M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2015J Exam Qs

Units 1 & 2

Units 3, 4 &

Units 6 & 7

M269 Exam 2015J Q Part2

M269 Exam 2015J Soln Part2

Exam Reminders

Vhite Slide

M269 Exam Revision

Sharon & Phil

22, 23 May 2017 (2 sessions)

Agenda & Aims

1. Welcome and introductions

2. Revision strategies

3. M269 Exam — Part 1 has 15 questions 60%

4. M269 Exam — Part 2 has 2 questions 40%

5. M269 Exam — 3 hours. Part 1 100 mins. Part 2 70 mins.

6. M269 2015J exam (June 2016)

7. Topics and discussion for each question

8. Exam techniques

Two sessions

10. OU Live — if you or I get cut off, wait till we reconnect

11. These slides and notes are in Dropbox at https://db.tt/WUMSBB4csL

M269 Exam Revision

Introductions & Revision strategies

- Introductions
- What other exams are you doing this year ?
- Each give one exam tip to the group

M269

Sharon & Phil

M269 Exam
Revision Agenda &

Introductions & Revision Strategies

269 Exam 2016J

M269 Prsntn 2015J Exam Qs

Jnits 1 & 2

Units 3, 4 &

nits 6 & 7

M269 Exam 2015J Q Part2

1269 Exam 2015J oln Part2

xam Reminders

White Slide

M269 Exam

Presentation 2016 L

- Not examined this presentation:
- ▶ Unit 4, Section 2 String search
- Unit 7, Section 2 Logic Revisited
- Unit 7, Section 4 Beyond the Limits

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

Introductions & Revis Strategies

M269 Exam 2016J

M269 Prsntn 2015J Exam Qs

Units 1 & 2

Jnits 3, 4 & 5

nits 6 & 7

M269 Exam 2015J Q Part2

M269 Exam 2015J John Part2

Exam Reminders

White Slide

- ▶ M269 Algorithms, Data Structures and Computability
- Presentation 2015J Exam
- ▶ Date Thursday, 2 June 2016 Time 14:30–17:30
- There are TWO parts to this examination. You should attempt all questions in both parts
- ▶ Part 1 carries 60 marks 100 minutes
- ▶ Part 2 carries 40 marks 70 minutes
- Note see the original exam paper for exact wording and formatting — these slides and notes may change some wording and formatting

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2015J Exam Qs

M269 2015J Exam Qs M269 2015J Exam Q Part

Units 1 & 2

Units 3, 4 & 5

Offics 0 & 7

M269 Exam 2015J Q Part2

M269 Exam 2015J Soln Part2

Exam Reminders

/hite Slide

M269 2015J Exam

Q Part1

- Answer every question in this part.
- ► The marks for each question are given below the question number.
- Answers to questions in this Part should be written on this paper in the spaces provided, or in the case of multiple-choice questions you should tick the appropriate box(es).
- If you tick more boxes than indicated for a multiple choice question, you will receive **no** marks for your answer to that question.
- ▶ Use the provided answer books for any rough working.

M269

Sharon & Phil

M269 Exam
Revision Agenda &

2015J Exam Qs M269 2015J Exam Qs

M269 2015J Exam Q Part1

Units 1 & 2

Units 3, 4 & 5

Jnits 6 & 7

M269 Exam 2015. Q Part2

Soln Part2

Exam Reminders

/hite Slide

Unit 1 Topics, Q1, Q2

- ▶ Unit 1 Introduction
- ► Computation, computable, tractable
- Introducing Python
- What are the three most important concepts in programming?
 - 1.
 - 2.
 - 3.
- ▶ Quote from Paul Hudak (1952–2015)

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2015J Exam Qs

Jnits 1 & 2

Unit 1 Introduction

M269 2015J Exam Soln 1 M269 2015J Exam Q 2

Unit 2 From Problems to Programs M269 2015J Exam Q 3

M269 2015J Exam Soln 3 M269 2015J Exam Q 4

Units 3, 4 & 5

Jnits 6 & 7

M269 Exam 201

M269 Exam 201 Soln Part2

Exam Reminders

White Slide

7/128 (7/139)

Unit 1 Topics, Q1, Q2

- Unit 1 Introduction
- ► Computation, computable, tractable
- Introducing Python
- What are the three most important concepts in programming?
 - 1. Abstraction
 - 2.
 - 3.
- ▶ Quote from Paul Hudak (1952–2015)

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2015J Exam Qs

Inits 1 & 2

Unit 1 Introduction

M269 2015J Exam Q 1 M269 2015J Exam Soln

M269 2015J Exam Soln 2 Unit 2 From Problems to Programs

M269 2015J Exam Q 3 M269 2015J Exam Soln 3

W269 2015J Exam Q 4 W269 2015J Exam Soln

Units 3, 4 & 5

Units 6 & 7

M269 Exam 20

M269 Exam 201

Exam Reminders

White Slide

7/128 (8/139)

Unit 1 Topics, Q1, Q2

- Unit 1 Introduction
- ► Computation, computable, tractable
- Introducing Python
- What are the three most important concepts in programming?
 - 1. Abstraction
 - 2. Abstraction
 - 3.
- ▶ Quote from Paul Hudak (1952–2015)

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2015J Exam Qs

Inits 1 & 2

Unit 1 Introduction M269 2015J Exam Q 1

M269 2015J Exam Soln 1 M269 2015J Exam Q 2 M269 2015J Exam Soln 2

rograms 1269 2015J Exam Q 3 1269 2015J Exam Soln 3

M209 2015J Exam 5

Jnits 6 & 7

M269 Exam 201

M269 Exam 201 Soln Part2

Exam Reminders

White Slide

7/128 (9/139)

Unit 1 Topics, Q1, Q2

- Unit 1 Introduction
- Computation, computable, tractable
- Introducing Python
- What are the three most important concepts in programming?
 - 1. Abstraction
 - 2. Abstraction
 - 3. Abstraction
- ▶ Quote from Paul Hudak (1952–2015)

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2015J Exam Qs

Jnits 1 & 2

Unit 1 Introduction M269 2015J Exam Q 1

M269 2015J Exam Soln 1 M269 2015J Exam Q 2 M269 2015J Exam Soln 2 Jnit 2 From Problems to

M269 2015J Exam Q 3 M269 2015J Exam Soln 3 M269 2015J Exam Q 4

Units 3, 4 & 5

Inits 6 & 7

1269 Exam 2015.

M269 Exam 201 Soln Part2

Exam Reminders

White Slide

7/128 (10/139)

- ▶ Question 1 Which two of the following statements are true? (2 marks)
- A. Computational thinking consists of the skills to formulate a problem as a computational problem and then construct a good computational solution to solve it or explain why there is no such solution.
- **B.** Every computable problem can be solved in a practical way using existing computers.
- **C.** A computational problem is computable if it is possible to build an algorithm which solves every instance of the problem in a finite number of steps.
- D. An algorithm consists of a computer program that will solve a computable problem.

M269

Sharon & Phil

M269 2015 I Exam Q 1

8/128 (11/139)

M269 2015J Exam

Soln 1

► A, C

M269

Sharon & Phil

M269 Prsntn

ts 1 & 2

Unit 1 Introduction

M269 2015J Exam Q 1 M269 2015J Exam Soln 1

M269 2015J Exam Q 2 M269 2015J Exam Soln 2

1269 2015J Exam Q 3 1269 2015J Exam Soln

M209 2015J Exan

JIIILS 3, 4 & 5

ts 6 & 7

69 Exam 2

69 Exam 2015J

Part2

e Slide

9/128 (12/139)

- A. Abstraction allows us to manage complexity.
- **B.** In abstraction as modelling, we hide the details of an implementation behind an interface.
- **C.** Every algorithm can be expressed as some combination of sequence, iteration and selection.
- D. If a polynomial algorithm is executed, it will quickly overwhelm the resources of a computer and exceed any reasonable time limits.

▶ Go to Soln 2

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2015J Exam Qs

Jnits 1 & 2

Unit 1 Introduction
M269 2015J Exam Q 1
M269 2015J Exam Soln 1
M269 2015J Exam Q 2

it 2 From Problems to ograms 269 2015J Exam Q 3 269 2015J Exam Soln 3 269 2015J Exam Q 4

Jnits 3, 4 & 5

nits 6 & 7

//269 Exam 201) Part2

1269 Exam 20: oln Part2

Exam Reminders

hite Slide

10/128 (13/139)

M269 2015J Exam

Soln 2

A, C

M269

Sharon & Phil

M269 2015J Exam Soln 2

11/128 (14/139)

Unit 2 Topics, Q3, Q4

- Unit 2 From Problems to Programs
- Abstract Data Types
- ▶ Pre and Post Conditions
- Logic for loops

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2015J Exam Qs

nits 1 & 2

nit 1 Introduction 1269 2015 J Exam Q 1

269 2015J Exam Q 2 269 2015J Exam Soln 2

M269 2015J Exam Soln 2 Unit 2 From Problems to Programs

Example Algorithm Design
— Searching

269 2015J Exam Q 3 269 2015J Exam Soln 269 2015J Exam Q 4

nits 3, 4 & 5

nits 6 & 7

M269 Exam 2015

M269 Exam 2015J

Exam Reminders

Wh12/128 (15/139)

Example Algorithm Design

Searching

- Given an ordered list (xs) and a value (val), return
 - Position of val in xs or
 - Some indication if val is not present
- Simple strategy: check each value in the list in turn
- ▶ Better strategy: use the ordered property of the list to reduce the range of the list to be searched each turn
 - Set a range of the list
 - If val equals the mid point of the list, return the mid point
 - Otherwise half the range to search
 - If the range becomes negative, report not present (return some distinguished value)

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2015J Exam Qs

Jnits 1 & 2

Unit 1 Introduction
M269 2015J Exam Q 1
M269 2015J Exam Soln 1
M269 2015J Exam Q 2
M269 2015J Exam Q 2
M269 2015J Exam Soln 2

Example Algorithm Design
— Searching

M269 2015J Exam Q 3 M269 2015J Exam Soln 3 M269 2015J Exam Q 4

Inits 3, 4 &

Jnits 6 & 7

M269 Exam 2015J O Part2

M269 Exam 2015J Soln Part2

Exam Reminders

Wh13/128 (16/139)

Example Algorithm Design

Binary Search Iterative

```
def binarySearchIter(xs, val):
      lo = 0
      hi = len(xs) - 1
3
      while lo <= hi:
5
        mid = (lo + hi) // 2
6
        guess = xs[mid]
        if val == guess:
9
           return mid
10
        elif val < guess:
11
           hi = mid - 1
12
        else:
13
14
           lo = mid + 1
      return None
16
```

M269

Sharon & Phil

Example Algorithm Design - Searching

Wh14/128 (17/139)

Binary Search Recursive

```
def binarySearchRec(xs, val, lo=0, hi=-1):
      if (hi == -1):
        hi = len(xs) - 1
3
      mid = (lo + hi) // 2
5
      if hi < lo:
7
        return None
      else:
        guess = xs[mid]
10
         if val == guess:
11
12
           return mid
         elif val < guess:
13
           return binary Search Rec (xs, val, lo, mid -1)
14
        else:
15
                   binarySearchRec(xs, val, mid+1, hi)
16
```

M269

Sharon & Phil

```
M269 Prsntn
```

```
- 1 0 0
```

```
ts 1 & 2
```

t 1 Introduction

269 2015J Exam Q

1269 2015J Exam Solr 1269 2015J Exam Q 2

269 2015J Exam Q 2 269 2015J Exam Soln 2 nit 2 From Problems to

nit 2 From Problems to rograms Example Algorithm Desig

Example Algorithm Design — Searching M269 2015 J Exam Q 3

9 2015J Exam So 9 2015J Exam Q 9 2015J Exam So

6 & 7

) Part2 //1269 Exam 2015J

Exam Reminders
Wh15/128 (18/139)

Binary Search Recursive — Solution

```
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)
xs = Highlight the mid value and search range
binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range
binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range
binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range
BinarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range
Return value: ??
```

M269

Sharon & Phil

M269 Exam Revision Agenda &

M269 Prsntn 2015J Exam Qs

Units 1 & 2

Unit 1 Introduction M269 2015 J Exam Q 1 M269 2015 J Exam Soln 1 M269 2015 J Exam Q 2 M269 2015 J Exam Soln 2 Unit 2 From Problems to

Example Algorithm Design
— Searching

269 2015J Exam Q 3 269 2015J Exam Soln 3 269 2015J Exam Q 4

nits 3, 4 & 5

nits 6 & 7

M269 Exam 2015J Q Part2

M269 Exam 2015J Soln Part2

Exam Reminders

Wh16/128 (19/139)

Binary Search Recursive — Solution

```
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range
binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range
binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range
Return value: ??
```

M269

Sharon & Phil

M269 Exam Revision Agenda &

M269 Prsntn 2015J Exam Qs

Inits 1 & 2

Unit 1 Introduction
M269 2015 J Exam Q 1
M269 2015 J Exam Soln 1
M269 2015 J Exam Q 2
M269 2015 J Exam Soln 2
Unit 2 From Problems to

Example Algorithm Design — Searching

M269 2015J Exam Q 3 M269 2015J Exam Soln 3 M269 2015J Exam Q 4

nits 3, 4 & 5

nits 6 & 7

M269 Exam 2015J Q Part2

M269 Exam 2015J Soln Part2

Exam Reminders

\/\|\16\/128_(20\/139)

Binary Search Recursive — Solution

```
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15
xs = Highlight the mid value and search range
binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range
binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range
Return value: ??
```

M269

Sharon & Phil

M269 Exam Revision Agenda &

M269 Prsntn 2015J Exam Qs

Units 1 & 2

Unit 1 Introduction
M269 2015J Exam Q 1
M269 2015J Exam Soln 1
M269 2015J Exam Q 2
M269 2015J Exam Soln 2
Unit 2 From Problems to

Example Algorithm Design
— Searching

269 2015J Exam Q 3 269 2015J Exam Soln 3 269 2015J Exam Q 4

nits 3, 4 & 5

nits 6 & 7

M269 Exam 2015J Q Part2

M269 Exam 2015J Soln Part2

Exam Reminders

\/\|\16\/128_(21\/139)

Binary Search Recursive — Solution

```
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs, 67)
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs,67,8,14) by line 15
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range
Return value: ??
```

