
M269
Exam Revision

Contents

1 M269 Exam Revision Agenda & Aims 2

1.1 Revision strategies . 2

2 Units 6 & 7 2

2.1 Computability . 2
2.1.1 M269 Exam 2013J Q 15 . 3

2.2 Complexity . 7
2.2.1 NP-Completeness and Boolean Satisfiability 9

2.3 Logic . 12
2.3.1 M269 Exam 2013J Q 14 . 16

2.4 SQL Queries . 16
2.4.1 M269 Exam 2013J Q 13 . 16

2.5 Predicate Logic . 18
2.5.1 M269 Exam 2013J Q 12 . 18

2.6 Propositional Logic . 19
2.6.1 M269 Exam 2013J Q 11 . 19

3 Units 3, 4 & 5 20

3.1 Unit 5 Optimisation . 20
3.1.1 M269 Exam 2013J Q 10 . 20
3.1.2 M269 Exam 2013J Q 9 . 21

3.2 Unit 4 Searching . 22
3.2.1 M269 Exam 2013J Q 8 . 22
3.2.2 M269 Exam 2013J Q 7 . 24

3.3 Unit 3 Sorting . 24
3.3.1 M269 Exam 2013J Q 6 . 25
3.3.2 M269 Exam 2013J Q 5 . 26

4 Units 1 & 2 27

4.1 Unit 2 From Problems to Programs . 27
4.1.1 M269 Exam 2013J Q 4 . 27
4.1.2 M269 Exam 2013J Q 3 . 28
4.1.3 Example Algorithm Design — Searching 28

4.2 Unit 1 Introduction . 30
4.2.1 M269 Exam 2013J Q 2 . 30
4.2.2 M269 Exam 2013J Q 1 . 31

5 M269 Exam Section 2 31

5.1 M269 Exam 2013J Q 16 . 31
5.1.1 M269 Exam 2013J Q 16 Text . 32

5.2 M269 Exam 2013J Q 17 . 34
5.2.1 M269 Exam 2013J Q 17 Text . 34

6 Exam Techniques 35

1

2 M269 16 May 2015

7 Web References 35

References 36

1 M269 Exam Revision Agenda & Aims

1. Welcome and introductions

2. Revision strategies

3. M269 Exam — Part 1 has 15 questions 60%

4. M269 Exam — Part 2 has 2 questions 40%

5. M269 Exam — 3 hours, Part 1 100 mins, Part 2 70 mins

6. M269 2013J exam — Part 1 in reverse order

7. M269 2013J exam — Part 2 in notes version

8. Topics and discussion for each question

9. Exam technique

1.1 Revision strategies

• Organising your knowledge

• Each give one exam tip to the group

• TODO: add some more points

2 Units 6 & 7

2.1 Computability

M269 Specimen Exam — Q15 Topics

• Unit 7

• Computability and ideas of computation

• Complexity

• P and NP

• NP-complete

Ideas of Computation

• The idea of an algorithm and what is effectively computable

• Church-Turing thesis Every function that would naturally be regarded as computable
can be computed by a deterministic Turing Machine. (Unit 7 Section 4)

Phil Molyneux Exam Revision 3

• See Phil Wadler on computability theory performed as part of the Bright Club at The
Strand in Edinburgh, Tuesday 28 April 2015

2.1.1 M269 Exam 2013J Q 15

• Which two of the following statements are true?

A. A Turing Machine is a mathematical model of computational problems.

B. If the lower bound for a computational problem is O(n2), then there is an algorithm
that solves the problem and which has complexity O(n2).

C. Searching a sorted list is not in the class NP.

D. The decision Travelling Salesperson Problem is NP-complete.

E. There is no known tractable quantum algorithm for solving a known NP-complete
problem.

M269 Exam 2013J Q 15 Solution

• Only D and E are true.

• A Universal Turing Machine can compute any computable sequence but there are well
defined problems that are not computable. (So not A)

• A lower bound may be lower than any actual algorithm. (So not B)

• Every problem in P is in NP — we just do not know if P == NP (So not C)

Reducing one problem to another

• To reduce problem P1 to P2, invent a construction that converts instances of P1 to P2
that have the same answer. That is:

– any string in the language P1 is converted to some string in the language P2

– any string over the alphabet of P1 that is not in the language of P1 is converted to
a string that is not in the language P2

• With this construction we can solve P1

– Given an instance of P1, that is, given a string w that may be in the language P1,
apply the construction algorithm to produce a string x

– Test whether x is in P2 and give the same answer for w in P1

(Hopcroft et al., 2007, page 322)

• The direction of reduction is important

• If we can reduce P1 to P2 then (in some sense) P2 is at least as hard as P1 (since a
solution to P2 will give us a solution to P1)

• So, if P2 is decidable then P1 is decidable

• To show a problem is undecidable we have to reduce from an known undecidable prob-
lem to it

http://wadler.blogspot.co.uk/2015/05/bright-club-computability.html

4 M269 16 May 2015

• ∀x(dpP1
(x) = dpP2

(reduce(x)))

• Since, if P1 is undecidable then P2 is undecidable

Computability — Models of Computation

• In automata theory, a problem is the question of deciding whether a given string is a
member of some particular language

• If Î is an alphabet, and L is a language over Î, that is L ⊆ Î∗, where Î∗ is the set of all
strings over the alphabet Î then we have a more formal definition of decision problem

• Given a string w ∈ Î∗, decide whether w ∈ L

• Example: Testing for a prime number — can be expressed as the language Lp con-
sisting of all binary strings whose value as a binary number is a prime number (only
divisible by 1 or itself)

(Hopcroft et al., 2007, section 1.5.4)

Computability — Church-Turing Thesis

• Church-Turing thesis Every function that would naturally be regarded as computable
can be computed by a deterministic Turing Machine.

• physical Church-Turing thesis Any finite physical system can be simulated (to any
degree of approximation) by a Universal Turing Machine.

• strong Church-Turing thesis Any finite physical system can be simulated (to any de-
gree of approximation) with polynomial slowdown by a Universal Turing Machine.

