M269

Exam Revision

Phil Molyneux

16 May 2015

1/109

S M269
M269 Exam Revision |
Agenda & Aims Phil Molyneux

M269 Exam
Revision Agenda &
Aims

Welcome and introductions

Revision strategies

M269 Exam — Part 1 has 15 questions 60%

M269 Exam — Part 2 has 2 questions 40%

M?269 Exam — 3 hours, Part 1 100 mins, Part 2 70 mins
M269 2013J exam — Part 1 in reverse order

M269 2013J exam — Part 2 in notes version

Topics and discussion for each question

© 0N RN

Exam technique

2/109

M269 Exam M08

. . Phil Molyneux
Revision strategies

» Organising your knowledge
Revision strategies

» Each give one exam tip to the group

» TODO: add some more points

3/109

M269 Specimen Exam M269

Q15 TOpiCS Phil Molyneux

» Unit 7

Computability and ideas of computation

v

Computability

v

Complexity
P and NP
NP-complete

v

v

4/109

M269

Computability
Phil Molyneux
Ideas of Computation
» The idea of an algorithm and what is effectively
computable

Computability

» Church-Turing thesis Every function that would
naturally be regarded as computable can be computed
by a deterministic Turing Machine. (Unit 7 Section 4)

» See Phil Wadler on computability theory performed as
part of the Bright Club at The Strand in Edinburgh,
Tuesday 28 April 2015

5/109

http://wadler.blogspot.co.uk/2015/05/bright-club-computability.html

M269 Exam 2013J M269

Q 15 Phil Molyneux
» Which two of the following statements are true?
A. A Turing Machine is a mathematical model of
Computationa| prObIemS. M269 Exam 2013J Q 15

B. If the lower bound for a computational problem is
O(n?), then there is an algorithm that solves the
problem and which has complexity O(n?).

C. Searching a sorted list is not in the class NP.

D. The decision Travelling Salesperson Problem is
NP-complete.

E. There is no known tractable quantum algorithm for
solving a known NP-complete problem.

6/109

M269 Exam 2013J M269

Q 15 Solution Phil Molyneux

v

Only D and E are true.

v

A Universal Turing Machine can compute any
computable sequence but there are well defined M265 Bxam 20131 Q 15
problems that are not computable. (So not A)

v

A lower bound may be lower than any actual algorithm.
(So not B)

Every problem in P is in NP — we just do not know if
P == NP (So not C)

v

7/109

M269

Computability

. Phil Molyneux
Reducing one problem to another

» To reduce problem P; to P, invent a construction that
converts instances of P; to P> that have the same
answer. That is:

» any string in the language P; is converted to some
string in the language P>

» any string over the alphabet of P; that is not in the
language of P; is converted to a string that is not in the
language P>

» With this construction we can solve P;

» Given an instance of Py, that is, given a string w that
may be in the language P;, apply the construction
algorithm to produce a string x

» Test whether x is in P, and give the same answer for w
in Pl

M269 Exam 2013J Q 15

8/109

M269

Computability

X) K Phil Molyneux
Direction of Reduction

» The direction of reduction is important

» If we can reduce P; to P, then (in some sense) P, is at
least as hard as P; (since a solution to P, will give us a 269 Exam 20131 @ 15
solution to Pp)

» So, if P, is decidable then P; is decidable

» To show a problem is undecidable we have to reduce
from an known undecidable problem to it

> Wx(dpp, (x) = dpp, (reduce(x)))
» Since, if Py is undecidable then P, is undecidable

9/109

M269

Computability

Phil Molyneux
Models of Computation ovnes
» In automata theory, a problem is the question of
deciding whether a given string is a member of some
partICUIar |anguage M269 Exam 2013J Q 15

» If X is an alphabet, and L is a language over X, that is
L C X*, where X* is the set of all strings over the
alphabet X then we have a more formal definition of
decision problem

> Given a string w € ¥*, decide whether w € L

» Example: Testing for a prime number — can be
expressed as the language L, consisting of all binary
strings whose value as a binary number is a prime
number (only divisible by 1 or itself)

10/109

M269

Computability

Phil Molyneux
Church-Turing Thesis & Quantum Computing
» Church-Turing thesis Every function that would
naturally be regarded as computable can be computed
by a deterministic Turing Machine. 265 Eeam 20133 @ 15

» physical Church-Turing thesis Any finite physical
system can be simulated (to any degree of
approximation) by a Universal Turing Machine.

» strong Church-Turing thesis Any finite physical
system can be simulated (to any degree of
approximation) with polynomial slowdown by a
Universal Turing Machine.

» Shor's algorithm (1994) — quantum algorithm for
factoring integers — an NP problem that is not known
to be P — also not known to be NP-complete and we
have no proof that it is not in P

11/109

http://en.wikipedia.org/wiki/Shor's_algorithm

M269

Computability

Turing Machine e
» Finite control which can be in any of a finite number
of states
» Tape divided into cells, each of which can hold one of a 1269 Bxam 20151 Q 15

finite number of symbols

» Initially, the input, which is a finite-length string of
symbols in the input alphabet, is placed on the tape

» All other tape cells (extending infinitely left and right)
hold a special symbol called blank

> A tape head which initially is over the leftmost input
symbol

» A move of the Turing Machine depends on the state
and the tape symbol scanned

» A move can change state, write a symbol in the current
cell, move left, right or stay

12/109

M269

Turing Machine Diagram

. . . Phil Molyneux
Turing Machine Diagram

b|lbl|lalal]lal]a -~ 1/0O Tape

Reading and Writing Head

(moves in both directions)

M269 Exam 2013J Q 15

a3

q2 / an

a1 qo

Finite Control

13/109

M269

Computability

. . . Phil Molyneux
Turing Machine notation

v

Q finite set of states of the finite control
¥ finite set of input symbols (M269 S)
" complete set of tape symbols . C T’ 11269 Brom 2013) Q 15

d Transition function (M269 instructions, /)
duQxIN—@xTIx{LR,S}

(g, X) = (p, Y, D)

d(q, X) takes a state, g and a tape symbol, X and
returns (p, Y, D) where p is a state, Y is a tape symbol
to overwrite the current cell, D is a direction, Left,
Right or Stay

v

v

v

v

v

go start state qp € Q
B blank symbol B €T and B ¢ ©
F set of final or accepting states F C Q

v

v

14/109

M269

Computability
Decidability

Phil Molyneux

» Decidable — there is a TM that will halt with yes/no
for a decision problem — that is, given a string w over
the alphabet of P the TM with halt and return yes.no 265 Eeam 20133 @ 15
the string is in the language P (same as recursive in
Recursion theory — old use of the word)

» Semi-decidable — there is a TM will halt with yes if
some string is in P but may loop forever on some inputs
(same as recursively enumerable) — Halting Problem

» Highly-undecidable — no outcome for any input —
Totality, Equivalence Problems

15/109

http://en.wikipedia.org/wiki/Recursion_theory

M269

Computability
Undecidable Problems

Phil Molyneux

» Halting problem — the problem of deciding, given a
program and an input, whether the program will
eventually halt with that input, or will run forever —
term first used by Martin Davis 1952

