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1. Welcome and introductions
2. Revision strategies
3. M269 Exam — Part 1 has 15 questions 60%
4. M269 Exam — Part 2 has 2 questions 40%
5. M269 Exam — 3 hours, Part 1 100 mins, Part 2 70 mins
6. M269 2013J exam — Part 1 in reverse order
7. M269 2013J exam — Part 2 in notes version
8. Topics and discussion for each question
9. Exam technique
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M269 Exam
Revision strategies

I Organising your knowledge
I Each give one exam tip to the group
I TODO: add some more points
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Units 6 & 7
Computability

M269 Exam 2013J Q 15

Complexity

NP-Completeness and
Boolean Satisfiability

Logic

M269 Exam 2013J Q 14

SQL Queries

M269 Exam 2013J Q 13

Predicate Logic

M269 Exam 2013J Q 12

Propositional Logic

M269 Exam 2013J Q 11

Units 3, 4 & 5

Units 1 & 2

M269 Exam
Section 2

Exam Techniques

M269 Specimen Exam
Q15 Topics

I Unit 7
I Computability and ideas of computation
I Complexity
I P and NP
I NP-complete

4/109



M269

Phil Molyneux

M269 Exam
Revision Agenda &
Aims

Units 6 & 7
Computability

M269 Exam 2013J Q 15

Complexity

NP-Completeness and
Boolean Satisfiability

Logic

M269 Exam 2013J Q 14

SQL Queries

M269 Exam 2013J Q 13

Predicate Logic

M269 Exam 2013J Q 12

Propositional Logic

M269 Exam 2013J Q 11

Units 3, 4 & 5

Units 1 & 2

M269 Exam
Section 2

Exam Techniques

Computability
Ideas of Computation

I The idea of an algorithm and what is effectively
computable

I Church-Turing thesis Every function that would
naturally be regarded as computable can be computed
by a deterministic Turing Machine. (Unit 7 Section 4)

I See Phil Wadler on computability theory performed as
part of the Bright Club at The Strand in Edinburgh,
Tuesday 28 April 2015
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M269 Exam 2013J
Q 15

I Which two of the following statements are true?
A. A Turing Machine is a mathematical model of

computational problems.
B. If the lower bound for a computational problem is

O(n2), then there is an algorithm that solves the
problem and which has complexity O(n2).

C. Searching a sorted list is not in the class NP.
D. The decision Travelling Salesperson Problem is

NP-complete.
E. There is no known tractable quantum algorithm for

solving a known NP-complete problem.
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M269 Exam 2013J
Q 15 Solution

I Only D and E are true.
I A Universal Turing Machine can compute any

computable sequence but there are well defined
problems that are not computable. (So not A)

I A lower bound may be lower than any actual algorithm.
(So not B)

I Every problem in P is in NP — we just do not know if
P == NP (So not C)
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Computability
Reducing one problem to another

I To reduce problem P1 to P2, invent a construction that
converts instances of P1 to P2 that have the same
answer. That is:

I any string in the language P1 is converted to some
string in the language P2

I any string over the alphabet of P1 that is not in the
language of P1 is converted to a string that is not in the
language P2

I With this construction we can solve P1
I Given an instance of P1, that is, given a string w that

may be in the language P1, apply the construction
algorithm to produce a string x

I Test whether x is in P2 and give the same answer for w
in P1
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Computability
Direction of Reduction

I The direction of reduction is important
I If we can reduce P1 to P2 then (in some sense) P2 is at

least as hard as P1 (since a solution to P2 will give us a
solution to P1)

I So, if P2 is decidable then P1 is decidable
I To show a problem is undecidable we have to reduce

from an known undecidable problem to it
I ∀x(dpP1(x) = dpP2(reduce(x)))
I Since, if P1 is undecidable then P2 is undecidable
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Computability
Models of Computation

I In automata theory, a problem is the question of
deciding whether a given string is a member of some
particular language

I If Σ is an alphabet, and L is a language over Σ, that is
L ⊆ Σ∗, where Σ∗ is the set of all strings over the
alphabet Σ then we have a more formal definition of
decision problem

I Given a string w ∈ Σ∗, decide whether w ∈ L
I Example: Testing for a prime number — can be

expressed as the language Lp consisting of all binary
strings whose value as a binary number is a prime
number (only divisible by 1 or itself)
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Computability
Church-Turing Thesis & Quantum Computing

I Church-Turing thesis Every function that would
naturally be regarded as computable can be computed
by a deterministic Turing Machine.

I physical Church-Turing thesis Any finite physical
system can be simulated (to any degree of
approximation) by a Universal Turing Machine.

I strong Church-Turing thesis Any finite physical
system can be simulated (to any degree of
approximation) with polynomial slowdown by a
Universal Turing Machine.

I Shor’s algorithm (1994) — quantum algorithm for
factoring integers — an NP problem that is not known
to be P — also not known to be NP-complete and we
have no proof that it is not in P
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Computability
Turing Machine

I Finite control which can be in any of a finite number
of states

I Tape divided into cells, each of which can hold one of a
finite number of symbols

I Initially, the input, which is a finite-length string of
symbols in the input alphabet, is placed on the tape

I All other tape cells (extending infinitely left and right)
hold a special symbol called blank

I A tape head which initially is over the leftmost input
symbol

I A move of the Turing Machine depends on the state
and the tape symbol scanned

I A move can change state, write a symbol in the current
cell, move left, right or stay
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Turing Machine Diagram
Turing Machine Diagram

. . . b b a a a a . . . I/O Tape

q0q1

q2

q3 . . .

qn

Finite Control

q1

Reading and Writing Head
(moves in both directions)
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Computability
Turing Machine notation

