M269

Exam Revision

Contents

1 M269 Exam Revision Agenda & Aims
1.1 Revision strategies e e e e e e e e e e e

2 Units6 &7
2.1 Computability

2.1.1 M269 Exam 2013JQ 15 o e

2.2 Complexity .

2.2.1 NP-Completeness and Boolean Satisfiability

2.3 Logic.. ...

2.3.1 M269 Exam 2013JQ 14 e

2.4 SQL Queries .

2.4.1 M269 Exam 2013JQ 13 o i e e e e
2.5 Predicate LOgiC e e e e e e e e e
2.5.1 M269 Exam 2013JQ 12 o i i e e e e e
2.6 Propositional Logic. e e
2.6.1 M269 Exam 2013JQ 11 o e e e

3 Units 3,4 &5

3.1 Unit 5 Optimisation it e e e e e
3.1.1 M269 Exam 2013JQ 10 o i e e e e
3.1.2 M269 Exam 2013J Q 9. o i e e e

3.2 Unit4 Searching i i e e e e e e e
3.2.1 M269 Exam 2013JQ 8. e e
3.2.2 M269 Exam 2013J Q 7 i i i e e e e e e e e

3.3 Unit 3 Sorting

3.3.1 M269Exam 2013J Q6. i e
3.3.2 M269 Exam 2013J Q5.

4 Units 1 &2

4.1 Unit 2 From Problems to Programs
4.1.1 M269 Exam 2013J Q4. o i e e e e e
4.1.2 M269 Exam 2013J Q 3. e e e
4.1.3 Example Algorithm Design — Searching

4.2 Unit 1 Introduction. e e e
4.2.1 M269Exam 2013J Q 2. i i e e e e
4.2.2 M269 Exam 2013J Q T o i e e e e e e

5 M269 Exam Section 2
5.1 M269 Exam 2013JQ 16 o ot i i e e e e e e e e e e e e e
5.1.1 M269 Exam 2013J Q 16 Text v v v i i i e e e e e e e e e e e
5.2 M269 Exam 2013 Q 17 o i i e e e e e e e e e e e e e
5.2.1 M269 Exam 2013J Q 17 Text o i v i i i i e e e e e e e e

6 Exam Techniques

2 M269 14 May 2016

7 Epilogue: Logic, Programming and Computation 36
8 White Slide 37
9 Web Sites & References 37
9.1 Web Sites e e e e e s, 37
References 38

1 M269 Exam Revision Agenda & Aims

1. Welcome and introductions

. Revision strategies

. M269 Exam — Part 1 has 15 questions 60%

. M269 Exam — Part 2 has 2 questions 40%

. M269 Exam — 3 hours, Part 1 100 mins, Part 2 70 mins
. M269 2013) exam — Part 1 in reverse order

. M269 2013) exam — Part 2 in notes version

0 N O v b~ W N

. Note: In 2015J the exam does not assess Sections 3 and 4 of Unit 7, Chapter 6 of
the Reader — Computational Complexity and P vs NP

O

. Topics and discussion for each question

10. Exam techniques

1.1 Revision strategies

e Introductions
e What other exams are you doing this year ?

e Each give one exam tip to the group

2 Units6 &7

2.1 Computability

M269 Specimen Exam — Q15 Topics
e Unit7
e Computability and ideas of computation
e Complexity
e P and NP

NP-complete

Phil Molyneux Exam Revision 3

Ideas of Computation
e The idea of an algorithm and what is effectively computable

e Church-Turing thesis Every function that would naturally be regarded as com-
putable can be computed by a deterministic Turing Machine. (Unit 7 Section 4)

e See Phil Wadler on computability theory performed as part of the Bright Club at The
Strand in Edinburgh, Tuesday 28 April 2015

2.1.1 M269 Exam 2013J Q15

e Which two of the following statements are true?
A. A Turing Machine is a mathematical model of computational problems.

B. If the lower bound for a computational problem is O(n?), then there is an algorithm
that solves the problem and which has complexity O(n?).

C. Searching a sorted list is not in the class NP.
D. The decision Travelling Salesperson Problem is NP-complete.

E. There is no known tractable quantum algorithm for solving a known NP-complete
problem.

M269 Exam 2013J Q 15 Solution
e Only D and E are true.

e A Universal Turing Machine can compute any computable sequence but there are
well defined problems that are not computable. (So not A)

e A lower bound may be lower than any actual algorithm. (So not B)

e Every problem in P is in NP — we just do not know if P == NP (So not C)

Reducing one problem to another

e To reduce problem P; to Py, invent a construction that converts instances of Py to
P> that have the same answer. That is:

- any string in the language Py is converted to some string in the language P;

- any string over the alphabet of P; that is not in the language of P is converted
to a string that is not in the language P>

e With this construction we can solve P

- Given an instance of Py, that is, given a string w that may be in the language
P1, apply the construction algorithm to produce a string x

- Test whether x is in P, and give the same answer for w in Py
(Hopcroft et al., 2007, page 322)

e The direction of reduction is important

http://wadler.blogspot.co.uk/2015/05/bright-club-computability.html

4 M269 14 May 2016

e If we can reduce P7 to P, then (in some sense) P> is at least as hard as Py (since a
solution to P> will give us a solution to Py)

e So, if P, is decidable then Py is decidable

e To show a problem is undecidable we have to reduce from an known undecidable
problem to it

e Vx(dpp, (x) = dpp, (reduce(x)))

e Since, if Py is undecidable then P, is undecidable

Computability — Models of Computation

e In automata theory, a problem is the question of deciding whether a given string is
a member of some particular language

e If X is an alphabet, and L is a language over I, that is L = =*, where 3* is the set
of all strings over the alphabet > then we have a more formal definition of decision
problem

e Given a string w € =*, decide whetherw € L

e Example: Testing for a prime number — can be expressed as the language Lp con-
sisting of all binary strings whose value as a binary number is a prime number (only
divisible by 1 or itself)

(Hopcroft et al., 2007, section 1.5.4)

Computability — Church-Turing Thesis

e Church-Turing thesis Every function that would naturally be regarded as com-
putable can be computed by a deterministic Turing Machine.

e physical Church-Turing thesis Any finite physical system can be simulated (to any
degree of approximation) by a Universal Turing Machine.

e strong Church-Turing thesis Any finite physical system can be simulated (to any
degree of approximation) with polynomial slowdown by a Universal Turing Machine.

e Shor’s algorithm (1994) — quantum algorithm for factoring integers — an NP prob-
lem that is not known to be P — also not known to be NP-complete and we have no
proof that it is not in P

Reference: Section 4 of Unit 6 & 7 Reader

Computability — Turing Machine
e Finite control which can be in any of a finite number of states
e Tape divided into cells, each of which can hold one of a finite number of symbols

e Initially, the input, which is a finite-length string of symbols in the input alphabet, is
placed on the tape

e All other tape cells (extending infinitely left and right) hold a special symbol called
blank

http://en.wikipedia.org/wiki/Shor's_algorithm

Phil Molyneux Exam Revision 5

e A tape head which initially is over the leftmost input symbol
e A move of the Turing Machine depends on the state and the tape symbol scanned
e A move can change state, write a symbol in the current cell, move left, right or stay

References: Hopcroft et al. (2007, page 326), Unit 6 & 7 Reader (section 5.3)

Turing Machine Diagram

blblafla|]a]a -+ Input/Output Tape

@ p

Reading and Writing Head

(moves in both directions)

az / Un

a1 do

Finite Control

Source: Sebastian Sardina http://www.texample.net/tikz/examples/turing-machine-

2/

Date: 18 February 2012 (seen Sunday, 24 August 2014)

Further Source: Partly based on Ludger Humbert’s pics of Universal Turing Machine at
https://haspe.homeip.net/projekte/ddi/browser/tex/pgf2/turingmaschine-schema.tex
(not found) — http://www.texample.net/tikz/examples/turing-machine/

Turing Machine notation
e Q finite set of states of the finite control

e 3 finite set of input symbols (M269 S)

I' complete set of tape symbols 3 C T

o Transition function (M269 instructions, 1)
0.:QxTI—-QxTIx{L,R,S}
0(g,X) = (p,Y,D)

0(q, X) takes a state, q and a tape symbol, X and returns (p,Y, D) where p is a state,
Y is a tape symbol to overwrite the current cell, D is a direction, Left, Right or Stay

qo Start state qg € Q
B blank symbol B €T and B ¢ X

F set of final or accepting states F < Q

http://www.texample.net/tikz/examples/turing-machine-2/
http://www.texample.net/tikz/examples/turing-machine-2/
https://haspe.homeip.net/projekte/ddi/browser/tex/pgf2/turingmaschine-schema.tex
http://www.texample.net/tikz/examples/turing-machine/

6 M269 14 May 2016

Computability — Decidability

e Decidable — there is a TM that will halt with yes/no for a decision problem — that
is, given a string w over the alphabet of P the TM with halt and return yes.no the
string is in the language P (same as recursive in Recursion theory — old use of the
word)

e Semi-decidable — there is a TM will halt with yes if some string is in P but may loop
forever on some inputs (same as recursively enumerable) — Halting Problem

e Highly-undecidable — no outcome for any input — Totality, Equivalence Problems

Undecidable Problems

e Halting problem — the problem of deciding, given a program and an input, whether
the program will eventually halt with that input, or will run forever — term first used
by Martin Davis 1952

e Entscheidungsproblem — the problem of deciding whether a given statement is
provable from the axioms using the rules of logic — shown to be undecidable by
Turing (1936) by reduction from the Halting problem to it

e Type inference and type checking in the second-order lambda calculus (important
for functional programmers, Haskell, GHC implementation)

e Undecidable problem — see link to list

(Turing, 1936, 1937)

Why undecidable problems must exist
e A problem is really membership of a string in some language

e The number of different languages over any alphabet of more than one symbol is
uncountable

e Programs are finite strings over a finite alphabet (ASCII or Unicode) and hence count-
able.

e There must be an infinity (big) of problems more than programs.