M269 Exam 2013J Q 15

» Entscheidungsproblem — the problem of deciding
whether a given statement is provable from the axioms
using the rules of logic — shown to be undecidable by
Turing (1936) by reduction from the Halting problem to
it

» Type inference and type checking in the
second-order lambda calculus (important for functional
programmers, Haskell, GHC implementation)

» Undecidable problem — see link to list

16/109

http://en.wikipedia.org/wiki/Halting_problem
http://en.wikipedia.org/wiki/Entscheidungsproblem
http://en.wikipedia.org/wiki/System_F
http://en.wikipedia.org/wiki/Undecidable_problem

M269

Computability

. . Phil Molyneux
Why undecidable problems must exist

» A problem is really membership of a string in some
language

» The number of different languages over any alphabet of M269 Exam 2015 @ 15
more than one symbol is uncountable

» Programs are finite strings over a finite alphabet (ASCII
or Unicode) and hence countable.

» There must be an infinity (big) of problems more than
programs.

17/109

M269

Computability

Phil Molyneux
Computability and Terminology (1)
> The idea of an algorithm dates back 3000 years to
Euclid, Babylonians. ..
» In the 1930s the idea was made more formal: which M269 Exam 20131 Q 15

functions are computable?

» A function a set of pairs
f={(x,f(x)): x € XA f(x)€ Y} with the function
property
» Function property: (a,b) € f A(a,c) e f = b==c
» Function property: Same input implies same output

» Note that maths notation is deeply inconsistent here —
see Function and History of the function concept

» What do we mean by computing a function — an
algorithm ?

18/109

http://en.wikipedia.org/wiki/Computable_function
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/History_of_the_function_concept

M269

Computability

Phil Molyneux
Computability and Terminology (2) ovnes
> In the 1930s three definitions:
» \-Calculus, simple semantics for computation — Alonzo
C hurch M269 Exam 2013J Q 15

» General recursive functions — Kurt Godel

» Universal (Turing) machine — Alan Turing
» Terminology:

» Recursive, recursively enumerable — Church, Kleene
Computable, computably enumerable — Gédel, Turing
Decidable, semi-decidable, highly undecidable
In the 1930s, computers were human
Unfortunate choice of terminology

vV vy vy

» Turing and Church showed that the above three were
equivalent

» Church-Turing thesis — function is intuitively
computable if and only if Turing machine computable

19/109

http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Alonzo_Church
http://en.wikipedia.org/wiki/Alonzo_Church
http://en.wikipedia.org/wiki/Μ-recursive_function
http://en.wikipedia.org/wiki/Kurt_Gödel
http://en.wikipedia.org/wiki/Universal_Turing_machine
http://en.wikipedia.org/wiki/Alan_Turing
http://en.wikipedia.org/wiki/Stephen_Cole_Kleene
http://en.wikipedia.org/wiki/Church–Turing_thesis

M269

Complexity
P and NP

Phil Molyneux

» P, the set of all decision problems that can be solved in
polynomial time on a deterministic Turing machine
» NP, the set of all decision problems whose solutions can
be verified (certificate) in polynomial time Compesty
» Equivalently, NP, the set of all decision problems that
can be solved in polynomial time on a non-deterministic
Turing machine
» A decision problem, dp is NP-complete if
1. dpisin NP and
2. Every problem in NP is reducible to dp in polynomial
time
» NP-hard — a problem satisfying the second condition,
whether or not it satisfies the first condition. Class of
problems which are at least as hard as the hardest
problems in NP. NP-hard problems do not have to be in
NP and may not be decision problems

20/109

http://en.wikipedia.org/wiki/P_(complexity)
http://en.wikipedia.org/wiki/NP_(complexity)
http://en.wikipedia.org/wiki/NP-complete

Complexity
P and NP — Diagram

Euler diagram for P, NP, NP-complete and NP-hard set of

problems

NP-Hard

NP-Complete

P = NP

Complexity

NP-Hard

P=NP=
NP-Complete

P =NP

Source: Wikipedia NP-complete entry

M269

Phil Molyneux

Complexity

21/109

http://en.wikipedia.org/wiki/Euler_diagram
http://en.wikipedia.org/wiki/NP-complete

M269

Complexity

Phil Molyneux
NP-complete problems

» Boolean satisfiability (SAT) Cook-Levin theorem
» Conjunctive Normal Form 3SAT

v

Hamiltonian path problem

Complexity

v

Travelling salesman problem

v

NP-complete — see list of problems

22/109

http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Cook-Levin_theorem
http://en.wikipedia.org/wiki/3-satisfiability
http://en.wikipedia.org/wiki/Hamiltonian_path_problem
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/NP-complete

Complexity
Knapsack Problem
MY HoBBY:
EMBEDDING NP-(OMPLETE PROBLEMS IN RESTAURANT ORDERS
CHOTCHRIES RESTAORAKT b’g?{g‘f}\%ggﬁgg
<~ APPENZERS —~ | L EAY? UK.
MIXED FRUIT 2.15 HERE, THESE PAPERS ON THE. KNAPSACK, /
PROBLEM MIGHT HELP YOU QUT.
FRENCH FRIES 275 \ LISTEN, I HAVE §1x OTHER
SIDE SALAD 335 TABLES TO GET T0—
= PG FAST 5 POSSIRLE, OF (OURSE. WANT
HOT WINGS 3.55 SOMETHING ON TRAVELING SALESHAN? /
MOZZARELA STICKS 4.20 \
SAMPLER PLATE ~ 5:80 % 0 %ﬁ, %
—— SANDWICHES ~— !
RADREN |E £ se

Source & Explanation

: XKCD 287

M269

Phil Molyneux

Complexity

23/109

http://www.explainxkcd.com/wiki/index.php/287:_NP-Complete

M269

NP-Completeness and Boolean Satisfiability

. Phil Molyneux
Points on Notes

» The Boolean satisfiability problem (SAT) was the first
decision problem shown to be NP-Complete

» This section gives a sketch of an explanation

» Health Warning different texts have different notations WP-Completenssand
and there will be some inconsistency in these notes

» Health warning these notes use some formal notation
to make the ideas more precise — computation requires
precise notation and is about manipulating strings
according to precise rules.

