M269

Donna & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2014J Exam Qs

Jnits 1 & 2

Units 3, 4 &

Units 6 & 7

M269 Exam 2014J Q Part2

M269 Exam 2014J Soln Part2

White Slide

M269 Exam Revision

Donna & Phil

20 May 2017 (2 sessions)

M269 Exam Revision

Agenda & Aims

- 1. Welcome and introductions
- 2. Revision strategies
- 3. M269 Exam Part 1 has 15 questions 60%
- 4. M269 Exam Part 2 has 2 questions 40%
- 5. M269 Exam 3 hours, Part 1 100 mins, Part 2 70 mins
- 6. M269 2014J exam Part 1
- 7. M269 2014J exam Part 2
- 8. Topics and discussion for each question
- 9. Exam techniques
- 10. Two sessions

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

Introductions & Revision Strategies M269 Exam 2016J

M269 Prsntn 2014J Exam Qs

nits 1 & 2

J....

Jnits 6 & 7

M269 Exam 2014J Q Part2

M269 Exam 2014 Soln Part2

M269 Exam Revision

Introductions & Revision strategies

- Introductions
- What other exams are you doing this year ?
- Each give one exam tip to the group

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

Introductions & Revision Strategies

269 Exam 2016J

M269 Prsntn 2014J Exam Qs

Jnits 1 & 2

Jnits 3, 4 &

nits 6 & 7

M269 Exam 2014J Q Part2

M269 Exam 2014J Soln Part2

M269 Exam

Presentation 2016 L

- Not examined this presentation:
- Unit 4, Section 2 String search
- Unit 7, Section 2 Logic Revisited
- Unit 7, Section 4 Beyond the Limits

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

Introductions & Revis Strategies

M269 Exam 2016J

M269 Prsntn 2014J Exam Qs

Units 1 & 2

Jnits 3, 4 & 5

nits 6 & 7

M269 Exam 2014J Q Part2

M269 Exam 2014J Soln Part2

- ▶ M269 Algorithms, Data Structures and Computability
- ▶ Presentation 2014J Exam
- ▶ Date Monday, 8 June 2015 Time 10:00–13:00
- ► There are TWO parts to this examination. You should attempt all questions in both parts
- ▶ Part 1 carries 60 marks 100 minutes
- ▶ Part 2 carries 40 marks 70 minutes
- Note see the original exam paper for exact wording and formatting — these slides and notes may change some wording and formatting

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2014J Exam Qs

M269 2014J Exam Qs M269 2014J Exam Q Part1

Units 1 & 2

Units 3, 4 & 5

M260 Evam 2014

Q Part2

01111 11112

Vhite Slide

► Go to Exam Soln s

M269 2014J Exam

Q Part1

- Answer every question in this part.
- Answers to questions in this part should be written on this paper in the spaces provided, or in the case of multiple-choice questions you should tick the appropriate box(es).
- If you tick more boxes than indicated for a multiple choice question, you will receive **no** marks for your answer to that question.

M269

Donna & Phil

M269 Exam
Revision Agenda &

2014J Exam Qs M269 2014J Exam Qs

M269 2014J Exam Q Part1

Units 1 & 2

Units 3, 4 & 5

Inits 6 & 7

M269 Exam 2014J Q Part2

M269 Exam 2014J

White Slide

▶ Go to Exam Soln Part1

Unit 1 Topics, Q1, Q2

- Unit 1 Introduction
- ► Computation, computable, tractable
- Introducing Python
- What are the three most important concepts in programming?
 - 1.
 - 2.
 - 3.
- ▶ Quote from Paul Hudak (1952–2015)

M269

Donna & Phil

M269 Exam
Revision Agenda &
Aims

M269 Prsntn 2014J Exam Qs

Jnits 1 & 2

Unit 1 Introduction

M269 2014J Exam Q 1 M269 2014J Exam Soln I M269 2014 J Exam Q 2

M269 2014J Exam Soln : Unit 2 From Problems to Programs

M269 2014J Exam Q 3 M269 2014J Exam Soln 3 M269 2014J Exam Q 4

-:t- 2 / 0 F

0111LS 0 62 7

M269 Exam 2014. Q Part2

Soln Part2

Unit 1 Topics, Q1, Q2

- Unit 1 Introduction
- ► Computation, computable, tractable
- Introducing Python
- What are the three most important concepts in programming?
 - 1. Abstraction
 - 2.
 - 3.
- ▶ Quote from Paul Hudak (1952–2015)

M269

Donna & Phil

M269 Exam
Revision Agenda &
Aims

M269 Prsntn 2014J Exam Qs

Units 1 & 2

Unit 1 Introduction

M269 2014J Exam Q 1 M269 2014J Exam Soln I M269 2014J Exam Q 2

M269 2014J Exam Soln 2 Unit 2 From Problems to Programs

M269 2014J Exam Q 3 M269 2014J Exam Soln 3 M269 2014J Exam Q 4

1269 2014J Exam Sc

Units 3, 4 & 5

Units 6 & 7

M269 Exam 20

M269 Exam 201

Unit 1 Topics, Q1, Q2

- Unit 1 Introduction
- ► Computation, computable, tractable
- Introducing Python
- What are the three most important concepts in programming?
 - 1. Abstraction
 - 2. Abstraction
 - 3.
- ▶ Quote from Paul Hudak (1952–2015)

M269

Donna & Phil

M269 Exam
Revision Agenda &
Aims

M269 Prsntn 2014J Exam Qs

Jnits 1 & 2

Unit 1 Introduction M269 2014J Exam Q 1

M269 2014J Exam Q 2
M269 2014J Exam Soln 2

Programs M269 2014J Exam Q 3 M269 2014J Exam Soln 3

1269 2014J Exam Solr

Units 3, 4 & 5

Units 6 & 7

M269 Exam 2

M269 Exam 20: Soln Part?

Unit 1 Topics, Q1, Q2

- Unit 1 Introduction
- ► Computation, computable, tractable
- Introducing Python
- What are the three most important concepts in programming?
 - 1. Abstraction
 - 2. Abstraction
 - 3. Abstraction
- ▶ Quote from Paul Hudak (1952–2015)

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2014J Exam Qs

Jnits 1 & 2

Unit 1 Introduction M269 2014J Exam Q 1 M269 2014J Exam Soln 1

M269 2014J Exam Q 2 M269 2014J Exam Soln 2 Unit 2 From Problems to Programs

M269 2014J Exam Q 3 M269 2014J Exam Soln 3 M269 2014J Exam Q 4

Units 3, 4 & 5

Jnits 6 & 7

M269 Exam 20

Q Part2

ooln Part2

Question 1 Which two of the following statements are true? (2 marks)

A. A computational thinker can explain why some computational problems do not have a good computational solution.

- **B.** The main factor when deciding the best algorithm for a given task is the programming language in which the algorithm is to be implemented.
- **C.** A decision problem can be defined as a formally stated problem to which the answer is either yes or no.
- **D.** The data structure chosen to hold data does not affect the efficiency of an algorithm operating on that data.

Revision Agenda & Aims

M269 Prsntn 2014J Exam Qs

Jnits 1 & 2

Unit 1 Introductio

M269 2014J Exam Q 1 M269 2014J Exam Soln 1

M269 2014J Exam Q 2 M269 2014J Exam Soln 2 Init 2 From Problems to

M269 2014J Exam Q 3 M269 2014J Exam Soln 3 M269 2014J Exam Q 4

Jnits 3, 4 & 5

Units 6 &

M269 Exam 2 Q Part2

M269 Exam 2014J Soln Part2

White Slide

▶ Go to Exam Soln

M269 2014J Exam

Soln 1

► A, C

M269

Donna & Phil

M269 Exam
Revision Agenda &

M269 Prsntn 2014 I Exam Os

nits 1 & 2

Unit 1 Introduction

M269 2014J Exam Q 1

M269 2014J Exam Q 2 M269 2014J Exam Soln 2 Unit 2 From Problems to

M269 2014J Exam Q 3 M269 2014J Exam Soln :

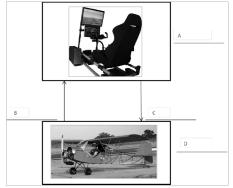
M269 2014J Exam Soln 4

Units 3, 4 & 5

nits 6 & 7

269 Exam 2014J Part2

n Part2


White Slide

9/138 (12/149)

M269 2014J Exam

Q 2

 Question 2 The diagram below shows images of a flight simulator for a single seater aircraft and an actual single seater aircraft. (2 marks)

Q 2 continued on next slide

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2014J Exam Qs

Jnits 1 & 2

Unit 1 Introduction
M269 2014J Exam Q 1
M269 2014J Exam Soln :
M269 2014J Exam Q 2

Unit 2 From Problems to Programs

M269 2014J Exam Q 3 M269 2014J Exam Soln 3 M269 2014J Exam Q 4 M269 2014J Exam Soln 4

Units 3, 4 & 5

Units 6

M269 Exam 2 Q Part2

M269 Exam 2014. Soln Part2

M269 2014 J Exam

Q 2

 Complete the diagram above by adding an appropriate label (one of the numbers 1 to 8) in each of the spaces indicated by A, B, C and D. The possible answers are shown as 1 to 8 below.

- 1 ... represented by
- 2 ... ignores detail of
- 3 ... solves
- 4 ... transforms
- 5 . . . model
- 6 ... part of reality
- 7 ... computational problem
- 8 . . . layer

M269

Donna & Phil

M269 2014J Exam Q 2

M269 2014J Exam

Soln 2

- A 5 model
- B 1 represented by
- C 2 ignores detail of
- D 6 part of reality
- ► See Unit 1 section 3.2 Computational thinking and abstraction

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2014J Exam Qs

its 1 & 2

Jnit 1 Introduction M269 2014J Exam Q 1 M269 2014J Exam Soln 1

M269 2014J Exam Soln 2
Unit 2 From Problems to

M269 2014J Exam Q 3 M269 2014J Exam Soln 3 M269 2014J Exam Q 4

Units 3, 4 & 5

Inits 6 & 7

M269 Exam 2014J

1269 Exam 2014

Unit 2 Topics, Q3, Q4

- Unit 2 From Problems to Programs
- Abstract Data Types
- Pre and Post Conditions
- Logic for loops

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2014J Exam Qs

Jnits 1 & 2

Unit 1 Introduction M269 2014J Exam Q 1 M269 2014J Exam Soln

M269 2014J Exam Q 2 M269 2014J Exam Soln 2 Unit 2 From Problems to

Programs

Example Algorithm Design

M269 2014J Exam Q 3 M269 2014J Exam Soln 3

//269 2014J Exam //269 2014J Exam

nits 3, 4 & 5

nits 6 & 7

M269 Exam 2014J Q Part2

M269 Exam 2014J Soln Part2

White Slide

13/138 (16/149)

Example Algorithm Design

Searching

- Given an ordered list (xs) and a value (val), return
 - Position of val in xs or
 - Some indication if val is not present
- Simple strategy: check each value in the list in turn
- Better strategy: use the ordered property of the list to reduce the range of the list to be searched each turn
 - Set a range of the list
 - If val equals the mid point of the list, return the mid point
 - Otherwise half the range to search
 - If the range becomes negative, report not present (return some distinguished value)

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2014J Exam Qs

Inits 1 & 2

Unit 1 Introduction
M269 2014J Exam Q 1
M269 2014J Exam Soln 1
M269 2014J Exam Q 2
M269 2014J Exam Soln 2

Example Algorithm Design
— Searching

M269 2014J Exam Q 3 M269 2014J Exam Soln 3 M269 2014J Exam Q 4

Jnits 3, 4 &

Units 6 & 7

M269 Exam 2014J Q Part2

M269 Exam 2014J Soln Part2

White Slid

14/138 (17/149)

Example Algorithm Design

Binary Search Iterative

```
def binarySearchIter(xs, val):
      lo = 0
      hi = len(xs) - 1
3
      while lo <= hi:
5
        mid = (lo + hi) // 2
6
        guess = xs[mid]
        if val == guess:
9
           return mid
10
        elif val < guess:
11
           hi = mid - 1
12
        else:
13
14
           lo = mid + 1
      return None
16
```

M269

Donna & Phil

Example Algorithm Design

- Searching

15/138 (18/149)

Binary Search Recursive

```
def binarySearchRec(xs, val, lo=0, hi=-1):
      if (hi == -1):
        hi = len(xs) - 1
3
      mid = (lo + hi) // 2
5
      if hi < lo:
7
        return None
      else:
        guess = xs[mid]
10
        if val == guess:
11
12
           return mid
        elif val < guess:
13
           return binary Search Rec (xs, val, lo, mid-1)
14
        else:
15
                  binarySearchRec(xs, val, mid+1, hi)
16
```

M269

Donna & Phil

1269 Prsntn 014J Exam Qs

```
its 1 & 2
```

nit 1 Introduction

1269 2014J Exam Q 2 1269 2014J Exam Soln 2 Init 2 From Problems to

Example Algorithm Design — Searching

269 2014J Exam Q 3 269 2014J Exam Soln 3

9 Evam 2014 I

у Рапт2 M269 Exam 2014J

White Slide

16/138 (19/149)

Binary Search Recursive — Solution

```
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)
xs = Highlight the mid value and search range
binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range
binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range
binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range
BinarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range
Return value: ??
```

M269

Donna & Phil

M269 Exam Revision Agenda &

M269 Prsntn 2014J Exam Qs

Units 1 & 2

Unit 1 Introduction
M269 2014J Exam Q 1
M269 2014J Exam Soln 1
M269 2014J Exam Q 2
M269 2014J Exam Q 2
Unit 2 From Problems to

Example Algorithm Design — Searching

M269 2014J Exam Q 3 M269 2014J Exam Soln 3 M269 2014J Exam Q 4

nits 3. 4 & 5

nits 6 & 7

M269 Exam 2014J Q Part2

M269 Exam 2014J Soln Part2

White Slid

17/138 (20/149)

Binary Search Recursive — Solution

```
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range
binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range
binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range
Return value: ??
```

M269

Donna & Phil

M269 Exam Revision Agenda &

M269 Prsntn 2014J Exam Qs

Units 1 & 2

Unit 1 Introduction
M269 2014J Exam Q 1
M269 2014J Exam Soln 1
M269 2014J Exam Q 2
M269 2014J Exam Q 2
Unit 2 From Problems to

Example Algorithm Design — Searching

269 2014J Exam Q 3 269 2014J Exam Soln 3 269 2014J Exam Q 4

nits 3. 4 & 5

Jnits 6 & 7

M269 Exam 2014J Q Part2

M269 Exam 2014J Soln Part2

White Slid

17/138 (21/149)

Binary Search Recursive — Solution

```
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs, 67)
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs,67,8,14) by line 15
xs = Highlight the mid value and search range binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range
Return value: ??
```

M269

Donna & Phil

M269 Exam Revision Agenda &

M269 Prsntn 2014J Exam Qs

Units 1 & 2

Unit 1 Introduction
M269 2014J Exam Q 1
M269 2014J Exam Soln 1
M269 2014J Exam Q 2
M269 2014J Exam Soln 2
Unit 2 From Problems to

Example Algorithm Design — Searching

M269 2014J Exam Q 3 M269 2014J Exam Soln 3 M269 2014J Exam Q 4

nits 3. 4 & 5

nits 6 & 7

M269 Exam 2014J Q Part2

M269 Exam 2014J Soln Part2

White Slid

17/138 (22/149)

Binary Search Recursive — Solution

```
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs, 67) xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs,67,8,14) by line 15 xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs,25,??,??) xs = Highlight the mid value and search range binarySearchRec(xs,25,??,??) xs = Highlight the mid value and search range Return value: ??
```

M269

Donna & Phil

M269 Exam Revision Agenda &

M269 Prsntn 2014J Exam Qs

Jnits 1 & 2

Unit 1 Introduction
M269 2014J Exam Q 1
M269 2014J Exam Soln 1
M269 2014J Exam Q 2
M269 2014J Exam Soln 2
Unit 2 From Problems to

Example Algorithm Design — Searching

269 2014J Exam Q 3 269 2014J Exam Soln 3 269 2014J Exam Q 4

nits 3. 4 & 5

nits 6 & 7

M269 Exam 2014J Q Part2

M269 Exam 2014J Soln Part2

White Slid

17/138 (23/149)

