M269

Donna & Phil

M269

Exam Revision

Donna & Phil

20 May 2017 (2 sessions)

1/138 (1/149)



M269 Exam Revision M269

Agenda & Aims Ponna & Pl
M269 Exam
1. Welcome and introductions e
2. Revision strategies
3. M269 Exam — Part 1 has 15 questions 60%
4. M269 Exam — Part 2 has 2 questions 40%
5. M269 Exam — 3 hours, Part 1 100 mins, Part 2 70 mins
6. M269 2014J exam — Part 1
7. M269 2014J exam — Part 2
8. Topics and discussion for each question
9. Exam techniques
10. Two sessions
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M269 Exam Revision M269

. .. . Donna & Phil
Introductions & Revision strategies
» Introductions
. . Introdu.cﬂons & Revision
» What other exams are you doing this year 7 S

» Each give one exam tip to the group

3/138 (3/149)



M269 Exam e

. Donna & Phil
Presentation 2016J

» Not examined this presentation:

» Unit 4, Section 2 String search

» Unit 7, Section 2 Logic Revisited

» Unit 7, Section 4 Beyond the Limits

M269 Exam 2016J

4/138 (4/149)



M269

M269 2014J Exam
Qs

Donna & Phil

» M269 Algorithms, Data Structures and Computability
» Presentation 2014J Exam
» Date Monday, 8 June 2015 Time 10:00-13:00 1269 20141 Bam Qs

» There are TWO parts to this examination. You should
attempt all questions in both parts

» Part 1 carries 60 marks — 100 minutes
» Part 2 carries 40 marks — 70 minutes

» Note see the original exam paper for exact wording and
formatting — these slides and notes may change some
wording and formatting

5/138 (5/149)



M269 2014J Exam M269

Donna & Phil
Q Partl o I

» Answer every question in this part.

» Answers to questions in this part should be written on
this paper in the spaces provided, or in the case of
multiple-choice questions you should tick the
appropriate box(es).

M269 2014J Exam Q Partl

» If you tick more boxes than indicated for a multiple
choice question, you will receive no marks for your
answer to that question.

6/138 (6/149)



M269 Specimen Exam M269

Donna & Phil
Unit 1 Topics, Q1, Q2 o

» Unit 1 Introduction

» Computation, computable, tractable

v

Introducing Python

Unit 1 Introduction

v

What are the three most important concepts in
programming 7

1.

2.

3.

Quote from Paul Hudak (1952-2015)

v

7/138 (7/149)
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M269 2014J Exam M269

Donna & Phil
Q1

» Question 1 Which two of the following statements are
true ? (2 marks)

A. A computational thinker can explain why some
computational problems do not have a good
computational solution.

M269 2014J Exam Q 1

B. The main factor when deciding the best algorithm for a
given task is the programming language in which the
algorithm is to be implemented.

C. A decision problem can be defined as a formally stated
problem to which the answer is either yes or no.

D. The data structure chosen to hold data does not affect
the efficiency of an algorithm operating on that data.

8/138 (11/149)



M269 2014J Exam

Soln 1

» A C

» Goto Exam Q 1

oln Part:

White Slide
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M269 2014J Exam M269

Donna & Phil
Q2

> Question 2 The diagram below shows images of a
flight simulator for a single seater aircraft and an actual
single seater aircraft. (2 marks)

M269 2014J Exam Q 2

» Q 2 continued on next slide

10/138 (13/149)



M269 2014J Exam M269

Donna & Phil
Q2

» Complete the diagram above by adding an appropriate
label (one of the numbers 1 to 8) in each of the spaces
indicated by A, B, C and D. The possible answers are
shown as 1 to 8 below.

. represented by
M269 2014) Exam Q 2
. ignores detail of
. solves
. transforms
. model

. part of reality

. computational problem

o N O B WON -

. layer

11/138 (14/149)



M269 2014J Exam M269

Donna & Phil
Soln 2

A 5 model

B 1 represented by
C 2 ignores detail of
D 6 part of reality

» See Unit 1 section 3.2 Computational thinking and
abstraction

M269 2014J Exam Soln 2

12/138 (15/149)



M269 Specimen Exam M269

Donna & Phil
Unit 2 Topics, Q3, Q4 o

» Unit 2 From Problems to Programs
» Abstract Data Types
» Pre and Post Conditions

» Logic for loops

Unit 2 From Problems to
Programs

13/138 (16/149)



Example Algorithm Design M269

. Donna & Phil
Searching

» Given an ordered list (xs) and a value (val), return
» Position of val in xs or
» Some indication if val is not present

» Simple strategy: check each value in the list in turn

> Better strategy: use the ordered property of the list to
reduce the range of the list to be searched each turn

» Set a range of the list

» If val equals the mid point of the list, return the mid e
point

» Otherwise half the range to search

» If the range becomes negative, report not present
(return some distinguished value)

14/138 (17/149)



Example Algorithm Design

Binary Search lterative

[N}

10
11
12
13
14

16

def binarySearchlter(xs,val):

lo =0
hi = len(xs) — 1

while lo <= hi:
mid = (lo + hi) // 2
guess = xs|[mid]

if val = guess:
return mid
elif val < guess:
hi = mid — 1
else:

lo mid + 1

return None

M269

Donna & Phil

Example Algorithm Design
— Searching

15/138 (18/149)



Divide and Conquer

M269

Binary Search Recursive Ponna & Pl
1 def binarySearchRec(xs,val,h lo=0,hi=-1):

2 if (hi = —1):

3 hi = len(xs) — 1

5 mid = (lo + hi) // 2

7 if hi < lo:

8 return None

9 else:

10 guess = xs[mid]

11 if val = guess: e
12 return mid

13 elif val < guess:

14 return binarySearchRec(xs,val,lo, mid—1)

15 else:

16 return binarySearchRec(xs,val,mid+1,hi)

16/138 (19/149)



Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)

XS = Highlight the mid value and search
binarySearchRec(xs,25,77,77)
XS = Highlight the mid value and search
binarySearchRec(xs,25,77,77)
X8 = Highlight the mid wvalue and search
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search

Return value:

77

range

range

range

range

M269

Donna & Phil

Example Algorithm Design
— Searching
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Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs,25,77,77)
X8 = Highlight the mid value and search range
binarySearchRec(xs,25,77,77)

X8 = Highlight the mid wvalue and search range
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range
Return value: 77

M269

Donna & Phil

Example Algorithm Design
— Searching
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Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs,67,8,14) by line 15

X8 = Highlight the mid value and search range
binarySearchRec(xs,25,77,77)

X8 = Highlight the mid wvalue and search range
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range
Return value: 77

M269

Donna & Phil

Example Algorithm Design
— Searching
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M269

Divide and Conquer

. . . Donna & Phil
Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [ 67,69,75,80,89,97,101]
binarySearchRec(xs,25,77,77)

X8 = Highlight the mid wvalue and search range
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range Example Algorithm Design
— Searching

Return value: 77

17/138 (23/149)



Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs,67,8,14) by line 15

xs = [ 67,69,75,80,89,97,101]

binarySearchRec(xs,67,8,10) by line 13

X8 = Highlight the mid wvalue and search range
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range
Return value: 77

M269

Donna & Phil

Example Algorithm Design
— Searching
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Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [ 67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,10) by line 13
xs = [ 67,69,75, ]

binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range
Return value: 77

M269

Donna & Phil

Example Algorithm Design
— Searching
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Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs,67,8,14) by line 15

xs = [ 67,69,75,80,89,97,101]

binarySearchRec(xs,67,8,10) by line 13
xs = [ 67,69,75,
binarySearchRec(xs,67,8,8) by line 13

XS = Highlight the mid value and search range
Return value: 77

]

M269

Donna & Phil

Example Algorithm Design
— Searching
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Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [ 67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,10) by line 13
xs = [ 67,69,75, ]
binarySearchRec(xs,67,8,8) by line 13
xs = [ 67, ]

