type
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4.10 M269 2015J Exam Soln 4

(a) Truth table

P Q ¬P ¬Q P ∧Q ¬P ∨¬Q ¬(¬P ∨¬Q) (P ∧Q)∨¬(¬P ∨¬Q)
F F T T F T F F

F T T F F T F F

T F F T F T F F

T T F F T F T T

(b) C

(s < 5 and t > 3) is equivalent to� �
(s < 5 and t > 3) or not(s >= 5 or t <= 3)� �

Go to Q 4

5 Units 3, 4 & 5

5.1 Unit 3 Sorting

• Unit 3 Sorting

• Elementary methods: Bubble sort, Selection sort, Insertion sort

• Recursion — base case(s) and recursive case(s) on smaller data

• Quicksort, Merge sort

• Sorting with data structures: Tree sort, Heap sort

• See sorting notes for abstract sorting algorithm
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Abstract Sorting Algorithm

unsorted list xs

if (length xs > 1) then
(xs1,xs2) = split xs

xs1 xs2

ys1 = sort xs1 ys2 = sort xs2

ys = join (ys1,ys2)

sorted list ys

Sorting Algorithms

Using the Abstract sorting algorithm, describe the split and join for:

• Insertion sort

• Selection sort

• Merge sort

• Quicksort

• Bubble sort (the odd one out)

5.2 Unit 4 Searching

• Unit 4 Searching

• String searching: Quick search Sunday algorithm, Knuth-Morris-Pratt algorithm

• Hashing and hash tables

• Search trees: Binary Search Trees

• Search trees: Height balanced trees: AVL trees

5.3 M269 2015J Exam Q 5

• Question 5 Consider the following diagrams A–H. Nodes are represented by black
dots and edges by arrows. The numbers represent a node’s key. (4 marks)
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• Answer the following questions. Write your answer on the line that follows each
question. In each case there is at least one diagram in the answer but there may be
more than one. Explanations are not required.

(a) Which of A, B, C and D do not show trees ?

(b) Which of E, F, G and H are binary trees ?

(c) Which of C, D, G and H are complete binary trees ?

(d) Which of C, D, G and H are binary heaps ?

Go to Exam Soln 5

5.4 M269 2015J Exam Soln 5

(a) B is not a tree; it has more than one route from node 3 to node 0.

(b) E, G, and H are binary trees; (no more than 2 children per node).

(c) G, and H are complete binary trees.

(d) Only H is a heap; (complete binary tree, and parent nodes > children).

Go to Q 5

5.5 M269 2015J Exam Q 6

• Question 6 Consider the following function, which takes an integer argument n. You
can assume that n is positive. (4 marks)� �

1 def calculate(n):
2 a = 5
3 ans = 0
4 for i in range(n):
5 x = i * i
6 for j in range(n):
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7 y = x + j * j
8 for k in range(n):
9 z = y + i * k

10 ans = ans + z * a
11 return ans� �

Go to Soln 6

• From the five options below, select the one that represents the correct combination
of T(n) and Big-O complexity for this function. You may assume that a step (i.e. the
basic unit of computation) is the assignment statement.

A. T(n) = n3 +n2 +n+ 3 and O(n3)

B. T(n) = 2n3 +n2 + 2 and O(2n3)

C. T(n) = 2n2 +n+ 2 and O(n2)

D. T(n) = 2n3 +n2 +n+ 2 and O(n3)

E. T(n) = 3n+ 6 and O(n)

• Now explain how you obtained T(n) and the Big-O complexity.

Go to Exam Soln 6

5.6 M269 2015J Exam Soln 6

D. T(n) = 2n3 +n2 +n+ 2 and O(n3)

• 2 assignment statements outside the loops

• 1 assignment statement in the outer loop

• 1 assignment statement in the middle loop

• 2 assignment statements in the inner loop

• n3 is the dominant term

Go to Q 6

5.7 M269 2015J Exam Q 7

• Question 7 In the KMP algorithm, for each character in turn, as it appears in the
target string T , we identify the longest substring of T ending with that character
which matches a prefix of T .

• These lengths are stored in what is known as a prefix table (which in Unit 4 we
represented as a list).

• Consider the target string T :

CDCECDCECE

• Below is an incomplete prefix table for the target string given above. Complete the
prefix table by writing the missing numbers in the appropriate boxes. (4 marks)
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0

C D

1

C

0

E C

2

D C

4

E C

0

E

Go to Soln 7

5.8 M269 2015J Exam Soln 7

0

C

0

D

1

C

0

E

1

C

2

D

3

C

4

E

1

C

0

E

Go to Q 7

5.9 M269 2015J Exam Q 8

• Consider the following Binary Search Tree. (4 marks)

34

26 51

42 68

62

67

73

(a) Calculate the balance factors of each node in the above tree and annotate the above
tree to show these balance factors.

(b) Redraw the tree after node 51 has been deleted.

Go to Soln 8

5.10 M269 2015J Exam Soln 8

(a) Balance factors
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34bf = −3

260 51−2

420 68+1

62−1

670

730

(b) Delete 51

34

26 62

42 68

67

67

73

move

move

Go to Exam Q 8

5.11 Unit 5 Optimisation

• Unit 5 Optimisation

• Graphs searching: DFS, BFS

• Distance: Dijkstra’s algorithm

• Greedy algorithms: Minimum spanning trees, Prim’s algorithm

• Dynamic programming: Knapsack problem, Edit distance

5.12 M269 2015J Exam Q 9

• Question 9 In Python a dictionary of dictionaries can be used to represent a graph’s
adjacency list. Consider the following: (4 marks)
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� �
graph2 = {
0:{’neighbours’: [1,2,3,4]},
1:{’neighbours’: [0,3,4]},
2:{’neighbours’: [0,5]},
3:{’neighbours’: [0,1,5]},
4:{’neighbours’: [0,1]},
5:{’neighbours’: [2,3]}}� �

Go to Soln 9

• In the space provided below, complete the graph corresponding to the adjacency
list given above.

