M269

Sharon & Phil

M269

Exam Revision

Sharon & Phil

22, 23 May 2017 (2 sessions)

1/128 (1/139)

M269 Exam Revision M269

Agenda & Aims Sharon & Pl
M269 Exam

1. Welcome and introductions e
2. Revision strategies

3. M269 Exam — Part 1 has 15 questions 60%

4. M269 Exam — Part 2 has 2 questions 40%

5. M269 Exam — 3 hours, Part 1 100 mins, Part 2 70 mins

6. M269 2015J exam (June 2016)

7. Topics and discussion for each question

8. Exam techniques

9. Two sessions
10. OU Live — if you or | get cut off, wait till we reconnect
11. These slides and notes are in Dropbox at

https://db.tt/WUMSBB4csL

2/128 (2/139)

https://db.tt/WUMSBB4csL

M269 Exam Revision M269

. .. . Sharon & Phil
Introductions & Revision strategies
» Introductions
. . Introdu.cﬂons & Revision
» What other exams are you doing this year 7 S

» Each give one exam tip to the group

3/128 (3/139)

M269 Exam e

. Sharon & Phil
Presentation 2016J

» Not examined this presentation:

» Unit 4, Section 2 String search

» Unit 7, Section 2 Logic Revisited

» Unit 7, Section 4 Beyond the Limits

M269 Exam 2016J

4/128 (4/139)

M269

M269 2015J Exam
Qs

Sharon & Phil

» M269 Algorithms, Data Structures and Computability
» Presentation 2015J Exam
» Date Thursday, 2 June 2016 Time 14:30-17:30 1269 20151 Bam Qs

» There are TWO parts to this examination. You should
attempt all questions in both parts

» Part 1 carries 60 marks — 100 minutes
» Part 2 carries 40 marks — 70 minutes

» Note see the original exam paper for exact wording and
formatting — these slides and notes may change some
wording and formatting

5/128 (5/139)

M269 2015J Exam

Q Partl

>

>

Answer every question in this part.

The marks for each question are given below the
question number.

Answers to questions in this Part should be written on
this paper in the spaces provided, or in the case of
multiple-choice questions you should tick the
appropriate box(es).

If you tick more boxes than indicated for a multiple
choice question, you will receive no marks for your
answer to that question.

Use the provided answer books for any rough working.

M269

Sharon & Phil

M269 2015J Exam Q Partl

6/128 (6/139)

M269 Specimen Exam M269

Sharon & Phil
Unit 1 Topics, Q1, Q2 ”

» Unit 1 Introduction

» Computation, computable, tractable

v

Introducing Python

Unit 1 Introduction

v

What are the three most important concepts in
programming 7

1.

2.

3.

Quote from Paul Hudak (1952-2015)

v

7/128 (7/139)

http://en.wikipedia.org/wiki/Paul_Hudak

M269 Specimen Exam M269

Sharon & Phil
Unit 1 Topics, Q1, Q2 ”

» Unit 1 Introduction

» Computation, computable, tractable

v

Introducing Python

Unit 1 Introduction

v

What are the three most important concepts in
programming 7

1. Abstraction

2.

3.

Quote from Paul Hudak (1952-2015)

v

7/128 (8/139)

http://en.wikipedia.org/wiki/Paul_Hudak

M269 Specimen Exam M269

Sharon & Phil
Unit 1 Topics, Q1, Q2 ”

» Unit 1 Introduction

» Computation, computable, tractable

v

Introducing Python

Unit 1 Introduction

v

What are the three most important concepts in
programming 7

1. Abstraction

2. Abstraction

3.

Quote from Paul Hudak (1952-2015)

v

7/128 (9/139)

http://en.wikipedia.org/wiki/Paul_Hudak

M269 Specimen Exam M269

Sharon & Phil
Unit 1 Topics, Q1, Q2 ”

» Unit 1 Introduction

» Computation, computable, tractable

v

Introducing Python

Unit 1 Introduction

v

What are the three most important concepts in
programming 7

1. Abstraction

2. Abstraction

3.

Quote from Paul Hudak (1952-2015)

v

7/128 (10/139)

http://en.wikipedia.org/wiki/Paul_Hudak

M269 2015J Exam M269

Sharon & Phil
Q1

» Question 1 Which two of the following statements are
true? (2 marks)

A. Computational thinking consists of the skills to
formulate a problem as a computational problem and
then construct a good computational solution to solve
it or explain why there is no such solution.

M269 2015J Exam Q 1

B. Every computable problem can be solved in a practical
way using existing computers.

C. A computational problem is computable if it is possible
to build an algorithm which solves every instance of the
problem in a finite number of steps.

D. An algorithm consists of a computer program that will
solve a computable problem.

8/128 (11/139)

M269 2015J Exam

Soln 1

» A C

Exam Reminders

White Slide
9/128 (12/139)

M269 2015J Exam M269

Sharon & Phil
Q2

» Question 2 Which two of the following statements are
true? (2 marks)

A. Abstraction allows us to manage complexity.

B. In abstraction as modelling, we hide the details of an
implementation behind an interface.

M269 2015) Exam Q 2
C. Every algorithm can be expressed as some combination
of sequence, iteration and selection.

D. If a polynomial algorithm is executed, it will quickly
overwhelm the resources of a computer and exceed any
reasonable time limits.

10/128 (13/139)

M269 2015J Exam

Soln 2

» A C

Exam Reminders

White Slide
11/128 (14/139)

M269 Specimen Exam M269

Sharon & Phil
Unit 2 Topics, Q3, Q4 ”

» Unit 2 From Problems to Programs
» Abstract Data Types
» Pre and Post Conditions

» Logic for loops

Unit 2 From Problems to
Programs

12/128 (15/139)

Example Algorithm Design M269

. Sharon & Phil
Searching

» Given an ordered list (xs) and a value (val), return
» Position of val in xs or
» Some indication if val is not present

» Simple strategy: check each value in the list in turn

> Better strategy: use the ordered property of the list to
reduce the range of the list to be searched each turn

» Set a range of the list

» If val equals the mid point of the list, return the mid e
point

» Otherwise half the range to search

» If the range becomes negative, report not present
(return some distinguished value)

13/128 (16/139)

Example Algorithm Design

Binary Search lterative

[N}

10
11
12
13
14

16

def binarySearchlter(xs,val):

lo =0
hi = len(xs) — 1

while lo <= hi:
mid = (lo + hi) // 2
guess = xs|[mid]

if val = guess:
return mid
elif val < guess:
hi = mid — 1
else:

lo mid + 1

return None

M269

Sharon & Phil

Example Algorithm Design
— Searching

14/128 (17/139)

Divide and Conquer

M269

Binary Search Recursive Sharen & Pl
1 def binarySearchRec(xs,val,h lo=0,hi=-1):

2 if (hi = —1):

3 hi = len(xs) — 1

5 mid = (lo + hi) // 2

7 if hi < lo:

8 return None

9 else:

10 guess = xs[mid]

11 if val = guess: e
12 return mid

13 elif val < guess:

14 return binarySearchRec(xs,val,lo, mid—1)

15 else:

16 return binarySearchRec(xs,val,mid+1,hi)

15/128 (18/139)

Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)

XS = Highlight the mid value and search
binarySearchRec(xs,25,77,77)
XS = Highlight the mid value and search
binarySearchRec(xs,25,77,77)
X8 = Highlight the mid wvalue and search
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search

Return value:

77

range

range

range

range

M269

Sharon & Phil

Example Algorithm Design
— Searching

16/128 (19/139)

Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs,25,77,77)
X8 = Highlight the mid value and search range
binarySearchRec(xs,25,77,77)

X8 = Highlight the mid wvalue and search range
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range
Return value: 77

M269

Sharon & Phil

Example Algorithm Design
— Searching

16/128 (20/139)

Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs,67,8,14) by line 15

X8 = Highlight the mid value and search range
binarySearchRec(xs,25,77,77)

X8 = Highlight the mid wvalue and search range
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range
Return value: 77

M269

Sharon & Phil

Example Algorithm Design
— Searching

16/128 (21/139)

M269

Divide and Conquer

. . . Sharon & Phil
Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [67,69,75,80,89,97,101]
binarySearchRec(xs,25,77,77)

X8 = Highlight the mid wvalue and search range
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range Example Algorithm Design
— Searching

Return value: 77

16/128 (22/139)

Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs,67,8,14) by line 15

xs = [67,69,75,80,89,97,101]

binarySearchRec(xs,67,8,10) by line 13

X8 = Highlight the mid wvalue and search range
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range
Return value: 77

M269

Sharon & Phil

Example Algorithm Design
— Searching

16/128 (23/139)

Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,10) by line 13
xs = [67,69,75,]

binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range
Return value: 77

M269

Sharon & Phil

Example Algorithm Design
— Searching

16/128 (24 /139)

Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs,67,8,14) by line 15

xs = [67,69,75,80,89,97,101]

binarySearchRec(xs,67,8,10) by line 13
xs = [67,69,75,
binarySearchRec(xs,67,8,8) by line 13

XS = Highlight the mid value and search range
Return value: 77

]

M269

Sharon & Phil

Example Algorithm Design
— Searching

16/128 (25/139)

Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,10) by line 13
xs = [67,69,75,]
binarySearchRec(xs,67,8,8) by line 13
xs = [67,]

Return value: 77

M269

Sharon & Phil

Example Algorithm Design
— Searching

16/128 (26/139)

Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,10) by line 13
xs = [67,69,75,]
binarySearchRec(xs,67,8,8) by line 13
xs = [67,]

Return value: 8 by line 11

M269

Sharon & Phil

Example Algorithm Design
— Searching

16/128 (27/139)

M269

Example Algorithm Design

. . . Sharon & Phil
Binary Search Iterative — Miller & Ranum
1 def binarySearchlterMR(alist , item):
2 first =0
3 last = len(alist)—1
4 found = False
6 while first<=last and not found:
7 midpoint = (first + last)//2
8 if alist[midpoint] = item:
9 found = True
10 else:
11 if item < alist[midpoint]: i (B0
12 last = midpoint—1
13 else:
14 first = midpoint+1
16 return found

17/128 (28/139)

M269

Divide and Conquer

. . . Sharon & Phil
Binary Search Recursive — Miller & Ranum

1 def binarySearchRecMR(alist , item):

2 if len(alist) = 0:

3 return False

4 else:

5 midpoint = len(alist)//2

6 if alist[midpoint]==item:

7 return True

8 else:

9 if item<alist[midpoint]:

10 return binarySearchRecMR(alist [: midpoint],item)

11 else : Easr:::h/?riiorithm Design
12 return binarySearchRecMR(alist [midpoint+1:],item)

18/128 (29/139)

M269 2015J Exam M269

Sharon & Phil
Q3

v

Question 3 In roughly three or four sentences (in total)
explain what is meant by the following terms:
(4 marks)

v

Abstract data type (ADT)

Encapsulation

v

v

Data structure

M269 2015) Exam Q 3

19/128 (30/139)

M269 2015J Exam M269

Sharon & Phil
Soln 3

» An abstract data type is a logical description of how we
view the data and the operations that are allowed
without regard to how they will be implemented. See
Miller and Ranum chp 1 and Wlkipedia: Abstract data
type
» Encapsulation hides the implementation of an ADT so a
user must only access data via the interface and not
directly. 269 2015) Exam Soi 3

» A data structure is a concrete implementation of some
ADT

20/128 (31/139)

http://interactivepython.org/runestone/static/pythonds/Introduction/WhyStudyDataStructuresandAbstractDataTypes.html
https://en.wikipedia.org/wiki/Abstract_data_type
https://en.wikipedia.org/wiki/Abstract_data_type

M269 2015J Exam

M269

Sharon & Phil

Q4
> Question 4 Consider the guard in the following Python
while loop header: (4 marks)
[while (s < 5 and t > 3) or not(s >= 5 or t <% 3):

(a) Make the following substitutions:

P represents s < 5
Q represents t > 3

Then complete the following truth table:

Pl -Q[PAQ]-PV-Q]-(-PV-Q) [(PAQ)V(-PV-Q)

—|=| 7T w

Q
F
T
F
T
> Q

4 continued on next slide

M269 2015) Exam Q 4

21/128 (32/139)

M269 2015J Exs Exam M269

Q 4 (contd)

Sharon & Phil

(b) Use the results from your truth table to choose which
one of the following expressions could be used as the
simplest equivalent to the above guard.

mOn w2

not (s < 5 and t > 3)
(s > 5 or t <= 3)
(s < 5and t > 3)
(s >= 5 and t <= 3)
(s < 5 and t <= 3)

M269 2015) Exam Q 4

22/128 (33/139)

M269 2015J Exam

Soln 4

(a) Truth table

M269

Sharon & Phil

PlQ-P|-@|PrQ|-PV-Q|~(-PVv-Q) | (PAQV~(-PV-Q)
FIF[T]T] F T F F
FIT]T]F | F T F F
TIF|F|[T] F T F F
TIT|F[F] T F T T

(b) C

M269 2015 Exam Soln 4

23/128 (34/139)

M269

M269 Specimen Exam

Unit 3 Topics, Q5, Q6

Sharon & Phil

» Unit 3 Sorting

» Elementary methods: Bubble sort, Selection sort,
Insertion sort

» Recursion — base case(s) and recursive case(s) on
smaller data

Unit 3 Sorting

» Quicksort, Merge sort
» Sorting with data structures: Tree sort, Heap sort

» See sorting notes for abstract sorting algorithm

24/128 (35/139)

M269

Unit 3 Sorting

Sharon & Phil
Abstract Sorting Algorithm en '

[u nsorted list xs]

if (length xs > 1) then
(xs1,xs2) = split xs

/ \ Unit 3 Sorting

xsl XS2

[ys = join (ysl,ys2)]

sorted list ys

25/128 (36/139)

M269

Unit 3 Sorting

Sharon & Phil
Sorting Algorithms e I

Using the Abstract sorting algorithm, describe the split and
Jjoin for:
> Insertion sort
> Selection sort
> Merge sort Une 3 Sering
» Quicksort

» Bubble sort (the odd one out)

26/128 (37/139)

M269

M269 Specimen Exam

Unit 4 Topics, Q7, Q8

Sharon & Phil

v

Unit 4 Searching

v

String searching: Quick search Sunday algorithm,
Knuth-Morris-Pratt algorithm

v

Hashing and hash tables

v

Search trees: Binary Search Trees U0 Sy

v

Search trees: Height balanced trees: AVL trees

27/128 (38/139)

M269 2015J Exam

Q5

» Question 5 Consider the following diagrams A-H.

Nodes are represented by black dots and edges by

arrows. The numbers represent a node's key. (4 marks)

: .3\. 3 ./E\. 4 2 '/'<" 4
0 ,-—/\.2\.1 '/1 2°/ 1 °/ °3
E ,4\ F o1 G 6/.8\‘9 8}\7
8 ./\.10 10°%-100 . \. 2y] \. y

» Q 5 continued on next slide

M269

Sharon & Phil

M269 2015J) Exam Q 5

28/128 (39/139)

M269

M269 2015J Exs Exam

Q 5 (contd)

Sharon & Phil

» Answer the following questions. Write your answer on
the line that follows each question. In each case there is
at least one diagram in the answer but there may be
more than one. Explanations are not required.

a) Which of A, B, C and D do not show trees ?

)

b) Which of E, F, G and H are binary trees ?
)
)

M269 2015J) Exam Q 5

Which of C, D, G and H are complete binary trees ?
Which of C, D, G and H are binary heaps 7

C

(
(
(
(d

29/128 (40/139)

M269

M269 2015J Exam

Soln 5 Sharon & Phil
(a) B is not a tree; it has more than one route from node 3
to node 0.
(b) E, G, and H are binary trees; (no more than 2 children
per node).
(c) G, and H are complete binary trees.
(d) Only H is a heap; (complete binary tree, and parent 269 2015 Exam o

nodes > children).

30/128 (41/139)

M269 2015J Exam
Q6

M269

Sharon & Phil

» Question 6 Consider the following function, which
takes an integer argument n. You can assume that n is

(4 marks)

positive.

1 def calculate(n):

2 a=2>5

3 ans = 0

4 for i in range(n):

5 X = i * i

6 for j in range(n):

7 y =X+ j *j

8 for k in range(n):
9 z =y + i x k
10 ans = ans + z x a

return ans

-
jan

M269 2015) Exam Q 6

» Q 6 continued on next slide

31/128 (42/139)

M269 2015J Exam M269

Sharon & Phi
Q 6 (contd) " Pl

» From the five options below, select the one that
represents the correct combination of T(n) and Big-O
complexity for this function. You may assume that a
step (i.e. the basic unit of computation) is the
assignment statement.

T(n)=n*+n*>+n+3and O(n?)

(n) =2n®+ n?+ 2 and O(2n°) V2 2013) Eiam 06
(n) =2n? 4+ n+2 and O(n?)

(n) =2n®+ n?> 4+ n+2 and O(n?)

(n) =3n+6 and O(n)

Now explain how you obtained T(n) and the Big-O
complexity.

n
n

.
.
.
.

vy MmO 0O ® >

32/128 (43/139)

M269 2015J Exam

Soln 6

D. T(n)=2n*+n®>+n+2and O(n®)
> 2 assignment statements outside the loops
> 1 assignment statement in the outer loop
» 1 assignment statement in the middle loop
> 2 assignment statements in the inner loop

» n3 is the dominat term

M269

Sharon & Phil

M269 2015 Exam Soln 6

33/128 (44/139)

M269 2015J Exam M269

Sharon & Phil
Q7

» Question 7 In the KMP algorithm, for each character
in turn, as it appears in the target string T, we identify
the longest substring of T ending with that character
which matches a prefix of T.