M269

Sharon & Phil

M269 Exam Revision Agenda &

M269 Prsntn 2015J Exam Qs

Jnits 1 & 2

Unit 1 Introduction
M269 2015J Exam Q 1
M269 2015J Exam Soln 1
M269 2015J Exam Q 2
M269 2015J Exam Soln 2
Unit 2 From Problems to

Example Algorithm Design — Searching

269 2015J Exam Q 3 269 2015J Exam Soln 3 269 2015J Exam Q 4

nits 3, 4 & 5

nits 6 & 7

M269 Exam 2015J Q Part2

M269 Exam 2015J Soln Part2

xam Reminders

\/\|\16\/128_(22\/139)

Binary Search Recursive — Solution

```
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs, 67) xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs,67,8,14) by line 15 xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs,67,8,10) by line 13 xs = Highlight the mid value and search range binarySearchRec(xs,25,??,??) xs = Highlight the mid value and search range Return value: ??
```

M269

Sharon & Phil

M269 Exam Revision Agenda &

M269 Prsntn 2015J Exam Qs

Jnits 1 & 2

Unit 1 Introduction
M269 2015.J Exam Q 1
M269 2015.J Exam Soln 1
M269 2015.J Exam Q 2
M269 2015.J Exam Soln 2
Unit 2 From Problems to

Example Algorithm Design
— Searching

269 2015J Exam Q 3 269 2015J Exam Soln 3 269 2015J Exam Q 4

nits 3, 4 & 5

nits 6 & 7

M269 Exam 2015J Q Part2

M269 Exam 2015J Soln Part2

Exam Reminders
W/h16/128 (23/139)

Binary Search Recursive — Solution

```
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs, 67) xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs,67,8,14) by line 15 xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs,67,8,10) by line 13 xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs,25,??,??) xs = Highlight the mid value and search range Return value: ??
```

M269

Sharon & Phil

M269 Exam Revision Agenda &

M269 Prsntn 2015J Exam Qs

Units 1 & 2

Unit 1 Introduction
M269 2015J Exam Q 1
M269 2015J Exam Soln 1
M269 2015J Exam Q 2
M269 2015J Exam Soln 2
Unit 2 From Problems to

Example Algorithm Design
— Searching

269 2015J Exam Q 3 269 2015J Exam Soln 3 269 2015J Exam Q 4

nits 3, 4 & 5

nits 6 & 7

M269 Exam 2015J Q Part2

M269 Exam 2015J Soln Part2

Exam Reminders

Wh16/128 (24/139)

Binary Search Recursive — Solution

```
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs, 67) xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs,67,8,14) by line 15 xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs,67,8,10) by line 13 xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs,67,8,8) by line 13 xs = Highlight the mid value and search range Return value: ??
```

M269

Sharon & Phil

M269 Exam Revision Agenda &

M269 Prsntn 2015J Exam Qs

Jnits 1 & 2

Unit 1 Introduction
M269 2015J Exam Q 1
M269 2015J Exam Soln 1
M269 2015J Exam Q 2
M269 2015J Exam Soln 2
Unit 2 From Problems to

Example Algorithm Design — Searching

269 2015J Exam Q 3 269 2015J Exam Soln 3 269 2015J Exam Q 4

nits 3, 4 & 5

nits 6 & 7

M269 Exam 2015J Q Part2

M269 Exam 2015J Soln Part2

xam Reminders

\/\|\16\/128_(25\/139)

Binary Search Recursive — Solution

```
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs,67,8,14) by line 15

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs,67,8,10) by line 13

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs,67,8,8) by line 13

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

Return value: ??
```

M269

Sharon & Phil

M269 Exam Revision Agenda &

M269 Prsntn 2015J Exam Qs

Jnits 1 & 2

Unit 1 Introduction
M269 2015J Exam Q 1
M269 2015J Exam Soln 1
M269 2015J Exam Q 2
M269 2015J Exam Soln 2
Unit 2 From Problems to

Example Algorithm Design — Searching

269 2015J Exam Q 3 269 2015J Exam Soln 3 269 2015J Exam Q 4

nits 3, 4 & 5

nits 6 & 7

M269 Exam 2015J Q Part2

M269 Exam 2015J Soln Part2

Exam Reminders
W/h16/128 (26/139)

Binary Search Recursive — Solution

```
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs, 67)
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs,67,8,14) by line 15
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs,67,8,10) by line 13
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs,67,8,8) by line 13
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] Return value: 8 by line 11
```

M269

Sharon & Phil

M269 Exam Revision Agenda &

M269 Prsntn 2015J Exam Qs

Jnits 1 & 2

Unit 1 Introduction
M269 2015J Exam Q 1
M269 2015J Exam Soln 1
M269 2015J Exam Q 2
M269 2015J Exam Soln 2
Unit 2 From Problems to

Example Algorithm Design — Searching

269 2015J Exam Q 3 269 2015J Exam Soln 3 269 2015J Exam Q 4

nits 3, 4 & 5

nits 6 & 7

M269 Exam 2015J Q Part2

M269 Exam 2015J Soln Part2

xam Reminders

Wh16/128 (27/139)

Example Algorithm Design

Binary Search Iterative — Miller & Ranum

```
def binarySearchIterMR(alist, item):
      first = 0
      last = len(alist)-1
3
      found = False
      while first <= last and not found:
6
        midpoint = (first + last)//2
        if alist[midpoint] == item:
           found = True
        else:
10
           if item < alist[midpoint]:</pre>
11
12
             last = midpoint -1
           else:
13
14
             first = midpoint+1
      return found
16
```

M269

Sharon & Phil

Example Algorithm Design

- Searching

V/J-17/128 (28/139)

M269

Sharon & Phil

Example Algorithm Design

- Searching

binarySearchRecMR (alist [midpoint +1:], item) 1269 2015J Exam Q 3

Divide and Conquer

Binary Search Recursive — Miller & Ranum

def binarySearchRecMR(alist, item): if len(alist) = 0: return False else: midpoint = len(alist)//2if alist[midpoint]==item:

return True

else: if item<alist[midpoint]:</pre>

return binarySearchRecMR(alist[: midpoint], item)

else :

return

10

11

12

V/h18/128 (29/139)

M269 2015J Exam

Q 3

► Question 3 In roughly three or four sentences (in total) explain what is meant by the following terms:

(4 marks)

- ► Abstract data type (ADT)
- Encapsulation
- Data structure

▶ Go to Soln 3

M269

Sharon & Phil

M269 Exam
Revision Agenda &
Aims

M269 Prsntn 2015J Exam Qs

Jnits 1 & 2

nit 1 Introduction 1269 2015J Exam Q 1 1269 2015J Exam Soln 1 1269 2015J Exam Q 2 1269 2015J Exam Soln 2

Programs

M269 2015J Exam Q 3

M269 2015J Exam Soln 3

1269 2015J Exam So

JIIICS 3, 4 & 3

nits 6 & 7

M269 Exam 2015J Q Part2

> 69 Exam 2015 n Part2

Exam Reminders

19/128 (30/139)

M269 2015 J Exam

Soln 3

- ► An abstract data type is a logical description of how we view the data and the operations that are allowed without regard to how they will be implemented. See Miller and Ranum chp 1 and Wlkipedia: Abstract data type
- Encapsulation hides the implementation of an ADT so a user must only access data via the interface and not directly.
- ► A *data structure* is a concrete implementation of some ADT

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2015J Exam Qs

nits 1 & 2

Unit 1 Introduction
M269 2015 J Exam Q 1
M269 2015 J Exam Soln 1
M269 2015 J Exam Q 2
M269 2015 J Exam Q 2
M269 2015 J Exam Soln 2
Unit 2 From Problems to
Programs

M269 2015J Exam Soln 3 M269 2015J Exam Q 4

Lite 2 4 8 E

...,

nits 6 & 7

M269 Exam 2 Q Part2

> 1269 Exam 20: oln Part2

Exam Reminders

/hite Slide

20/128 (31/139)

► Question 4 Consider the guard in the following Python while loop header: (4 marks)

while (s < 5 and t > 3) or not(s >= 5 or t <= 3):

(a) Make the following substitutions:

P represents s < 5

Q represents t > 3

Then complete the following truth table:

P	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$\neg P \lor \neg Q$	$\neg(\neg P \vee \neg Q)$	$(P \land Q) \lor \neg (\neg P \lor \neg Q)$
F	F						
F	Т						
Т	F						
Т	Т						

Q 4 continued on next slide

14000.00

M269 2015J Exam Q 1 M269 2015J Exam Soln 1 M269 2015J Exam Q 2 M269 2015J Exam Soln 2

M269

Sharon & Phil

Programs
M269 2015J Exam Q 3
M269 2015J Exam Soln 3
M269 2015J Exam Q 4

Inito 2 / P. E

JIII 5, 4 & 5

1000 5

M260 Evam 2015 I

Evam Reminders

nite Slide 21/128 (32/139)

Go to Soln 4

M269 2015J Exs Exam

Q 4 (contd)

(b) Use the results from your truth table to choose which one of the following expressions could be used as the simplest equivalent to the above guard.

```
A. not (s < 5 \text{ and } t > 3)
```

B.
$$(s >= 5 \text{ or } t <= 3)$$

C.
$$(s < 5 \text{ and } t > 3)$$

D.
$$(s >= 5 \text{ and } t <= 3)$$

E.
$$(s < 5 \text{ and } t <= 3)$$

▶ Go to Exam Soln 4

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2015J Exam Qs

Inits 1 & 2

269 2015J Exam Q 1 269 2015J Exam Soln 1 269 2015J Exam Q 2 269 2015J Exam Soln 2

M269 2015J Exam Q 3 M269 2015J Exam Soln 3 M269 2015J Exam Q 4

Units 3, 4 & 5

Jnits 6 & 7

M269 Exam 2015J O Part2

oln Part2

Exam Reminders

/hite Slide

22/128 (33/139)

M269 2015J Exam

Soln 4

(a) Truth table

Р	Q	$\neg P$	$\neg Q$	$P \wedge Q$	$\neg P \lor \neg Q$	$\neg(\neg P \lor \neg Q)$	$(P \land Q) \lor \neg (\neg P \lor \neg Q)$
F	F	Т	Т	F	Т	F	F
F	Т	Т	F	F	Т	F	F
Т	F	F	Т	F	Т	F	F
Т	Т	F	F	Т	F	Т	Т

(b) C

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

2015J Exam Qs

nits 1 & 2

Unit 1 Introduction M269 2015J Exam Q 1 M269 2015J Exam Soln 1 M269 2015J Exam Q 2 M269 2015J Exam Soln 2

M269 2015J Exam Q 3 M269 2015J Exam Soln 3 M269 2015J Exam Q 4 M269 2015J Exam Soln 4

Jnits 3, 4 & 5

Units 6 & 7

M269 Exam 20

м ганг М269 Exam 2015J

Exam Reminders

hite Slide

23/128 (34/139)

Unit 3 Topics, Q5, Q6

- Unit 3 Sorting
- Elementary methods: Bubble sort, Selection sort, Insertion sort
- Recursion base case(s) and recursive case(s) on smaller data
- Quicksort, Merge sort
- Sorting with data structures: Tree sort, Heap sort
- See sorting notes for abstract sorting algorithm

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2015J Exam Qs

Units 1 & 2

Unite 3 1 & 5

Unit 3 Sorting

Unit 4 Searching M269 2015J Exam Q 5 M269 2015J Exam Soln 5

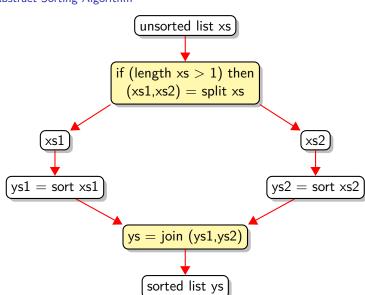
M269 2015J Exam Q 6 M269 2015J Exam Soln 6 M269 2015J Exam Q 7

M269 2015J Exam Q 7 M269 2015J Exam Soln M269 2015J Exam Q 8

> 69 2015J Exam Soln t 5 Optimisation 69 2015J Exam Q 9

M269 2015J Exam

Units 6 & 7


M269 Exam 2015J Q Part2

M269 Exam 2015J

24/128 (35/139)

Unit 3 Sorting

Abstract Sorting Algorithm

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2015J Exam Qs

Units 3, 4 & 5

Unit 3 Sorting
Unit 4 Searching
M269 2015J Exam Q 5
M269 2015J Exam Soln 5
M269 2015J Exam Q 6

M269 2015 J Exam Q 6 M269 2015 J Exam Soln 6 M269 2015 J Exam Q 7 M269 2015 J Exam Soln 7 M269 2015 J Exam Q 8

> 5 Optimisation 69 2015J Exam Q 9 69 2015J Exam Soln 9

Jnits 6 & 7

/1269 Exam 201!

Part2

M269 Exam 2015J Soln Part?