Binary Search Recursive — Solution

```
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs, 67) xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs,67,8,14) by line 15 xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs,67,8,10) by line 13 xs = Highlight the mid value and search range binarySearchRec(xs,25,??,??) xs = Highlight the mid value and search range Return value: ??
```

M269

Donna & Phil

M269 Exam Revision Agenda &

M269 Prsntn 2014J Exam Qs

Units 1 & 2

Unit 1 Introduction M269 2014J Exam Q 1 M269 2014J Exam Soln 1 M269 2014J Exam Q 2 M269 2014J Exam Soln 2 Unit 2 From Problems to

Example Algorithm Design — Searching

269 2014J Exam Q 3 269 2014J Exam Soln 3 269 2014J Exam Q 4

nits 3. 4 & 5

Jnits 6 & 7

M269 Exam 2014J Q Part2

M269 Exam 2014J Soln Part2

White Slide

17/138 (24/149)

Binary Search Recursive — Solution

```
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs, 67) xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs,67,8,14) by line 15 xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs,67,8,10) by line 13 xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs,25,??,??) xs = Highlight the mid value and search range Return value: ??
```

M269

Donna & Phil

M269 Exam Revision Agenda &

M269 Prsntn 2014J Exam Qs

Jnits 1 & 2

Unit 1 Introduction
M269 2014J Exam Q 1
M269 2014J Exam Soln 1
M269 2014J Exam Q 2
M269 2014J Exam Soln 2
Unit 2 From Problems to

Example Algorithm Design — Searching

1269 2014J Exam Q 3 1269 2014J Exam Soln 3 1269 2014J Exam Q 4

nits 3. 4 & 5

nits 6 & 7

M269 Exam 2014J Q Part2

M269 Exam 2014J Soln Part2

White Slide

17/138 (25/149)

Binary Search Recursive — Solution

```
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs, 67)
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs,67,8,14) by line 15
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs,67,8,10) by line 13
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs,67,8,8) by line 13
xs = Highlight the mid value and search range
Return value: ??
```

M269

Donna & Phil

M269 Exam Revision Agenda &

M269 Prsntn 2014J Exam Qs

Units 1 & 2

Unit 1 Introduction
M269 2014 J Exam Q 1
M269 2014 J Exam Soln 1
M269 2014 J Exam Q 2
M269 2014 J Exam Soln 2
Unit 2 From Problems to

Example Algorithm Design — Searching

M269 2014J Exam Q 3 M269 2014J Exam Soln 3 M269 2014J Exam Q 4

nits 3. 4 & 5

nits 6 & 7

M269 Exam 2014J Q Part2

M269 Exam 2014J Soln Part2

White Slide

17/138 (26/149)

Binary Search Recursive — Solution

```
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs,67,8,14) by line 15

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs,67,8,10) by line 13

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs,67,8,8) by line 13

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

Return value: ??
```

M269

Donna & Phil

M269 Exam Revision Agenda &

M269 Prsntn 2014J Exam Qs

Jnits 1 & 2

Unit 1 Introduction
M269 2014J Exam Q 1
M269 2014J Exam Soln 1
M269 2014J Exam Q 2
M269 2014J Exam Soln 2
Unit 2 From Problems to

Example Algorithm Design — Searching

M269 2014J Exam Q 3 M269 2014J Exam Soln 3 M269 2014J Exam Q 4 M269 2014J Exam Soln 4

nits 3. 4 & 5

nits 6 & 7

M269 Exam 2014J Q Part2

M269 Exam 2014J Soln Part2

Vhite Slide

17/138 (27/149)

Binary Search Recursive — Solution

```
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs, 67) xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs,67,8,14) by line 15 xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs,67,8,10) by line 13 xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] binarySearchRec(xs,67,8,8) by line 13 xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101] Return value: 8 by line 11
```

M269

Donna & Phil

M269 Exam Revision Agenda &

M269 Prsntn 2014J Exam Qs

Units 1 & 2

Unit 1 Introduction M269 2014J Exam Q 1 M269 2014J Exam Soln 1 M269 2014J Exam Q 2 M269 2014J Exam Soln 2 Unit 2 From Problems to

Example Algorithm Design — Searching

1269 2014J Exam Q 3 1269 2014J Exam Soln 3 1269 2014J Exam Q 4

nits 3. 4 & 5

nits 6 & 7

M269 Exam 2014J Q Part2

M269 Exam 2014J Soln Part2

Vhite Slide

17/138 (28/149)

Example Algorithm Design

Binary Search Iterative — Miller & Ranum

```
def binarySearchIterMR(alist, item):
      first = 0
      last = len(alist)-1
3
      found = False
      while first <= last and not found:
6
        midpoint = (first + last)//2
        if alist[midpoint] == item:
          found = True
        else:
10
          if item < alist[midpoint]:</pre>
11
12
             last = midpoint -1
          else:
13
14
             first = midpoint+1
      return found
16
```

M269

Donna & Phil

M269 Prsntn

1 & 2

its 1 & 2

269 2014J Exam Q 269 2014J Exam So

M269 2014J Exam Q 2 M269 2014J Exam Soln 2 Jnit 2 From Problems to

Programs Example Algorithm Design — Searching

Searching 9 2014J Exam Q 3 9 2014J Exam Soln 3

9 2014J Exam Q 4 9 2014J Exam Soln

3, 4 & 5

5 & 7

Exam 2014J

Q Part2 M269 Exam 2014J

nite Slide

18/138 (29/149)

Binary Search Recursive — Miller & Ranum

```
def binarySearchRecMR(alist, item):
      if len(alist) = 0:
        return False
      else:
        midpoint = len(alist)//2
         if alist[midpoint]==item:
           return True
        else:
           if item<alist[midpoint]:</pre>
             return binarySearchRecMR(alist[: midpoint], item)
10
           else :
11
                     binarySearchRecMR (alist [midpoint +1:], item ) 1269 2014 J Exam Q 3
12
             return
```

M269

Donna & Phil

Example Algorithm Design - Searching

19/138 (30/149)

▶ Question 3 An insertion sort is being carried out on the list of integers shown below, so as to arrange the list in ascending numerical order: (4 marks)

start array 54 26 93 17 77 44 55 31

For the first four passes of the algorithm (after assuming that a list with one item is already sorted), show the order of the items in the list after that pass:

(Pass 1)				
(Pass 2)				
(Pass 3)				
(Pass 4)				

▶ Go to Exam Soln 3

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2014J Exam Qs

Jnits 1 &

Unit 1 Introduction
M269 2014J Exam Q 1
M269 2014J Exam Soln 1
M269 2014J Exam Q 2
M269 2014J Exam Soln 2
Unit 2 From Problems to
Programs

M269 2014J Exam Q 3 M269 2014J Exam Soln 3 M269 2014J Exam Q 4

Jnits 3, 4 & 5

Units 6 8

M269 Exam 2 Q Part2

//269 Exam 201

M269 2014J Exam

Soln 3

► The sorted part of the list is filled in pale blue with the next item to be inserted in pale red

(Pass 1)	26	54	93	17	77	44	55	31

▶ Go to Exam Q 3

M269

Donna & Phil

M269 Exam
Revision Agenda &
Aims

M269 Prsntn 2014J Exam Qs

Inits 1 & 2

M269 2014J Exam Q 1 M269 2014J Exam Soln 1 M269 2014J Exam Q 2 M269 2014J Exam Soln 2 Unit 2 From Problems to

M269 2014J Exam Soln 3 M269 2014J Exam Q 4

Units 3, 4 & 5

Jnits 6 & 7

M269 Exam 2

M269 Exam 201

White Slide

21/138 (32/149)

Question 4 Consider the guard in the following Python while loop header: (4 marks)

while (b > 8) and $not(a < 6 \text{ or } b \le 8)$:

(a) Make the following substitutions:

P represents a < 6

Q represents b > 8

complete the following truth table:

Р	Q	$\neg Q$	$P \vee \neg Q$	$\neg (P \lor \neg Q)$	$Q \wedge \neg (P \vee \neg Q)$
Т	Т				
Т	F				
F	Т				
F	F				

Q 4 continued on next slide

Donna & Phil

Revision Agenda & Aims

> M269 Prsntn 2014J Exam Qs

nits 1 & 2

Unit 1 Introduction
M269 2014J Exam Q 1
M269 2014J Exam Soln 1
M269 2014J Exam Q 2
M269 2014J Exam Q 2
Iloit 2 From Problems to

M269 2014J Exam Q 3 M269 2014J Exam Soln 3 M269 2014J Exam Q 4

nits 3, 4 & 5

Jnits 6 & 7

M269 Exan

Q Part2

White Slide

M269 2014.J Exam

Q 4 (contd)

- (b) Use the results from your truth table to choose which one of the following expressions could be used as a simpler equivalent to the above guard.
 - A. (b > 9 and a < 6)
 - B. not (a < 6 or b > 8)
 - C. (a >= 6 and b <= 8)
 - D. not (a < 6 or b <= 8)
 - E. $(a < 6 \text{ and } b \le 8)$

▶ Go to Exam Soln 4

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2014J Exam Qs

Inits 1 & 2

M269 2014J Exam Q 1 M269 2014J Exam Soln 1 M269 2014J Exam Q 2 M269 2014J Exam Soln 2

Programs
M269 2014J Exam Q 3
M269 2014J Exam Soln 3
M269 2014J Exam O 4

209 2014J Exam 50

M260 Every 201

Q Part2

oln Part2

White Slide

23/138 (34/149)

(a) Truth table

Р	Q	$\neg Q$	$P \lor \neg Q$	$\neg (P \lor \neg Q)$	$Q \wedge \neg (P \vee \neg Q)$
Т	Т	F	Т	F	F
Т	F	Т	Т	F	F
F	Т	F	F	Т	Т
F	F	Т	Т	F	F

(b) The only row that has True in the final column for the guard is

$$P = F$$
 and $Q = T$

► This is equivalent to

$$\neg P \land Q$$

▶ $\rightarrow \neg (P \lor \neg Q)$ hence answer D

M269 Exam Revision Agenda & Aims

M269 Prsntn 2014J Exam Qs

nits 1 & 2

Unit 1 Introduction M269 2014J Exam Q 1 M269 2014J Exam Soln 1 M269 2014J Exam Q 2 M269 2014J Exam Soln 2 Unit 2 From Problems to Programs

M269 2014J Exam Q 4 M269 2014J Exam Q 4 M269 2014J Exam Soln 4

.

nits 3, 4 & 5

Jnits 6 & 7

1269 Exam 20

| Part2 |269 Exam 2014

...........

Unit 3 Topics, Q5, Q6

- Unit 3 Sorting
- Elementary methods: Bubble sort, Selection sort, Insertion sort
- Recursion base case(s) and recursive case(s) on smaller data
- Quicksort, Merge sort
- Sorting with data structures: Tree sort, Heap sort
- See sorting notes for abstract sorting algorithm

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2014J Exam Qs

Units 1 & 2

Unite 3 4 & 5

Unit 3 Sorting

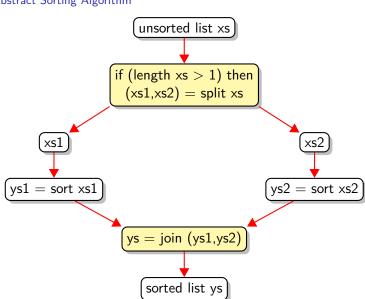
Unit 4 Searching M269 2014J Exam Q 5 M269 2014J Exam Soln 5

M269 2014J Exam Q 6 M269 2014J Exam Soln 6 M269 2014J Exam Q 7

269 2014J Exam Soln 269 2014J Exam Q 8

t 5 Optimisation 69 2014J Exam Q 9 69 2014J Exam Soln

Unite 6 & 7


M269 Exam 2014J Q Part2

M269 Exam 2014J

25/138 (36/149)

Unit 3 Sorting

Abstract Sorting Algorithm

M269

Donna & Phil

Unit 3 Sorting

26/138 (37/149)

Unit 3 Sorting

Sorting Algorithms

Using the *Abstract sorting algorithm*, describe the *split* and *join* for:

- ▶ Insertion sort
- Selection sort
- Merge sort
- Quicksort
- Bubble sort (the odd one out)

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2014J Exam Qs

UIIILS I & Z

Unit 3 Sorting

Unit 4 Searching

M269 2014J Exam Q 5 M269 2014J Exam Soln 5 M269 2014J Exam Q 6

M269 2014J Exam Q 6 M269 2014J Exam Soln 6 M269 2014J Exam Q 7

9 2014J Exam Soln 7 9 2014J Exam Q 8 9 2014J Exam Soln 8

59 2014J Exam Q 9 59 2014J Exam Soln 9 59 2014J Exam Q 10

Units 6 & 7

M269 Exam 201

Q Part2

/1269 Exam 2014J

27/138 (38/149)

M269 Specimen Exam

Unit 4 Topics, Q7, Q8

- Unit 4 Searching
- String searching: Quick search Sunday algorithm, Knuth-Morris-Pratt algorithm
- Hashing and hash tables
- ► Search trees: Binary Search Trees
- ► Search trees: Height balanced trees: AVL trees

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2014J Exam Qs

Jnits 1 & 2

Units 3, 4 &

Unit 4 Searching

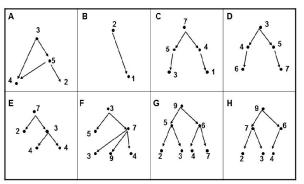
M269 2014J Exam Q 5 M269 2014J Exam Soln 5

M269 2014J Exam Soln 5 M269 2014J Exam Q 6 M269 2014J Exam Soln 6

269 2014J Exam Q 7 269 2014J Exam Soln 7 269 2014J Exam Q 8

t 5 Optimisation 69 2014J Exam Q 9 69 2014J Exam Soln

In:t- 6 0. 7


Units 6 & 7

M269 Exam 2014J Q Part2

M269 Exam 2014J

28/138 (39/149)

Question 5 Consider the diagrams in A–H. Nodes are represented by black dots, edges by arrows and numbers are the keys.
 (4 marks)

Q 5 continued on next slide

▶ Go to Exam Soln 5

M269

Donna & Phil

M269 Exam Revision Agenda &

> M269 Prsntn 2014J Exam Qs

Units 1 & 1

Units 3, 4 & 5

nit 4 Searching

M269 2014 J Exam Q 5

M269 2014J Exam Soln 5 M269 2014J Exam Q 6 M269 2014J Exam Soln 6 M269 2014J Exam Q 7

M269 2014J Exam Q M269 2014J Exam So

nit 5 Optimisatio |269 2014J Exam |269 2014J Exam

M269 2014J Exam

Units 6 & 7

M269 Exam 2014J Q Part2

M269 Exam 2014J

29/138 (40/149)

Q 5 (contd)

- Answer the following questions. Write your answer on the line that follows each question. In each case there is at least one diagram in the answer but there may be more than one. Explanations are not required.
- (a) Which of A, B, C and D do not show trees?
- (b) Which of E, F, G and H are binary trees?
- (c) Which of C, D, G and H are complete binary trees?
- (d) Which of C, D, G and H are binary heaps?