• Shor’s algorithm (1994) — quantum algorithm for factoring integers — an NP problem
that is not known to be P — also not known to be NP-complete and we have no proof
that it is not in P

Reference: Section 4 of Unit 6 & 7 Reader

Computability — Turing Machine

• Finite control which can be in any of a finite number of states

• Tape divided into cells, each of which can hold one of a finite number of symbols

• Initially, the input, which is a finite-length string of symbols in the input alphabet, is
placed on the tape

• All other tape cells (extending infinitely left and right) hold a special symbol called
blank

• A tape head which initially is over the leftmost input symbol

• A move of the Turing Machine depends on the state and the tape symbol scanned

• A move can change state, write a symbol in the current cell, move left, right or stay

References: Hopcroft et al. (2007, page 326), Unit 6 & 7 Reader (section 5.3)

http://en.wikipedia.org/wiki/Shor's_algorithm

Phil Molyneux Exam Revision 5

Turing Machine Diagram

. . . b b a a a a . . . Input/Output Tape

q0q1

q2

q3 . . .

qn

Finite Control

q1

Reading and Writing Head

(moves in both directions)

Source: Sebastian Sardina http://www.texample.net/tikz/examples/turing-machine-

2/

Date: 18 February 2012 (seen Sunday, 24 August 2014)
Further Source: Partly based on Ludger Humbert’s pics of Universal Turing Machine at
https://haspe.homeip.net/projekte/ddi/browser/tex/pgf2/turingmaschine-schema.

tex (not found) — http://www.texample.net/tikz/examples/turing-machine/

Turing Machine notation

• Q finite set of states of the finite control

• Î finite set of input symbols (M269 S)

• È complete set of tape symbols Î ⊂ È

• Ö Transition function (M269 instructions, I)
Ö :: Q × È → Q × È × {L,R,S}
Ö(q,X) 7→ (p,Y ,D)

• Ö(q,X) takes a state, q and a tape symbol, X and returns (p,Y ,D) where p is a state, Y
is a tape symbol to overwrite the current cell, D is a direction, Left, Right or Stay

• q0 start state q0 ∈ Q

• B blank symbol B ∈ È and B < Î

• F set of final or accepting states F ⊆ Q

Computability — Decidability

• Decidable — there is a TM that will halt with yes/no for a decision problem — that is,
given a string w over the alphabet of P the TM with halt and return yes.no the string
is in the language P (same as recursive in Recursion theory — old use of the word)

• Semi-decidable — there is a TM will halt with yes if some string is in P but may loop
forever on some inputs (same as recursively enumerable) — Halting Problem

http://www.texample.net/tikz/examples/turing-machine-2/
http://www.texample.net/tikz/examples/turing-machine-2/
https://haspe.homeip.net/projekte/ddi/browser/tex/pgf2/turingmaschine-schema.tex
https://haspe.homeip.net/projekte/ddi/browser/tex/pgf2/turingmaschine-schema.tex
http://www.texample.net/tikz/examples/turing-machine/
http://en.wikipedia.org/wiki/Recursion_theory

6 M269 16 May 2015

• Highly-undecidable — no outcome for any input — Totality, Equivalence Problems

Undecidable Problems

• Halting problem — the problem of deciding, given a program and an input, whether
the program will eventually halt with that input, or will run forever — term first used
by Martin Davis 1952

• Entscheidungsproblem — the problem of deciding whether a given statement is prov-
able from the axioms using the rules of logic — shown to be undecidable by Turing
(1936) by reduction from the Halting problem to it

• Type inference and type checking in the second-order lambda calculus (important
for functional programmers, Haskell, GHC implementation)

• Undecidable problem — see link to list

(Turing, 1936, 1937)

Why undecidable problems must exist

• A problem is really membership of a string in some language

• The number of different languages over any alphabet of more than one symbol is
uncountable

• Programs are finite strings over a finite alphabet (ASCII or Unicode) and hence count-
able.

• There must be an infinity (big) of problems more than programs.

Reference: Hopcroft et al. (2007, page 318)

Computability and Terminology

• The idea of an algorithm dates back 3000 years to Euclid, Babylonians. . .

• In the 1930s the idea was made more formal: which functions are computable?

• A function a set of pairs f = {(x, f (x)) : x ∈ X ∧ f (x) ∈ Y} with the function property

• Function property: (a,b) ∈ f ∧ (a,c) ∈ f ⇒ b == c

• Function property: Same input implies same output

• Note that maths notation is deeply inconsistent here — see Function and History of
the function concept

• What do we mean by computing a function — an algorithm ?

• In the 1930s three definitions:

• Ý-Calculus, simple semantics for computation — Alonzo Church

• General recursive functions — Kurt Gödel

• Universal (Turing) machine — Alan Turing

• Terminology:

http://en.wikipedia.org/wiki/Halting_problem
http://en.wikipedia.org/wiki/Entscheidungsproblem
http://en.wikipedia.org/wiki/System_F
http://en.wikipedia.org/wiki/Undecidable_problem
http://en.wikipedia.org/wiki/Computable_function
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/History_of_the_function_concept
http://en.wikipedia.org/wiki/History_of_the_function_concept
http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Alonzo_Church
http://en.wikipedia.org/wiki/Μ-recursive_function
http://en.wikipedia.org/wiki/Kurt_Gödel
http://en.wikipedia.org/wiki/Universal_Turing_machine
http://en.wikipedia.org/wiki/Alan_Turing

Phil Molyneux Exam Revision 7

– Recursive, recursively enumerable — Church, Kleene

– Computable, computably enumerable — Gödel, Turing

– Decidable, semi-decidable, highly undecidable

– In the 1930s, computers were human

– Unfortunate choice of terminology

• Turing and Church showed that the above three were equivalent

• Church-Turing thesis — function is intuitively computable if and only if Turing machine
computable

Sources on Computability Terminology

• Soare (1996) on the history of the terms computable and recursive meaning calcula-
ble

• See also Soare (2013, sections 9.9–9.15) in Copeland et al. (2013)

2.2 Complexity

P and NP

• P, the set of all decision problems that can be solved in polynomial time on a deter-
ministic Turing machine

• NP, the set of all decision problems whose solutions can be verified (certificate) in
polynomial time

• Equivalently, NP, the set of all decision problems that can be solved in polynomial time
on a non-deterministic Turing machine

• A decision problem, dp is NP-complete if

1. dp is in NP and

2. Every problem in NP is reducible to dp in polynomial time

• NP-hard — a problem satisfying the second condition, whether or not it satisfies the
first condition. Class of problems which are at least as hard as the hardest problems
in NP. NP-hard problems do not have to be in NP and may not be decision problems