» These lengths are stored in what is known as a prefix
table (which in Unit 4 we represented as a list).

» Consider the target string T:

CDCECDCECE M269 2015) Exam Q 7

» Below is an incomplete prefix table for the target string
given above. Complete the prefix table by writing the
missing numbers in the appropriate boxes. (4 marks)

¢c Db ¢C E C D C E C E

0 10 2 4 0

34/128 (45/139)

M269 2015J Exam

Soln 7

M269

Sharon & Phil

M269 Exam
Revision Agenda &
Aims

M269 Prsntn
2015J Exam Qs

Units 1 & 2

Units 3, 4 & 5

Unit 3 Sorting

Unit 4 Searching

M269 2015J Exam Q 5
M269 2015J Exam Soln 5
M269 2015J Exam Q 6
M269 2015J Exam Soln 6
M269 2015J Exam Q 7
M269 2015J Exam Soln 7
M269 2015J Exam Q 8
M269 2015J Exam Soln 8
Unit 5 Optimisation
M269 2015J Exam Q 9
M269 2015J Exam Soln 9
M269 2015J Exam Q 10
M269 2015J Exam Soln 10

Units 6 & 7

M269 Exam 2015J
Q Part2

M269 Exam 2015J

Soln Part2
'35 /128 (46/139)

M269 2015J Exam M269

Sharon & Phil
Q8

» Consider the following Binary Search Tree. (4 marks)

(a) Calculate the balance factors of each node in the above
tree and annotate the above tree to show these balance
factors.

(b) Redraw the tree after node 51 has been deleted.

M269 2015) Exam Q 8

36/128 (47/139)

M269 2015J Exam

Soln 8

(a) Balance factors

» Soln 8 continued on next slide

M269

Sharon & Phil

Unit 3 Sorting
Unit 4 Searching
M269 2015J) Exam Q 5

M269 2015) Exam Soln 5

M269 2015J Exam Q 6
9 2015) Exam Soln 6
)15J Exam Q 7

J Exam Soln 7

015) Exam Q 8
M269 2015) Exam Soln 8
Unit 5 Optimisation
M269 2015J Exam Q 9
M269 2015J Exam Soln 9
M269 2015J Exam Q 10

M269 2015J Exam Soln 10

37/128 (48/139)

M269 2015J Exs Exam
Soln 8 (b)

(b) Delete 51

» Go to Exam Q 8

M269

Sharon & Phil

Unit 3 Sorting
Unit 4 Searching

M269 2015J Exam Q 5
M269 2015J Exam Soln 5
M269 2015J Exam Q 6
M269 2015J Exam Soln 6
M269 2015J Exam Q 7
M269 2015J Exam Soln 7
M269 2015J Exam Q 8
M269 2015) Exam Soln 8
Unit 5 Optimisation

M269 2015J Exam Q 9
M269 2015J Exam Soln 9
M269 2015J Exam Q 10
M269 2015J Exam Soln 10

38/128 (49/139)

M269 Specimen Exam M269

Sharon & Phil
Unit 5 Topics, Q9, Q10 0

» Unit 5 Optimisation
» Graphs searching: DFS, BFS
» Distance: Dijkstra’s algorithm

» Greedy algorithms: Minimum spanning trees, Prim'’s
algorithm

» Dynamic programming: Knapsack problem, Edit
distance

Unit 5 Optimisation

39/128 (50/139)

M269 2015J Exam M269

Sharon & Phil
Q9

» Question 9 In Python a dictionary of dictionaries can
be used to represent a graph’s adjacency list. Consider

the following: (4 marks)
graph2 = {
0:{ 'neighbours’': [1,2,3,4]},
1:{ 'neighbours': [0,3,4]},
2:{ "neighbours’': [0,5]},
3:{ "neighbours': [0,1,5]},
4:{ ' neighbours': [0,1]},
5:{ neighbours': [2,3]}}

» Q 9 continued on next slide M269 2015) Exam Q 9

40/128 (51/139)

M269 2015J Exam M269

Sharon & Phi
Q 9 (contd) h Phil

> In the space provided below, complete the graph
corresponding to the adjacency list given above.

M269 2015J) Exam Q 9

41/128 (52/139)

M269 2015J Exam M269

Sharon & Phil
Soln 9

> Here is a representation with unidirectional edges

Unit 3 Sorting

Unit 4 Searching

M269 2015J Exam Q 5
M269 2015) Exam Soln 5
M269 2015J Exam Q 6
M269 2015J Exam Soln 6

M269 2015J Exam Q 7
M269 2015J Exam Soln 7
M269 2015J Exam Q 8
/ M269 2015J Exam Soln 8
Unit 5 Optimisation
&

M269 2015J Exam Q 9
M269 2015 Exam Soln 9
M269 2015) Exam Q 10

M269 2015J Exam Soln 10

» Soln 9 continued on next slide

42/128 (53/139)

M269 2015J Exam

Soln 9 (contd)

> Here is a representation with unidirectional edges

—

» Soln 9 continued on next slide

» Go to Exam Q 9

M269

Sharon & Phil

Unit 3 Sorting
Unit 4 Searching

M269 2015J Exam Q 5
M269 2015J Exam Soln 5
M269 2015J Exam Q 6

M269 2015J Exam Soln 6

M269 2015) Exam Q 7

M269 2015) Exam Soln 7

M269 2015J Exam Q 8
M269 2015J Exam Soln 8
Unit 5 Optimisation
M269 2015J Exam Q 9
M269 2015J Exam Soln 9
M269 2015J Exam Q 10

M269 2015J Exam Soln 10

43/128 (54/139)

M269 2015J Exs Exam M269

Sharon & Phil
Soln 9 (contd) e

» Here is a representation with bidirectional edges (but
we have not been told that every edge has a reverse
edge and of the same weight or length)

/ \ M269 2015J Exam Soln 9

44/128 (55/139)

M269 2015J Exam M269

Sharon & Phil
Q 10

» Question 10 Consider the following graph: (4 marks)

> In the space provided below, draw one spanning tree
that could be generated from a Breadth First Search
of the above graph starting at vertex 2.

M269 2015J) Exam Q 10

45/128 (56/139)

M269 2015J Exam M269

Sharon & Phil
Soln 10

» Spanning tree from breadth first search from vertex 2 (1
of 2, in red)

» Soln 10 continued on next slide

M269 2015J Exam Soln 10

46/128 (57/139)

M269 2015J Exs Exam M269

Sharon & Phil
Soln 10

» Spanning tree from breadth first search from vertex 2 (2
of 2, in red)

Unit 3 Sorting
Unit 4 Searching

M269 2015J Exam Q 5
M269 2015J Exam Soln 5
M269 2015J Exam Q 6
M269 2015J Exam Soln 6

M269 2015) Exam Q 7
M269 2015) Exam Soln 7
M269 2015) Exam Q 8

M269 2015J Exam Soln 8
Unit 5 Optimisation

M269 2015J Exam Q 9
M269 2015J Exam Soln 9
M269 2015J Exam Q 10
M269 2015J Exam Soln 10

» Go to Exam Q 10

47/128 (58/139)

M269

M269 Specimen Exam

Q11 Topics

Sharon & Phil

> Unit 6

> Sets

» Propositional Logic
Truth tables

Valid arguments Propestonal Logic

v

v

Infinite sets

v

48/128 (59/139)

M269 2015J Exam M269

Q11 Sharon & Phil
» Question 11 (4 marks)
(a) What does it mean to say that two well-formed
formulas (WFFs) are logically equivalent ? Use the
space below for your answer.
(b) Is the following set of propositional WFFs satisfiable ?
{(P N Q)7 (Q N P)} M269 2015) Exam Q 11
» Explain how you arrived at your answer in the space
below:

49/128 (60/139)

M269 2015J Exam

Soln 11

(a) Two well-formed formulas (WFFs) A and B are logically
equivalent if and only if A and B have the same value
in all interpretations.

(b) The sets of WFFs is satisfiable if each member has the
value True for some interpretation

PlRIP=>Q|QR—P
T|T T T
T|F F T
FIT T F
F|F T T

» The set is satisfiable

M269

Sharon & Phil

M269 2015) Exam Soln 11

50/128 (61/139)

M269 Specimen Exam M269

Sharon & Phil
Q12 Topics aro

» Unit 6
» Predicate Logic
» Translation to/from English

> Interpretations

Predicate Logic

51/128 (62/139)

M269 2015J Exam

Q12

Question 12 Consider a domain with some board
games and people. (6 marks)
D = {Backgammon, Chess, Draughts, Joe, Mary, Sue}

An interpretation assigns people to corresponding
constants (you won't need the constants for games).