Reference: Hopcroft et al. (2007, page 318)

Computability and Terminology
e The idea of an algorithm dates back 3000 years to Euclid, Babylonians. ..

In the 1930s the idea was made more formal: which functions are computable?

A function a set of pairs f ={(x, f(x)) : x € X A f(x) € Y} with the function property

Function property: (a,b) e f A(a,c) e f=> b ==

Function property: Same input implies same output

Note that maths notation is deeply inconsistent here — see Function and History of
the function concept

http://en.wikipedia.org/wiki/Recursion_theory
http://en.wikipedia.org/wiki/Halting_problem
http://en.wikipedia.org/wiki/Entscheidungsproblem
http://en.wikipedia.org/wiki/System_F
http://en.wikipedia.org/wiki/Undecidable_problem
http://en.wikipedia.org/wiki/Computable_function
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/History_of_the_function_concept
http://en.wikipedia.org/wiki/History_of_the_function_concept

Phil Molyneux Exam Revision 7

What do we mean by computing a function — an algorithm ?

In the 1930s three definitions:

A-Calculus, simple semantics for computation — Alonzo Church
General recursive functions — Kurt Godel

Universal (Turing) machine — Alan Turing

Terminology:

- Recursive, recursively enumerable — Church, Kleene

Computable, computably enumerable — Godel, Turing

Decidable, semi-decidable, highly undecidable

In the 1930s, computers were human

Unfortunate choice of terminology

Turing and Church showed that the above three were equivalent

e Church-Turing thesis — function is intuitively computable if and only if Turing ma-

chine computable

Sources on Computability Terminology

e Soare (1996) on the history of the terms computable and recursive meaning calcula-

ble

e See also Soare (2013, sections 9.9-9.15) in Copeland et al. (2013)

2.2

Complexity

P and NP

e P, the set of all decision problems that can be solved in polynomial time on a deter-

ministic Turing machine

NP, the set of all decision problems whose solutions can be verified (certificate) in
polynomial time

Equivalently, NP, the set of all decision problems that can be solved in polynomial
time on a non-deterministic Turing machine

A decision problem, dp is NP-complete if
1. dpisin NP and
2. Every problem in NP is reducible to dp in polynomial time

NP-hard — a problem satisfying the second condition, whether or not it satisfies the
first condition. Class of problems which are at least as hard as the hardest problems
in NP. NP-hard problems do not have to be in NP and may not be decision problems

http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Alonzo_Church
http://en.wikipedia.org/wiki/Μ-recursive_function
http://en.wikipedia.org/wiki/Kurt_Gödel
http://en.wikipedia.org/wiki/Universal_Turing_machine
http://en.wikipedia.org/wiki/Alan_Turing
http://en.wikipedia.org/wiki/Stephen_Cole_Kleene
http://en.wikipedia.org/wiki/Church–Turing_thesis
http://en.wikipedia.org/wiki/P_(complexity)
http://en.wikipedia.org/wiki/NP_(complexity)
http://en.wikipedia.org/wiki/NP-complete

8 M269 14 May 2016

Euler diagram for P, NP, NP-complete and NP-hard set of problems

NP-Hard

NP-Hard

NP-Complete

P=NP=
NP-Complete

Complexity

Source: Wikipedia NP-complete entry

NP-complete problems
e Boolean satisfiability (SAT) Cook-Levin theorem

Conjunctive Normal Form 3SAT

Hamiltonian path problem

Travelling salesman problem

NP-complete — see list of problems

http://en.wikipedia.org/wiki/Euler_diagram
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Cook-Levin_theorem
http://en.wikipedia.org/wiki/3-satisfiability
http://en.wikipedia.org/wiki/Hamiltonian_path_problem
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/NP-complete

Phil Molyneux Exam Revision

XKCD on NP-Complete Problems

MY HOBBY:
EVBEDDING NP-(OMPLETE PROBLEMS IN RESTAURANT ORDERS

CHOTCHKIES RESTAURANT :ﬁ)ﬁ?gﬂﬁ:ﬂgﬁg

— APPENZERS —~ 1 . EXACTLY? UM
MIXED FRUIT 2.15 HERE, THESE PAPERS ON THE KNAPSACK }
PROBLEM MIGHT HELP YDOU OUT.
FRENCH FRIES 275 \ LISTEN, T HAVE Six OTHER
— AG FAST AS POSSIBLE, OF (URSE. WENT
HOT WINGS 3.55 SOMETHING ON TRAVELING SALESHAN?

MOZZAREUA STICKS 4.20

S N
e

—— SANDWICHES ~—
RAGEENNIE L B

Source & Explanation: XKCD 287

2.2.1 NP-Completeness and Boolean Satisfiability

e The Boolean satisfiability problem (SAT) was the first decision problem shown to be
NP-Complete
e This section gives a sketch of an explanation

e Health Warning different texts have different notations and there will be some in-
consistency in these notes

e Health warning these notes use some formal notation to make the ideas more pre-
cise — computation requires precise notation and is about manipulating strings ac-

cording to precise rules.

Alphabets, Strings and Languages

e Notation:
e X is a set of symbols — the alphabet
e 3K is the set of all string of length k, which each symbol from =

e Example: if X ={0, 1}
-3 =101}
- 32 ={00,01,10,11}

e 30 = {¢} where € is the empty string

http://www.explainxkcd.com/wiki/index.php/287:_NP-Complete
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem

10

M269 14 May 2016

>* is the set of all possible strings over 3
sk =30yustus?u...
A Language, L, over X is a subset of =*

LcX*

Language Accepted by a Turing Machine

The

Language accepted by Turing Machine, M denoted by L(M)
L(M) is the set of strings w € X* accepted by M

For Final States F = {Y,N}, a string w € * is accepted by M < (if and only if) M
starting in qg with w on the tape halts in state Y

Calculating a function (function problem) can be turned into a decision problem by
asking whether f(x) =y

NP-Complete Class
If we do not know if P = NP, what can we say ?
A language L is NP-Complete if:

- L€ NP and

- for all other L” € NP there is a polynomial time transformation (Karp reducible,
reduction) from L" to L

Problem Py polynomially reduces (Karp reduces, transforms) to P,, written Py oc P>
or Py <p Py, iff 3f: dpp, — dpp, such that

- Vliedpp, [l € Yp, & f() € Yp,]
- f can be computed in polynomial time

More formally, L1 < Zi" polynomially transforms to L, < ZE", written L1 oc Ly or
L1 <p Lp, iff 3f : ZF — =F such that

- Vx € Ef[x € L1 & f(x) € L]
- There is a polynomial time TM that computes f
Transitivity If Ly oc Ly and Ly o< L3 then Ly oc L3
If Lis NP-Hard and L € P then P = NP
If Lis NP-Complete, then L € P if and only if P = NP
If Lo is NP-Complete and L € NP and Lg oc L then L is NP-Complete
Hence if we find one NP-Complete problem, it may become easier to find more

In 1971/1973 Cook-Levin showed that the Boolean satisfiability problem (SAT) is
NP-Complete

http://en.wikipedia.org/wiki/Function_problem
http://en.wikipedia.org/wiki/Decision_problem
http://en.wikipedia.org/wiki/Cook–Levin_theorem
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem

Phil Molyneux Exam Revision 11

The Boolean Satisfiability Problem

e A propositional logic formula or Boolean expression is built from variables, opera-
tors: AND (conjunction, A), OR (disjunction, V), NOT (negation, —)

e A formula is said to be satisfiable if it can be made True by some assignment to its
variables.

e The Boolean Satisfiability Problem is, given a formula, check if it is satisfiable.
- Instance: a finite set U of Boolean variables and a finite set C of clauses over U
- Question: Is there a satisfying truth assignment for C?