Euler diagram for P, NP, NP-complete and NP-hard set of problems

http://en.wikipedia.org/wiki/Stephen_Cole_Kleene
http://en.wikipedia.org/wiki/Church–Turing_thesis
http://en.wikipedia.org/wiki/P_(complexity)
http://en.wikipedia.org/wiki/NP_(complexity)
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/Euler_diagram

8 M269 16 May 2015

Source: Wikipedia NP-complete entry

NP-complete problems

• Boolean satisfiability (SAT) Cook-Levin theorem

• Conjunctive Normal Form 3SAT

• Hamiltonian path problem

• Travelling salesman problem

• NP-complete — see list of problems

XKCD on NP-Complete Problems

http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Cook-Levin_theorem
http://en.wikipedia.org/wiki/3-satisfiability
http://en.wikipedia.org/wiki/Hamiltonian_path_problem
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/NP-complete

Phil Molyneux Exam Revision 9

Source & Explanation: XKCD 287

2.2.1 NP-Completeness and Boolean Satisfiability

• The Boolean satisfiability problem (SAT) was the first decision problem shown to be
NP-Complete

• This section gives a sketch of an explanation

• Health Warning different texts have different notations and there will be some incon-
sistency in these notes

• Health warning these notes use some formal notation to make the ideas more precise
— computation requires precise notation and is about manipulating strings according
to precise rules.

Alphabets, Strings and Languages

• Notation:

• Î is a set of symbols — the alphabet

• Îk is the set of all string of length k, which each symbol from Î

• Example: if Î = {0,1}

– Î1 = {0,1}

– Î2 = {00,01,10,11}

• Î0 = {×} where × is the empty string

• Î∗ is the set of all possible strings over Î

• Î∗ = Î0 ∪Î1 ∪Î2 ∪ . . .

• A Language, L, over Î is a subset of Î∗

• L ⊆ Î∗

Language Accepted by a Turing Machine

• Language accepted by Turing Machine, M denoted by L(M)

• L(M) is the set of strings w ∈ Î∗ accepted by M

• For Final States F = {Y ,N}, a string w ∈ Î∗ is accepted by M⇔ (if and only if) M starting
in q0 with w on the tape halts in state Y

• Calculating a function (function problem) can be turned into a decision problem by
asking whether f (x) = y

The NP-Complete Class

• If we do not know if P , NP, what can we say ?

• A language L is NP-Complete if:

http://www.explainxkcd.com/wiki/index.php/287:_NP-Complete
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Function_problem
http://en.wikipedia.org/wiki/Decision_problem

10 M269 16 May 2015

– L ∈ NP and

– for all other L′ ∈ NP there is a polynomial time transformation (Karp reducible,
reduction) from L′ to L

• Problem P1 polynomially reduces (Karp reduces, transforms) to P2, written P1 ∝ P2 or
P1 ≤p P2, iff ∃f : dpP1

→ dpP2
such that

– ∀I ∈ dpP1
[I ∈ YP1

⇔ f (I) ∈ YP2
]

– f can be computed in polynomial time

• More formally, L1 ⊆ Î∗1 polynomially transforms to L2 ⊆ Î∗2, written L1 ∝ L2 or L1 ≤p L2,
iff ∃f : Î∗1→ Î∗2 such that

– ∀x ∈ Î∗1[x ∈ L1⇔ f (x) ∈ L2]

– There is a polynomial time TM that computes f

• Transitivity If L1 ∝ L2 and L2 ∝ L3 then L1 ∝ L3

• If L is NP-Hard and L ∈ P then P = NP

• If L is NP-Complete, then L ∈ P if and only if P = NP

• If L0 is NP-Complete and L ∈ NP and L0 ∝ L then L is NP-Complete

• Hence if we find one NP-Complete problem, it may become easier to find more

• In 1971/1973 Cook-Levin showed that the Boolean satisfiability problem (SAT) is NP-
Complete

The Boolean Satisfiability Problem

• A propositional logic formula or Boolean expression is built from variables, operators:
AND (conjunction, ∧), OR (disjunction, ∨), NOT (negation, ¬)

• A formula is said to be satisfiable if it can be made True by some assignment to its
variables.

• The Boolean Satisfiability Problem is, given a formula, check if it is satisfiable.

– Instance: a finite set U of Boolean variables and a finite set C of clauses over U

– Question: Is there a satisfying truth assignment for C ?

• A clause is is a disjunction of variables or negations of variables

• Conjunctive normal form (CNF) is a conjunction of clauses

• Any Boolean expression can be transformed to CNF

• Given a set of Boolean variable U = {u1,u2, . . . ,un}

• A literal from U is either any ui or the negation of some ui (written ui)

• A clause is denoted as a subset of literals from U — {u2,u4,u5}

• A clause is satisfied by an assignment to the variables if at least one of the literals
evaluates to True (just like disjunction of the literals)

• Let C be a set of clauses over U — C is satisfiable iff there is some assignment of
truth values to the variables so that every clause is satisfied (just like CNF)

http://en.wikipedia.org/wiki/Cook–Levin_theorem
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem

Phil Molyneux Exam Revision 11

• C = {{u1,u2,u3}, {u2,u3}, {u2,u3}} is satisfiable

• C = {{u1,u2}, {u1,u2}, {u1}} is not satisfiable

• Proof that SAT is NP-Complete looks at the structure of NDTMs and shows you can
transform any NDTM to SAT in polynomial time (in fact logarithmic space suffices)

• SAT is in NP since you can check a solution in polynomial time

• To show that ∀L ∈ NP : L ∝ SAT invent a polynomial time algorithm for each polynomial
time NDTM, M, which takes as input a string x and produces a Boolean formula Ex
which is satisfiable iff M accepts x

• See Cook-Levin theorem

Sources

• Garey and Johnson (1979, page 34) has the notation L1 ∝ L2 for polynomial transfor-
mation

• Arora and Barak (2009, page 42) has the notation L1 ≤p L2 for polynomial-time Karp
reducible

• The sketch of Cook’s theorem is from Garey and Johnson (1979, page 38)

• For the satisfiable C we could have assignments (u1,u2,u3) ∈ {(T ,T ,F), (T ,F ,F), (F ,T ,F)}

Coping with NP-Completeness

• What does it mean if a problem is NP-Complete ?

– There is a P time verification algorithm.

– There is a P time algorithm to solve it iff P = NP (?)

– No one has yet found a P time algorithm to solve any NP-Complete problem

– So what do we do ?