0

1

2
3

4

5

Go to Exam Soln 9

5.13 M269 2015J Exam Soln 9

• Here is a representation with unidirectional edges

0

1

2
3

4

5

Go to Q 9
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• Here is a representation with unidirectional edges

0

1

2
3

4

5

• Here is a representation with bidirectional edges (but we have not been told that
every edge has a reverse edge and of the same weight or length)

0

1

2
3

4

5

Go to Exam Q 9

5.14 M269 2015J Exam Q 10

• Question 10 Consider the following graph: (4 marks)
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1 2

3 4 5

• In the space provided below, draw one spanning tree that could be generated from
a Breadth First Search of the above graph starting at vertex 2.

Go to Soln 10

5.15 M269 2015J Exam Soln 10

• Spanning tree from breadth first search from vertex 2 (1 of 2, in red)

1 2

3 4 5

• Spanning tree from breadth first search from vertex 2 (2 of 2, in red)

1 2

3 4 5

Go to Exam Q 10

6 Units 6 & 7

6.1 Propositional Logic

M269 Specimen Exam Q11 Topics

• Unit 6

• Sets
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• Propositional Logic

• Truth tables

• Valid arguments

• Infinite sets

6.2 M269 2015J Exam Q 11

• Question 11 (4 marks)

(a) What does it mean to say that two well-formed formulas (WFFs) are logically equiv-
alent ? Use the space below for your answer.

(b) Is the following set of propositional WFFs satisfiable ?

{(P → Q), (Q → P)}

• Explain how you arrived at your answer in the space below:

Go to Soln 11

6.3 M269 2015J Exam Soln 11

(a) Two well-formed formulas (WFFs) A and B are logically equivalent if and only if A and
B have the same value in all interpretations.

(b) The sets of WFFs is satisfiable if each member has the value True for some interpre-
tation

P Q P → Q Q → P
T T T T
T F F T
F T T F
F F T T

• The set is satisfiable

Go to Q 11

6.4 Predicate Logic

• Unit 6

• Predicate Logic

• Translation to/from English

• Interpretations
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6.5 M269 2015J Exam Q 12

• Question 12 Consider a domain with some board games and people. (6 marks)

D = {Backgammon, Chess, Draughts, Joe, Mary, Sue}

• An interpretation assigns people to corresponding constants (you won’t need the
constants for games).

I(joe) = Joe

I(mary) = Mary

I(sue) = Sue

• The predicates owns and likes are assigned to binary relations with the following
comprehensions:

I(owns) = {(P,G): the person P owns the game G}

I(likes) = {(P,G): the person P likes the game G}

Go to Soln 12

• The enumerations of the relations are:

• I(owns) = {(Joe, Chess), (Mary, Backgammon), (Sue, Draughts)}

• I(likes) = {(Joe, Backgammon), (Mary, Backgammon), (Mary, Draughts), (Sue, Backgam-
mon), (Sue, Chess)}

• You will find the questions on the next page.

• You are asked to translate a sentence of predicate logic to English or vice-versa.

• You also need to state whether the sentence is TRUE or FALSE in the interpretation
that is provided on this page, and give an explanation of your answer.

• In your explanation you need to consider any relevant values for the variables, and
show, using the interpretation above, whether they make the quantified expression
TRUE or FALSE.

• When your explanation refers to the interpretation, make sure that you use formal
notation.

• So instead of saying that Joe likes Backgammon according to the interpretation,
write:

(Joe, Backgammon) ∈ I(likes).

• Similarly, instead of Joe doesn’t like Backgammon you would need to write:

(Joe, Backgammon) ∉ I(likes).

(a) ∀X.(owns(joe, X)→ likes(joe, X))

can be translated into English as:

• This sentence is (choose from TRUE/FALSE), because:
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(b) There’s something that both Mary and Sue like

can be translated into predicate logic as:

• This sentence is (choose from TRUE/FALSE), because:

Go to Exam Soln 12

6.6 M269 2015J Exam Soln 12

(a) Joe likes the games he owns

• False — Joe owns Chess but does not like it

• (Joe, Chess) ∈ I(owns)

• but (Joe, Chess) ∉ I(likes)

(b) ∃X.(likes(mary , X)∧ likes(sue, X))

• True — they both like Backgammon

Go to Q 12

6.7 SQL Queries

M269 Specimen Exam Q13 Topics

• Unit 6

• SQL queries

6.8 M269 2015J Exam Q 13

• Question 13 The interpretation of the previous question can also be represented by
a database with the following tables, owns and likes. (6 marks)

owns
owner boardgame
Joe Chess
Mary Backgammon
Sue Draughts

likes
person game
Joe Backgammon
Mary Backgammon
Mary Draughts
Sue Backgammon
Sue Chess

(a) For the following SQL query, give the table returned by the query.
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� �
SELECT person
FROM owns CROSS JOIN likes
WHERE game = boardgame AND person = owner;� �

• Write the question that the above query is answering.

(b) Write an SQL query that answers the question

Which games does Sue like?

• The answer should be the following table:

game
Backgammon
Chess

Go to Exam Soln 13

6.9 M269 2015J Exam Soln 13

(a) The table

Mary
Sue

• Who owns games they like ?

(b) The SQL query� �
SELECT game
FROM likes
WHERE person = ’Sue’;� �

Go to Q 13

6.10 Logic

M269 Exam — Q14 topics

• Unit 7

• Proofs

• Natural deduction
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Logicians, Logics, Notations

• A plethora of logics, proof systems, and different notations can be puzzling.