e A clause is is a disjunction of variables or negations of variables

e Conjunctive normal form (CNF) is a conjunction of clauses

e Any Boolean expression can be transformed to CNF

e Given a set of Boolean variable U ={uy,up,...,un}

e A literal from U is either any u;j or the negation of some u;j (written uj)

e A clause is denoted as a subset of literals from U — {u, uz, us}

e A clause is satisfied by an assignment to the variables if at least one of the literals
evaluates to True (just like disjunction of the literals)

e Let C be a set of clauses over U — C is satisfiable iff there is some assignment of
truth values to the variables so that every clause is satisfied (just like CNF)

o C={{u1,uy,u3},{uz,u3},{uy,uzl}is satisfiable
o C={{uy,us},{uy,uz},{u7}}is not satisfiable

e Proof that SAT is NP-Complete looks at the structure of NDTMs and shows you can
transform any NDTM to SAT in polynomial time (in fact logarithmic space suffices)

e SAT is in NP since you can check a solution in polynomial time

e To show that VL € NP : L oc SAT invent a polynomial time algorithm for each polyno-
mial time NDTM, M, which takes as input a string x and produces a Boolean formula
Ex which is satisfiable iff M accepts x

e See Cook-Levin theorem

Sources

e Garey and Johnson (1979, page 34) has the notation Ly oc Ly for polynomial trans-
formation

e Arora and Barak (2009, page 42) has the notation Ly <p Ly for polynomial-time Karp
reducible

e The sketch of Cook’s theorem is from Garey and Johnson (1979, page 38)
e For the satisfiable C we could have assignments (uy,up,u3) € {(T, T,F),(T,F,F), (F, T, F)}

http://en.wikipedia.org/wiki/Cook-Levin_theorem

12 M269 14 May 2016

Coping with NP-Completeness

e What does it mean if a problem is NP-Complete ?

There is a P time verification algorithm.

There is a P time algorithm to solve it iff P = NP (?)

No one has yet found a P time algorithm to solve any NP-Complete problem

So what do we do ?

Improved exhaustive search — Dynamic Programming; Branch and Bound

Heuristic methods — acceptable solutions in acceptable time — compromise on op-
timality

Average time analysis — look for an algorithm with good average time — compro-
mise on generality (see Big-O Algorithm Complexity Cheatsheet)

Probabilistic or Randomized algorithms — compromise on correctness

Sources
e Practical Solutions for Hard Problems Rich (2007, chp 30)
e Coping with NP-Complete Problems Garey and Johnson (1979, chp 6)

2.3 Logic

M269 Exam — Q14 topics
e Unit 7
e Proofs

e Natural deduction

Logicians, Logics, Notations
e A plethora of logics, proof systems, and different notations can be puzzling.

e Martin Davis, Logician When | was a student, even the topologists regarded mathe-
matical logicians as living in outer space. Today the connections between logic and
computers are a matter of engineering practice at every level of computer organiza-
tion

e Various logics, proof systems , were developed well before programming languages
and with different motivations,

References: Davis (1995, page 289)

Logic and Programming Languages

e Turing machines, Von Neumann architecture and procedural languages Fortran, C,
Java, Perl, Python, JavaScript

http://bigocheatsheet.com
http://en.wikipedia.org/wiki/Martin_Davis
http://en.wikipedia.org/wiki/Von_Neumann_architecture

Phil Molyneux Exam Revision 13

e Resolution theorem proving and logic programming — Prolog

e Logic and database query languages — SQL (Structured Query Language) and QBE
(Query-By-Example) are syntactic sugar for first order logic

e Lambda calculus and functional programming with Miranda, Haskell, ML, Scala

Reference: Halpern et al. (2001)

Validity and Justification
e There are two ways to model what counts as a logically good argument:
- the semantic view
- the syntactic view
e The notion of a valid argument in propositional logic is rooted in the semantic view.

e It is based on the semantic idea of interpretations: assignments of truth values to
the propositional variables in the sentences under discussion.

e A valid argument is defined as one that preserves truth from the premises to the
conclusions

e The syntactic view focuses on the syntactic form of arguments.

e Arguments which are correct according to this view are called justified arguments.

Proof Systems, Soundness, Completeness

e Semantic validity and syntactic justification are different ways of modelling the same
intuitive property: whether an argument is logically good.

A proof system is sound if any statement we can prove (justify) is also valid (true)

A proof system is adequate if any valid (true) statement has a proof (justification)

A proof system that is sound and adequate is said to be complete

Propositional and predicate logic are complete — arguments that are valid are also
justifiable and vice versa

e Unit 7 section 2.4 describes another logic where there are valid arguments that are
not justifiable (provable)

Reference: Chiswell and Hodges (2007, page 86)

Valid arguments
P
e Unit 6 defines valid arguments with the notation :
Pn
C
e The argument is valid if and only if the value of C is True in each interpretation for
which the value of each premise Pjis Truefor 1 <i<n

e In some texts you see the notation {Py,...,Pn} = C

http://en.wikipedia.org/wiki/Lambda_calculus

14

M269 14 May 2016

The expression denotes a semantic sequent or semantic entailment
The |= symbol is called the double turnstile and is often read as entails or models

In LaTeX = and |= are produced from \vDash and \models — see also the turnstile
package

In Unicode |= is called TRUE and is U+22A8, HTML ⊨
The argument {} = C is valid if and only if C is True in all interpretations
That is, if and only if C is a tautology
Beware different notations that mean the same thing
- Alternate symbol for empty set: @ = C
- Null symbol for empty set: = C

- Original M269 notation with null axiom above the line:

C

Justified Arguments and Natural Deduction

Definition 7.1 An argument {P1,P>,...,Pn} Cis a justified argument if and only if
either the argument is an instance of an axiom or it can be derived by means of an
inference rule from one or more other justified arguments.

Axioms

I' U{A} - A (axiom schema)
This can be read as: any formula A can be derived from the assumption (premise) of
{A} itself

The +~ symbol is called the turnstile and is often read as proves, denoting syntactic
entailment

In LaTeX + is produced from \vdash

In Unicode I is called RIGHT TACK and is U+22A2, HTML ⊢

See (Thompson, 1991, Chp 1)

Section 2.3 of Unit 7 (not the Unit 6, 7 Reader) gives the inference rules for —, A,
and v — only dealing with positive propositional logic so not making use of negation
— see List of logic systems

Usually (Classical logic) have a functionally complete set of logical connectives —
that is, every binary Boolean function can be expressed in terms the functions in the
set

Inference Rules — Notation

Inference rule notation:

Argument; ... Argumentn(

label)
Argument ave

http://en.wikipedia.org/wiki/List_of_logic_systems
http://en.wikipedia.org/wiki/Functional_completeness

Phil Molyneux Exam Revision 15

Inference Rules — Conjunction

o I'-A T+HB
I'-AAB

JI-AAB
A

.FFAAB
I'-B

(A-introduction)

(A-elimination left)

(A-elimination right)

Inference Rules — Implication
. ru{A}+- B
I'-A—-B

e The above should be read as: If there is a proof (justification, inference) for B un-

der the set of premises, I', augmented with A, then we have a proof (justification.
inference) of A — B, under the unaugmented set of premises, I.

(—-introduction)

The unaugmented set of premises, I' may have contained A already so we cannot

assume
Tu{A})-{AlisequaltoTl

o I'-A F»—A—»B(
I'—B

—-elimination)

Inference Rules — Disjunction

o I'-A
I'-AVB

o I'-B
I'-AVB

e Disjunction elimination

(v-introduction left)

(v-introduction right)

'-AvB TU{A}-C Tu{B}+~C
I'-cC

(v-elimination)

e The above should be read: if a set of premises I justifies the conclusion Av B and T
augmented with each of A or B separately justifies C, then I justifies C

Proofs in Tree Form
e The syntax of proofs is recursive:

e A proof is either an axiom, or the result of applying a rule of inference to one, two
or three proofs.

e We can therefore represent a proof by a tree diagram in which each node have one,
two or three children

e For example, the proof of {P A (P — Q)} - Q in Question 4 (in the Logic tutorial notes)
can be represented by the following diagram:

PAP—-Q}-PAP—-Q PAP-Q}-PA(P-Q

Pr®P-Qtrp " ppa-qirP-q_ """

{PAP-Q}+Q

16 M269

14 May 2016

Self-Assessment activity 7.4 — tree layout

o letI'={P-R,Q—-R,PVQ}
. '-PvQ Tu{P}+R Tui{Q}+R

(v-elimination)

I'-R
. Tru{Pl-P TU{P}-P—-R (. -elimination)
Fu{P}~-R
o, L uiQirQ DM@FQaR(...
—-elimination)
ru{Qi~R
e Complete tree layout
Tu{P} TuU{P} ru{Q rui{q}
° P FP-R o FQ FQ“R(A_E)
I'-PvQ TFu{P}+R FU{Q}FR(