• Improved exhaustive search — Dynamic Programming; Branch and Bound

• Heuristic methods — acceptable solutions in acceptable time — compromise on op-
timality

• Average time analysis — look for an algorithm with good average time — compromise
on generality (see Big-O Algorithm Complexity Cheatsheet)

• Probabilistic or Randomized algorithms — compromise on correctness

Sources

• Practical Solutions for Hard Problems Rich (2007, chp 30)

• Coping with NP-Complete Problems Garey and Johnson (1979, chp 6)

http://en.wikipedia.org/wiki/Cook-Levin_theorem
http://bigocheatsheet.com

12 M269 16 May 2015

2.3 Logic

M269 Exam — Q14 topics

• Unit 7

• Proofs

• Natural deduction

Logicians, Logics, Notations

• A plethora of logics, proof systems, and different notations can be puzzling.

• Martin Davis, Logician When I was a student, even the topologists regarded mathe-
matical logicians as living in outer space. Today the connections between logic and
computers are a matter of engineering practice at every level of computer organiza-
tion

• Various logics, proof systems , were developed well before programming languages
and with different motivations,

References: Davis (1995, page 289)

Logic and Programming Languages

• Turing machines, Von Neumann architecture and procedural languages Fortran, C,
Java, Perl, Python, JavaScript

• Resolution theorem proving and logic programming — Prolog

• Logic and database query languages — SQL (Structured Query Language) and QBE
(Query-By-Example) are syntactic sugar for first order logic

• Lambda calculus and functional programming with Miranda, Haskell, ML, Scala

Reference: Halpern et al. (2001)

Validity and Justification

• There are two ways to model what counts as a logically good argument:

– the semantic view

– the syntactic view

• The notion of a valid argument in propositional logic is rooted in the semantic view.

• It is based on the semantic idea of interpretations: assignments of truth values to the
propositional variables in the sentences under discussion.

• A valid argument is defined as one that preserves truth from the premises to the con-
clusions

• The syntactic view focuses on the syntactic form of arguments.

• Arguments which are correct according to this view are called justified arguments.

http://en.wikipedia.org/wiki/Martin_Davis
http://en.wikipedia.org/wiki/Von_Neumann_architecture
http://en.wikipedia.org/wiki/Lambda_calculus

Phil Molyneux Exam Revision 13

Proof Systems, Soundness, Completeness

• Semantic validity and syntactic justification are different ways of modelling the same
intuitive property: whether an argument is logically good.

• A proof system is sound if any statement we can prove (justify) is also valid (true)

• A proof system is adequate if any valid (true) statement has a proof (justification)

• A proof system that is sound and adequate is said to be complete

• Propositional and predicate logic are complete — arguments that are valid are also
justifiable and vice versa

• Unit 7 section 2.4 describes another logic where there are valid arguments that are
not justifiable (provable)

Reference: Chiswell and Hodges (2007, page 86)

Valid arguments

• Unit 6 defines valid arguments with the notation

P1
...

Pn
C

• The argument is valid if and only if the value of C is True in each interpretation for
which the value of each premise Pi is True for 1 ≤ i ≤ n

• In some texts you see the notation {P1, . . . ,Pn} |= C

• The expression denotes a semantic sequent or semantic entailment

• The |= symbol is called the double turnstile and is often read as entails or models

• In LaTeX � and |= are produced from \vDash and \models — see also the turnstile
package

• In Unicode |= is called TRUE and is U+22A8, HTML ⊨

• The argument {} |= C is valid if and only if C is True in all interpretations

• That is, if and only if C is a tautology

• Beware different notations that mean the same thing

– Alternate symbol for empty set: ∅ |= C

– Null symbol for empty set: |= C

– Original M269 notation with null axiom above the line:

C

Justified Arguments and Natural Deduction

• Definition 7.1 An argument {P1,P2, . . . ,Pn} ` C is a justified argument if and only if either
the argument is an instance of an axiom or it can be derived by means of an inference
rule from one or more other justified arguments.

14 M269 16 May 2015

• Axioms
È ∪ {A} ` A (axiom schema)

• This can be read as: any formula A can be derived from the assumption (premise) of
{A} itself

• The ` symbol is called the turnstile and is often read as proves, denoting syntactic
entailment

• In LaTeX ` is produced from \vdash

• In Unicode ` is called RIGHT TACK and is U+22A2, HTML ⊢

See (Thompson, 1991, Chp 1)

• Section 2.3 of Unit 7 (not the Unit 6, 7 Reader) gives the inference rules for→, ∧, and
∨ — only dealing with positive propositional logic so not making use of negation —
see List of logic systems

• Usually (Classical logic) have a functionally complete set of logical connectives —
that is, every binary Boolean function can be expressed in terms the functions in the
set

Inference Rules — Notation

• Inference rule notation:

Argument1 . . . Argumentn (label)
Argument

Inference Rules — Conjunction

• È ` A È ` B (∧-introduction)
È ` A∧B

• È ` A∧B (∧-elimination left)
È ` A

• È ` A∧B (∧-elimination right)
È ` B

Inference Rules — Implication

• È ∪ {A} ` B
(→-introduction)

È ` A→ B

• The above should be read as: If there is a proof (justification, inference) for B under the
set of premises, È , augmented with A, then we have a proof (justification. inference) of
A→ B, under the unaugmented set of premises, È .

The unaugmented set of premises, È may have contained A already so we cannot
assume

(È ∪ {A})− {A} is equal to È

• È ` A È ` A→ B (→-elimination)
È ` B

http://en.wikipedia.org/wiki/List_of_logic_systems
http://en.wikipedia.org/wiki/Functional_completeness

Phil Molyneux Exam Revision 15

Inference Rules — Disjunction

• È ` A (∨-introduction left)
È ` A∨B

• È ` B (∨-introduction right)
È ` A∨B

• Disjunction elimination

È ` A∨B È ∪ {A} ` C È ∪ {B} ` C
(∨-elimination)

È ` C

• The above should be read: if a set of premises È justifies the conclusion A ∨ B and È

augmented with each of A or B separately justifies C, then È justifies C

Proofs in Tree Form

• The syntax of proofs is recursive:

• A proof is either an axiom, or the result of applying a rule of inference to one, two or
three proofs.