Return value: 77

M269

Donna & Phil

Example Algorithm Design
— Searching
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Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [ 67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,10) by line 13
xs = [ 67,69,75, ]
binarySearchRec(xs,67,8,8) by line 13
xs = [ 67, ]

Return value: 8 by line 11

M269

Donna & Phil

Example Algorithm Design
— Searching

17/138 (28/149)



M269

Example Algorithm Design

. . . Donna & Phil
Binary Search Iterative — Miller & Ranum
1 def binarySearchlterMR(alist , item):
2 first =0
3 last = len(alist)—1
4 found = False
6 while first<=last and not found:
7 midpoint = (first + last)//2
8 if alist[midpoint] = item:
9 found = True
10 else:
11 if item < alist[midpoint]: i (B0
12 last = midpoint—1
13 else:
14 first = midpoint+1
16 return found

18/138 (29/149)



M269

Divide and Conquer

. . . Donna & Phil
Binary Search Recursive — Miller & Ranum

1 def binarySearchRecMR(alist , item):

2 if len(alist) = 0:

3 return False

4 else:

5 midpoint = len(alist)//2

6 if alist[midpoint]==item:

7 return True

8 else:

9 if item<alist[midpoint]:

10 return binarySearchRecMR(alist [: midpoint],item)

11 else : Easr:::h/?riiorithm Design
12 return binarySearchRecMR(alist [midpoint+1:],item)

19/138 (30/149)



M269 2014J Exam

Q3

» Question 3 An insertion sort is being carried out on the

list of integers shown below, so as to arrange the list in

ascending numerical order:

start array

54

26

93

17

7

44

55

31

(4 marks)

» For the first four passes of the algorithm (after
assuming that a list with one item is already sorted),
show the order of the items in the list after that pass:

(Pass 1)

(Pass 2)

(Pass 3)

(Pass 4)

M269

Donna & Phil

M269 2014J Exam Q 3
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M269 2014J Exam

Soln 3

» The sorted part of the list is filled in pale blue with the
next item to be inserted in

(Pass 1)

(Pass 2)

(Pass 3)

(Pass 4)

26

54

93

17

7

44

55

31

26

54

93

17

7

44

55

31

17

26

54

93

7

44

55

31

17

26

54

7

93

44

55

31

M269

Donna & Phil

M269 2014J Exam Soln 3
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M269 2014J Exam M269

Donna & Phil
Q4

» Question 4 Consider the guard in the following Python
while loop header: (4 marks)
while (b > 8) and not(a < 6 or b <= 8):

(a) Make the following substitutions:
P represents a < 6
Q represents b > 8

complete the following truth table:

Ple@l-@[Pv-Q]-(Pv-Q [ @A~(PV-Q)

M269 2014) Exam Q 4

_I_
T
F
F

M| | T -

> Q 4 continued on next slide

22/138 (33/149)



M269 2014J Exam M269

Q 4 (contd)

Donna & Phil

(b) Use the results from your truth table to choose which
one of the following expressions could be used as a
simpler equivalent to the above guard.

mOn w2

(b > 9 and a < 6)
not (a < 6 or b > 8)
(a >= 6 and b <= 8)
not (a < 6 or b <= 8)
(a < 6 and b <= 8)

M269 2014) Exam Q 4

23/138 (34/149)



M269 2014J Exam

Soln 4

(a) Truth table

Pl@]-Q@|Pv-Q|-(PVv-Q) | QAr—=(PV-Q)
T|T|F T F F
TIF| T T F F
FIT|F F T T
FIF| T T F F

(b) The only row that has True in the final column for the

guard is

P=Fand Q=T
» This is equivalent to

-PAQ

» — (P V —Q) hence answer D

M269

Donna & Phil

M269 2014J Exam Soln 4
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M269

M269 Specimen Exam

Unit 3 Topics, Q5, Q6

Donna & Phil

» Unit 3 Sorting

» Elementary methods: Bubble sort, Selection sort,
Insertion sort

» Recursion — base case(s) and recursive case(s) on
smaller data

Unit 3 Sorting

» Quicksort, Merge sort
» Sorting with data structures: Tree sort, Heap sort

» See sorting notes for abstract sorting algorithm

25/138 (36/149)



M269

Unit 3 Sorting

. . Donna & Phil
Abstract Sorting Algorithm

[u nsorted list xs]

if (length xs > 1) then
(xs1,xs2) = split xs

/ \ Unit 3 Sorting

xsl XS2

[ys = join (ysl,ys2)]

sorted list ys

26/138 (37/149)



M269

Unit 3 Sorting

Donna & Phil
Sorting Algorithms o I

Using the Abstract sorting algorithm, describe the split and
Jjoin for:
> Insertion sort
> Selection sort
> Merge sort Une 3 Sering
» Quicksort

» Bubble sort (the odd one out)

27/138 (38/149)



M269

M269 Specimen Exam

Unit 4 Topics, Q7, Q8

Donna & Phil

v

Unit 4 Searching

v

String searching: Quick search Sunday algorithm,
Knuth-Morris-Pratt algorithm

v

Hashing and hash tables

v

Search trees: Binary Search Trees U0 S

v

Search trees: Height balanced trees: AVL trees

28/138 (39/149)



M269 2014J Exam
Q5

» Question 5 Consider the diagrams in A—H. Nodes are

represented by black dots, edges by arrows and numbers

are the keys.

PARNEATFA
2{'7\/\3"‘ :?\: 55/9<3'\'4/{'7 2-7/}\3-\4/6

» Q 5 continued on next slide

(4 marks)

M269

Donna & Phil

M269 2014) Exam Q 5

29/138 (40/149)



M269

M269 2014J Exam

Q 5 (contd)

Donna & Phil

» Answer the following questions. Write your answer on
the line that follows each question. In each case there is
at least one diagram in the answer but there may be
more than one. Explanations are not required.

a) Which of A, B, C and D do not show trees ?

)

b) Which of E, F, G and H are binary trees ?
)
)

M269 2014) Exam Q 5

Which of C, D, G and H are complete binary trees ?
Which of C, D, G and H are binary heaps 7

C

(
(
(
(d

30/138 (41/149)



M269

M269 2014J Exam

Soln 5

Donna & Phil

(a) In a tree, there is a unique path from the root to each node (graph
theory version)

» A is not a tree since 4 can be reached 3—4 or 3-5—4

» B, C, D are trees

(b) In a binary tree, each node has at most two children (graph theory
version) Note also that in a binary tree each child node is either a left or
a right child. The inductive definition of a binary tree: a binary tree is
either an empty tree or a node with two subtrees 11269 2014 Bxam Seln &

» E, G, H are binary trees

(C) In a complete binary tree, every level, except possibly the last, is
completely filled, and all nodes are as far left as possible.

» G, H are complete trees.

(d) Binary heaps are complete binary trees that satisfy the heap order
property. This property requires that the key of a node is smaller or equal
to the key of its children for min heaps or greater or equal for max heap

» H is a binary heap

31/138 (42/149)



M269 2014J Exam
Q6

M269

Donna & Phil

» Question 6 Consider the following function, which
takes an integer n as an argument. You can assume

that n is positive.

(4 marks)

z=ixk

return ans

=
o

for k in range(n

1 def twiddle(n):

2 a=2>5

3 for i in range(n):
4 for j in range(n
5 x =i *x i

6 y =1 *]

7

8

9

ans = (x +y + z) * a

M269 2014J Exam Q 6

» Q 6 continued on next slide

32/138 (43/149)



M269 2014J Exam M269

Donna & Phil
Q6

» From the five options below, select the one that
represents the correct combination of T(n) and Big-O
complexity for this function. You may assume that a
step (i.e. the basic unit of computation) is the
assignment statement.