V-E)
'R

Self-assessment activity 7.4 — Linear Layout

1. P-RQ—-RPVQ}I-PVQ [Axiom]

2. P-R,Q—-R,PVQlU{P}-P [Axiom]

3. P-R,Q—-RPVQU{P}-P—-R [Axiom]

4. {P-R,Q-R,PvQluU{Q}+Q [Axiom]

5. P-R,Q—-RPVvQlU{Q}+-Q—~R [Axiom]

6. {P-RQ—-R,PVQIU{P}-R [2, 3, —-E]
7. P-R,Q-R,PVQlU{Q}-R [4, 5, —-E]
8. {P~R,Q—-RPVQ}IFR [1,6, 7, V-E]

2.3.1 M269 Exam 2013 Q 14

e Consider the following axiom schema and rules:
e Axiom schema: {A} — A
e Rules: (as Unit 7 for Natural Deduction)
- A-elimination left, A-elimination right
- A-introduction
- —-introduction, —-elimination
e Complete the following proof:

1. PAQAR}-PAQAR) [Axiom]
2 [1,A-elimination left]
3. OFFPAQAR)—=P

M269 Exam 2013) Q 14 Solution

1. PAQAR}-PA(QAR) [Axiom]
2. PAQAR}-P [1,A-elimination left]
3. OrPAQAR)—-P [2,—-introduction]

Phil Molyneux Exam Revision 17

2.4 SQL Queries

M269 Specimen Exam Q13 Topics
e Unit 6
e SQL queries

2.4.1 M269 Exam 2013) Q13

e A database contains the following tables, oilfield and operator

oilfield operator

name production company field
Warga 3 Amarco Warga
Lolli 5 Bratape Lolli
Tolstoi 0.5 Rosbif Tolstoi
Dakhun 2 Tagar Dakhun
Sugar 3 Bratape Sugar

e For each of the following SQL queries, give the table returned by the query

(@
SELECT =

FROM operator;

(b)
SELECT name, production

FROM oilfield
WHERE production > 2;

(©)/

SELECT name, production, company
FROM oilfield CROSS JOIN operator
WHERE name = field;

M269 Exam 2013J Q 14 Solution

(a) This is simply the whole operator table.

company field

Amarco Warga
Bratape Lolli
Rosbif Tolstoi
Tagar Dakhun
Bratape Sugar

(b) Retaining only the rows with production > 2

name production

Warga 3
Lolli 5
Sugar 3

18 M269 14 May 2016

(c) Joining the tables

name production company

Warga 3 Amarco
Lolli 5 Bratape
Tolstoi 0.5 Rosbif
Dakhun 2 Tagar
Sugar 3 Bratape

2.5 Predicate Logic

e Unit 6
e Predicate Logic
e Translation to/from English

e Interpretations

2.5.1 M269 Exam 2013) Q 12

e A particular interpretation of predicate logic allows facts to be expressed about films
that people have seen, and of which they own copies.

e Some of the assignments in the interpretation are given below (where the symbol 7
is used to show assignment).

e The interpretation assigns Jane, John and Saira to the constants jane, john and saira.

J(jane) = Jane
7(john) = John
J(saira) = Saira

e The predicates owns and has_seen are assigned to binary relations. The comprehen-
sions of the relations are:

- J(owns) = {(A,B): the person A owns a copy of film B}
- I(has_seen) = {(A,B): the person A has seen film B}

e The enumerations of the relations are:

J(owns) = {(ane, Django), (Jane, Casablanca), (John, Jaws), John, The
Omen), (John, El Topo), (Saira, El Topo), (Saira, Casablanca)}
J(has_seen) = {(Jane, Django), (Jane, Candide), (Jane, Casablanca), (John, The

Omen), (John, El Topo), (Saira, Django), (Saira, The Omen)}
e Parts (a) and (b) of this question are on the next page.

e In both parts, you are given a sentence of predicate logic and asked to provide an
English translation of the sentence in the box immediately following it.

e You also need to state whether the sentence is TRUE or FALSE in the interpretation
that is provided on this page, and give an explanation of your answer.

Phil Molyneux Exam Revision 19

e In your explanation you need to consider any relevant values for the variable X, and
show, using the interpretation above, whether it makes the quantified expression
TRUE.

(@) V X. (owns(saira,X) — has_seen(saira,X)) can be translated in English as:
e This sentence is TRUE/FALSE because:
(b) 3 X.(has_seen(jane,X) A owns(jane,X)) can be translated in English as:

e This sentence is TRUE/FALSE because:

M269 Exam 2013]J Q 12(a) Solution
(@) For all films, if Saira owns a copy of the film, then Saira has seen the film.
Or more idiomatically, Saira has seen all of the films that she owns.

e The sentence is FALSE, because the enumerations of the relations show that she
owns a copy of Casablanca, but this is not one of the films that she has seen. She
also owns a copy of El Topo, which she has not seen either, but we only need one
counter-example to show that the sentence is false.

M269 Exam 2013) Q 12(b) Solution
(b) There exists a film, such that Jane has seen it and Jane owns it.
Or more idiomatically, Jane has seen at least one of the films that she owns

e This sentence is TRUE. The enumerations show that she owns Casablanca and that
she has seen it. Django also provides a sufficient example to show that the sentence
is true.

2.6 Propositional Logic

M269 Specimen Exam Q11 Topics
e Unit 6

e Sets

Propositional Logic

Truth tables

Valid arguments

Infinite sets

2.6.1 M269 Exam 2013J Q11

(a) What does it mean to say that a well-formed formula (WFF) is satisfiable ?

20

M269 14 May 2016

(b)

Is the following WFF satisfiable ?
P-(@Q-P)Vv-R

Explain how you arrived at your answer

M269 Exam 2013J Q 11 Solution

(@)

(b)

3

3.1

3.1.1

A WFF is satisfiable if it is possible to find an interpretation that makes the formula
true.

Truth table for the WFF

PQR Q-P P-(@Q~-P) -R (P-(Q-P)Vv-R
F F F T T T T
F F T T T F T
F T F F T T T
F T T F T F T
T F F T T T T
T F T T T F T
T T F T T T T
T T T T T F T

The truth table shows that the WFF (P — (Q — P)) v =R is always true, so it satisfiable
under any interpretation. But we don’t need the whole truth table to prove this; the
WFF is true for any interpretation in which R is false (for example).

Units 3,4 &5

Unit 5 Optimisation

Unit 5 Optimisation

Graphs searching: DFS, BFS

Distance: Dijkstra’s algorithm

Greedy algorithms: Minimum spanning trees, Prim’s algorithm

Dynamic programming: Knapsack problem, Edit distance

M269 Exam 2013J Q 10

Consider the following graph:

Phil Molyneux Exam Revision 21

e Complete the table below to show the order in which the vertices of the above graph
could be visited in a Depth First Search (DFS) starting at vertex 3 and always choosing
first the leftmost not yet visited vertex (as seen from the current vertex):

Vertex | 3

M269 Exam 2013J) Q 10 Solution

e Depth First Search (DFS) starting at vertex 3 and always choosing first the leftmost
not yet visited vertex (as seen from the current vertex):

Vertex| 3 4 1 2 5

e Notice the ambiguity about the term leftmost — an alternative view could have been:

Vertex | 3 1 4 2 5

3.1.2 M269 Exam 2013J Q9

e Recall that the structured English for Dijkstra’s algorithm is:

create priority~queue
set dist to 0 for v and dist to infinity
for all other vertices
add all vertices to priority~queue
ITERATE while priority~queue is not empty
remove u from the front of the queue
ITERATE over w in the neighbours of u
set new~distance to
dist u + length of edge from u to w
IF new~distance is less than dist w
set dist w to new~distance
change priority (w, new~distance)

e Now consider the following weighted graph:

22 M269 14 May 2016

e Starting from vertex B, the following table represents the distances after the second
line of structured English is executed for the graph given above (using the convention
that a blank cell represents infinity):

Vertex A|B|C|D|E]|F

Distance 0

e Note that neither the table above nor the subsequent tables represent the priority
queue.

e Now, complete the appropriate boxes in the next table to show the distances after
the first and second iterations of the while loop of the algorithm.

Vertex A|B|C|D|E]|F

Distance 0 First iteration

Distance 0 Second iteration

M269 Exam 2013) Q 9 Solution

e The completed table:

Vertex A|B|C|D|E]|F

Distance 1 0 6 5 6 | First iteration

Distance 1 0 3 6 5 6 | Second iteration

3.2 Unit 4 Searching

e Unit 4 Searching
e String searching: Quick search Sunday algorithm, Knuth-Morris-Pratt algorithm

e Hashing and hash tables

Search trees: Binary Search Trees

Search trees: Height balanced trees: AVL trees

3.2.1 M269 Exam 2013)J Q8

(@) Consider the following Binary Search Tree.