Z(joe) = Joe
Z(mary) = Mary
Z(sue) = Sue

The predicates owns and likes are assigned to binary
relations with the following comprehensions:

Z(owns) = {(P, G): the person P owns the game G}
Z(likes) = {(P, G): the person P likes the game G}

Q 12 continued on next slide

M269

Sharon & Phil

M269 2015) Exam Q 12

52/128 (63/139)

M269 2015J Exam

Q 12 (contd)

>

>

The enumerations of the relations are:

Z(owns) = {(Joe, Chess), (Mary, Backgammon), (Sue,
Draughts)}

Z(likes) = {(Joe, Backgammon), (Mary, Backgammon),
(Mary, Draughts), (Sue, Backgammon), (Sue, Chess)}

You will find the questions on the next page.

You are asked to translate a sentence of predicate logic
to English or vice-versa.

You also need to state whether the sentence is TRUE or
FALSE in the interpretation that is provided on this
page, and give an explanation of your answer.

Q 12 continued on next slide

M269

Sharon & Phil

M269 2015) Exam Q 12

53/128 (64/139)

M269 2015J Exam

Q 12 (contd)

>

v

In your explanation you need to consider any relevant
values for the variables, and show, using the
interpretation above, whether they make the quantified
expression TRUE or FALSE.

When your explanation refers to the interpretation,
make sure that you use formal notation.

So instead of saying that Joe likes Backgammon
according to the interpretation, write:

(Joe, Backgammon) € Z(likes).

Similarly, instead of Joe doesn't like Backgammon you
would need to write:

(Joe, Backgammon) ¢ Z(likes).

Q 12 continued on next slide

M269

Sharon & Phil

M269 2015) Exam Q 12

54/128 (65/139)

M269 2015J Exam M269

Sharon & Phil
Q 12 (contd) e

(a) VX.(owns(joe, X) — likes(joe, X))
can be translated into English as:

» This sentence is (choose from TRUE/FALSE),
because:

(b) There's something that both Mary and Sue like V20020181 Eiam @ 12
can be translated into predicate logic as:

» This sentence is (choose from TRUE/FALSE),
because:

55/128 (66/139)

M269 2015J Exam M269

Soln 12 Sharon & Phil
oln

(a) Joe likes the games he owns
> False — Joe owns Chess but does not like it
> (Joe, Chess) € Z(owns)
» but (Joe, Chess) ¢ Z(likes)
(b) 3X.(likes(mary, X) A likes(sue, X))
> True — they both like Backgammon

M269 2015) Exam Soln 12

56/128 (67/139)

M269 Specimen Exam
Q13 Topics

» Unit 6
» SQL queries

M269 2015J Exam Soln 15
Complexity
M269 Exam 2015J
Q Part2

V287 1158 (68/130)

.l

M269 2015J Exam

Q13

» Question 13 The interpretation of the previous

question can also be represented by a database with the

following tables, owns and likes. (6 marks)
owns likes
owner | boardgame person | game
Joe Chess Joe Backgammon
Mary | Backgammon Mary Backgammon
Sue Draughts Mary Draughts
Sue Backgammon
Sue Draughts

» Q 13 continued on next slide

M269

Sharon & Phil

M269 2015J) Exam Q 13

58/128 (69/139)

M269 2015J Exam M269

Sharon & Phi
Q 13 (contd) " o

(a) For the following SQL query, give the table returned by
the query.
SELECT person

FROM owns CROSS JOIN likes
WHERE game = boardgame AND person = owner;

» Write the question that the above query is answering.

M269 2015J) Exam Q 13

(b) Write an SQL query that answers the question
Which games does Sue like?

» The answer should be the following table:
game
Backgammon
Chess

59/128 (70/139)

M269 2015J Exam M269

Sharon & Phil
Soln 13

(a) The table

Mary
Sue

» Who owns games they like 7
(b) The SQL query
SELECT game

FROM likes
WHERE person = 'Sue’;

M269 2015 Exam Soln 13

60/128 (71/139)

M269 Specimen Exam M269

Q14 topi Sharon & Phil
opICs

» Unit 7
» Proofs

» Natural deduction

Propositional Logic

M269

)15J Exam Q 1
M269 2015) Exam Soln 11

e Logic

) 2015 Exam Q 12
M269 2015J Exam Soln 12
SQL Queries

M26¢) Exam Q 13

M269 2015J Exam Soln 13

)15J Exam Q 14
015J Exam Soln 14

) 2015 Exam Q 15

M269 2015J Exam Soln 15

Complexity

61/128 (72/139)

M269

Logic
Sharon & Phil
Logicians, Logics, Notations
> A plethora of logics, proof systems, and different
notations can be puzzling.

» Martin Davis, Logician When | was a student, even the
topologists regarded mathematical logicians as living in
outer space. Today the connections between logic and
computers are a matter of engineering practice at every
level of computer organization

» Various logics, proof systems , were developed well
before programming languages and with different
motivations,

Logic

62/128 (73/139)

http://en.wikipedia.org/wiki/Martin_Davis

M269

Logic

Sharon & Phil
Logic and Programming Languages
» Turing machines, Von Neumann architecture and
procedural languages Fortran, C, Java, Perl, Python,
JavaScript
» Resolution theorem proving and logic programming —
Prolog
» Logic and database query languages — SQL (Structured
Query Language) and QBE (Query-By-Example) are
syntactic sugar for first order logic
» Lambda calculus and functional programming with
Miranda, Haskell, ML, Scala e

63/128 (74/139)

http://en.wikipedia.org/wiki/Von_Neumann_architecture
http://en.wikipedia.org/wiki/Lambda_calculus

Logical Arguments

M269

Sharon & Phil

Validity and Justification

>

There are two ways to model what counts as a logically
good argument:

» the semantic view

» the syntactic view
The notion of a valid argument in propositional logic is
rooted in the semantic view.
It is based on the semantic idea of interpretations:
assignments of truth values to the propositional
variables in the sentences under discussion.
A valid argument is defined as one that preserves truth
from the premises to the conclusions e
The syntactic view focuses on the syntactic form of
arguments.
Arguments which are correct according to this view are
called justified arguments.

64/128 (75/139)

Logical Arguments

M269

Sharon & Phil
Proof Systems, Soundness, Completeness
» Semantic validity and syntactic justification are different
ways of modelling the same intuitive property: whether
an argument is logically good.
> A proof system is sound if any statement we can prove
(justify) is also valid (true)
» A proof system is adequate if any valid (true) statement
has a proof (justification)
> A proof system that is sound and adequate is said to be
complete
» Propositional and predicate logic are complete — Logic
arguments that are valid are also justifiable and vice
versa

Unit 7 section 2.4 describes another logic where there
are valid arguments that are not justifiable (provable)

65/128 (76/139)

Logical Arguments

M269

Sharon & Phil

Valid arguments

v

Py

Unit 6 defines valid arguments with the notation
Pn

The argument is valid if and only if the value of C is
True in each interpretation for which the value of each
premise P;is Truefor 1 <j<n

In some texts you see the notation {P1,...,Pp} = C

> The expression denotes a semantic sequent or semantic

entailment

The |= symbol is called the double turnstile and is often
read as entails or models

In LaTeX F and = are produced from \vDash and
\models — see also the turnstile package

In Unicode = is called TRUE and is U+22A8, HTML
⊨

Logic

66/128 (77/139)

Logical Arguments e

. Sharon & Phil
Valid arguments — Tautology

» The argument {} = C is valid if and only if C is True in
all interpretations
» That is, if and only if C is a tautology

» Beware different notations that mean the same thing

» Alternate symbol for empty set: () = C

» Null symbol for empty set: = C

» Original M269 notation with null axiom above the line:
C

Logic

67/128 (78/139)

M269

Logic

. Sharon & Phil
Justified Arguments

» Definition 7.1 An argument {P1,Pa,...,P,} F Cis a
justified argument if and only if either the argument is
an instance of an axiom or it can be derived by means
of an inference rule from one or more other justified
arguments.