▶ Go to Exam Soln 5

M269

Donna & Phil

M269 Exam
Revision Agenda &

M269 Prsntn 2014J Exam Qs

Units 1 &

Units 3, 4 & 5

Unit 3 Sorting
Unit 4 Searching

M269 2014J Exam Q 5 M269 2014J Exam Soln 5

1269 2014J Exam Q 6 1269 2014J Exam Soln 6

1269 2014J Exam Q 7 1269 2014J Exam Soln 7

269 2014J Exam Q 8 269 2014J Exam Soln it 5 Optimisation

M269 2014J Exam Q 10 M269 2014J Exam Soln

Units 6 & 7

M269 Exam 2014J O Part2

M269 Exam 2014J

30/138 (41/149)

Soln 5

- In a tree, there is a unique path from the root to each node (graph theory version)
 - ▶ A is not a tree since 4 can be reached 3-4 or 3-5-4
 - B. C. D are trees
- (b) In a binary tree, each node has at most two children (graph theory version) Note also that in a binary tree each child node is either a left or a right child. The inductive definition of a binary tree: a binary tree is either an empty tree or a node with two subtrees
 - E, G, H are binary trees
- (C) In a complete binary tree, every level, except possibly the last, is completely filled, and all nodes are as far left as possible.
 - G, H are complete trees.
- Binary heaps are complete binary trees that satisfy the heap order property. This property requires that the key of a node is smaller or equal to the key of its children for min heaps or greater or equal for max heap
 - H is a binary heap

M269

Donna & Phil

M260 2014 I Evam Soln 5

Question 6 Consider the following function, which takes an integer n as an argument. You can assume that n is positive.
 (4 marks)

Q 6 continued on next slide

M269

Donna & Phil

M269 Exam
Revision Agenda &
Aims

M269 Prsntn 2014J Exam Qs

Inite 1 &

Units 3 4 & 5

Unit 3 Sorting
Unit 4 Searching

M269 2014J Exam Q 5 M269 2014J Exam Soln 5

M269 2014J Exam Q 6 M269 2014J Exam Soln 6

> 1269 2014J Exam Q 7 1269 2014J Exam Soln 7 1269 2014J Exam Q 8

nit 5 Optimisation 1269 2014J Exam

VI269 2014J Exam

Jnits 6 & 7

M269 Exam 2014J Q Part2

M269 Exam 2014J

32/138 (43/149)

▶ From the five options below, select the **one** that represents the correct combination of T(n) and Big-O complexity for this function. You may assume that a step (i.e. the basic unit of computation) is the assignment statement.

A.
$$T(n) = n^2 + 3n + 2$$
 and $O(n^2)$

B.
$$T(n) = 2n^3 + n^2 + 2$$
 and $O(n^3)$

C.
$$T(n) = 2n^2 + n + 2$$
 and $O(2n^2)$

D.
$$T(n) = 3n^2 + 2$$
 and $O(n^2)$

E.
$$T(n) = 2n + 5$$
 and $O(n)$

Now explain how you obtained T(n) and the Big-O complexity.

→ Go to Exam Soln 6

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2014J Exam Qs

Units 1 & 2

Units 3, 4 & 5

nit 3 Sorting nit 4 Searching 1269 2014J Exam Q 5 1269 2014J Exam Soln 5

M269 2014J Exam Q 6 M269 2014J Exam Soln 6 M269 2014J Exam Q 7

> 9 2014J Exam Q 6 59 2014J Exam Soln 8 5 5 Optimisation 69 2014J Exam Q 9 69 2014J Exam Soln 9

Inits 6 & 7

M269 Exam 2014J

M269 Exam 2014J

33/138 (44/149)

Soln 6

- ▶ D $T(n) = 3n^2 + 2$ and $O(n^2)$
- Explanation:
- 2 assignment statements outside loops
- ▶ 3 assignment statements inside two nested loops which are each executed n times $(3n^2)$

→ Go to Exam Q 6

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2014J Exam Qs

Inits 1 & 2

Units 3, 4 & 5

Unit 3 Sorting Unit 4 Searching M269 2014J Exam Q 5 M269 2014J Exam Soln 5

M269 2014J Exam Q 6 M269 2014J Exam Soln 6

> 269 2014J Exam Soln 7 269 2014J Exam Q 8 269 2014J Exam Soln 8

269 2014J Exam Q 9 269 2014J Exam Soln 9 269 2014J Exam Q 10

Units 6 & 7

M269 Exam 2014J Q Part2

M269 Exam 2014J

34/138 (45/149)

(a) Given an alphabet of ACGT and the target string CAGAGAG, select the option below that represents the shift table that would be used by the Sunday string search algorithm.

Δ	Α	C	G	T
Λ.	1	6	0	8

$$\mathsf{C.} \ \, \begin{array}{c|cccc} \mathsf{A} & \mathsf{C} & \mathsf{G} & \mathsf{T} \\ \hline 1 & 0 & 2 & 7 \\ \end{array}$$

Q 7 continued on next slide

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2014J Exam Qs

Units 1 &

Units 3, 4 & 5

Unit 3 Sorting Unit 4 Searching M269 2014J Exam Q 5 M269 2014J Exam Soln 5 M269 2014J Exam Q 6

M269 2014J Exam Q 7

269 2014J Exam (

M269 2014J Exam

H-1-- 6 0 7

Units 6 & 7

M269 Exam 2014J Q Part2

M269 Exam 2014J

Q 7 (contd)

- (b) Assuming a hash table with 20 slots, using the folding method, with 2 as the size of each part, what would be the hash value of the item 1459862913?
 - In the box below give the hash value and indicate how you calculated your answer, showing all steps.

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2014J Exam Qs

Units 1 & 2

Units 3 4 &

Unit 3 Sorting
Unit 4 Searching
VI269 2014J Exam Q 5

M269 2014J Exam Q 5 M269 2014J Exam Soln 5 M269 2014J Exam Q 6

M269 2014J Exam Soln 6 M269 2014J Exam Q 7

1269 2014J Exam Soln 7 1269 2014J Exam Q 8 1269 2014J Exam Soln 8

M269 2014J Exam Soln Jnit 5 Optimisation M269 2014J Exam Q 9

M269 2014J Exam Solr

Units 6 & 7

M269 Exam 2014J Q Part2

M269 Exam 2014J

36/138 (47/149)

Soln 7

(a) D

- ▶ The shift table for the Sunday Quick Search algorithm:
 - ▶ If the character does not appear in the target string T, the shift distance is one more than the length of T
 - ▶ If the character does appear in *T* the shift distance is the first position at which it appears, counting from right to left and starting at 1

▶ Go to Exam Q 7

M269

Donna & Phil

M269 Exam
Revision Agenda &
Aims

M269 Prsntn 2014J Exam Qs

Jnits 1 & 2

Units 3, 4 &

nit 3 Sorting nit 4 Searching 1269 2014J Exam Q 5 1269 2014J Exam Soln 5 1269 2014J Exam Q 6

M269 2014J Exam Q 7 M269 2014J Exam Soln 7

M269 2014J Exam Q 8 M269 2014J Exam Soln 8

269 2014J Exam Q 269 2014J Exam So

M269 2014J Exam 5

Units 6 & 7

M269 Exam 2014J Q Part2

M269 Exam 2014J

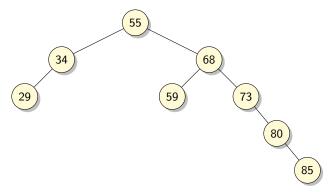
37/138 (48/149)

Soln 7 (contd)

(b) Hash value = 1 since
$$(14 + 59 + 86 + 29 + 13) \% 20 = 1$$

▶ Go to Exam Q 7

M269


Donna & Phil

M269 2014J Exam Soln 7

Soln Part 2 38/138 (49/149)

Q 8

Consider the following Binary Search Tree. (4 marks)

Q 8 continued on next slide

▶ Go to Exam Soln 8

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2014J Exam Qs

Inits 1 &

Units 3, 4 & 5

Unit 3 Sorting
Unit 4 Searching
M269 2014J Exam Q 5
M269 2014J Exam Soln 5
M269 2014J Exam Q 6

M269 2014J Exam Q 7 M269 2014J Exam Soln 7 M269 2014J Exam Q 8

M269 2014J Exam Q 8 M269 2014J Exam Soln 8

И269 2014J Exam Q И269 2014J Exam So

Inita 6 P. 7

Jnits 6 & 7

M269 Exam 2014J Q Part2

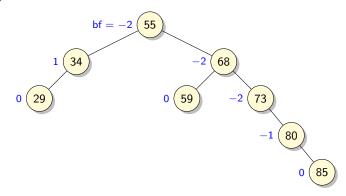
M269 Exam 2014J

39/138 (50/149)

Q 8 (contd)

- (a) Calculate the balance factors of each node in the above tree and modify the diagram to show these balance factors.
- (b) Given your calculated balance factors, would this tree need to be rebalanced to be a valid AVL tree? Give your answer and a brief explanation for your answer in the box provided below.

M269


Donna & Phil

M269 2014 I Exam Q 8

40/138 (51/149)

Soln 8

(a) Tree with balance factors

Soln 8 continued on next slide

→ Go to Exam Q 8

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2014J Exam Qs

Jnits 1 & :

Units 3, 4 & 5

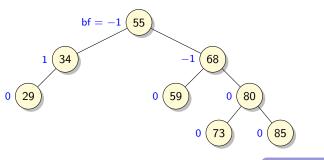
Unit 4 Searching
Wa69 2014J Exam Q 5
M269 2014J Exam Q 6
M269 2014J Exam Q 6
M269 2014J Exam Soln 6
M269 2014J Exam Q 7

M269 2014J Exam Q 8 M269 2014J Exam Soln 8

M269 2014J Exam Soln 8 Init 5 Optimisation

269 2014J Exam Q 1

Jnits 6 & 7


M269 Exam 2014J Q Part2

M269 Exam 2014J

41/138 (52/149)

Soln 8 (contd)

- (b) The tree is not a valid AVL tree since some of the balance factors are outside the range [-1, 0, +1]
 - ► The tree must have become unbalanced as a result of inserting 85
 - ► Rebalancing would mean a left rotation around the node 73 as below (this diagram was not required in the exam)

▶ Go to Exam Q 8

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2014J Exam Qs

Units 1 &

Units 3, 4 & 5

Unit 3 Sorting
Unit 4 Searching
M269 2014J Exam Q 5
M269 2014J Exam Soln 5
M269 2014J Exam Sol 0
M269 2014J Exam Sol 0
M269 2014J Exam Sol 0

M269 2014 J Exam Q 8

Jnit 5 Optimisation M269 2014J Exam Q 9 M269 2014J Exam Soln 9

Jnits 6 & 7

M269 Exam 2014J Q Part2

M269 Exam 2014J

42/138 (53/149)

M269 Specimen Exam

Unit 5 Topics, Q9, Q10

- Unit 5 Optimisation
- Graphs searching: DFS, BFS
- Distance: Dijkstra's algorithm
- Greedy algorithms: Minimum spanning trees, Prim's algorithm
- Dynamic programming: Knapsack problem, Edit distance

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2014J Exam Qs

Units 1 & 2

Unite 3 1 8 5

Unit 3 Sorting
Unit 4 Searching
M269 2014 L Evam O 5

M269 2014J Exam Q 5 M269 2014J Exam Soln 5 M269 2014J Exam Q 6

> M269 2014J Exam Soln 6 M269 2014J Exam Q 7 M269 2014J Exam Soln 7

M269 2014J Exam Q 8 M269 2014J Exam Soli Unit 5 Optimisation

> 269 2014J Exam Soln 9 269 2014J Exam Q 10 269 2014 I Exam Soln 1

Units 6 & 7

M269 Exam 2014J Q Part2

M269 Exam 2014J

43/138 (54/149)

Question 9 Recall that the structured English for Dijkstra's algorithm is: (5 marks)

create priority~queue
set dist to 0 for v and dist to infinity
for all other vertices
add all vertices to priority~queue
ITERATE while priority~queue is not empty
remove u from the front of the queue
ITERATE over w in the neighbours of u
set new~distance to
dist u + length of edge from u to w
IF new~distance is less than dist w
set dist w to new~distance
change priority(w, new~distance)

Q 9 continued on next slide

▶ Go to Exam Soln 9

M269

Donna & Phil

M269 Exam
Revision Agenda &

M269 Prsntn

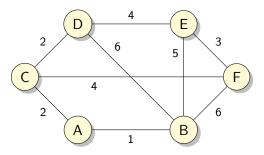
Jnits 1 & 2

Units 3, 4 & 5

Unit 4 Searching
M269 2014 J Exam Q 5
M269 2014 J Exam Q 6
M269 2014 J Exam Soln 5
M269 2014 J Exam Soln 6
M269 2014 J Exam Soln 6
M269 2014 J Exam Soln 7
M269 2014 J Exam Goln 7
M269 2014 J Exam Soln 8
Unit 5 Optimisation

//269 2014J Exam S

Jnits 6 & 7


M269 Exam 2014J Q Part2

1269 Exam 2014J

Soln Part 2 44/138 (55/149)

Q 9 (contd)

▶ Now consider the following weighted graph:

Q 9 continued on next slide

▶ Go to Exam Soln 9

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 014J Exam Qs

Units 1

Units 3, 4 & 5

Unit 4 Searching

Unit 4 Searching

M269 2014J Exam Q 5

M269 2014J Exam Soln 5

M269 2014J Exam Soln 6

M269 2014J Exam Soln 6

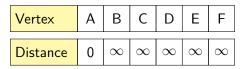
M269 2014J Exam Soln 7

M269 2014J Exam Soln 7

Unit 5 Optimisation M269 2014J Exam Q 9

1269 2014J Exam !

Units 6 & 7


M269 Exam 2014J Q Part2

M269 Exam 2014J

45/138 (56/149)

Q 9 (contd)

▶ Starting from vertex A, the following table represents the distances from each vertex to A after the second line of structured English is executed for the graph given above (using the convention that the character ∞ represents infinity):

- Note that neither the table above nor the subsequent tables represent the priority queue.
- Q 9 continued on next slide

▶ Go to Exam Soln 9

M269

Donna & Phil

M269 Exam Revision Agenda &

M269 Prsntn 2014J Exam Qs

Units 1

Units 3, 4 & 5

Unit 4 Searching
M269 2014J Exam Q 5
M269 2014J Exam Soln 5
M269 2014J Exam Q 6
M269 2014J Exam Soln 6
M269 2014J Exam Q 7
M269 2014J Exam Q 7
M269 2014J Exam Q 8

M269 2014J Exam Q 9

M269 2014J Exam

Jnits 6 & 7

M269 Exam 2014J O Part2

M269 Exam 2014.

46/138 (57/149)

Q 9 (contd)

Now, complete the appropriate boxes in the next table to show the distances after the first and second iterations of the while loop of the algorithm.

Vertex	Α	В	С	D	Е	F	
Distance	0						First iteration
Distance	0						Second iteration

▶ Go to Exam Soln 9

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2014J Exam Qs

Units 1 &

Units 3, 4 & 5

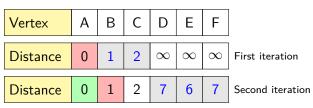
Unit 3 Sorting
Unit 4 Searching
M269 2014J Exam Q 5
M269 2014J Exam Soln 5
M269 2014J Exam Q 6
M269 2014J Exam Soln 6

//269 2014J Exam Soln 7 //269 2014J Exam Q 8 //269 2014J Exam Soln 8

M269 2014J Exam Q 9

M269 2014J Exam Sc

Units 6 & 7


M269 Exam 2014J Q Part2

M269 Exam 2014J

47/138 (58/149)

Soln 9

► The completed table

- The node being processed has a red background
- Nodes with a final label have a green background
- Neighbours of the node being processed have blue text

▶ Go to Exam Q 9

M269

Donna & Phil

M269 Exam
Revision Agenda &

M269 Prsntn 2014J Exam Qs

Offics 1 & 2

Units 3, 4 & 5

Unit 3 Sorting
Unit 4 Searching
M269 2014J Exam Q 5

M269 2014J Exam Q 6 M269 2014J Exam Soln 6

M269 2014J Exam Q 7 M269 2014J Exam Soln 7

M269 2014J Exam Soln Jnit 5 Optimisation

M269 2014 J Exam Q 9

M269 2014J Exam Sol

nits 6 & 7

M269 Exam 2014J

M269 Exam 2014.