Phil Molyneux Exam Revision 23

e Modify (draw on) the above Binary Search Tree to insert a node with a key of 57.

(b) Once again, consider the same Binary Search Tree.

e Calculate the balance factors of each node in the tree above and modify the diagram
to show these balance factors.

M269 Exam 2013) Q 8(a) Solution

(@) Answer, with inserted node shown in red

M269 Exam 2013]J Q 8(b) Solution

24 M269 14 May 2016

e Answer, with balance factors shown in blue

3.2.2 M269 Exam 2013)JQ 7
e In the KMP algorithm, for each character in the target string T we identify the longest
substring of T ending with that character which matches a prefix of the target string.

e These lengths are stored in what is known as a prefix table (which in Unit 4 we
represented as a list).

e Consider the target string T

A/B A|CIA|B|A|C| A|C

e Below is an incomplete prefix table for the target string given above. Complete the
prefix table by writing the missing numbers in the appropriate boxes.

M269 Exam 2013) Q 7 Solution

e The complete prefix table, with new entries in red:

ojojrjoj|1|2|3|14]|5|0

e Here is the target, prefix and shift:

Phil Molyneux

Exam Revision

25

A|B/ A|C|IA|B|A|C|A|C
o123 |4|5]|]6]|7]8]|9
0|1 2 (3|4 |5|6|7|8]9]10
OO0 | T |01 2 13]14]5]|0
1 1 2 |12 (41444 |4]4) 10

Target string, t
Position (Index), p
Match, q
prefixTable(t, p)

shift(t, q)

e The shift function takes the target string, t, and the number of characters matched,

q.
e shift(t,0) =1

e shift(t,q) = q - prefixTable(t,q-1)

3.3 Unit 3 Sorting

e Unit 3 Sorting

e Elementary methods: Bubble sort, Selection sort, Insertion sort

e Recursion — base case(s) and recursive case(s) on smaller data

e Quicksort, Merge sort

e Sorting with data structures: Tree sort, Heap sort

e See sorting notes for abstract sorting algorithm

Abstract Sorting Algorithm

(unsorted list xs)

if length xs > 1) then
(xs1,xs2) = split xs

|

g

xs1

[ys] = sort xslj

N

!

[sorted list st

.

XSs2

ys2 = sort xsZ]

-

[ys = join (ys1 ,ysZ)]

26 M269 14 May 2016

Sorting Algorithms

Using the Abstract sorting algorithm, describe the split and join for:

e [nsertion sort

Selection sort

Merge sort

Quicksort

Bubble sort (the odd one out)

3.3.1 M269 Exam 2013J Q6

e Consider the following function, which takes a list as an argument. You may assume
that the list contains a number of integer values and is not empty.

def average(alist):

n = len(alList)
total =0
for item in alist:
total = total + item

N o uvuhwN =

mean = total / n
return mean

From the five options below, select the one that represents the correct combination
of T(n) and Big-O complexity for this function. You may assume that a step (i.e. the
basic unit of computation) is the assignment statement.

A. T(n) = 3+n?2 and O(n?)
B. T(nN)=n+ 2 and O(nz)
C. T(n) =2n+ 2 and O(n)
D. T(n) = 3n + n? and O(n?)
E. T(n) =n+ 3 and O(n)

M269 Exam 2013]J Q 6 Solution
e Option E is correct.

e The function does three assignments once per call, and one assignment for each of
the n items in the argument, hence T(n) = n + 3.

3.3.2 M269 Exam 2013)J Q5

e Consider the following diagrams A-H. Nodes are represented by black dots and
edges by arrows. The numbers represent a node’s key.

Phil Molyneux Exam Revision 27

/‘3\ A LA
LT TN

YR, /X /<\/ AWA

T 5513

e Answer the following questions. Write your answer on the line that follows each
qguestion. In each case there is at least one diagram in the answer but there may be
more than one. Explanations are not required.

(@) Which of A, B, C and D do not show trees ?

(b) Which of E, F, G and H are binary trees ?

(c) Which of C, D, G and H are complete binary trees ?
(d) Which of C, D, G and H are heaps ?

M269 Exam 2013) Q 5 Solution
(a) Bis not a tree; it has more than one route from node 3 to node 4.
(b) E, G, and H are binary trees; (no more than 2 children per node).
(c) G, and H are complete binary trees.

(d) Only G is a heap; (complete binary tree, and parent nodes > children).

4 Units1 &2

4.1 Unit 2 From Problems to Programs

e Unit 2 From Problems to Programs
e Abstract Data Types
e Pre and Post Conditions

e Logic for loops

4.1.1 M269 Exam 2013)J Q4

e Consider the guard in the following Python while loop header:

(while (a < 6 and b > 8) or not(a >= 6 or b <= 8):]

(@) Make the following substitutions:

P represents a < 6

28 M269 14 May 2016

Q represents b > 8

Then complete the following truth table:

PIQ|-P|-Q|PAQ|PV-Q|(=PV—-Q | PAQYV(=PV—-Q
F|F
FIT
T|F
T| T

(b) Use the results from your truth table to choose which one of the following expres-
sions could be used as the simplest equivalent to the above guard.

A. (a <6 and b > 8)
not(a < 6 and b > 8)
(a>=6or b <=8)
(a >= 6 and b <= 8)
(a < 6 and b <= 8)

m U 0O w

M269 Exam 2013J Q 4 Solution

(@) The completed truth table:

PIQ| P -QPAQ|PVv-Q|~(=PVv-Q |(PAQ YV (=PV-Q
FIF| T | T F T F F
F|T| T | F F T F F
TIF| F | T F T F F
T|T| F | F T F T T

(b) A'is the simplest equivalent of the guard given.

4.1.2 M269 Exam 2013J Q3

e A binary search is being carried out on the list shown below for item 67:
[12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

e For each pass of the algorithm, draw a box around the items in the partition to be
searched during that pass, continuing for as many passes as you think are needed.

e We have done the first pass for you showing that the search starts with the whole
list. Draw your boxes below for each pass needed; you may not need to use all the
lines below. (The question had 8 rows)

(Pass 1) [[12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]]
(Pass 2) [12,16,17,24,41,49,51,62,67,69,75,80,89,97, 101]
(Pass 3) [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

Phil Molyneux Exam Revision 29

M269 Exam 2013) Q 3 Solution

e The complete binary search:
(Pass 1) [|12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]]
(Pass 2) [12,16,17,24,41,49,51,62,/67,69,75,80,89,97,101]]
(Pass 3) [12,16,17,24,41,49,51,62,/67,69,75/,80,89,97,101]
(Pass 4) [12,16,17,24,41,49,51,62,/67],69,75,80,89,97,101]

4.1.3 Example Algorithm Design — Searching

e Given an ordered list (xs) and a value (val), return
- Position of val in xs or
- Some indication if val is not present

e Simple strategy: check each value in the list in turn

e Better strategy: use the ordered property of the list to reduce the range of the list to
be searched each turn

- Set a range of the list
- If val equals the mid point of the list, return the mid point
- Otherwise half the range to search

- If the range becomes negative, report not present (return some distinguished
value)

Binary Search lterative

def binarySearchlter(xs,val):
lo 0
hi len(xs) -1

while lo <= hi:
mid = (lo + hi) // 2
guess = xs[mid]

if val == guess:
return mid
elif val < guess:
hi = mid - 1
else:
lo = mid + 1

return None

Binary Search Recursive

def binarySearchRec(xs,val,lo=0,hi=-1):
if (hi == -1):
hi = len(xs) -1

mid = (lo + hi) // 2

if hi < lo:
return None
else:
guess = xs[mid]

11
12
13
14
15
16

A w N =

© N O

11
12
13
14

0 NO VA W =

N — O

30

M269

14 May 2016

if val == guess:

return mid
elif val < guess:

return binarySearchRec(xs,val,lo,mid-1)
else:

return binarySearchRec(xs,val,mid+1,hi)

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs,67,8,14) by Tine 15

xs = [67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,10) by 7ine 13

xs = [67,69,75,
binarySearchRec(xs,67,8,8) by 7ine 13

xs = [67,

Return value: 8 by Tine 11

Binary Search Iterative — Miller & Ranum

def binarySearchlterMR(alist, item):
first =0
last = len(alist)-1
found = False

while first<=last and not found:
midpoint = (first + last)//2

if alist[midpoint] == item:
found = True
else:

if item < alist[midpoint]:
last = midpoint-1

else:
first = midpoint+]

return found

Miller and Ranum (2011, page 192)

Binary Search Recursive — Miller & Ranum

def binarySearchRecMR(alist, item):
if len(alist) == 0:
return False
else:
midpoint = len(alist)//2
if alist[midpoint]==item:
return True
else:
if item<alist[midpoint]:
return binarySearchRecMR(alist[: midpoint],item)
else:
return binarySearchRecMR(alist[midpoint+1:],item)

Miller and Ranum (2011, page 193)

Phil Molyneux Exam Revision 31

4.2 Unit 1 Introduction

e Unit 1 Introduction

e Computation, computable, tractable

Introducing Python

What are the three most important concepts in programming ?
1. Abstraction
2. Abstraction
3.