» Axioms
U {A} F A (axiom schema)

» This can be read as: any formula A can be derived from
the assumption (premise) of {A} itself

» The - symbol is called the turnstile and is often read as Logie
proves, denoting syntactic entailment

» In LaTeX I is produced from \vdash

» In Unicode I is called RIGHT TACK and is U+22A2,
HTML & #38866;

68/128 (79/139)

M269

Logic

. Sharon & Phil
Justified Arguments

» Section 2.3 of Unit 7 (not the Unit 6, 7 Reader) gives
the inference rules for —, A, and V — only dealing with
positive propositional logic so not making use of
negation — see List of logic systems

» Usually (Classical logic) have a functionally complete
set of logical connectives — that is, every binary
Boolean function can be expressed in terms the
functions in the set

Logic

69/128 (80/139)

http://en.wikipedia.org/wiki/List_of_logic_systems
http://en.wikipedia.org/wiki/Functional_completeness

M269

Justified Arguments

. Sharon & Phil
Inference Rules — Notation

> Inference rule notation:
Argument; ... Argument,
Argument

(label)

Logic

70/128 (81/139)

Justified Arguments

Inference Rules — Conjunction

r’HFA Ire=B
r-AnB

> W (A-elimination left)

rFAAB

r-B

(A-introduction)

(A-elimination right)

M269

Sharon & Phil

Logic

71/128 (82/139)

Justified Arguments

Inference Rules — Implication

>

ru{A}+B

(—-introduction)

r-A—B

» The above should be read as: If there is a proof

, 'FA TFA->B

(justification, inference) for B under the set of premises,

I, augmented with A, then we have a proof
(justification. inference) of A — B, under the
unaugmented set of premises, T .

The unaugmented set of premises, I may have
contained A already so we cannot assume

(TU{A}) —{A} isequalto T

(—-elimination)

r-B

M269

Sharon & Phil

Logic

72/128 (83/139)

Justified Arguments

Inference Rules — Disjunction

_rFA
r-AvB
» B
r-AvB
Disjunction elimination

(\v-introduction left)

(\-introduction right)

v

rH-AvB TU{A}FC TU{B}rC
r- c

The above should be read: if a set of premises I'

justifies the conclusion AV B and I augmented with

each of A or B separately justifies C, then I justifies C

(\V-elimination)

v

M269

Sharon & Phil

Logic

73/128 (84/139)

M269

Proofs in Tree Form

Sharon & Phil

» The syntax of proofs is recursive:

» A proof is either an axiom, or the result of applying a
rule of inference to one, two or three proofs.

» We can therefore represent a proof by a tree diagram in
which each node have one, two or three children

» For example, the proof of {PA (P — Q)} F Q in
Question 4 (in the Logic tutorial notes) can be
represented by the following diagram:

PAPQYFPAPQ) o (PAPQYIFPAP Q)
(PA(P—=Q}FP - (PAP-QIFP—Q _E)’ i

{PA(P=Q}FQ e

74/128 (85/139)

Justified Arguments

Self-Assessment activity 7.4

»LletT={P >R Q—R,PVQ}
_TEPVQ TU{P}FR TU{Q}FR

(\-elimination)

N-=R
ru{P}FpP TU{P}FP—R S
> (—-elimination)
ry{P}+~R
> ru {Q} FQ TU {Q} PR (—-elimination)
rU{Q}rFR
» Complete tree layout
ru{pP} Tru{rP} ru{Qr rui{Q:
P FP—R g BQ FQoR g
r-pPvQ ru{P}rR ru{@rr
R (8

M269

Sharon & Phil

75/128 (86/139)

Justified Arguments

Self-assessment activity 7.4 — Linear Layout

1.

NSO A WD

{P—-R,Q—=R,PVQR}+-PVQ
{P—-R,Q—R,PVQIU{P}-P
{P—-R,Q—R,PVQIU{P}FP—=R
{P—>R,Q— R, PVQIU{Q}FQ
{P-R,Q—-RPVQIU{Q}+FQR—R
{P—-R,Q—R,PVQ}U{P}FR
{P>R, Q=R PVQIU{Q}FR
{P—-R,Q—R,PVQ}FR

M269

Sharon & Phil

[Axiom]
[Axiom]
[Axiom]
[Axiom]
[Axiom]

[2, 3, —-E]
(4, 5, —-E]
[1, 6, 7, V-E]

Logic

76/128 (87/139)

M269 2015J Exam

Q 14

M269

Sharon & Phil

» Question 14 Consider the following axiom schema and

rules:
» Axiom schema {A,B} - A
> Rules
> r-AAB (A-elimination left)
r-A
> W (A-elimination right)
> % (A-introduction)
ru{Aj- B
> | ——— = (—-introduction)
r'H-A— B
> rFA rcA-—B (—-elimination)
r-B

» Q 14 continued on next slide

(4 marks)

M269 2015J) Exam Q 14

77/128 (88/139)

M269 2015J Exam M269

Sharon & Phil
Q 14

» Complete the following proof by filling in the two boxes.
You can use any of the above as appropriate.

1. {V,W}+V [Axiom schema]
2. ’?? ??‘ [Axiom schema]
3. {V,\WIFVAW [7? 7]

M269 2015J) Exam Q 14

78/128 (89/139)

M269 2015J Exam M269

Soln 14 Sharon & Phil
oln

» Completed proof
1. {V,W}+V [Axiom schema]
2. {V, W} W [Axiom schema]
3. {V,W}rVAW ’ [A-introduction] ‘

M269 2015) Exam Soln 14

79/128 (90/139)

M269 Specimen Exam M269

Sharon & Phil
Q15 Topics arol

» Unit 7

Computability and ideas of computation

v

v

Complexity
P and NP
NP-complete

v

v

Computability

80/128 (91/139)

M269

Computability

. Sharon & Phil
Ideas of Computation

» The idea of an algorithm and what is effectively
computable

» Church-Turing thesis Every function that would
naturally be regarded as computable can be computed
by a deterministic Turing Machine. (Unit 7 Section 4)

» See Phil Wadler on computability theory performed as
part of the Bright Club at The Strand in Edinburgh,
Tuesday 28 April 2015

Computability

81/128 (92/139)

http://wadler.blogspot.co.uk/2015/05/bright-club-computability.html

M269

Computability

Reducing one problem to another

Sharon & Phil

» To reduce problem P; to P, invent a construction that
converts instances of P; to P> that have the same
answer. That is:

» any string in the language P; is converted to some
string in the language P>

» any string over the alphabet of P; that is not in the
language of P; is converted to a string that is not in the
language P>

» With this construction we can solve P;

» Given an instance of Py, that is, given a string w that
may be in the language P;, apply the construction
algorithm to produce a string x

» Test whether x is in P, and give the same answer for w
in Pl

Computability

82/128 (93/139)

M269

Computability

Direction of Reduction

Sharon & Phil

» The direction of reduction is important

» If we can reduce P; to P, then (in some sense) P, is at
least as hard as P; (since a solution to P, will give us a
solution to Pp)

» So, if P, is decidable then P; is decidable

» To show a problem is undecidable we have to reduce
from an known undecidable problem to it

> Wx(dpp, (x) = dpp, (reduce(x)))
» Since, if Py is undecidable then P, is undecidable

Computability

83/128 (94/139)

M269

Computability

Models of Computation

Sharon & Phil

» In automata theory, a problem is the question of
deciding whether a given string is a member of some
particular language

» If X is an alphabet, and L is a language over X, that is
L C X*, where ¥* is the set of all strings over the
alphabet X then we have a more formal definition of
decision problem

> Given a string w € ¥*, decide whether w € L

» Example: Testing for a prime number — can be
expressed as the language L, consisting of all binary
strings whose value as a binary number is a prime
number (only divisible by 1 or itself)

Computability

84/128 (95/139)

M269

Computability
Church-Turing Thesis & Quantum Computing

Sharon & Phil

» Church-Turing thesis Every function that would
naturally be regarded as computable can be computed
by a deterministic Turing Machine.

» physical Church-Turing thesis Any finite physical
system can be simulated (to any degree of
approximation) by a Universal Turing Machine.

» strong Church-Turing thesis Any finite physical
system can be simulated (to any degree of
approximation) with polynomial slowdown by a
Universal Turing Machine.