25/128 (36/139)

Unit 3 Sorting

Sorting Algorithms

Using the *Abstract sorting algorithm*, describe the *split* and *join* for:

- ▶ Insertion sort
- Selection sort
- Merge sort
- Quicksort
- Bubble sort (the odd one out)

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2015J Exam Qs

Units 1 & 2

Hnite 2 / 9, 5

Unit 3 Sorting

Unit 4 Searching M269 2015J Exam Q

M269 2015J Exam Q 5 M269 2015J Exam Q 6

M269 2015J Exam Soln 6 M269 2015J Exam Q 7 M269 2015J Exam Soln 7

9 2015J Exam Soln 7 9 2015J Exam Q 8 9 2015J Exam Soln 8 5 Optimisation

69 2015J Exam Q 9 69 2015J Exam Soln 69 2015J Exam Q 10

Jnits 6 & 7

M269 Exam 2015J Q Part2

M269 Exam 2015J

26/128 (37/139)

M269 Specimen Exam

Unit 4 Topics, Q7, Q8

- Unit 4 Searching
- String searching: Quick search Sunday algorithm, Knuth-Morris-Pratt algorithm
- Hashing and hash tables
- Search trees: Binary Search Trees
- ▶ Search trees: Height balanced trees: AVL trees

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2015J Exam Qs

Jnits 1 & 2

Jnits 3. 4 &

Unit 3 Sorting

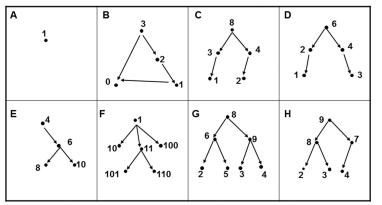
Unit 4 Searching

M269 2015J Exam Q 5 M269 2015J Exam Soln 5 M269 2015J Exam Q 6

M269 2015J Exam Q 6 M269 2015J Exam Soln 6 M269 2015J Exam Q 7

269 2015J Exam Soln 269 2015J Exam Q 8 269 2015J Exam Soln it 5 Ontimication

59 2015J Exam Q 9 59 2015J Exam Soln 59 2015J Exam Q 10


Units 6 & 7

M269 Exam 2015J Q Part2

M269 Exam 2015J

27/128 (38/139)

▶ Question 5 Consider the following diagrams A–H. Nodes are represented by black dots and edges by arrows. The numbers represent a node's key. (4 marks)

Q 5 continued on next slide

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2015J Exam Qs

Units 1 &

Unite 3 4 & 5

Init 3 Sorting
Init 4 Searching

M269 2015.J Exam Q 5
M269 2015.J Exam Soln 5
M269 2015.J Exam Soln 6
M269 2015.J Exam Soln 6
M269 2015.J Exam Q 7
M269 2015.J Exam Soln 7
M269 2015.J Exam Q 8
M269 2015.J Exam Soln 8
Unit 5 Optimisation
M269 2015.J Exam Q 9

Jnits 6 & 7

M269 Exam 2015J Q Part2

/1269 Exam 2015J

28/128 (39/139)

Go to Soln 5

M269 2015J Exs Exam

Q 5 (contd)

- Answer the following questions. Write your answer on the line that follows each question. In each case there is at least one diagram in the answer but there may be more than one. Explanations are **not** required.
- (a) Which of A, B, C and D do not show trees?
- (b) Which of E, F, G and H are binary trees?
- (c) Which of C, D, G and H are complete binary trees?
- (d) Which of C, D, G and H are binary heaps?

▶ Go to Exam Soln 5

M269

Sharon & Phil

M269 Exam
Revision Agenda &

M269 Prsntn 2015J Exam Qs

Units 1 &

Units 3, 4 & 5

Unit 3 Sorting
Unit 4 Searching

M269 2015J Exam Q 5 M269 2015J Exam Soln 5

M269 2015J Exam Q 6 M269 2015J Exam Soln 6 M269 2015J Exam Q 7

269 2015J Exam Q 7 269 2015J Exam Soln 7 269 2015J Exam Q 8

269 2015J Exam ait 5 Optimisation

M269 2015J Exam So M269 2015J Exam Q

Units 6 & 7

M269 Exam 2015J

M269 Exam 2015J

29/128 (40/139)

Soln 5

- (a) B is not a tree; it has more than one route from node 3 to node 0.
- (b) E, G, and H are binary trees; (no more than 2 children per node).
- (c) G, and H are complete binary trees.
- (d) Only H is a heap; (complete binary tree, and parent nodes > children).

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2015J Exam Qs

Jnits 1 & 2

t 3 Sorting

Unit 4 Searching M269 2015J Exam Q 5

M269 2015J Exam Q 6

269 2015 J Exam Soln 6 269 2015 J Exam Q 7 269 2015 J Exam Soln 7

9 2015J Exam Soln 7 9 2015J Exam Q 8 9 2015J Exam Soln 8

59 2015J Exam Q 10 59 2015J Exam Soln

Jnits 6 & 7

M269 Exam 2015.

M260 Evam 2015 I

30/128 (41/139)

Question 6 Consider the following function, which takes an integer argument n. You can assume that n is positive. (4 marks)

```
def calculate(n):
        a = 5
        ans = 0
3
        for i in range(n):
            for j in range(n):
                 v = x + i * i
7
                 for k in range(n):
8
                     z = y + i * k
q
                      ans = ans + z * a
10
11
        return ans
```

Q 6 continued on next slide

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2015J Exam Qs

Jnits 1 & 2

Units 3. 4 & 5

Unit 4 Searching
Unit 4 Searching
M269 2015 J Exam Q 5

M269 2015J Exam Soln 5 M269 2015J Exam Q 6

M269 2015J Exam Q 7 M269 2015J Exam Soln 7

M269 2015J Exam Soln I Init 5 Optimisation

1269 2015J Exam !

Jnits 6 & 7

M269 Exam 2015J Q Part2

M269 Exam 2015J

31/128 (42/139)

- ▶ From the five options below, select the **one** that represents the correct combination of T(n) and Big-O complexity for this function. You may assume that a step (i.e. the basic unit of computation) is the assignment statement.
- A. $T(n) = n^3 + n^2 + n + 3$ and $O(n^3)$
- B. $T(n) = 2n^3 + n^2 + 2$ and $O(2n^3)$
- C. $T(n) = 2n^2 + n + 2$ and $O(n^2)$
- D. $T(n) = 2n^3 + n^2 + n + 2$ and $O(n^3)$
- E. T(n) = 3n + 6 and O(n)
 - Now explain how you obtained T(n) and the Big-O complexity.

→ Go to Exam Soln 6

Sharon & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2015J Exam Qs

Jnits 1 &

Units 3, 4 & 5

Unit 3 Sorting
Unit 4 Searching
M269 2015J Exam Q 5
M269 2015J Exam Soln 5
M269 2015J Exam Q 6

|269 2015J Exam Q 6 |269 2015J Exam Soln 6 |269 2015J Exam Q 7 |269 2015J Exam Soln 7 |269 2015J Exam Q 8

9 2015J Exam Soln 8
5 Optimisation
9 2015J Exam Q 9
9 2015J Exam Soln 9

nits 6 & 7

M269 Exam 2015J Q Part2

M269 Exam 2015J

32/128 (43/139)

Soln 6

D.
$$T(n) = 2n^3 + n^2 + n + 2$$
 and $O(n^3)$

- 2 assignment statements outside the loops
- 1 assignment statement in the outer loop
- 1 assignment statement in the middle loop
- 2 assignment statements in the inner loop
- n³ is the dominat term

M269

Sharon & Phil

M269 2015 J Exam Soln 6

33/128 (44/139)

- Question 7 In the KMP algorithm, for each character in turn, as it appears in the target string T, we identify the longest substring of T ending with that character which matches a prefix of T.
- ▶ These lengths are stored in what is known as a prefix table (which in Unit 4 we represented as a list).
- Consider the target string T: CDCECDCECE
- Below is an incomplete prefix table for the target string given above. Complete the prefix table by writing the missing numbers in the appropriate boxes. (4 marks)

С	D	С	Е	C	D	С	E	С	E
0		1	0		2		4		0

M269

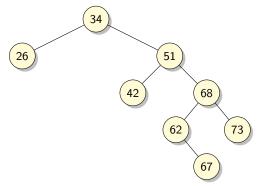
Sharon & Phil

M269 2015J Exam Q 7

34/128 (45/139)

Soln 7

	D	_	_	_	_		_		_
0	0	1	0	1	2	3	4	1	0


M269

Sharon & Phil

M269 2015J Exam Soln 7

Soln Part 2 35/128 (46/139)

Consider the following Binary Search Tree. (4 marks)

- (a) Calculate the balance factors of each node in the above tree and annotate the above tree to show these balance factors.
- (b) Redraw the tree after node 51 has been deleted.

▶ Go to Soln 8

M269

Sharon & Phil

M269 Exam Revision Agenda &

> M269 Prsntn 2015J Exam Qs

Inits 1 &

Units 3 4 & 5

Unit 3 Sorting
Unit 4 Searching
M269 2015J Exam Q 5
M269 2015J Exam Soln 5
M269 2015J Exam Q 6

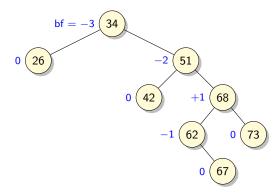
M269 2015J Exam Q 7 M269 2015J Exam Soln 7 M269 2015J Exam Q 8

M269 2015J Exam Q 8 M269 2015J Exam Soln 8

Unit 5 Optimisation M269 2015J Exam (M269 2015J Exam)

Inite 6 & 7

Jilles U & T


W269 Exam 2015J Q Part2

1269 Exam 2015J

36/128 (47/139)

Soln 8

(a) Balance factors

Soln 8 continued on next slide

→ Go to Q

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2015J Exam Qs

Units 1 & 2

Units 3, 4 & 5

Unit 3 Sorting
Unit 4 Searching
M269 2015J Exam Q 5
M269 2015J Exam Soln 5
M269 2015J Exam Q 6
M269 2015J Exam Q 7
M269 2015J Exam Q 7
M269 2015J Exam Soln 7

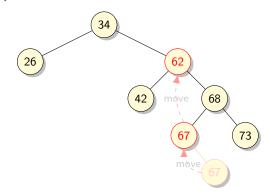
M269 2015J Exam Q 8 M269 2015J Exam Soln 8

Jnit 5 Optimisation M269 2015J Exam Q 9 M269 2015J Exam Soln 9

In:to 6 0. 7

Units 6 & 7

M269 Exam 2015J Q Part2


M269 Exam 2015J

37/128 (48/139)

M269 2015J Exs Exam

Soln 8 (b)

(b) Delete 51

→ Go to Exam Q 8

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2015J Exam Os

Units 1 & 2

Units 3, 4 & 5

Unit 3 Sorting
Unit 4 Searching
M269 2015J Exam Q 5
M269 2015J Exam Soln 5
M269 2015J Exam Q 6
M269 2015J Exam Soln 6

1269 2015J Exam Q 8

M269 2015J Exam Soln 8 Unit 5 Optimisation

M269 2015J Exam

Units 6 & 7

M269 Exam 2015J Q Part2

M269 Exam 2015J

Soln Part2 38/128 (49/139)

M269 Specimen Exam

Unit 5 Topics, Q9, Q10

- Unit 5 Optimisation
- Graphs searching: DFS, BFS
- Distance: Dijkstra's algorithm
- Greedy algorithms: Minimum spanning trees, Prim's algorithm
- Dynamic programming: Knapsack problem, Edit distance

M269

Sharon & Phil

M269 Exam
Revision Agenda &
Aims

M269 Prsntn 2015J Exam Qs

Jnits 1 & 2

Inits 3 4 & 5

Unit 3 Sorting
Unit 4 Searching

M269 2015J Exam Q 5 M269 2015J Exam Soln 5 M269 2015J Exam Q 6

M269 2015J Exam Q 6 M269 2015J Exam Soln 6 M269 2015J Exam Q 7

69 2015J Exam Solr 69 2015J Exam Q 8 69 2015J Exam Solr

Unit 5 Optimisation M269 2015J Exam Q M269 2015J Exam So

Units 6 & 7

M269 Exam 201!

M260 F 2015 I

Soln Part2 39/128 (50/139)

Q 9

Question 9 In Python a dictionary of dictionaries can be used to represent a graph's adjacency list. Consider the following: (4 marks)

```
graph2 = {
    0:{ 'neighbours': [1,2,3,4]},
    1:{ 'neighbours': [0,3,4]},
    2:{ 'neighbours': [0,5]},
    3:{ 'neighbours': [0,1,5]},
    4:{ 'neighbours': [0,1]},
    5:{ 'neighbours': [2,3]}}
```

Q 9 continued on next slide

▶ Go to Soln 9

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2015J Exam Qs

Jnits 1 &

Unite 3 A & 5

nit 3 Sorting nit 4 Searching 1269 2015J Exam Q 5 1269 2015J Exam Soln 5 1269 2015J Exam Q 6

M269 2015J Exam Q 6 M269 2015J Exam Soln 6 M269 2015J Exam Q 7

> 69 2015J Exam Q 69 2015J Exam S

M269 2015 J Exam Q 9

M269 2015J Exam

Units 6 & 7

M269 Exam 2015J Q Part2


M269 Exam 2015J

40/128 (51/139)

Q 9 (contd)

▶ In the space provided below, **complete** the graph corresponding to the adjacency list given above.

► Go to Exam Soln 9

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2015J Exam Qs

Units 1 & 2

Units 3, 4 & 5

Unit 3 Sorting
Unit 4 Searching
M269 2015J Exam Q 5

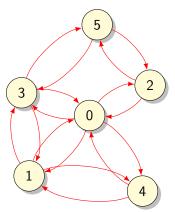
M269 2015J Exam Soln 5 M269 2015J Exam Q 6 M269 2015J Exam Soln 6

M269 2015J Exam Q 7 M269 2015J Exam Soln 7 M269 2015J Exam Q 8

269 2015J Exam Q 8 269 2015J Exam Soln it 5 Optimisation

M269 2015J Exam Q 9 M269 2015J Exam Soln 9

11=:4= 6 0. 7


M269 Exam 2015

M269 Exam 2015

41/128 (52/139)

Soln 9

▶ Here is a representation with unidirectional edges

Soln 9 continued on next slide

→ Go to Q 9

M269

Sharon & Phil

M269 Exam Revision Agenda &

M269 Prsntn 2015J Exam Qs

Ullits 1 & Z

Units 3, 4 & 5

Unit 3 Sorting
Unit 4 Searching
M269 2015J Exam Q 5
M269 2015J Exam Soln !
M269 2015J Exam Q 6

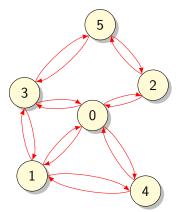
M269 2015J Exam Soln 6 M269 2015J Exam Q 7 M269 2015J Exam Soln 7

M269 2015J Exam

M269 2015J Exam Q 9 M269 2015J Exam Soln 9

W209 2015J Exam

Units 6 & 7


M269 Exam 2015J O Part2

1269 Exam 2015J

Soln Part2 42/128 (53/139)

Soln 9 (contd)

▶ Here is a representation with unidirectional edges

Soln 9 continued on next slide

→ Go to Exam Q 9

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2015J Exam Qs

01110 1 0. 1

Units 3, 4 & 5

Unit 3 Sorting

M269 2015 J Exam Q 5

M269 2015J Exam Q 6

M269 2015J Exam Q 7 M269 2015J Exam Soln

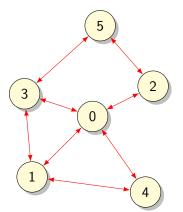
M269 2015J Exa M269 2015J Exa

Unit 5 Optimisation M269 2015J Exam Q 9 M269 2015J Exam Soln 9

1269 2015J Exam So

Units 6 & 7

M269 Exam 2015J


M269 Exam 2015J

Soln Part 2 43/128 (54/139)

M269 2015 J Exs Exam

Soln 9 (contd)

▶ Here is a representation with bidirectional edges (but we have not been told that every edge has a reverse edge and of the same weight or length)

M269

Sharon & Phil

M269 2015 J Exam Soln 9

44/128 (55/139)

Q 10

▶ Question 10 Consider the following graph: (4 marks)

▶ In the space provided below, draw **one** spanning tree that could be generated from a **Breadth First Search** of the above graph starting at vertex 2.