Quote from Paul Hudak (1952-2015)

4.2.1 M269 Exam 2013J Q2

e The general idea of abstraction as modelling can be shown with the following dia-
gram.

e Complete the diagram above by adding an appropriate label (one of the numbers 1
to 4) in the space indicated by A and one in the space indicated by B. The possible
answers are shown as 1 to 4 below. The exam question had some pictures next to the texts

1. A car crash test dummy in the real world
An action man doll in the real world

A real car in the real world (after crashing)

N W N

. A real driver in the real world

M269 Exam 2013) Q 2 Solution

e A real driver is modelled by a car crash test dummy, soA=1and B=4

4.2.2 M269 Exam 2013J Q1

e Which two of the following statements are true?
A. A decision problem is any problem stated in a formal language.

B. A computational problem is a problem that is expressed sufficiently precisely that it
is possible to build an algorithm that will solve all instances of that problem.

C. An algorithm consists of a precisely stated, step-by-step list of instructions.

http://en.wikipedia.org/wiki/Paul_Hudak

32 M269 14 May 2016

D. Computational thinking is the skill to formulate a problem as a computational prob-
lem, and then construct a good computational solution, in the form of an algorithm,
to solve this problem, or explain why there is no such solution.

M269 Exam 2013) Q 1 Solution
e Options C and D are true.
e Option A is wrong because decision problems have to have a yes-no answer.

e Option B is wrong because there are computational problems that we can state and
build algorithms for, but cannot always be solved.

5 M269 Exam Section 2

5.1 M269 Exam 2013) Q 16

e Multipart question

Specification of program, data structures, pre and post conditions

Write a small program

Give the complexity of the small program

Give insight into a sorting algorithm

Give insight into insertion into a binary search tree

See notes version for text

5.1.1 M269 Exam 2013) Q 16 Text

The Widget & Widget Widget Corporation (W&WWC) keeps records of every client that has
purchased widgets from them, along with details of the value of every purchase. These
records are stored on a computer in two sequences; the first of these, CLIENTS, is an
(unsorted) sequence of the clients’ names; the second, SPENDS, contains a sequence of
sequences, with each item representing the sequence of values of each of the purchases
that a client has made. The index of a client in CLIENTS is the index of that client’s
sequence of purchases in SPENDS.

(@) W&WC requires a small computer program which will provide them with two facilities:

e one to return the average spend of a specified client, if that client is present in
the data, and to return a suitable value if the client is not present;

e the other to return a sequence containing for each client in CLIENTS their aver-
age spend.

(i) Express both as a computational problem by completing the templates below
(in your answer book). Make whatever decisions you think appropriate about
the exact form of the input and output.

Name: SpecifiedClientAverageSpend

Phil Molyneux Exam Revision 33

Inputs:

Outputs:

Name: EachClientAverageSpend
Inputs:

Inputs:

(ii) In addition, suggest one possible postcondition for the SpecifiedClientAverageSpend
problem.

(iii) Provide the structured English for the EachClientAverageSpend algorithm. (If
you wish you can write a Python function instead, but not both.)

(b) What will be the complexity, expressed in T(n, q) and Big-O format, of your EachCl1ientAverage
solution, assuming n clients with an average of q transactions each, and that the as-
signment statement is the unit of computation? Explain your reasoning.

(c) One of the drawbacks of the current way in which the data is stored is that the
sequence of clients is not sorted. One of the best ways of sorting a sequence is
the Quicksort algorithm. Express your understanding of this algorithm for in-place
sorting in the form of an initial insight.

(d) Having developed the current program as far as they can using sequences, managers
have now made the decision to store clients and transactions in a Binary Search Tree
(BST).

M269 Exam 2013) Q 16 Sample Solution
(@

(i)
Name: SpecifiedClientAverageSpend
Inputs: Client name as String
Outputs: If client is found: Average spend for client as Real else: None
Name: EachClientAverageSpend
Inputs: None
Inputs: List of average spends for each client as list of real

(ii) Returned average is a sensible size?

(iii)

def EachClientAverageSpend ():
averages = list()
for purchases in SPENDS:
if len(purchases) > 0:
average = sum(purchases)/len(purchases)
else:
average = None
averages.append(average)
return averages

W o0 N O VT h W N —

34

M269 14 May 2016

(b)

(©)

(d)

5.2

Assuming n clients with g transactions, and assuming (a) that the Python function
sum does not create any extra assignments, and (b) that the Python append method
counts as one assignment, we have one assignment to create the empty list of av-
erages, one to create the average for each customer, and one more to append the
average to the list, so T(n,g) =1 + 2n.

On the other hand we might assume that sum(purchases) counted as q assign-
ments, and in this case we would have T(n,q) = 1 + 2qn. In either case n remains
the dominant term because we are doing something separate for each of the n cus-
tomers, and not trying to do something that compares them to each other (for ex-
ample), so the complexity is O(n).

Quicksort works by divide-and-conquer. The input is a list of values to sort. First we
pick a pivot value; there are various ways to do this, but the simplest is just to pick
the first value in the list. Then we divide the list into three parts: all those items less
than the pivot value, the pivot item itself, and all those items greater than or equal
to the pivot value. The output is a list composed of the lower part (sorted by calling
ourselves recursively), followed by the pivot value, followed by the upper part (again
sorted by calling ourselves recursively).

The two defining features of a binary search tree are (1) that, for each node, all the
keys in the left subtree are less than the key of the node, while all the keys in the
right subtree are greater than the key of the node; and (2) that each key value is
present only once.

An insertion algorithm based on these insights. Given the root node of a binary
search tree, and a key value: if the node is undefined (ie it’s a leaf node), then create
a new node with the provided key value and a null left child and a null right child,
and return this node; if the node is defined and the key value equals the key of the
node then return a value to show the key is already present.

Otherwise if the key value is greater than the value of this node’s key, then call
ourselves recursively on this node’s right child, with the same key, and return the
result.

Finally if the key value is less than the value of this node’s key, then call ourselves
recursively on this node’s left child, with the same key, and return the result.

M269 Exam 2013)J Q17

Write short report on a computational topic

Suitable title for the topic and audience

Paragraph setting the scene — the context of the topic
Paragraph describing the topic

Paragraph on the role the topic plays in some area
Conclusions justifying the importance of the topic

See notes version for text.

Phil Molyneux Exam Revision 35

5.2.1 M269 Exam 2013) Q 17 Text

Imagine that you are a potential speaker for your local University of the Third Age (U3A).
Along with other potential speakers you’ve been asked to write a short report on a particu-
lar topic. The organising group will then look at these reports and choose which potential
speaker to ask for a full evening presentation. Your topic is The Turing Machine. Write a
short report. Your report must have the following structure:

1. A suitable title.

2. A paragraph setting the scene and explaining the historical importance of the deter-
ministic Turing Machine [about three sentences].

3. One paragraph in which you describe in layperson’s terms what a deterministic Tur-
ing Machine is [about three sentences].

4. One paragraph in which you describe the role that Turing Machines play in Turing’s
proof that there are computational problems that are not computable [about three
sentences].

5. A conclusion in which you give a reasoned conclusion about the importance of Turing
Machines [one sentence].

Note that a significant number of marks will be awarded for coherence and clarity, so
avoid abrupt changes of topic and make sure your sentences fit together to tell an overall
story. Allow up to four additional sentences to ensure this.

M269 Exam 2013J) Q 17 Sample Solution
Alan Turing and his Marvellous Machine

Alan Turing who was one of the mathematical and computing heroes of Bletchley Park.
Many U3A members may have visited the famous WW2 code-breaking centre at Bletchley
Park — some of them may even have worked there — and will know that Turing was closely
involved with building the first electronic computers and using them to decipher enemy
radio messages. Members may also be interested to know that Turing had been working
before the war in Cambridge on the fundamental ideas of computing and can be regarded
as one of the founders of modern computer science.

Turing was interested in what humans do when they compute the answer to a problem,
and whether this process could be done by a machine, and if it could, what would be be
the limits of what such a machine could do. He imagined a simple, idealized machine that
could read and write and erase symbols on an endless paper tape, and that could be set
up to follow instructions by responding in a particular way to each different symbol. He
showed that given enough time and a long enough tape, such a simplified machine could
be set up to add up, or take away, or do arbitrarily complex mathematics. These imaginary
machines became known as Turing Machines.