• Martin Davis, Logician When I was a student, even the topologists regarded mathe-
matical logicians as living in outer space. Today the connections between logic and
computers are a matter of engineering practice at every level of computer organiza-
tion

• Various logics, proof systems , were developed well before programming languages
and with different motivations,

References: Davis (1995, page 289)

Logic and Programming Languages

• Turing machines, Von Neumann architecture and procedural languages Fortran, C,
Java, Perl, Python, JavaScript

• Resolution theorem proving and logic programming — Prolog

• Logic and database query languages — SQL (Structured Query Language) and QBE
(Query-By-Example) are syntactic sugar for first order logic

• Lambda calculus and functional programming with Miranda, Haskell, ML, Scala

Reference: Halpern et al. (2001)

Validity and Justification

• There are two ways to model what counts as a logically good argument:

– the semantic view

– the syntactic view

• The notion of a valid argument in propositional logic is rooted in the semantic view.

• It is based on the semantic idea of interpretations: assignments of truth values to
the propositional variables in the sentences under discussion.

• A valid argument is defined as one that preserves truth from the premises to the
conclusions

• The syntactic view focuses on the syntactic form of arguments.

• Arguments which are correct according to this view are called justified arguments.

Proof Systems, Soundness, Completeness

• Semantic validity and syntactic justification are different ways of modelling the same
intuitive property: whether an argument is logically good.

• A proof system is sound if any statement we can prove (justify) is also valid (true)

• A proof system is adequate if any valid (true) statement has a proof (justification)

• A proof system that is sound and adequate is said to be complete

http://en.wikipedia.org/wiki/Martin_Davis
http://en.wikipedia.org/wiki/Von_Neumann_architecture
http://en.wikipedia.org/wiki/Lambda_calculus
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• Propositional and predicate logic are complete — arguments that are valid are also
justifiable and vice versa

• Unit 7 section 2.4 describes another logic where there are valid arguments that are
not justifiable (provable)

Reference: Chiswell and Hodges (2007, page 86)

Valid arguments

• Unit 6 defines valid arguments with the notation

P1

...
Pn
C

• The argument is valid if and only if the value of C is True in each interpretation for
which the value of each premise Pi is True for 1 ≤ i ≤ n

• In some texts you see the notation {P1, . . . , Pn} î C

• The expression denotes a semantic sequent or semantic entailment

• The î symbol is called the double turnstile and is often read as entails or models

• In LaTeX î and î are produced from \vDash and \models — see also the turnstile
package

• In Unicode î is called TRUE and is U+22A8, HTML &#8872;

• The argument {} î C is valid if and only if C is True in all interpretations

• That is, if and only if C is a tautology

• Beware different notations that mean the same thing

– Alternate symbol for empty set: ∅ î C

– Null symbol for empty set: î C

– Original M269 notation with null axiom above the line:

C

Justified Arguments and Natural Deduction

• Definition 7.1 An argument {P1, P2, . . . , Pn} ` C is a justified argument if and only if
either the argument is an instance of an axiom or it can be derived by means of an
inference rule from one or more other justified arguments.

• Axioms Γ ∪ {A} ` A (axiom schema)

• This can be read as: any formula A can be derived from the assumption (premise) of
{A} itself

• The ` symbol is called the turnstile and is often read as proves, denoting syntactic
entailment

• In LaTeX ` is produced from \vdash
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• In Unicode ` is called RIGHT TACK and is U+22A2, HTML &#8866;

See (Thompson, 1991, Chp 1)

• Section 2.3 of Unit 7 (not the Unit 6, 7 Reader) gives the inference rules for →, ∧,
and ∨— only dealing with positive propositional logic so not making use of negation
— see List of logic systems

• Usually (Classical logic) have a functionally complete set of logical connectives —
that is, every binary Boolean function can be expressed in terms the functions in the
set

Inference Rules — Notation

• Inference rule notation:

Argument1 . . . Argumentn
(label)

Argument

Inference Rules — Conjunction

• Γ ` A Γ ` B
(∧-introduction)Γ ` A∧ B

• Γ ` A∧ B
(∧-elimination left)Γ ` A

• Γ ` A∧ B (∧-elimination right)Γ ` B
Inference Rules — Implication

• Γ ∪ {A} ` B
(→-introduction)Γ ` A→ B

• The above should be read as: If there is a proof (justification, inference) for B un-
der the set of premises, Γ , augmented with A, then we have a proof (justification.
inference) of A→ B, under the unaugmented set of premises, Γ .
The unaugmented set of premises, Γ may have contained A already so we cannot
assume

(Γ ∪ {A})− {A} is equal to Γ
• Γ ` A Γ ` A→ B

(→-elimination)Γ ` B
Inference Rules — Disjunction

• Γ ` A
(∨-introduction left)Γ ` A∨ B

• Γ ` B (∨-introduction right)Γ ` A∨ B
• Disjunction elimination

Γ ` A∨ B Γ ∪ {A} ` C Γ ∪ {B} ` C
(∨-elimination)Γ ` C

http://en.wikipedia.org/wiki/List_of_logic_systems
http://en.wikipedia.org/wiki/Functional_completeness
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• The above should be read: if a set of premises Γ justifies the conclusion A∨ B and Γ
augmented with each of A or B separately justifies C, then Γ justifies C

Proofs in Tree Form

• The syntax of proofs is recursive:

• A proof is either an axiom, or the result of applying a rule of inference to one, two
or three proofs.

