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1 M269 Exam Revision Agenda & Aims

1. Welcome and introductions

2. Revision strategies

3. M269 Exam — Part 1 has 15 questions 60%

4. M269 Exam — Part 2 has 2 questions 40%

5. M269 Exam — 3 hours, Part 1 100 mins, Part 2 70 mins

6. M269 2014J exam — Part 1

7. M269 2014J exam — Part 2

8. Topics and discussion for each question

9. Exam techniques

10. Two sessions

1.1 Introductions & Revision Strategies

• Introductions
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• What other exams are you doing this year ?

• Each give one exam tip to the group

1.2 M269 Exam 2016J

• Not examined this presentation:

• Unit 4, Section 2 String search

• Unit 7, Section 2 Logic Revisited

• Unit 7, Section 4 Beyond the Limits

2 M269 Prsntn 2014J Exam Qs

2.1 M269 2014J Exam Qs

• M269 Algorithms, Data Structures and Computability

• Presentation 2014J Exam

• Date Monday, 8 June 2015 Time 10:00–13:00

• There are TWO parts to this examination. You should attempt all questions in both
parts

• Part 1 carries 60 marks — 100 minutes

• Part 2 carries 40 marks — 70 minutes

• Note see the original exam paper for exact wording and formatting — these slides
and notes may change some wording and formatting

Go to Exam Soln s

2.2 M269 2014J Exam Q Part1

• Answer every question in this part.

• Answers to questions in this part should be written on this paper in the spaces
provided, or in the case of multiple-choice questions you should tick the appropriate
box(es).

• If you tick more boxes than indicated for a multiple choice question, you will receive
no marks for your answer to that question.

Go to Exam Soln Part1
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3 Units 1 & 2

3.1 Unit 1 Introduction

• Unit 1 Introduction

• Computation, computable, tractable

• Introducing Python

• What are the three most important concepts in programming ?

1. Abstraction

2. Abstraction

3. Abstraction

• Quote from Paul Hudak (1952–2015)

3.2 M269 2014J Exam Q 1

• Question 1 Which two of the following statements are true ? (2 marks)

A. A computational thinker can explain why some computational problems do not have
a good computational solution.

B. The main factor when deciding the best algorithm for a given task is the program-
ming language in which the algorithm is to be implemented.

C. A decision problem can be defined as a formally stated problem to which the answer
is either yes or no.

D. The data structure chosen to hold data does not affect the efficiency of an algorithm
operating on that data.

Go to Exam Soln 1

3.3 M269 2014J Exam Soln 1

• A, C

Go to Exam Q 1

3.4 M269 2014J Exam Q 2

• Question 2 The diagram below shows images of a flight simulator for a single seater
aircraft and an actual single seater aircraft. (2 marks)

http://en.wikipedia.org/wiki/Paul_Hudak
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• Complete the diagram above by adding an appropriate label (one of the numbers
1 to 8) in each of the spaces indicated by A, B, C and D. The possible answers are
shown as 1 to 8 below.

1 . . . represented by

2 . . . ignores detail of

3 . . . solves

4 . . . transforms

5 . . . model

6 . . . part of reality

7 . . . computational problem

8 . . . layer

Go to Exam Soln 2

3.5 M269 2014J Exam Soln 2

A 5 model

B 1 represented by

C 2 ignores detail of

D 6 part of reality

• See Unit 1 section 3.2 Computational thinking and abstraction

Go to Exam Q 2
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3.6 Unit 2 From Problems to Programs

• Unit 2 From Problems to Programs

• Abstract Data Types

• Pre and Post Conditions

• Logic for loops

3.6.1 Example Algorithm Design — Searching

• Given an ordered list (xs) and a value (val), return

– Position of val in xs or

– Some indication if val is not present

• Simple strategy: check each value in the list in turn

• Better strategy: use the ordered property of the list to reduce the range of the list to
be searched each turn

– Set a range of the list

– If val equals the mid point of the list, return the mid point

– Otherwise half the range to search

– If the range becomes negative, report not present (return some distinguished
value)

Binary Search Iterative� �
1 def binarySearchIter ( xs , val ) :
2 lo = 0
3 hi = len ( xs ) – 1

5 while lo <= hi :
6 mid = ( lo + hi ) // 2
7 guess = xs [mid]

9 i f val == guess :
10 return mid
11 e l i f val < guess :
12 hi = mid – 1
13 else :
14 lo = mid + 1

16 return None� �
Binary Search Recursive� �

1 def binarySearchRec (xs , val , lo=0,hi = –1):
2 i f ( hi == –1):
3 hi = len ( xs ) – 1

5 mid = ( lo + hi ) // 2

7 i f hi < lo :
8 return None
9 else :

10 guess = xs [mid]
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11 i f val == guess :
12 return mid
13 e l i f val < guess :
14 return binarySearchRec (xs , val , lo ,mid–1)
15 else :
16 return binarySearchRec (xs , val ,mid+1,hi )� �

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,10) by line 13

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,8) by line 13

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
Return value: 8 by line 11

Binary Search Iterative — Miller & Ranum� �
1 def binarySearchIterMR ( a l i s t , item ) :
2 f i r s t = 0
3 l as t = len ( a l i s t ) –1
4 found = False

6 while f i r s t <=las t and not found :
7 midpoint = ( f i r s t + las t )//2
8 i f a l i s t [ midpoint ] == item :
9 found = True

10 else :
11 i f item < a l i s t [ midpoint ] :
12 l as t = midpoint–1
13 else :
14 f i r s t = midpoint+1

16 return found� �
Miller and Ranum (2011, page 192)

Binary Search Recursive — Miller & Ranum� �
1 def binarySearchRecMR ( a l i s t , item ) :
2 i f len ( a l i s t ) == 0:
3 return False
4 else :
5 midpoint = len ( a l i s t )//2
6 i f a l i s t [ midpoint]==item :
7 return True
8 else :
9 i f item<a l i s t [ midpoint ] :

10 return binarySearchRecMR ( a l i s t [ : midpoint ] , item )
11 else :
12 return binarySearchRecMR ( a l i s t [ midpoint+1:] , item )� �

Miller and Ranum (2011, page 193)
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3.7 M269 2014J Exam Q 3

• Question 3 An insertion sort is being carried out on the list of integers shown below,
so as to arrange the list in ascending numerical order: (4 marks)

54start array 26 93 17 77 44 55 31

• For the first four passes of the algorithm (after assuming that a list with one item is
already sorted), show the order of the items in the list after that pass:

(Pass 1)

(Pass 2)

(Pass 3)

(Pass 4)

Go to Exam Soln 3

3.8 M269 2014J Exam Soln 3

• The sorted part of the list is filled in pale blue with the next item to be inserted in
pale red

26(Pass 1) 54 93 17 77 44 55 31

26(Pass 2) 54 93 17 77 44 55 31

17(Pass 3) 26 54 93 77 44 55 31

17(Pass 4) 26 54 77 93 44 55 31

Go to Exam Q 3

3.9 M269 2014J Exam Q 4

• Question 4 Consider the guard in the following Python while loop header:
(4 marks)� �

while (b > 8) and not ( a < 6 or b <= 8) :� �
(a) Make the following substitutions:

P represents a < 6

Q represents b > 8
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complete the following truth table:

P Q ¬Q P∨¬Q ¬(P∨¬Q) Q∧¬(P∨¬Q)

T T

T F

F T

F F

(b) Use the results from your truth table to choose which one of the following expres-
sions could be used as a simpler equivalent to the above guard.