▶ Go to Soln 10

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 015J Exam Qs

Units 1

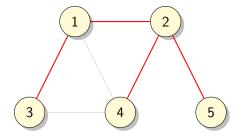
Units 3, 4 & 5

Unit 3 Sorting
Unit 4 Searching
M269 2015 J Exam Q 5
M269 2015 J Exam Soln 5
M269 2015 J Exam Q 6
M269 2015 J Exam Soln 6
M269 2015 J Exam Soln 6
M269 2015 J Exam Q 7

5 Optimisation 9 2015J Exam Q 9 9 2015J Exam Soln 9

M269 2015J Exam Q 10 M269 2015J Exam Soln

Jnits 6 & 7


M269 Exam 2015J Q Part2

1269 Exam 2015J

45/128 (56/139)

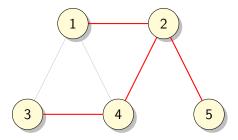
Soln 10

▶ Spanning tree from breadth first search from vertex 2 (1 of 2, in red)

Soln 10 continued on next slide

M269

Sharon & Phil


M269 2015J Exam Soln 10

Soln Part 2 46/128 (57/139)

M269 2015J Exs Exam

Soln 10

Spanning tree from breadth first search from vertex 2 (2 of 2, in red)

→ Go to Exam Q 10

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2015J Exam Qs

Units 1 &

Units 3, 4 & 5

Unit 3 Sorting
Unit 4 Searching

M269 2015J Exam Q 5 M269 2015J Exam Soln 5

M269 2015 J Exam Q 6 M269 2015 J Exam Soln 6 M269 2015 J Exam Q 7

> 269 2015J Exam Q 8 269 2015J Exam Soln 8 nit 5 Optimisation

M269 2015J Exam Q 10 M269 2015J Exam Soln 10

Jnits 6 & 7

M269 Exam 2015J Q Part2

M269 Exam 2015J

47/128 (58/139)

M269 Specimen Exam

Q11 Topics

- ▶ Unit 6
- Sets
- Propositional Logic
- ► Truth tables
- Valid arguments
- ► Infinite sets

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

2015J Exam Qs

....

Jnits 3, 4 & 5

Propositional Logic

ropositional Logic 1269 2015J Exam Q 1

M269 2015J Exam Q 11 M269 2015J Exam Soln

redicate Logic 1269 2015J Exam Q 1:

M269 2015J Exa

M269 2015J E: M269 2015J E:

ogic 1269 2015J E: 1269 2015J E:

M269 2015J E

M269 2015J Exam M269 2015J Exam

M269 Exam 2015J Q Part2

48/128 (59/13

▶ Question 11

(4 marks)

- (a) What does it mean to say that two well-formed formulas (WFFs) are logically equivalent? Use the space below for your answer.
- (b) Is the following set of propositional WFFs satisfiable ? $\{(P \rightarrow Q), (Q \rightarrow P)\}$
 - Explain how you arrived at your answer in the space below:

▶ Go to Soln 11

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 015J Exam Qs

7111LS I & Z

Units 3, 4 & 5

nits 6 & 7

Propositional Logic
M269 2015J Exam Q 11

edicate Logic 269 2015J Exam Q 12

2015J Exam Soln 12 Queries 2015J Exam Q 13 2015J Exam Soln 13

ic 59 2015J Exam Q 14 59 2015J Exam Soln 1

mputability 69 2015J Exam Q 15 69 2015J Exam Soln 15

M269 Exam 2015J Q Part2

49/128 (60/139

Soln 11

- (a) Two well-formed formulas (WFFs) A and B are logically equivalent if and only if A and B have the same value in all interpretations.
- **(b)** The sets of WFFs is *satisfiable* if each member has the value *True* for some interpretation

Р	Q	P o Q	$Q \rightarrow P$
Т	Т	T	Т
Т	F	F	Т
F	Т	Т	F
F	F	Т	Т

► The set is satisfiable

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2015J Exam Qs

OIIILS 1 & 2

Units 3, 4 & 5

nits 6 & 7

M269 2015 J Exam Q 11

Predicate Logic M269 2015J Exam Q 12 M269 2015J Exam Soln 12 SQL Queries

M269 2015J Exam Q 13 M269 2015J Exam Soln 1 Ogic

M269 2015J Exam Q 14 M269 2015J Exam Soln 1 Computability

269 2015J Exam Q 15 269 2015J Exam Soln 1

M269 Exam 2015J Q Part2

M269 Specimen Exam

Q12 Topics

- ▶ Unit 6
- Predicate Logic
- ► Translation to/from English
- Interpretations

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

015J Exam Qs

Inits 6 & 7

ropositional Logic

M269 2015J Exam Q 11 M269 2015J Exam Soln

Predicate Logic
M269 2015 J Exam Q 12

69 2015J Exam Soln L Queries 69 2015J Exam Q 13

ogic //269 2015J E

1269 2015J Exam 1269 2015J Exam omputability

M269 2015J Exam So Complexity

Q Part2

51/128 (62/139

 Question 12 Consider a domain with some board games and people. (6 marks)

 $\mathcal{D} = \{ \mathsf{Backgammon}, \, \mathsf{Chess}, \, \mathsf{Draughts}, \, \mathsf{Joe}, \, \mathsf{Mary}, \, \mathsf{Sue} \}$

An interpretation assigns people to corresponding constants (you won't need the constants for games).

$$\mathcal{I}(\textit{joe}) = \mathsf{Joe}$$

 $\mathcal{I}(\textit{mary}) = \mathsf{Mary}$
 $\mathcal{I}(\textit{sue}) = \mathsf{Sue}$

► The predicates *owns* and *likes* are assigned to binary relations with the following comprehensions:

$$\mathcal{I}(\textit{owns}) = \{(P, G): \text{ the person } P \text{ owns the game } G\}$$

 $\mathcal{I}(\textit{likes}) = \{(P, G): \text{ the person } P \text{ likes the game } G\}$

Q 12 continued on next slide

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2015J Exam Qs

nits 1 &

Units 3, 4 & 5

Inits 6 & 7

Propositional Logic M269 2015J Exam Q 11 M269 2015J Exam Soln 11 Predicate Logic

M269 2015J Exam Q 12 M269 2015J Exam Soln 12

QL Queries 1269 2015J Exam Q 13 1269 2015J Exam Soln 1 1266

59 2015J Exam Q 14 59 2015J Exam Soln 14 nputability 59 2015J Exam Q 15

M269 Exam 2015J Q Part2

52/128 (63/139)

- ▶ $\mathcal{I}(owns) = \{(Joe, Chess), (Mary, Backgammon), (Sue, Draughts)\}$
- $\mathcal{I}(likes) = \{(Joe, Backgammon), (Mary, Backgammon), (Mary, Draughts), (Sue, Backgammon), (Sue, Chess)\}$
- You will find the questions on the next page.
- You are asked to translate a sentence of predicate logic to English or vice-versa.
- You also need to state whether the sentence is TRUE or FALSE in the interpretation that is provided on this page, and give an explanation of your answer.
- Q 12 continued on next slide

M269

Sharon & Phil

M269 Exam Revision Agenda &

> 1269 Prsntn 015J Exam Qs

Jnits 1 &

Units 3, 4 & 5

nits 6 & 7

Propositional Logic M269 2015J Exam Q 11 M269 2015J Exam Soln 11

M269 2015J Exam Q 12 M269 2015J Exam Soln 12 SQL Queries

SQL Queries M269 2015J Exam Q 13 M269 2015J Exam Soln 1 Logic

269 2015J Exam Q 14 269 2015J Exam Soln 1 omputability 269 2015J Exam Q 15

M269 Exam 2015J

M269 Exam 2015 J

→ Go to Exam Soln 12

- When your explanation refers to the interpretation, make sure that you use formal notation.
- So instead of saying that Joe likes Backgammon according to the interpretation, write: (Joe, Backgammon) ∈ I(likes).
- Similarly, instead of Joe doesn't like Backgammon you would need to write: (Joe, Backgammon) ∉ I(likes).
- Q 12 continued on next slide

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> 1269 Prsntn 015J Exam Qs

JIIILS I & Z

Units 3, 4 & 5

Units 6 & 7
Propositional Logic
M269 2015J Exam Q 11
M269 2015J Exam Soln 11
Predicate Logic

M269 2015J Exam Q 12 M269 2015J Exam Soln 13 SQL Queries

> 69 2015 J Ex gic 69 2015 J Ex

69 2015J Exam Q 1

59 2015J Exam Soln nplexity

M269 Exam 2015J Q Part2

▶ Go to Exam Soln 1

- (a) $\forall X.(owns(joe, X) \rightarrow likes(joe, X))$ can be translated into English as:
 - ► This sentence is ____ (choose from TRUE/FALSE), because:
- (b) There's something that both Mary and Sue like can be translated into predicate logic as:
 - ► This sentence is ____ (choose from TRUE/FALSE), because:

► Go to Exam Soln 12

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2015J Exam Qs

nits 1 & 2

Units 3, 4 & 5

I-i+- 6 0. 7

Propositional Logic M269 2015J Exam Q 11 M269 2015J Exam Soln 1

Predicate Logic M269 2015J Exam Q 12

> 69 2015J Exam Soln 12 L Queries 69 2015J Exam Q 13

1269 2015J Exam Soln

69 2015J Exam Q 14 69 2015J Exam Soln 14

269 2015J Exam Soln 15 omplexity

M269 Exam 2015J Q Part2

55/128 (66/139

Soln 12

- (a) Joe likes the games he owns
 - ▶ False Joe owns Chess but does not like it
 - ▶ (Joe, Chess) $\in \mathcal{I}(\textit{owns})$
 - ▶ but (Joe, Chess) $\notin \mathcal{I}(likes)$
- **(b)** $\exists X.(likes(mary, X) \land likes(sue, X))$
 - ► True they both like Backgammon

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2015J Exam Qs

Units 3, 4 & 5

nits 6 & 7

M269 2015J Exam Q 11 M269 2015J Exam Soln

Predicate Logic
M269 2015 J Exam Q 12
M269 2015 J Exam Soln 12

QL Queries 269 2015J Exam Q 13 269 2015J Exam Soln 1

gic 269 2015J Exam Q 14 269 2015J Exam Soln 1

69 2015J Exam Soln 14 nputability 69 2015J Exam Q 15

M269 Exam 2015J

56/128 (67/139

M269 Specimen Exam

Q13 Topics

- ▶ Unit 6
- SQL queries

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2015J Exam Qs

Jnits 1 & 2

Jnits 3. 4 & 5

nits 6 & 7

Propositional Logic M269 2015J Exam Q

1269 2015J Exam Soln redicate Logic

M269 2015 J Exam Soln : SQL Queries

M269 2015J Exam Q 13 M269 2015J Exam Soln

Logic M269 2015J E

M269 2015J Exam Q 1 M269 2015J Exam Soln Computability

omplexity

M269 Exam 2015.1

Question 13 The interpretation of the previous question can also be represented by a database with the following tables, *owns* and *likes*.
 (6 marks)

owns				
owner	boardgame			
Joe	Chess			
Mary	Backgammon			
Sue	Draughts			

likes				
person	game			
Joe	Backgammon			
Mary	Backgammon			
Mary	Draughts			
Sue	Backgammon			
Sue	Draughts			

Q 13 continued on next slide

→ Go to Soln 13

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2015J Exam Qs

JIIILS 1 02 Z

0,,,,

Propositional Logic M269 2015J Exam Q 1 M269 2015J Exam Soln

Predicate Logic M269 2015J Exam Q 12 M269 2015J Exam Soln 12 SQL Queries

M269 2015J Exam Q 13 M269 2015J Exam Soln 1 Logic

M269 2015J Exam M269 2015J Exam

Computability M269 2015J Exam Q 15 M269 2015J Exam Soln 1

M269 Exam 2015J Q Part2

M269 Exam 2015 | 58/128 (69/139 (a) For the following SQL query, give the table returned by the query.