A. T(n) = n*+3n+2and O(n?)

B. T(n)=2n*+n?+2and O(n*)
C. T(n)=2n*+n+2and O(2n?)

D. T(n)=3n?+2 and O(n?)

E. T(n)=2n+5 and O(n)

» Now explain how you obtained T(n) and the Big-O

complexity.

33/138 (44/149)



M269

M269 2014J Exam

Soln 6

Donna & Phil

» D T(n) =3n%+2 and O(n?)
» Explanation:
> 2 assignment statements outside loops

> 3 assignment statements inside two nested loops which
are each executed n times (3n?)

M269 2014J Exam Soln 6

34/138 (45/149)



M269 2014J Exam

Q7

(a) Given an alphabet of ACGT and the target string
CAGAGAG, select the option below that represents the
shift table that would be used by the Sunday string
search algorithm.

D.

» Q 7 continued on next slide

A|C|G T
1/6|0)|8
ANC|G|T
2111310
ANC|G|T
110|127
A|C|G|T
2171|38

M269

Donna & Phil

M269 2014) Exam Q 7

35/138 (46/149)



M269 2014J Exam M269

Donna & Phil
Q 7 (contd) o

(b) Assuming a hash table with 20 slots, using the folding
method, with 2 as the size of each part, what would be
the hash value of the item 1459862913 7

> In the box below give the hash value and indicate how
you calculated your answer, showing all steps.

M269 2014) Exam Q 7

36/138 (47/149)



M269 2014J Exam M269

Donna & Phil
Soln 7

(a) D
» The shift table for the Sunday Quick Search algorithm:

> If the character does not appear in the target string T,
the shift distance is one more than the length of T

» If the character does appear in T the shift distance is
the first position at which it appears, counting from
right to left and starting at 1

M269 2014J Exam Soln 7

37/138 (48/149)



M269 2014J Exam M269

Donna & Phil
Soln 7 (contd) o

(b) Hash value =1
since (14 +59 4+ 86 +29 +13) % 20 =1

Unit 3 Sorting
Unit 4 Searching
M269 2014J Exam Q 5
M269 2014) Exam Soln 5
M269 2014J Exam Q 6
M269 2014J Exam Soln 6
M269 2014) Exam Q 7
M269 2014) Exam Soln 7
M269 2014) Exam Q 8

M269 2014J Exam Soln 8
Unit 5 Optimisation
M269 2014J Exam Q 9
M269 2014) Exam Soln 9
M269 2014J Exam Q 10
M269 2014J Exam Soln 10

38/138 (49/149)



M269 2014J Exam M269

Donna & Phil
Q8

» Consider the following Binary Search Tree. (4 marks)

M269 2014) Exam Q 8

» Q 8 continued on next slide

39/138 (50/149)



M269

M269 2014J Exam

Q 8 (contd)

Donna & Phil

(a) Calculate the balance factors of each node in the above
tree and modify the diagram to show these balance
factors.

(b) Given your calculated balance factors, would this tree
need to be rebalanced to be a valid AVL tree? Give your
answer and a brief explanation for your answer in the
box provided below.

M269 2014) Exam Q 8

40/138 (51/149)



M269 2014J Exam M269

Donna & Phil
Soln 8

(a) Tree with balance factors

M269 2014J Exam Soln 8

» Soln 8 continued on next slide

41/138 (52/149)



M269 2014J Exam M269

onna & Phi
Soln 8 (contd) ° o

(b) The tree is not a valid AVL tree since some of the
balance factors are outside the range [—1,0, +1]
» The tree must have become unbalanced as a result of
inserting 85

» Rebalancing would mean a left rotation around the

node 73 as below (this diagram was not required in the
exam)

M269 2014) Exam Soln 8

42/138 (53/149)



M269 Specimen Exam M269

Donna & Phil
Unit 5 Topics, Q9, Q10 enne

» Unit 5 Optimisation
» Graphs searching: DFS, BFS
» Distance: Dijkstra’s algorithm

» Greedy algorithms: Minimum spanning trees, Prim'’s
algorithm

» Dynamic programming: Knapsack problem, Edit
distance

Unit 5 Optimisation

43/138 (54/149)



M269 2014J Exam M269

Donna & Phil
Q9

» Question 9 Recall that the structured English for
Dijkstra’s algorithm is: (5 marks)

create priority~queue
set dist to 0 for v and dist to infinity
for all other vertices
add all vertices to priority~queue
ITERATE while priority~queue is not empty
remove u from the front of the queue
ITERATE over w in the neighbours of u
set new~distance to
dist u + length of edge from u to w
IF new~distance is less than dist w
set dist w to new~distance
change priority (w, new~distance) M269 2014) Exam Q 9

» Q 9 continued on next slide

44/138 (55/149)



M269 2014J Exam M269

Q 9 (Con‘td) Donna & Phil

» Now consider the following weighted graph:

M269 2014J Exam Q 9

» Q 9 continued on next slide

45/138 (56/149)



M269 2014J Exam M269

Q 9 (Con‘td) Donna & Phil

» Starting from vertex A, the following table represents
the distances from each vertex to A after the second
line of structured English is executed for the graph
given above (using the convention that the character co
represents infinity):

Vertex A|/B|C|D|E]|F

Distance | 0 |00 |00 |00 | 00 | 0O

» Note that neither the table above nor the subsequent
tables represent the priority queue.

M269 2014J Exam Q 9

» Q 9 continued on next slide
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Q 9 (contd)

M269

Donna & Phil

» Now, complete the appropriate boxes in the next table
to show the distances after the first and second
iterations of the while loop of the algorithm.

Vertex A|B|C|D|E]|F
Distance | 0
Distance | O

First iteration

Second iteration

M269 2014J Exam Q 9
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» The completed table

Vertex A|B|C|D|E]|F
Distance | 0 | 1 | 2 [0 | 00| 00
Distance | 0 |1 [ 2 |7 |6 |7

M269

Donna & Phil

First iteration

Second iteration

» The node being processed has a red background

» Nodes with a final label have a

background

» Neighbours of the node being processed have blue text

M269 2014J Exam Soln 9
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Soln 9 (contd)

» The complete iterations

Vertex A|lB|C
Distance | 0 | 1 | 2
Distance | 0 | 1 | 2
Distance | 0 | 1 | 2
Distance | 0 | 1 | 2
Distance | 0 | 1 | 2
Distance | 0 | 1 | 2

M269

Donna & Phil

First iteration

Second iteration

Third iteration

Fourth iteration

M269 2014J Exam Soln 9

Fifth iteration

Sixth iteration
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» Question 10 Consider the following graph: (4 marks)

» Q 10 continued on next slide

M269

Donna & Phil

M269 2014) Exam Q 10
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Q 10 (contd)

» From the options below, select the two which show
possible orders in which the vertices of the above graph
could be visited in a Breadth First Search (BFS)
starting at vertex 2:

A. | Vertex 213
B. | Vertex 211
C. | Vertex 211
D. | Vertex 2|5
E. | Vertex 2|5
F. | Vertex 2|1

M269

Donna & Phil

M269 2014) Exam Q 10
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Soln 10

» B, D

» A Breadth First Search (BFS) from 2 must visit its
neighbours in some order first

M269

Donna & Phil

M269 2014J Exam Soln 10
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Q11 Topics

Donna & Phil

> Unit 6

> Sets

» Propositional Logic
Truth tables

Valid arguments Propestonal Logic

v

v

Infinite sets

v
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» Question 11 (4 marks)

(a) What does it mean to say that a well-formed formula
(WFF) is a contradiction ? Use the space below for your
answer.