• We can therefore represent a proof by a tree diagram in which each node have one,
two or three children

• For example, the proof of {P ∧ (P → Q)} ` Q in Question 4 (in the Logic tutorial
notes) can be represented by the following diagram:

{P ∧ (P → Q)} ` P ∧ (P → Q)
(∧-E left){P ∧ (P → Q)} ` P

{P ∧ (P → Q)} ` P ∧ (P → Q)
(∧-E right)

{P ∧ (P → Q)} ` P → Q
(→-E)

{P ∧ (P → Q)} ` Q

Self-Assessment activity 7.4 — tree layout

• Let Γ = {P → R,Q → R, P ∨Q}
• Γ ` P ∨Q Γ ∪ {P} ` R Γ ∪ {Q} ` R

(∨-elimination)Γ ` R
• Γ ∪ {P} ` P Γ ∪ {P} ` P → R

(→-elimination)Γ ∪ {P} ` R
• Γ ∪ {Q} ` Q Γ ∪ {Q} ` Q → R

(→-elimination)Γ ∪ {Q} ` R
• Complete tree layout

• Γ ` P ∨Q
Γ ∪ {P}
` P

Γ ∪ {P}
` P → R

(→-E)Γ ∪ {P} ` R
Γ ∪ {Q}
` Q

Γ ∪ {Q}
` Q → R

(→-E)Γ ∪ {Q} ` R
(∨-E)Γ ` R

Self-assessment activity 7.4 — Linear Layout

1. {P → R,Q → R, P ∨Q} ` P ∨Q [Axiom]
2. {P → R,Q → R, P ∨Q} ∪ {P} ` P [Axiom]
3. {P → R,Q → R, P ∨Q} ∪ {P} ` P → R [Axiom]
4. {P → R,Q → R, P ∨Q} ∪ {Q} ` Q [Axiom]
5. {P → R,Q → R, P ∨Q} ∪ {Q} ` Q → R [Axiom]
6. {P → R,Q → R, P ∨Q} ∪ {P} ` R [2, 3, →-E]
7. {P → R,Q → R, P ∨Q} ∪ {Q} ` R [4, 5, →-E]
8. {P → R,Q → R, P ∨Q} ` R [1, 6, 7, ∨-E]

6.11 M269 2015J Exam Q 14

• Question 14 Consider the following axiom schema and rules: (4 marks)

• Axiom schema {A,B} ` A
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• Rules

• Γ ` A∧ B
(∧-elimination left)Γ ` A

• Γ ` A∧ B (∧-elimination right)Γ ` B
• Γ ` A Γ ` B

(∧-introduction)Γ ` A∧ B
• Γ ∪ {A} ` B

(→-introduction)Γ ` A→ B
• Γ ` A Γ ` A→ B

(→-elimination)Γ ` B
Go to Soln 14

• Complete the following proof by filling in the two boxes. You can use any of the
above as appropriate.

1. {V,W} ` V [Axiom schema]

2. ?? ?? [Axiom schema]

3. {V,W} ` V ∧W ?? ??

Go to Exam Soln 14

6.12 M269 2015J Exam Soln 14

• Completed proof

1. {V,W} ` V [Axiom schema]

2. {V,W} ` W [Axiom schema]

3. {V,W} ` V ∧W [∧-introduction]

Go to Q 14

6.13 Computability

M269 Specimen Exam — Q15 Topics

• Unit 7

• Computability and ideas of computation

• Complexity

• P and NP

• NP-complete

Ideas of Computation

• The idea of an algorithm and what is effectively computable
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• Church-Turing thesis Every function that would naturally be regarded as com-
putable can be computed by a deterministic Turing Machine. (Unit 7 Section 4)

• See Phil Wadler on computability theory performed as part of the Bright Club at The
Strand in Edinburgh, Tuesday 28 April 2015

Reducing one problem to another

• To reduce problem P1 to P2, invent a construction that converts instances of P1 to P2

that have the same answer. That is:

– any string in the language P1 is converted to some string in the language P2

– any string over the alphabet of P1 that is not in the language of P1 is converted
to a string that is not in the language P2

• With this construction we can solve P1

– Given an instance of P1, that is, given a string w that may be in the language
P1, apply the construction algorithm to produce a string x

– Test whether x is in P2 and give the same answer for w in P1

(Hopcroft et al., 2007, page 322)

• The direction of reduction is important

• If we can reduce P1 to P2 then (in some sense) P2 is at least as hard as P1 (since a
solution to P2 will give us a solution to P1)

• So, if P2 is decidable then P1 is decidable

• To show a problem is undecidable we have to reduce from an known undecidable
problem to it

• ∀x(dpP1
(x) = dpP2

(reduce(x)))

• Since, if P1 is undecidable then P2 is undecidable

Computability — Models of Computation

• In automata theory, a problem is the question of deciding whether a given string is
a member of some particular language

• If Σ is an alphabet, and L is a language over Σ, that is L ⊆ Σ∗, where Σ∗ is the set
of all strings over the alphabet Σ then we have a more formal definition of decision
problem

• Given a string w ∈ Σ∗, decide whether w ∈ L

• Example: Testing for a prime number — can be expressed as the language Lp con-
sisting of all binary strings whose value as a binary number is a prime number (only
divisible by 1 or itself)

(Hopcroft et al., 2007, section 1.5.4)

http://wadler.blogspot.co.uk/2015/05/bright-club-computability.html
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Computability — Church-Turing Thesis

• Church-Turing thesis Every function that would naturally be regarded as com-
putable can be computed by a deterministic Turing Machine.

• physical Church-Turing thesis Any finite physical system can be simulated (to any
degree of approximation) by a Universal Turing Machine.

• strong Church-Turing thesis Any finite physical system can be simulated (to any
degree of approximation) with polynomial slowdown by a Universal Turing Machine.