Turing’s design was a purely theoretical one. But he used it to prove one of the most im-
portant practical results about computers: no matter how fast and how efficient we make
our computers, there will always be problems that the computer cannot solve. His argu-
ment was based on the idea that if you made a long list of all possible Turing Machines
that solve a particular type problem, it is always possible to construct another problem
that cannot be solved by any possible machine. This fundamental result still shapes the

36 M269 14 May 2016

way that computer scientists search for algorithms and develop programs to solve prob-
lems.

The real beauty of the Turing Machine is that it is so simple; this simplicity allows com-
puter scientists to reason about computing and what can be computed without the dis-
tracting details of any particular real-world machine.

6 Exam Techniques

Surviving in a time of great stress

Which order do you answer the questions ?

Confident question first ?

Harder question second ?

Keeping enough time.

Each give another exam tip to the group

7 Epilogue: Logic, Programming and Computation

e First-Order Predicate Logic (or just First-Order Logic) has variables that range over
sets of values and predicates (For All (V), Exists (3)) that express some properties
over a range of elements of a set.

e Propositional logic can be regarded as a zero order logic since there are no variables
— just atomic names and connectives.

e Higher order logics have variables that range over more things — for example, pred-
icates over predicates or variables over types (not elements of sets).

Logics and Programming
e Relationships between logics and programming:

e Using logic to reason about the behaviour of fragments of code in particular pro-
gramming languages.

e Viewing a particular programming language as syntactic sugar for some logic system
(quite likely augmented with various features such as built-in arithmetic and so on)

e For example, Haskell can be viewed as syntactic sugar for System F (also known
as the Girard-Reynolds polymorphic lambda calculus or the second-order lambda
calculus).

e Prolog as first order logic with a resolution theorem prover with Horn clauses

e Procedural programming (Java, C#, JavaScript, Python) and Hoare logic

https://www.haskell.org/
https://en.wikipedia.org/wiki/System_F
https://en.wikipedia.org/wiki/Prolog
https://en.wikipedia.org/wiki/Resolution_(logic)
https://en.wikipedia.org/wiki/Horn_clause
https://en.wikipedia.org/wiki/Hoare_logic

Phil Molyneux Exam Revision 37

Programming and Computation

e A programming language is really some logic system

Type systems in programming languages (such as polymorphic strong types in Haskell,
ML, Miranda, generics and templates in Java, C# and so on) are key examples of the
application of logics in programming

In theory, you could do all your programming in:

a Turing machine — see Morphett’s Turing machine simulator

the Lambda calculus

- Burch’s Lambda Calculator

- Sestoft’s Lambda calculus reduction workbench

Practical Programming Languages

e Practical programming languages try to resolve various tensions:

Application specific features — spreadsheets, statistics, graphics. ..

Extensions to help you (or force you) to think more clearly

Powerful type systems

Elegant ways of combining little programs into bigger ones (so you never have to
write a big program)

8 White Slide

9 Web Sites & References

9.1 Web Sites

e Logic

- WFF, WFF’N Proof online http://www.oercommons.org/authoring/1364-basic-
wff-n-proof-a-teaching-guide/view

e Computability

Computability

Computable function

Decidability (logic)

Turing Machines

Universal Turing Machine

Turing machine simulator

Lambda Calculus

https://en.wikipedia.org/wiki/Turing_machine
http://morphett.info/turing/turing.html
https://en.wikipedia.org/wiki/Lambda_calculus
http://www.cburch.com/proj/lambda/
http://www.itu.dk/people/sestoft/lamreduce/
http://en.wikipedia.org/wiki/Well-formed_formula
http://www.oercommons.org/authoring/1364-basic-wff-n-proof-a-teaching-guide/view
http://www.oercommons.org/authoring/1364-basic-wff-n-proof-a-teaching-guide/view
http://en.wikipedia.org/wiki/Computability
http://en.wikipedia.org/wiki/Computable_function
http://en.wikipedia.org/wiki/Decidability_(logic)
http://en.wikipedia.org/wiki/Turing_machine
http://en.wikipedia.org/wiki/Universal_Turing_machine
http://morphett.info/turing/turing.html
http://en.wikipedia.org/wiki/Lambda_calculus

38 M269 14 May 2016

- Von Neumann Architecture

- Turing Machine XKCD http://www.explainxkcd.com/wiki/index.php/205:
_Candy_Button_Paper

- Turing Machine XKCD http://www.explainxkcd.com/wiki/index.php/505:
_A_Bunch_of_Rocks

- Phil Wadler Bright Club on Computability http://wadler.blogspot.co.uk/2015/05/br
club-computability.html

e Complexity

Complexity class

NP complexity

NP complete

Reduction (complexity)

P versus NP problem

Graph of NP-Complete Problems
Acknowledgements Toby Thurston for sample answers

Note on References — the list of references is mainly to remind me where | obtained
some of the material and is not required reading.

References

Adelson-Velskii, G M and E M Landis (1962). An algorithm for the organization of infor-
mation. In Doklady Akademia Nauk SSSR, volume 146, pages 263-266. Translated
from Soviet Mathematics — Doklady; 3(5), 1259-1263.

Arora, Sanjeev and Boaz Barak (2009). Computational Complexity: A Modern
Approach. Cambridge University Press. ISBN 0521424267. URL http:
//www.cs.princeton.edu/theory/complexity/.

Chiswell, lan and Wilfrid Hodges (2007). Mathematical Logic. Oxford University Press.
ISBN 0199215626.

Church, Alonzo et al. (1937). Review: AM Turing, On Computable Numbers, with an Ap-
plication to the Entscheidungsproblem. Journal of Symbolic Logic, 2(1):42-43.

Cook, Stephen A. (1971). The Complexity of Theorem-proving Procedures. In Pro-
ceedings of the Third Annual ACM Symposium on Theory of Computing, STOC '71,
pages 151-158. ACM, New York, NY, USA. doi:10.1145/800157.805047. URL http:
//doi.acm.org/10.1145/800157.805047.

Copeland, B. Jack; Carl J. Posy; and Oron Shagrir (2013). Computability: Turing, Godel,
Church, and Beyond. The MIT Press. ISBN 0262018993.

Cormen, Thomas H.; Charles E. Leiserson; Ronald L. Rivest; and Clifford Stein (2009). In-
troduction to Algorithms. MIT Press, third edition. ISBN 0262533057. URL http:
//mitpress.mit.edu/books/introduction-algorithms.

http://en.wikipedia.org/wiki/Von_Neumann_architecture
http://www.explainxkcd.com/wiki/index.php/205:_Candy_Button_Paper
http://www.explainxkcd.com/wiki/index.php/205:_Candy_Button_Paper
http://www.explainxkcd.com/wiki/index.php/505:_A_Bunch_of_Rocks
http://www.explainxkcd.com/wiki/index.php/505:_A_Bunch_of_Rocks
http://wadler.blogspot.co.uk/2015/05/bright-club-computability.html
http://wadler.blogspot.co.uk/2015/05/bright-club-computability.html
http://en.wikipedia.org/wiki/Complexity_class
http://en.wikipedia.org/wiki/NP_(complexity)
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/Reduction_(complexity)
http://en.wikipedia.org/wiki/P_%3D_NP_problem
http://adriann.github.io/npc/npc.html
http://www.cs.princeton.edu/theory/complexity/
http://www.cs.princeton.edu/theory/complexity/
http://doi.acm.org/10.1145/800157.805047
http://doi.acm.org/10.1145/800157.805047
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms

Phil Molyneux Exam Revision 39

Davis, Martin (1995). Influences of mathematical logic on computer science. In The Uni-
versal Turing Machine A Half-Century Survey, pages 289-299. Springer.

Davis, Martin (2012). The Universal Computer: The Road from Leibniz to Turing. A K
Peters/CRC Press. ISBN 1466505192.

Dowsing, R.D.; V.J Rayward-Smith; and C.D Walter (1986). First Course in Formal Logic
and Its Applications in Computer Science. Blackwells Scientific. ISBN 0632013087.

Franzén, Torkel (2005). Godel’s Theorem: An Incomplete Guide to Its Use and Abuse. A K
Peters, Ltd. ISBN 1568812388.

Fulop, Sean A. (2006). On the Logic and Learning of Language. Trafford Publishing. ISBN
1412023815.

Garey, Michael R. and David S. Johnson (1979). Computers and Intractability: A Guide to
the Theory of NP-completeness. W.H.Freeman Co Ltd. ISBN 0716710455.

Halbach, Volker (2010). The Logic Manual. OUP Oxford. ISBN 0199587841. URL http:
//1ogicmanual.philosophy.ox.ac.uk/index.html.

Halpern, Joseph Y; Robert Harper; Neil Immerman; Phokion G Kolaitis; Moshe Y Vardi;
and Victor Vianu (2001). On the unusual effectiveness of logic in computer science.
Bulletin of Symbolic Logic, pages 213-236.