M269 2014J Exam Q 11

(b) Is the following WFF a contradiction ?
(PA(QRV=Q))

» Explain how you arrived at your answer in the space
below:

54/138 (65/149)
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Donna & Phil
Soln 11

(a) A WFF is a contradiction if it is False in every
interpretation — an interpretation is an assignment of
meaning to the symbols of a formal language — here it
is assignment of truth values to P and Q

(b) Truth table

Pl Q@|-Q|QV-Q|(PA(QRV-Q))
TTTT F = = M269 2014) Exam Soin 11
T|IF| T T T
F|T]| F T F
FIF| T T F
> The statement is not a contradiction — it is satisfiable

— it has the same truth value as P

55/138 (66/149)
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Donna & Phil
Q12 TOpiCS onna

» Unit 6
» Predicate Logic
» Translation to/from English

> Interpretations

Predicate Logic
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» Question 12 A particular interpretation of predicate

logic allows facts to be expressed about cities and
people, in particular, facts about who visited and/or
liked which cities. In this interpretation, we will make
use of the following two sets: (6 marks)

cities = {Adelaide, San Francisco, Mumbai}
persons = {Lin, Derren, Gabi}

Some of the assignments in the interpretation are given
below (where the symbol Z is used to show
assignment). The interpretation assigns Lin, Derren and
Gabi to the constants /in, derren and gabi.

» Z(lin) = Lin  Z(derren) = Derren  Z(gabi) = Gabi

» Q 12 continued on next slide

M269

Donna & Phil

M269 2014) Exam Q 12
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Q 12 (contd) o

» The predicates has_ visited and likes are assigned to
binary relations. The comprehensions of the relations
are:

Z(has_visited) = {(A, B) : the person A has visited the city B}
Z(likes) = {(A, B) : the person A likes the city B}
» The enumerations of the relations are:

Z(has_visited) = {(Lin, Adelaide), (Derren, San Francisco), 1269 2014) Exom @ 12
(Gabi, Mumbai), (Gabi, San Francisco)}

Z(likes) = {(Lin, Mumbai), (Lin, San Francisco),
(Derren, Mumbai), (Derren, San Francisco), (Gabi, Adelaide)}

» Q 12 continued on next slide
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Donna & Phil
Q 12 (contd) o

» You will find parts (a) and (b) of this question on the
next page, whilst the interpretation is reproduced on the
other side of this page.
» In both parts, you are given a sentence of predicate
logic and asked to provide an English translation of the
sentence in the box immediately following it.
> You also need to state whether the sentence is TRUE or
FALSE in the interpretation that is provided on this e
page, and give an explanation of your answer.

» Q 12 continued on next slide
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Q 12 (contd)

>

In your explanation you need to consider any relevant
values for the variables, and show, using the
interpretation above, whether they make the quantified
expression TRUE or FALSE.

When your explanation refers to the interpretation,
make sure that you use formal notation.

So instead of saying that Lin likes Mumbai according to
the interpretation, write:

(Lin, Mumbai) € Z(likes).

Similarly, instead of Lin doesn’t like Mumbai you would
need to write:

(Lin, Mumbai) ¢ Z(likes).

Q 12 continued on next slide

M269

Donna & Phil

M269 2014) Exam Q 12
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» Interpretation to be used for answering Question
12

» cities = {Adelaide, San Francisco, Mumbai}
» persons = {Lin, Derren, Gabi}
» Z(lin) = Lin  Z(derren) = Derren  Z(gabi) = Gabi
> Z(has_visited) = {(Lin, Adelaide), (Derren, San Francisco),
(Gabi, Mumbai), (Gabi, San Francisco)} 1269 2014) Exom @ 12

> Z(likes) = {(Lin, Mumbai), (Lin, San Francisco),
(Derren, Mumbai), (Derren, San Francisco), (Gabi, Adelaide)}

» Q 12 continued on next slide
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Q 12 (contd)
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Donna & Phil

(a) IX.—(likes(lin, X) A likes(derren, X))

can be translated into English

> This sentence is (choose
because:

as:

from TRUE/FALSE),

(b) VX.(likes(gabi, X) \V has_visited(gabi, X)) 11269 2014) Bam 12

can be translated into English

» This sentence is (choose
because:

as:

from TRUE/FALSE),

62/138 (73/149)
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Soln 12 Donna & Phil
oin

(a) 3IX.=(likes(lin, X) N likes(derren, X))
» There is a city that is not liked by both Lin and Derren
» True since X could be Adelaide

(b) VX.(likes(gabi, X) \V has_visited(gabi, X))
> Gabi either likes or has visited all cities

» True since Gabi likes Adelaide and has visited the others.

M269 2014J Exam Soln 12
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» Unit 6
» SQL queries
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Complexity
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Q13

» Question 13 A database contains the following tables,
(6 marks)

production__line and product.
production__line product
id unit type unit__price
Linel | Sportscar SUvV 50000
Line2 | SUV Sportscar | 200000
Line3 | Bus Bus 250000
Line4 | Tractor Tractor 50000
Line5 | Aeroplane Aeroplane | 30000000

> Q 13 continued on next slide

M269

Donna & Phil

M269 2014) Exam Q 13
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Q 13 (contd) ° o

(a) For the following SQL query, give the table returned by
the query.
SELECT id, unit_price

FROM production_line CROSS JOIN product
WHERE unit = type AND unit_price < 300000;

(b) Write an SQL query which answers the question Which
products cost exactly 500007 The answer should be the
following table:
type
SUV
Tractor

M269 2014) Exam Q 13
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(a) The output table

id

unit_price

Linel

200000

Line2

50000

Line3

250000

Line4

50000

(b) SQL query

M269

Donna & Phil

SELECT type
FROM product

WHERE unit_price

M269 2014J Exam Soln 13

= 50000;

67/138 (78/149)



M269 Specimen Exam M269

Q]_4 topi Donna & Phil
opics

» Unit 7
» Proofs

» Natural deduction

Propositional Logic

M269

)14J Exam Q 1

M269 2014) Exam Soln 11

) 2014) Exam Q 12
M269 2014J Exam Soln 12
SQL Queries

M26¢ ) Exam Q 13

M269 2014J Exam Soln 13

)14J Exam Q 14
2014) Exam Soln 14
ability

J Exam Q 15
014J Exam Soln 15

Complexity
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Donna & Phil
Logicians, Logics, Notations
> A plethora of logics, proof systems, and different
notations can be puzzling.

» Martin Davis, Logician When | was a student, even the
topologists regarded mathematical logicians as living in
outer space. Today the connections between logic and
computers are a matter of engineering practice at every
level of computer organization

» Various logics, proof systems , were developed well
before programming languages and with different
motivations,

Logic

69/138 (80/149)


http://en.wikipedia.org/wiki/Martin_Davis

M269

Logic

Donna & Phil
Logic and Programming Languages
» Turing machines, Von Neumann architecture and
procedural languages Fortran, C, Java, Perl, Python,
JavaScript
» Resolution theorem proving and logic programming —
Prolog
» Logic and database query languages — SQL (Structured
Query Language) and QBE (Query-By-Example) are
syntactic sugar for first order logic
» Lambda calculus and functional programming with
Miranda, Haskell, ML, Scala e

70/138 (81/149)


http://en.wikipedia.org/wiki/Von_Neumann_architecture
http://en.wikipedia.org/wiki/Lambda_calculus

Logical Arguments

M269

Donna & Phil

Validity and Justification

>

There are two ways to model what counts as a logically
good argument:

» the semantic view

» the syntactic view
The notion of a valid argument in propositional logic is
rooted in the semantic view.
It is based on the semantic idea of interpretations:
assignments of truth values to the propositional
variables in the sentences under discussion.
A valid argument is defined as one that preserves truth
from the premises to the conclusions e
The syntactic view focuses on the syntactic form of
arguments.
Arguments which are correct according to this view are
called justified arguments.