48/138 (59/149)

Soln 9 (contd)

▶ The complete iterations

Vertex	Α	В	С	D	Ε	F	
Distance	0	1	2	∞	∞	∞	First iteration
Distance	0	1	2	7	6	7	Second iteration
Distance	0	1	2	4	6	6	Third iteration
Distance	0	1	2	4	6	6	Fourth iteration
Distance	0	1	2	4	6	6	Fifth iteration
Distance	0	1	2	4	6	6	Sixth iteration

▶ Go to Exam Q 9

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> 1269 Prsntn 014J Exam Qs

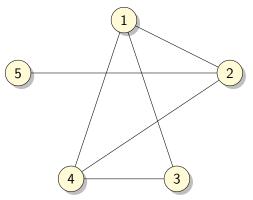
Units 1 & 2

Units 3, 4 & 5

Unit 4 Searching
M269 2014 J Exam Q 5
M269 2014 J Exam Soln 5
M269 2014 J Exam Q 6
M269 2014 J Exam Q 6
M269 2014 J Exam Q 7
M269 2014 J Exam Q 7
M269 2014 J Exam Q 8
M269 2014 J Exam Soln 8
M269 2014 J Exam Soln 8
Unit 5 Optimisation
M269 2014 J Exam Q 9
M269 2014 J Exam Q 9
M269 2014 J Exam Q 9

269 2014J Exam S

nits 6 & 7


M269 Exam 2014J O Part2

1269 Exam 2014J

Soln Part 2 49/138 (60/149)

Q 10

Question 10 Consider the following graph: (4 marks)

Q 10 continued on next slide

▶ Go to Exam Soln 10

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2014J Exam Qs

Units 1 &

Units 3 4 & 5

Jnit 3 Sorting Jnit 4 Searching M269 2014J Exam Q 5 M269 2014J Exam Soln 5 M269 2014J Exam Q 6

M269 2014J Exam Soln 6 M269 2014J Exam Q 7 M269 2014J Exam Soln 7

W269 2014J Exam W269 2014J Exam Unit 5 Optimisation

M269 2014J Exan M269 2014J Exan

M269 2014J Exam Q 10 M269 2014J Exam Soln

Jnits 6 & 7

M269 Exam 2014J

1269 Exam 2014J

Soln Part 2 50/138 (61/149)

Q 10 (contd)

From the options below, select the **two** which show possible orders in which the vertices of the above graph could be visited in a Breadth First Search (BFS) starting at vertex 2:

Δ	Vertex	2	3	4	5	1
Α.	VELLEX		3	7	5	1
B.	Vertex	2	1	4	5	3
C.	Vertex	2	1	3	4	5
D.	Vertex	2	5	1	4	3
E.	Vertex	2	5	4	3	1
F.	Vertex	2	1	3	4	5

M269

Donna & Phil

M269 2014 I Exam Q 10

Soln 10

- ▶ B, D
- ▶ A Breadth First Search (BFS) from 2 must visit its neighbours in some order first

→ Go to Exam Q 1

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

Z IS EXGIII (

its 1 & 2

itc 3 1 % 5

Unit 3 Sorting
Unit 4 Searching
M269 2014J Exam Q 5

M269 2014J Exam Q 5 M269 2014J Exam Soln 5 M269 2014J Exam Q 6

M269 2014J Exam Soln 6 M269 2014J Exam Q 7 M269 2014J Exam Soln 7

69 2014J Exam Soln 7 69 2014J Exam Q 8 69 2014J Exam Soln 8

t 5 Optimisation 59 2014J Exam Q 9

M269 2014J Exam Soln 10

Units 6 & 7

//269 Exam 2014J) Part2

269 Exam 2014J

Soln Part 2 52/138 (63/149)

M269 Specimen Exam

Q11 Topics

- ▶ Unit 6
- Sets
- Propositional Logic
- Truth tables
- Valid arguments
- Infinite sets

M269

Donna & Phil

Propositional Logic

Question 11

(4 marks)

(a) What does it mean to say that a well-formed formula (WFF) is a contradiction? Use the space below for your answer.

- (b) Is the following WFF a contradiction ? $(P \land (Q \lor \neg Q))$
 - Explain how you arrived at your answer in the space below:

▶ Go to Exam Soln 11

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2014J Exam Qs

Jnits 1 & 2

Units 3, 4 & 5

nits 6 & 7

M269 2014J Exam Q 11

Predicate Logic M269 2014J Exam Q 12 M269 2014J Exam Soln 12

> L Queries 69 2014J Exam Q 13 69 2014J Exam Soln 13

ric 69 2014J Exam Q 1

269 2014J Exam Soln 14 mputability 269 2014J Exam Q 15

M269 Exam 2014J Q Part2

M269 Exam 2014 54/138 (65/149)

(b) Truth table

Р	Q	$\neg Q$	$Q \lor \lnot Q$	$(P \wedge (Q \vee \neg Q))$
Т	Т	F	Т	Т
Т	F	Т	Т	Т
F	Т	F	Т	F
F	F	Т	Т	F

The statement is not a contradiction — it is satisfiable
 — it has the same truth value as P

→ Go to Exam Q 11

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2014J Exam Qs

UIIILS I & Z

Units 3, 4 & 5

Units 6 & 7

Propositional Logic
M269 2014 I Exam Q 11

M269 2014J Exam Q 11 M269 2014J Exam Soln 11

Predicate Logic M269 2014J Exam Q 12 M269 2014J Exam Soln 12 SQL Queries M269 2014J Exam Q 13

M269 2014J Exam Soln : Logic M269 2014J Exam Q 14

269 2014J Exam So

269 2014J Exam Q 15 269 2014J Exam Soln

M269 Exam 2014J

M269 Fxam 2014 55/138 (66/149

M269 Specimen Exam

Q12 Topics

- ▶ Unit 6
- Predicate Logic
- ► Translation to/from English
- Interpretations

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

014J Exam Qs

UIIILS 3, 4 & 3

ropositional Logic

M269 2014J Exam Q 11 M269 2014J Exam Soln

Predicate Logic M269 2014J Exam Q 12

69 2014J Exam Soli L Queries 69 2014J Exam Q 1

M269 2014J Ex Logic

1269 2014J Exa 1269 2014J Exa

Computability M269 2014J Ex

M269 Exam 2014J

7260 Exam 2014 56/138 (67/149 Question 12 A particular interpretation of predicate logic allows facts to be expressed about cities and people, in particular, facts about who visited and/or liked which cities. In this interpretation, we will make use of the following two sets: (6 marks) cities = {Adelaide, San Francisco, Mumbai}

▶ Some of the assignments in the interpretation are given below (where the symbol *I* is used to show assignment). The interpretation assigns Lin, Derren and Gabi to the constants *lin*, *derren* and *gabi*.

- $ightharpoonup \mathcal{I}(\mathit{lin}) = \mathsf{Lin} \quad \mathcal{I}(\mathit{derren}) = \mathsf{Derren} \quad \mathcal{I}(\mathit{gabi}) = \mathsf{Gabi}$
- Q 12 continued on next slide

 $persons = \{Lin, Derren, Gabi\}$

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2014J Exam Qs

Jnits 1 &

Units 3, 4 & 5

Units 6 & 7
Propositional Logic
M269 2014J Exam Q 11

M269 2014J Exam Q 11 M269 2014J Exam Soln 11 Predicate Logic M269 2014 I Exam Q 12

M269 2014J Exam Soln 1: SQL Queries

W269 2014J Exam Soln Logic

269 2014J Exam Soln 1 omputability 269 2014J Exam Q 15

M269 Exam 2014J

M269 Exam 2014 J 57/138 (68/149 ► The predicates *has_visited* and likes are assigned to binary relations. The comprehensions of the relations are:

```
\mathcal{I}(has\_visited) = \{(A, B) : \text{the person } A \text{ has visited the city } B\}

\mathcal{I}(likes) = \{(A, B) : \text{the person } A \text{ likes the city } B\}
```

▶ The enumerations of the relations are:

```
 \begin{split} &\mathcal{I}(\textit{has\_visited}) = \{(\text{Lin, Adelaide}), (\text{Derren, San Francisco}), \\ &(\text{Gabi, Mumbai}), (\text{Gabi, San Francisco})\} \\ &\mathcal{I}(\textit{likes}) = \{(\text{Lin, Mumbai}), (\text{Lin, San Francisco}), \\ &(\text{Derren, Mumbai}), (\text{Derren, San Francisco}), (\text{Gabi, Adelaide})\} \end{split}
```

Q 12 continued on next slide

▶ Go to Exam Soln 12

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2014J Exam Qs

Jnits 1 &

Units 3 4 & 5

Jnits 6 &

Propositional Logic M269 2014J Exam Q 11 M269 2014J Exam Soln 11 Predicate Logic

M269 2014J Exam Q 12 M269 2014J Exam Soln 12 SQL Queries M269 2014J Exam Q 13

ogic 269 2014J Exa

> 9 2014J Exam S putability 9 2014J Exam (

M269 Exam 2014J Q Part2

M269 Exam 2014 J

Q 12 (contd)

- You will find parts (a) and (b) of this question on the next page, whilst the interpretation is reproduced on the other side of this page.
- ▶ In both parts, you are given a sentence of predicate logic and asked to provide an English translation of the sentence in the box immediately following it.
- You also need to state whether the sentence is TRUE or FALSE in the interpretation that is provided on this page, and give an explanation of your answer.
- Q 12 continued on next slide

▶ Go to Exam Soln 12

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2014J Exam Qs

Units 1 & 2

Units 3, 4 & 5

Units 6 & 7

Propositional Logic M269 2014J Exam Q 11 M269 2014J Exam Soln 11 Predicate Logic

M269 2014J Exam Q 12 M269 2014J Exam Soln 12 SQL Queries

> 269 2014J Exam gic

1269 2014J Exam Q 14 1269 2014J Exam Soln omputability

Computability
M269 2014J Exam Q 15
M269 2014J Exam Soln 1

M269 Exam 2014J Q Part2

M269 Exam 2014 J

- When your explanation refers to the interpretation, make sure that you use formal notation.
- ► So instead of saying that *Lin likes Mumbai according to the interpretation*, write:

(Lin, Mumbai) $\in \mathcal{I}(likes)$.

Similarly, instead of Lin doesn't like Mumbai you would need to write:

(Lin, Mumbai) $\notin \mathcal{I}(likes)$.

Q 12 continued on next slide

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> 1269 Prsntn 014J Exam Qs

nits 1 & 2

Units 3, 4 & 5

Units 6 & 7
Propositional Logic
M269 2014J Exam Q 11
M269 2014J Exam Soln 11

M269 2014J Exam Q 12 M269 2014J Exam Soln 12 SOL Queries

> 269 2014J Exam Q 13 269 2014J Exam Soln 1 gic

59 2014J Exam Soln 1 nputability 59 2014J Exam Q 15

M269 Exam 2014J Q Part2

Q 12 (contd)

- ► Interpretation to be used for answering Question 12
- ightharpoonup cities = {Adelaide, San Francisco, Mumbai}
- persons = $\{Lin, Derren, Gabi\}$
- $ightharpoonup \mathcal{I}(\mathit{lin}) = \mathsf{Lin} \quad \mathcal{I}(\mathit{derren}) = \mathsf{Derren} \quad \mathcal{I}(\mathit{gabi}) = \mathsf{Gabi}$
- \[\mathcal{I}(\text{has_visited}) = \{(\text{Lin, Adelaide}), (\text{Derren, San Francisco}), \\
 (\text{Gabi, Mumbai}), (\text{Gabi, San Francisco})\}
 \]
- $\mathcal{I}(\textit{likes}) = \{(\text{Lin, Mumbai}), (\text{Lin, San Francisco}), (\text{Derren, Mumbai}), (\text{Derren, San Francisco}), (\text{Gabi, Adelaide})\}$
- Q 12 continued on next slide

► Go to Exam Soln 12

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2014J Exam Qs

nits 1 & 2

Units 3, 4 & 5

11-1-6-0-7

Propositional Logic M269 2014J Exam Q 11 M269 2014J Exam Soln 11 Predicate Logic

M269 2014J Exam Q 12 M269 2014J Exam Soln 1

> 269 2014J Exam Q 13 269 2014J Exam Soln 13 gic

> 69 2014J Exam Soln 14 mputability 69 2014J Exam Q 15 69 2014J Exam Soln 15

M269 Exam 2014J Q Part2

61/138 (72/149

can be translated into English as:

▶ This sentence is ____ (choose from TRUE/FALSE), because:

(b) $\forall X.(likes(gabi, X) \lor has_visited(gabi, X))$ can be translated into English as:

► This sentence is (choose from TRUE/FALSE), because:

M269

Donna & Phil

M269 2014 I Exam Q 12

M269 2014J Exam

Soln 12

- (a) $\exists X. \neg (likes(lin, X) \land likes(derren, X))$
 - ▶ There is a city that is not liked by both Lin and Derren
 - ► *True* since *X* could be *Adelaide*
- **(b)** $\forall X.(likes(gabi, X) \lor has_visited(gabi, X))$
 - ► Gabi either likes or has visited all cities
 - True since Gabi likes Adelaide and has visited the others.

→ Go to Exam Q 12

M269

Donna & Phil

M269 Exam
Revision Agenda &
Aims

M269 Prsntn 2014J Exam Qs

Inits 1 & 2

Units 3, 4 & 5

Jnits 6 & 7

Propositional Logic M269 2014J Exam Q 11 M269 2014J Exam Soln 11

Predicate Logic M269 2014 J Exam Q 12 M269 2014 J Exam Soln 12

> L Queries 69 2014J Exam Q 13 69 2014J Exam Soln 13

ogic |269 2014J Exam Q 14

269 2014J Exam Soln 14 mputability 269 2014J Exam Q 15 269 2014 I Exam Soln 15

M269 Exam 2014J Q Part2

63/138 (74/149

M269 Specimen Exam Q13 Topics

- ▶ Unit 6
- SQL queries

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2014 I Exam Os

nits 1 & 2

Jnits 3, 4 & !

nits 6 & 7

Jnits 6 & 7
Propositional Logic

M269 2014J Exam Q 1 M269 2014J Exam Soln

edicate Logic 269 2014J Exam Q 12

SQL Queries M269 2014J Exam Q

/I269 2014J Exam /I269 2014J Exam

ogic M269 2014J E

269 2014J Exam Q 1

1269 2014J Exam Q 1 1269 2014J Exam Solr omplexity

Q Part2

64/138 (75/149

 Question 13 A database contains the following tables, production_line and product. (6 marks)

production_line		
id	unit	
Line1	Sportscar	
Line2	SUV	
Line3	Bus	
Line4	Tractor	
Line5	Aeroplane	

product	
type	unit_price
SUV	50000
Sportscar	200000
Bus	250000
Tractor	50000
Aeroplane	30000000

Q 13 continued on next slide

▶ Go to Exam Soln 13

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 014J Exam Qs

JIIILS I & Z

Units 3, 4 & 5

Units 6 & 7

Propositional Logic
M269 2014J Exam Q 11
M269 2014J Exam Soln 11
Predicate Logic
M269 2014J Exam Q 12
M269 2014J Exam Soln 12
SOL Queries

M269 2014J Exam Q 13 M269 2014J Exam Soln 13

Logic

M269 2014J Exam Q M269 2014J Exam Sol Computability

M269 2014J Exam Q M269 2014J Exam S

M269 Exam 2014J Q Part2

M269 Fxam 2014 65/138 (76/149 (a) For the following SQL query, give the table returned by the query.

```
SELECT id , unit_price
FROM production_line CROSS JOIN product
WHERE unit = type AND unit_price < 300000;</pre>
```

(b) Write an SQL query which answers the question *Which* products cost exactly 50000? The answer should be the following table:

```
type
SUV
Tractor
```