A. (b > 9 and a < 6)

B. not (a < 6 or b > 8)

C. (a >= 6 and b <= 8)

D. not (a < 6 or b <= 8)

E. (a < 6 and b <= 8)

Go to Exam Soln 4

3.10 M269 2014J Exam Soln 4

(a) Truth table

P Q ¬Q P∨¬Q ¬(P∨¬Q) Q∧¬(P∨¬Q)

T T F T F F

T F T T F F

F T F F T T

F F T T F F

(b) The only row that has True in the final column for the guard is

P = F and Q = T

• This is equivalent to

¬P∧Q

• → ¬(P∨¬Q) hence answer D

Go to Exam Q 4

4 Units 3, 4 & 5

4.1 Unit 3 Sorting

• Unit 3 Sorting

• Elementary methods: Bubble sort, Selection sort, Insertion sort
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• Recursion — base case(s) and recursive case(s) on smaller data

• Quicksort, Merge sort

• Sorting with data structures: Tree sort, Heap sort

• See sorting notes for abstract sorting algorithm

Abstract Sorting Algorithm

unsorted list xs

if (length xs > 1) then
(xs1,xs2) = split xs

xs1 xs2

ys1 = sort xs1 ys2 = sort xs2

ys = join (ys1,ys2)

sorted list ys

Sorting Algorithms

Using the Abstract sorting algorithm, describe the split and join for:

• Insertion sort

• Selection sort

• Merge sort

• Quicksort

• Bubble sort (the odd one out)

4.2 Unit 4 Searching

• Unit 4 Searching

• String searching: Quick search Sunday algorithm, Knuth-Morris-Pratt algorithm

• Hashing and hash tables

• Search trees: Binary Search Trees

• Search trees: Height balanced trees: AVL trees
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4.3 M269 2014J Exam Q 5

• Question 5 Consider the diagrams in A–H. In these diagrams, nodes are represented
by black dots and edges by arrows. The numbers are the keys for the corresponding
nodes. (4 marks)

• Answer the following questions. Write your answer on the line that follows each
question. In each case there is at least one diagram in the answer but there may be
more than one. Explanations are not required.

(a) Which of A, B, C and D do not show trees ?

(b) Which of E, F, G and H are binary trees ?

(c) Which of C, D, G and H are complete binary trees ?

(d) Which of C, D, G and H are binary heaps ?

Go to Exam Soln 5

4.4 M269 2014J Exam Soln 5

(a) In a tree, there is a unique path from the root to each node (graph theory version)

• A is not a tree since 4 can be reached 3–4 or 3–5–4

• B, C, D are trees

(b) In a binary tree, each node has at most two children (graph theory version) Note also
that in a binary tree each child node is either a left or a right child. The inductive
definition of a binary tree: a binary tree is either an empty tree or a node with two
subtrees

• E, G, H are binary trees

(c) In a complete binary tree, every level, except possibly the last, is completely filled,
and all nodes are as far left as possible.

• G, H are complete trees.
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(d) Binary heaps are complete binary trees that satisfy the heap order property. This
property requires that the key of a node is smaller or equal to the key of its children
for min heaps or greater or equal for max heap

• H is a binary heap

Go to Exam Q 5

4.5 M269 2014J Exam Q 6

• Question 6 Consider the following function, which takes an integer n as an argu-
ment. You can assume that n is positive. (4 marks)� �

1 def twiddle (n ) :
2 a = 5
3 for i in range (n ) :
4 for j in range (n ) :
5 x = i * i
6 y = j * j
7 for k in range (n ) :
8 z= i *k
9 ans = (x + y + z ) * a

10 return ans� �
• From the five options below, select the one that represents the correct combination

of T(n) and Big-O complexity for this function. You may assume that a step (i.e. the
basic unit of computation) is the assignment statement.

A. T(n) = n2 + 3n + 2 and O(n2)

B. T(n) = 2n3 + n2 + 2 and O(n3)

C. T(n) = 2n2 + n + 2 and O(2n2)

D. T(n) = 3n2 + 2 and O(n2)

E. T(n) = 2n + 5 and O(n)

• Now explain how you obtained T(n) and the Big-O complexity.

Go to Exam Soln 6

4.6 M269 2014J Exam Soln 6

• D T(n) = 3n2 + 2 and O(n2)

• Explanation:

• 2 assignment statements outside loops

• 3 assignment statements inside two nested loops which are each executed n times
(3n2)

Go to Exam Q 6
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4.7 M269 2014J Exam Q 7

(a) Given an alphabet of ACGT and the target string CAGAGAG, select the option below that
represents the shift table that would be used by the Sunday string search algorithm.

A.
A C G T
1 6 0 8

B.
A C G T
2 1 3 0

C.
A C G T
1 0 2 7

D.
A C G T
2 7 1 8

(b) Assuming a hash table with 20 slots, using the folding method, with 2 as the size of
each part, what would be the hash value of the item 1459862913 ?

• In the box below give the hash value and indicate how you calculated your answer,
showing all steps.

Go to Exam Soln 7

4.8 M269 2014J Exam Soln 7

(a) D

• The shift table for the Sunday Quick Search algorithm:

– If the character does not appear in the target string T, the shift distance is one
more than the length of T

– If the character does appear in T the shift distance is the first position at which
it appears, counting from right to left and starting at 1

(b) Hash value = 1

since (14 + 59 + 86 + 29 + 13) % 20 = 1

Go to Exam Q 7

4.9 M269 2014J Exam Q 8

• Consider the following Binary Search Tree. (4 marks)
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55

34

29

68

59 73

80

85

(a) Calculate the balance factors of each node in the above tree and modify the diagram
to show these balance factors.

(b) Given your calculated balance factors, would this tree need to be rebalanced to be a
valid AVL tree? Give your answer and a brief explanation for your answer in the box
provided below.

Go to Exam Soln 8

4.10 M269 2014J Exam Soln 8

(a) Tree with balance factors

55bf = –2

341

290

68–2

590 73–2

80–1

850

(b) The tree is not a valid AVL tree since some of the balance factors are outside the
range [–1, 0, +1]

• The tree must have become unbalanced as a result of inserting 85

• Rebalancing would mean a left rotation around the node 73 as below (this diagram
was not required in the exam)
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55bf = –1

341

290

68–1

590 800

730 850

Go to Exam Q 8

4.11 Unit 5 Optimisation

• Unit 5 Optimisation

• Graphs searching: DFS, BFS

• Distance: Dijkstra’s algorithm

• Greedy algorithms: Minimum spanning trees, Prim’s algorithm

• Dynamic programming: Knapsack problem, Edit distance

4.12 M269 2014J Exam Q 9

• Question 9 Recall that the structured English for Dijkstra’s algorithm is: (5 marks)� �
create priority~queue
set dist to 0 for v and dist to i n f i n i t y

for a l l other vert ices
add a l l vert ices to priority~queue
ITERATE while priority~queue i s not empty

remove u from the front of the queue
ITERATE over w in the neighbours of u

set new~distance to
dist u + length of edge from u to w

IF new~distance i s less than dist w
set dist w to new~distance
change pr io r i t y (w, new~distance )� �

• Now consider the following weighted graph:

A B

C

D E

F

2

1

6 5

6

2

4

4

3
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• Starting from vertex A, the following table represents the distances from each ver-
tex to A after the second line of structured English is executed for the graph given
above (using the convention that the character ∞ represents infinity):

Vertex A B C D E F

Distance 0 ∞ ∞ ∞ ∞ ∞

• Note that neither the table above nor the subsequent tables represent the priority
queue.