24/109

http://en.wikipedia.org/wiki/Boolean_satisfiability_problem

M269

NP-Completeness and Boolean Satisfiability

Phil Molyneux
Alphabets, Strings and Languages
» Notation:
> > is a set of symbols — the alphabet
» Yk is the set of all string of length k, which each
symbol from 3. S
» Example: if ¥ = {0,1}
» ¥1={0,1}

» ¥2={00,01,10,11}
» 30 = {¢} where € is the empty string
> >* is the set of all possible strings over ¥
» Y =30Uuylur?u...
» A Language, L, over ¥ is a subset of ¥*
» LCY*

25/109

M269

NP-Completeness and Boolean Satisfiability

Phil Molyneux
Language Accepted by a Turing Machine
» Language accepted by Turing Machine, M denoted by
L(M)
» L(M) is the set of strings w € £* accepted by M
» For Final States F = {Y, N}, a string w € ¥* is e

accepted by M < (if and only if) M starting in go with
w on the tape halts in state Y

» Calculating a function (function problem) can be turned
into a decision problem by asking whether f(x) =y

26/109

http://en.wikipedia.org/wiki/Function_problem
http://en.wikipedia.org/wiki/Decision_problem

M269

NP-Completeness and Boolean Satisfiability

Phil Molyneux
The NP-Complete Class
> If we do not know if P #= NP, what can we say ?
» A language L is NP-Complete if:
» L€ NP and
» for all other L’ € NP there is a polynomial time NP-Completencss and

Boolean Satisfiability

transformation (Karp reducible, reduction) from L’ to L

» Problem Py polynomially reduces (Karp reduces,
transforms) to P>, written Py o< P> or Py <, P>, iff
3f : dpp, — dpp, such that

» VI edpp[l € Yp, & f(I) € Yp,]
» f can be computed in polynomial time

27/109

M269

NP-Completeness and Boolean Satisfiability

Phil Molyneux
The NP-Complete Class (2)
» More formally, L; C ¥ polynomially transforms to
Ly C %35, written Ly o< Ly or Ly <, Lo, iff 3f : X7 — X5
such that
» Vx € Xi[x € L1 & f(x) € L]
» There is a polynomial time TM that computes f Boolean Satetanity.

» Transitivity If L1 o< Ly and Ly o< L3 then L; < L3
» If Lis NP-Hard and L € P then P = NP
» If L is NP-Complete, then L € P if and only if P = NP

> If Ly is NP-Complete and L € NP and Ly < L then L is
NP-Complete

» Hence if we find one NP-Complete problem, it may
become easier to find more

» In 1971/1973 Cook-Levin showed that the Boolean
satisfiability problem (SAT) is NP-Complete

28/109

http://en.wikipedia.org/wiki/Cook–Levin_theorem
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem

M269

NP-Completeness and Boolean Satisfiability

T Phil Molyneux
The Boolean Satisfiability Problem

» A propositional logic formula or Boolean expression is
built from variables, operators: AND (conjunction, A),
OR (disjunction, V), NOT (negation, —)

» A formula is said to be satisfiable if it can be made True
by some assignment to its variables.

» The Boolean Satisfiability Problem is, given a formula,
check if it is satisfiable.

NP-Completeness and
Boolean Satisfiability

» Instance: a finite set U of Boolean variables and a finite
set C of clauses over U
» Question: Is there a satisfying truth assignment for C ?

» A clause is is a disjunction of variables or negations of
variables

» Conjunctive normal form (CNF) is a conjunction of
clauses

» Any Boolean expression can be transformed to CNF

29/109

M269

NP-Completeness and Boolean Satisfiability

The Boolean Satisfiability Problem (2) i Melyneus
» Given a set of Boolean variable U = {u1, u2, ..., up}
> A literal from U is either any u; or the negation of some
u; (written T;)
> A clause is denoted as a subset of literals from U — WP e

Booton Setetanity
{u2, g, us }
» A clause is satisfied by an assignment to the variables if
at least one of the literals evaluates to True (just like
disjunction of the literals)
> Let C be a set of clauses over U — C is satisfiable iff
there is some assignment of truth values to the
variables so that every clause is satisfied (just like CNF)

C ={{u1,u,us}, {2, U3}, {2, U3} } is satisfiable
C ={{u1,w2},{u1, @}, {T1}} is not satisfiable

v

v

30/109

M269

NP-Completeness and Boolean Satisfiability

. Phil Molyneux
The Boolean Satisfiability Problem (3)

» Proof that SAT is NP-Complete looks at the structure
of NDTMs and shows you can transform any NDTM to
SAT in polynomial time (in fact logarithmic space
suffices)

NP-Completeness and
Boolean Satisfiability

» SAT is in NP since you can check a solution in
polynomial time

» To show that VL € NP : L o« SAT invent a polynomial
time algorithm for each polynomial time NDTM, M,
which takes as input a string x and produces a Boolean
formula E, which is satisfiable iff M accepts x

» See Cook-Levin theorem

31/109

http://en.wikipedia.org/wiki/Cook-Levin_theorem

M269

NP-Completeness and Boolean Satisfiability

. . Phil Molyneux
Coping with NP-Completeness

» What does it mean if a problem is NP-Complete ?
» There is a P time verification algorithm.
» There is a P time algorithm to solve it iff P = NP (?)
» No one has yet found a P time algorithm to solve any
NP-Complete problem Boolean Satetanity.
» So what do we do ?
> Improved exhaustive search — Dynamic Programming;
Branch and Bound

» Heuristic methods — acceptable solutions in acceptable
time — compromise on optimality

> Average time analysis — look for an algorithm with
good average time — compromise on generality (see
Big-O Algorithm Complexity Cheatsheet)

» Probabilistic or Randomized algorithms — compromise
on correctness

32/109

http://bigocheatsheet.com

M269 Specimen Exam

Q14 topics

» Unit 7
» Proofs

» Natural deduction

M269

Phil Molyneux

Computabilit

33/109

M269

Logic

o X X Phil Molyneux
Logicians, Logics, Notations

> A plethora of logics, proof systems, and different
notations can be puzzling.

» Martin Davis, Logician When | was a student, even the
topologists regarded mathematical logicians as living in
outer space. Today the connections between logic and Logic
computers are a matter of engineering practice at every
level of computer organization

» Various logics, proof systems , were developed well
before programming languages and with different
motivations,

34/109

http://en.wikipedia.org/wiki/Martin_Davis

M269

Logic

Phil Molyneux
Logic and Programming Languages
» Turing machines, Von Neumann architecture and
procedural languages Fortran, C, Java, Perl, Python,
JavaScript
» Resolution theorem proving and logic programming —
Prolog e

» Logic and database query languages — SQL (Structured
Query Language) and QBE (Query-By-Example) are
syntactic sugar for first order logic

» Lambda calculus and functional programming with
Miranda, Haskell, ML, Scala

35/109

http://en.wikipedia.org/wiki/Von_Neumann_architecture
http://en.wikipedia.org/wiki/Lambda_calculus

Logical Arguments
Validity and Justification

>

M269

Phil Molyneux

There are two ways to model what counts as a logically
good argument:

» the semantic view

» the syntactic view
The notion of a valid argument in propositional logic is »
rooted in the semantic view. :
It is based on the semantic idea of interpretations:
assignments of truth values to the propositional

variables in the sentences under discussion.

A valid argument is defined as one that preserves truth
from the premises to the conclusions

The syntactic view focuses on the syntactic form of
arguments.

Arguments which are correct according to this view are
called justified arguments.