Co to Evam Soln 12

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2014J Exam Qs

Jnits 1 & 2

Units 3, 4 & 5

Units 6 & 7

Propositional Logic
M269 2014J Exam Q 11
M269 2014J Exam Soln 11
Predicate Logic

M269 2014J Exam Q 12 M269 2014J Exam Soln 12 SQL Queries

M269 2014 J Exam Q 13

gic 260 2014 | Evam (

1269 2014J Exam Q 14 1269 2014J Exam Soln 14

nputability 69 2014J Exam Q 1 69 2014J Exam Sol

M269 Exam 2014J Q Part2

> M269 Exam 2014 66/138 (77/149

M269 2014J Exam

Soln 13

(a) The output table

id	unit_price
Line1	200000
Line2	50000
Line3	250000
Line4	50000

(b) SQL query

```
SELECT type
FROM product
WHERE unit_price = 50000;
```

→ Go to Exam Q 13

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2014J Exam Qs

J.II.CO I CC I

Units 3, 4 & 5

Inits 6 & 7

Propositional Logic M269 2014J Exam Q 11 M269 2014J Exam Soln 1

Predicate Logic M269 2014J Exam Q 12 M269 2014J Exam Soln 12

SQL Queries M269 2014J Exam Q 13 M269 2014 I Exam Soln 13

> gic 269 2014J Exam Q 14

269 2014J Exam Q 14 1269 2014J Exam Soln 14

nputability 59 2014J Exam Q 15 59 2014J Exam Soln 1

M269 Exam 2014J Q Part2

> /269 Exam 2014 | 67/138 (78/149

M269 Specimen Exam

Q14 topics

- ▶ Unit 7
- Proofs
- Natural deduction

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2014J Exam Qs

Jnits 3, 4 & 5

nits 6 & 7

Propositional Logic

И269 2014J Exam So Predicate Logic

M269 2014J Exam M269 2014J Exam

QL Queries 269 2014J Ex

Logic

1269 2014J Exam

M269 2014J Exam Computability

|269 2014J Exam Q |269 2014J Exam S

M269 Exam 2014J Q Part2

68/138 (79/149

Logicians, Logics, Notations

- A plethora of logics, proof systems, and different notations can be puzzling.
- ▶ Martin Davis, Logician When I was a student, even the topologists regarded mathematical logicians as living in outer space. Today the connections between logic and computers are a matter of engineering practice at every level of computer organization
- Various logics, proof systems, were developed well before programming languages and with different motivations,

M269

Donna & Phil

M269 Exam
Revision Agenda &
Aims

M269 Prsntn 2014J Exam Qs

Units 1 &

Units 3, 4 & 5

Units 6 & 7

Propositional Logic M269 2014J Exam Q 11 M269 2014J Exam Soln 11 Predicate Logic

//269 2014J Exam Q 12 //269 2014J Exam Soln I QL Queries

269 2014J Exam Q : 269 2014J Exam Sol

Logic

269 2014J Exam Q 14 269 2014J Exam Soln 1 Imputability

nputability 69 2014J Exam Q 15 69 2014J Exam Soln

M269 Exam 2014J Q Part2

69/138 (80/149

Logic and Programming Languages

- Turing machines, Von Neumann architecture and procedural languages Fortran, C, Java, Perl, Python, JavaScript
- Resolution theorem proving and logic programming Prolog
- Logic and database query languages SQL (Structured Query Language) and QBE (Query-By-Example) are syntactic sugar for first order logic
- ► Lambda calculus and functional programming with Miranda, Haskell, ML, Scala

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 014J Exam Qs

nits 1 &

Units 3, 4 & 5

nits 6 & 7

Propositional Logic M269 2014J Exam Q 11 M269 2014J Exam Soln 11 Predicate Logic M269 2014J Exam Q 12

269 2014J Exam Q 12 269 2014J Exam Soln QL Queries 269 2014J Exam Q 13

59 2014J Exam Q 59 2014J Exam S

Logic M269 2014J Exam Q 14 M269 2014J Exam Soln 14

putability 9 2014J Exam Q 19 9 2014J Exam Soln

M269 Exam 2014J

M269 Exam 2014 70/138 (81/149

- ▶ There are two ways to model what counts as a logically good argument:
 - the semantic view
 - the syntactic view
- ▶ The notion of a valid argument in propositional logic is rooted in the semantic view.
- ▶ It is based on the semantic idea of interpretations: assignments of truth values to the propositional variables in the sentences under discussion.
- ▶ A valid argument is defined as one that preserves truth from the premises to the conclusions
- ▶ The syntactic view focuses on the syntactic form of arguments.
- Arguments which are correct according to this view are called justified arguments.

Logical Arguments

Proof Systems, Soundness, Completeness

- Semantic validity and syntactic justification are different ways of modelling the same intuitive property: whether an argument is logically good.
- ► A proof system is *sound* if any statement we can prove (justify) is also valid (true)
- ► A proof system is *adequate* if any valid (true) statement has a proof (justification)
- ► A proof system that is sound and adequate is said to be complete
- Propositional and predicate logic are complete arguments that are valid are also justifiable and vice versa
- Unit 7 section 2.4 describes another logic where there are valid arguments that are not justifiable (provable)

Donna & Phil

M269 Exam
Revision Agenda &
Aims

1269 Prsntn 014J Exam Qs

Jnits 1 &

Units 3, 4 & 5

nits 6 & 7

Propositional Logic M269 2014J Exam Q 11 M269 2014J Exam Soln 11 Predicate Logic M269 2014J Exam Q 12

> 169 2014J Exam Soln 12 L Queries 169 2014J Exam Q 13 169 2014J Exam Soln 13

Logic M269 2014J Ex

269 2014J Exam Soln 14 mputability 269 2014J Exam Q 15 269 2014J Exam Soln 15

M269 Exam 2014J Q Part2

M269 Exam 2014 | 72/138 (83/149)

Unit 6 defines valid arguments with the notation

 $\frac{P_r}{C}$

 P_1

- ► The argument is *valid* if and only if the value of C is *True* in each interpretation for which the value of each premise P_i is *True* for $1 \le i \le n$
- ▶ In some texts you see the notation $\{P_1, \ldots, P_n\} \models C$
- ► The expression denotes a *semantic sequent* or *semantic* entailment
- ► The |= symbol is called the *double turnstile* and is often read as *entails* or *models*
- ▶ In LaTeX ⊨ and ⊨ are produced from \vDash and \models — see also the turnstile package
- In Unicode |= is called TRUE and is U+22A8, HTML ⊨

M269

Donna & Phil

M269 Exam Revision Agenda &

> 1269 Prsntn 014J Exam Qs

Inits 1 & 2

Units 3, 4 & 5

Jnits 6 & 7

Propositional Logic M269 2014J Exam Q 11 M269 2014J Exam Soln 11 Predicate Logic M269 2014 J Exam Q 12

1269 2014J Exam Soln 12 QL Queries 1269 2014J Exam Q 13 1269 2014J Exam Soln 13

Logic

M269 2014J Exam Q 14 M269 2014J Exam Soln 14 Computability

M269 Exam 2014J Q Part2

M269 Exam 2014 73/138 (84/149

Logical Arguments

Valid arguments — Tautology

- ▶ The argument $\{\} \models C$ is valid if and only if C is True in all interpretations
- That is, if and only if C is a tautology
- ▶ Beware different notations that mean the same thing
 - ▶ Alternate symbol for empty set: $\emptyset \models C$
 - ▶ Null symbol for empty set: $\models C$
 - Original M269 notation with null axiom above the line: $\frac{1}{2}$

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2014J Exam Qs

5111t3 I Gt 2

Units 3, 4 & 5

nits 6 & 7

M269 2014J Exam Q 11 M269 2014J Exam Soln 1:

edicate Logic 269 2014J Exam Q 12 269 2014J Exam Soln 12

PL Queries 269 2014J Exam Q 13 269 2014J Exam Soln 13

Logic M269 2014J Exam Q 14

Computability
M269 2014J Exam Q 15

M269 Exam 2014J Q Part2

74/138 (85/149

- Definition 7.1 An argument {P₁, P₂,..., P_n} ⊢ C is a justified argument if and only if either the argument is an instance of an axiom or it can be derived by means of an inference rule from one or more other justified arguments.
- Axioms

$$\Gamma \cup \{A\} \vdash A \text{ (axiom schema)}$$

- ► This can be read as: any formula **A** can be derived from the assumption (premise) of {**A**} itself
- The ⊢ symbol is called the turnstile and is often read as proves, denoting syntactic entailment
- In LaTeX ⊢ is produced from \vdash
- In Unicode ⊢ is called RIGHT TACK and is U+22A2, HTML ⊢

M269

Donna & Phil

M269 Exam
Revision Agenda &
Aims

M269 Prsntn 2014J Exam Qs

Jnits 1 &

Units 3, 4 & 5

Inits 6 & 7

Propositional Logic M269 2014J Exam Q 11 M269 2014J Exam Soln 11 Predicate Logic M269 2014J Exam Q 12 M269 2014J Exam Soln 12

> QL Queries 269 2014J Exam Q 13 269 2014J Exam Soln 13

Logic M269 2014J Exan

> nputability 69 2014J Exam Q 15 69 2014J Exam Q 15

M269 Exam 2014J Q Part2

M269 Fxam 2014 75/138 (86/149

Justified Arguments

- Section 2.3 of Unit 7 (not the Unit 6, 7 Reader) gives the inference rules for →, ∧, and ∨ — only dealing with positive propositional logic so not making use of negation — see List of logic systems
- Usually (Classical logic) have a functionally complete set of logical connectives — that is, every binary Boolean function can be expressed in terms the functions in the set

M269

Donna & Phil

M269 Exam
Revision Agenda &
Aims

M269 Prsntn 2014J Exam Qs

Units 1 & 2

Units 3, 4 & 5

Jnits 6 & 7

Propositional Logic M269 2014J Exam Q 11 M269 2014J Exam Soln 11 Predicate Logic

Predicate Logic M269 2014J Exam Q 1 M269 2014J Exam Solr

QL Queries 269 2014J Exam Q 13

Logic

69 2014J Exam Q 14

nputability 69 2014J Exam Q

-----, М269 Exam 2014J

M269 Exam 2014.I

Inference Rules — Notation

Inference rule notation:

```
\frac{\textit{Argument}_1 \quad \dots \quad \textit{Argument}_n}{\textit{Argument}} \; \textit{(label)}
```

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2014J Exam Qs

Units 3, 4 & 5

Jnits 6 & 7

Propositional Logic M269 2014J Exam Q 11

M269 2014J Exam Soln I Predicate Logic M269 2014J Exam Q 12

69 2014J Exam Soln L Queries

M269 2014J Exam Logic

M269 2014J Exam Q 14 M269 2014J Exam Soln

M269 2014J Exam Soln 1 Computability M269 2014J Exam Q 15

Complexity 1269 Exam 2014J

M269 Exam 2014 J

Inference Rules — Conjunction

►
$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B}$$
 (\(\triangle \text{-introduction}\)
► $\frac{\Gamma \vdash A \land B}{\Gamma \vdash A}$ (\(\triangle \text{-elimination left}\)
► $\frac{\Gamma \vdash A \land B}{\Gamma \vdash B}$ (\(\triangle \text{-elimination right}\)

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

)14J Exam Qs

nite 2 1 % 5

nits 6 & 7

Propositional Logic

M269 2014J Exam Q 11 M269 2014J Exam Soln Predicate Logic

> 69 2014J Exam Q 12 69 2014J Exam Soln L Queries

M269 2014J Exam Logic

| |269 2014J Exam Q 14 |269 2014J Exam Soln

1269 2014J Exam Q 15 1269 2014J Exam Soln 1! omplexity

//269 Exam 2014J) Part2

M269 Fxam 2014 78/138 (89/149

Inference Rules — Implication

The above should be read as: If there is a proof (justification, inference) for B under the set of premises, Γ, augmented with A, then we have a proof (justification. inference) of A → B, under the unaugmented set of premises, Γ.

The unaugmented set of premises, Γ may have contained \boldsymbol{A} already so we cannot assume

$$(\Gamma \cup \{A\}) - \{A\}$$
 is equal to Γ

$$\qquad \qquad \frac{\Gamma \vdash A \quad \Gamma \vdash A \to B}{\Gamma \vdash B} \ (\rightarrow \text{-elimination})$$

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2014J Exam Qs

011115 1 & 2

Units 3, 4 & 5

Jnits 6 & 7

Propositional Logic M269 2014J Exam Q 11 M269 2014J Exam Soln 11 Predicate Logic M269 2014J Exam Q 12

> QL Queries 1269 2014J Exam Q 13 1269 2014J Exam Soln 1:

Logic M269 2014J Exam Q 14 M269 2014J Exam Soln 14 Computability

iomplexity

M269 Exam 2014 I

Inference Rules — Disjunction

- $\qquad \frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} \ (\lor -introduction left)$
- Disjunction elimination

$$\frac{\Gamma \vdash A \lor B \quad \Gamma \cup \{A\} \vdash C \quad \Gamma \cup \{B\} \vdash C}{\Gamma \vdash C} \text{ (\lor-elimination)}$$

▶ The above should be read: if a set of premises Γ justifies the conclusion $A \lor B$ and Γ augmented with each of A or B separately justifies C, then Γ justifies C

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2014J Exam Qs

Jilits 3, 4 & 3

Propositional Logic
M269 2014J Exam Q 11
M269 2014J Exam Soln 11

M269 2014J Exam Q 12 M269 2014J Exam Soln 12 SQL Queries

L Queries 169 2014J Exam Q 13 169 2014J Exam Soln 13

Logic M269 2014J Exam Q 14 M269 2014J Exam Soln 14

omputability |269 2014J Exam Q 15 |269 2014J Exam Soln 15

M269 Exam 2014J Q Part2

80/138 (91/149)

- ► The syntax of proofs is recursive:
- ▶ A proof is either an axiom, or the result of applying a rule of inference to one, two or three proofs.
- ▶ We can therefore represent a proof by a tree diagram in which each node have one, two or three children
- ▶ For example, the proof of $\{P \land (P \rightarrow Q)\} \vdash Q$ in Question 4 (in the Logic tutorial notes) can be represented by the following diagram:

$$\frac{\{P \land (P \rightarrow Q)\} \vdash P \land (P \rightarrow Q)}{\{P \land (P \rightarrow Q)\} \vdash P} \xrightarrow{\text{(\land-E left)}} \frac{\{P \land (P \rightarrow Q)\} \vdash P \land (P \rightarrow Q)}{\{P \land (P \rightarrow Q)\} \vdash P \rightarrow Q} \xrightarrow{\text{(\land-E left)}} \xrightarrow{\text{M269 2014 Ji}} \xrightarrow{$$

M269 2014J Exam Q 13

Self-Assessment activity 7.4

▶ Let
$$\Gamma = \{P \rightarrow R, Q \rightarrow R, P \lor Q\}$$

$$\qquad \qquad \frac{\Gamma \vdash P \lor Q \quad \Gamma \cup \{P\} \vdash R \quad \Gamma \cup \{Q\} \vdash R}{\Gamma \vdash R} \text{ (\lor-elimination)}$$

$$\qquad \qquad \frac{\Gamma \cup \{P\} \vdash P \quad \Gamma \cup \{P\} \vdash P \rightarrow R}{\Gamma \cup \{P\} \vdash R} \ (\rightarrow \text{-elimination})$$

$$\qquad \qquad \frac{\Gamma \cup \{Q\} \vdash Q \qquad \Gamma \cup \{Q\} \vdash Q \rightarrow R}{\Gamma \cup \{Q\} \vdash R} \ (\rightarrow \text{-elimination})$$

► Complete tree layout

$$\begin{array}{c|cccc}
\Gamma \cup \{P\} & \Gamma \cup \{P\} & \Gamma \cup \{Q\} & \Gamma \cup \{Q\} \\
\hline
 & \vdash P & \vdash P \to R \\
\hline
 & \Gamma \cup \{P\} \vdash R & \vdash P \to R \\
\hline
 & \Gamma \cup \{Q\} \vdash R \\
\hline
 & \Gamma \cup \{Q\} \vdash R \\
\hline
 & (\lor -E)
\end{array}$$

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 1014J Exam Qs

nits 1 & 2

Jnits 3, 4 & 5

Jnits 6 & 7

Propositional Logic M269 2014J Exam Q 11 M269 2014J Exam Soln 1

Predicate Logic M269 2014J Exam Q 12 M269 2014J Exam Soln I

M269 2014J Exam Q 13 M269 2014J Exam Soln 13 Logic

gic 269 2014J Exam Q 14 269 2014J Exam Soln 14

putability 9 2014J Exam Q 15 9 2014J Exam Soln 15

M269 Exam 2014J Q Part2

82/138 (93/149

Self-assessment activity 7.4 — Linear Layout

- $\{P \rightarrow R, Q \rightarrow R, P \lor Q\} \vdash P \lor Q$ $\{P \rightarrow R, Q \rightarrow R, P \lor Q\} \cup \{P\} \vdash P$
- $\{P \rightarrow R, Q \rightarrow R, P \lor Q\} \cup \{P\} \vdash P \rightarrow R$
- $\{P \rightarrow R, Q \rightarrow R, P \lor Q\} \cup \{Q\} \vdash Q$
- 5. $\{P \rightarrow R, Q \rightarrow R, P \lor Q\} \cup \{Q\} \vdash Q \rightarrow R$ 6. $\{P \rightarrow R, Q \rightarrow R, P \lor Q\} \cup \{P\} \vdash R$
- 7. $\{P \rightarrow R, Q \rightarrow R, P \lor Q\} \cup \{Q\} \vdash R$
- 8. $\{P \rightarrow R, Q \rightarrow R, P \lor Q\} \vdash R$

M269

Donna & Phil

[Axiom]

[Axiom]

[Axiom]

[Axiom]

[Axiom]

 $[2, 3, \rightarrow -E]$

 $[4, 5, \to -E]$

 $[1, 6, 7, \vee -E]$

Logic

Question 14 Consider the following axiom schema and rules: (4 marks)

Axiom schema	$\{oldsymbol{A}\} \vdash oldsymbol{A}$
Rules	$\frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \ (\land \text{-elimination left})$
	$\frac{\Gamma \vdash A \land B}{\Gamma \vdash B} \ (\land \text{-elimination right})$
	$\frac{\Gamma \vdash A \Gamma \vdash B}{\Gamma \vdash A \land B} \ (\land \text{-introduction})$
	$rac{m{\Gamma} \cup \{m{A}\} dash m{B}}{m{\Gamma} dash m{A} o m{B}} \ (o ext{-introduction})$
	$\frac{\Gamma \vdash A \Gamma \vdash A \to B}{\Gamma \vdash B} \ (\rightarrow \text{-elimination})$

Q 14 continued on next slide

→ Go to Exam Soln 14

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> 1269 Prsntn 014J Exam Qs

Jnits 1 &

Units 3. 4 & 5

nits 6 & 7

Propositional Logic M269 2014J Exam Q 11 M269 2014J Exam Soln 11 Predicate Logic M269 2014J Exam Q 12

269 2014J Exam Soln 12 QL Queries 269 2014J Exam Q 13 269 2014J Exam Soln 13

M269 2014J Exam Q 14

M269 2014J Exam Soln 14 Computability

2014J Exam Q 1 269 2014J Exam Solomplexity

M269 Exam 2014J Q Part2

> M269 Fxam 2014 84/138 (95/149

M269 2014J Exam

Q 14

► Complete the following proof by filling in the two boxes. You can use any of the above as appropriate.