• Shor’s algorithm (1994) — quantum algorithm for factoring integers — an NP prob-
lem that is not known to be P — also not known to be NP-complete and we have no
proof that it is not in P

Reference: Section 4 of Unit 6 & 7 Reader

Computability — Turing Machine

• Finite control which can be in any of a finite number of states

• Tape divided into cells, each of which can hold one of a finite number of symbols

• Initially, the input, which is a finite-length string of symbols in the input alphabet, is
placed on the tape

• All other tape cells (extending infinitely left and right) hold a special symbol called
blank

• A tape head which initially is over the leftmost input symbol

• A move of the Turing Machine depends on the state and the tape symbol scanned

• A move can change state, write a symbol in the current cell, move left, right or stay

References: Hopcroft et al. (2007, page 326), Unit 6 & 7 Reader (section 5.3)

Turing Machine Diagram

. . . b b a a a a . . . Input/Output Tape

q0q1

q2

q3 . . .

qn

Finite Control

q1

Reading and Writing Head
(moves in both directions)

http://en.wikipedia.org/wiki/Shor's_algorithm
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Source: Sebastian Sardina http://www.texample.net/tikz/examples/turing-machine-
2/
Date: 18 February 2012 (seen Sunday, 24 August 2014)
Further Source: Partly based on Ludger Humbert’s pics of Universal Turing Machine at
https://haspe.homeip.net/projekte/ddi/browser/tex/pgf2/turingmaschine-schema.
tex (not found) — http://www.texample.net/tikz/examples/turing-machine/

Turing Machine notation

• Q finite set of states of the finite control

• Σ finite set of input symbols (M269 S)

• Γ complete set of tape symbols Σ ⊂ Γ
• δ Transition function (M269 instructions, I)
δ :: Q× Γ → Q× Γ × {L,R, S}
δ(q,X), (p, Y ,D)

• δ(q,X) takes a state, q and a tape symbol, X and returns (p, Y ,D) where p is a
state, Y is a tape symbol to overwrite the current cell, D is a direction, Left, Right or
Stay

• q0 start state q0 ∈ Q

• B blank symbol B ∈ Γ and B ∉ Σ
• F set of final or accepting states F ⊆ Q

Computability — Decidability

• Decidable — there is a TM that will halt with yes/no for a decision problem — that
is, given a string w over the alphabet of P the TM with halt and return yes.no the
string is in the language P (same as recursive in Recursion theory — old use of the
word)

• Semi-decidable — there is a TM will halt with yes if some string is in P but may loop
forever on some inputs (same as recursively enumerable) — Halting Problem

• Highly-undecidable — no outcome for any input — Totality, Equivalence Problems

Undecidable Problems

• Halting problem — the problem of deciding, given a program and an input, whether
the program will eventually halt with that input, or will run forever — term first used
by Martin Davis 1952

• Entscheidungsproblem — the problem of deciding whether a given statement is
provable from the axioms using the rules of logic — shown to be undecidable by
Turing (1936) by reduction from the Halting problem to it

• Type inference and type checking in the second-order lambda calculus (important
for functional programmers, Haskell, GHC implementation)

• Undecidable problem — see link to list

http://www.texample.net/tikz/examples/turing-machine-2/
http://www.texample.net/tikz/examples/turing-machine-2/
https://haspe.homeip.net/projekte/ddi/browser/tex/pgf2/turingmaschine-schema.tex
https://haspe.homeip.net/projekte/ddi/browser/tex/pgf2/turingmaschine-schema.tex
http://www.texample.net/tikz/examples/turing-machine/
http://en.wikipedia.org/wiki/Recursion_theory
http://en.wikipedia.org/wiki/Halting_problem
http://en.wikipedia.org/wiki/Entscheidungsproblem
http://en.wikipedia.org/wiki/System_F
http://en.wikipedia.org/wiki/Undecidable_problem
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(Turing, 1936, 1937)

Why undecidable problems must exist

• A problem is really membership of a string in some language

• The number of different languages over any alphabet of more than one symbol is
uncountable

• Programs are finite strings over a finite alphabet (ASCII or Unicode) and hence count-
able.

• There must be an infinity (big) of problems more than programs.

Reference: Hopcroft et al. (2007, page 318)

Computability and Terminology

• The idea of an algorithm dates back 3000 years to Euclid, Babylonians. . .

• In the 1930s the idea was made more formal: which functions are computable?

• A function a set of pairs f = {(x, f (x)) : x ∈ X ∧ f(x) ∈ Y} with the function
property

• Function property: (a, b) ∈ f ∧ (a, c) ∈ f ⇒ b == c

• Function property: Same input implies same output

• Note that maths notation is deeply inconsistent here — see Function and History of
the function concept

• What do we mean by computing a function — an algorithm ?

• In the 1930s three definitions:

• λ-Calculus, simple semantics for computation — Alonzo Church

• General recursive functions — Kurt Gödel

• Universal (Turing) machine — Alan Turing

• Terminology:

– Recursive, recursively enumerable — Church, Kleene

– Computable, computably enumerable — Gödel, Turing

– Decidable, semi-decidable, highly undecidable

– In the 1930s, computers were human

– Unfortunate choice of terminology

• Turing and Church showed that the above three were equivalent

• Church-Turing thesis — function is intuitively computable if and only if Turing ma-
chine computable

http://en.wikipedia.org/wiki/Computable_function
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/History_of_the_function_concept
http://en.wikipedia.org/wiki/History_of_the_function_concept
http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Alonzo_Church
http://en.wikipedia.org/wiki/Μ-recursive_function
http://en.wikipedia.org/wiki/Kurt_Gödel
http://en.wikipedia.org/wiki/Universal_Turing_machine
http://en.wikipedia.org/wiki/Alan_Turing
http://en.wikipedia.org/wiki/Stephen_Cole_Kleene
http://en.wikipedia.org/wiki/Church–Turing_thesis
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Sources on Computability Terminology

• Soare (1996) on the history of the terms computable and recursive meaning calcula-
ble

• See also Soare (2013, sections 9.9–9.15) in Copeland et al. (2013)

6.14 M269 2015J Exam Q 15

• Question 15 Which two of the following statements are true? (Tick two boxes.)