36/109

M269

Logical Arguments

Phil Molyneux
Proof Systems, Soundness, Completeness
» Semantic validity and syntactic justification are different
ways of modelling the same intuitive property: whether
an argument is logically good.
» A proof system is sound if any statement we can prove
(justify) is also valid (true) Loge

» A proof system is adequate if any valid (true) statement
has a proof (justification)

> A proof system that is sound and adequate is said to be
complete

» Propositional and predicate logic are complete —
arguments that are valid are also justifiable and vice
versa

» Unit 7 section 2.4 describes another logic where there
are valid arguments that are not justifiable (provable)

37/109

Logical Arguments

Valid arguments

v

M269

Phil Molyneux
Py
Unit 6 defines valid arguments with the notation
Pn
The argument is valid if and only if the value of C is
True in each interpretation for which the value of each e
premise P;is Truefor 1 <j<n
In some texts you see the notation {P1,...,Pp} = C

> The expression denotes a semantic sequent or semantic

entailment

The |= symbol is called the double turnstile and is often
read as entails or models

In LaTeX F and = are produced from \vDash and
\models — see also the turnstile package

In Unicode = is called TRUE and is U+22A8, HTML
⊨

38/109

Logical Arguments e

. Phil Molyneux
Valid arguments — Tautology

» The argument {} = C is valid if and only if C is True in
all interpretations
» That is, if and only if C is a tautology

» Beware different notations that mean the same thing
» Alternate symbol for empty set:) = C b
» Null symbol for empty set: = C
» Original M269 notation with null axiom above the line:
C

39/109

M269

Logic

pe Phil Molyneux
Justified Arguments

» Definition 7.1 An argument {P1,Pa,...,P,} F Cis a
justified argument if and only if either the argument is
an instance of an axiom or it can be derived by means
of an inference rule from one or more other justified
arguments.

» Axioms
U {A} F A (axiom schema)

» This can be read as: any formula A can be derived from
the assumption (premise) of {A} itself

» The F symbol is called the turnstile and is often read as
proves, denoting syntactic entailment

» In LaTeX I is produced from \vdash

» In Unicode I is called RIGHT TACK and is U+22A2,
HTML & +#38866;

40/109

M269

Logic

. Phil Molyneux
Justified Arguments
» Section 2.3 of Unit 7 (not the Unit 6, 7 Reader) gives
the inference rules for —, A, and V — only dealing with
positive propositional logic so not making use of
negation — see List of logic systems
» Usually (Classical logic) have a functionally complete Logic

set of logical connectives — that is, every binary
Boolean function can be expressed in terms the
functions in the set

41/109

http://en.wikipedia.org/wiki/List_of_logic_systems
http://en.wikipedia.org/wiki/Functional_completeness

M269

Justified Arguments

. Phil Molyneux
Inference Rules — Notation

> Inference rule notation:
Argument; ... Argument,
Argument

(label)

Logic

42/109

Justified Arguments

Inference Rules — Conjunction

r’HA Ire=B
r-AnB

> W (A-elimination left)

rFAAB

r-B

(A-introduction)

(A-elimination right)

M269

Phil Molyneux

43/109

M269

Justified Arguments

Inference Rules — Implication

ru{A}+-B
r-A— B
» The above should be read as: If there is a proof
(justification, inference) for B under the set of premises,
I, augmented with A, then we have a proof
(justification. inference) of A — B, under the
unaugmented set of premises, T .
The unaugmented set of premises, I may have
contained A already so we cannot assume

Phil Molyneux

> (—-introduction)

(TU{A}) —{A} isequalto T

, 'FA TFA->B
r-B

(—-elimination)

44/109

Justified Arguments M269
Phil Molyneux

Inference Rules — Disjunction

_rFA
r-AvB
» B
r-AvB
Disjunction elimination

(\v-introduction left)

(\-introduction right)

v

rH-AvB TU{A}FC TU{B}rC
r- c

The above should be read: if a set of premises I'

justifies the conclusion AV B and I augmented with

each of A or B separately justifies C, then I justifies C

(\V-elimination)

v

45/109

M269

Proofs in Tree Form

Phil Molyneux

» The syntax of proofs is recursive:

> A proof is either an axiom, or the result of applying a
rule of inference to one, two or three proofs.

» We can therefore represent a proof by a tree diagram in
which each node have one, two or three children

» For example, the proof of {PA (P — Q)} F Q in
Question 4 (in the Logic tutorial notes) can be
represented by the following diagram:

{P/\(P—>Q)})—P/\(P—>Q)(AEI&) {P/\(P—>Q)}I—P/\(P—>Q) (A-E right]
(PAP S QIFP - {Pr(PoQ}FP>Q =8

{PAN(P—=Q)}FQ

Logic

—-E)

46/109

Justified Arguments

Self-Assessment activity 7.4

»LletT={P >R Q—R,PVQ}
_TEPVQ TU{P}FR TU{Q}FR

(\-elimination)

N-R
ru{P}FpP TU{P}FP—R o
> (—-elimination)
ry{P}+~R
> rv {Q} Q Tu {Q} "Q=R (—-elimination)
rU{Q}rFR
» Complete tree layout
ru{P} ru{r} ru{Q} ru{Q}
P FP—R g BQ FQoR g
r-pPvQ ru{P}rR ru{QrRrR e

r-RrR (

M269

Phil Molyneux

47/109

M269

Justified Arguments

L i Phil Molyneux
Self-assessment activity 7.4 — Linear Layout

1. {P->RQ—-RPVQRIFPVAQ [Axiom]

2. {P->RQ—RPVQIU{P}FP [Axiom]

3. {P-R,Q—RPVQIU{P}FP — R [Axiom]

4. {P—>R, Q- R PVQIU{Q}FQ [Axiom]

5. {P=>R,Q—RPVQIU{Q}FQ— R [Axiom]

6. {P>R Q=R PVQU{P}FR [2, 3, >-E] =
7. {P-R Q>R PVQIU{Q}FR [4, 5, —-E]

8. {P>RQ—>RPVQIFR [1, 6,7, V-]

48/109

M269 Exam 2013J M269

Phil Molyneux
Q 14

» Consider the following axiom schema and rules:
» Axiom schema: {A} - A
> Rules: (as Unit 7 for Natural Deduction)

» A-elimination left, A-elimination right

» A-introduction
» —-introduction, —-elimination

M269 Exam 2013J Q 14

» Complete the following proof:

1. {PA(QAR)}FPA(QAR) [Axiom]
e [1,A-elimination left]
3. DE(PA(QAR)—=P

49/109

M269 Exam 2013J M269

Q 14 Solution Phil Molyneux

1. {PA(QAR)}FPA(QAR) [Axiom]
2. {PAN(QAR)}EP [1,A-elimination left]
3. DE(PA(QAR))—P [2,—-introduction]