I Q finite set of states of the finite control
I Σ finite set of input symbols (M269 S)
I Γ complete set of tape symbols Σ ⊂ Γ
I δ Transition function (M269 instructions, I)
δ :: Q × Γ→ Q × Γ× {L,R, S}
δ(q,X ) 7→ (p,Y ,D)

I δ(q,X ) takes a state, q and a tape symbol, X and
returns (p,Y ,D) where p is a state, Y is a tape symbol
to overwrite the current cell, D is a direction, Left,
Right or Stay

I q0 start state q0 ∈ Q
I B blank symbol B ∈ Γ and B /∈ Σ
I F set of final or accepting states F ⊆ Q
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Computability
Decidability

I Decidable — there is a TM that will halt with yes/no
for a decision problem — that is, given a string w over
the alphabet of P the TM with halt and return yes.no
the string is in the language P (same as recursive in
Recursion theory — old use of the word)

I Semi-decidable — there is a TM will halt with yes if
some string is in P but may loop forever on some inputs
(same as recursively enumerable) — Halting Problem

I Highly-undecidable — no outcome for any input —
Totality, Equivalence Problems
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Computability
Undecidable Problems

I Halting problem — the problem of deciding, given a
program and an input, whether the program will
eventually halt with that input, or will run forever —
term first used by Martin Davis 1952

I Entscheidungsproblem — the problem of deciding
whether a given statement is provable from the axioms
using the rules of logic — shown to be undecidable by
Turing (1936) by reduction from the Halting problem to
it

I Type inference and type checking in the
second-order lambda calculus (important for functional
programmers, Haskell, GHC implementation)

I Undecidable problem — see link to list
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Computability
Why undecidable problems must exist

I A problem is really membership of a string in some
language

I The number of different languages over any alphabet of
more than one symbol is uncountable

I Programs are finite strings over a finite alphabet (ASCII
or Unicode) and hence countable.

I There must be an infinity (big) of problems more than
programs.
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Computability and Terminology (1)

I The idea of an algorithm dates back 3000 years to
Euclid, Babylonians. . .

I In the 1930s the idea was made more formal: which
functions are computable?

I A function a set of pairs
f = {(x , f (x)) : x ∈ X ∧ f (x) ∈ Y } with the function
property

I Function property: (a, b) ∈ f ∧ (a, c) ∈ f ⇒ b == c
I Function property: Same input implies same output
I Note that maths notation is deeply inconsistent here —

see Function and History of the function concept
I What do we mean by computing a function — an

algorithm ?
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Computability
Computability and Terminology (2)

I In the 1930s three definitions:
I λ-Calculus, simple semantics for computation — Alonzo

Church
I General recursive functions — Kurt Gödel
I Universal (Turing) machine — Alan Turing
I Terminology:

I Recursive, recursively enumerable — Church, Kleene
I Computable, computably enumerable — Gödel, Turing
I Decidable, semi-decidable, highly undecidable
I In the 1930s, computers were human
I Unfortunate choice of terminology

I Turing and Church showed that the above three were
equivalent

I Church-Turing thesis — function is intuitively
computable if and only if Turing machine computable
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Complexity
P and NP

I P, the set of all decision problems that can be solved in
polynomial time on a deterministic Turing machine

I NP, the set of all decision problems whose solutions can
be verified (certificate) in polynomial time

I Equivalently, NP, the set of all decision problems that
can be solved in polynomial time on a non-deterministic
Turing machine

I A decision problem, dp is NP-complete if
1. dp is in NP and
2. Every problem in NP is reducible to dp in polynomial

time
I NP-hard — a problem satisfying the second condition,

whether or not it satisfies the first condition. Class of
problems which are at least as hard as the hardest
problems in NP. NP-hard problems do not have to be in
NP and may not be decision problems

20/109

http://en.wikipedia.org/wiki/P_(complexity)
http://en.wikipedia.org/wiki/NP_(complexity)
http://en.wikipedia.org/wiki/NP-complete


M269

Phil Molyneux

M269 Exam
Revision Agenda &
Aims

Units 6 & 7
Computability

M269 Exam 2013J Q 15

Complexity

NP-Completeness and
Boolean Satisfiability

Logic

M269 Exam 2013J Q 14

SQL Queries

M269 Exam 2013J Q 13

Predicate Logic

M269 Exam 2013J Q 12

Propositional Logic

M269 Exam 2013J Q 11

Units 3, 4 & 5

Units 1 & 2

M269 Exam
Section 2

Exam Techniques

Complexity
P and NP — Diagram

Euler diagram for P, NP, NP-complete and NP-hard set of
problems

Source: Wikipedia NP-complete entry
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Complexity
NP-complete problems

I Boolean satisfiability (SAT) Cook-Levin theorem
I Conjunctive Normal Form 3SAT
I Hamiltonian path problem
I Travelling salesman problem
I NP-complete — see list of problems
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Knapsack Problem

Source & Explanation: XKCD 287
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NP-Completeness and Boolean Satisfiability
Points on Notes

I The Boolean satisfiability problem (SAT) was the first
decision problem shown to be NP-Complete

I This section gives a sketch of an explanation
I Health Warning different texts have different notations

and there will be some inconsistency in these notes
I Health warning these notes use some formal notation

to make the ideas more precise — computation requires
precise notation and is about manipulating strings
according to precise rules.
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NP-Completeness and Boolean Satisfiability
Alphabets, Strings and Languages

I Notation:
I Σ is a set of symbols — the alphabet
I Σk is the set of all string of length k, which each

symbol from Σ
I Example: if Σ = {0, 1}

I Σ1 = {0, 1}
I Σ2 = {00, 01, 10, 11}

I Σ0 = {ε} where ε is the empty string
I Σ∗ is the set of all possible strings over Σ
I Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ . . .
I A Language, L, over Σ is a subset of Σ∗