(a) The Halting Problem is semi-decidable.

(b) The Equivalence Problem is computable.

(c) The Church-Turing Thesis proves that all definitions of an algorithm are equivalent.

(d) A reduction from a non-computable problem A to a problem B proves that B is not
computable.

• Note that the original exam did not have labels for the boxes

Go to Soln 15

6.15 M269 2015J Exam Soln 15

• Question 15 Which two of the following statements are true? (Tick two boxes.)

(a) The Halting Problem is semi-decidable. True

(b) The Equivalence Problem is computable. False

(c) The Church-Turing Thesis proves that all definitions of an algorithm are equivalent.
False

(d) A reduction from a non-computable problem A to a problem B proves that B is not
computable. True

Go to Q 15

6.16 Complexity

P and NP

• P, the set of all decision problems that can be solved in polynomial time on a deter-
ministic Turing machine

• NP, the set of all decision problems whose solutions can be verified (certificate) in
polynomial time

• Equivalently, NP, the set of all decision problems that can be solved in polynomial
time on a non-deterministic Turing machine

• A decision problem, dp is NP-complete if

1. dp is in NP and

http://en.wikipedia.org/wiki/P_(complexity)
http://en.wikipedia.org/wiki/NP_(complexity)
http://en.wikipedia.org/wiki/NP-complete
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2. Every problem in NP is reducible to dp in polynomial time

• NP-hard — a problem satisfying the second condition, whether or not it satisfies the
first condition. Class of problems which are at least as hard as the hardest problems
in NP. NP-hard problems do not have to be in NP and may not be decision problems

Euler diagram for P, NP, NP-complete and NP-hard set of problems

Source: Wikipedia NP-complete entry

NP-complete problems

• Boolean satisfiability (SAT) Cook-Levin theorem

• Conjunctive Normal Form 3SAT

• Hamiltonian path problem

• Travelling salesman problem

• NP-complete — see list of problems

http://en.wikipedia.org/wiki/Euler_diagram
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Cook-Levin_theorem
http://en.wikipedia.org/wiki/3-satisfiability
http://en.wikipedia.org/wiki/Hamiltonian_path_problem
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/NP-complete
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XKCD on NP-Complete Problems

Source & Explanation: XKCD 287

6.16.1 NP-Completeness and Boolean Satisfiability

• The Boolean satisfiability problem (SAT) was the first decision problem shown to be
NP-Complete

• This section gives a sketch of an explanation

• Health Warning different texts have different notations and there will be some in-
consistency in these notes

• Health warning these notes use some formal notation to make the ideas more pre-
cise — computation requires precise notation and is about manipulating strings ac-
cording to precise rules.

Alphabets, Strings and Languages

• Notation:

• Σ is a set of symbols — the alphabet

• Σk is the set of all string of length k, which each symbol from Σ
• Example: if Σ = {0,1}

– Σ1 = {0,1}

– Σ2 = {00,01,10,11}

• Σ0 = {ε} where ε is the empty string

http://www.explainxkcd.com/wiki/index.php/287:_NP-Complete
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
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• Σ∗ is the set of all possible strings over Σ
• Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ . . .

• A Language, L, over Σ is a subset of Σ∗
• L ⊆ Σ∗

Language Accepted by a Turing Machine

• Language accepted by Turing Machine, M denoted by L(M)

• L(M) is the set of strings w ∈ Σ∗ accepted by M

• For Final States F = {Y ,N}, a string w ∈ Σ∗ is accepted by M a (if and only if) M
starting in q0 with w on the tape halts in state Y

• Calculating a function (function problem) can be turned into a decision problem by
asking whether f(x) = y

The NP-Complete Class

• If we do not know if P ≠ NP, what can we say ?

• A language L is NP-Complete if:

– L ∈ NP and

– for all other L′ ∈ NP there is a polynomial time transformation (Karp reducible,
reduction) from L′ to L

• Problem P1 polynomially reduces (Karp reduces, transforms) to P2, written P1 ∝ P2

or P1 ≤p P2, iff ∃f : dpP1
→ dpP2

such that

– ∀I ∈ dpP1
[I ∈ YP1 a f(I) ∈ YP2]

– f can be computed in polynomial time

• More formally, L1 ⊆ Σ∗1 polynomially transforms to L2 ⊆ Σ∗2 , written L1 ∝ L2 or
L1 ≤p L2, iff ∃f : Σ∗1 → Σ∗2 such that

– ∀x ∈ Σ∗1 [x ∈ L1 a f(x) ∈ L2]

– There is a polynomial time TM that computes f

• Transitivity If L1 ∝ L2 and L2 ∝ L3 then L1 ∝ L3

• If L is NP-Hard and L ∈ P then P = NP

• If L is NP-Complete, then L ∈ P if and only if P = NP

• If L0 is NP-Complete and L ∈ NP and L0 ∝ L then L is NP-Complete

• Hence if we find one NP-Complete problem, it may become easier to find more

• In 1971/1973 Cook-Levin showed that the Boolean satisfiability problem (SAT) is
NP-Complete

http://en.wikipedia.org/wiki/Function_problem
http://en.wikipedia.org/wiki/Decision_problem
http://en.wikipedia.org/wiki/Cook–Levin_theorem
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
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The Boolean Satisfiability Problem

• A propositional logic formula or Boolean expression is built from variables, opera-
tors: AND (conjunction, ∧), OR (disjunction, ∨), NOT (negation, ¬)

• A formula is said to be satisfiable if it can be made True by some assignment to its
variables.