M269 Exam 2013J Q 14

50/109

M269 Specimen Exam

Q13 Topics

» Unit 6
» SQL queries

51/109

M269 Exam 2013J M269

Q 13 Phil Molyneux
» A database contains the following tables, oilfield and
operator
oilfield operator
name production company field
Warga 3 Amarco Warga M269 Exam 20133 Q 13
Lolli 5 Bratape Lolli
Tolstoi 0.5 Rosbif Tolstoi
Dakhun 2 Tagar Dakhun
Sugar 3 Bratape Sugar

» Q 13 continued on next slide

52/109

M269 Exam 2013J

Q 13 (continued)

» For each of the following SQL queries, give the table

(a)

(b)

returned by the query

SELECT x
FROM operator;

SELECT name, production
FROM oilfield
WHERE production > 2;

SELECT name, production, company
FROM oilfield CROSS JOIN operator
WHERE name = field;

M269

Phil Molyneux

M269 Exam 2013J Q 13

53/109

M269 Exam 2013J M269

Q 13(a) Solution

Phil Molyneux

(a) This is simply the whole operator table.

company field

Amarco Warga

Bratape Lolli

Rosbif Tolstoi

Taqar Dakhun 269 Exam 20139 Q 13
Bratape Sugar

54/109

M269 Exam 2013J M269

Q 13(b) Solution Phil Molyneux

(b) Retaining only the rows with production > 2

name production

Warga 3
Lolli 5
Sugar 3

M269 Exam 2013J Q 13

55/109

M269 Exam 2013J

Q 13(c) Solution

(c) Joining the tables

name production company
Warga 3 Amarco
Lolli 5 Bratape
Tolstoi 0.5 Rosbif
Dakhun 2 Taqar
Sugar 3 Bratape

M269

Phil Molyneux

M269 Exam 2013J Q 13

56/109

M269 Specimen Exam M269

Q12 TOpiCS Phil Molyneux

» Unit 6
» Predicate Logic
» Translation to/from English

> Interpretations

Predicate Logic

57/109

M269 Exam 2013J M269

Phil Molyneux
Q 12

» A particular interpretation of predicate logic allows facts
to be expressed about films that people have seen, and
of which they own copies.

» Some of the assignments in the interpretation are given
below (where the symbol Z is used to show assignment).

» The interpretation assigns Jane, John and Saira to the
constants jane, john and saira.

M269 Exam 2013J Q 12

Z(jane) = Jane
Z(john) = John
Z(saira) = Saira

» Q 12 continued on next slide

58/109

M269 Exam 2013J M269

Phil Molyneux
Q 12

» The predicates owns and has_seen are assigned to
binary relations. The comprehensions of the relations
are:

» Z(owns) = {(A,B): the person A owns a copy of film B}
» Z(has_seen) = {(A,B): the person A has seen film B}
» The enumerations of the relations are:

Z(owns) = {(Jane, Django), (Jane, Casablanca),

(John, Jaws), (John, The Omen), (John, — mwsewmamon
El Topo), (Saira, El Topo), (Saira,
Casablanca)}

Z(has_seen) = {(Jane, Django), (Jane, Candide), (Jane,
Casablanca), (John, The Omen), (John,
El Topo), (Saira, Django), (Saira, The
Omen)}

» Q 12 continued on next slide

59/109

M269 Exam 2013J

Q12

>

>

v

Parts (a) and (b) of this question are on the next page.

In both parts, you are given a sentence of predicate
logic and asked to provide an English translation of the
sentence in the box immediately following it.

You also need to state whether the sentence is TRUE or
FALSE in the interpretation that is provided on this
page, and give an explanation of your answer.

In your explanation you need to consider any relevant
values for the variable X, and show, using the
interpretation above, whether it makes the quantified
expression TRUE.

Q 12 continued on next slide

M269

Phil Molyneux

M269 Exam 2013J Q 12

60/109

M269 Exam 2013J M269

Phil Molyneux
Q 12

(a) VX. (owns(saira,X) — has_seen(saira, X)) can be
translated in English as:

» This sentence is TRUE/FALSE because:

(b) 3X.(has_seen(jane,X) A owns(jane,X)) can be
translated in English as:

» This sentence is TRUE/FALSE because:

M269 Exam 2013J Q 12

61/109

M269

M269 Exam 2013J

Q 12(a) Solution

Phil Molyneux

(a) For all films, if Saira owns a copy of the film, then Saira
has seen the film.
Or more idiomatically, Saira has seen all of the films
that she owns.

» The sentence is FALSE, because the enumerations of
the relations show that she owns a copy of Casablanca,
but this is not one of the films that she has seen. She
also owns a copy of El Topo, which she has not seen
either, but we only need one counter-example to show
that the sentence is false.

M269 Exam 2013J Q 12

62/109

M269

M269 Exam 2013J _

Q 12(b) Solution

(b) There exists a film, such that Jane has seen it and Jane

owns it.
Or more idiomatically, Jane has seen at least one of the

films that she owns

» This sentence is TRUE. The enumerations show that
she owns Casablanca and that she has seen it. Django
also provides a sufficient example to show that the

sentence is true.

M269 Exam 2013J Q 12

63/109

M269

M269 Specimen Exam

Q].]. TOpiCS Phil Molyneux

» Unit 6

> Sets

» Propositional Logic
Truth tables

Valid arguments

v

v

Infinite sets

v

Propositional Logic

64/109

M269 Exam 2013J M269

Phil Molyneux
Q11

(a) What does it mean to say that a well-formed formula
(WFF) is satisfiable 7

(b) Is the following WFF satisfiable ?
(P—=(Q—P)V-R

Explain how you arrived at your answer

M269 Exam 2013J Q 11

65/109

M269 Exam 2013J M269

Q 11 Solution Phil Molyneux

(a) A WFF is satisfiable if it is possible to find an
interpretation that makes the formula true.

(b) Truth table for the WFF

P @ R Q=P P—(Q—=P) =R (P=(Q—P)V-R

FOF T T T T

F F T T T F T

F T F F T T T

F T T F T F :

T F F T T T T

T ET T T F T M269 Exam 2013J Q 11
T T F T T T T

T T T T T F T

> The truth table shows that the WFF
(P — (Q — P)) vV =R is always true, so it satisfiable
under any interpretation. But we don't need the whole
truth table to prove this; the WFF is true for any
interpretation in which R is false (for example).