» Shor's algorithm (1994) — quantum algorithm for
factoring integers — an NP problem that is not known
to be P — also not known to be NP-complete and we
have no proof that it is not in P

Computability

85/128 (96/139)

http://en.wikipedia.org/wiki/Shor's_algorithm

M269

Computability
Turing Machine

Sharon & Phil

» Finite control which can be in any of a finite number
of states

» Tape divided into cells, each of which can hold one of a
finite number of symbols

» Initially, the input, which is a finite-length string of
symbols in the input alphabet, is placed on the tape

» All other tape cells (extending infinitely left and right)
hold a special symbol called blank

» A tape head which initially is over the leftmost input
symbol

» A move of the Turing Machine depends on the state
and the tape symbol scanned

Computability

» A move can change state, write a symbol in the current
cell, move left, right or stay

86/128 (97/139)

M269

Turing Machine Diagram

Sharon & Phil
Turing Machine Diagram
blblalal]lala .-+ 1/0O Tape
Reading and Writing Head
(moves in both directions)
()
q3
g2 / An
q1 do
(. J

Finite Control

87/128 (98/139)

M269

Computability

. . . Sharon & Phil
Turing Machine notation

v

Q finite set of states of the finite control
¥ finite set of input symbols (M269 S)
" complete set of tape symbols . C T

d Transition function (M269 instructions, /)
duQxIN—@xTIx{LR,S}

(g, X) = (p, Y, D)

d(q, X) takes a state, g and a tape symbol, X and
returns (p, Y, D) where p is a state, Y is a tape symbol
to overwrite the current cell, D is a direction, Left,
Right or Stay

v

v

v

v

v

go start state qp € Q
B blank symbol B €T and B ¢ ©
F set of final or accepting states F C Q

Computability

v

v

88/128 (99/139)

M269

Computability
Decidability

Sharon & Phil

» Decidable — there is a TM that will halt with yes/no
for a decision problem — that is, given a string w over
the alphabet of P the TM with halt and return yes.no
the string is in the language P (same as recursive in
Recursion theory — old use of the word)

» Semi-decidable — there is a TM will halt with yes if
some string is in P but may loop forever on some inputs
(same as recursively enumerable) — Halting Problem

» Highly-undecidable — no outcome for any input —
Totality, Equivalence Problems

Computability

89/128 (100/139)

http://en.wikipedia.org/wiki/Recursion_theory

M269

Computability

. Sharon & Phil
Undecidable Problems

» Halting problem — the problem of deciding, given a
program and an input, whether the program will
eventually halt with that input, or will run forever —
term first used by Martin Davis 1952

» Entscheidungsproblem — the problem of deciding
whether a given statement is provable from the axioms
using the rules of logic — shown to be undecidable by
Turing (1936) by reduction from the Halting problem to
it

» Type inference and type checking in the
second-order lambda calculus (important for functional
programmers, Haskell, GHC implementation) Computabilty

» Undecidable problem — see link to list

90/128 (101/139)

http://en.wikipedia.org/wiki/Halting_problem
http://en.wikipedia.org/wiki/Entscheidungsproblem
http://en.wikipedia.org/wiki/System_F
http://en.wikipedia.org/wiki/Undecidable_problem

Computability

Why undecidable problems must exist

» A problem is really membership of a string in some
language

» The number of different languages over any alphabet of
more than one symbol is uncountable

» Programs are finite strings over a finite alphabet (ASCII
or Unicode) and hence countable.

» There must be an infinity (big) of problems more than
programs.

M269

Sharon & Phil

Computability

91/128 (102/139)

Computability
Computability and Terminology (1)

>

The idea of an algorithm dates back 3000 years to
Euclid, Babylonians. ..

In the 1930s the idea was made more formal: which
functions are computable?

A function a set of pairs

f={(x,f(x)):x € XA f(x)€ Y} with the function
property

Function property: (a,b) € f A(a,c) e f = b==c¢
Function property: Same input implies same output

Note that maths notation is deeply inconsistent here —
see Function and History of the function concept

What do we mean by computing a function — an
algorithm ?

M269

Sharon & Phil

Computability

92/128 (103/139)

http://en.wikipedia.org/wiki/Computable_function
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/History_of_the_function_concept

M269

Computability

Sharon & Phil
Computability and Terminology (2) 0

» In the 1930s three definitions:

» \-Calculus, simple semantics for computation — Alonzo
Church

» General recursive functions — Kurt Godel

» Universal (Turing) machine — Alan Turing
» Terminology:

» Recursive, recursively enumerable — Church, Kleene
Computable, computably enumerable — Gédel, Turing
Decidable, semi-decidable, highly undecidable
In the 1930s, computers were human
Unfortunate choice of terminology

vV vy vy

» Turing and Church showed that the above three were Computabtty
equivalent

» Church-Turing thesis — function is intuitively
computable if and only if Turing machine computable

93/128 (104/139)

http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Alonzo_Church
http://en.wikipedia.org/wiki/Alonzo_Church
http://en.wikipedia.org/wiki/Μ-recursive_function
http://en.wikipedia.org/wiki/Kurt_Gödel
http://en.wikipedia.org/wiki/Universal_Turing_machine
http://en.wikipedia.org/wiki/Alan_Turing
http://en.wikipedia.org/wiki/Stephen_Cole_Kleene
http://en.wikipedia.org/wiki/Church–Turing_thesis

M269 2015J Exam

Q15

>

(a)
(b)
(c)

(d)

M269

Sharon & Phil

Question 15 Which two of the following statements
are true? (Tick two boxes.)

The Halting Problem is semi-decidable.
The Equivalence Problem is computable.

The Church-Turing Thesis proves that all definitions of
an algorithm are equivalent.

A reduction from a non-computable problem A to a
problem B proves that B is not computable.

Note that the original exam did not have labels for the boxes

M269 2015J Exam Q 15

94/128 (105/139)

M269

M269 2015J Exam

Soln 15

Sharon & Phil

» Question 15 Which two of the following statements
are true? (Tick two boxes.)

(a) The Halting Problem is semi-decidable. True
(b) The Equivalence Problem is computable. False

(c) The Church-Turing Thesis proves that all definitions of
an algorithm are equivalent. False

(d) A reduction from a non-computable problem A to a
problem B proves that B is not computable. True

M269 2015J Exam Soln 15

95/128 (106/139)

Complexity
P and NP

>

P, the set of all decision problems that can be solved in
polynomial time on a deterministic Turing machine
NP, the set of all decision problems whose solutions can
be verified (certificate) in polynomial time
Equivalently, NP, the set of all decision problems that
can be solved in polynomial time on a non-deterministic
Turing machine
A decision problem, dp is NP-complete if

1. dpisin NP and

2. Every problem in NP is reducible to dp in polynomial

time

NP-hard — a problem satisfying the second condition,
whether or not it satisfies the first condition. Class of
problems which are at least as hard as the hardest
problems in NP. NP-hard problems do not have to be in
NP and may not be decision problems

M269

Sharon & Phil

Complexity

96/128 (107/139)

http://en.wikipedia.org/wiki/P_(complexity)
http://en.wikipedia.org/wiki/NP_(complexity)
http://en.wikipedia.org/wiki/NP-complete

Complexity
P and NP — Diagram

Euler diagram for P, NP, NP-complete and NP-hard set of

problems

NP-Hard

NP-Complete

P = NP

Complexity

NP-Hard

P=NP=
NP-Complete

P =NP

Source: Wikipedia NP-complete entry

M269

Sharon & Phil

Complexity

97/128 (108/139)

http://en.wikipedia.org/wiki/Euler_diagram
http://en.wikipedia.org/wiki/NP-complete

M269

Complexity

Sharon & Phil
NP-complete problems

» Boolean satisfiability (SAT) Cook-Levin theorem
» Conjunctive Normal Form 3SAT

v

Hamiltonian path problem

v

Travelling salesman problem

v

NP-complete — see list of problems

Complexity

98/128 (109/139)

http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Cook-Levin_theorem
http://en.wikipedia.org/wiki/3-satisfiability
http://en.wikipedia.org/wiki/Hamiltonian_path_problem
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/NP-complete

Complexity
Knapsack Problem
MY HoBBY:
EMBEDDING NP-(OMPLETE PROBLEMS IN RESTAURANT ORDERS
CFT00n 52 et e
<~ APPENZERS —~ | L EAY? UK.
MIXED FRUIT 2.15 HERE, THESE PAPERS ON THE. KNAPSACK, /
PROBLEM MIGHT HELP YOU QUT.
FRENCH FRIES 275 \ LISTEN, T HAVE SiX OTHER
SIDE SALAD 235 TABLES T0 GET T0—
= PG FAST 5 POSSIRLE, OF (OURSE. WANT
HOT WINGS 2.55 SOMETHING ON TRAVELING SALESHANE
MOZZAREUA STICKS H-20 \
SAMPLER PLATE 580 % 0 %ﬁ,
—— SANDWICHES ~— {
RARREN IE £er

Source & Explanation

: XKCD 287

M269

Sharon & Phil

Complexity

99/128 (110/139)

http://www.explainxkcd.com/wiki/index.php/287:_NP-Complete

NP-Completeness and Boolean Satisfiability

Points on Notes

» The Boolean satisfiability problem (SAT) was the first
decision problem shown to be NP-Complete

» This section gives a sketch of an explanation

» Health Warning different texts have different notations
and there will be some inconsistency in these notes

» Health warning these notes use some formal notation
to make the ideas more precise — computation requires
precise notation and is about manipulating strings
according to precise rules.