I L ⊆ Σ∗
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NP-Completeness and Boolean Satisfiability
Language Accepted by a Turing Machine

I Language accepted by Turing Machine, M denoted by
L(M)

I L(M) is the set of strings w ∈ Σ∗ accepted by M
I For Final States F = {Y ,N}, a string w ∈ Σ∗ is

accepted by M ⇔ (if and only if) M starting in q0 with
w on the tape halts in state Y

I Calculating a function (function problem) can be turned
into a decision problem by asking whether f (x) = y
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NP-Completeness and Boolean Satisfiability
The NP-Complete Class

I If we do not know if P 6= NP, what can we say ?
I A language L is NP-Complete if:

I L ∈ NP and
I for all other L′ ∈ NP there is a polynomial time

transformation (Karp reducible, reduction) from L′ to L
I Problem P1 polynomially reduces (Karp reduces,

transforms) to P2, written P1 ∝ P2 or P1 ≤p P2, iff
∃f : dpP1 → dpP2 such that

I ∀I ∈ dpP1 [I ∈ YP1 ⇔ f (I) ∈ YP2 ]
I f can be computed in polynomial time
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The NP-Complete Class (2)

I More formally, L1 ⊆ Σ∗1 polynomially transforms to
L2 ⊆ Σ∗2, written L1 ∝ L2 or L1 ≤p L2, iff ∃f : Σ∗1 → Σ∗2
such that

I ∀x ∈ Σ∗1 [x ∈ L1 ⇔ f (x) ∈ L2]
I There is a polynomial time TM that computes f

I Transitivity If L1 ∝ L2 and L2 ∝ L3 then L1 ∝ L3
I If L is NP-Hard and L ∈ P then P = NP
I If L is NP-Complete, then L ∈ P if and only if P = NP
I If L0 is NP-Complete and L ∈ NP and L0 ∝ L then L is

NP-Complete
I Hence if we find one NP-Complete problem, it may

become easier to find more
I In 1971/1973 Cook-Levin showed that the Boolean

satisfiability problem (SAT) is NP-Complete
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Units 1 & 2

M269 Exam
Section 2

Exam Techniques

NP-Completeness and Boolean Satisfiability
The Boolean Satisfiability Problem

I A propositional logic formula or Boolean expression is
built from variables, operators: AND (conjunction, ∧),
OR (disjunction, ∨), NOT (negation, ¬)

I A formula is said to be satisfiable if it can be made True
by some assignment to its variables.

I The Boolean Satisfiability Problem is, given a formula,
check if it is satisfiable.

I Instance: a finite set U of Boolean variables and a finite
set C of clauses over U

I Question: Is there a satisfying truth assignment for C ?
I A clause is is a disjunction of variables or negations of

variables
I Conjunctive normal form (CNF) is a conjunction of

clauses
I Any Boolean expression can be transformed to CNF
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M269 Exam
Section 2

Exam Techniques

NP-Completeness and Boolean Satisfiability
The Boolean Satisfiability Problem (2)

I Given a set of Boolean variable U = {u1, u2, . . . , un}
I A literal from U is either any ui or the negation of some

ui (written ui)
I A clause is denoted as a subset of literals from U —
{u2, u4, u5}

I A clause is satisfied by an assignment to the variables if
at least one of the literals evaluates to True (just like
disjunction of the literals)

I Let C be a set of clauses over U — C is satisfiable iff
there is some assignment of truth values to the
variables so that every clause is satisfied (just like CNF)

I C = {{u1, u2, u3}, {u2, u3}, {u2, u3}} is satisfiable
I C = {{u1, u2}, {u1, u2}, {u1}} is not satisfiable
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M269 Exam
Section 2

Exam Techniques

NP-Completeness and Boolean Satisfiability
The Boolean Satisfiability Problem (3)

I Proof that SAT is NP-Complete looks at the structure
of NDTMs and shows you can transform any NDTM to
SAT in polynomial time (in fact logarithmic space
suffices)

I SAT is in NP since you can check a solution in
polynomial time

I To show that ∀L ∈ NP : L ∝ SAT invent a polynomial
time algorithm for each polynomial time NDTM, M,
which takes as input a string x and produces a Boolean
formula Ex which is satisfiable iff M accepts x

I See Cook-Levin theorem
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M269 Exam
Section 2

Exam Techniques

NP-Completeness and Boolean Satisfiability
Coping with NP-Completeness

I What does it mean if a problem is NP-Complete ?
I There is a P time verification algorithm.
I There is a P time algorithm to solve it iff P = NP (?)
I No one has yet found a P time algorithm to solve any

NP-Complete problem
I So what do we do ?

I Improved exhaustive search — Dynamic Programming;
Branch and Bound

I Heuristic methods — acceptable solutions in acceptable
time — compromise on optimality

I Average time analysis — look for an algorithm with
good average time — compromise on generality (see
Big-O Algorithm Complexity Cheatsheet)

I Probabilistic or Randomized algorithms — compromise
on correctness
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M269 Specimen Exam
Q14 topics

I Unit 7
I Proofs
I Natural deduction
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M269 Exam
Section 2

Exam Techniques

Logic
Logicians, Logics, Notations

I A plethora of logics, proof systems, and different
notations can be puzzling.