Hindley, J. Roger and Jonathan P. Seldin (1986). Introduction to Combinators and A-
Calculus. Cambridge University Press. ISBN 0521318394. URL http://www-
maths.swan.ac.uk/staff/jrh/.

Hindley, J. Roger and Jonathan P. Seldin (2008). Lambda-Calculus and Combinators:
An Introduction. Cambridge University Press. ISBN 0521898854. URL http://www-
maths.swan.ac.uk/staff/jrh/.

Hodges, Wilfred (1977). Logic. Penguin. ISBN 0140219854.
Hodges, Wilfred (2001). Logic. Penguin, second edition. ISBN 0141003146.

Hopcroft, John E.; Rajeev Motwani; and Jeffrey D. Ullman (2001). Introduction to Au-
tomata Theory, Languages, and Computation. Addison-Wesley, second edition. ISBN
0-201-44124-1.

Hopcroft, John E.; Rajeev Motwani; and Jeffrey D. Ullman (2007). Introduction to
Automata Theory, Languages, and Computation. Pearson, third edition. ISBN
0321514483. URL http://infolab.stanford.edu/~ulIman/ialc.html.

Hopcroft, John E. and Jeffrey D. Ullman (2001). Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, first edition. ISBN 020102988X.

Lemmon, Edward John (1965). Beginning Logic. Van Nostrand Reinhold. ISBN
0442306768.

Levin, Leonid A (1973). Universal sorting problems. Problemy Peredachi Informatsii,
9(3):265-266.

Manna, Zoher (1974). Mathematical Theory of Computation. McGraw-Hill. ISBN 0-07-
039910-7.

Miller, Bradley W. and David L. Ranum (2011). Problem Solving with Al-
gorithms and Data Structures Using Python. Franklin, Beedle As-

http://logicmanual.philosophy.ox.ac.uk/index.html
http://logicmanual.philosophy.ox.ac.uk/index.html
http://www-maths.swan.ac.uk/staff/jrh/
http://www-maths.swan.ac.uk/staff/jrh/
http://www-maths.swan.ac.uk/staff/jrh/
http://www-maths.swan.ac.uk/staff/jrh/
http://infolab.stanford.edu/~ullman/ialc.html

40 M269 14 May 2016

sociates Inc, second edition. ISBN 1590282574. URL http:
//interactivepython.org/courselib/static/pythonds/index.html.

Pelletier, Francis Jeffrey and Allen P Hazen (2012). A history of natural deduc-
tion. In Gabbay, Dov M; Francis Jeffrey Pelletier; and John Woods, editors,
Logic: A History of Its Central Concepts, volume 11 of Handbook of the History
of Logic, pages 341-414. North Holland. ISBN 0444529373. URL http:
//www.ualberta.ca/~francisp/papers/PellHazenSubmittedv?2.pdf.

Pelletier, Francis Jeffry (2000). A history of natural deduction and elementary logic
textbooks. Logical consequence: Rival approaches, 1:105-138. URL http:
//www.sfu.ca/~jeffpell/papers/pelletierNDtexts.pdf.

Rayward-Smith, V J (1983). A First Course in Formal Language Theory. Blackwells Scien-
tific. ISBN 06320117609.

Rayward-Smith, V J (1985). A First Course in Computability. Blackwells Scientific. ISBN
0632013079.

Rich, Elaine A. (2007). Automata, Computability and Complexity: The-
ory and Applications. Prentice Hall. ISBN 0132288060. URL http:
//www.cs.utexas.edu/~ear/cs341/automatabook/.

Smith, Peter (2003). An Introduction to Formal Logic. Cambridge University Press. ISBN
0521008042. URL http://www.logicmatters.net/if1/.

Smith, Peter (2007). An Introduction to Gédel’s Theorems. Cambridge University Press,
first edition. ISBN 0521674530.

Smith, Peter (2013). An Introduction to Gédel’s Theorems. Cambridge University Press,
second edition. ISBN 1107606756. URL http://godelbook.net.

Smullyan, Raymond M. (1995). First-Order Logic. Dover Publications Inc. ISBN
0486683702.

Soare, Robert Irving (1996). Computability and Recursion. Bulletin of Symbolic Logic,
2:284-321. URL http://www.people.cs.uchicago.edu/~soare/History/.

Soare, Robert Irving (2013). Interactive computing and relativized computability. In
Computability: Turing, Godel, Church, and Beyond, chapter 9, pages 203-260. The MIT
Press. URL http://www.people.cs.uchicago.edu/~soare/Turing/shagrir.pdf.

Teller, Paul (1989a). A Modern Formal Logic Primer: Predicate and Metatheory: 2.
Prentice-Hall. ISBN 0139031960. URL http://tellerprimer.ucdavis.edu.

Teller, Paul (1989b). A Modern Formal Logic Primer: Sentence Logic: 1. Prentice-Hall.
ISBN 0139031707. URL http://tellerprimer.ucdavis.edu.

Thompson, Simon (1991). Type Theory and Functional Programming. Addison Wesley.
ISBN 0201416670. URL http://www.cs.kent.ac.uk/people/staff/sjt/TTFP/.

Tomassi, Paul (1999). Logic. Routledge. ISBN 0415166969. URL http:
//emilkirkegaard.dk/en/wp-content/uploads/Paul-Tomassi-Logic.pdf.

Turing, Alan Mathison (1936). On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society, 42:230-265.

Turing, Alan Mathison (1937). On computable numbers, with an application to the

http://interactivepython.org/courselib/static/pythonds/index.html
http://interactivepython.org/courselib/static/pythonds/index.html
http://www.ualberta.ca/~francisp/papers/PellHazenSubmittedv2.pdf
http://www.ualberta.ca/~francisp/papers/PellHazenSubmittedv2.pdf
http://www.sfu.ca/~jeffpell/papers/pelletierNDtexts.pdf
http://www.sfu.ca/~jeffpell/papers/pelletierNDtexts.pdf
http://www.cs.utexas.edu/~ear/cs341/automatabook/
http://www.cs.utexas.edu/~ear/cs341/automatabook/
http://www.logicmatters.net/ifl/
http://godelbook.net
http://www.people.cs.uchicago.edu/~soare/History/
http://www.people.cs.uchicago.edu/~soare/Turing/shagrir.pdf
http://tellerprimer.ucdavis.edu
http://tellerprimer.ucdavis.edu
http://www.cs.kent.ac.uk/people/staff/sjt/TTFP/
http://emilkirkegaard.dk/en/wp-content/uploads/Paul-Tomassi-Logic.pdf
http://emilkirkegaard.dk/en/wp-content/uploads/Paul-Tomassi-Logic.pdf

Phil Molyneux Exam Revision

41

Entscheidungsproblem. A Correction. Proceedings of the London Methematical Soci-
ety, 43:544-546.

van Dalen, Dirk (1994). Logic and Structure. Springer-Verlag, third edition. ISBN
0387578390.

van Dalen, Dirk (2012). Logic and Structure. Springer-Verlag, fifth edition. ISBN
1447145577.

Author Phil Molyneux Written 14 May 2016 Printed 15th May 2016
Subject dir: (baseURL)/0U/M269/M269Exams/M269SpecimenExam
Topic path: /M269ExamRevision/M269ExamRevision2015]J/M269ExamRevision2015].pdf

	M269 Exam Revision Agenda & Aims
	Revision strategies

	Units 6 & 7
	Computability
	M269 Exam 2013J Q 15

	Complexity
	NP-Completeness and Boolean Satisfiability

	Logic
	M269 Exam 2013J Q 14

	SQL Queries
	M269 Exam 2013J Q 13

	Predicate Logic
	M269 Exam 2013J Q 12

	Propositional Logic
	M269 Exam 2013J Q 11

	Units 3, 4 & 5
	Unit 5 Optimisation
	M269 Exam 2013J Q 10
	M269 Exam 2013J Q 9

	Unit 4 Searching
	M269 Exam 2013J Q 8
	M269 Exam 2013J Q 7

	Unit 3 Sorting
	M269 Exam 2013J Q 6
	M269 Exam 2013J Q 5

	Units 1 & 2
	Unit 2 From Problems to Programs
	M269 Exam 2013J Q 4
	M269 Exam 2013J Q 3
	Example Algorithm Design — Searching

	Unit 1 Introduction
	M269 Exam 2013J Q 2
	M269 Exam 2013J Q 1

	M269 Exam Section 2
	M269 Exam 2013J Q 16
	M269 Exam 2013J Q 16 Text

	M269 Exam 2013J Q 17
	M269 Exam 2013J Q 17 Text

	Exam Techniques
	Epilogue: Logic, Programming and Computation
	White Slide
	Web Sites & References
	Web Sites
	References