• We can therefore represent a proof by a tree diagram in which each node have one,
two or three children

• For example, the proof of {P ∧ (P → Q)} ` Q in Question 4 (in the Logic tutorial notes)
can be represented by the following diagram:

{P ∧ (P → Q)} ` P ∧ (P → Q)
(∧-E left)

{P ∧ (P → Q)} ` P
{P ∧ (P → Q)} ` P ∧ (P → Q)

(∧-E right)
{P ∧ (P → Q)} ` P → Q

(→-E)
{P ∧ (P → Q)} ` Q

Self-Assessment activity 7.4 — tree layout

• Let È = {P → R,Q→ R,P ∨Q}

• È ` P ∨Q È ∪ {P} ` R È ∪ {Q} ` R
(∨-elimination)

È ` R

• È ∪ {P} ` P È ∪ {P} ` P → R
(→-elimination)

È ∪ {P} ` R

• È ∪ {Q} ` Q È ∪ {Q} ` Q→ R
(→-elimination)

È ∪ {Q} ` R

• Complete tree layout

•
È ` P ∨Q

È ∪ {P}
` P

È ∪ {P}
` P → R

(→-E)
È ∪ {P} ` R

È ∪ {Q}
` Q

È ∪ {Q}
` Q→ R

(→-E)
È ∪ {Q} ` R

(∨-E)
È ` R

16 M269 16 May 2015

Self-assessment activity 7.4 — Linear Layout

1. {P → R,Q→ R,P ∨Q} ` P ∨Q [Axiom]
2. {P → R,Q→ R,P ∨Q} ∪ {P} ` P [Axiom]
3. {P → R,Q→ R,P ∨Q} ∪ {P} ` P → R [Axiom]
4. {P → R,Q→ R,P ∨Q} ∪ {Q} ` Q [Axiom]
5. {P → R,Q→ R,P ∨Q} ∪ {Q} ` Q→ R [Axiom]
6. {P → R,Q→ R,P ∨Q} ∪ {P} ` R [2, 3,→-E]
7. {P → R,Q→ R,P ∨Q} ∪ {Q} ` R [4, 5,→-E]
8. {P → R,Q→ R,P ∨Q} ` R [1, 6, 7, ∨-E]

2.3.1 M269 Exam 2013J Q 14

• Consider the following axiom schema and rules:

• Axiom schema: {A} ` A

• Rules: (as Unit 7 for Natural Deduction)

– ∧-elimination left, ∧-elimination right

– ∧-introduction

– →-introduction,→-elimination

• Complete the following proof:

1. {P ∧ (Q ∧ R)} ` P ∧ (Q ∧ R) [Axiom]
2. [1,∧-elimination left]
3. ∅ ` (P ∧ (Q ∧ R))→ P .

M269 Exam 2013J Q 14 Solution

1. {P ∧ (Q ∧ R)} ` P ∧ (Q ∧ R) [Axiom]
2. {P ∧ (Q ∧ R)} ` P [1,∧-elimination left]
3. ∅ ` (P ∧ (Q ∧ R))→ P [2,→-introduction]

2.4 SQL Queries

M269 Specimen Exam Q13 Topics

• Unit 6

• SQL queries

2.4.1 M269 Exam 2013J Q 13

• A database contains the following tables, oilfield and operator

Phil Molyneux Exam Revision 17

oilfield

name production

Warga 3
Lolli 5
Tolstoi 0.5
Dakhun 2
Sugar 3

operator

company field

Amarco Warga
Bratape Lolli
Rosbif Tolstoi
Taqar Dakhun
Bratape Sugar

• For each of the following SQL queries, give the table returned by the query
(a)� �

SELECT *
FROM operator ;� �

(b)� �
SELECT name , product ion
FROM o i l f i e l d
WHERE product ion > 2 ;� �

(c)� �
SELECT name , production , company
FROM o i l f i e l d CROSS JOIN operator
WHERE name = f i e l d ;� �

M269 Exam 2013J Q 14 Solution

(a) This is simply the whole operator table.

company field

Amarco Warga
Bratape Lolli
Rosbif Tolstoi
Taqar Dakhun
Bratape Sugar

(b) Retaining only the rows with production > 2

name production

Warga 3
Lolli 5
Sugar 3

(c) Joining the tables

name production company

Warga 3 Amarco
Lolli 5 Bratape
Tolstoi 0.5 Rosbif
Dakhun 2 Taqar
Sugar 3 Bratape

18 M269 16 May 2015

2.5 Predicate Logic

• Unit 6

• Predicate Logic

• Translation to/from English

• Interpretations

2.5.1 M269 Exam 2013J Q 12

• A particular interpretation of predicate logic allows facts to be expressed about films
that people have seen, and of which they own copies.

• Some of the assignments in the interpretation are given below (where the symbol I is
used to show assignment).

• The interpretation assigns Jane, John and Saira to the constants jane, john and saira.

I (jane) = Jane
I (john) = John
I (saira) = Saira

• The predicates owns and has_seen are assigned to binary relations. The comprehen-
sions of the relations are:

– I (owns) = {(A,B): the person A owns a copy of film B}

– I (has_seen) = {(A,B): the person A has seen film B}

• The enumerations of the relations are:

I (owns) = {(Jane, Django), (Jane, Casablanca), (John, Jaws), (John, The
Omen), (John, El Topo), (Saira, El Topo), (Saira, Casablanca)}

I (has_seen) = {(Jane, Django), (Jane, Candide), (Jane, Casablanca), (John,
The Omen), (John, El Topo), (Saira, Django), (Saira, The Omen)}

• Parts (a) and (b) of this question are on the next page.

• In both parts, you are given a sentence of predicate logic and asked to provide an
English translation of the sentence in the box immediately following it.

• You also need to state whether the sentence is TRUE or FALSE in the interpretation
that is provided on this page, and give an explanation of your answer.

• In your explanation you need to consider any relevant values for the variable X, and
show, using the interpretation above, whether it makes the quantified expression TRUE.

(a) ∀X. (owns(saira,X)→ has_seen(saira,X)) can be translated in English as:

• This sentence is TRUE/FALSE because:

(b) ∃X.(has_seen(jane,X) ∧ owns(jane,X)) can be translated in English as:

• This sentence is TRUE/FALSE because:

Phil Molyneux Exam Revision 19

M269 Exam 2013J Q 12(a) Solution

(a) For all films, if Saira owns a copy of the film, then Saira has seen the film.

Or more idiomatically, Saira has seen all of the films that she owns.

• The sentence is FALSE, because the enumerations of the relations show that she owns
a copy of Casablanca, but this is not one of the films that she has seen. She also
owns a copy of El Topo, which she has not seen either, but we only need one counter-
example to show that the sentence is false.