SELECT person
FROM owns CROSS JOIN likes
WHERE game = boardgame AND person = owner;

- ► Write the question that the above query is answering.
- (b) Write an SQL query that answers the question Which games does Sue like?
 - ► The answer should be the following table:

game
Backgammon
Chess

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> 1269 Prsntn 015J Exam Qs

nits 1 & 2

Units 3, 4 & 5

Units 6 & 7

Propositional Logic
M269 2015J Exam Q 11
M269 2015J Exam Soln 11
Predicate Logic

redicate Logic 269 2015J Exam Q 12 269 2015J Exam Soln 12 QL Queries

M269 2015 J Exam Q 13

ogic 1269 2015J Exam Q 14

69 2015 J Exam Soln 14

Complexity 1269 Exam 2015J

M269 Exam 2015 I

Soln 13

(a) The table

Mary Sue

- ▶ Who owns games they like ?
- (b) The SQL query

```
SELECT game
FROM likes
WHERE person = 'Sue';
```

(► Go t

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

015J Exam Qs

. . . .

ropositional Logic

M269 2015J Exam Q 11 M269 2015J Exam Soln I

Predicate Logic M269 2015J Exam Q 12 M269 2015J Exam Soln 1

SQL Queries M269 2015J Exam Q 13 M269 2015J Exam Soln 13

gic 269 2015 J Exam Q 14

M269 2015J Exam Q 14 M269 2015J Exam Soln 1 Computability

Complexity
M260 Exam 2015

M269 Exam 2015 L

M269 Specimen Exam

Q14 topics

- ▶ Unit 7
- ► Proofs
- Natural deduction

M269

Sharon & Phil

M269 Exam Revision Agenda &

M269 Prsntn 2015J Exam Qs

nits 6 & 7

Jnits 6 & 7
Propositional Logic

M269 2015J Exam Q 11 M269 2015J Exam Soln Predicate Logic

> 69 2015J Exam Q 1 69 2015J Exam Sol L Queries 69 2015J Exam Q 1

M269 2015 J Exi Logic M269 2015 J Exi

269 2015J Exam Q 14 269 2015J Exam Soln omputability

269 2015J Exam Soln 1 omplexity

√ Part2 √ 260 Evam 2015 I

Logicians, Logics, Notations

- A plethora of logics, proof systems, and different notations can be puzzling.
- Martin Davis, Logician When I was a student, even the topologists regarded mathematical logicians as living in outer space. Today the connections between logic and computers are a matter of engineering practice at every level of computer organization
- Various logics, proof systems, were developed well before programming languages and with different motivations,

M269

Sharon & Phil

M269 Exam
Revision Agenda &
Aims

M269 Prsntn 2015J Exam Qs

Jnits 1 &

Units 3, 4 & 5

Units 6 & 7

Propositional Logic M269 2015J Exam Q 11 M269 2015J Exam Soln 11 Predicate Logic M269 2015J Exam Q 12

1269 2015J Exam Soln QL Queries 1269 2015J Exam Q 13

M269 2015J Exam Sol

Logic

269 2015J Exam Q 14 269 2015J Exam Soln 14 emputability 269 2015J Exam Q 15

Complexity
M269 Exam 2015 I

M269 Evam 2015 I

Logic and Programming Languages

- Turing machines, Von Neumann architecture and procedural languages Fortran, C, Java, Perl, Python, JavaScript
- Resolution theorem proving and logic programming Prolog
- Logic and database query languages SQL (Structured Query Language) and QBE (Query-By-Example) are syntactic sugar for first order logic
- ► Lambda calculus and functional programming with Miranda, Haskell, ML, Scala

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 015J Exam Qs

Inits 1 &

Units 3, 4 & 5

nits 6 & 7

Propositional Logic M269 2015 J Exam Q 11 M269 2015 J Exam Soln 11 Predicate Logic

M269 2015 J Exam M269 2015 J Exam Logic

9 2015J Exam Q 14 9 2015J Exam Soln 14

nputability 59 2015J Exam Q 15 59 2015J Exam Soln

M269 Exam 2015J Q Part2

63/128 (74/139

- ▶ There are two ways to model what counts as a logically good argument:
 - the semantic view
 - the syntactic view
- ▶ The notion of a valid argument in propositional logic is rooted in the semantic view.
- ▶ It is based on the semantic idea of interpretations: assignments of truth values to the propositional variables in the sentences under discussion.
- ▶ A valid argument is defined as one that preserves truth from the premises to the conclusions
- ▶ The syntactic view focuses on the syntactic form of arguments.
- Arguments which are correct according to this view are called justified arguments.

Logical Arguments

Proof Systems, Soundness, Completeness

- Semantic validity and syntactic justification are different ways of modelling the same intuitive property: whether an argument is logically good.
- ▶ A proof system is *sound* if any statement we can prove (justify) is also valid (true)
- ► A proof system is *adequate* if any valid (true) statement has a proof (justification)
- ▶ A proof system that is sound and adequate is said to be complete
- Propositional and predicate logic are complete arguments that are valid are also justifiable and vice versa
- ▶ Unit 7 section 2.4 describes another logic where there are valid arguments that are not justifiable (provable)

Sharon & Phil

Logic

 P_1

Jnits 1 & 2

Units 3, 4 & 5

Units 6 & 7

Propositional Logic M269 2015J Exam Q 11 M269 2015J Exam Soln 11 Predicate Logic

M269 2015J Exam Q 12 M269 2015J Exam Soln 12 SQL Queries M269 2015J Exam Q 13

M269 2015J Exam Q 13 M269 2015J Exam Soln : Logic

ogic 1269 2015J Exam Q

269 2015J Exam Soln 14 mputability 269 2015J Exam Q 15 269 2015J Exam Soln 15

M269 Exam 2015J Q Part2

Unit 6 defines valid arguments with the notation

Offic o defines valid arguments with the notation

- ► The argument is *valid* if and only if the value of C is *True* in each interpretation for which the value of each premise P_i is *True* for $1 \le i \le n$
- ▶ In some texts you see the notation $\{P_1, \ldots, P_n\} \models C$
- ► The expression denotes a *semantic sequent* or *semantic* entailment
- ► The |= symbol is called the *double turnstile* and is often read as *entails* or *models*
- ▶ In LaTeX ⊨ and ⊨ are produced from \vDash and \models — see also the turnstile package
- In Unicode |= is called TRUE and is U+22A8, HTML ⊨

66/128 (77/139

Logical Arguments

Valid arguments — Tautology

- ▶ The argument $\{\} \models C$ is valid if and only if C is True in all interpretations
- That is, if and only if C is a tautology
- Beware different notations that mean the same thing
 - ▶ Alternate symbol for empty set: $\emptyset \models C$
 - ▶ Null symbol for empty set: $\models C$
 - Original M269 notation with null axiom above the line:

M269

Sharon & Phil

M269 Exam
Revision Agenda &
Aims

M269 Prsntn 2015J Exam Qs

Units 1 &

Units 3, 4 & 5

Jnits 6 & 7

Propositional Logic M269 2015J Exam Q 11 M269 2015J Exam Soln 1

edicate Logic 269 2015J Exam Q 12 269 2015J Exam Soln 12

L Queries 69 2015J Exam Q 13 69 2015J Exam Soln 1:

Logic M269 2015J Exam Q 14

1269 2015J Exam Soln 14 omputability 1269 2015J Exam Q 15

M269 Exam 2015J Q Part2

67/128 (78/139

2015J Exan
Units 1 & 2

Units 3, 4 & 5

Units 6 & 7

Propositional Logic M269 2015 J Exam Q 11 M269 2015 J Exam Soln 11 Predicate Logic M269 2015 J Exam Q 12 M269 2015 J Exam Soln 12

L Queries 69 2015J Exam Q 13 69 2015J Exam Soln 1:

Logic

M269 2015J Exam Q 14 M269 2015J Exam Soln 1

nputability

69 2015 J Exam Q

69 2015 J Exam Q

M269 Exam 2015J Q Part2

Axioms

 $\Gamma \cup \{A\} \vdash A \text{ (axiom schema)}$

- ► This can be read as: any formula **A** can be derived from the assumption (premise) of {**A**} itself
- The ⊢ symbol is called the turnstile and is often read as proves, denoting syntactic entailment
- In LaTeX ⊢ is produced from \vdash
- In Unicode ⊢ is called RIGHT TACK and is U+22A2, HTML ⊢

Justified Arguments

- Section 2.3 of Unit 7 (not the Unit 6, 7 Reader) gives the inference rules for →, ∧, and ∨ — only dealing with positive propositional logic so not making use of negation — see List of logic systems
- Usually (Classical logic) have a functionally complete set of logical connectives — that is, every binary Boolean function can be expressed in terms the functions in the set

M269

Sharon & Phil

M269 Exam
Revision Agenda &
Aims

M269 Prsntn 2015J Exam Qs

Offits 1 &

Units 3, 4 & 5

Jnits 6 & 7

Propositional Logic M269 2015J Exam Q 11 M269 2015J Exam Soln 11 Predicate Logic

M269 2015J Exam (M269 2015J Exam)

L Queries 269 2015J Exam Q 13

M269 2015J I Logic

269 2015 J Exam Q 14 269 2015 J Exam Soln 1

nputability 69 2015J Exam Q

M269 Exam 2015J

69/128 (80/13

Inference Rules — Notation

Inference rule notation:

```
\frac{\textit{Argument}_1 \quad \dots \quad \textit{Argument}_n}{\textit{Argument}} \; \textit{(label)}
```

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

2015J Exam Qs

....

.

Propositional Logic

W269 2015J Exam Q 11 W269 2015J Exam Soln

edicate Logic 269 2015J Exam Q 12

by 2015J Exam Soln
L Queries
69 2015J Exam Q 13

Logic

M269 2015J Exam Q 14 M269 2015J Exam Soln 1

M269 2015J Exam Soln : Computability M269 2015J Exam Q 15

M269 Exam 2015J

M269 Exam 2015 | 5 170/128 (81/139)

Inference Rules — Conjunction

►
$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B}$$
 (\(\triangle \text{-introduction}\)
► $\frac{\Gamma \vdash A \land B}{\Gamma \vdash A}$ (\(\triangle \text{-elimination left}\)
► $\frac{\Gamma \vdash A \land B}{\Gamma \vdash B}$ (\(\triangle \text{-elimination right}\)

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

1269 Prsntn 015J Exam Qs

nite 3 1 & 5

nits 6 & 7

opositional Logic

//269 2015 J Exam Q

269 2015J Exam Soli redicate Logic

M269 2015J Exam M269 2015J Exam GQL Queries

M269 2015J Exam Logic

269 2015 J Exam

269 2015J Exam Q 1

omputability 269 2015J Exam Q 15 269 2015J Exam Soln 1

269 Exam 2015J

M269 Exam 2015 | 71/128 (82/139

Inference Rules — Implication

The above should be read as: If there is a proof (justification, inference) for B under the set of premises, Γ, augmented with A, then we have a proof (justification. inference) of A → B, under the unaugmented set of premises, Γ.
The unaugmented set of premises Γ may have

The unaugmented set of premises, Γ may have contained \boldsymbol{A} already so we cannot assume

$$(\Gamma \cup \{A\}) - \{A\}$$
 is equal to Γ

$$\qquad \qquad \frac{\Gamma \vdash A \quad \Gamma \vdash A \to B}{\Gamma \vdash B} \ (\rightarrow \text{-elimination})$$

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2015J Exam Qs

011103 1 00 2

Units 3, 4 & 5

Jnits 6 & 7

Propositional Logic M269 2015J Exam Q 11 M269 2015J Exam Soln 11 Predicate Logic M269 2015J Exam O 12

|269 2015J Exam Soln 1: |QL Queries |269 2015J Exam Q 13 |269 2015J Exam Soln 1:

LogicM269 2015J Exam Q 14
M269 2015J Exam Soln 1

209 2015J Exam Soin 1 omputability 269 2015J Exam Q 15 269 2015J Exam Soin 1

M269 Exam 2015J Q Part2

72/128 (83/139

Inference Rules — Disjunction

- $\qquad \frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} \ (\lor -introduction left)$
- $\qquad \qquad \frac{\Gamma \vdash B}{\Gamma \vdash A \lor B} \ (\lor \text{-introduction right})$
- Disjunction elimination

$$\frac{\Gamma \vdash \textit{A} \lor \textit{B} \quad \Gamma \cup \{\textit{A}\} \vdash \textit{C} \quad \Gamma \cup \{\textit{B}\} \vdash \textit{C}}{\Gamma \vdash \textit{C}} \ (\lor \text{-elimination})$$

The above should be read: if a set of premises Γ justifies the conclusion $A \vee B$ and Γ augmented with each of A or B separately justifies C, then Γ justifies C

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2015J Exam Qs

.

Propositional Logic M269 2015J Exam Q 11

Predicate Logic
M269 2015J Exam Q 12
M269 2015J Exam Soln 12

M269 2015J Exam Q 13 M269 2015J Exam Soln 1: Logic

ogic 1269 2015J Exam Q 14 1269 2015J Exam Soln 14

omplexity

M269 Exam 2015.L.

- ► The syntax of proofs is recursive:
- ▶ A proof is either an axiom, or the result of applying a rule of inference to one, two or three proofs.
- ▶ We can therefore represent a proof by a tree diagram in which each node have one, two or three children
- ▶ For example, the proof of $\{P \land (P \rightarrow Q)\} \vdash Q$ in Question 4 (in the Logic tutorial notes) can be represented by the following diagram:

$$\frac{\{P \land (P \rightarrow Q)\} \vdash P \land (P \rightarrow Q)}{\{P \land (P \rightarrow Q)\} \vdash P} (\land \text{-E left}) \quad \frac{\{P \land (P \rightarrow Q)\} \vdash P \land (P \rightarrow Q)}{\{P \land (P \rightarrow Q)\} \vdash P \rightarrow Q} (\land \text{-E right}) \quad \text{Queries}}{\{P \land (P \rightarrow Q)\} \vdash Q} (\rightarrow \text{-E}) \quad \text{M269 2015 JI} \\ \frac{\{P \land (P \rightarrow Q)\} \vdash Q}{\{P \land (P \rightarrow Q)\} \vdash Q} (\rightarrow \text{-E}) \quad \text{M269 2015 JI}} \\ \text{Logic} \\ \text{M269 2015 JI} \\ \text{M269 2015 JI}$$

M269 2015J Exam Q 13

Self-Assessment activity 7.4

▶ Let
$$\Gamma = \{P \rightarrow R, Q \rightarrow R, P \lor Q\}$$

$$\qquad \qquad \frac{\Gamma \vdash P \lor Q \quad \Gamma \cup \{P\} \vdash R \quad \Gamma \cup \{Q\} \vdash R}{\Gamma \vdash R} \text{ (\lor-elimination)}$$

$$\qquad \qquad \frac{\Gamma \cup \{P\} \vdash P \quad \Gamma \cup \{P\} \vdash P \rightarrow R}{\Gamma \cup \{P\} \vdash R} \ (\rightarrow \text{-elimination})$$

$$\qquad \qquad \frac{\Gamma \cup \{Q\} \vdash Q \quad \Gamma \cup \{Q\} \vdash Q \rightarrow R}{\Gamma \cup \{Q\} \vdash R} \ (\rightarrow \text{-elimination})$$

Complete tree layout

$$\begin{array}{c|cccc}
\Gamma \cup \{P\} & \Gamma \cup \{P\} & \Gamma \cup \{Q\} & \Gamma \cup \{Q\} \\
\hline
P & \vdash P \to R \\
\hline
\Gamma \cup \{P\} \vdash R & (\to -E) & \hline
\hline
\Gamma \cup \{Q\} \vdash R \\
\hline
\Gamma \cup \{Q\} \vdash R \\
(\lor -E) & \hline
\end{array}$$

M269

Sharon & Phil

Logic

Self-assessment activity 7.4 — Linear Layout

- $\{P \rightarrow R, Q \rightarrow R, P \lor Q\} \vdash P \lor Q$ $\{P \rightarrow R, Q \rightarrow R, P \lor Q\} \cup \{P\} \vdash P$
- $\{P \rightarrow R, Q \rightarrow R, P \lor Q\} \cup \{P\} \vdash P \rightarrow R$
- $\{P \rightarrow R, Q \rightarrow R, P \lor Q\} \cup \{Q\} \vdash Q$
- 5. $\{P \rightarrow R, Q \rightarrow R, P \lor Q\} \cup \{Q\} \vdash Q \rightarrow R$
- 6. $\{P \rightarrow R, Q \rightarrow R, P \lor Q\} \cup \{P\} \vdash R$ 7.
- $\{P \rightarrow R, Q \rightarrow R, P \lor Q\} \cup \{Q\} \vdash R$
- 8. $\{P \rightarrow R, Q \rightarrow R, P \lor Q\} \vdash R$

M269

Sharon & Phil

[Axiom]

[Axiom]

[Axiom]

[Axiom]

[Axiom]

 $[2, 3, \rightarrow -E]$

 $[4, 5, \to -E]$

 $[1, 6, 7, \vee -E]$

Logic

- Question 14 Consider the following axiom schema and rules: (4 marks)
- Axiom schema {**A**, **B**} ⊢ **A**
- Rules
- $\frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \ (\land \text{-elimination left})$
- $\frac{\Gamma \vdash A \land B}{\Gamma \vdash B} \ (\land \text{-elimination right})$
 - $\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B} \ (\land \text{-introduction})$
 - $\frac{\Gamma \cup \{A\} \vdash B}{\Gamma \vdash A \to B} \ (\rightarrow \text{-introduction})$
- $\Gamma \vdash A \quad \Gamma \vdash A \rightarrow B \ (\rightarrow \text{-elimination})$
- Q 14 continued on next slide

Sharon & Phil

M269 2015J Exam Q 14

M269 2015J Exam

Q 14

► Complete the following proof by filling in the two boxes. You can use any of the above as appropriate.