I Martin Davis, Logician When I was a student, even the
topologists regarded mathematical logicians as living in
outer space. Today the connections between logic and
computers are a matter of engineering practice at every
level of computer organization

I Various logics, proof systems , were developed well
before programming languages and with different
motivations,
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M269 Exam
Section 2

Exam Techniques

Logic
Logic and Programming Languages

I Turing machines, Von Neumann architecture and
procedural languages Fortran, C, Java, Perl, Python,
JavaScript

I Resolution theorem proving and logic programming —
Prolog

I Logic and database query languages — SQL (Structured
Query Language) and QBE (Query-By-Example) are
syntactic sugar for first order logic

I Lambda calculus and functional programming with
Miranda, Haskell, ML, Scala
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M269 Exam
Section 2

Exam Techniques

Logical Arguments
Validity and Justification

I There are two ways to model what counts as a logically
good argument:

I the semantic view
I the syntactic view

I The notion of a valid argument in propositional logic is
rooted in the semantic view.

I It is based on the semantic idea of interpretations:
assignments of truth values to the propositional
variables in the sentences under discussion.

I A valid argument is defined as one that preserves truth
from the premises to the conclusions

I The syntactic view focuses on the syntactic form of
arguments.

I Arguments which are correct according to this view are
called justified arguments.
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M269 Exam
Section 2

Exam Techniques

Logical Arguments
Proof Systems, Soundness, Completeness

I Semantic validity and syntactic justification are different
ways of modelling the same intuitive property: whether
an argument is logically good.

I A proof system is sound if any statement we can prove
(justify) is also valid (true)

I A proof system is adequate if any valid (true) statement
has a proof (justification)

I A proof system that is sound and adequate is said to be
complete

I Propositional and predicate logic are complete —
arguments that are valid are also justifiable and vice
versa

I Unit 7 section 2.4 describes another logic where there
are valid arguments that are not justifiable (provable)
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M269 Exam
Section 2

Exam Techniques

Logical Arguments
Valid arguments

I Unit 6 defines valid arguments with the notation

P1
...
Pn
C

I The argument is valid if and only if the value of C is
True in each interpretation for which the value of each
premise Pi is True for 1 ≤ i ≤ n

I In some texts you see the notation {P1, . . . ,Pn} |= C
I The expression denotes a semantic sequent or semantic

entailment
I The |= symbol is called the double turnstile and is often

read as entails or models
I In LaTeX � and |= are produced from \vDash and

\models — see also the turnstile package
I In Unicode |= is called TRUE and is U+22A8, HTML

&#8872;
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M269 Exam
Section 2

Exam Techniques

Logical Arguments
Valid arguments — Tautology

I The argument {} |= C is valid if and only if C is True in
all interpretations

I That is, if and only if C is a tautology
I Beware different notations that mean the same thing

I Alternate symbol for empty set: ∅ |= C
I Null symbol for empty set: |= C
I Original M269 notation with null axiom above the line:

C
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M269 Exam
Section 2

Exam Techniques

Logic
Justified Arguments

I Definition 7.1 An argument {P1,P2, . . . ,Pn} ` C is a
justified argument if and only if either the argument is
an instance of an axiom or it can be derived by means
of an inference rule from one or more other justified
arguments.

I Axioms
Γ ∪ {A} ` A (axiom schema)

I This can be read as: any formula A can be derived from
the assumption (premise) of {A} itself

I The ` symbol is called the turnstile and is often read as
proves, denoting syntactic entailment

I In LaTeX ` is produced from \vdash
I In Unicode ` is called RIGHT TACK and is U+22A2,

HTML &#8866;
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M269 Exam
Section 2

Exam Techniques

Logic
Justified Arguments

I Section 2.3 of Unit 7 (not the Unit 6, 7 Reader) gives
the inference rules for →, ∧, and ∨ — only dealing with
positive propositional logic so not making use of
negation — see List of logic systems

I Usually (Classical logic) have a functionally complete
set of logical connectives — that is, every binary
Boolean function can be expressed in terms the
functions in the set
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Section 2

Exam Techniques

Justified Arguments
Inference Rules — Notation

I Inference rule notation:
Argument1 . . . Argumentn (label)

Argument
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Units 3, 4 & 5

Units 1 & 2

M269 Exam
Section 2

Exam Techniques

Justified Arguments
Inference Rules — Conjunction

I Γ ` A Γ ` B (∧-introduction)
Γ ` A ∧ B

I Γ ` A ∧ B (∧-elimination left)
Γ ` A

I Γ ` A ∧ B (∧-elimination right)
Γ ` B
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M269 Exam
Section 2

Exam Techniques

Justified Arguments
Inference Rules — Implication

I
Γ ∪ {A} ` B

(→-introduction)
Γ ` A→ B

I The above should be read as: If there is a proof
(justification, inference) for B under the set of premises,
Γ, augmented with A, then we have a proof
(justification. inference) of A→ B, under the
unaugmented set of premises, Γ.
The unaugmented set of premises, Γ may have
contained A already so we cannot assume

(Γ ∪ {A})− {A} is equal to Γ

I Γ ` A Γ ` A→ B (→-elimination)
Γ ` B
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M269 Exam
Section 2

Exam Techniques

Justified Arguments
Inference Rules — Disjunction

I Γ ` A (∨-introduction left)
Γ ` A ∨ B

I Γ ` B (∨-introduction right)
Γ ` A ∨ B

I Disjunction elimination

Γ ` A ∨ B Γ ∪ {A} ` C Γ ∪ {B} ` C
(∨-elimination)

Γ ` C
I The above should be read: if a set of premises Γ

justifies the conclusion A ∨ B and Γ augmented with
each of A or B separately justifies C , then Γ justifies C
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M269 Exam
Section 2

Exam Techniques

Proofs in Tree Form

I The syntax of proofs is recursive:
I A proof is either an axiom, or the result of applying a

rule of inference to one, two or three proofs.
I We can therefore represent a proof by a tree diagram in

which each node have one, two or three children
I For example, the proof of {P ∧ (P → Q)} ` Q in

Question 4 (in the Logic tutorial notes) can be
represented by the following diagram:

{P ∧ (P → Q)} ` P ∧ (P → Q)
(∧-E left)