M269 Exam 2013J Q 12(b) Solution

(b) There exists a film, such that Jane has seen it and Jane owns it.

Or more idiomatically, Jane has seen at least one of the films that she owns

• This sentence is TRUE. The enumerations show that she owns Casablanca and that
she has seen it. Django also provides a sufficient example to show that the sentence
is true.

2.6 Propositional Logic

M269 Specimen Exam Q11 Topics

• Unit 6

• Sets

• Propositional Logic

• Truth tables

• Valid arguments

• Infinite sets

2.6.1 M269 Exam 2013J Q 11

(a) What does it mean to say that a well-formed formula (WFF) is satisfiable ?

(b) Is the following WFF satisfiable ?

(P → (Q→ P))∨¬R

Explain how you arrived at your answer

M269 Exam 2013J Q 11 Solution

(a) A WFF is satisfiable if it is possible to find an interpretation that makes the formula
true.

(b) Truth table for the WFF

20 M269 16 May 2015

P Q R Q→ P P → (Q→ P) ¬R (P → (Q→ P))∨¬R

F F F T T T T
F F T T T F T
F T F F T T T
F T T F T F T
T F F T T T T
T F T T T F T
T T F T T T T
T T T T T F T

• The truth table shows that the WFF (P → (Q→ P))∨¬R is always true, so it satisfiable
under any interpretation. But we don’t need the whole truth table to prove this; the
WFF is true for any interpretation in which R is false (for example).

3 Units 3, 4 & 5

3.1 Unit 5 Optimisation

• Unit 5 Optimisation

• Graphs searching: DFS, BFS

• Distance: Dijkstra’s algorithm

• Greedy algorithms: Minimum spanning trees, Prim’s algorithm

• Dynamic programming: Knapsack problem, Edit distance

3.1.1 M269 Exam 2013J Q 10

• Consider the following graph:

• Complete the table below to show the order in which the vertices of the above graph
could be visited in a Depth First Search (DFS) starting at vertex 3 and always choosing
first the leftmost not yet visited vertex (as seen from the current vertex):

Vertex 3

M269 Exam 2013J Q 10 Solution

• Depth First Search (DFS) starting at vertex 3 and always choosing first the leftmost
not yet visited vertex (as seen from the current vertex):

Phil Molyneux Exam Revision 21

Vertex 3 4 1 2 5

• Notice the ambiguity about the term leftmost — an alternative view could have been:

Vertex 3 1 4 2 5

3.1.2 M269 Exam 2013J Q 9

• Recall that the structured English for Dijkstra’s algorithm is:� �
create priority~queue

set dis t to 0 f o r v and dis t to i n f i n i t y
f o r a l l other v e r t i c e s

add a l l v e r t i c e s to priority~queue

ITERATE whi le priority~queue i s not empty
remove u from the f r o n t of the queue
ITERATE over w i n the neighbours of u

set new~distance to
dis t u + length of edge from u to w

IF new~distance i s l e s s than dis t w

set dis t w to new~distance

change p r i o r i t y (w , new~distance)� �
• Now consider the following weighted graph:

• Starting from vertex B, the following table represents the distances after the second
line of structured English is executed for the graph given above (using the convention
that a blank cell represents infinity):

Vertex A B C D E F

Distance 0

• Note that neither the table above nor the subsequent tables represent the priority
queue.

• Now, complete the appropriate boxes in the next table to show the distances after the
first and second iterations of the while loop of the algorithm.

22 M269 16 May 2015

Vertex A B C D E F

Distance 0

Distance 0

First iteration

Second iteration

M269 Exam 2013J Q 9 Solution

• The completed table:

Vertex A B C D E F

Distance 1 0 6 5 6

Distance 1 0 3 6 5 6

First iteration

Second iteration

3.2 Unit 4 Searching

• Unit 4 Searching

• String searching: Quick search Sunday algorithm, Knuth-Morris-Pratt algorithm

• Hashing and hash tables

• Search trees: Binary Search Trees

• Search trees: Height balanced trees: AVL trees

3.2.1 M269 Exam 2013J Q 8

(a) Consider the following Binary Search Tree.

55

34

29

68

59

65

86

• Modify (draw on) the above Binary Search Tree to insert a node with a key of 57.

(b) Once again, consider the same Binary Search Tree.

Phil Molyneux Exam Revision 23

55

34

29

68

59

65

86

• Calculate the balance factors of each node in the tree above and modify the diagram
to show these balance factors.

M269 Exam 2013J Q 8(a) Solution

(a) Answer, with inserted node shown in red

55

34

29

68

59

57 65

86

M269 Exam 2013J Q 8(b) Solution

• Answer, with balance factors shown in blue

55bf = −1

34+1

290

68+1

59−1

650

860

24 M269 16 May 2015

3.2.2 M269 Exam 2013J Q 7

• In the KMP algorithm, for each character in the target string T we identify the longest
substring of T ending with that character which matches a prefix of the target string.

• These lengths are stored in what is known as a prefix table (which in Unit 4 we repre-
sented as a list).

• Consider the target string T

A B A C A B A C A C

• Below is an incomplete prefix table for the target string given above. Complete the
prefix table by writing the missing numbers in the appropriate boxes.

0 1 0 2 4 0

M269 Exam 2013J Q 7 Solution

• The complete prefix table, with new entries in red:

0 0 1 0 1 2 3 4 5 0

• Here is the target, prefix and shift:

A B A C A B A C A C

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 10

0 0 1 0 1 2 3 4 5 0

1 1 2 2 4 4 4 4 4 4 10

Target string, t

Position (Index), p

Match, q

prefixTable(t,p)

shift(t,q)

• The shift function takes the target string, t, and the number of characters matched,
q.