66/109

M269 Specimen Exam M269

Phil Molyneux
Unit 5 Topics, Q9, Q10 ovnes

» Unit 5 Optimisation
» Graphs searching: DFS, BFS
» Distance: Dijkstra’s algorithm OB

» Greedy algorithms: Minimum spanning trees, Prim'’s
algorithm

» Dynamic programming: Knapsack problem, Edit
distance

67/109

M269 Exam 2013J M269

Phil Molyneux
Q 10

» Consider the following graph:
1

M269 Exam 2013J Q 10

4 k|

» Complete the table below to show the order in which
the vertices of the above graph could be visited in a
Depth First Search (DFS) starting at vertex 3 and
always choosing first the leftmost not yet visited vertex
(as seen from the current vertex):

Vertex | 3

68/109

M269

M269 Exam 2013J

Q 10 Solution

Phil Molyneux

» Depth First Search (DFS) starting at vertex 3 and
always choosing first the leftmost not yet visited vertex
(as seen from the current vertex):

M269 Exam 2013J Q 10

Vertex| 3|4 |1]|2]|5

» Notice the ambiguity about the term leftmost — an
alternative view could have been:

Vertex| 3|1 |4]|2]|5

69/109

M269 Exam 2013J M269

Phil Molyneux
Q9
» Recall that the structured English for Dijkstra’s
algorithm is:
create priority~queue
set dist to 0 for v and dist to infinity
for all other vertices M269 Exam 2013J Q 9

add all vertices to priority~queue
ITERATE while priority~queue is not empty
remove u from the front of the queue
ITERATE over w in the neighbours of u
set new~distance to
dist u + length of edge from u to w
IF new~distance is less than dist w
set dist w to new~distance
change priority (w, new~distance)

» Q 9 continued on next slide

70/109

M269 Exam 2013J M269

Phil Molyneux
Q9
» Now consider the following weighted graph:
E
1 M269 Exam 2013J Q 9
5
F
6
B

» Q 9 continued on next slide

71/109

M269 Exam 2013J M269

Phil Molyneux
Q9

» Starting from vertex B, the following table represents
the distances after the second line of structured English
is executed for the graph given above (using the
convention that a blank cell represents infinity):

Vertex A B C D E F M269 Exam 2013J Q 9

Distance 0

» Now, complete the appropriate boxes in the next table
to show the distances after the first and second
iterations of the while loop of the algorithm.

Vertex A|B|C|D|E]|F

Distance 0 First iteration

Distance 0 Second iteration

72/109

M269 Exam 2013J

Q 9 Solution

» The completed table:

M269

Phil Molyneux

6 | First iteration

M269 Exam 2013J Q 9

Vertex A|lB|C F
Distance | 1 | O
Distance | 1 | 0 | 3

6 | Second iteration

73/109

M269

M269 Specimen Exam

Unit 4 Topics, Q7, Q8

Phil Molyneux

v

Unit 4 Searching

v

String searching: Quick search Sunday algorithm,
Knuth-Morris-Pratt algorithm

v

Hashing and hash tables

Unit 4 Searching

v

Search trees: Binary Search Trees

v

Search trees: Height balanced trees: AVL trees

74/109

M269 Exam 2013J M269

Phil Molyneux
Q8

(a) Consider the following Binary Search Tree.

M269 Exam 2013J Q 8

» Modify (draw on) the above Binary Search Tree to
insert a node with a key of 57.

» Q 8 continued on next slide

75/109

M269 Exam 2013J M269

Phil Molyneux
Q8

(b) Once again, consider the same Binary Search Tree.

M269 Exam 2013J Q 8

» Calculate the balance factors of each node in the tree
above and modify the diagram to show these balance
factors.

76/109

M269 Exam 2013J M269

Phil Mol
Q 8(3) Solution il Molyneux

(a) Answer, with inserted node shown in red

M269 Exam 2013J Q 8

77/109

M269 Exam 2013J M269

Q 8(b) Solution Phil Molyneux

» Answer, with balance factors shown in blue

M269 Exam 2013J Q 8

78/109

M269

M269 Exam 2013J
Q7

Phil Molyneux

> In the KMP algorithm, for each character in the target
string T we identify the longest substring of T ending
with that character which matches a prefix of the target
string.
» These lengths are stored in what is known as a prefix
table (which in Unit 4 we represented as a list). W26 Euam 2039 0 7

» Consider the target string T

A|IBIA|C|A|B|A|C|A|C

> Below is an incomplete prefix table for the target string
given above. Complete the prefix table by writing the
missing numbers in the appropriate boxes.

0 110 2 4 0

79/109

M269 Exam 2013J M269

Q 7 Solution Pl Hobymeux
» The complete prefix table, with new entries in red:
0j0j1j0|1|2|3]|4]|5]|0
> Here is the target, prefix and shift:
’A|B|A|C|A|B|A|C|A|C‘Targetstring,t
lof1]2]3]a]s5]6]7]s]09]Position (Index), p s Exam 20131 07

’0|1|2|3|4|5|6|7|8|9|10‘Match,q

’0|0|1|0|1|2|3|4|5|0‘prefixTable(t,p)

’1|1|2|2|4|4|4|4|4|4|10‘shift(t,q)

» The shift function takes the target string, t, and the
number of characters matched, q.

> shift(t,0) = 1

» shift(t,q) = g — prefixTable(t,q — 1)

80/109

M269

M269 Specimen Exam

Unit 3 Topics, Q5, Q6

Phil Molyneux

» Unit 3 Sorting

» Elementary methods: Bubble sort, Selection sort,
Insertion sort

» Recursion — base case(s) and recursive case(s) on
smaller data

» Quicksort, Merge sort ot 3 Sortng
» Sorting with data structures: Tree sort, Heap sort

» See sorting notes for abstract sorting algorithm

81/109

Unit 3 Sorting

M269

Phil Molyneux

Abstract Sorting Algorithm

[u nsorted list xs]

if (length xs > 1) then
(xs1,xs2) = split xs

/ N

xsl Xs2 Unit 3 Sorting

[ys = join (ysl,ys2)]

sorted list ys

82/109

M269

Unit 3 Sorting

Phil Mol
Sorting Algorithms il Molyneux

Using the Abstract sorting algorithm, describe the split and
Jjoin for:

» |nsertion sort

v

Selection sort

v

Merge sort
Quicksort
Bubble sort (the odd one out)

v

Unit 3 Sorting

v

83/109

M269 Exam 2013J M269

Phil Molyneux
Q6

» Consider the following function, which takes a list as an
argument. You may assume that the list contains a
number of integer values and is not empty.

1 def average(alist):
2 n = len(alList)
3 total = 0
4 for item in alist:
5 total = total + item
M269 Exam 2013J Q 6
6 mean = total / n
7 return mean

» Q 6 continued on next slide

84/109

M269 Exam 2013J M269

Q6

Phil Molyneux

» From the five options below, select the one that

mUow>»

represents the correct combination of T(n) and Big-O
complexity for this function. You may assume that a
step (i.e. the basic unit of computation) is the
assignment statement.

T(n) =3+ n? and O(n?)
=n+ 2 and O(n2) M269 Exam 2013) Q 6

85/109

M269

M269 Exam 2013J

Q 6 Solution

Phil Molyneux

» Option E is correct.

» The function does three assignments once per call, and
one assignment for each of the n items in the argument,
hence T(n) = n+ 3.

M269 Exam 2013J Q 6

86/109

M269 Exam 2013J M269

Phil Molyneux
Q5

» Consider the following diagrams A—H. Nodes are
represented by black dots and edges by arrows. The
numbers represent a node's key.