• Now, complete the appropriate boxes in the next table to show the distances after
the first and second iterations of the while loop of the algorithm.

Vertex A B C D E F

Distance 0 First iteration

Distance 0 Second iteration

Go to Exam Soln 9

4.13 M269 2014J Exam Soln 9

• The completed table

Vertex A B C D E F

Distance 0 1 2 ∞ ∞ ∞ First iteration

Distance 0 1 2 7 6 7 Second iteration

• The node being processed has a red background

• Nodes with a final label have a green background

• Neighbours of the node being processed have blue text

Go to Exam Q 9

• The complete iterations
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Vertex A B C D E F

Distance 0 1 2 ∞ ∞ ∞ First iteration

Distance 0 1 2 7 6 7 Second iteration

Distance 0 1 2 4 6 6 Third iteration

Distance 0 1 2 4 6 6 Fourth iteration

Distance 0 1 2 4 6 6 Fifth iteration

Distance 0 1 2 4 6 6 Sixth iteration

Go to Exam Q 9

4.14 M269 2014J Exam Q 10

• Question 10 Consider the following graph: (4 marks)

1

2

34

5

• From the options below, select the two which show possible orders in which the
vertices of the above graph could be visited in a Breadth First Search (BFS) starting
at vertex 2:

A. Vertex 2 3 4 5 1

B. Vertex 2 1 4 5 3

C. Vertex 2 1 3 4 5

D. Vertex 2 5 1 4 3

E. Vertex 2 5 4 3 1

F. Vertex 2 1 3 4 5
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Go to Exam Soln 10

4.15 M269 2014J Exam Soln 10

• B, D

• A Breadth First Search (BFS) from 2 must visit its neighbours in some order first

Go to Exam Q 10

5 Units 6 & 7

5.1 Propositional Logic

M269 Specimen Exam Q11 Topics

• Unit 6

• Sets

• Propositional Logic

• Truth tables

• Valid arguments

• Infinite sets

5.2 M269 2014J Exam Q 11

• Question 11 (4 marks)

(a) What does it mean to say that a well-formed formula (WFF) is a contradiction ? Use
the space below for your answer.

(b) Is the following WFF a contradiction ?

(P∧ (Q∨¬Q))

• Explain how you arrived at your answer in the space below:

Go to Exam Soln 11

5.3 M269 2014J Exam Soln 11

(a) A WFF is a contradiction if it is False in every interpretation — an interpretation is an
assignment of meaning to the symbols of a formal language — here it is assignment
of truth values to P and Q

https://en.wikipedia.org/wiki/Interpretation_(logic)
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(b) Truth table

P Q ¬Q Q∨¬Q (P∧ (Q∨¬Q))

T T F T T

T F T T T

F T F T F

F F T T F

• The statement is not a contradiction — it is satisfiable — it has the same truth value
as P

Go to Exam Q 11

5.4 Predicate Logic

• Unit 6

• Predicate Logic

• Translation to/from English

• Interpretations

5.5 M269 2014J Exam Q 12

• Question 12 A particular interpretation of predicate logic allows facts to be ex-
pressed about cities and people, in particular, facts about who visited and/or liked
which cities. In this interpretation, we will make use of the following two sets:

(6 marks)

cities = {Adelaide, San Francisco, Mumbai}

persons = {Lin, Derren, Gabi}

• Some of the assignments in the interpretation are given below (where the symbol I
is used to show assignment). The interpretation assigns Lin, Derren and Gabi to the
constants lin, derren and gabi.

• I(lin) = Lin I(derren) = Derren I(gabi) = Gabi

• The predicates has_visited and likes are assigned to binary relations. The compre-
hensions of the relations are:

I(has_visited) = {(A, B) : the person A has visited the city B}

I(likes) = {(A, B) : the person A likes the city B}

• The enumerations of the relations are:

I(has_visited) = {(Lin, Adelaide), (Derren, San Francisco), (Gabi, Mumbai), (Gabi, San Fran-
cisco)}

I(likes) = {(Lin, Mumbai), (Lin, San Francisco), (Derren, Mumbai), (Derren, San Francisco),
(Gabi, Adelaide)}

https://en.wikipedia.org/wiki/Satisfiability
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• You will find parts (a) and (b) of this question on the next page, whilst the interpre-
tation is reproduced on the other side of this page.

• In both parts, you are given a sentence of predicate logic and asked to provide an
English translation of the sentence in the box immediately following it.

• You also need to state whether the sentence is TRUE or FALSE in the interpretation
that is provided on this page, and give an explanation of your answer.

• In your explanation you need to consider any relevant values for the variables, and
show, using the interpretation above, whether they make the quantified expression
TRUE or FALSE.

• When your explanation refers to the interpretation, make sure that you use formal
notation.

• So instead of saying that Lin likes Mumbai according to the interpretation, write:

(Lin, Mumbai) ∈ I(likes).

• Similarly, instead of Lin doesn’t like Mumbai you would need to write:

(Lin, Mumbai) ∉ I(likes).

• Interpretation to be used for answering Question 12

• cities = {Adelaide, San Francisco, Mumbai}

• persons = {Lin, Derren, Gabi}

• I(lin) = Lin I(derren) = Derren I(gabi) = Gabi

• I(has_visited) = {(Lin, Adelaide), (Derren, San Francisco), (Gabi, Mumbai), (Gabi, San Fran-
cisco)}

• I(likes) = {(Lin, Mumbai), (Lin, San Francisco), (Derren, Mumbai), (Derren, San Francisco),
(Gabi, Adelaide)}

(a) ∃X.¬(likes(lin, X)∧ likes(derren, X))

can be translated into English as:

• This sentence is (choose from TRUE/FALSE), because:

(b) ∀X.(likes(gabi, X)∨ has_visited(gabi, X))

can be translated into English as:

• This sentence is (choose from TRUE/FALSE), because:

Go to Exam Soln 12
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5.6 M269 2014J Exam Soln 12

(a) ∃X.¬(likes(lin, X)∧ likes(derren, X))

• There is a city that is not liked by both Lin and Derren

• True since X could be Adelaide

(b) ∀X.(likes(gabi, X)∨ has_visited(gabi, X))

• Gabi either likes or has visited all cities

• True since Gabi likes Adelaide and has visited the others.