• The Boolean Satisfiability Problem is, given a formula, check if it is satisfiable.

– Instance: a finite set U of Boolean variables and a finite set C of clauses over U

– Question: Is there a satisfying truth assignment for C ?

• A clause is is a disjunction of variables or negations of variables

• Conjunctive normal form (CNF) is a conjunction of clauses

• Any Boolean expression can be transformed to CNF

• Given a set of Boolean variable U = {u1, u2, . . . , un}

• A literal from U is either any ui or the negation of some ui (written ui)

• A clause is denoted as a subset of literals from U — {u2, u4, u5}

• A clause is satisfied by an assignment to the variables if at least one of the literals
evaluates to True (just like disjunction of the literals)

• Let C be a set of clauses over U — C is satisfiable iff there is some assignment of
truth values to the variables so that every clause is satisfied (just like CNF)

• C = {{u1, u2, u3}, {u2, u3}, {u2, u3}} is satisfiable

• C = {{u1, u2}, {u1, u2}, {u1}} is not satisfiable

• Proof that SAT is NP-Complete looks at the structure of NDTMs and shows you can
transform any NDTM to SAT in polynomial time (in fact logarithmic space suffices)

• SAT is in NP since you can check a solution in polynomial time

• To show that ∀L ∈ NP : L ∝ SAT invent a polynomial time algorithm for each
polynomial time NDTM, M, which takes as input a string x and produces a Boolean
formula Ex which is satisfiable iff M accepts x

• See Cook-Levin theorem

Sources

• Garey and Johnson (1979, page 34) has the notation L1 ∝ L2 for polynomial trans-
formation

• Arora and Barak (2009, page 42) has the notation L1 ≤p L2 for polynomial-time Karp
reducible

• The sketch of Cook’s theorem is from Garey and Johnson (1979, page 38)

• For the satisfiable C we could have assignments (u1, u2, u3) ∈ {(T , T , F), (T , F, F), (F, T , F)}

http://en.wikipedia.org/wiki/Cook-Levin_theorem
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Coping with NP-Completeness

• What does it mean if a problem is NP-Complete ?

– There is a P time verification algorithm.

– There is a P time algorithm to solve it iff P = NP (?)

– No one has yet found a P time algorithm to solve any NP-Complete problem

– So what do we do ?

• Improved exhaustive search — Dynamic Programming; Branch and Bound

• Heuristic methods — acceptable solutions in acceptable time — compromise on op-
timality

• Average time analysis — look for an algorithm with good average time — compro-
mise on generality (see Big-O Algorithm Complexity Cheatsheet)

• Probabilistic or Randomized algorithms — compromise on correctness

Sources

• Practical Solutions for Hard Problems Rich (2007, chp 30)

• Coping with NP-Complete Problems Garey and Johnson (1979, chp 6)

7 M269 Exam 2015J Q Part2

• Answer every question in this Part.

• The marks for each question are given below the question number.

• Marks for a part of a question are given after the question.

• Answers to questions in this Part must be written in the additional answer books,
which you should also use for your rough working.

Go to Soln Part2

7.1 M269 2015J Exam Q 16

• The Universal Product Corporation (UPC) keeps rather primitive computerised records
of its sales of a range of world class products.

• These are contained in a sequence S of sales, where each sale records the number
sold of a particular product, in the form of [productCode, numberSold].

• The sequence S lists the sales as they were processed, from first to last.

• The sequence has at least one sale. Each product has a different productCode. There
may be multiple sales for the same product.

• An example sequence S is, in Python notation:

[[’PR1’, 5], [’B20’, 10], [’PR1’, 3]]

http://bigocheatsheet.com
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(a) The company requires a function that returns a sequence of how many sales were
processed for each product. For example, the example sequence S given above
would lead to an output of either:

[[’PR1’, 2], [’B20’, 1]] or

[[’B20’, 1], [’PR1’, 2]]

• showing that there are two sales for product ’PR1’ and one for product ’B20’.

• Using the following template, formally state this as a computational problem, in the
style adopted by M269. (6 marks)

Name: SalesSummary

Inputs:

Preconditions: (indicate only one)

Outputs:

Postconditions: (indicate only one)

(b) UPC want a function that returns the code of the product with the fewest sales pro-
cessed, so that UPC can start promoting it.

• If the lowest number of sales is shared by several products, the function can return
the product code of any one of them.

• A UPC employee has the following initial insight:

– Take the sales summary sequence (i.e. the output of SalesSummary) and use
QuickSort to sort it in ascending order by the number of sales.

– This will put one of the products with fewest sales in the first position, so then
just return the product code of the first element of the sorted sequence.

(i) What is the order of complexity, in Big-O notation, of the algorithm described by the
employee’s initial insight, in the best case?

• Assume that SalesSummary has already run.

(ii) Give the initial insight of a more efficient solution and state its order of complexity
in Big-O notation. (6 marks)

(c) UPC introduce a further data sequence P, which is an unsorted sequence of product
prices, such that each item in the sequence is in the form of [productCode, price]
and each product is included exactly once.

(i) A function is required that will return the total value of all sales for each product.

• So given the sequence S of sales, each in the form [productCode, numberSold]:

[[’PR1’, 5], [’B20’, 10], [’PR1’, 3]]

• the output of the function would be:

[[’B20’, 49.9], [’PR1’, 28.0]]

or [[’PR1’, 27.5], [’B20’, 49.9]]

• This is because 10 items of product ’B20’ (10×4.99 = 49.9) and 8 items of product
’PR1’ (8× 3.50 = 28.0) were sold.
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• Write structured English or Python code for a computational solution of this problem.

(ii) Estimate the run time T() and the order of complexity in Big-O notation of your
solution, in the worst case, taking assignment as the unit of computation.