71/138 (82/149)
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Donna & Phil
Proof Systems, Soundness, Completeness
» Semantic validity and syntactic justification are different
ways of modelling the same intuitive property: whether
an argument is logically good.
» A proof system is sound if any statement we can prove
(justify) is also valid (true)
» A proof system is adequate if any valid (true) statement
has a proof (justification)
> A proof system that is sound and adequate is said to be
complete
» Propositional and predicate logic are complete — Logic
arguments that are valid are also justifiable and vice
versa

Unit 7 section 2.4 describes another logic where there
are valid arguments that are not justifiable (provable)

72/138 (83/149)
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Donna & Phil

Valid arguments

v

Py

Unit 6 defines valid arguments with the notation
Pn

The argument is valid if and only if the value of C is
True in each interpretation for which the value of each
premise P;is Truefor 1 <j<n

In some texts you see the notation {P1,...,Pp} = C

> The expression denotes a semantic sequent or semantic

entailment

The |= symbol is called the double turnstile and is often
read as entails or models

In LaTeX F and = are produced from \vDash and
\models — see also the turnstile package

In Unicode = is called TRUE and is U+22A8, HTML
&#8872;

Logic
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. Donna & Phil
Valid arguments — Tautology

» The argument {} = C is valid if and only if C is True in
all interpretations
» That is, if and only if C is a tautology

» Beware different notations that mean the same thing

» Alternate symbol for empty set: ) = C

» Null symbol for empty set: = C

» Original M269 notation with null axiom above the line:
C

Logic
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Justified Arguments

» Definition 7.1 An argument {P1,Pa,...,P,} - Cis a
justified argument if and only if either the argument is
an instance of an axiom or it can be derived by means
of an inference rule from one or more other justified
arguments.

» Axioms
U {A} F A (axiom schema)

» This can be read as: any formula A can be derived from
the assumption (premise) of {A} itself

» The - symbol is called the turnstile and is often read as Logie
proves, denoting syntactic entailment

» In LaTeX I is produced from \vdash

» In Unicode I is called RIGHT TACK and is U+22A2,
HTML & #38866;
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Justified Arguments

» Section 2.3 of Unit 7 (not the Unit 6, 7 Reader) gives
the inference rules for —, A, and V — only dealing with
positive propositional logic so not making use of
negation — see List of logic systems

» Usually (Classical logic) have a functionally complete
set of logical connectives — that is, every binary
Boolean function can be expressed in terms the
functions in the set

Logic

76/138 (87/149)


http://en.wikipedia.org/wiki/List_of_logic_systems
http://en.wikipedia.org/wiki/Functional_completeness

M269
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. Donna & Phil
Inference Rules — Notation

> Inference rule notation:
Argument; ... Argument,
Argument

(label)

Logic
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Inference Rules — Conjunction

rr’HA Ire=B
r-AnB

> W (A-elimination left)

rFAAB

r-B

(A-introduction)

(A-elimination right)

M269

Donna & Phil

Logic
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Inference Rules — Implication

>

ru{A}+B

(—-introduction)

r-A—B

» The above should be read as: If there is a proof

, 'FA TFA->B

(justification, inference) for B under the set of premises,

I, augmented with A, then we have a proof
(justification. inference) of A — B, under the
unaugmented set of premises, T .

The unaugmented set of premises, I may have
contained A already so we cannot assume

(TU{A}) —{A} isequalto T

(—-elimination)

r-B

M269

Donna & Phil

Logic
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Inference Rules — Disjunction

_rFA
r-AvB
» B
r-AvB
Disjunction elimination

(\v-introduction left)

(\-introduction right)

v

rH-AvB TU{A}FC TU{B}rC
r- c

The above should be read: if a set of premises I'

justifies the conclusion AV B and I augmented with

each of A or B separately justifies C, then I justifies C

(\V-elimination)

v

M269

Donna & Phil

Logic
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Proofs in Tree Form

Donna & Phil

» The syntax of proofs is recursive:

» A proof is either an axiom, or the result of applying a
rule of inference to one, two or three proofs.

» We can therefore represent a proof by a tree diagram in
which each node have one, two or three children

» For example, the proof of {PA (P — Q)} F Q in
Question 4 (in the Logic tutorial notes) can be
represented by the following diagram:

PAPQYFPAPQ) o (PAPQYIFPAP Q)
(PA(P—=Q}FP - (PAP-QIFP—Q _E)’ i

{PA(P=Q}FQ e
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Self-Assessment activity 7.4

»LletT={P >R Q—RPVQ}
_TEPVQ TU{P}FR TU{Q}FR

(\-elimination)

N-=R
ru{P}FpP TU{P}FP—R S
> (—-elimination)
ry{P}+~R
> ru {Q} FQ TU {Q} PR (—-elimination)
rU{Q}rFR
» Complete tree layout
ru{pP} Tru{rP} ru{Qr rui{Q:
P FP—R g BQ FQoR g
r-pPvQ ru{P}rR ru{@rr
R (8

M269

Donna & Phil
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Self-assessment activity 7.4 — Linear Layout

1.

NSO A WD

{P—-R,Q—=R,PVQR}+-PVQ
{P—-R,Q—R,PVQIU{P}-P
{P—-R,Q—R,PVQIU{P}FP—=R
{P—>R,Q—R,PVQIU{Q}FHQ
{P-R,Q—->RPVQIU{Q}+FQR—R
{P—-R,Q—R,PVQ}U{P}FR
{P>R,Q—=RPVQIU{Q}FR
{P—-R,Q—R,PVQ}FR

M269

Donna & Phil

[Axiom]
[Axiom]
[Axiom]
[Axiom]
[Axiom]

[2, 3, —-E]
(4, 5, —-E]
[1, 6, 7, V-E]

Logic
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M269

Donna & Phil

» Question 14 Consider the following axiom schema and

rules: (4 marks)

Axiom schema {A}+F A

Rules W (A-elimination left)
W (A-elimination right)
% (A-introduction)
ro{aj-e
— -introduction
I— '— A % B (*) o ctio ) M269 2014J Exam Q 14
r-A rlr—l_BA — B (—-elimination)

» Q 14 continued on next slide
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Donna & Phil
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» Complete the following proof by filling in the two boxes.
You can use any of the above as appropriate.

1. {(VAW)}F(VAW) [Axiom schema]
2. ’?? ??‘ [1 A-elimination right]
3. oF(VAW)=sW |22 7]

M269 2014J Exam Q 14
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Soln 14

» Completed proof
1. {(VAW)}E(VAW) [Axiom schema]

2. ’{(V/\ W)} = W‘ [1 A-elimination right]
3. oH(VAW)—=>W ’2 —>—introduction‘
> Note @ is a symbol for the empty set (in LaTex
\varnothing)

» You could also use {} (or even leave a blank, but that
would not be good practice)

M269 2014J Exam Soln 14
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Donna & Phil
Q15 Topics onna

» Unit 7

Computability and ideas of computation

v

v

Complexity
P and NP
NP-complete

v

v

Computability
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Computability

. Donna & Phil
Ideas of Computation

» The idea of an algorithm and what is effectively
computable

» Church-Turing thesis Every function that would
naturally be regarded as computable can be computed
by a deterministic Turing Machine. (Unit 7 Section 4)

» See Phil Wadler on computability theory performed as
part of the Bright Club at The Strand in Edinburgh,
Tuesday 28 April 2015

Computability

88/138 (99/149)


http://wadler.blogspot.co.uk/2015/05/bright-club-computability.html

M269

Computability

Reducing one problem to another

Donna & Phil

» To reduce problem P; to P, invent a construction that
converts instances of P; to P> that have the same
answer. That is:

» any string in the language P; is converted to some
string in the language P>

» any string over the alphabet of P; that is not in the
language of P; is converted to a string that is not in the
language P>

» With this construction we can solve P;

» Given an instance of Py, that is, given a string w that
may be in the language P;, apply the construction
algorithm to produce a string x

» Test whether x is in P, and give the same answer for w
in Pl

Computability
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Computability

Direction of Reduction

Donna & Phil

» The direction of reduction is important

» If we can reduce P; to P, then (in some sense) P, is at
least as hard as P; (since a solution to P, will give us a
solution to Pp)

» So, if P> is decidable then P; is decidable

» To show a problem is undecidable we have to reduce
from an known undecidable problem to it

> Wx(dpp, (x) = dpp, (reduce(x)))
» Since, if Py is undecidable then P, is undecidable

Computability
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Computability

Models of Computation

Donna & Phil

» In automata theory, a problem is the question of
deciding whether a given string is a member of some
particular language

» If X is an alphabet, and L is a language over X, that is
L C X*, where ¥* is the set of all strings over the
alphabet X then we have a more formal definition of
decision problem

> Given a string w € ¥*, decide whether w € L

» Example: Testing for a prime number — can be
expressed as the language L, consisting of all binary
strings whose value as a binary number is a prime
number (only divisible by 1 or itself)

Computability
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Church-Turing Thesis & Quantum Computing

Donna & Phil

» Church-Turing thesis Every function that would
naturally be regarded as computable can be computed
by a deterministic Turing Machine.