{P ∧ (P → Q)} ` P
{P ∧ (P → Q)} ` P ∧ (P → Q)

(∧-E right)
{P ∧ (P → Q)} ` P → Q

(→-E)
{P ∧ (P → Q)} ` Q
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M269 Exam
Section 2

Exam Techniques

Justified Arguments
Self-Assessment activity 7.4

I Let Γ = {P → R,Q → R,P ∨ Q}

I
Γ ` P ∨ Q Γ ∪ {P} ` R Γ ∪ {Q} ` R

(∨-elimination)
Γ ` R

I
Γ ∪ {P} ` P Γ ∪ {P} ` P → R

(→-elimination)
Γ ∪ {P} ` R

I
Γ ∪ {Q} ` Q Γ ∪ {Q} ` Q → R

(→-elimination)
Γ ∪ {Q} ` R

I Complete tree layout

I
Γ ` P ∨ Q

Γ ∪ {P}
` P

Γ ∪ {P}
` P → R (→-E)

Γ ∪ {P} ` R

Γ ∪ {Q}
` Q

Γ ∪ {Q}
` Q → R

(→-E)
Γ ∪ {Q} ` R

(∨-E)
Γ ` R
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M269 Exam
Section 2

Exam Techniques

Justified Arguments
Self-assessment activity 7.4 — Linear Layout

1. {P → R,Q → R,P ∨ Q} ` P ∨ Q [Axiom]
2. {P → R,Q → R,P ∨ Q} ∪ {P} ` P [Axiom]
3. {P → R,Q → R,P ∨ Q} ∪ {P} ` P → R [Axiom]
4. {P → R,Q → R,P ∨ Q} ∪ {Q} ` Q [Axiom]
5. {P → R,Q → R,P ∨ Q} ∪ {Q} ` Q → R [Axiom]
6. {P → R,Q → R,P ∨ Q} ∪ {P} ` R [2, 3, →-E]
7. {P → R,Q → R,P ∨ Q} ∪ {Q} ` R [4, 5, →-E]
8. {P → R,Q → R,P ∨ Q} ` R [1, 6, 7, ∨-E]
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M269 Exam
Section 2

Exam Techniques

M269 Exam 2013J
Q 14

I Consider the following axiom schema and rules:
I Axiom schema: {A} ` A
I Rules: (as Unit 7 for Natural Deduction)

I ∧-elimination left, ∧-elimination right
I ∧-introduction
I →-introduction, →-elimination

I Complete the following proof:
1. {P ∧ (Q ∧ R)} ` P ∧ (Q ∧ R) [Axiom]
2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . [1,∧-elimination left]
3. ∅ ` (P ∧ (Q ∧ R))→ P . . . . . . . . . . . . . . . . . . .
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M269 Exam
Section 2

Exam Techniques

M269 Exam 2013J
Q 14 Solution

1. {P ∧ (Q ∧ R)} ` P ∧ (Q ∧ R) [Axiom]
2. {P ∧ (Q ∧ R)} ` P [1,∧-elimination left]
3. ∅ ` (P ∧ (Q ∧ R))→ P [2,→-introduction]
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M269 Exam
Section 2

Exam Techniques

M269 Specimen Exam
Q13 Topics

I Unit 6
I SQL queries
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M269 Exam
Section 2

Exam Techniques

M269 Exam 2013J
Q 13

I A database contains the following tables, oilfield and
operator

oilfield

name production

Warga 3
Lolli 5
Tolstoi 0.5
Dakhun 2
Sugar 3

operator

company field

Amarco Warga
Bratape Lolli
Rosbif Tolstoi
Taqar Dakhun
Bratape Sugar

I Q 13 continued on next slide
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M269 Exam
Section 2

Exam Techniques

M269 Exam 2013J
Q 13 (continued)

I For each of the following SQL queries, give the table
returned by the query

(a)
SELECT ∗
FROM op e r a t o r ;

(b)
SELECT name , p r oduc t i o n
FROM o i l f i e l d
WHERE p r oduc t i o n > 2 ;

(c)
SELECT name , p roduc t i on , company
FROM o i l f i e l d CROSS JOIN op e r a t o r
WHERE name = f i e l d ;
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M269 Exam 2013J
Q 13(a) Solution

(a) This is simply the whole operator table.

company field

Amarco Warga
Bratape Lolli
Rosbif Tolstoi
Taqar Dakhun
Bratape Sugar
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M269 Exam 2013J
Q 13(b) Solution

(b) Retaining only the rows with production > 2

name production

Warga 3
Lolli 5
Sugar 3
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Section 2

Exam Techniques

M269 Exam 2013J
Q 13(c) Solution

(c) Joining the tables

name production company

Warga 3 Amarco
Lolli 5 Bratape
Tolstoi 0.5 Rosbif
Dakhun 2 Taqar
Sugar 3 Bratape
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Q12 Topics

I Unit 6
I Predicate Logic
I Translation to/from English
I Interpretations
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I A particular interpretation of predicate logic allows facts
to be expressed about films that people have seen, and
of which they own copies.

I Some of the assignments in the interpretation are given
below (where the symbol I is used to show assignment).

I The interpretation assigns Jane, John and Saira to the
constants jane, john and saira.

I(jane) = Jane
I(john) = John
I(saira) = Saira
I Q 12 continued on next slide
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Q 12

I The predicates owns and has_seen are assigned to
binary relations. The comprehensions of the relations
are:

I I(owns) = {(A,B): the person A owns a copy of film B}
I I(has_seen) = {(A,B): the person A has seen film B}

I The enumerations of the relations are:
I(owns) = {(Jane, Django), (Jane, Casablanca),

(John, Jaws), (John, The Omen), (John,
El Topo), (Saira, El Topo), (Saira,
Casablanca)}

I(has_seen) = {(Jane, Django), (Jane, Candide), (Jane,
Casablanca), (John, The Omen), (John,
El Topo), (Saira, Django), (Saira, The
Omen)}

I Q 12 continued on next slide
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M269 Exam
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Exam Techniques

M269 Exam 2013J
Q 12

I Parts (a) and (b) of this question are on the next page.
I In both parts, you are given a sentence of predicate

logic and asked to provide an English translation of the
sentence in the box immediately following it.