M269

Sharon & Phil

NP-Completeness and
Boolean Satisfiability

100/128 (111/139)

http://en.wikipedia.org/wiki/Boolean_satisfiability_problem

M269

NP-Completeness and Boolean Satisfiability
Alphabets, Strings and Languages

Sharon & Phil

» Notation:
> > is a set of symbols — the alphabet
» Yk is the set of all string of length k, which each
symbol from X
» Example: if ¥ = {0,1}
» ¥1={0,1}
» ¥2={00,01,10,11}
» 30 = {¢} where € is the empty string
> >* is the set of all possible strings over ¥
» Y =30Uuylur?u...
» A Language, L, over ¥ is a subset of ¥*
» LCY*

NP-Completeness and
Boolean Satisfiability

101/128 (112/139)

NP-Completeness and Boolean Satisfiability
Language Accepted by a Turing Machine

» Language accepted by Turing Machine, M denoted by
L(M)

» L(M) is the set of strings w € £* accepted by M

» For Final States F = {Y, N}, a string w € ¥* is
accepted by M < (if and only if) M starting in go with
w on the tape halts in state Y

» Calculating a function (function problem) can be turned
into a decision problem by asking whether f(x) =y

M269

Sharon & Phil

NP-Completeness and
Boolean Satisfiability

102/128 (113/139)

http://en.wikipedia.org/wiki/Function_problem
http://en.wikipedia.org/wiki/Decision_problem

M269

NP-Completeness and Boolean Satisfiability

Sharon & Phil
The NP-Complete Class e

> If we do not know if P # NP, what can we say ?
» A language L is NP-Complete if:

» L € NP and
» for all other L’ € NP there is a polynomial time
transformation (Karp reducible, reduction) from L’ to L

» Problem Py polynomially reduces (Karp reduces,
transforms) to P>, written Py o< P> or Py <, P>, iff
3f : dpp, — dpp, such that

» VI edpp[l € Yp, & f(I) € Yp,]
» f can be computed in polynomial time

NP-Completeness and
Boolean Satisfiability

103/128 (114/139)

NP-Completeness and Boolean Satisfiability
The NP-Complete Class (2)

>

More formally, L1 € X7 polynomially transforms to
Ly C X5, written Ly o< Lp or Ly <, Lp, iff 3f : X — X3
such that

» Vx € Xi[x € L1 & f(x) € L]

» There is a polynomial time TM that computes f
Transitivity If L1 o< Ly and Ly o< L3 then L; o L3
If Lis NP-Hard and L € P then P = NP
If L is NP-Complete, then L € P if and only if P = NP

If Ly is NP-Complete and L € NP and Ly o< L then L is
NP-Complete

Hence if we find one NP-Complete problem, it may
become easier to find more

In 1971/1973 Cook-Levin showed that the Boolean
satisfiability problem (SAT) is NP-Complete

M269

Sharon & Phil

NP-Completeness and
Boolean Satisfiability

104/128 (115/139)

http://en.wikipedia.org/wiki/Cook–Levin_theorem
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem

M269

NP-Completeness and Boolean Satisfiability

Sharon & Phil
The Boolean Satisfiability Problem -

» A propositional logic formula or Boolean expression is
built from variables, operators: AND (conjunction, A),
OR (disjunction, V), NOT (negation, —)

> A formula is said to be satisfiable if it can be made True
by some assignment to its variables.

» The Boolean Satisfiability Problem is, given a formula,
check if it is satisfiable.

> Instance: a finite set U of Boolean variables and a finite
set C of clauses over U
» Question: Is there a satisfying truth assignment for C ?

» A clause is is a disjunction of variables or negations of

variables

» Conjunctive normal form (CNF) is a conjunction of
clauses

NP-Completeness and
Boolean Satisfiability

» Any Boolean expression can be transformed to CNF

105/128 (116/139)

NP-Completeness and Boolean Satisfiability
The Boolean Satisfiability Problem (2)

>

>

v

v

Given a set of Boolean variable U = {u1, ua, ..., up}

A literal from U is either any u; or the negation of some
u; (written T;)

A clause is denoted as a subset of literals from U —
{u2, g, us }

A clause is satisfied by an assignment to the variables if
at least one of the literals evaluates to True (just like
disjunction of the literals)

Let C be a set of clauses over U — C is satisfiable iff
there is some assignment of truth values to the
variables so that every clause is satisfied (just like CNF)
C ={{u1,u,us}, {2, U3}, {2, U3} } is satisfiable

C ={{u1,w2},{u1, @}, {T1}} is not satisfiable

M269

Sharon & Phil

NP-Completeness and
Boolean Satisfiability

106/128 (117/139)

M269

NP-Completeness and Boolean Satisfiability

. Sharon & Phil
The Boolean Satisfiability Problem (3)

» Proof that SAT is NP-Complete looks at the structure
of NDTMs and shows you can transform any NDTM to
SAT in polynomial time (in fact logarithmic space
suffices)

» SAT is in NP since you can check a solution in
polynomial time

» To show that VL € NP : L o« SAT invent a polynomial
time algorithm for each polynomial time NDTM, M,
which takes as input a string x and produces a Boolean
formula E, which is satisfiable iff M accepts x

» See Cook-Levin theorem

NP-Completeness and
Boolean Satisfiability

107/128 (118/139)

http://en.wikipedia.org/wiki/Cook-Levin_theorem

M269

NP-Completeness and Boolean Satisfiability

Sharon & Phil
Coping with NP-Completeness 0

» What does it mean if a problem is NP-Complete ?

» There is a P time verification algorithm.

» There is a P time algorithm to solve it iff P = NP (?)

» No one has yet found a P time algorithm to solve any
NP-Complete problem

» So what do we do ?

> Improved exhaustive search — Dynamic Programming;
Branch and Bound

» Heuristic methods — acceptable solutions in acceptable
time — compromise on optimality

> Average time analysis — look for an algorithm with
good average time — compromise on generality (see
Big-O Algorithm Complexity Cheatsheet)

» Probabilistic or Randomized algorithms — compromise
on correctness

NP-Completeness and
Boolean Satisfiability

108/128 (119/139)

http://bigocheatsheet.com

M269 2015J Exam M269

Sharon & Phil
Q Part2 en I

» Answer every question in this Part.

» The marks for each question are given below the
question number.

» Marks for a part of a question are given after the

question.

. M269 E: 2015J
» Answers to questions in this Part must be written in the QP

additional answer books, which you should also use for
your rough working.

109/128 (120/139)

M269 2015J Exam

Q 16 (25 marks)

>

The Universal Product Corporation (UPC) keeps rather
primitive computerised records of its sales of a range of
world class products.

These are contained in a sequence S of sales, where
each sale records the number sold of a particular
product, in the form of [productCode, numberSold].

The sequence S lists the sales as they were processed,
from first to last.

The sequence has at least one sale. Each product has a
different productCode. There may be multiple sales for
the same product.

Q 16 continued on next slide

M269

Sharon & Phil

M269 2015J) Exam Q 16

110/128 (121/139)

M269 2015J Exam

Q 16 (contd)

» An example sequence S is, in Python notation:
([’PR1’, 5], [’B20’, 10], [’PR1’, 31]

(@) The company requires a function that returns a
sequence of how many sales were processed for each
product. For example, the example sequence S given
above would lead to an output of either:

[[°PR1’, 2], [’B20’, 1]1] or
((’B20’, 11, [’PR1’, 2]]
» showing that there are two sales for product PR1’ and

one for product ’B20°.

» Q 16 continued on next slide

M269

Sharon & Phil

M269 2015J) Exam Q 16

111/128 (122/139)

M269 2015J Exam M269

Q 16 (Contd) Sharon & Phil
» Using the following template, formally state this as a
computational problem, in the style adopted by M269.
(6 marks)
Name: SalesSummary
Inputs:
Preconditions: (indicate only one)
Outputs:
Postconditions: (indicate only one) 269 20153 Exam @ 16

> Q 16 continued on next slide

112/128 (123/139)

M269 2015J Exam

Q 16 (contd)

(b) UPC want a function that returns the code of the
product with the fewest sales processed, so that UPC
can start promoting it.

> If the lowest number of sales is shared by several
products, the function can return the product code of
any one of them.

» A UPC employee has the following initial insight:

» Take the sales summary sequence (i.e. the output of
SalesSummary) and use QuickSort to sort it in
ascending order by the number of sales.

» This will put one of the products with fewest sales in
the first position, so then just return the product code
of the first element of the sorted sequence.

» Q 16 continued on next slide

M269

Sharon & Phil

M269 2015J) Exam Q 16

113/128 (124/139)

M269 2015J Exam M269

Sharon & Phi
Q 16 (contd) " o

(i) What is the order of complexity, in Big-O notation, of
the algorithm described by the employee’s initial insight,
in the best case?

> Assume that SalesSummary has already run.

(ii) Give the initial insight of a more efficient solution and
state its order of complexity in Big-O notation.
(6 marks) M269 2015) Exam Q 16

» Q 16 continued on next slide

114/128 (125/139)

M269 2015J Exam M269

Sharon & Phi
Q 16 (contd) " o

(c) UPC introduce a further data sequence P, which is an
unsorted sequence of product prices, such that each
item in the sequence is in the form of [productCode,
price] and each product is included exactly once.