• shift(t,0) = 1

• shift(t,q) = q − prefixTable(t,q −1)

3.3 Unit 3 Sorting

• Unit 3 Sorting

• Elementary methods: Bubble sort, Selection sort, Insertion sort

• Recursion — base case(s) and recursive case(s) on smaller data

Phil Molyneux Exam Revision 25

• Quicksort, Merge sort

• Sorting with data structures: Tree sort, Heap sort

• See sorting notes for abstract sorting algorithm

Abstract Sorting Algorithm

unsorted list xs

if (length xs > 1) then
(xs1,xs2) = split xs

xs1 xs2

ys1 = sort xs1 ys2 = sort xs2

ys = join (ys1,ys2)

sorted list ys

Sorting Algorithms

Using the Abstract sorting algorithm, describe the split and join for:

• Insertion sort

• Selection sort

• Merge sort

• Quicksort

• Bubble sort (the odd one out)

3.3.1 M269 Exam 2013J Q 6

• Consider the following function, which takes a list as an argument. You may assume
that the list contains a number of integer values and is not empty.� �

1 def average (a L i s t) :
2 n = len (a L i s t)
3 t o t a l = 0
4 for item in a L i s t :
5 t o t a l = t o t a l + item
6 mean = t o t a l / n
7 return mean� �
• From the five options below, select the one that represents the correct combination of

T(n) and Big-O complexity for this function. You may assume that a step (i.e. the basic
unit of computation) is the assignment statement.

26 M269 16 May 2015

A. T(n) = 3 + n2 and O(n2)

B. T(n) = n + 2 and O(n2)

C. T(n) = 2n + 2 and O(n)

D. T(n) = 3n + n2 and O(n2)

E. T(n) = n + 3 and O(n)

M269 Exam 2013J Q 6 Solution

• Option E is correct.

• The function does three assignments once per call, and one assignment for each of
the n items in the argument, hence T(n) = n + 3.

3.3.2 M269 Exam 2013J Q 5

• Consider the following diagrams A–H. Nodes are represented by black dots and edges
by arrows. The numbers represent a node’s key.

• Answer the following questions. Write your answer on the line that follows each ques-
tion. In each case there is at least one diagram in the answer but there may be more
than one. Explanations are not required.

(a) Which of A, B, C and D do not show trees ?

(b) Which of E, F, G and H are binary trees ?

(c) Which of C, D, G and H are complete binary trees ?

(d) Which of C, D, G and H are heaps ?

M269 Exam 2013J Q 5 Solution

(a) B is not a tree; it has more than one route from node 3 to node 4.

(b) E, G, and H are binary trees; (no more than 2 children per node).

(c) G, and H are complete binary trees.

(d) Only G is a heap; (complete binary tree, and parent nodes > children).

Phil Molyneux Exam Revision 27

4 Units 1 & 2

4.1 Unit 2 From Problems to Programs

• Unit 2 From Problems to Programs

• Abstract Data Types

• Pre and Post Conditions

• Logic for loops

4.1.1 M269 Exam 2013J Q 4

• Consider the guard in the following Python while loop header:� �
while (a < 6 and b > 8) or not (a >= 6 or b <= 8) :� �

(a) Make the following substitutions:

P represents a < 6

Q represents b > 8

Then complete the following truth table:

P Q ¬P ¬Q P ∧Q ¬P ∨¬Q ¬(¬P ∨¬Q) (P ∧Q)∨¬(¬P ∨¬Q)

F F

F T

T F

T T

(b) Use the results from your truth table to choose which one of the following expressions
could be used as the simplest equivalent to the above guard.

A. (a < 6 and b > 8)

B. not(a < 6 and b > 8)

C. (a >= 6 or b <= 8)

D. (a >= 6 and b <= 8)

E. (a < 6 and b <= 8)

M269 Exam 2013J Q 4 Solution

(a) The completed truth table:

P Q ¬P ¬Q P ∧Q ¬P ∨¬Q ¬(¬P ∨¬Q) (P ∧Q)∨¬(¬P ∨¬Q)

F F T T F T F F

F T T F F T F F

T F F T F T F F

T T F F T F T T

28 M269 16 May 2015

(b) A is the simplest equivalent of the guard given.

4.1.2 M269 Exam 2013J Q 3

• A binary search is being carried out on the list shown below for item 67:

[12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

• For each pass of the algorithm, draw a box around the items in the partition to be
searched during that pass, continuing for as many passes as you think are needed.

• We have done the first pass for you showing that the search starts with the whole list.
Draw your boxes below for each pass needed; you may not need to use all the lines
below. (The question had 8 rows)

(Pass 1) [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

(Pass 2) [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]
(Pass 3) [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

M269 Exam 2013J Q 3 Solution

• The complete binary search:

(Pass 1) [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

(Pass 2) [12,16,17,24,41,49,51,62, 67,69,75,80,89,97,101]

(Pass 3) [12,16,17,24,41,49,51,62, 67,69,75 ,80,89,97,101]

(Pass 4) [12,16,17,24,41,49,51,62, 67 ,69,75,80,89,97,101]

4.1.3 Example Algorithm Design — Searching

• Given an ordered list (xs) and a value (val), return

– Position of val in xs or

– Some indication if val is not present

• Simple strategy: check each value in the list in turn

• Better strategy: use the ordered property of the list to reduce the range of the list to
be searched each turn

– Set a range of the list

– If val equals the mid point of the list, return the mid point

– Otherwise half the range to search

– If the range becomes negative, report not present (return some distinguished
value)

Phil Molyneux Exam Revision 29

Binary Search Iterative� �
1 def b i n a r y S e a r c h I t e r (xs , va l) :
2 l o = 0
3 h i = len (xs) − 1

5 while l o <= h i :
6 mid = (l o + h i) // 2
7 guess = xs [mid]

9 i f val == guess :
10 return mid
11 e l i f val < guess :
12 h i = mid − 1
13 else :
14 l o = mid + 1

16 return None� �
Binary Search Recursive� �

1 def binarySearchRec (xs , val , l o =0 , h i =−1):
2 i f (h i == −1) :
3 h i = len (xs) − 1

5 mid = (l o + h i) // 2

7 i f h i < l o :
8 return None

9 else :
10 guess = xs [mid]
11 i f val == guess :
12 return mid
13 e l i f val < guess :
14 return binarySearchRec (xs , val , lo , mid−1)
15 else :
16 return binarySearchRec (xs , val , mid+1 , h i)� �

Binary Search Recursive — Solution

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs, 67)

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs,67,8,14) by line 15

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs,67,8,10) by line 13

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

binarySearchRec(xs,67,8,8) by line 13

xs = [12,16,17,24,41,49,51,62,67,69,75,80,89,97,101]

Return value: 8 by line 11

Binary Search Iterative — Miller & Ranum� �
1 def binarySearchIterMR (a l i s t , item) :
2 f i r s t = 0
3 l a s t = len (a l i s t)−1
4 found = False

6 while f i r s t <=l a s t and not found :
7 midpoint = (f i r s t + l a s t)//2
8 i f a l i s t [midpoint] == item :
9 found = True