Go to Exam Q 12

5.7 SQL Queries

M269 Specimen Exam Q13 Topics

• Unit 6

• SQL queries

5.8 M269 2014J Exam Q 13

• Question 13 A database contains the following tables, production_line and product.
(6 marks)

production_line
id unit
Line1 Sportscar
Line2 SUV
Line3 Bus
Line4 Tractor
Line5 Aeroplane

product
type unit_price
SUV 50000
Sportscar 200000
Bus 250000
Tractor 50000
Aeroplane 30000000

(a) For the following SQL query, give the table returned by the query.� �
SELECT id , unit_price
FROM production_line CROSS JOIN product
WHERE unit = type AND unit_price < 300000;� �

(b) Write an SQL query which answers the question Which products cost exactly 50000?
The answer should be the following table:

type
SUV
Tractor
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Go to Exam Soln 13

5.9 M269 2014J Exam Soln 13

(a) The output table

id unit_price

Line1 200000

Line2 50000

Line3 250000

Line4 50000

(b) SQL query� �
SELECT type
FROM product
WHERE unit_price = 50000;� �

Go to Exam Q 13

5.10 Logic

M269 Exam — Q14 topics

• Unit 7

• Proofs

• Natural deduction

Logicians, Logics, Notations

• A plethora of logics, proof systems, and different notations can be puzzling.

• Martin Davis, Logician When I was a student, even the topologists regarded mathe-
matical logicians as living in outer space. Today the connections between logic and
computers are a matter of engineering practice at every level of computer organiza-
tion

• Various logics, proof systems , were developed well before programming languages
and with different motivations,

References: Davis (1995, page 289)

Logic and Programming Languages

• Turing machines, Von Neumann architecture and procedural languages Fortran, C,
Java, Perl, Python, JavaScript

• Resolution theorem proving and logic programming — Prolog

http://en.wikipedia.org/wiki/Martin_Davis
http://en.wikipedia.org/wiki/Von_Neumann_architecture
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• Logic and database query languages — SQL (Structured Query Language) and QBE
(Query-By-Example) are syntactic sugar for first order logic

• Lambda calculus and functional programming with Miranda, Haskell, ML, Scala

Reference: Halpern et al. (2001)

Validity and Justification

• There are two ways to model what counts as a logically good argument:

– the semantic view

– the syntactic view

• The notion of a valid argument in propositional logic is rooted in the semantic view.

• It is based on the semantic idea of interpretations: assignments of truth values to
the propositional variables in the sentences under discussion.

• A valid argument is defined as one that preserves truth from the premises to the
conclusions

• The syntactic view focuses on the syntactic form of arguments.

• Arguments which are correct according to this view are called justified arguments.

Proof Systems, Soundness, Completeness

• Semantic validity and syntactic justification are different ways of modelling the same
intuitive property: whether an argument is logically good.

• A proof system is sound if any statement we can prove (justify) is also valid (true)

• A proof system is adequate if any valid (true) statement has a proof (justification)

• A proof system that is sound and adequate is said to be complete

• Propositional and predicate logic are complete — arguments that are valid are also
justifiable and vice versa

• Unit 7 section 2.4 describes another logic where there are valid arguments that are
not justifiable (provable)

Reference: Chiswell and Hodges (2007, page 86)

Valid arguments

• Unit 6 defines valid arguments with the notation

P1
...

Pn
C

• The argument is valid if and only if the value of C is True in each interpretation for
which the value of each premise Pi is True for 1 ≤ i ≤ n

• In some texts you see the notation {P1, . . . , Pn} |= C

• The expression denotes a semantic sequent or semantic entailment

http://en.wikipedia.org/wiki/Lambda_calculus
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• The |= symbol is called the double turnstile and is often read as entails or models

• In LaTeX î and |= are produced from \vDash and \models — see also the turnstile
package

• In Unicode |= is called TRUE and is U+22A8, HTML &#8872;

• The argument {} |= C is valid if and only if C is True in all interpretations

• That is, if and only if C is a tautology

• Beware different notations that mean the same thing

– Alternate symbol for empty set: ∅ |= C

– Null symbol for empty set: |= C

– Original M269 notation with null axiom above the line:

C

Justified Arguments and Natural Deduction

• Definition 7.1 An argument {P1, P2, . . . , Pn} ` C is a justified argument if and only if
either the argument is an instance of an axiom or it can be derived by means of an
inference rule from one or more other justified arguments.

• Axioms Γ ∪ {A} ` A (axiom schema)

• This can be read as: any formula A can be derived from the assumption (premise) of
{A} itself

• The ` symbol is called the turnstile and is often read as proves, denoting syntactic
entailment

• In LaTeX ` is produced from \vdash

• In Unicode ` is called RIGHT TACK and is U+22A2, HTML &#8866;

See (Thompson, 1991, Chp 1)

• Section 2.3 of Unit 7 (not the Unit 6, 7 Reader) gives the inference rules for →, ∧,
and ∨— only dealing with positive propositional logic so not making use of negation
— see List of logic systems

• Usually (Classical logic) have a functionally complete set of logical connectives —
that is, every binary Boolean function can be expressed in terms the functions in the
set

Inference Rules — Notation

• Inference rule notation:

Argument1 . . . Argumentn
(label)

Argument

http://en.wikipedia.org/wiki/List_of_logic_systems
http://en.wikipedia.org/wiki/Functional_completeness
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Inference Rules — Conjunction

• Γ ` A Γ ` B
(∧-introduction)Γ ` A∧ B

• Γ ` A∧ B
(∧-elimination left)Γ ` A

• Γ ` A∧ B (∧-elimination right)Γ ` B

Inference Rules — Implication

• Γ ∪ {A} ` B
(→-introduction)Γ ` A→ B

• The above should be read as: If there is a proof (justification, inference) for B un-
der the set of premises, Γ , augmented with A, then we have a proof (justification.
inference) of A→ B, under the unaugmented set of premises, Γ .
The unaugmented set of premises, Γ may have contained A already so we cannot
assume

(Γ ∪ {A}) – {A} is equal to Γ
• Γ ` A Γ ` A→ B

(→-elimination)Γ ` B

Inference Rules — Disjunction

• Γ ` A
(∨-introduction left)Γ ` A∨ B

• Γ ` B (∨-introduction right)Γ ` A∨ B

• Disjunction elimination

Γ ` A∨ B Γ ∪ {A} ` C Γ ∪ {B} ` C
(∨-elimination)Γ ` C

• The above should be read: if a set of premises Γ justifies the conclusion A∨ B and Γ
augmented with each of A or B separately justifies C, then Γ justifies C

Proofs in Tree Form

• The syntax of proofs is recursive:

• A proof is either an axiom, or the result of applying a rule of inference to one, two
or three proofs.