(i) A function is required that will return the total value of

all sales for each product.
» So given the sequence S of sales, each in the form [productCode,
numberSold]: M269 2015J Exam Q 16
[[°PR1’, 5], [’B20’, 101, [’PR1’, 3]]
» the output of the function would be:
[[’B20°, 49.9], [’PR1’, 28.0]]
or [[’PR1’, 27.5], [’B20’, 49.9]]
» This is because 10 items of product *B20’ (10 x 4.99 = 49.9) and 8
items of product *PR1’ (8 x 3.50 = 28.0) were sold.

» Write structured English or Python code for a
computational solution of this problem.

» Q 16 continued on next slide

115/128 (126/139)

M269

M269 2015J Exam

Q 16 (contd)

Sharon & Phil

(ii) Estimate the run time T() and the order of complexity
in Big-O notation of your solution, in the worst case,
taking assignment as the unit of computation.

» Explain your reasoning. If you make any assumptions,
state them clearly. (9 marks)

> Q 16 continued on next slide
M269 2015) Exam Q 16

116/128 (127/139)

M269 2015J Exam M269

Sharon & Phi
Q 16 (contd) " o

(d) Storing complex data items (e.g. product/price
combinations) in a list, as UPC have opted to do, can
be problematic, in particular because retrieval may be
slow when there are very large numbers of items. A
more suitable means of storage is in a structure such as
a hash table.

» Write roughly four to six sentences explaining:
(4 marks)

M269 2015J) Exam Q 16

the basic principles of hash tables

and hashing,

how these could work with the UPC price data, and
outline one problem that can arise from hashing.

vV vy vy

117/128 (128/139)

M269 2015J Exam M269

Sharon & Phi
Q 17 (15marks) paren & Fh

» Your local secondary school runs a computer club for
sixth form students.

> You have been asked to give a talk on greedy
algorithms and, in preparation, to prepare a report for
the teachers summarising your talk.

> Assume that the students and teachers do not have a
background in computer science, but have been writing
programs in various computer languages and are IT
literate.

M269 2015) Exam Q 17

» Q 17 continued on next slide

118/128 (129/139)

M269 2015J Exam M269

Sharon & Phil
Q 17 (contd) e

» Your report must have the following structure:

1 A suitable title

2 A paragraph setting the scene: explain in layperson's
terms what is meant by a greedy algorithm and give an
example of where greed is not always good.

3 A paragraph in which you describe a minimum spanning
tree (MST) and give an example of one. You don't need
to explain what are trees and graphs. 1269 20181 Bxem Q17

4 A paragraph in which you briefly describe what is Prim's
algorithm and some of its features. You do not need to
describe Prim's algorithm completely.

5 A concluding paragraph, giving reasons, about the
benefits or otherwise of a greedy algorithm.

» Q 17 continued on next slide

119/128 (130/139)

M269

M269 2015J Exam

Q 17 (contd)

Sharon & Phil

» Note that a significant number of marks will be awarded
for coherence and clarity, so avoid abrupt changes of
topic and make sure your sentences fit together to tell
an overall story.

> As a guide, you should aim to write roughly three to
five sentences per paragraph.

M269 2015) Exam Q 17

120/128 (131/139)

M269 2015J Exam

Soln Part2

» Part 2 solutions

121/128 (132/139)

M269 2015J Exam M269

Soln 16 Sharon & Phil
(a) Name: SalesSummary
Inputs: An unsorted sequence of tuples
S =(s1,52,.-.,5n) where s, = (pn, gn) and
productCode, p, is a string, and numberSold, g, is
an integer.
Preconditions: length S > 1
Outputs: a list of tuples O = (01, 02, ..., 0m) Where
0p = (Pm, rm) and pp, is a productCode and rp, is an 1269 20153 Bxam S 15
integer.

Postconditions: Length O equals number of product
codes

» Soln 16 continued on next slide

122/128 (133/139)

M269 2015J Exam M269

Sharon & Phil
Soln 16 (contd) e

(b) (i) Complexity of Quicksort in the best case is
O(nlog n) and worst case is O(n?) (see Big-O Cheat
Sheet)

» (ii) A linear search can find the smallest — O(n)

» Soln 16 continued on next slide

M269 2015J) Exam Soln 16

123/128 (134/139)

http://bigocheatsheet.com/
http://bigocheatsheet.com/

M269 2015J Exam M269

Sharon & Phil
Soln 16 (contd) e

(c) (i) Sketch of programming strategy

» Sort the sequence of sales using Python’s Timsort —
worst case complexity O(nlog n)

» Group tuples for each product into sub-sequences —
one traversal of the sequence O(n)

» For each sub-sequence calculate the value of a sale and
sum the values — one traversal of each sub-sequence
O(n) M269 2015) Exam Soln 16

» (ii) Overall complexity O(nlog n)

» Soln 16 continued on next slide

124/128 (135/139)

https://en.wikipedia.org/wiki/Timsort

M269 2015J Exam

Soln 16 (contd)

(d)

>

Hash function and hash tables

Hash function maps each input key to a hash value (or
slot)

Perfect hash function maps each key to a different hash
value

For UPC could translate productCode to an integer by
using Unicode or ASCII values for each character

Limited storage leads to hash functions having collisions
— a hash function mapping two keys to the same slot

Hash function collisions result in the need to either
store multiple items in a single slot (closed table) or
open addressing/open tables that use some mechanism
to find a free slot

M269

Sharon & Phil

M269 2015) Exam Soln 16

125/128 (136/139)

https://en.wikipedia.org/wiki/Hash_function

M269 2015J Exam M269

Sharon & Phil
Soln 17

» Title Greed is (sometimes) good
» Define Graph and Tree with example

> Define Minimum Spanning Tree of a graph is the
spanning tree (includes every node but may not include
every edge) that minimises total weight of edges

> Describe Prim’s algorithm — repeatedly add the next
safe edge — the only safe edge will be the one with the
smallest edge from the tree so far

M269 2015J Exam Soln 17

» Greed is (hardly ever) good — give an example where it
does not work — knapsack problem.

126/128 (137/139)

M269 Exam e

Reminders Sharon & Pl
» Read the Exam arrangements booklet
» Before the exam — check the date, time and location
(and how to get there)
> At the exam centre — arrive early
» Bring photo ID with signature
» Use black or blue pens (not erasable and not pencil) —
see Cult Pens for choices — pencils for preparing
diagrams (HB or blacker)
» Practice writing by hand Exam Reminders
> In the exam — Read the questions — carefully —
before and after answering them
» Don't get stuck on a question — move on, come back
later
» But do make sure you have attempted all questions
» and finally Good Luck

127/128 (138/139)

http://www2.open.ac.uk/students/help/exam-arrangements-booklet
http://www.cultpens.com/

M269 Exam Revision

	M269 Exam Revision Agenda & Aims
	Introductions & Revision Strategies
	M269 Exam 2016J

	M269 Prsntn 2015J Exam Qs
	M269 2015J Exam Qs
	M269 2015J Exam Q Part1

	Units 1 & 2
	Unit 1 Introduction
	M269 2015J Exam Q 1
	M269 2015J Exam Soln 1
	M269 2015J Exam Q 2
	M269 2015J Exam Soln 2
	Unit 2 From Problems to Programs
	M269 2015J Exam Q 3
	M269 2015J Exam Soln 3
	M269 2015J Exam Q 4
	M269 2015J Exam Soln 4

	Units 3, 4 & 5
	Unit 3 Sorting
	Unit 4 Searching
	M269 2015J Exam Q 5
	M269 2015J Exam Soln 5
	M269 2015J Exam Q 6
	M269 2015J Exam Soln 6
	M269 2015J Exam Q 7
	M269 2015J Exam Soln 7
	M269 2015J Exam Q 8
	M269 2015J Exam Soln 8
	Unit 5 Optimisation
	M269 2015J Exam Q 9
	M269 2015J Exam Soln 9
	M269 2015J Exam Q 10
	M269 2015J Exam Soln 10

	Units 6 & 7
	Propositional Logic
	M269 2015J Exam Q 11
	M269 2015J Exam Soln 11
	Predicate Logic
	M269 2015J Exam Q 12
	M269 2015J Exam Soln 12
	SQL Queries
	M269 2015J Exam Q 13
	M269 2015J Exam Soln 13
	Logic
	M269 2015J Exam Q 14
	M269 2015J Exam Soln 14
	Computability
	M269 2015J Exam Q 15
	M269 2015J Exam Soln 15
	Complexity

	M269 Exam 2015J Q Part2
	M269 2015J Exam Q 16
	M269 2015J Exam Q 17

	M269 Exam 2015J Soln Part2
	M269 2015J Exam Soln 16
	M269 2015J Exam Soln 17

	Exam Reminders
	White Slide