1. $\{V,W\} \vdash V$

[Axiom schema]
[Axiom schema]

2. ?? ??

?? ??

3. $\{V, W\} \vdash V \land W$

→ Go to Exam Soln

M269

Sharon & Phil

M269 Exam
Revision Agenda &
Aims

M269 Prsntn 2015J Exam Qs

11115 1 02 2

nits 3, 4 & 5

nits 6 & 7

1269 2015 J Exam Q 11 1269 2015 J Exam Soln 1: redicate Logic 1269 2015 J Exam Q 12 1269 2015 J Exam Soln 1:

269 2015J Exam Q 13 269 2015J Exam Soln 13 gic

M269 2015J Exam Q 14 M269 2015J Exam Soln 14

M269 2015J Exam Soln 1

mputability 269 2015J Exam Q 15 269 2015J Exam Soln 15 mplexity

M269 Exam 2015J Q Part2

M269 Exam 2015 J

M269 2015J Exam

Soln 14

- Completed proof
 - 1. $\{V, W\} \vdash V$
 - $2. \quad \{V,W\} \vdash W$
 - $3. \quad \{V,W\} \vdash V \land W$

[Axiom schema]

[Axiom schema]

[\troduction]

→ Go to Q 1

M269

Sharon & Phil

M269 Exam
Revision Agenda &
Aims

15J Exam Qs

Inits 3 4 & 5

.

ropositional Logic 1269 2015J Exam Q 11 1269 2015J Exam Soln

1269 2015J Exam Q 12 1269 2015J Exam Soln 1: QL Queries 1269 2015J Exam Q 13

ogic 1269 2015J Exam Q 14

M269 2015J Exam Q 14 M269 2015J Exam Soln 14

69 2015J Exam Soln 14

mplexity 269 Exam 2015J

M269 Exam 2015 L 79/128 (90/139

M269 Specimen Exam

Q15 Topics

- ▶ Unit 7
- Computability and ideas of computation
- Complexity
- ► P and NP
- NP-complete

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

2015J Exam Qs

Units 3, 4 & 5

Jnits 6 & 7

ropositional Logic 1269 2015J Exam Q 11

M269 2015J Exam Q 1: M269 2015J Exam Soln Predicate Logic

M269 2015J Exam Q 12 M269 2015J Exam Soln GQL Queries

M269 2015J Exam S Logic

269 2015J Exam Q 14 269 2015J Exam Soln

Computability M269 2015J Exam Q 15 M269 2015J Exam Soln 1

M269 Exam 2015J Q Part2

80/128 (91/139

Ideas of Computation

- The idea of an algorithm and what is effectively computable
- Church-Turing thesis Every function that would naturally be regarded as computable can be computed by a deterministic Turing Machine. (Unit 7 Section 4)
- ► See Phil Wadler on computability theory performed as part of the Bright Club at The Strand in Edinburgh, Tuesday 28 April 2015

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2015J Exam Qs

Units 1 &

Units 3, 4 & 5

Units 6 & 7

Propositional Logic M269 2015J Exam Q 11 M269 2015J Exam Soln 11 Predicate Logic M269 2015J Exam Q 12

269 2015J Exam Q 12 269 2015J Exam Soln QL Queries

> 9 2015J Exam Q 1 9 2015J Exam Soli :

69 2015J Exam Q 14 69 2015J Exam Soln 14

Computability M269 2015 | Exam Q 15

M269 2015J Exam Q 15 M269 2015J Exam Soln 15 Complexity

M269 Exam 2015J Q Part2

81/128 (92/139

Reducing one problem to another

- ▶ To reduce problem P_1 to P_2 , invent a construction that converts instances of P_1 to P_2 that have the same answer. That is:
 - any string in the language P₁ is converted to some string in the language P₂
 - ▶ any string over the alphabet of P_1 that is not in the language of P_1 is converted to a string that is not in the language P_2
- ▶ With this construction we can solve *P*₁
 - Given an instance of P₁, that is, given a string w that may be in the language P₁, apply the construction algorithm to produce a string x
 - ► Test whether x is in P₂ and give the same answer for w in P₁

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2015J Exam Qs

Units 1 &

Units 3, 4 & 5

Jnits 6 & 7

Propositional Logic
M269 2015J Exam Q 11
M269 2015J Exam Soln 11
Predicate Logic
M269 2015J Exam Q 12
M269 2015J Exam Soln 12
SOL Outsies

|269 2015J Exam Soln 1| |269 2015J Exam O 14

M269 2015J Exam Q 14 M269 2015J Exam Soln 1

Computability M269 2015J Exam Q 15 M269 2015J Exam Soln 15

M269 Exam 2015J Q Part2

82/128 (93/139

Direction of Reduction

- ▶ The direction of reduction is important
- ▶ If we can reduce P_1 to P_2 then (in some sense) P_2 is at least as hard as P_1 (since a solution to P_2 will give us a solution to P_1)
- ▶ So, if P_2 is decidable then P_1 is decidable
- ➤ To show a problem is undecidable we have to reduce from an known undecidable problem to it
- $\forall x (\mathsf{dp}_{P_1}(x) = \mathsf{dp}_{P_2}(\mathsf{reduce}(x)))$
- ▶ Since, if P_1 is undecidable then P_2 is undecidable

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2015J Exam Qs

Jnits 1 & 2

Units 3, 4 & 5

Jnits 6 & 7

Propositional Logic M269 2015J Exam Q 11 M269 2015J Exam Soln 11 Predicate Logic M269 2015J Exam Q 12

> 269 2015J Exam Soln QL Queries 269 2015J Exam Q 13 269 2015J Exam Soln

gic 169 2015J Exam Q 14 169 2015 I Exam Solo 14

Computability

M269 2015J Exam Q 15 M269 2015J Exam Soln 15

M269 Exam 2015J Q Part2

83/128 (94/139

Models of Computation

- In automata theory, a problem is the question of deciding whether a given string is a member of some particular language
- ▶ If Σ is an alphabet, and L is a language over Σ , that is $L \subseteq \Sigma^*$, where Σ^* is the set of all strings over the alphabet Σ then we have a more formal definition of decision problem
- ▶ Given a string $w \in \Sigma^*$, decide whether $w \in L$
- Example: Testing for a prime number can be expressed as the language L_p consisting of all binary strings whose value as a binary number is a prime number (only divisible by 1 or itself)

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2015J Exam Qs

Units 1 &

Units 3, 4 & 5

Units 6 & 7

Propositional Logic M269 2015J Exam Q 11 M269 2015J Exam Soln 11 Predicate Logic M269 2015J Exam Q 12

M269 2015J Exam Soli SQL Queries

> 69 2015J Exam Soli gic

M269 2015J Exam Q M269 2015J Exam So

Computability M269 2015J Exam Q 15

M269 2015J Exam Q 15 M269 2015J Exam Soln 15 Complexity

M269 Exam 2015J Q Part2

84/128 (95/139

Unite 1 P. O

Units 6 & 7

Propositional Logic M269 2015 J Exam Q 11 M269 2015 J Exam Soln 1: Predicate Logic M269 2015 J Exam Q 12 M269 2015 J Exam Soln 1:

> QL Queries |269 2015 | Exam Q 1 |269 2015 | Exam Sol

ic 69 2015J Exam

1269 2015J Exam Q 1 1269 2015J Exam Soln

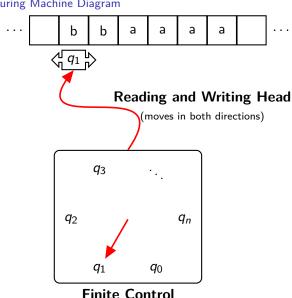
Computability M269 2015J Exam Q

M269 2015J Exam Q 15 M269 2015J Exam Soln 1 Complexity

M269 Exam 2015J Q Part2

Computability

Church-Turing Thesis & Quantum Computing


- Church-Turing thesis Every function that would naturally be regarded as computable can be computed by a deterministic Turing Machine.
- physical Church-Turing thesis Any finite physical system can be simulated (to any degree of approximation) by a Universal Turing Machine.
- strong Church-Turing thesis Any finite physical system can be simulated (to any degree of approximation) with polynomial slowdown by a Universal Turing Machine.
- ► Shor's algorithm (1994) quantum algorithm for factoring integers — an NP problem that is not known to be P — also not known to be NP-complete and we have no proof that it is not in P

Turing Machine

- ▶ **Finite control** which can be in any of a finite number of states
- ▶ **Tape** divided into cells, each of which can hold one of a finite number of symbols
- ▶ Initially, the **input**, which is a finite-length string of symbols in the *input alphabet*, is placed on the tape
- All other tape cells (extending infinitely left and right) hold a special symbol called blank
- A tape head which initially is over the leftmost input symbol
- A move of the Turing Machine depends on the state and the tape symbol scanned
- ▶ A move can change state, write a symbol in the current cell, move left, right or stay

Turing Machine Diagram

Turing Machine Diagram

M269

Sharon & Phil

Turing Machine notation

- Q finite set of states of the finite control
- \triangleright Σ finite set of input symbols (M269 S)
- ▶ Γ complete set of *tape symbols* Σ ⊂ Γ
- \triangleright δ Transition function (M269 instructions, I) $\delta :: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$ $\delta(q,X)\mapsto(p,Y,D)$
- $\delta(q,X)$ takes a state, q and a tape symbol, X and returns (p, Y, D) where p is a state, Y is a tape symbol to overwrite the current cell, D is a direction, Left, Right or Stay
- $ightharpoonup q_0$ start state $q_0 \in Q$
- ▶ B blank symbol $B \in \Gamma$ and $B \notin \Sigma$
- ▶ F set of final or accepting states $F \subseteq Q$

Decidability

- ▶ Decidable there is a TM that will halt with yes/no for a decision problem that is, given a string w over the alphabet of P the TM with halt and return yes.no the string is in the language P (same as recursive in Recursion theory old use of the word)
- ▶ Semi-decidable there is a TM will halt with yes if some string is in P but may loop forever on some inputs (same as recursively enumerable) — Halting Problem
- ► **Highly-undecidable** no outcome for any input *Totality, Equivalence Problems*

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2015J Exam Qs

Units 1 &

Units 3, 4 & 5

Units 6 & 7

Propositional Logic M269 2015J Exam Q 11 M269 2015J Exam Soln 11 Predicate Logic M269 2015J Exam Q 12 M269 2015J Exam Soln 12

> 269 2015J Exam Q 13 269 2015J Exam Soln 1

> 269 2015J Exam Q 14

M269 2015J Exam Soln Computability

omputability |269 2015J Exam Q 15 |269 2015J Exam Soln 15

M269 Exam 2015J Q Part2

89/128 (100/139)

Undecidable Problems

- ► Halting problem the problem of deciding, given a program and an input, whether the program will eventually halt with that input, or will run forever term first used by Martin Davis 1952
- ► Entscheidungsproblem the problem of deciding whether a given statement is provable from the axioms using the rules of logic — shown to be undecidable by Turing (1936) by reduction from the Halting problem to it
- ► Type inference and type checking in the second-order lambda calculus (important for functional programmers, Haskell, GHC implementation)
- ▶ Undecidable problem see link to list

Sharon & Phil

Why undecidable problems must exist

- A problem is really membership of a string in some language
- ► The number of different languages over any alphabet of more than one symbol is uncountable
- Programs are finite strings over a finite alphabet (ASCII or Unicode) and hence countable.
- ► There must be an infinity (big) of problems more than programs.

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2015J Exam Qs

Jnits 1 & 2

Units 3, 4 & 5

Jnits 6 & 7

Propositional Logic M269 2015J Exam Q 11 M269 2015J Exam Soln 11 Predicate Logic

redicate Logic |269 2015J Exam Q 12 |269 2015J Exam Soln 12 | |QL Queries

> 9 2015J Exam Soln 13 : 9 2015J Exam Q 14

M269 2015J Exam Sol Computability

M269 2015J Exam Q 15 M269 2015J Exam Soln 15

M269 Exam 2015J Q Part2

91/128 (102/139

- ▶ The idea of an algorithm dates back 3000 years to Euclid, Babylonians. . .
- ▶ In the 1930s the idea was made more formal: which functions are computable?
- A function a set of pairs $f = \{(x, f(x)) : x \in X \land f(x) \in Y\}$ with the function property
- ▶ Function property: $(a, b) \in f \land (a, c) \in f \Rightarrow b == c$
- Function property: Same input implies same output
- ▶ Note that maths notation is deeply inconsistent here see Function and History of the function concept
- ▶ What do we mean by computing a function an algorithm?