• We can therefore represent a proof by a tree diagram in which each node have one,
two or three children

• For example, the proof of {P∧ (P→ Q)} ` Q in Question 4 (in the Logic tutorial notes)
can be represented by the following diagram:

{P∧ (P→ Q)} ` P∧ (P→ Q)
(∧-E left)

{P∧ (P→ Q)} ` P
{P∧ (P→ Q)} ` P∧ (P→ Q)

(∧-E right)
{P∧ (P→ Q)} ` P→ Q

(→-E)
{P∧ (P→ Q)} ` Q
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Self-Assessment activity 7.4 — tree layout

• Let Γ = {P→ R, Q→ R, P∨Q}

• Γ ` P∨Q Γ ∪ {P} ` R Γ ∪ {Q} ` R
(∨-elimination)Γ ` R

• Γ ∪ {P} ` P Γ ∪ {P} ` P→ R
(→-elimination)Γ ∪ {P} ` R

• Γ ∪ {Q} ` Q Γ ∪ {Q} ` Q→ R
(→-elimination)Γ ∪ {Q} ` R

• Complete tree layout

• Γ ` P∨Q

Γ ∪ {P}

` P

Γ ∪ {P}

` P→ R
(→-E)Γ ∪ {P} ` R

Γ ∪ {Q}

` Q

Γ ∪ {Q}

` Q→ R
(→-E)Γ ∪ {Q} ` R

(∨-E)Γ ` R

Self-assessment activity 7.4 — Linear Layout

1. {P→ R, Q→ R, P∨Q} ` P∨Q [Axiom]
2. {P→ R, Q→ R, P∨Q}∪ {P} ` P [Axiom]
3. {P→ R, Q→ R, P∨Q}∪ {P} ` P→ R [Axiom]
4. {P→ R, Q→ R, P∨Q}∪ {Q} ` Q [Axiom]
5. {P→ R, Q→ R, P∨Q}∪ {Q} ` Q→ R [Axiom]
6. {P→ R, Q→ R, P∨Q}∪ {P} ` R [2, 3, →-E]
7. {P→ R, Q→ R, P∨Q}∪ {Q} ` R [4, 5, →-E]
8. {P→ R, Q→ R, P∨Q} ` R [1, 6, 7, ∨-E]

5.11 M269 2014J Exam Q 14

• Question 14 Consider the following axiom schema and rules: (4 marks)

Axiom schema {A} ` A

Rules Γ ` A∧ B
(∧-elimination left)Γ ` AΓ ` A∧ B (∧-elimination right)Γ ` BΓ ` A Γ ` B

(∧-introduction)Γ ` A∧ BΓ ∪ {A} ` B
(→-introduction)Γ ` A→ BΓ ` A Γ ` A→ B

(→-elimination)Γ ` B

• Complete the following proof by filling in the two boxes. You can use any of the
above as appropriate.

1. {(V∧W)} ` (V∧W) [Axiom schema]

2. ?? ?? [1 ∧-elimination right]

3. � ` (V∧W)→ W ?? ??

Go to Exam Soln 14
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5.12 M269 2014J Exam Soln 14

• Completed proof

1. {(V∧W)} ` (V∧W) [Axiom schema]

2. {(V∧W)} ` W [1 ∧-elimination right]

3. � ` (V∧W)→ W 2 →-introduction

• Note � is a symbol for the empty set (in LaTeX \varnothing)

• You could also use {} (or even leave a blank, but that would not be good practice)

Go to Exam Q 14

5.13 Computability

M269 Specimen Exam — Q15 Topics

• Unit 7

• Computability and ideas of computation

• Complexity

• P and NP

• NP-complete

Ideas of Computation

• The idea of an algorithm and what is effectively computable

• Church-Turing thesis Every function that would naturally be regarded as com-
putable can be computed by a deterministic Turing Machine. (Unit 7 Section 4)

• See Phil Wadler on computability theory performed as part of the Bright Club at The
Strand in Edinburgh, Tuesday 28 April 2015

Reducing one problem to another

• To reduce problem P1 to P2, invent a construction that converts instances of P1 to
P2 that have the same answer. That is:

– any string in the language P1 is converted to some string in the language P2

– any string over the alphabet of P1 that is not in the language of P1 is converted
to a string that is not in the language P2

• With this construction we can solve P1

– Given an instance of P1, that is, given a string w that may be in the language
P1, apply the construction algorithm to produce a string x

– Test whether x is in P2 and give the same answer for w in P1

(Hopcroft et al., 2007, page 322)

http://wadler.blogspot.co.uk/2015/05/bright-club-computability.html
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• The direction of reduction is important

• If we can reduce P1 to P2 then (in some sense) P2 is at least as hard as P1 (since a
solution to P2 will give us a solution to P1)

• So, if P2 is decidable then P1 is decidable

• To show a problem is undecidable we have to reduce from an known undecidable
problem to it

• ∀x(dpP1(x) = dpP2
(reduce(x)))

• Since, if P1 is undecidable then P2 is undecidable

Computability — Models of Computation

• In automata theory, a problem is the question of deciding whether a given string is
a member of some particular language

• If Σ is an alphabet, and L is a language over Σ, that is L ⊆ Σ∗, where Σ∗ is the set
of all strings over the alphabet Σ then we have a more formal definition of decision
problem

• Given a string w ∈ Σ∗, decide whether w ∈ L

• Example: Testing for a prime number — can be expressed as the language Lp con-
sisting of all binary strings whose value as a binary number is a prime number (only
divisible by 1 or itself)

(Hopcroft et al., 2007, section 1.5.4)

Computability — Church-Turing Thesis

• Church-Turing thesis Every function that would naturally be regarded as com-
putable can be computed by a deterministic Turing Machine.

• physical Church-Turing thesis Any finite physical system can be simulated (to any
degree of approximation) by a Universal Turing Machine.

• strong Church-Turing thesis Any finite physical system can be simulated (to any
degree of approximation) with polynomial slowdown by a Universal Turing Machine.

• Shor’s algorithm (1994) — quantum algorithm for factoring integers — an NP prob-
lem that is not known to be P — also not known to be NP-complete and we have no
proof that it is not in P

Reference: Section 4 of Unit 6 & 7 Reader

Computability — Turing Machine

• Finite control which can be in any of a finite number of states

• Tape divided into cells, each of which can hold one of a finite number of symbols

• Initially, the input, which is a finite-length string of symbols in the input alphabet, is
placed on the tape

http://en.wikipedia.org/wiki/Shor's_algorithm
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• All other tape cells (extending infinitely left and right) hold a special symbol called
blank

• A tape head which initially is over the leftmost input symbol

• A move of the Turing Machine depends on the state and the tape symbol scanned

• A move can change state, write a symbol in the current cell, move left, right or stay

References: Hopcroft et al. (2007, page 326), Unit 6 & 7 Reader (section 5.3)

Turing Machine Diagram

. . . b b a a a a . . . Input/Output Tape

q0q1

q2

q3 . . .

qn

Finite Control

q1

Reading and Writing Head
(moves in both directions)

Source: Sebastian Sardina http://www.texample.net/tikz/examples/turing-machine-
2/
Date: 18 February 2012 (seen Sunday, 24 August 2014)
Further Source: Partly based on Ludger Humbert’s pics of Universal Turing Machine at
https://haspe.homeip.net/projekte/ddi/browser/tex/pgf2/turingmaschine-schema.tex
(not found) — http://www.texample.net/tikz/examples/turing-machine/

Turing Machine notation

• Q finite set of states of the finite control

• Σ finite set of input symbols (M269 S)

• Γ complete set of tape symbols Σ ⊂ Γ
• δ Transition function (M269 instructions, I)
δ :: Q× Γ → Q× Γ × {L, R, S}
δ(q, X) , (p, Y, D)