» physical Church-Turing thesis Any finite physical
system can be simulated (to any degree of
approximation) by a Universal Turing Machine.

» strong Church-Turing thesis Any finite physical
system can be simulated (to any degree of
approximation) with polynomial slowdown by a
Universal Turing Machine.

» Shor's algorithm (1994) — quantum algorithm for
factoring integers — an NP problem that is not known
to be P — also not known to be NP-complete and we
have no proof that it is not in P

Computability
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http://en.wikipedia.org/wiki/Shor's_algorithm
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Computability
Turing Machine

Donna & Phil

» Finite control which can be in any of a finite number
of states

» Tape divided into cells, each of which can hold one of a
finite number of symbols

» Initially, the input, which is a finite-length string of
symbols in the input alphabet, is placed on the tape

» All other tape cells (extending infinitely left and right)
hold a special symbol called blank

» A tape head which initially is over the leftmost input
symbol

» A move of the Turing Machine depends on the state
and the tape symbol scanned

Computability

» A move can change state, write a symbol in the current
cell, move left, right or stay
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Turing Machine Diagram

Donna & Phil
Turing Machine Diagram
blblalal]lala .-+ 1/0O Tape
Reading and Writing Head
(moves in both directions)
( )
a3
g2 / An
a1 q0
(. J

Finite Control
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Computability

. . . Donna & Phil
Turing Machine notation

v

Q finite set of states of the finite control
¥ finite set of input symbols (M269 S)
" complete set of tape symbols . C I’

d Transition function (M269 instructions, /)
duQxlIN—@xTIx{LR,S}

(g, X) = (p, Y, D)

d(q, X) takes a state, g and a tape symbol, X and
returns (p, Y, D) where p is a state, Y is a tape symbol
to overwrite the current cell, D is a direction, Left,
Right or Stay

v

v

v

v

v

qo start state qp € Q
B blank symbol B €T and B ¢ ©
F set of final or accepting states F C Q

Computability

v

v
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Decidability

Donna & Phil

» Decidable — there is a TM that will halt with yes/no
for a decision problem — that is, given a string w over
the alphabet of P the TM with halt and return yes.no
the string is in the language P (same as recursive in
Recursion theory — old use of the word)

» Semi-decidable — there is a TM will halt with yes if
some string is in P but may loop forever on some inputs
(same as recursively enumerable) — Halting Problem

» Highly-undecidable — no outcome for any input —
Totality, Equivalence Problems

Computability
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http://en.wikipedia.org/wiki/Recursion_theory
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Computability
Undecidable Problems

Donna & Phil

» Halting problem — the problem of deciding, given a
program and an input, whether the program will
eventually halt with that input, or will run forever —
term first used by Martin Davis 1952

» Entscheidungsproblem — the problem of deciding
whether a given statement is provable from the axioms
using the rules of logic — shown to be undecidable by
Turing (1936) by reduction from the Halting problem to
it

» Type inference and type checking in the
second-order lambda calculus (important for functional
programmers, Haskell, GHC implementation) Computabilty

» Undecidable problem — see link to list
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Computability

Why undecidable problems must exist

» A problem is really membership of a string in some
language

» The number of different languages over any alphabet of
more than one symbol is uncountable

» Programs are finite strings over a finite alphabet (ASCII
or Unicode) and hence countable.

» There must be an infinity (big) of problems more than
programs.

M269
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Computability
Computability and Terminology (1)

>

The idea of an algorithm dates back 3000 years to
Euclid, Babylonians. ..

In the 1930s the idea was made more formal: which
functions are computable?

A function a set of pairs

f={(x,f(x)):x € XA f(x)€ Y} with the function
property

Function property: (a,b) € f A(a,c) e f = b==c¢
Function property: Same input implies same output

Note that maths notation is deeply inconsistent here —
see Function and History of the function concept

What do we mean by computing a function — an
algorithm ?

M269
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M269

Computability

Donna & Phil
Computability and Terminology (2) enne

» In the 1930s three definitions:

» \-Calculus, simple semantics for computation — Alonzo
Church

» General recursive functions — Kurt Godel

» Universal (Turing) machine — Alan Turing
» Terminology:

» Recursive, recursively enumerable — Church, Kleene
Computable, computably enumerable — Gédel, Turing
Decidable, semi-decidable, highly undecidable
In the 1930s, computers were human
Unfortunate choice of terminology

vV vy vy

» Turing and Church showed that the above three were Computabitty
equivalent

» Church-Turing thesis — function is intuitively
computable if and only if Turing machine computable
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M269 2014J Exam M269

Donna & Phil
Q 15 onna

(a) Complete the following sentence in the box below:

The statement If a computational problem is in NP,
then it must be intractable may be false because

» Q 15 continued on next slide

M269 2014J Exam Q 15
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Q 15 (contd)

(b) Consider the following Turing Machine:

NEXT STATE O

$ EMPTY
0 WRITE $
MOVE RIGHT
NEXT STATE 1
1 | WRITE blank | WRITE $
MOVE LEFT MOVE RIGHT

NEXT STATE O

» Q 15 continued on next slide

M269

Donna & Phil

M269 2014J Exam Q 15
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Donna & Phil
Q 15 (contd) o

> Assume that the starting state is 0 and that the input
tape consists of empty squares.

» One square is marked as the current square with the
tape head, shown here as

@ where n is the current state

» So, initially the tape looks as follows:

> Note it the original exam the tape cells and head are denoted by ASCII

Initial tape:

sym bols M269 2014) Exam Q 15

> Q 15 continued on next slide
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Q 15 (contd)

Donna & Phil

> Using the same notation, write down what the tape
looks like after each of the next two steps of the
computation.

» Use the boxes below for this.