• Explain your reasoning. If you make any assumptions, state them clearly. (9 marks)

(d) Storing complex data items (e.g. product/price combinations) in a list, as UPC have
opted to do, can be problematic, in particular because retrieval may be slow when
there are very large numbers of items. A more suitable means of storage is in a
structure such as a hash table.

• Write roughly four to six sentences explaining: (4 marks)

– the basic principles of hash tables

– and hashing,

– how these could work with the UPC price data, and

– outline one problem that can arise from hashing.

Go to Soln 16

7.2 M269 2015J Exam Q 17

• Your local secondary school runs a computer club for sixth form students.

• You have been asked to give a talk on greedy algorithms and, in preparation, to
prepare a report for the teachers summarising your talk.

• Assume that the students and teachers do not have a background in computer sci-
ence, but have been writing programs in various computer languages and are IT
literate.

• Your report must have the following structure:

1 A suitable title

2 A paragraph setting the scene: explain in layperson’s terms what is meant by a
greedy algorithm and give an example of where greed is not always good.

3 A paragraph in which you describe a minimum spanning tree (MST) and give an
example of one. You don’t need to explain what are trees and graphs.

4 A paragraph in which you briefly describe what is Prim’s algorithm and some of its
features. You do not need to describe Prim’s algorithm completely.

5 A concluding paragraph, giving reasons, about the benefits or otherwise of a greedy
algorithm.

• Note that a significant number of marks will be awarded for coherence and clarity,
so avoid abrupt changes of topic and make sure your sentences fit together to tell
an overall story.

• As a guide, you should aim to write roughly three to five sentences per paragraph.

Go to Soln 17
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8 M269 Exam 2015J Soln Part2

• Part 2 solutions

Go to Q Part2

8.1 M269 2015J Exam Soln 16

(a) Name: SalesSummary

Inputs: An unsorted sequence of tuples S = (s1, s2, . . . , sn) where sn = (pn, qn) and
productCode, pn is a string, and numberSold, qn, is an integer.

Preconditions: length S á 1

Outputs: a list of tuples O = (o1, o2, . . . , om) where op = (pm, rm) and pm is a
productCode and rm is an integer.

Postconditions: Length O equals number of product codes

(b) (i) Complexity of Quicksort in the best case is O(n logn) and worst case is O(n2)
(see Big-O Cheat Sheet)

• (ii) A linear search can find the smallest — O(n)

(c) (i) Sketch of programming strategy

• Sort the sequence of sales using Python’s Timsort — worst case complexityO(n logn)

• Group tuples for each product into sub-sequences — one traversal of the sequence
O(n)

• For each sub-sequence calculate the value of a sale and sum the values — one traver-
sal of each sub-sequence O(n)

• (ii) Overall complexity O(n logn)

(d) Hash function and hash tables

• Hash function maps each input key to a hash value (or slot)

• Perfect hash function maps each key to a different hash value

• For UPC could translate productCode to an integer by using Unicode or ASCII values
for each character

• Limited storage leads to hash functions having collisions — a hash function mapping
two keys to the same slot

• Hash function collisions result in the need to either store multiple items in a single
slot (closed table) or open addressing/open tables that use some mechanism to find
a free slot

Go to Q 16

http://bigocheatsheet.com/
https://en.wikipedia.org/wiki/Timsort
https://en.wikipedia.org/wiki/Hash_function
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8.2 M269 2015J Exam Soln 17

• Title Greed is (sometimes) good

• Define Graph and Tree with example

• Define Minimum Spanning Tree of a graph is the spanning tree (includes every
node but may not include every edge) that minimises total weight of edges

• Describe Prim’s algorithm — repeatedly add the next safe edge — the only safe
edge will be the one with the smallest edge from the tree so far

• Greed is (hardly ever) good — give an example where it does not work — knapsack
problem.

Go to Q 17

9 Exam Reminders

• Read the Exam arrangements booklet

• Before the exam — check the date, time and location (and how to get there)

• At the exam centre – arrive early

• Bring photo ID with signature

• Use black or blue pens (not erasable and not pencil) — see Cult Pens for choices —
pencils for preparing diagrams (HB or blacker)

• Practice writing by hand

• In the exam — Read the questions — carefully — before and after answering them

• Don’t get stuck on a question — move on, come back later

• But do make sure you have attempted all questions

• . . . and finally Good Luck

10 White Slide

11 Web Sites & References

11.1 Web Sites

• Logic

– WFF, WFF’N Proof online http://www.oercommons.org/authoring/1364-basic-
wff-n-proof-a-teaching-guide/view

• Computability

– Computability

http://www2.open.ac.uk/students/help/exam-arrangements-booklet
http://www.cultpens.com/
http://en.wikipedia.org/wiki/Well-formed_formula
http://www.oercommons.org/authoring/1364-basic-wff-n-proof-a-teaching-guide/view
http://www.oercommons.org/authoring/1364-basic-wff-n-proof-a-teaching-guide/view
http://en.wikipedia.org/wiki/Computability
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– Computable function

– Decidability (logic)

– Turing Machines

– Universal Turing Machine

– Turing machine simulator

– Lambda Calculus

– Von Neumann Architecture

– Turing Machine XKCD http://www.explainxkcd.com/wiki/index.php/205:
_Candy_Button_Paper

– Turing Machine XKCD http://www.explainxkcd.com/wiki/index.php/505:
_A_Bunch_of_Rocks

– Phil Wadler Bright Club on Computability http://wadler.blogspot.co.uk/
2015/05/bright-club-computability.html

• Complexity

– Complexity class

– NP complexity

– NP complete

– Reduction (complexity)

– P versus NP problem

– Graph of NP-Complete Problems

Note on References — the list of references is mainly to remind me where I obtained
some of the material and is not required reading.
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