• δ(q, X) takes a state, q and a tape symbol, X and returns (p, Y, D) where p is a state,
Y is a tape symbol to overwrite the current cell, D is a direction, Left, Right or Stay

• q0 start state q0 ∈ Q

• B blank symbol B ∈ Γ and B ∉ Σ
• F set of final or accepting states F ⊆ Q

http://www.texample.net/tikz/examples/turing-machine-2/
http://www.texample.net/tikz/examples/turing-machine-2/
https://haspe.homeip.net/projekte/ddi/browser/tex/pgf2/turingmaschine-schema.tex
http://www.texample.net/tikz/examples/turing-machine/
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Computability — Decidability

• Decidable — there is a TM that will halt with yes/no for a decision problem — that
is, given a string w over the alphabet of P the TM with halt and return yes.no the
string is in the language P (same as recursive in Recursion theory — old use of the
word)

• Semi-decidable — there is a TM will halt with yes if some string is in P but may loop
forever on some inputs (same as recursively enumerable) — Halting Problem

• Highly-undecidable — no outcome for any input — Totality, Equivalence Problems

Undecidable Problems

• Halting problem — the problem of deciding, given a program and an input, whether
the program will eventually halt with that input, or will run forever — term first used
by Martin Davis 1952

• Entscheidungsproblem — the problem of deciding whether a given statement is
provable from the axioms using the rules of logic — shown to be undecidable by
Turing (1936) by reduction from the Halting problem to it

• Type inference and type checking in the second-order lambda calculus (important
for functional programmers, Haskell, GHC implementation)

• Undecidable problem — see link to list

(Turing, 1936, 1937)

Why undecidable problems must exist

• A problem is really membership of a string in some language

• The number of different languages over any alphabet of more than one symbol is
uncountable

• Programs are finite strings over a finite alphabet (ASCII or Unicode) and hence count-
able.

• There must be an infinity (big) of problems more than programs.

Reference: Hopcroft et al. (2007, page 318)

Computability and Terminology

• The idea of an algorithm dates back 3000 years to Euclid, Babylonians. . .

• In the 1930s the idea was made more formal: which functions are computable?

• A function a set of pairs f = {(x, f(x)) : x ∈ X∧ f(x) ∈ Y} with the function property

• Function property: (a, b) ∈ f∧ (a, c) ∈ f⇒ b == c

• Function property: Same input implies same output

• Note that maths notation is deeply inconsistent here — see Function and History of
the function concept

http://en.wikipedia.org/wiki/Recursion_theory
http://en.wikipedia.org/wiki/Halting_problem
http://en.wikipedia.org/wiki/Entscheidungsproblem
http://en.wikipedia.org/wiki/System_F
http://en.wikipedia.org/wiki/Undecidable_problem
http://en.wikipedia.org/wiki/Computable_function
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/History_of_the_function_concept
http://en.wikipedia.org/wiki/History_of_the_function_concept
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• What do we mean by computing a function — an algorithm ?

• In the 1930s three definitions:

• λ-Calculus, simple semantics for computation — Alonzo Church

• General recursive functions — Kurt Gödel

• Universal (Turing) machine — Alan Turing

• Terminology:

– Recursive, recursively enumerable — Church, Kleene

– Computable, computably enumerable — Gödel, Turing

– Decidable, semi-decidable, highly undecidable

– In the 1930s, computers were human

– Unfortunate choice of terminology

• Turing and Church showed that the above three were equivalent

• Church-Turing thesis — function is intuitively computable if and only if Turing ma-
chine computable

Sources on Computability Terminology

• Soare (1996) on the history of the terms computable and recursive meaning calcula-
ble

• See also Soare (2013, sections 9.9–9.15) in Copeland et al. (2013)

5.14 M269 2014J Exam Q 15

(a) Complete the following sentence in the box below:

The statement If a computational problem is in NP, then it must be intractable may
be false because

(b) Consider the following Turing Machine:

$ EMPTY
0 WRITE $

MOVE RIGHT
NEXT STATE 1

1 WRITE blank WRITE $
MOVE LEFT MOVE RIGHT
NEXT STATE 0 NEXT STATE 0

• Assume that the starting state is 0 and that the input tape consists of empty squares.

• One square is marked as the current square with the tape head, shown here as

s=n where n is the current state

http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Alonzo_Church
http://en.wikipedia.org/wiki/Μ-recursive_function
http://en.wikipedia.org/wiki/Kurt_Gödel
http://en.wikipedia.org/wiki/Universal_Turing_machine
http://en.wikipedia.org/wiki/Alan_Turing
http://en.wikipedia.org/wiki/Stephen_Cole_Kleene
http://en.wikipedia.org/wiki/Church–Turing_thesis
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• So, initially the tape looks as follows:

. . .Initial tape: . . .

s=0

• Note it the original exam the tape cells and head are denoted by ASCII symbols

• Using the same notation, write down what the tape looks like after each of the next
two steps of the computation.

• Use the boxes below for this.

• After the first step

. . .First step: . . .

• After the second step

. . .Second step: . . .

Go to Exam Soln 15

5.15 M269 2014J Exam Soln 15

(a) P is a subset of NP but we do not know if it is a proper subset — so the problem may
be in P

(b) After the first step

. . .First step: $ . . .

s=1

• After the second step

. . .Second step: $ $ . . .

s=0

Go to Exam Q 15

5.16 Complexity

P and NP

• P, the set of all decision problems that can be solved in polynomial time on a deter-
ministic Turing machine

• NP, the set of all decision problems whose solutions can be verified (certificate) in
polynomial time

http://en.wikipedia.org/wiki/P_(complexity)
http://en.wikipedia.org/wiki/NP_(complexity)
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• Equivalently, NP, the set of all decision problems that can be solved in polynomial
time on a non-deterministic Turing machine

• A decision problem, dp is NP-complete if

1. dp is in NP and

2. Every problem in NP is reducible to dp in polynomial time

• NP-hard — a problem satisfying the second condition, whether or not it satisfies the
first condition. Class of problems which are at least as hard as the hardest problems
in NP. NP-hard problems do not have to be in NP and may not be decision problems

Euler diagram for P, NP, NP-complete and NP-hard set of problems

Source: Wikipedia NP-complete entry

NP-complete problems

• Boolean satisfiability (SAT) Cook-Levin theorem

• Conjunctive Normal Form 3SAT

• Hamiltonian path problem

• Travelling salesman problem

• NP-complete — see list of problems

http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/Euler_diagram
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Cook-Levin_theorem
http://en.wikipedia.org/wiki/3-satisfiability
http://en.wikipedia.org/wiki/Hamiltonian_path_problem
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/NP-complete
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XKCD on NP-Complete Problems

Source & Explanation: XKCD 287

5.16.1 NP-Completeness and Boolean Satisfiability

• The Boolean satisfiability problem (SAT) was the first decision problem shown to be
NP-Complete

• This section gives a sketch of an explanation

• Health Warning different texts have different notations and there will be some in-
consistency in these notes

• Health warning these notes use some formal notation to make the ideas more pre-
cise — computation requires precise notation and is about manipulating strings ac-
cording to precise rules.