Sharon & Phil

Computability and Terminology (2)

- ▶ In the 1930s three definitions:
- λ-Calculus, simple semantics for computation Alonzo Church
- ► General recursive functions Kurt Gödel
- ► Universal (Turing) machine Alan Turing
- ▶ Terminology:
 - ► Recursive, recursively enumerable Church, Kleene
 - Computable, computably enumerable Gödel, Turing
 - Decidable, semi-decidable, highly undecidable
 - ▶ In the 1930s, computers were human
 - Unfortunate choice of terminology
- ► Turing and Church showed that the above three were equivalent
- Church-Turing thesis function is intuitively computable if and only if Turing machine computable

M269 Exam

M269 Prsntn

15J Exam Qs

nits 6 & 7

Propositional Logic M269 2015J Exam Q 11 M269 2015J Exam Soln 11 Predicate Logic

QL Queries 1269 2015J Exam Q 13 1269 2015J Exam Soln :

M269 2015J Exam Q 14 M269 2015J Exam Soln 14 Computability

Complexity 2015 L

93/128 (104/139)

- ▶ **Question 15** Which **two** of the following statements are true? (Tick **two** boxes.)
- (a) The Halting Problem is semi-decidable.
- **(b)** The Equivalence Problem is computable.
- (c) The Church-Turing Thesis proves that all definitions of an algorithm are equivalent.
- (d) A reduction from a non-computable problem A to a problem B proves that B is not computable.
 - Note that the original exam did not have labels for the boxes

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2015J Exam Qs

Units 1 &

Units 3, 4 & 5

Units 6 8

ropositional Logic 1269 2015J Exam Q 11 1269 2015J Exam Soln 11 redicate Logic 1269 2015J Exam Q 12

> 9 2015 J Exam Soln 12 Queries 9 2015 J Exam Q 13 9 2015 J Exam Soln 13 c

Computability M269 2015J Exam Q 15

M269 2015J Exam Soln 15 Complexity

M269 Exam 2015J Q Part2

94/128 (105/139

M269 2015J Exam

Soln 15

- Question 15 Which two of the following statements are true? (Tick two boxes.)
- (a) The Halting Problem is semi-decidable. **True**
- (b) The Equivalence Problem is computable. False
- (c) The Church-Turing Thesis proves that all definitions of an algorithm are equivalent. **False**
- (d) A reduction from a non-computable problem A to a problem B proves that B is not computable. **True**

Go to Q 15

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2015J Exam Qs

Units 1 &

Units 3, 4 & 5

Units 6 8

ropositional Logic 1269 2015J Exam Q 11 1269 2015J Exam Soln 11 redicate Logic 1269 2015J Exam O 12

> 9 2015J Exam Soln : Queries 9 2015J Exam Q 13 9 2015J Exam Soln :

269 2015J Exam Q 14 269 2015J Exam Soln :

Computability M269 2015J Exam Q 15 M269 2015J Exam Soln 15

M269 Exam 2015J Q Part2

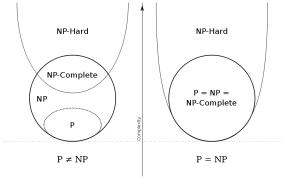
95/128 (106/139)

Complexity

P and NP

- P, the set of all decision problems that can be solved in polynomial time on a deterministic Turing machine
- ▶ NP, the set of all decision problems whose solutions can be verified (certificate) in polynomial time
- Equivalently, NP, the set of all decision problems that can be solved in polynomial time on a non-deterministic Turing machine
- ▶ A decision problem, dp is NP-complete if
 - 1. dp is in NP and
 - 2. Every problem in NP is reducible to dp in polynomial time
- ▶ *NP-hard* a problem satisfying the second condition, whether or not it satisfies the first condition. Class of problems which are at least as hard as the hardest problems in NP. NP-hard problems do not have to be in NP and may not be decision problems

Complexity


96/128 (107/139)

Complexity

P and NP — Diagram

Euler diagram for P, NP, NP-complete and NP-hard set of

problems

Source: Wikipedia NP-complete entry

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2015J Exam Qs

0111123 1 06 2

Units 3, 4 & 5

Unite 6 % 7

Propositional Logic M269 2015J Exam Q 11 M269 2015J Exam Soln 11 Predicate Logic

M269 2015J Exam Q 12 M269 2015J Exam Soln 1

SQL Queries M269 2015J Exam Q

M269 2015J Exam Logic

M269 2015J Exam Q M269 2015J Exam Sc

omputability

269 2015 J Exam Q

M269 2015J Exam Solr Complexity

NP-Completeness and Boolean Satisfiability

M269 Exam 2015J

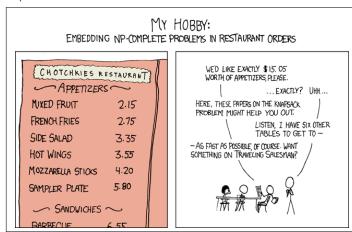
97/128 (108/139)

Complexity

NP-complete problems

- ► Boolean satisfiability (SAT) Cook-Levin theorem
- Conjunctive Normal Form 3SAT
- Hamiltonian path problem
- ► Travelling salesman problem
- ▶ NP-complete see list of problems

M269


Sharon & Phil

Complexity

98/128 (109/139)

Complexity

Knapsack Problem

Source & Explanation: XKCD 287

M269

Sharon & Phil

M269 Exam Revision Agenda &

M269 Prsntn 2015J Exam Qs

Units 3, 4 & 5

Units 6 & 7

Propositional Logic M269 2015J Exam Q 11 M269 2015J Exam Soln 1 Predicate Logic

M269 2015J Exam Q 1 M269 2015J Exam Sol

M269 2015J Exam S M269 2015J Exam S

M269 2015J Exam Q

M269 2015J Exam

M269 2015 J Exam Q

Complexity

ND Completor

Boolean Satisfiability

/1209 Exam 2015J

99/128 (110/139)

Points on Notes

- ► The *Boolean satisfiability problem (SAT)* was the first decision problem shown to be *NP-Complete*
- ▶ This section gives a sketch of an explanation
- ► **Health Warning** different texts have different notations and there will be some inconsistency in these notes
- ▶ **Health warning** these notes use some formal notation to make the ideas more precise computation requires precise notation and is about manipulating strings according to precise rules.

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> 1269 Prsntn 015J Exam Qs

Units 1 &

Units 3, 4 & 5

Jnits 6 & 7

Propositional Logic M269 2015J Exam Q 11 M269 2015J Exam Soln 11 Predicate Logic

M269 2015J Exam Q 12 M269 2015J Exam Soln

- Queries 59 2015J Exam Q 13 59 2015J Exam Soln

лодс И269 2015J Exam Q : И269 2015J Exam Sol

Computability
M269 2015 J Exam Q 15

NP-Completeness and Boolean Satisfiability

M269 Exam 2015J

100/128 (111/139)

Alphabets, Strings and Languages

- ► Notation:
- $ightharpoonup \Sigma$ is a set of symbols the alphabet
- $ightharpoonup \Sigma^k$ is the set of all string of length k, which each symbol from Σ
- Example: if $\Sigma = \{0, 1\}$

$$\Sigma^1 = \{0,1\}$$

- ullet $\Sigma^0 = \{\epsilon\}$ where ϵ is the empty string
- $ightharpoonup \Sigma^*$ is the set of all possible strings over Σ

- ▶ A Language, L, over Σ is a subset of Σ^*
- $L \subseteq \Sigma^*$

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

2015J Exam Qs

Jnits 6 & 7

M269 2015J Exam Q 11 M269 2015J Exam Soln 1

edicate Logic 269 2015J Exam Q 12

GQL Queries M269 2015J Exam Q 13

gic 69 2015 J Exam Q 14

209 20153 Exam Q 14 269 2015J Exam Soln 1 omputability

Complexity

NP-Completeness and
Boolean Satisfiability

M269 Exam 2015J Q Part2 101/128 (112/139)

Language Accepted by a Turing Machine

- ▶ Language accepted by Turing Machine, M denoted by L(M)
- ▶ L(M) is the set of strings $w \in \Sigma^*$ accepted by M
- ▶ For Final States $F = \{Y, N\}$, a string $w \in \Sigma^*$ is accepted by $M \Leftrightarrow$ (if and only if) M starting in q_0 with w on the tape halts in state Y
- Calculating a function (function problem) can be turned into a decision problem by asking whether f(x) = y

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> 1269 Prsntn 015J Exam Qs

Jnits 1 &

Units 3, 4 & 5

Jnits 6 & 7

Propositional Logic M269 2015J Exam Q 11 M269 2015J Exam Soln 11

edicate Logic 269 2015J Exam Q 12 269 2015J Exam Soln 12

69 2015J Exam Soln 12 L Queries 69 2015J Exam Q 13 69 2015J Exam Soln 13

c 69 2015J Exam Q 14 69 2015J Exam Soln 14

mputability 269 2015J Exam Q 15 269 2015J Exam Soln 15

NP-Completeness and Boolean Satisfiability

W269 Exam 2015J

102/128 (113/139)

The NP-Complete Class

- ▶ If we do not know if $P \neq NP$, what can we say ?
- ▶ A language *L* is *NP-Complete* if:
 - ▶ $L \in NP$ and
 - for all other $L' \in NP$ there is a polynomial time transformation (Karp reducible, reduction) from L' to L
- ▶ Problem P_1 polynomially reduces (Karp reduces, transforms) to P_2 , written $P_1 \propto P_2$ or $P_1 \leq_p P_2$, iff $\exists f : \mathsf{dp}_{P_1} \to \mathsf{dp}_{P_2}$ such that
 - $\blacktriangleright \ \forall I \in dp_{P_1}[I \in Y_{P_1} \Leftrightarrow f(I) \in Y_{P_2}]$
 - ▶ f can be computed in polynomial time

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2015J Exam Qs

Jnits 1 &

Units 3, 4 & 5

nits 6 & 7

M269 2015 J Exam Q 11 M269 2015 J Exam Soln 13 Predicate Logic

269 2015J Exam Q 12 269 2015J Exam Soln 12 QL Queries

1269 2015J Exam Q 1 1269 2015J Exam Sol

gic 169 2015J Exam Q 14 169 2015J Exam Soln 14

mputability 69 2015J Exam Q 15 69 2015J Exam Soln 15

NP-Completeness and Boolean Satisfiability

M269 Exam 2015J

103/128 (114/139)

The NP-Complete Class (2)

- More formally, $L_1\subseteq \Sigma_1^*$ polynomially transforms to $L_2\subseteq \Sigma_2^*$, written $L_1\propto L_2$ or $L_1\leq_p L_2$, iff $\exists f:\Sigma_1^*\to\Sigma_2^*$ such that
 - $\forall x \in \Sigma_1^* [x \in L_1 \Leftrightarrow f(x) \in L_2]$
 - ► There is a polynomial time TM that computes *f*
- \blacktriangleright Transitivity If $L_1 \propto L_2$ and $L_2 \propto L_3$ then $L_1 \propto L_3$
- ▶ If L is NP-Hard and $L \in P$ then P = NP
- ▶ If L is NP-Complete, then $L \in P$ if and only if P = NP
- ▶ If L_0 is NP-Complete and $L \in \mathbb{NP}$ and $L_0 \propto L$ then L is NP-Complete
- Hence if we find one NP-Complete problem, it may become easier to find more
- ► In 1971/1973 Cook-Levin showed that the Boolean satisfiability problem (SAT) is NP-Complete

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2015J Exam Qs

Jnits 1 &

Units 3, 4 & 5

Jnits 6 & 7

Propositional Logic M269 2015J Exam Q 11 M269 2015J Exam Soln 11 Predicate Logic

M269 2015J Exam Q 12 M269 2015J Exam Soln 12 GQL Queries M269 2015J Exam Q 13 M269 2015J Exam Soln 13

gic 269 2015J Exam Q 14 269 2015J Exam Soln 14 emputability

vl269 2015J Exam Soln 1 Complexity NP-Completeness and

Boolean Satisfiability
M269 Exam 2015J

104/128 (115/139)

The Boolean Satisfiability Problem

- A propositional logic formula or Boolean expression is built from variables, operators: AND (conjunction, ∧), OR (disjunction, ∨), NOT (negation, ¬)
- ▶ A formula is said to be *satisfiable* if it can be made True by some assignment to its variables.
- ► The Boolean Satisfiability Problem is, given a formula, check if it is satisfiable.
 - ► Instance: a finite set U of Boolean variables and a finite set C of clauses over U
 - Question: Is there a satisfying truth assignment for C?
- ► A *clause* is is a disjunction of variables or negations of variables
- Conjunctive normal form (CNF) is a conjunction of clauses
- ► Any Boolean expression can be transformed to CNF

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2015J Exam Qs

Units 1

Units 3 4 & 5

Inits 6 & 7

Propositional Logic M269 2015J Exam Q 11 M269 2015J Exam Soln 11 Predicate Logic

269 2015J Exam Q 12 269 2015J Exam Soln 12 QL Queries 269 2015J Exam Q 13

269 2015J Exam Soln 13 ogic 269 2015J Exam Q 14 269 2015J Exam Soln 14

omputability 1269 2015J Exam Q 15 1269 2015J Exam Soln

NP-Completeness and Boolean Satisfiability

M269 Exam 2015J O Part? 105/128 (116/139) The Boolean Satisfiability Problem (2)

- Given a set of Boolean variable $U = \{u_1, u_2, \dots, u_n\}$
- \triangleright A literal from U is either any u_i or the negation of some u_i (written $\overline{u_i}$)
- ▶ A clause is denoted as a subset of literals from *U* $\{u_2, \overline{u_4}, u_5\}$
- ▶ A clause is satisfied by an assignment to the variables if at least one of the literals evaluates to True (just like disjunction of the literals)
- ▶ Let C be a set of clauses over U C is satisfiable iff there is some assignment of truth values to the variables so that every clause is satisfied (just like CNF)
- $C = \{\{u_1, u_2, u_3\}, \{\overline{u_2}, \overline{u_3}\}, \{u_2, \overline{u_3}\}\}\$ is satisfiable
- $C = \{\{u_1, u_2\}, \{u_1, \overline{u_2}\}, \{\overline{u_1}\}\}\$ is not satisfiable