I You also need to state whether the sentence is TRUE or
FALSE in the interpretation that is provided on this
page, and give an explanation of your answer.

I In your explanation you need to consider any relevant
values for the variable X, and show, using the
interpretation above, whether it makes the quantified
expression TRUE.

I Q 12 continued on next slide
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Section 2
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Q 12

(a) ∀X. (owns(saira,X) → has_seen(saira,X)) can be
translated in English as:

I This sentence is TRUE/FALSE because:
(b) ∃X.(has_seen(jane,X) ∧ owns(jane,X)) can be

translated in English as:
I This sentence is TRUE/FALSE because:
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M269 Exam
Section 2

Exam Techniques

M269 Exam 2013J
Q 12(a) Solution

(a) For all films, if Saira owns a copy of the film, then Saira
has seen the film.
Or more idiomatically, Saira has seen all of the films
that she owns.

I The sentence is FALSE, because the enumerations of
the relations show that she owns a copy of Casablanca,
but this is not one of the films that she has seen. She
also owns a copy of El Topo, which she has not seen
either, but we only need one counter-example to show
that the sentence is false.
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Section 2

Exam Techniques

M269 Exam 2013J
Q 12(b) Solution

(b) There exists a film, such that Jane has seen it and Jane
owns it.
Or more idiomatically, Jane has seen at least one of the
films that she owns

I This sentence is TRUE. The enumerations show that
she owns Casablanca and that she has seen it. Django
also provides a sufficient example to show that the
sentence is true.
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Q11 Topics

I Unit 6
I Sets
I Propositional Logic
I Truth tables
I Valid arguments
I Infinite sets
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(a) What does it mean to say that a well-formed formula
(WFF) is satisfiable ?

(b) Is the following WFF satisfiable ?

(P → (Q → P)) ∨ ¬R

Explain how you arrived at your answer
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M269 Exam 2013J
Q 11 Solution

(a) A WFF is satisfiable if it is possible to find an
interpretation that makes the formula true.

(b) Truth table for the WFF
P Q R Q → P P → (Q → P) ¬R (P → (Q → P)) ∨ ¬R

F F F T T T T
F F T T T F T
F T F F T T T
F T T F T F T
T F F T T T T
T F T T T F T
T T F T T T T
T T T T T F T

I The truth table shows that the WFF
(P → (Q → P)) ∨ ¬R is always true, so it satisfiable
under any interpretation. But we don’t need the whole
truth table to prove this; the WFF is true for any
interpretation in which R is false (for example).
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M269 Specimen Exam
Unit 5 Topics, Q9, Q10

I Unit 5 Optimisation
I Graphs searching: DFS, BFS
I Distance: Dijkstra’s algorithm
I Greedy algorithms: Minimum spanning trees, Prim’s

algorithm
I Dynamic programming: Knapsack problem, Edit

distance
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I Consider the following graph:

I Complete the table below to show the order in which
the vertices of the above graph could be visited in a
Depth First Search (DFS) starting at vertex 3 and
always choosing first the leftmost not yet visited vertex
(as seen from the current vertex):

Vertex 3
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M269 Exam 2013J
Q 10 Solution

I Depth First Search (DFS) starting at vertex 3 and
always choosing first the leftmost not yet visited vertex
(as seen from the current vertex):

Vertex 3 4 1 2 5

I Notice the ambiguity about the term leftmost — an
alternative view could have been:

Vertex 3 1 4 2 5
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I Recall that the structured English for Dijkstra’s
algorithm is:

c r e a t e p r i o r i t y ~ qu eu e
s e t d i s t to 0 f o r v and d i s t to i n f i n i t y

f o r a l l o t h e r v e r t i c e s
add a l l v e r t i c e s to p r i o r i t y ~ qu eu e
ITERATE wh i l e p r i o r i t y ~ qu eu e i s not empty

remove u from the f r o n t o f the queue
ITERATE ove r w i n the ne i ghbou r s o f u

s e t new~distance to
d i s t u + l eng t h o f edge from u to w

IF new~distance i s l e s s than d i s t w
s e t d i s t w to new~distance
change p r i o r i t y (w , new~distance )

I Q 9 continued on next slide
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I Now consider the following weighted graph:

I Q 9 continued on next slide
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I Starting from vertex B, the following table represents
the distances after the second line of structured English
is executed for the graph given above (using the
convention that a blank cell represents infinity):
Vertex A B C D E F

Distance 0
I Now, complete the appropriate boxes in the next table

to show the distances after the first and second
iterations of the while loop of the algorithm.
Vertex A B C D E F

Distance 0

Distance 0

First iteration

Second iteration
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Q 9 Solution

I The completed table:
Vertex A B C D E F

Distance 1 0 6 5 6

Distance 1 0 3 6 5 6

First iteration

Second iteration
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M269 Specimen Exam
Unit 4 Topics, Q7, Q8

I Unit 4 Searching
I String searching: Quick search Sunday algorithm,

Knuth-Morris-Pratt algorithm
I Hashing and hash tables
I Search trees: Binary Search Trees
I Search trees: Height balanced trees: AVL trees
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(a) Consider the following Binary Search Tree.

55

34

29

68

59

65

86

I Modify (draw on) the above Binary Search Tree to
insert a node with a key of 57.