Alphabets, Strings and Languages

• Notation:

• Σ is a set of symbols — the alphabet

• Σk is the set of all string of length k, which each symbol from Σ
• Example: if Σ = {0, 1}

– Σ1 = {0, 1}

– Σ2 = {00, 01, 10, 11}

• Σ0 = {ε} where ε is the empty string

http://www.explainxkcd.com/wiki/index.php/287:_NP-Complete
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
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• Σ∗ is the set of all possible strings over Σ
• Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ . . .

• A Language, L, over Σ is a subset of Σ∗
• L ⊆ Σ∗

Language Accepted by a Turing Machine

• Language accepted by Turing Machine, M denoted by L(M)

• L(M) is the set of strings w ∈ Σ∗ accepted by M

• For Final States F = {Y, N}, a string w ∈ Σ∗ is accepted by M a (if and only if) M
starting in q0 with w on the tape halts in state Y

• Calculating a function (function problem) can be turned into a decision problem by
asking whether f(x) = y

The NP-Complete Class

• If we do not know if P ≠ NP, what can we say ?

• A language L is NP-Complete if:

– L ∈ NP and

– for all other L′ ∈ NP there is a polynomial time transformation (Karp reducible,
reduction) from L′ to L

• Problem P1 polynomially reduces (Karp reduces, transforms) to P2, written P1 ∝ P2
or P1 ≤p P2, iff ∃f : dpP1 → dpP2

such that

– ∀I ∈ dpP1[I ∈ YP1 a f(I) ∈ YP2]

– f can be computed in polynomial time

• More formally, L1 ⊆ Σ∗1 polynomially transforms to L2 ⊆ Σ∗2 , written L1 ∝ L2 or
L1 ≤p L2, iff ∃f : Σ∗1 → Σ∗2 such that

– ∀x ∈ Σ∗1 [x ∈ L1 a f(x) ∈ L2]

– There is a polynomial time TM that computes f

• Transitivity If L1 ∝ L2 and L2 ∝ L3 then L1 ∝ L3

• If L is NP-Hard and L ∈ P then P = NP

• If L is NP-Complete, then L ∈ P if and only if P = NP

• If L0 is NP-Complete and L ∈ NP and L0 ∝ L then L is NP-Complete

• Hence if we find one NP-Complete problem, it may become easier to find more

• In 1971/1973 Cook-Levin showed that the Boolean satisfiability problem (SAT) is
NP-Complete

http://en.wikipedia.org/wiki/Function_problem
http://en.wikipedia.org/wiki/Decision_problem
http://en.wikipedia.org/wiki/Cook–Levin_theorem
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
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The Boolean Satisfiability Problem

• A propositional logic formula or Boolean expression is built from variables, opera-
tors: AND (conjunction, ∧), OR (disjunction, ∨), NOT (negation, ¬)

• A formula is said to be satisfiable if it can be made True by some assignment to its
variables.

• The Boolean Satisfiability Problem is, given a formula, check if it is satisfiable.

– Instance: a finite set U of Boolean variables and a finite set C of clauses over U

– Question: Is there a satisfying truth assignment for C ?

• A clause is is a disjunction of variables or negations of variables

• Conjunctive normal form (CNF) is a conjunction of clauses

• Any Boolean expression can be transformed to CNF

• Given a set of Boolean variable U = {u1, u2, . . . , un}

• A literal from U is either any ui or the negation of some ui (written ui)

• A clause is denoted as a subset of literals from U — {u2, u4, u5}

• A clause is satisfied by an assignment to the variables if at least one of the literals
evaluates to True (just like disjunction of the literals)

• Let C be a set of clauses over U — C is satisfiable iff there is some assignment of
truth values to the variables so that every clause is satisfied (just like CNF)

• C = {{u1, u2, u3}, {u2, u3}, {u2, u3}} is satisfiable

• C = {{u1, u2}, {u1, u2}, {u1}} is not satisfiable

• Proof that SAT is NP-Complete looks at the structure of NDTMs and shows you can
transform any NDTM to SAT in polynomial time (in fact logarithmic space suffices)

• SAT is in NP since you can check a solution in polynomial time

• To show that ∀L ∈ NP : L∝ SAT invent a polynomial time algorithm for each polyno-
mial time NDTM, M, which takes as input a string x and produces a Boolean formula
Ex which is satisfiable iff M accepts x

• See Cook-Levin theorem

Sources

• Garey and Johnson (1979, page 34) has the notation L1 ∝ L2 for polynomial trans-
formation

• Arora and Barak (2009, page 42) has the notation L1 ≤p L2 for polynomial-time Karp
reducible

• The sketch of Cook’s theorem is from Garey and Johnson (1979, page 38)

• For the satisfiable C we could have assignments (u1, u2, u3) ∈ {(T, T, F), (T, F, F), (F, T, F)}

http://en.wikipedia.org/wiki/Cook-Levin_theorem
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Coping with NP-Completeness

• What does it mean if a problem is NP-Complete ?

– There is a P time verification algorithm.

– There is a P time algorithm to solve it iff P = NP (?)

– No one has yet found a P time algorithm to solve any NP-Complete problem

– So what do we do ?

• Improved exhaustive search — Dynamic Programming; Branch and Bound

• Heuristic methods — acceptable solutions in acceptable time — compromise on op-
timality

• Average time analysis — look for an algorithm with good average time — compro-
mise on generality (see Big-O Algorithm Complexity Cheatsheet)

• Probabilistic or Randomized algorithms — compromise on correctness

Sources

• Practical Solutions for Hard Problems Rich (2007, chp 30)

• Coping with NP-Complete Problems Garey and Johnson (1979, chp 6)

6 M269 Exam 2014J Q Part2

• Answer every question in this part.

• The marks for each question are given at the end of the question.

• Answers to this part should be written in the separate answer book.

Go to Exam 2014J Soln Part2

6.1 M269 2014J Exam Q 16

• The Book Brigade is a start-up online bookseller specialising in electronic books.

• The company asks customers to rate the books they have read on a scale of 1 (dross)
to 10 (magnificent), and maintains data in two sequences, B and R.

1. B is an unsorted sequence of ISBNs (International Standard Book Numbers — a unique
numerical code for every book published), together with the title of the book the ISBN
denotes. Thus each item in B is itself a 2-tuple with items: (1) the ISBN, and (2) the
title.

2. R is an unsorted sequence of ISBNs with, for each item, a list of customer ratings for
that book. Each item in R is also a 2-tuple with items: (1) the ISBN, and (2) a sequence
of ratings.

• Some books in B may not have been rated, and these will not appear in R. Moreover,
the order of books in R is not necessarily the same as the order in B.

http://bigocheatsheet.com
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(a) The company requires a computer system that generates a list of book titles that
have been rated, with the average rating of each. Unrated books should not appear
in this list. (5 marks)

(i) Using the following template, formally state this as a computational problem, in the
style adopted by M269.

Name: BookRatings

Inputs:

Outputs:

(ii) Suggest one possible postcondition for this computational problem.

(b) Sketch out an initial insight for a computational solution of the BookRatings problem.
(6 marks)

(c) Many potential solutions to the BookRatings problem may be inefficient, arising from
the fact that neither B nor R are sorted.