NP-Completeness and Boolean Satisfiability

106/128 (117/139)

The Boolean Satisfiability Problem (3)

- ▶ Proof that SAT is NP-Complete looks at the structure of NDTMs and shows you can transform any NDTM to SAT in polynomial time (in fact logarithmic space suffices)
- SAT is in NP since you can check a solution in polynomial time
- ▶ To show that $\forall L \in \mathsf{NP} : L \propto \mathsf{SAT}$ invent a polynomial time algorithm for each polynomial time NDTM, M, which takes as input a string x and produces a Boolean formula E_x which is satisfiable iff M accepts x
- See Cook-Levin theorem

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 015J Exam Qs

Jnits 1 & 2

Units 3, 4 & 5

Jnits 6 & 7

Propositional Logic
M269 2015 J Exam Q 11
M269 2015 J Exam Soln 11
Predicate Logic

1269 2015J Exam Soln QL Queries 1269 2015J Exam Q 1

ogic

M269 2015J Exam Q M269 2015J Exam So

nputability 59 2015J Exam Q 1 59 2015J Exam Sol

NP-Completeness and Boolean Satisfiability

M269 Exam 2015J

107/128 (118/139)

Coping with NP-Completeness

- What does it mean if a problem is NP-Complete ?
 - ▶ There is a P time verification algorithm.
 - ▶ There is a P time algorithm to solve it iff P = NP (?)
 - No one has yet found a P time algorithm to solve any NP-Complete problem
 - ► So what do we do ?
- Improved exhaustive search Dynamic Programming;
 Branch and Bound
- Heuristic methods acceptable solutions in acceptable time — compromise on optimality
- Average time analysis look for an algorithm with good average time — compromise on generality (see Big-O Algorithm Complexity Cheatsheet)
- Probabilistic or Randomized algorithms compromise on correctness

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2015J Exam Qs

Inits 1 &

Units 3, 4 & 5

Inits 6 & 7

Propositional Logic M269 2015 J Exam Q 11 M269 2015 J Exam Soln 11 Predicate Logic M269 2015 J Exam Q 12

M269 2015J Exam Soln 12 GQL Queries M269 2015J Exam Q 13 M269 2015J Exam Soln 13

ogic |269 2015J Exam Q 14 |269 2015J Exam Soln 14 |

269 2015J Exam Q 15 269 2015J Exam Soln 1

NP-Completeness and Boolean Satisfiability

M269 Exam 2015J O Part2 108/128 (119/139)

Q Part2

- Answer every question in this Part.
- ► The marks for each question are given below the question number.
- Marks for a part of a question are given after the question.
- Answers to questions in this Part must be written in the additional answer books, which you should also use for your rough working.

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2015J Exam Qs

Ullits 1 & 2

Units 3, 4 &

Units 6 & 7

M269 Exam 2015J Q Part2

M269 2015J Exam Q 16 M269 2015J Exam Q 17

1269 Exam 201! oln Part2

Exam Reminders

- The Universal Product Corporation (UPC) keeps rather primitive computerised records of its sales of a range of world class products.
- These are contained in a sequence S of sales, where each sale records the number sold of a particular product, in the form of [productCode, numberSold].
- ► The sequence S lists the sales as they were processed, from first to last.
- The sequence has at least one sale. Each product has a different productCode. There may be multiple sales for the same product.
- Q 16 continued on next slide

M269 Exam

M269 Prsntn

015J Exam Qs

JIIILS 1 & Z

Units 3, 4 & 5

Units 6 & 7

M269 Exam 2015J Q Part2

M269 2015J Exam Q 16 M269 2015J Exam Q 17

M269 Exam 201 Soln Part2

Exam Reminders


```
[['PR1', 5], ['B20', 10], ['PR1', 3]]
```

(a) The company requires a function that returns a sequence of how many sales were processed for each product. For example, the example sequence S given above would lead to an output of either:

```
[['PR1', 2], ['B20', 1]] or
[['B20', 1], ['PR1', 2]]
```

- showing that there are two sales for product 'PR1' and one for product 'B20'.
- Q 16 continued on next slide

M269

Sharon & Phil

M269 Exam
Revision Agenda &

M269 Prsntn 2015 I Exam Os

Units 1 & 2

Units 3, 4 &

Units 6 & 7

M269 Exam 2015J Q Part2

M269 2015J Exam Q 16 M269 2015J Exam Q 17

M269 Exam 201 Soln Part2

Exam Reminders

Q 16 (contd)

Using the following template, formally state this as a computational problem, in the style adopted by M269.
 (6 marks)

Name: SalesSummary

Inputs:

Preconditions: (indicate only one)

Outputs:

Postconditions: (indicate only one)

Q 16 continued on next slide

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2015J Exam Qs

Units 1 &

Units 3, 4 &

Units 6 & 7

M269 Exam 2015J Q Part2

M269 2015J Exam Q 16 M269 2015J Exam Q 17

1269 Exam 201

Exam Reminders

Vhite Slide

→ Go to Soln 16

- If the lowest number of sales is shared by several products, the function can return the product code of any one of them.
- ▶ A UPC employee has the following initial insight:
 - Take the sales summary sequence (i.e. the output of SalesSummary) and use QuickSort to sort it in ascending order by the number of sales.
 - ► This will put one of the products with fewest sales in the first position, so then just return the product code of the first element of the sorted sequence.
- Q 16 continued on next slide

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2015J Exam Qs

Units 1 & 2

Units 3, 4 & 5

Inits 6 & 7

M269 Exam 2015J Q Part2

M269 2015J Exam Q 16 M269 2015J Exam Q 17

Soln Part2

Exam Reminders

Q 16 (contd)

- (i) What is the order of complexity, in Big-O notation, of the algorithm described by the employee's initial insight, in the best case?
 - Assume that SalesSummary has already run.
- (ii) Give the initial insight of a more efficient solution and state its order of complexity in Big-O notation.

(6 marks)

Q 16 continued on next slide

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2015J Exam Qs

Jnits 1 &

Units 3, 4 & 5

Units 6 & 7

M269 Exam 2015J Q Part2

M269 2015J Exam Q 16 M269 2015J Exam Q 17

1269 Exam 2015J oln Part2

Exam Reminders

/L:42 CI:42

- (c) UPC introduce a further data sequence P, which is an unsorted sequence of product prices, such that each item in the sequence is in the form of [productCode, price] and each product is included exactly once.
- (i) A function is required that will return the total value of all sales for each product.
 - So given the sequence S of sales, each in the form [productCode, numberSold]:

```
[['PR1', 5], ['B20', 10], ['PR1', 3]]
```

- the output of the function would be: [['B20', 49.9], ['PR1', 28.0]] or [['PR1', 27.5], ['B20', 49.9]]
- This is because 10 items of product 'B20' $(10 \times 4.99 = 49.9)$ and 8 items of product 'PR1' $(8 \times 3.50 = 28.0)$ were sold.
- Write structured English or Python code for a computational solution of this problem.
- Q 16 continued on next slide

Sharon & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2015J Exam Qs

/IIILS I 02 Z

Units 3, 4 & 5

Units 6 & 7

M269 Exam 2015J Q Part2

M269 2015J Exam Q 16 M269 2015J Exam Q 17

Soln Part2

Exam Reminders

Q 16 (contd)

- (ii) Estimate the run time T() and the order of complexity in Big-O notation of your solution, in the worst case, taking assignment as the unit of computation.
 - Explain your reasoning. If you make any assumptions, state them clearly.
 (9 marks)
 - Q 16 continued on next slide

▶ Go to Soln 16

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2015J Exam Qs

Units 1 &

Units 3, 4 & 5

Units 6 & 7

M269 Exam 2015J Q Part2

M269 2015J Exam Q 16 M269 2015J Exam Q 17

oln Part2

Exam Reminders

Write roughly four to six sentences explaining: (4 marks)

the basic principles of hash tables

- and hashing,
- how these could work with the UPC price data, and
- outline one problem that can arise from hashing.

▶ Go to Soln 16

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2015J Exam Qs

Jnits 1 &

Units 3, 4 &

Units 6 & 7

M269 Exam 2015. Q Part2

M269 2015J Exam Q 16 M269 2015J Exam Q 17

Soln Part2

Exam Reminders

- You have been asked to give a talk on greedy algorithms and, in preparation, to prepare a report for the teachers summarising your talk.
- Assume that the students and teachers do not have a background in computer science, but have been writing programs in various computer languages and are IT literate.
- Q 17 continued on next slide

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2015J Exam Qs

Units 1 & 2

Units 3, 4 &

Units 6 & 7

M269 Exam 2015J Q Part2

M269 2015J Exam Q 16 M269 2015J Exam Q 17

Soln Part2

Exam Reminders

/hite Slide

→ Go to Soln 17

- Your report must have the following structure:
- 1 A suitable title
- 2 A paragraph setting the scene: explain in layperson's terms what is meant by a greedy algorithm and give an example of where greed is not always good.
- 3 A paragraph in which you describe a minimum spanning tree (MST) and give an example of one. You don't need to explain what are trees and graphs.
- 4 A paragraph in which you briefly describe what is Prim's algorithm and some of its features. You do not need to describe Prim's algorithm completely.
- 5 A concluding paragraph, giving reasons, about the benefits or otherwise of a greedy algorithm.
- Q 17 continued on next slide

M269 2015 I Exam O 17

Q 17 (contd)

- Note that a significant number of marks will be awarded for coherence and clarity, so avoid abrupt changes of topic and make sure your sentences fit together to tell an *overall* story.
- ► As a guide, you should aim to write roughly three to five sentences per paragraph.

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2015J Exam Qs

Offics I &

Units 3, 4 & 5

Jnits 6 & 7

M269 Exam 2015. Q Part2

M269 2015J Exam Q 17

1269 Exam 201! oln Part2

Exam Reminders

Soln Part2

▶ Part 2 solutions

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2015J Exam Q

Units 1 & 2

Units 3, 4 &

Units 6 & 7

M269 Exam 2015. Q Part2

M269 Exam 2015J Soln Part2

M269 2015J Exam Soln 16 M269 2015J Exam Soln 17

Exam Remind

Inputs: An unsorted sequence of tuples $S = (s_1, s_2, \ldots, s_n)$ where $s_n = (p_n, q_n)$ and productCode, p_n is a string, and numberSold, q_n , is an integer.

Preconditions: length $S \geqslant 1$

Outputs: a list of tuples $O = (o_1, o_2, ..., o_m)$ where $o_p = (p_m, r_m)$ and p_m is a productCode and r_m is an integer.

Postconditions: Length *O* equals number of product codes

Soln 16 continued on next slide

:-

M269 Exam 201

Q Part2

Soln Part2 M269 2015J Exam Soln 16

ivam Pomindore

122/128 (133/139)

/hite Slide

M269

Soln 16 (contd)

- (b) (i) Complexity of Quicksort in the best case is $O(n \log n)$ and worst case is $O(n^2)$ (see Big-O Cheat Sheet)
 - (ii) A linear search can find the smallest O(n)
 - ► Soln 16 continued on next slide

→ Go to Q 16

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2015J Exam Qs

Jnits 1 & 2

Units 3, 4 &

Jnits 6 & 7

M269 Exam 2015J Q Part2

1269 Exam 2015J oln Part2

M269 2015J Exam Soln 16 M269 2015J Exam Soln 17

Exam Reminder

Mhita Slida

123/128 (134/139)

- (c) (i) Sketch of programming strategy
 - Sort the sequence of sales using Python's Timsort worst case complexity O(n log n)
 - ▶ Group tuples for each product into sub-sequences one traversal of the sequence O(n)
 - For each sub-sequence calculate the value of a sale and sum the values — one traversal of each sub-sequence O(n)
 - (ii) Overall complexity $O(n \log n)$
 - Soln 16 continued on next slide

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2015J Exam Qs

Units 1 & 2

Units 3 4 &

Jnits 6 & 7

M269 Exam 2015J Q Part2

И269 Exam 2015. Soln Part2

M269 2015J Exam Soln 16 M269 2015J Exam Soln 17

Exam Reminders

- Hash function maps each input key to a hash value (or slot)
- Perfect hash function maps each key to a different hash value
- ► For UPC could translate productCode to an integer by using Unicode or ASCII values for each character
- Limited storage leads to hash functions having collisions
 - a hash function mapping two keys to the same slot
- ► Hash function collisions result in the need to either store multiple items in a single slot (closed table) or open addressing/open tables that use some mechanism to find a free slot

▶ Go to Q 16

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2015J Exam Qs

Units 1 & 2

Units 3, 4 & 5

Jnits 6 & 7

M269 Exam 2015J Q Part2

M269 Exam 2015. Soln Part?

M269 2015J Exam Soln 16 M269 2015J Exam Soln 17

Exam Reminde

Soln 17

- ▶ **Title** Greed is (sometimes) good
- ▶ Define **Graph** and **Tree** with example
- ▶ Define Minimum Spanning Tree of a graph is the spanning tree (includes every node but may not include every edge) that minimises total weight of edges
- Describe Prim's algorithm repeatedly add the next safe edge — the only safe edge will be the one with the smallest edge from the tree so far
- ▶ Greed is (hardly ever) good give an example where it does not work — knapsack problem.

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2015J Exam Qs

Units 1 & 2

Units 3, 4 & 5

Units 6 & 7

M269 Exam 2015J Q Part2

M269 Exam 2015. Soln Part2 M269 2015J Exam Soln 1

M269 2015J Exam Soln 17

Exam Reminde

M269 Exam

Reminders

- ► Read the Exam arrangements booklet
- ▶ Before the exam check the date, time and location (and how to get there)
- ► At the exam centre arrive early
- Bring photo ID with signature
- Use black or blue pens (not erasable and not pencil) see Cult Pens for choices — pencils for preparing diagrams (HB or blacker)
- ► Practice writing by hand
- ▶ In the exam Read the questions carefully before and after answering them
- ▶ Don't get stuck on a question move on, come back later
- ▶ But do make sure you have attempted all questions
- ▶ and finally Good Luck

M269

Sharon & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2015J Exam Qs

11115 1 02 2

Units 3, 4 & 5

Jnits 6 & 7

M269 Exam 2015J Q Part2

M269 Exam 2015J Soln Part2

Exam Reminders

M269 Exam Revision