I Q 8 continued on next slide
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(b) Once again, consider the same Binary Search Tree.

55

34

29

68

59

65

86

I Calculate the balance factors of each node in the tree
above and modify the diagram to show these balance
factors.
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(a) Answer, with inserted node shown in red

55

34

29

68

59

57 65

86
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Q 8(b) Solution

I Answer, with balance factors shown in blue

55bf = −1

34+1

290

68+1

59−1

650

860
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I In the KMP algorithm, for each character in the target
string T we identify the longest substring of T ending
with that character which matches a prefix of the target
string.

I These lengths are stored in what is known as a prefix
table (which in Unit 4 we represented as a list).

I Consider the target string T

A B A C A B A C A C

I Below is an incomplete prefix table for the target string
given above. Complete the prefix table by writing the
missing numbers in the appropriate boxes.

0 1 0 2 4 0
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Q 7 Solution

I The complete prefix table, with new entries in red:

0 0 1 0 1 2 3 4 5 0

I Here is the target, prefix and shift:
A B A C A B A C A C

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 10

0 0 1 0 1 2 3 4 5 0

1 1 2 2 4 4 4 4 4 4 10

Target string, t

Position (Index), p

Match, q

prefixTable(t, p)

shift(t, q)

I The shift function takes the target string, t, and the
number of characters matched, q.

I shift(t, 0) = 1
I shift(t, q) = q − prefixTable(t, q − 1)
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Exam Techniques
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Unit 3 Topics, Q5, Q6

I Unit 3 Sorting
I Elementary methods: Bubble sort, Selection sort,

Insertion sort
I Recursion — base case(s) and recursive case(s) on

smaller data
I Quicksort, Merge sort
I Sorting with data structures: Tree sort, Heap sort
I See sorting notes for abstract sorting algorithm
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Unit 3 Sorting
Abstract Sorting Algorithm

unsorted list xs

if (length xs > 1) then
(xs1,xs2) = split xs

xs1 xs2

ys1 = sort xs1 ys2 = sort xs2

ys = join (ys1,ys2)

sorted list ys
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Section 2
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Sorting Algorithms

Using the Abstract sorting algorithm, describe the split and
join for:
I Insertion sort
I Selection sort
I Merge sort
I Quicksort
I Bubble sort (the odd one out)
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I Consider the following function, which takes a list as an
argument. You may assume that the list contains a
number of integer values and is not empty.

1 def ave rage ( a L i s t ) :
2 n = l e n ( a L i s t )
3 t o t a l = 0
4 f o r i t em i n a L i s t :
5 t o t a l = t o t a l + item
6 mean = t o t a l / n
7 r e t u r n mean

I Q 6 continued on next slide
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I From the five options below, select the one that
represents the correct combination of T (n) and Big-O
complexity for this function. You may assume that a
step (i.e. the basic unit of computation) is the
assignment statement.

A. T (n) = 3 + n2 and O(n2)
B. T (n) = n + 2 and O(n2)
C. T (n) = 2n + 2 and O(n)
D. T (n) = 3n + n2 and O(n2)
E. T (n) = n + 3 and O(n)
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I Option E is correct.
I The function does three assignments once per call, and

one assignment for each of the n items in the argument,
hence T (n) = n + 3.
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I Consider the following diagrams A–H. Nodes are
represented by black dots and edges by arrows. The
numbers represent a node’s key.

I Q 5 continued on next slide
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I Answer the following questions. Write your answer on
the line that follows each question. In each case there is
at least one diagram in the answer but there may be
more than one. Explanations are not required.

(a) Which of A, B, C and D do not show trees ?
(b) Which of E, F, G and H are binary trees ?
(c) Which of C, D, G and H are complete binary trees ?
(d) Which of C, D, G and H are heaps ?
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(a) B is not a tree; it has more than one route from node 3
to node 4.

(b) E, G, and H are binary trees; (no more than 2 children
per node).

(c) G, and H are complete binary trees.
(d) Only G is a heap; (complete binary tree, and parent

nodes > children).
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I Consider the guard in the following Python while loop
header:

wh i l e ( a < 6 and b > 8) or not ( a >= 6 or b <= 8 ) :

(a) Make the following substitutions:
P represents a < 6
Q represents b > 8

Then complete the following truth table:
P Q ¬P ¬Q P ∧ Q ¬P ∨ ¬Q ¬(¬P ∨ ¬Q) (P ∧ Q) ∨ ¬(¬P ∨ ¬Q)

F F

F T

T F

T T

I Q 4 continued on next slide
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(b) Use the results from your truth table to choose which
one of the following expressions could be used as the
simplest equivalent to the above guard.
A. (a < 6 and b > 8)
B. not(a < 6 and b > 8)
C. (a >= 6 or b <= 8)
D. (a >= 6 and b <= 8)
E. (a < 6 and b <= 8)
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(a) The completed truth table:
P Q ¬P ¬Q P ∧ Q ¬P ∨ ¬Q ¬(¬P ∨ ¬Q) (P ∧ Q) ∨ ¬(¬P ∨ ¬Q)

F F T T F T F F

F T T F F T F F

T F F T F T F F

T T F F T F T T

(b) A is the simplest equivalent of the guard given.
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I A binary search is being carried out on the list shown
below for item 67:
[12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

I For each pass of the algorithm, draw a box around the
items in the partition to be searched during that pass,
continuing for as many passes as you think are needed.