1. $\{(V \wedge W)\} \vdash (V \wedge W)$

2. ?? ??

 $3. \quad \varnothing \vdash (V \land W) \to W$

[Axiom schema]

[1 \(\triangle\)-elimination right]

?? ??

→ Go to Exam Soln 1

M269

Donna & Phil

M269 Exam
Revision Agenda &
Aims

M269 Prsntn 2014J Exam Qs

nits 1 &

Jnits 3, 4 & 5

Jnits 6 &

M269 2014J Exam Q 11 M269 2014J Exam Soln 11 Predicate Logic M269 2014J Exam Q 12 M269 2014J Exam Soln 12

269 2014J Exam Q 13 269 2014J Exam Soln 13 gic

M269 2014J Exam Q 14

1269 2014J Exam Soln 14 Computability

omputability 1269 2014J Exam Q 15 1269 2014J Exam Soln 1!

M269 Exam 2014J Q Part2

85/138 (96/149

M269 2014J Exam

Soln 14

- Completed proof
 - 1. $\{(V \land W)\} \vdash (V \land W)$ [Axiom schema]
 - 2. $[(V \land W)] \vdash W$ [1 \land -elimination right] 3. $\varnothing \vdash (V \land W) \rightarrow W$ [2 \rightarrow -introduction]
- Note Ø is a symbol for the empty set (in LaTeX \varnothing)
- ➤ You could also use {} (or even leave a blank, but that would not be good practice)

▶ Go to Exam Q 14

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> 1269 Prsntn 014J Exam Qs

11113 1 02 2

Jnits 3, 4 & 5

nits 6 & 7

Propositional Logic M269 2014J Exam Q 11 M269 2014J Exam Soln 11 Predicate Logic

269 2014J Exam Q 12 269 2014J Exam Soln 12 QL Queries 269 2014J Exam Q 13

2014 J Exam 3011 1.

M269 2014J Exam Q 14 M269 2014J Exam Soln 14

Computability M269 2014J Exam Q 15

M269 Exam 2014J Q Part2

86/138 (97/149

M269 Specimen Exam

Q15 Topics

- ▶ Unit 7
- Computability and ideas of computation
- Complexity
- ► P and NP
- NP-complete

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

2014J Exam Qs

Units 5, 4 & 5

ropositional Logic 269 2014J Exam Q 11

И269 2014J Exam Soln Predicate Logic И269 2014J Exam Q 12

M269 2014J Exan Logic M269 2014J Exan

269 2014J Exam Q 14 269 2014J Exam Soln

Computability M269 2014J Exam Q 15 M269 2014J Exam Soln 19

M269 Exam 2014J Q Part2

M269 87/138 (98/149

Ideas of Computation

- The idea of an algorithm and what is effectively computable
- Church-Turing thesis Every function that would naturally be regarded as computable can be computed by a deterministic Turing Machine. (Unit 7 Section 4)
- ▶ See Phil Wadler on computability theory performed as part of the Bright Club at The Strand in Edinburgh, Tuesday 28 April 2015

M269

Donna & Phil

M269 Exam
Revision Agenda &
Aims

M269 Prsntn 2014J Exam Qs

Units 1 & 2

Units 3, 4 & 5

Units 6 & 7

Propositional Logic M269 2014J Exam Q 11 M269 2014J Exam Soln 11 Predicate Logic

redicate Logic 1269 2014J Exam Q 12 1269 2014J Exam Soln 12

Queries 9 2014J Exam Q 1 9 2014J Exam Soln

59 2014J Exam Q 14

M269 2014J Exam So Computability

M269 2014J Exam Q 15 M269 2014J Exam Soln 15

M269 Exam 2014J Q Part2

88/138 (99/149

Reducing one problem to another

- ▶ To reduce problem P_1 to P_2 , invent a construction that converts instances of P_1 to P_2 that have the same answer. That is:
 - any string in the language P₁ is converted to some string in the language P₂
 - ▶ any string over the alphabet of P_1 that is not in the language of P_1 is converted to a string that is not in the language P_2
- With this construction we can solve P₁
 - Given an instance of P₁, that is, given a string w that may be in the language P₁, apply the construction algorithm to produce a string x
 - ► Test whether x is in P₂ and give the same answer for w in P₁

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2014J Exam Qs

0111123 1 06

Units 3, 4 & 5

Jnits 6 & 7

Propositional Logic
M269 2014J Exam Q 11
M269 2014J Exam Soln 11
Predicate Logic
M269 2014J Exam Q 12
M269 2014J Exam Q 12
SOL Queries

|269 2014J Exam Soln 1: |269 2014J Exam O 14

M269 2014J Exam Q 14 M269 2014J Exam Soln 1

Computability M269 2014J Exam Q 15 M269 2014J Exam Soln 15

M269 Exam 2014J Q Part2

89/138 (100/149)

Direction of Reduction

- The direction of reduction is important
- ▶ If we can reduce P_1 to P_2 then (in some sense) P_2 is at least as hard as P_1 (since a solution to P_2 will give us a solution to P_1)
- ▶ So, if P_2 is decidable then P_1 is decidable
- ➤ To show a problem is undecidable we have to reduce from an known undecidable problem to it
- $\forall x (\mathsf{dp}_{P_1}(x) = \mathsf{dp}_{P_2}(\mathsf{reduce}(x)))$
- \triangleright Since, if P_1 is undecidable then P_2 is undecidable

M269

Donna & Phil

M269 Exam
Revision Agenda &
Aims

M269 Prsntn 2014J Exam Qs

Jnits 1 & 2

Units 3, 4 & 5

Jnits 6 & 7

Propositional Logic M269 2014J Exam Q 11 M269 2014J Exam Soln 13 Predicate Logic M269 2014J Exam Q 12

M269 2014J Exam Soln SQL Queries M269 2014J Exam Q 13

gic 269 2014J Exam Q 14

M269 2014J Exam Soln Computability

M269 2014J Exam Q 15 M269 2014J Exam Soln 15

M269 Exam 2014J Q Part2

90/138 (101/149

Models of Computation

- In automata theory, a problem is the question of deciding whether a given string is a member of some particular language
- ▶ If Σ is an alphabet, and L is a language over Σ , that is $L \subseteq \Sigma^*$, where Σ^* is the set of all strings over the alphabet Σ then we have a more formal definition of decision problem
- ▶ Given a string $w \in \Sigma^*$, decide whether $w \in L$
- ► Example: Testing for a prime number can be expressed as the language L_p consisting of all binary strings whose value as a binary number is a prime number (only divisible by 1 or itself)

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2014J Exam Qs

Units 1 &

Units 3, 4 & 5

Units 6 & 7

Propositional Logic M269 2014J Exam Q 11 M269 2014J Exam Soln 11 Predicate Logic M269 2014J Exam Q 12

M269 2014J Exam Q 12 M269 2014J Exam Soln SQL Queries

269 2014 J Exam Soln 1 gic

269 2014J Exam Q 1 269 2014J Exam Sol

Computability M269 2014J Exam Q 15

M269 Exam 2014J

91/138 (102/149

- Church-Turing thesis Every function that would naturally be regarded as computable can be computed by a deterministic Turing Machine.
- physical Church-Turing thesis Any finite physical system can be simulated (to any degree of approximation) by a Universal Turing Machine.
- strong Church-Turing thesis Any finite physical system can be simulated (to any degree of approximation) with polynomial slowdown by a Universal Turing Machine.
- ➤ Shor's algorithm (1994) quantum algorithm for factoring integers an NP problem that is not known to be P also not known to be NP-complete and we have no proof that it is not in P

Donna & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2014J Exam Qs

Units 1 &

Units 3, 4 & 5

Units 6 & 7

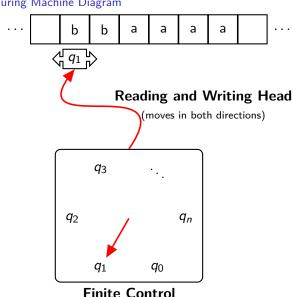
M269 2014J Exam Q 11 M269 2014J Exam Soln 11 Predicate Logic M269 2014J Exam Q 12 M269 2014J Exam Soln 12 SQL Queries M269 2014J Exam Q 13

> gic 269 2014J Exam Q 14 269 2014 I Exam Soln 14

M269 2014J Exam So Computability

M269 2014J Exam Q 15 M269 2014J Exam Soln 1

M269 Exam 2014J Q Part2


92/138 (103/149)

93/138 (104/149)

- ▶ Finite control which can be in any of a finite number of states
- ▶ **Tape** divided into cells, each of which can hold one of a finite number of symbols
- ▶ Initially, the **input**, which is a finite-length string of symbols in the *input alphabet*, is placed on the tape
- All other tape cells (extending infinitely left and right) hold a special symbol called blank
- A tape head which initially is over the leftmost input symbol
- A move of the Turing Machine depends on the state and the tape symbol scanned
- ▶ A move can change state, write a symbol in the current cell, move left, right or stay

Turing Machine Diagram

Turing Machine Diagram

Donna & Phil

M269

Computability

94/138 (105/149)

Turing Machine notation

- Q finite set of states of the finite control
- Σ finite set of input symbols (M269 S)
- Γ complete set of *tape symbols* Σ ⊂ Γ
- ▶ δ Transition function (M269 instructions, I) $\delta :: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, S\}$ $\delta(q, X) \mapsto (p, Y, D)$
- $\delta(q,X)$ takes a state, q and a tape symbol, X and returns (p,Y,D) where p is a state, Y is a tape symbol to overwrite the current cell, D is a direction, Left, Right or Stay
- $ightharpoonup q_0$ start state $q_0 \in Q$
- ▶ B blank symbol $B \in \Gamma$ and $B \notin \Sigma$
- ▶ F set of final or accepting states $F \subseteq Q$

M269

Donna & Phil

M269 Exam
Revision Agenda &
Aims

M269 Prsntn 2014J Exam Qs

JIIILS I & Z

Units 3, 4 & 5

Unite 6 % 7

Propositional Logic M269 2014J Exam Q 11 M269 2014J Exam Soln 11 Predicate Logic

1209 2014 J Exam Q 12 1269 2014 J Exam Soln 12 QL Queries 1269 2014 J Exam Q 13 1269 2014 J Exam Soln 13

1269 2014J Exam Q 14 1269 2014J Exam Soln 14

Computability

M269 2014J Exam Q 15 M269 2014J Exam Soln 19 Complexity

M269 Exam 2014J Q Part2

95/138 (106/149

Decidability

- ▶ Decidable there is a TM that will halt with yes/no for a decision problem that is, given a string w over the alphabet of P the TM with halt and return yes.no the string is in the language P (same as recursive in Recursion theory old use of the word)
- ▶ Semi-decidable there is a TM will halt with yes if some string is in P but may loop forever on some inputs (same as recursively enumerable) — Halting Problem
- ► **Highly-undecidable** no outcome for any input *Totality, Equivalence Problems*

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2014J Exam Qs

Units 1

Units 3, 4 & 5

Units 6 & 7

Propositional Logic M269 2014J Exam Q 11 M269 2014J Exam Soln 11 Predicate Logic M269 2014J Exam Q 12 M269 2014J Exam Soln 12

> 269 2014J Exam Q 13 269 2014J Exam Soln 1 gic

> 269 2014J Exam Q 14

M269 2014J Exam Soln 1 Computability

69 2014J Exam Q 15 69 2014J Exam Soln 15

M269 Exam 2014J Q Part2

96/138 (107/149)

Undecidable Problems

- ► Halting problem the problem of deciding, given a program and an input, whether the program will eventually halt with that input, or will run forever term first used by Martin Davis 1952
- ▶ Entscheidungsproblem the problem of deciding whether a given statement is provable from the axioms using the rules of logic shown to be undecidable by Turing (1936) by reduction from the *Halting problem* to it
- ➤ Type inference and type checking in the second-order lambda calculus (important for functional programmers, Haskell, GHC implementation)
- ► Undecidable problem see link to list

Donna & Phil

Revision Agenda & Aims

M269 Prsntn 2014J Exam Qs

Units 1 &

Units 3, 4 & 5

Units 6 & 7

Propositional Logic M269 2014J Exam Q 11 M269 2014J Exam Soln 11 Predicate Logic M269 2014J Exam Q 12 M269 2014J Exam Soln 12

> 69 2014J Exam Q 13 69 2014J Exam Soln 1: gic

> 69 2014J Exam Q 14 69 2014J Exam Soln 14

Computability M269 2014J Exam Q 15 M269 2014 I Exam Soln

M269 Exam 2014J O Part2

97/138 (108/149)

Computability

Why undecidable problems must exist

- A problem is really membership of a string in some language
- ► The number of different languages over any alphabet of more than one symbol is uncountable
- Programs are finite strings over a finite alphabet (ASCII or Unicode) and hence countable.
- ► There must be an infinity (big) of problems more than programs.

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2014J Exam Qs

Jnits 1 & 2

Units 3, 4 & 5

Jnits 6 & 7

Propositional Logic M269 2014J Exam Q 11 M269 2014J Exam Soln 11

Predicate Logic M269 2014J Exam Q 12 M269 2014J Exam Soln 12

Queries 9 2014J Exam Q 13 9 2014J Exam Soln

c 9 2014J Exam Q 14 9 2014J Exam Soln 14

Computability M269 2014J Exam Q 15

M269 Exam 2014J

98/138 (109/149

- ▶ In the 1930s the idea was made more formal: which functions are computable?
- ▶ A function a set of pairs $f = \{(x, f(x)) : x \in X \land f(x) \in Y\}$ with the function property
- ▶ Function property: $(a,b) \in f \land (a,c) \in f \Rightarrow b == c$
- Function property: Same input implies same output
- Note that maths notation is deeply inconsistent here see Function and History of the function concept
- What do we mean by computing a function an algorithm?