A B (o4 D
3 3 3
4 .
o \ /\ /\ 5
// NNV
\ J Y 2 1e .2
4, o1 1 M269 Exam 2013J Q 5
E 7 F o9 G o H 6
{//X\\\\ 6 .8 //R\\\\ 9
2 /N 3 59 %5 7 // :}ﬁ\\ //
4° L X N ‘. . o o e s %
3 4 2 5 4 2 34 5

» Q 5 continued on next slide

87/109

M269

M269 Exam 2013J
Q5

Phil Molyneux

» Answer the following questions. Write your answer on
the line that follows each question. In each case there is
at least one diagram in the answer but there may be
more than one. Explanations are not required.

a) Which of A, B, C and D do not show trees ?

b) Which of E, F, G and H are binary trees ?
) Which of C, D, G and H are complete binary trees ?
) Which of C, D, G and H are heaps ?

C

M269 Exam 2013J Q 5

(
(
(
(d

88/109

M269

M269 Exam 2013J

Q 5 Solution Phil Molyneux
(a) B is not a tree; it has more than one route from node 3
to node 4.
(b) E, G, and H are binary trees; (no more than 2 children
per node).
(c) G, and H are complete binary trees.
(d) Only G is a heap; (complete binary tree, and parent
nodes > children). e s

89/109

M269 Specimen Exam M269

Unit 2 Topics, Q3, Q4 Phil Molyneux
» Unit 2 From Problems to Programs
» Abstract Data Types
» Pre and Post Conditions
» Logic for loops 2o Prirs

90/109

M269 Exam 2013J

M269

Phil Molyneux

Q4
» Consider the guard in the following Python while loop
header:
while (a < 6 and b > 8) or not(a >= 6 or b <= 8):

(a) Make the following substitutions:

P represents a < 6
Q represents b > 8

Then complete the following truth table:

M269 Exam 2013J Q 4

Pl Q| -P|-Q|PAQ| -PV-Q | -(-PV-Q) | (PAQ)V=(=PV-Q)
F|F
FIT
T|F
T| T

> Q 4 continued on next slide

91/109

M269 Exam 2013J M269

Phil Molyneux
Q4

(b) Use the results from your truth table to choose which
one of the following expressions could be used as the
simplest equivalent to the above guard.

(a <6 and b > 8)

not(a < 6 and b > 8)

(a >= 6 or b <= 8)

(a >= 6 and b <= 8)

(a < 6 and b <= 8)

M269 Exam 2013J Q 4

mOon w2

92/109

M269 Exam 2013J

Q 4 Solution

(a) The completed truth table:

Ple|-P|-@|Pr@]|-Pv-Q | ~(=PVv-Q) | (PAQ)V—(-PV-Q)
FIF| T | T F T F F
FlT| T | F F T F F
T|F|F | T F T F F
T|T| F | F T F T T

(b) A is the simplest equivalent of the guard given.

M269 Exam 2013J M269

Phil Molyneux
Q3

» A binary search is being carried out on the list shown
below for item 67:
[12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

» For each pass of the algorithm, draw a box around the
items in the partition to be searched during that pass,
continuing for as many passes as you think are needed. 269 Bxam 20131 3

» We have done the first pass for you showing that the
search starts with the whole list. Draw your boxes below
for each pass needed; you may not need to use all the
lines below. (The question had 8 rows)

(Pass 1) [’ 12,16,17,24,41,49,51,62,67,69,75,80,89,97,101 ‘]
(Pass 2) [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
(Pass 3) [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

94/109

M269 Exam 2013J M269

i Phil Molyneux
Q 3 Solution

» The complete binary search:
(Pass 1) [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101 |

(Pass 2) [12,16,17,24,41,49,51,62,[67,69,75,80,89,97,101 [
(Pass 3) [12,16,17,24,41,49,51,62, 67,69,75 |,80,89,97,101]
(Pass 4) [12,16,17,24,41,49,51,62,| 67 |,69,75,80,89,97,101]

M269 Exam 2013J Q 3

95/109

Example Algorithm Design M269

Phil Molyneux
Searching
» Given an ordered list (xs) and a value (val), return
» Position of val in xs or
» Some indication if val is not present
» Simple strategy: check each value in the list in turn
> Better strategy: use the ordered property of the list to
reduce the range of the list to be searched each turn o103
» Set a range of the list et
» If val equals the mid point of the list, return the mid
point

» Otherwise half the range to search
» If the range becomes negative, report not present
(return some distinguished value)

96/109

Example Algorithm Design

Binary Search lterative

[N}

10
11
12
13
14

16

def binarySearchlter(xs,val):

lo =0
hi = len(xs) — 1

while lo <= hi:
mid = (lo + hi) // 2
guess = xs|[mid]

if val = guess:
return mid
elif val < guess:
hi = mid — 1
else:

lo mid + 1

return None

M269

Phil Molyneux

Example Algorithm Design
— Searching

97/109

Divide and Conquer

Binary Search Recursive

10
11
12
13
14
15
16

M269

Phil Molyneux

def binarySearchRec(xs,val, lo=0,hi=-1):

if (hi = —1):
hi = len(xs) — 1

mid = (lo + hi) // 2

if hi < lo:
return None

€ I se: Example Algorithm Design
guess = xs|[mid] — Searching
if val =— guess:

return mid
elif val < guess:

return binarySearchRec(xs,val,lo, mid—1)
else

return binarySearchRec(xs,val,mid+1,hi)

98/109

Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)

XS = Highlight the mid value and search
binarySearchRec(xs,25,77,77)
XS = Highlight the mid value and search
binarySearchRec(xs,25,77,77)
X8 = Highlight the mid wvalue and search
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search

Return value:

77

range

range

range

range

M269

Phil Molyneux

Example Algorithm Design
— Searching

99/109

Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs,25,77,77)
X8 = Highlight the mid value and search range
binarySearchRec(xs,25,77,77)

X8 = Highlight the mid wvalue and search range
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range
Return value: 77

M269

Phil Molyneux

Example Algorithm Design
— Searching

99/109

Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs,67,8,14) by line 15

X8 = Highlight the mid value and search range
binarySearchRec(xs,25,77,77)

X8 = Highlight the mid wvalue and search range
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range
Return value: 77

M269

Phil Molyneux

Example Algorithm Design
— Searching

99/109

M269

Divide and Conquer

Phil Molyneux
Binary Search Recursive — Solution
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15
xs = [67,69,75,80,89,97,101]
binarySearchRec(xs,25,77,77)
X8 = Highlight the mid wvalue and search range
binarySearchRec(xs,25,77,77) Example Algorithm Desigr

— Searching

XS = Highlight the mid value and search range
Return value: 77

99/109

Divide and Conquer

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs,67,8,14) by line 15

xs = [67,69,75,80,89,97,101]

binarySearchRec(xs,67,8,10) by line 13

X8 = Highlight the mid wvalue and search range
binarySearchRec(xs,25,77,77)

XS = Highlight the mid value and search range
Return value: 77

M269

Phil Molyneux

Example Algorithm Design
— Searching

99/109

M269

Divide and Conquer

Phil Molyneux
Binary Search Recursive — Solution
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15
xs = [67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,10) by line 13
xs = [67,69,75,]
binarySearchRec(xs,25,77,77) Example Algorithm Desigr