• The Book Brigade now require a more efficient solution which will require that both
these lists, and the list of results returned by the system, will be sorted.

• Since all these lists are likely to be very long, an efficient sorting algorithm is re-
quired, and it has been decided to use Quicksort.

(i) Write a short paragraph explaining the process by which Quicksort sorts a list in-
place; (5 marks)

(c) (ii) The list

44 55 12 42 94 18 6 67

• is being sorted using an in-place Quicksort, with the first item of a partition being
chosen as the pivot.

• Draw diagrams illustrating the pivot and the left and right pointers: (5 marks)

(1) at the very start (of the first pass),

(2) immediately before the first swap and

(3) immediately before the second swap.

(d) Storing data items (e.g. book title, ratings) that are associated with a key (e.g. ISBN)
in a list, as Book Brigade have opted to do, can be problematic, in particular because
retrieval may be slow when there are very large numbers of keys. A more suitable
means of storage is to associate keys with their data in a hash table.

(d) (contd) Write two short paragraphs such that

– the first paragraph explains the basic principles of hash tables and hashing
(about 5 sentences), and

– the second paragraph outlines one problem that might arise from hashing, and
mentions a strategy for addressing the aforementioned problem (about 3 sen-
tences).

• You do not need to describe the details of specific hashing functions or strategies.
(4 marks)
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Go to Soln 16

6.2 M269 2014J Exam Q 17

• An educational TV show is planning to do a presentation on the Halting Problem. To
brief them, you’ve been asked to write a report for the producers. Assume that the
producers do not have a background in computer science.

• Your report must have the following structure:

1. A suitable title

2. A paragraph setting the scene and explaining in layperson’s terms what is meant by
the Halting Problem [about two sentences]

3. One paragraph in which you describe the relationship between the Halting Problem
and a Turing Machine [about two sentences]

4. One paragraph in which you describe (and give an example in layperson’s terms of)
proof by contradiction [about three sentences]

5. A conclusion, giving reasons, about the significance of the Halting Problem not being
computable [one sentence]

• Note that a significant number of marks will be awarded for coherence and clarity,
so avoid abrupt changes of topic and make sure your sentences fit together to tell
an overall story.

• Allow up to four additional sentences to ensure this, although note that the numbers
of sentences specified, in points 1 to 5 above and in this paragraph, are for guidance
only. (15 marks)

Go to Soln 17

7 M269 Exam 2014J Soln Part2

• Part 2 solutions

Go to Exam 2014J Q Part2

7.1 M269 2014J Exam Soln 16

(a) (i)

Name: BookRatings

Inputs: An unsorted sequence of tuples B = (b1, b2, . . . , bn) where bn = (in, tn) and
ISBN, in, and title,tn, are strings.

An unsorted sequence of tuples R = (r1, r2, . . . , rk) where rk = (ik, lk) and ik is an ISBN
and lk is a list of ratings (0–10)
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Outputs: a list of tuples O = (o1, o2, . . . , op) where op = (tp, ap) and tp is a title and
ap is a real number between 0 and 10.

• (ii) The length of R must equal the length of O, k = p

(b) Generate the elements of O by iterating over R

• For each element of R, find the title from the ISBN by iterating over B

• and calculate the average rating from the list of ratings

(c) (i) Quicksort chooses an item in the list to be the pivot item.

• The algorithm partitions the list into two sublists

• One list comprises items in the list less than the pivot

• The other list comprises the elements in the list greater than or equal to the pivot

• Recursively sort the sub lists (with Quicksort)

• Join the sorted sub lists together with the pivot

• An array based implementation uses two pointers, leftMK and rightMK, to do the
partitioning in place

• At the start of the first pass

44 55 12 42 94 18 6 67

Pi
vo

t

le
ft

M
K

ri
g
h
M

K

• Before the first swap

44 55 12 42 94 18 6 67
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• Before the second swap

44 6 12 42 94 18 55 67
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(d) Hash function and hash tables

• Hash function maps each input key to a hash value (or slot)

• Perfect hash function maps each key to a different hash value

• Limited storage leads to hash functions having collisions — a hash function mapping
two keys to the same slot

• Hash function collisions result in the need to either store multiple items in a single
slot (closed table) or open addressing/open tables that use some mechanism to find
a free slot

Go to Q 16

https://en.wikipedia.org/wiki/Hash_function
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7.2 M269 2014J Exam Soln 17

• Title The Significance of the Halting Problem

• Definition Can we write an algorithm (a program) that will check whether any other
program (algorithm) will terminate (halt) or loop forever

• We need a formal definition of algorithm — hence the need for the definition of
Turing machine

• Turing machine (and the equivalent Lambda Calculus and others) formalises our idea
of functions that are computable — functions that can be calculated.

• Proof by argument similar to Cantor’s Diagonal argument and Proof by contradiction

• Direct consequences in mathematics and computer science — the Entscheidungsprob-
lem from David Hilbert 1928 — can we have an algorithm that takes a statement in
first order logic and checks if it is valid

Go to Q 17

8 White Slide

9 Web Sites & References

9.1 Web Sites

• Logic

– WFF, WFF’N Proof online http://www.oercommons.org/authoring/1364-basic-
wff-n-proof-a-teaching-guide/view

• Computability

– Computability

– Computable function

– Decidability (logic)

– Turing Machines

– Universal Turing Machine

– Turing machine simulator

– Lambda Calculus

– Von Neumann Architecture

– Turing Machine XKCD http://www.explainxkcd.com/wiki/index.php/205:
_Candy_Button_Paper

– Turing Machine XKCD http://www.explainxkcd.com/wiki/index.php/505:
_A_Bunch_of_Rocks

https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument
https://en.wikipedia.org/wiki/Entscheidungsproblem
https://en.wikipedia.org/wiki/Entscheidungsproblem
http://en.wikipedia.org/wiki/Well-formed_formula
http://www.oercommons.org/authoring/1364-basic-wff-n-proof-a-teaching-guide/view
http://www.oercommons.org/authoring/1364-basic-wff-n-proof-a-teaching-guide/view
http://en.wikipedia.org/wiki/Computability
http://en.wikipedia.org/wiki/Computable_function
http://en.wikipedia.org/wiki/Decidability_(logic)
http://en.wikipedia.org/wiki/Turing_machine
http://en.wikipedia.org/wiki/Universal_Turing_machine
http://morphett.info/turing/turing.html
http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Von_Neumann_architecture
http://www.explainxkcd.com/wiki/index.php/205:_Candy_Button_Paper
http://www.explainxkcd.com/wiki/index.php/205:_Candy_Button_Paper
http://www.explainxkcd.com/wiki/index.php/505:_A_Bunch_of_Rocks
http://www.explainxkcd.com/wiki/index.php/505:_A_Bunch_of_Rocks
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– Phil Wadler Bright Club on Computability http://wadler.blogspot.co.uk/2015/05/bright-
club-computability.html

• Complexity

– Complexity class

– NP complexity

– NP complete

– Reduction (complexity)

– P versus NP problem

– Graph of NP-Complete Problems

Acknowledgements Toby Thurston for sample answers

Note on References — the list of references is mainly to remind me where I obtained
some of the material and is not required reading.
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