I We have done the first pass for you showing that the
search starts with the whole list. Draw your boxes below
for each pass needed; you may not need to use all the
lines below. (The question had 8 rows)
(Pass 1) [ 12,16,17,24,41,49,51,62,67,69,75,80,89,97,101 ]
(Pass 2) [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

(Pass 3) [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
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Q 3 Solution

I The complete binary search:
(Pass 1) [ 12,16,17,24,41,49,51,62,67,69,75,80,89,97,101 ]

(Pass 2) [12,16,17,24,41,49,51,62, 67,69,75,80,89,97,101 ]

(Pass 3) [12,16,17,24,41,49,51,62, 67,69,75 ,80,89,97,101]

(Pass 4) [12,16,17,24,41,49,51,62, 67 ,69,75,80,89,97,101]
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Example Algorithm Design
Searching

I Given an ordered list (xs) and a value (val), return
I Position of val in xs or
I Some indication if val is not present

I Simple strategy: check each value in the list in turn
I Better strategy: use the ordered property of the list to

reduce the range of the list to be searched each turn
I Set a range of the list
I If val equals the mid point of the list, return the mid

point
I Otherwise half the range to search
I If the range becomes negative, report not present

(return some distinguished value)
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Example Algorithm Design
Binary Search Iterative

1 def b i n a r y S e a r c h I t e r ( xs , v a l ) :
2 l o = 0
3 h i = l e n ( xs ) − 1

5 wh i l e l o <= h i :
6 mid = ( l o + h i ) // 2
7 gues s = xs [ mid ]

9 i f v a l == gues s :
10 r e t u r n mid
11 e l i f v a l < gues s :
12 h i = mid − 1
13 e l s e :
14 l o = mid + 1

16 r e t u r n None
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Divide and Conquer
Binary Search Recursive

1 def b ina r ySea r chRec ( xs , va l , l o =0, h i =−1):
2 i f ( h i == −1):
3 h i = l e n ( xs ) − 1

5 mid = ( l o + h i ) // 2

7 i f h i < l o :
8 r e t u r n None
9 e l s e :
10 gues s = xs [ mid ]
11 i f v a l == gues s :
12 r e t u r n mid
13 e l i f v a l < gues s :
14 r e t u r n b ina r ySea r chRec ( xs , va l , lo , mid−1)
15 e l s e :
16 r e t u r n b ina r ySea r chRec ( xs , va l , mid+1, h i )
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Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
binarySearchRec(xs, 67)
xs = Highlight the mid value and search range

binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range

binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range

binarySearchRec(xs,25,??,??)
xs = Highlight the mid value and search range

Return value: ??
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xs = Highlight the mid value and search range
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binarySearchRec(xs,67,8,8) by line 13

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
Return value: 8 by line 11
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Section 2

Exam Techniques

Example Algorithm Design
Binary Search Iterative — Miller & Ranum

1 def b ina r ySea r ch I t e rMR ( a l i s t , i tem ) :
2 f i r s t = 0
3 l a s t = l e n ( a l i s t )−1
4 found = Fa l s e

6 wh i l e f i r s t <=l a s t and not found :
7 midpo in t = ( f i r s t + l a s t )//2
8 i f a l i s t [ m idpo in t ] == item :
9 found = True
10 e l s e :
11 i f i t em < a l i s t [ m idpo in t ] :
12 l a s t = midpo int−1
13 e l s e :
14 f i r s t = midpo in t+1

16 r e t u r n found
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Divide and Conquer
Binary Search Recursive — Miller & Ranum

1 def binarySearchRecMR ( a l i s t , i tem ) :
2 i f l e n ( a l i s t ) == 0 :
3 r e t u r n Fa l s e
4 e l s e :
5 midpo in t = l e n ( a l i s t )//2
6 i f a l i s t [ m idpo in t ]==item :
7 r e t u r n True
8 e l s e :
9 i f i tem<a l i s t [ m idpo in t ] :
10 r e t u r n binarySearchRecMR ( a l i s t [ : m idpo in t ] , i tem )
11 e l s e :
12 r e t u r n binarySearchRecMR ( a l i s t [ m idpo in t +1 : ] , i tem )
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I Unit 1 Introduction
I Computation, computable, tractable
I Introducing Python
I What are the three most important concepts in

programming ?
1.
2.
3.

I Quote from Paul Hudak (1952–2015)
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I The general idea of abstraction as modelling can be
shown with the following diagram.

I Complete the diagram above by adding an appropriate
label (one of the numbers 1 to 4) in the space indicated
by A and one in the space indicated by B. The possible
answers are shown as 1 to 4 below. The exam question had
some pictures next to the texts
1. A car crash test dummy in the real world
2. An action man doll in the real world
3. A real car in the real world (after crashing)
4. A real driver in the real world
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I A real driver is modelled by a car crash test dummy, so
A = 1 and B = 4
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I Which two of the following statements are true?
A. A decision problem is any problem stated in a formal

language.
B. A computational problem is a problem that is expressed

sufficiently precisely that it is possible to build an
algorithm that will solve all instances of that problem.

C. An algorithm consists of a precisely stated, step-by-step
list of instructions.

D. Computational thinking is the skill to formulate a
problem as a computational problem, and then
construct a good computational solution, in the form of
an algorithm, to solve this problem, or explain why
there is no such solution.
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I Options C and D are true.
I Option A is wrong because decision problems have to

have a yes-no answer.
I Option B is wrong because there are computational

problems that we can state and build algorithms for,
but cannot always be solved.
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I Multipart question
I Specification of program, data structures, pre and post

conditions
I Write a small program
I Give the complexity of the small program
I Give insight into a sorting algorithm
I Give insight into insertion into a binary search tree
I See notes version for text
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I Write short report on a computational topic
I Suitable title for the topic and audience
I Paragraph setting the scene — the context of the topic
I Paragraph describing the topic
I Paragraph on the role the topic plays in some area
I Conclusions justifying the importance of the topic
I See notes version for text.
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I Surviving in a time of great stress
I Each give one exam tip to the group
I TODO: add some more points
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