— Searching

XS = Highlight the mid value and search range
Return value: 77

99/109

M269

Divide and Conquer

Phil Molyneux
Binary Search Recursive — Solution
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15
xs = [67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,10) by line 13
xs = [67,69,75,]
binarySearchRec(xs,67,8,8) by line 13 Example Algorithm Desigr

— Searching

XS = Highlight the mid value and search range
Return value: 77

99/109

Divide and Conquer

Binary Search Recursive — Solution
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,10) by line 13

xs = [67,69,75,]
binarySearchRec(xs,67,8,8) by line 13

xs = [67,]

Return value: 77

M269

Phil Molyneux

Example Algorithm Design
— Searching

99/109

Divide and Conquer

Binary Search Recursive — Solution
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)
xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,14) by line 15

xs = [67,69,75,80,89,97,101]
binarySearchRec(xs,67,8,10) by line 13
xs = [67,69,75,]
binarySearchRec(xs,67,8,8) by line 13
xs = [67,]

Return value: 8 by line 11

M269

Phil Molyneux

Example Algorithm Design
— Searching

99/109

Example Algorithm Design

Binary Search Iterative — Miller & Ranum

N

© o N o

11
12
13
14

16

def binarySearchlterMR (alist , item):

first =0

last = len(alist)—1

found = Fals

e

while first<=last and not found:

midpoint =

if alist[midpoint] = item:
found = True

else:

(first + last)//2

if item < alist[midpoint]:
last =

else:
first

return found

midpoint —1

midpoint+1

M269

Phil Molyneux

Example Algorithm Design
— Searching

100/109

M269

Divide and Conquer

. . . Phil Molyneux
Binary Search Recursive — Miller & Ranum
1 def binarySearchRecMR(alist , item):
2 if len(alist) = 0:
3 return False
4 else:
5 midpoint = len(alist)//2
6 if alist[midpoint]==item:
7 return True
8 else:
9 if item<alist[midpoint]: Example Algorithm Design
10 return binarySearchRecMR(alist [: midpoint],item) — s
11 else:
12 return binarySearchRecMR(alist [midpoint+1:],item)

101/109

M269 Specimen Exam M269

Phil Molyneux
Unit 1 Topics, Q1, Q2 oy

» Unit 1 Introduction

» Computation, computable, tractable

v

Introducing Python

v

What are the three most important concepts in
programming 7
1.

2 . Unit 1 Introduction

3.
Quote from Paul Hudak (1952-2015)

v

102/109

http://en.wikipedia.org/wiki/Paul_Hudak

M269 Specimen Exam M269

Phil Molyneux
Unit 1 Topics, Q1, Q2 oy

» Unit 1 Introduction

» Computation, computable, tractable

v

Introducing Python

v

What are the three most important concepts in
programming 7
1. Abstraction

2 . Unit 1 Introduction

3.
Quote from Paul Hudak (1952-2015)

v

102/109

http://en.wikipedia.org/wiki/Paul_Hudak

M269 Specimen Exam M269

Phil Molyneux
Unit 1 Topics, Q1, Q2 oy

» Unit 1 Introduction

» Computation, computable, tractable

v

Introducing Python

v

What are the three most important concepts in
programming 7
1. Abstraction

2. Abstraction Unit 1 Introduction
3.

Quote from Paul Hudak (1952-2015)

v

102/109

http://en.wikipedia.org/wiki/Paul_Hudak

M269 Specimen Exam M269

Phil Molyneux
Unit 1 Topics, Q1, Q2 oy

» Unit 1 Introduction

» Computation, computable, tractable

v

Introducing Python

v

What are the three most important concepts in
programming 7
1. Abstraction

2. Abstraction Unit 1 Introduction
3.

Quote from Paul Hudak (1952-2015)

v

102/109

http://en.wikipedia.org/wiki/Paul_Hudak

M269 Exam 2013J

Q2

> The general idea of abstraction as modelling can be

shown with the following diagram.

Lr |

|
rep:esenced/r | ignores
nodelled by | | details of

| 4
|

Complete the diagram above by adding an appropriate
label (one of the numbers 1 to 4) in the space indicated
by A and one in the space indicated by B. The possible
answers are shown as 1 to 4 below. The exam question had

some pictures next to the texts
1. A car crash test dummy in the real world
2. An action man doll in the real world
3. A real car in the real world (after crashing)
4. A real driver in the real world

M269

Phil Molyneux

M269 Exam 2013J Q 2

103/109

M269 Exam 2013J

Q 2 Solution

> A real driver is modelled by a car crash test dummy, so
A=1land B=4

M269

Phil Molyneux

M269 Exam 2013J Q 2

104/109

M269 Exam 2013J

Q1

» Which two of the following statements are true?

A.

A decision problem is any problem stated in a formal
language.

. A computational problem is a problem that is expressed

sufficiently precisely that it is possible to build an
algorithm that will solve all instances of that problem.

. An algorithm consists of a precisely stated, step-by-step

list of instructions.

. Computational thinking is the skill to formulate a

problem as a computational problem, and then
construct a good computational solution, in the form of
an algorithm, to solve this problem, or explain why
there is no such solution.

M269

Phil Molyneux

M269 Exam 2013J Q 1

105/109

M269 Exam 2013J M269

. Phil Molyneux
Q 1 Solution

» Options C and D are true.

» Option A is wrong because decision problems have to
have a yes-no answer.

» Option B is wrong because there are computational
problems that we can state and build algorithms for,
but cannot always be solved.

M269 Exam 2013J Q 1

106/109

M269 Exam 2013J M269

Phil Molyneux
Q 16

» Multipart question

» Specification of program, data structures, pre and post
conditions

> Write a small program

> Give the complexity of the small program s e 2013y 016

» Give insight into a sorting algorithm

» Give insight into insertion into a binary search tree

» See notes version for text

107/109

M269 Exam 2013J

Q17

>

Write short report on a computational topic

Suitable title for the topic and audience

Paragraph setting the scene — the context of the topic
Paragraph describing the topic

Paragraph on the role the topic plays in some area
Conclusions justifying the importance of the topic

See notes version for text.

M269

Phil Molyneux

M269 Exam 2013J Q 17

108/109

M269 Exam M08

. Phil Molyneux
Exam Techniques

» Surviving in a time of great stress
» Each give one exam tip to the group

» TODO: add some more points

Exam Techniques

109/109

	M269 Exam Revision Agenda & Aims
	Revision strategies

	Units 6 & 7
	Computability
	Complexity
	Logic
	SQL Queries
	Predicate Logic
	Propositional Logic

	Units 3, 4 & 5
	Unit 5 Optimisation
	Unit 4 Searching
	Unit 3 Sorting

	Units 1 & 2
	Unit 2 From Problems to Programs
	Unit 1 Introduction

	M269 Exam Section 2
	M269 Exam 2013J Q 16
	M269 Exam 2013J Q 17

	Exam Techniques