> After the first step

First step:

» After the second step

Second step:

M269 2014J Exam Q 15
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M269 2014J Exam o

Soln 15

(a) P is a subset of NP but we do not know if it is a proper
subset — so the problem may be in P

(b) After the first step

First step: cee $

g

Second step: - - - $ $

> After the second step

M269 2014J Exam Soln 15
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Complexity
P and NP

>

P, the set of all decision problems that can be solved in
polynomial time on a deterministic Turing machine
NP, the set of all decision problems whose solutions can
be verified (certificate) in polynomial time
Equivalently, NP, the set of all decision problems that
can be solved in polynomial time on a non-deterministic
Turing machine
A decision problem, dp is NP-complete if

1. dpisin NP and

2. Every problem in NP is reducible to dp in polynomial

time

NP-hard — a problem satisfying the second condition,
whether or not it satisfies the first condition. Class of
problems which are at least as hard as the hardest
problems in NP. NP-hard problems do not have to be in
NP and may not be decision problems

M269
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Complexity
P and NP — Diagram

Euler diagram for P, NP, NP-complete and NP-hard set of

problems

NP-Hard

NP-Complete

P = NP

Complexity

NP-Hard

P=NP=
NP-Complete

P =NP

Source: Wikipedia NP-complete entry

M269

Donna & Phil

Complexity

107/138 (118/149)


http://en.wikipedia.org/wiki/Euler_diagram
http://en.wikipedia.org/wiki/NP-complete

M269

Complexity

Donna & Phil
NP-complete problems

» Boolean satisfiability (SAT) Cook-Levin theorem
» Conjunctive Normal Form 3SAT

v

Hamiltonian path problem

v

Travelling salesman problem

v

NP-complete — see list of problems

Complexity

108/138 (119/149)


http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Cook-Levin_theorem
http://en.wikipedia.org/wiki/3-satisfiability
http://en.wikipedia.org/wiki/Hamiltonian_path_problem
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/NP-complete

Complexity
Knapsack Problem
MY HoBBY:
EMBEDDING NP-(OMPLETE PROBLEMS IN RESTAURANT ORDERS
CFT00n 52 et e
<~ APPENZERS —~ | L EAY? UK.
MIXED FRUIT 2.15 HERE, THESE PAPERS ON THE. KNAPSACK, /
PROBLEM MIGHT HELP YOU QUT.
FRENCH FRIES 275 \ LISTEN, T HAVE SiX OTHER
SIDE SALAD 235 TABLES T0 GET T0—
= PG FAST 5 POSSIRLE, OF (OURSE. WANT
HOT WINGS 2.55 SOMETHING ON TRAVELING SALESHANE
MOZZAREUA STICKS  H-20 \
SAMPLER PLATE 580 % 0 %ﬁ,
—— SANDWICHES ~— {
RARREN IE £er

Source & Explanation

: XKCD 287
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NP-Completeness and Boolean Satisfiability

Points on Notes

» The Boolean satisfiability problem (SAT) was the first
decision problem shown to be NP-Complete

» This section gives a sketch of an explanation

» Health Warning different texts have different notations
and there will be some inconsistency in these notes

» Health warning these notes use some formal notation
to make the ideas more precise — computation requires
precise notation and is about manipulating strings
according to precise rules.

M269
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M269

NP-Completeness and Boolean Satisfiability
Alphabets, Strings and Languages

Donna & Phil

» Notation:
> > is a set of symbols — the alphabet
» Yk is the set of all string of length k, which each
symbol from X
» Example: if ¥ = {0,1}
» ¥1={0,1}
» ¥2={00,01,10,11}
» 30 = {¢} where € is the empty string
> >* is the set of all possible strings over ¥
» Y =30Uuylur?u...
» A Language, L, over ¥ is a subset of ¥*
» LCY*

NP-Completeness and
Boolean Satisfiability
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Language Accepted by a Turing Machine

» Language accepted by Turing Machine, M denoted by
L(M)

» L(M) is the set of strings w € ©* accepted by M

» For Final States F = {Y, N}, a string w € ¥* is
accepted by M < (if and only if) M starting in go with
w on the tape halts in state Y

» Calculating a function (function problem) can be turned
into a decision problem by asking whether f(x) =y

M269

Donna & Phil

NP-Completeness and
Boolean Satisfiability
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NP-Completeness and Boolean Satisfiability

Donna & Phil
The NP-Complete Class o

> If we do not know if P #= NP, what can we say ?
» A language L is NP-Complete if:

» L € NP and
» for all other L’ € NP there is a polynomial time
transformation (Karp reducible, reduction) from L’ to L

» Problem Py polynomially reduces (Karp reduces,
transforms) to P>, written Py o< P> or Py <, P>, iff
3f : dpp, — dpp, such that

» VI edpp[l € Yp, & f(I) € Yp,]
» f can be computed in polynomial time

NP-Completeness and
Boolean Satisfiability
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The NP-Complete Class (2)

>

More formally, L; € X7 polynomially transforms to
Ly C X5, written Ly o< Lp or Ly <, Lp, iff 3f : X — X3
such that

» Vx € Xi[x € L1 & f(x) € L]

» There is a polynomial time TM that computes f
Transitivity If L1 o< Ly and Ly o< L3 then L; o L3
If Lis NP-Hard and L € P then P = NP
If L is NP-Complete, then L € P if and only if P = NP

If Ly is NP-Complete and L € NP and Ly < L then L is
NP-Complete

Hence if we find one NP-Complete problem, it may
become easier to find more

In 1971/1973 Cook-Levin showed that the Boolean
satisfiability problem (SAT) is NP-Complete

M269

Donna & Phil
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NP-Completeness and Boolean Satisfiability

C ey Donna & Phil
The Boolean Satisfiability Problem

» A propositional logic formula or Boolean expression is
built from variables, operators: AND (conjunction, A),
OR (disjunction, V), NOT (negation, —)

» A formula is said to be satisfiable if it can be made True
by some assignment to its variables.

» The Boolean Satisfiability Problem is, given a formula,
check if it is satisfiable.

» Instance: a finite set U of Boolean variables and a finite
set C of clauses over U
» Question: Is there a satisfying truth assignment for C ?

» A clause is is a disjunction of variables or negations of

variables

» Conjunctive normal form (CNF) is a conjunction of
clauses

NP-Completeness and
Boolean Satisfiability

» Any Boolean expression can be transformed to CNF
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NP-Completeness and Boolean Satisfiability
The Boolean Satisfiability Problem (2)

>

>

v

v

Given a set of Boolean variable U = {u1, ua, ..., up}

A literal from U is either any u; or the negation of some
u; (written T;)

A clause is denoted as a subset of literals from U —
{u2, g, us }

A clause is satisfied by an assignment to the variables if
at least one of the literals evaluates to True (just like
disjunction of the literals)

Let C be a set of clauses over U — C is satisfiable iff
there is some assignment of truth values to the
variables so that every clause is satisfied (just like CNF)
C ={{u1,u,us}, {2, U3}, {2, U3} } is satisfiable

C ={{u1,w2},{u1, @}, {T1}} is not satisfiable

M269
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NP-Completeness and
Boolean Satisfiability
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NP-Completeness and Boolean Satisfiability

. Donna & Phil
The Boolean Satisfiability Problem (3)

» Proof that SAT is NP-Complete looks at the structure
of NDTMs and shows you can transform any NDTM to
SAT in polynomial time (in fact logarithmic space
suffices)

» SAT is in NP since you can check a solution in
polynomial time

» To show that VL € NP : L o« SAT invent a polynomial
time algorithm for each polynomial time NDTM, M,
which takes as input a string x and produces a Boolean
formula E, which is satisfiable iff M accepts x

» See Cook-Levin theorem

NP-Completeness and
Boolean Satisfiability
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NP-Completeness and Boolean Satisfiability

. . Donna & Phil
Coping with NP-Completeness

» What does it mean if a problem is NP-Complete ?

» There is a P time verification algorithm.

» There is a P time algorithm to solve it iff P = NP (?)

» No one has yet found a P time algorithm to solve any
NP-Complete problem

» So what do we do ?

> Improved exhaustive search — Dynamic Programming;
Branch and Bound

» Heuristic methods — acceptable solutions in acceptable
time — compromise on optimality

> Average time analysis — look for an algorithm with
good average time — compromise on generality (see
Big-O Algorithm Complexity Cheatsheet)

» Probabilistic or Randomized algorithms — compromise
on correctness

NP-Completeness and
Boolean Satisfiability
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M269 Exam 2014J M269

Q Part2 Donna & Phil
» Answer every question in this part.
» The marks for each question are given at the end of the
question.
> Answers to this part should be written in the separate
answer book.
M269 Exam 2014J
Q Part2
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Donna & Phil
Q16 onna

» The Book Brigade is a start-up online bookseller
specialising in electronic books.