Donna & Phil

M269 Exam Revision Agenda & Aims

> 1269 Prsntn 014J Exam Qs

Inits 1 &

Units 3, 4 & 5

Jnits 6 & 7

Propositional Logic M269 2014J Exam Q 11 M269 2014J Exam Soln 11 Predicate Logic M269 2014J Exam Q 12

> 269 2014J Exam Q 13 269 2014J Exam Soln 13

M269 2014J Exam Q 14 M269 2014J Exam Soln 1

Computability

1269 2014J Exam Q 15 1269 2014J Exam Soln 15 omplexity

M269 Exam 2014J Q Part2

99/138 (110/149

Computability

Computability and Terminology (2)

- ▶ In the 1930s three definitions:
- λ-Calculus, simple semantics for computation Alonzo Church
- ► General recursive functions Kurt Gödel
- ► Universal (Turing) machine Alan Turing
- ► Terminology:
 - ► Recursive, recursively enumerable Church, Kleene
 - Computable, computably enumerable Gödel, Turing
 - Decidable, semi-decidable, highly undecidable
 - ▶ In the 1930s, computers were human
 - Unfortunate choice of terminology
- ► Turing and Church showed that the above three were equivalent
- Church-Turing thesis function is intuitively computable if and only if Turing machine computable

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> 1269 Prsntn 014J Exam Qs

IIIS I & Z

JIIILS 3, 4 & 5

Propositional Logic
M269 2014J Exam Q 11
M269 2014J Exam Soln 11

Predicate Logic
M269 2014J Exam Q 12
M269 2014J Exam Soln 12
SQL Queries
M269 2014J Exam Q 13

69 2014J Exam Soln 13 gic 69 2014J Exam Q 14 69 2014J Exam Soln 14

Computability M269 2014J Exam Q 15 M269 2014J Exam Soln 15

M269 Exam 2014J Q Part2

100/138 (111/149)

Q 15

(a) Complete the following sentence in the box below:

The statement *If a computational problem is in NP, then it must be intractable* may be false because

Q 15 continued on next slide

► Go to Exam Soln 15

M269

Donna & Phil

M269 Exam
Revision Agenda &
Aims

M269 Prsntn 2014J Exam Qs

01110 1 00 1

Units 3, 4 & 5

Propositional Logic
M269 2014J Exam Q 11

M269 2014J Exam Soln 1: Predicate Logic M269 2014J Exam Q 12

|269 2014J Exam Soln 1: |QL Queries |269 2014J Exam Q 13 |269 2014J Exam Soln 1:

gic 269 2014J Exam Q 14 269 2014J Exam Soln 14

Computability M269 2014J Exam Q 15

Complexity

M269 Exam 2014J Q Part2

101/138 (112/149)

Q 15 (contd)

(b) Consider the following Turing Machine:

	\$	EMPTY
0		WRITE \$
		MOVE RIGHT
		NEXT STATE 1
1	WRITE blank	WRITE \$
	MOVE LEFT	MOVE RIGHT
	NEXT STATE O	NEXT STATE O

Q 15 continued on next slide

▶ Go to Exam Soln 15

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2014J Exam Qs

JIIILS I & Z

Units 3, 4 & 5

....

Propositional Logic M269 2014J Exam Q 11 M269 2014J Exam Soln 11

Predicate Logic M269 2014J Exam Q 12 M269 2014J Exam Soln 12

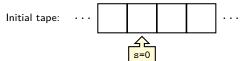
> L Queries 169 2014J Exam Q 13 169 2014J Exam Soln 13

> 69 2014J Exam Q 14 69 2014J Exam Soln 14

M269 2014J Exam Q 15

M269 2014J Exam Soln 15 Complexity

M269 Exam 2014J Q Part2


102/138 (113/149)

Q 15 (contd)

- Assume that the starting state is 0 and that the input tape consists of empty squares.
- One square is marked as the current square with the tape head, shown here as

where n is the current state

▶ So, initially the tape looks as follows:

- Note it the original exam the tape cells and head are denoted by ASCII symbols
- Q 15 continued on next slide

▶ Go to Exam Soln 15

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2014J Exam Qs

Units 1 &

Units 3, 4 & 5

Propositional Logic
M269 2014J Exam Q 11
M269 2014J Exam Soln 11
Predicate Logic

M269 2014J Exam Q 12 M269 2014J Exam Soln 12 SQL Queries M269 2014J Exam Q 13 M269 2014J Exam Soln 13

Logic M269 2014J Exam Q 14 M269 2014J Exam Soln 1

M269 2014 J Exam Q 15

M269 Exam 2014J

103/138 (114/149)

Q 15 (contd)

- Using the same notation, write down what the tape looks like after each of the next two steps of the computation.
- Use the boxes below for this.
- After the first step

First step: · · ·				
-------------------	--	--	--	--

After the second step

Second step: · · ·					٠.
--------------------	--	--	--	--	----

Go to Exam Soln 15

M269

Donna & Phil

M269 Exam
Revision Agenda &
Aims

M269 Prsntn 2014J Exam Qs

Omes I &

Units 3, 4 & 5

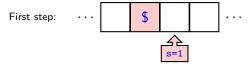
Units 6 & 7

Propositional Logic M269 2014J Exam Q 11 M269 2014J Exam Soln 11 Predicate Logic

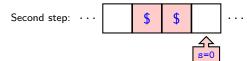
M269 2014J Exam Q 12 M269 2014J Exam Soln 1 SQL Queries M269 2014J Exam Q 13

> gic 69 2014J Exam Q 1

Computability M269 2014J Exam Q 15


M269 2014J Exam Soln 15

M269 Exam 2014J Q Part2


104/138 (115/149)

Soln 15

- (a) P is a subset of NP but we do not know if it is a proper subset — so the problem may be in P
- **(b)** After the first step

After the second step

▶ Go to Exam Q 15

M269

Donna & Phil

M269 Exam
Revision Agenda &
Aims

M269 Prsntn 2014J Exam Qs

JIIILS I & Z

Units 3, 4 & 5

11-1-6-0-7

Propositional Logic M269 2014J Exam Q 11 M269 2014J Exam Soln 11

Predicate Logic
M269 2014J Exam Q 12

GQL Queries M269 2014J Exam Q 13 M269 2014J Exam Soln 13

ogic 1269 2014J Exam Q 14 1269 2014 I Exam Soln 14

Computability M269 2014J Exam Q 15 M269 2014J Exam Soln 15

M269 Exam 2014J Q Part2

105/138 (116/149)

- P, the set of all decision problems that can be solved in polynomial time on a deterministic Turing machine
- NP, the set of all decision problems whose solutions can be verified (certificate) in polynomial time
- Equivalently, NP, the set of all decision problems that can be solved in polynomial time on a non-deterministic Turing machine
- ▶ A decision problem, dp is NP-complete if
 - 1. dp is in NP and
 - Every problem in NP is reducible to dp in polynomial time
- NP-hard a problem satisfying the second condition, whether or not it satisfies the first condition. Class of problems which are at least as hard as the hardest problems in NP. NP-hard problems do not have to be in NP and may not be decision problems

M269 Exam Revision Agenda &

> 1269 Prsntn 014J Exam Qs

Inits 1 & 2

Units 3, 4 & 5

Propositional Logic
M269 2014J Exam Q 11
M269 2014J Exam Soln 11
Predicate Logic
M269 2014J Exam Q 12

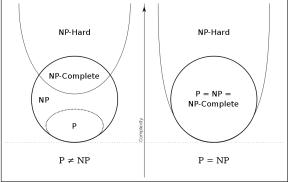
269 2014J Exam Soln 12 PL Queries 269 2014J Exam Q 13 269 2014J Exam Soln 13

ic 59 2014J Exam Q 14 59 2014J Exam Soln 1

Computability M269 2014J Exam Q 15 M269 2014J Exam Soln 15 Complexity

NP-Completeness and Boolean Satisfiability

1269 Exam 2014J


106/138 (117/149)

Complexity

P and NP — Diagram

Euler diagram for P, NP, NP-complete and NP-hard set of

problems

Source: Wikipedia NP-complete entry

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2014J Exam Qs

0......

Units 3, 4 & 5

Propositional Logic M269 2014J Exam Q 11 M269 2014J Exam Soln 11

M269 2014J Exam Q 12 M269 2014J Exam Soln 12

> И269 2014J Exam Q И269 2014J Exam So

Logic M269 2014J Exam Q 1

M269 2014J Exam S

mputability 269 2014J Ex

M269 2014J Exam Sol

Complexity

ND Completeness and

NP-Completeness and Boolean Satisfiability

VI269 Exam 2014J

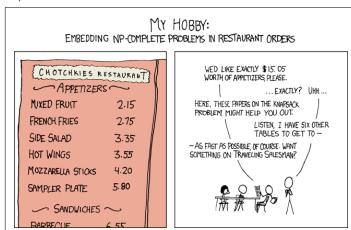
107/138 (118/149)

Complexity

NP-complete problems

- ► Boolean satisfiability (SAT) Cook-Levin theorem
- Conjunctive Normal Form 3SAT
- Hamiltonian path problem
- ► Travelling salesman problem
- ▶ NP-complete see list of problems

M269


Donna & Phil

Complexity

108/138 (119/149)

Complexity

Knapsack Problem

Source & Explanation: XKCD 287

M269

Donna & Phil

M269 Exam
Revision Agenda &

M269 Prsntn 2014J Exam Qs

Omes I &

Units 3, 4 & 5

Units 6 & 7

Propositional Logic M269 2014J Exam Q 11 M269 2014J Exam Soln 1 Predicate Logic

M269 2014J Exam

M269 2014J Exam Q : M269 2014J Exam Sol

M269 2014J Exam Q

M269 2014J Exam Computability

M269 2014J Exam Q M269 2014J Exam S

Complexity

NP-Completeness a

M269 Exam 2014.

109/138 (120/149)

Points on Notes

- ► The *Boolean satisfiability problem (SAT)* was the first decision problem shown to be *NP-Complete*
- ▶ This section gives a sketch of an explanation
- ► **Health Warning** different texts have different notations and there will be some inconsistency in these notes
- ▶ **Health warning** these notes use some formal notation to make the ideas more precise computation requires precise notation and is about manipulating strings according to precise rules.

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2014J Exam Qs

Units 1

Units 3, 4 & 5

Jnits 6 & 7

Propositional Logic M269 2014J Exam Q 11 M269 2014J Exam Soln 11 Predicate Logic

Predicate Logic M269 2014J Exam Q 12 M269 2014J Exam Soln 1

L Queries 69 2014J Exam Q 13 69 2014J Exam Soln 13

M269 2014J Exam Q 1 M269 2014J Exam Sol

Computability
M269 2014J Exam Q 15

NP-Completeness and Boolean Satisfiability

M269 Exam 2014J

110/138 (121/149)

Alphabets, Strings and Languages

- ► Notation:
- $ightharpoonup \Sigma$ is a set of symbols the alphabet
- $ightharpoonup \Sigma^k$ is the set of all string of length k, which each symbol from Σ
- Example: if $\Sigma = \{0, 1\}$

$$\Sigma^1 = \{0,1\}$$

- ullet $\Sigma^0 = \{\epsilon\}$ where ϵ is the empty string
- $ightharpoonup \Sigma^*$ is the set of all possible strings over Σ

- ▶ A Language, L, over Σ is a subset of Σ^*
- $L \subseteq \Sigma^*$

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

014J Exam Qs

.

ropositional Logic

M269 2014J Exam Q 11 M269 2014J Exam Soln 1 Predicate Logic

269 2014J Exam Q 12 269 2014J Exam Soln 1

QL Queries 1269 2014J Exam Q 13 1269 2014J Exam Soln :

gic 269 2014J Exam Q 14

269 2014J Exam Soln 1 omputability

269 2014J Exam Q 15 269 2014J Exam Soln 1

NP-Completeness and Boolean Satisfiability

0 D = 12

111/138 (122/149)

Language Accepted by a Turing Machine

- ▶ Language accepted by Turing Machine, M denoted by L(M)
- ▶ L(M) is the set of strings $w \in \Sigma^*$ accepted by M
- ▶ For Final States $F = \{Y, N\}$, a string $w \in \Sigma^*$ is accepted by $M \Leftrightarrow$ (if and only if) M starting in q_0 with w on the tape halts in state Y
- Calculating a function (function problem) can be turned into a decision problem by asking whether f(x) = y

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> 1269 Prsntn 014J Exam Qs

Inits 1 &

Units 3, 4 & 5

Units 6 & 7

Propositional Logic M269 2014J Exam Q 11 M269 2014J Exam Soln 11

edicate Logic 269 2014J Exam Q 12 269 2014J Exam Soln 12

69 2014J Exam Soln 12 L Queries 69 2014J Exam Q 13 69 2014J Exam Soln 13

io 59 2014J Exam Q 14 59 2014J Exam Soln 14

69 2014J Exam Soln 14 mputability 69 2014J Exam Q 15

NP-Completeness and Boolean Satisfiability

M269 Exam 2014J

112/138 (123/149)

The NP-Complete Class

- ▶ If we do not know if $P \neq NP$, what can we say ?
- ▶ A language *L* is *NP-Complete* if:
 - ▶ $L \in NP$ and
 - ▶ for all other $L' \in NP$ there is a polynomial time transformation (Karp reducible, reduction) from L' to L
- ▶ Problem P_1 polynomially reduces (Karp reduces, transforms) to P_2 , written $P_1 \propto P_2$ or $P_1 \leq_p P_2$, iff $\exists f : \mathsf{dp}_{P_1} \to \mathsf{dp}_{P_2}$ such that
 - $\forall I \in dp_{P_1}[I \in Y_{P_1} \Leftrightarrow f(I) \in Y_{P_2}]$
 - ▶ f can be computed in polynomial time

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2014J Exam Qs

Jnits 1 &

Units 3, 4 & 5

nits 6 & 7

M269 2014J Exam Q 11 M269 2014J Exam Soln 1 Predicate Logic

269 2014J Exam Q 12 269 2014J Exam Soln 12

QL Queries |269 2014J Exam Q 1 |269 2014J Exam Sol

gic 269 2014J Exam Q 14 269 2014J Exam Soln 1

nputability 69 2014J Exam Q 15 69 2014J Exam Soln 19

NP-Completeness and Boolean Satisfiability

M269 Exam 2014J

113/138 (124/149)

The NP-Complete Class (2)

- More formally, $L_1 \subseteq \Sigma_1^*$ polynomially transforms to $L_2 \subseteq \Sigma_2^*$, written $L_1 \propto L_2$ or $L_1 \leq_p L_2$, iff $\exists f : \Sigma_1^* \to \Sigma_2^*$ such that
 - $\forall x \in \Sigma_1^* [x \in L_1 \Leftrightarrow f(x) \in L_2]$
 - ► There is a polynomial time TM that computes *f*
- ▶ Transitivity If $L_1 \propto L_2$ and $L_2 \propto L_3$ then $L_1 \propto L_3$
- ▶ If L is NP-Hard and $L \in P$ then P = NP
- ▶ If L is NP-Complete, then $L \in P$ if and only if P = NP
- ▶ If L_0 is NP-Complete and $L \in \mathbb{NP}$ and $L_0 \propto L$ then L is NP-Complete
- Hence if we find one NP-Complete problem, it may become easier to find more
- ► In 1971/1973 Cook-Levin showed that the Boolean satisfiability problem (SAT) is NP-Complete

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2014J Exam Qs

Jnits 1 &

Units 3, 4 & 5

Units 6 & 7

Propositional Logic M269 2014J Exam Q 11 M269 2014J Exam Soln 11 Predicate Logic

M269 2014J Exam Q 12 M269 2014J Exam Soln 12 GQL Queries M269 2014J Exam Q 13 M269 2014J Exam Soln 13

ogic 1269 2014J Exam Q 14 1269 2014J Exam Soln 1² omputability

Omplexity

NP-Completeness and
Boolean Satisfiability

M269 Exam 2014J Q Part2 114/138 (125/149)