» The company asks customers to rate the books they
have read on a scale of 1 (dross) to 10 (magnificent),
and maintains data in two sequences, B and R.

> Q 16 continued on next slide
M269 2014) Exam Q 16
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Q 16 (contd)

Donna & Phil

1. B is an unsorted sequence of ISBNs (International
Standard Book Numbers — a unique numerical code
for every book published), together with the title of the
book the ISBN denotes. Thus each item in B is itself a
2-tuple with items: (1) the ISBN, and (2) the title.

2. R is an unsorted sequence of ISBNs with, for each item,
a list of customer ratings for that book. Each item in R PR
is also a 2-tuple with items: (1) the ISBN, and (2) a
sequence of ratings.
» Some books in B may not have been rated, and these
will not appear in R. Moreover, the order of books in R
is not necessarily the same as the order in B.

» Q 16 continued on next slide
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Q 16 (contd)

(a) The company requires a computer system that
generates a list of book titles that have been rated, with
the average rating of each. Unrated books should not
appear in this list. (5 marks)

(i) Using the following template, formally state this as a
computational problem, in the style adopted by M269.

Name: BookRatings
Inputs:
Outputs:

(ii) Suggest one possible postcondition for this
computational problem.

» Q 16 continued on next slide

M269

Donna & Phil

M269 2014J Exam Q 16

122/138 (133/149)



M269 2014J Exam M269

onna & Phi
Q 16 (contd) ° o

(b) Sketch out an initial insight for a computational
solution of the BookRatings problem. (6 marks)

» Q 16 continued on next slide

M269 2014J Exam Q 16
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Q 16 (contd)

(c)

(i)

>

Many potential solutions to the BookRatings problem
may be inefficient, arising from the fact that neither B
nor R are sorted.

The Book Brigade now require a more efficient solution
which will require that both these lists, and the list of
results returned by the system, will be sorted.

Since all these lists are likely to be very long, an
efficient sorting algorithm is required, and it has been
decided to use Quicksort.

Write a short paragraph explaining the process by which
Quicksort sorts a list in-place; (5 marks)

Q 16 continued on next slide

M269
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Q 16 (contd)

Donna & Phil

(c) (ii) The list
44 155|112 142|94|18| 6 | 67

> is being sorted using an in-place Quicksort, with the
first item of a partition being chosen as the pivot.

» Draw diagrams illustrating the pivot and the left and
rlght pointers: (5 marks) M269 2014J Exam Q 16

(1) at the very start (of the first pass),
(2) immediately before the first swap and

(3) immediately before the second swap.

» Q 16 continued on next slide
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Q 16 (contd) ° o

(d) Storing data items (e.g. book title, ratings) that are
associated with a key (e.g. ISBN) in a list, as Book
Brigade have opted to do, can be problematic, in
particular because retrieval may be slow when there are
very large numbers of keys. A more suitable means of
storage is to associate keys with their data in a hash
table.

M269 2014J Exam Q 16

» Q 16 continued on next slide
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Q 16 (contd) ° o

(d) (contd) Write two short paragraphs such that
» the first paragraph explains the basic principles of hash
tables and hashing (about 5 sentences), and
> the second paragraph outlines one problem that might
arise from hashing, and mentions a strategy for
addressing the aforementioned problem (about 3

sentences).
» You do not need to describe the details of specific MEDEDETD O
hashing functions or strategies. (4 marks)
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nna & Phi
Q 17 Donna & Phil

» An educational TV show is planning to do a
presentation on the Halting Problem. To brief them,
you've been asked to write a report for the producers.
Assume that the producers do not have a background in
computer science.

» Q 17 continued on next slide

M269 2014) Exam Q 17

128/138 (139/149)



M269 2014J Exam M269

Donna & Phil
Q 17 (contd) o

» Your report must have the following structure:

1. A suitable title

2. A paragraph setting the scene and explaining in
layperson’s terms what is meant by the Halting Problem
[about two sentences]

3. One paragraph in which you describe the relationship
between the Halting Problem and a Turing Machine
[about two sentences] M2 2014 Exam @ 17

4. One paragraph in which you describe (and give an
example in layperson's terms of ) proof by contradiction
[about three sentences]

5. A conclusion, giving reasons, about the significance of
the Halting Problem not being computable [one
sentence]

» Q 17 continued on next slide
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Q 17 (contd)

Donna & Phil

» Note that a significant number of marks will be awarded
for coherence and clarity, so avoid abrupt changes of
topic and make sure your sentences fit together to tell
an overall story.
> Allow up to four additional sentences to ensure this,
although note that the numbers of sentences specified,
in points 1 to 5 above and in this paragraph, are for
guidance only. (15 marks) ~ "TTeEneT
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Soln Part2

» Part 2 solutions

» Go to Exam 2014J Q Part2
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Soln 16 Donna & Phil
(a) ()
Name: BookRatings
Inputs: An unsorted sequence of tuples
B = (b1, ba,. .., bp) where b, = (in, tn) and ISBN, i,,
and title,t,, are strings.
An unsorted sequence of tuples R = (r1,r2,...,rk)
where r, = (i, Ix) and ig is an ISBN and Iy is a list of
ratings (0-10) it 51 o 1

Outputs: a list of tuples O = (01,02, ..., 0p) where
op = (tp,ap) and t, is a title and ap, is a real number
between 0 and 10.

» (ii) The length of R must equal the length of O, k = p

» Soln 16 continued on next slide
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Donna & Phil
Soln 16 (contd)

(b) Generate the elements of O by iterating over R

» For each element of R, find the title from the ISBN by
iterating over B

> and calculate the average rating from the list of ratings

» Soln 16 continued on next slide

M269 2014J Exam Soln 16
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Donna & Phil
Soln 16 (contd)

(c) (i) Quicksort chooses an item in the list to be the pivot
item.

> The algorithm partitions the list into two sublists
> One list comprises items in the list less than the pivot

» The other list comprises the elements in the list greater

than or equal to the pivot
» Recursively sort the sub lists (with Quicksort)
M269 2014) Exam Soln 16

> Join the sorted sub lists together with the pivot

» An array based implementation uses two pointers,
leftMK and rightMK, to do the partitioning in place

» Soln 16 continued on next slide
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Donna & Phil
Soln 16 (contd)

» At the start of the first pass
|44 |55 [ 1242 |94]18] 6 |67 ]

» Before the first swap
|44 |55 [ 1242 |94] 18] 6 | 67 ]

o
o
>

=

leftMK

=
o
>

M269 2014J Exam Soln 16
=

leftMK
righMK

» Before the second swap
(44| 6 [12] 42| 94]18]55] 67|

» Soln 16 continued on next slide

ghMK

leftMK
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Soln 16 (contd) Bonna & Fhl
(d) Hash function and hash tables
» Hash function maps each input key to a hash value (or
slot)
> Perfect hash function maps each key to a different hash
value
> Limited storage leads to hash functions having collisions
— a hash function mapping two keys to the same slot
» Hash function collisions result in the need to either M269 2014) Exam 5o 16

store multiple items in a single slot (closed table) or
open addressing/open tables that use some mechanism
to find a free slot
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Soln 17

>

>

Title The Significance of the Halting Problem

Definition Can we write an algorithm (a program) that

will check whether any other program (algorithm) will
terminate (halt) or loop forever

We need a formal definition of algorithm — hence the
need for the definition of Turing machine

Turing machine (and the equivalent Lambda Calculus
and others) formalises our idea of functions that are
computable — functions that can be calculated.
Proof by argument similar to Cantor's Diagonal
argument and Proof by contradiction

Direct consequences in mathematics and computer
science — the Entscheidungsproblem from David
Hilbert 1928 — can we have an algorithm that takes a
statement in first order logic and checks if it is valid

M269

Donna & Phil

M269 2014J Exam Soln 17
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