The Boolean Satisfiability Problem

- A propositional logic formula or Boolean expression is built from variables, operators: AND (conjunction, ∧), OR (disjunction, ∨), NOT (negation, ¬)
- ▶ A formula is said to be *satisfiable* if it can be made True by some assignment to its variables.
- ► The Boolean Satisfiability Problem is, given a formula, check if it is satisfiable.
 - ► Instance: a finite set U of Boolean variables and a finite set C of clauses over U
 - Question: Is there a satisfying truth assignment for C?
- ► A *clause* is is a disjunction of variables or negations of variables
- Conjunctive normal form (CNF) is a conjunction of clauses
- ► Any Boolean expression can be transformed to CNF

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2014J Exam Qs

Units 1

Units 3 4 & 5

Inits 6 & 7

Propositional Logic M269 2014J Exam Q 11 M269 2014J Exam Soln 11 Predicate Logic

redicate Logic 269 2014J Exam Q 12 269 2014J Exam Soln 12 QL Queries

269 2014J Exam Q 13 269 2014J Exam Soln 13 ogic

269 2014J Exam Q 14 269 2014J Exam Soln 14 emputability 269 2014J Exam Q 15

Complexity

NP-Completeness and
Boolean Satisfiability

M269 Exam 2014J

115/138 (126/149)

- Given a set of Boolean variable $U = \{u_1, u_2, \dots, u_n\}$
- \triangleright A literal from U is either any u_i or the negation of some u_i (written $\overline{u_i}$)
- ▶ A clause is denoted as a subset of literals from *U* $\{u_2, \overline{u_4}, u_5\}$
- A clause is satisfied by an assignment to the variables if at least one of the literals evaluates to True (just like disjunction of the literals)
- ▶ Let C be a set of clauses over U C is satisfiable iff there is some assignment of truth values to the variables so that every clause is satisfied (just like CNF)
- ► $C = \{\{u_1, u_2, u_3\}, \{\overline{u_2}, \overline{u_3}\}, \{u_2, \overline{u_3}\}\}$ is satisfiable
- $C = \{\{u_1, u_2\}, \{u_1, \overline{u_2}\}, \{\overline{u_1}\}\}\$ is not satisfiable

M269

Donna & Phil

NP-Completeness and Boolean Satisfiability

116/138 (127/149)

The Boolean Satisfiability Problem (3)

- ▶ Proof that SAT is NP-Complete looks at the structure of NDTMs and shows you can transform any NDTM to SAT in polynomial time (in fact logarithmic space suffices)
- SAT is in NP since you can check a solution in polynomial time
- ▶ To show that $\forall L \in \mathsf{NP} : L \propto \mathsf{SAT}$ invent a polynomial time algorithm for each polynomial time NDTM, M, which takes as input a string x and produces a Boolean formula E_x which is satisfiable iff M accepts x
- ▶ See Cook-Levin theorem

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> 1269 Prsntn 014J Exam Qs

Jnits 1 & 2

Units 3, 4 & 5

Jnits 6 & 7

Propositional Logic M269 2014J Exam Q 11 M269 2014J Exam Soln 11 Predicate Logic

M269 2014J Exam Q 12 M269 2014J Exam Soln 1: SQL Queries M269 2014J Exam Q 13

//269 2014J Exam Q 1 //269 2014J Exam Soln .ogic

M269 2014J Exam Q 14 M269 2014J Exam Soln 1 Computability M269 2014J Exam Q 15

Complexity

NP-Completeness and
Boolean Satisfiability

M269 Exam 2014J

117/138 (128/149)

Coping with NP-Completeness

- What does it mean if a problem is NP-Complete ?
 - ▶ There is a P time verification algorithm.
 - ▶ There is a P time algorithm to solve it iff P = NP (?)
 - No one has yet found a P time algorithm to solve any NP-Complete problem
 - ► So what do we do ?
- Improved exhaustive search Dynamic Programming;
 Branch and Bound
- ▶ Heuristic methods acceptable solutions in acceptable time — compromise on optimality
- Average time analysis look for an algorithm with good average time — compromise on generality (see Big-O Algorithm Complexity Cheatsheet)
- Probabilistic or Randomized algorithms compromise on correctness

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> 1269 Prsntn 014J Exam Qs

nits 1 &

Units 3, 4 & 5

In:ta 6 0. 7

Propositional Logic M269 2014J Exam Q 11 M269 2014J Exam Soln 11 Predicate Logic

M269 2014J Exam Q 12
M269 2014J Exam Soln 12
SQL Queries
M269 2014J Exam Sol 12

1269 2014J Exam Q 13 1269 2014J Exam Soln 13 ogic

269 2014J Exam Soln 1 omputability 269 2014J Exam Q 15

Complexity

NP-Completeness and
Boolean Satisfiability

M269 Exam 2014J

118/138 (129/149)

M269 Exam 2014J

Q Part2

- Answer every question in this part.
- ► The marks for each question are given at the end of the question.
- Answers to this part should be written in the separate answer book.

▶ Go to Exam 2014J Soln Part2

M269

Donna & Phil

M269 Exam
Revision Agenda &
Aims

M269 Prsntn 2014J Exam Qs

Units 1 &

Units 3, 4 &

Jnits 6 & 7

M269 Exam 2014J Q Part2

M269 2014J Exam Q 16 M269 2014J Exam Q 17

И269 Exam 2014.

White Slide

Q 16

- ▶ The Book Brigade is a start-up online bookseller specialising in electronic books.
- ▶ The company asks customers to rate the books they have read on a scale of 1 (dross) to 10 (magnificent), and maintains data in two sequences, B and R.
- Q 16 continued on next slide

M269

Donna & Phil

M269 2014J Exam Q 16

- B is an unsorted sequence of ISBNs (International Standard Book Numbers — a unique numerical code for every book published), together with the title of the book the ISBN denotes. Thus each item in B is itself a 2-tuple with items: (1) the ISBN, and (2) the title.
- R is an unsorted sequence of ISBNs with, for each item, a list of customer ratings for that book. Each item in R is also a 2-tuple with items: (1) the ISBN, and (2) a sequence of ratings.
- Some books in B may not have been rated, and these will not appear in R. Moreover, the order of books in R is not necessarily the same as the order in B.
- Q 16 continued on next slide

Donna & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2014J Exam Qs

Jnits 1 &

Jnits 3, 4 & 5

Units 6 & 7

M269 Exam 2014J Q Part2 M269 2014J Exam Q 16

M269 2014J Exam Q 17

....

Q 16 (contd)

(a) The company requires a computer system that generates a list of book titles that have been rated, with the average rating of each. Unrated books should not appear in this list.
 (5 marks)

(i) Using the following template, formally state this as a computational problem, in the style adopted by M269.

Name: BookRatings Inputs: Outputs:

- (ii) Suggest one possible postcondition for this computational problem.
 - Q 16 continued on next slide

M269

Donna & Phil

M269 Exam
Revision Agenda &
Aims

M269 Prsntn 2014J Exam Qs

OIIILS 1 & 2

Units 3, 4 & 5

Jnits 6 & 7

M269 Exam 2014J O Part2

M269 2014J Exam Q 16 M269 2014J Exam Q 17

1269 Exam 2014 oln Part2

White Slide

→ Go to Soln 16

Q 16 (contd)

- (b) Sketch out an initial insight for a computational solution of the BookRatings problem.(6 marks)
 - Q 16 continued on next slide

→ Go to Soln 16

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2014J Exam Qs

Jnits 1 & 2

Inits 3, 4 & !

Inits 6 & 7

M269 Exam 2014J Q Part2

M269 2014J Exam Q 16 M269 2014J Exam Q 17

M269 Exam 2014J

nor R are sorted.

- ► The Book Brigade now require a more efficient solution which will require that both these lists, and the list of results returned by the system, will be sorted.
- Since all these lists are likely to be very long, an efficient sorting algorithm is required, and it has been decided to use *Quicksort*.
- (i) Write a short paragraph explaining the process by which Quicksort sorts a list in-place; (5 marks)
 - Q 16 continued on next slide

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2014J Exam Qs

Units 1 & 2

Units 3, 4 & 5

Jnits 6 & 7

M269 Exam 2014J Q Part2

M269 2014J Exam Q 16 M269 2014J Exam Q 17

Л269 Exam 2014 Soln Part2

Q 16 (contd)

(c) (ii) The list

44 55	12	42	94	18	6	67
-------	----	----	----	----	---	----

- is being sorted using an in-place Quicksort, with the first item of a partition being chosen as the pivot.
- Draw diagrams illustrating the pivot and the left and right pointers: (5 marks)
- (1) at the very start (of the first pass),
- (2) immediately before the first swap and
- (3) immediately before the second swap.
 - Q 16 continued on next slide

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2014J Exam Qs

Jnits 1 &

Units 3, 4 & 5

Jnits 6 & 7

M269 Exam 2014J Q Part2

M269 2014J Exam Q 16 M269 2014J Exam Q 17

M269 Exam 2014J Soln Part2

White Slide

▶ Go to Soln 16

Q 16 (contd)

(d) Storing data items (e.g. book title, ratings) that are associated with a key (e.g. ISBN) in a list, as Book Brigade have opted to do, can be problematic, in particular because retrieval may be slow when there are very large numbers of keys. A more suitable means of storage is to associate keys with their data in a hash table.

Q 16 continued on next slide

M269

Donna & Phil

M269 2014J Exam Q 16

- (d) (contd) Write two short paragraphs such that
 - ▶ the first paragraph explains the basic principles of hash tables and hashing (about 5 sentences), and
 - the second paragraph outlines one problem that might arise from hashing, and mentions a strategy for addressing the aforementioned problem (about 3 sentences).
 - ➤ You do not need to describe the details of specific hashing functions or strategies. (4 marks)

M269

Donna & Phil

M269 Exam
Revision Agenda &

M269 Prsntn 2014J Exam Qs

Offits 1 & 2

Units 3, 4 & 5

Units 6 & 7

M269 Exam 2014J Q Part2

M269 2014J Exam Q 16 M269 2014J Exam Q 17

1269 Exam 2014

White Slide

▶ Go to Soln 16

Q 17

- ► An educational TV show is planning to do a presentation on the Halting Problem. To brief them, you've been asked to write a report for the producers. Assume that the producers do not have a background in computer science.
- Q 17 continued on next slide

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2014J Exam Qs

Units 1 &

Units 3, 4 & 5

Jnits 6 & 7

M269 Exam 2014. Q Part2

M269 2014J Exam Q 16 M269 2014J Exam Q 17

1269 Exam 2014J oln Part2

White Slide

▶ Go to Soln 17

- ► Your report **must** have the following structure:
- 1. A suitable title
- A paragraph setting the scene and explaining in layperson's terms what is meant by the Halting Problem [about two sentences]
- One paragraph in which you describe the relationship between the Halting Problem and a Turing Machine [about two sentences]
- 4. One paragraph in which you describe (and give an example in layperson's terms of) proof by contradiction [about three sentences]
- A conclusion, giving reasons, about the significance of the Halting Problem not being computable [one sentence]
- Q 17 continued on next slide

M269

Donna & Phil

M269 Exam Revision Agenda &

M269 Prsntn 2014J Exam Qs

Jnits 1 & 2

Units 3, 4 & 5

Units 6 & 7

M269 Exam 2014J Q Part2 M269 2014J Exam Q 16

M269 2014J Exam Q 17
M269 Exam 2014J
Soln Part2

Q 17 (contd)

- Note that a significant number of marks will be awarded for coherence and clarity, so avoid abrupt changes of topic and make sure your sentences fit together to tell an overall story.
- Allow up to four additional sentences to ensure this, although note that the numbers of sentences specified, in points 1 to 5 above and in this paragraph, are for guidance only. (15 marks)

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2014J Exam Qs

Units 1 &

Units 3, 4 &

Units 6 & 7

M269 Exam 2014J Q Part2

M269 2014J Exam Q 16 M269 2014J Exam Q 17

1269 Exam 2014J

White Slide

0 . 0 . 1 . 1

M269 Exs 2014J

Soln Part2

▶ Part 2 solutions

→ Go to Exam 2014J Q Part2

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

2014J Exam G

Jnits 1 & 2

....

Units 6 & 7

M269 Exam 2014. Ω Part2

M269 Exam 2014J Soln Part2

M269 2014J Exam Soln 17

(a) (i)

Name: BookRatings

Inputs: An unsorted sequence of tuples

 $B = (b_1, b_2, \dots, b_n)$ where $b_n = (i_n, t_n)$ and ISBN, i_n , and title, t_n , are strings.

An unsorted sequence of tuples $R=(r_1,r_2,\ldots,r_k)$ where $r_k=(i_k,l_k)$ and i_k is an ISBN and l_k is a list of ratings (0–10)

Outputs: a list of tuples $O = (o_1, o_2, ..., o_p)$ where $o_p = (t_p, a_p)$ and t_p is a title and a_p is a real number between 0 and 10.

- (ii) The length of R must equal the length of O, k = p
- Soln 16 continued on next slide

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

M269 Prsntn 2014J Exam Qs

Jnits 1 & 2

Jnits 3, 4 & 5

Units 6 & 7

M269 Exam 2014. Q Part2

M269 Exam 2014J Soln Part2

M269 2014J Exam Soln 16 M269 2014J Exam Soln 17

Soln 16 (contd)

- (b) Generate the elements of O by iterating over R
 - ► For each element of *R*, find the title from the ISBN by iterating over *B*
 - and calculate the average rating from the list of ratings
 - Soln 16 continued on next slide

▶ Go to Q 16

M269

Donna & Phil

M269 Exam
Revision Agenda &
Aims

M269 Prsntn 2014J Exam Qs

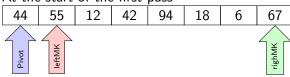
Jnits 1 & 2

Units 3, 4 &

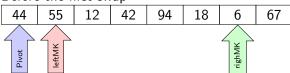
Units 6 & 7

M269 Exam 2014J Q Part2

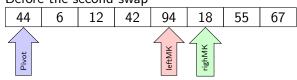
1269 Exam 2014J oln Part2


M269 2014J Exam Soln 16 M269 2014J Exam Soln 17

- M269 2014 I Exam Soln 16


- (c) (i) Quicksort chooses an item in the list to be the pivot item.
 - The algorithm partitions the list into two sublists
 - One list comprises items in the list less than the pivot
 - ▶ The other list comprises the elements in the list greater than or equal to the pivot
 - Recursively sort the sub lists (with Quicksort)
 - Join the sorted sub lists together with the pivot
 - An array based implementation uses two pointers. leftMK and rightMK, to do the partitioning in place
 - Soln 16 continued on next slide

Soln 16 (contd)


At the start of the first pass

▶ Before the first swap

Before the second swap

▶ Soln 16 continued on next slide

M269

Donna & Phil

M269 Exam Revision Agenda & Aims

> M269 Prsntn 2014J Exam Qs

Jnits 1 & 2

Units 3, 4 & 5

Units 6 & 7

M269 Exam 2014J Q Part2

> 1269 Exam 2014J oln Part2

M269 2014J Exam Soln 16 M269 2014J Exam Soln 17

(d) Hash function and hash tables

- Hash function maps each input key to a hash value (or slot)
- Perfect hash function maps each key to a different hash value
- Limited storage leads to hash functions having collisions — a hash function mapping two keys to the same slot
- ▶ Hash function collisions result in the need to either store multiple items in a single slot (closed table) or open addressing/open tables that use some mechanism to find a free slot

M269

Donna & Phil

M269 2014 I Exam Soln 16

- ▶ **Definition** Can we write an algorithm (a program) that will check whether any other program (algorithm) will terminate (halt) or loop forever
- ▶ We need a formal definition of algorithm hence the need for the definition of Turing machine
- ➤ Turing machine (and the equivalent Lambda Calculus and others) formalises our idea of functions that are computable functions that can be calculated.
- Proof by argument similar to Cantor's Diagonal argument and Proof by contradiction
- ▶ Direct consequences in mathematics and computer science — the Entscheidungsproblem from David Hilbert 1928 — can we have an algorithm that takes a statement in first order logic and checks if it is valid

▶ Go to Q 17

M269

Donna & Phil

M269 Exam Revision Agenda &

M269 Prsntn 2014J Exam Qs

Jnits 1 &

Units 3, 4 & 5

Jnits 6 & 7

M269 Exam 2014J Q Part2

Soln Part2

M269 2014J Exam Soln 16

M269 2014J Exam Soln 17

M269 Exam Revision