10 else :
11 i f item < a l i s t [midpoint] :

30 M269 16 May 2015

12 l a s t = midpoint−1
13 else :
14 f i r s t = midpoint+1

16 return found� �
Miller and Ranum (2011, page 192)

Binary Search Recursive — Miller & Ranum� �
1 def binarySearchRecMR (a l i s t , item) :
2 i f len (a l i s t) == 0 :
3 return False

4 else :
5 midpoint = len (a l i s t)//2
6 i f a l i s t [midpoint]== item :
7 return True

8 else :
9 i f item< a l i s t [midpoint] :

10 return binarySearchRecMR (a l i s t [: midpoint] , item)
11 else :
12 return binarySearchRecMR (a l i s t [midpoint + 1 :] , item)� �

Miller and Ranum (2011, page 193)

4.2 Unit 1 Introduction

• Unit 1 Introduction

• Computation, computable, tractable

• Introducing Python

• What are the three most important concepts in programming ?

1. Abstraction

2. Abstraction

3. Abstraction

• Quote from Paul Hudak (1952–2015)

4.2.1 M269 Exam 2013J Q 2

• The general idea of abstraction as modelling can be shown with the following diagram.

• Complete the diagram above by adding an appropriate label (one of the numbers 1
to 4) in the space indicated by A and one in the space indicated by B. The possible
answers are shown as 1 to 4 below. The exam question had some pictures next to the texts

1. A car crash test dummy in the real world

http://en.wikipedia.org/wiki/Paul_Hudak

Phil Molyneux Exam Revision 31

2. An action man doll in the real world

3. A real car in the real world (after crashing)

4. A real driver in the real world

M269 Exam 2013J Q 2 Solution

• A real driver is modelled by a car crash test dummy, so A = 1 and B = 4

4.2.2 M269 Exam 2013J Q 1

• Which two of the following statements are true?

A. A decision problem is any problem stated in a formal language.

B. A computational problem is a problem that is expressed sufficiently precisely that it is
possible to build an algorithm that will solve all instances of that problem.

C. An algorithm consists of a precisely stated, step-by-step list of instructions.

D. Computational thinking is the skill to formulate a problem as a computational prob-
lem, and then construct a good computational solution, in the form of an algorithm,
to solve this problem, or explain why there is no such solution.

M269 Exam 2013J Q 1 Solution

• Options C and D are true.

• Option A is wrong because decision problems have to have a yes-no answer.

• Option B is wrong because there are computational problems that we can state and
build algorithms for, but cannot always be solved.

5 M269 Exam Section 2

5.1 M269 Exam 2013J Q 16

• Multipart question

• Specification of program, data structures, pre and post conditions

• Write a small program

• Give the complexity of the small program

• Give insight into a sorting algorithm

• Give insight into insertion into a binary search tree

• See notes version for text

32 M269 16 May 2015

5.1.1 M269 Exam 2013J Q 16 Text

The Widget & Widget Widget Corporation (W&WWC) keeps records of every client that has
purchased widgets from them, along with details of the value of every purchase. These
records are stored on a computer in two sequences; the first of these, CLIENTS, is an (un-
sorted) sequence of the clients’ names; the second, SPENDS, contains a sequence of se-
quences, with each item representing the sequence of values of each of the purchases that
a client has made. The index of a client in CLIENTS is the index of that client’s sequence of
purchases in SPENDS.

(a) W&WC requires a small computer program which will provide them with two facilities:

• one to return the average spend of a specified client, if that client is present in
the data, and to return a suitable value if the client is not present;

• the other to return a sequence containing for each client in CLIENTS their aver-
age spend.

(i) Express both as a computational problem by completing the templates below (in
your answer book). Make whatever decisions you think appropriate about the ex-
act form of the input and output.

Name: SpecifiedClientAverageSpend

Inputs:

Outputs:

Name: EachClientAverageSpend

Inputs:

Inputs:

(ii) In addition, suggest one possible postcondition for the SpecifiedClientAver-

ageSpend problem.

(iii) Provide the structured English for the EachClientAverageSpend algorithm. (If
you wish you can write a Python function instead, but not both.)

(b) What will be the complexity, expressed in T(n,q) and Big-O format, of your EachClien-
tAverageSpend solution, assuming n clients with an average of q transactions each,
and that the assignment statement is the unit of computation? Explain your reason-
ing.

(c) One of the drawbacks of the current way in which the data is stored is that the se-
quence of clients is not sorted. One of the best ways of sorting a sequence is the
Quicksort algorithm. Express your understanding of this algorithm for in-place sort-
ing in the form of an initial insight.

(d) Having developed the current program as far as they can using sequences, managers
have now made the decision to store clients and transactions in a Binary Search Tree
(BST).

M269 Exam 2013J Q 16 Sample Solution

(a)

Phil Molyneux Exam Revision 33

(i)

Name: SpecifiedClientAverageSpend

Inputs: Client name as String

Outputs: If client is found: Average spend for client as Real else: None

Name: EachClientAverageSpend

Inputs: None

Inputs: List of average spends for each client as list of real

(ii) Returned average is a sensible size?

(iii)� �
1 def EachClientAverageSpend () :
2 averages = l i s t ()
3 for purchases in SPENDS :
4 i f len (purchases) > 0 :
5 average = sum(purchases) / len (purchases)
6 else :
7 average = None

8 averages . append (average)
9 return averages� �

(b) Assuming n clients with q transactions, and assuming (a) that the Python function sum

does not create any extra assignments, and (b) that the Python appendmethod counts
as one assignment, we have one assignment to create the empty list of averages, one
to create the average for each customer, and one more to append the average to the
list, so T(n,q) = 1 + 2n.

On the other hand we might assume that sum(purchases) counted as q assignments,
and in this case we would have T(n,q) = 1 + 2qn. In either case n remains the dom-
inant term because we are doing something separate for each of the n customers,
and not trying to do something that compares them to each other (for example), so
the complexity is O(n).

(c) Quicksort works by divide-and-conquer. The input is a list of values to sort. First we
pick a pivot value; there are various ways to do this, but the simplest is just to pick
the first value in the list. Then we divide the list into three parts: all those items less
than the pivot value, the pivot item itself, and all those items greater than or equal
to the pivot value. The output is a list composed of the lower part (sorted by calling
ourselves recursively), followed by the pivot value, followed by the upper part (again
sorted by calling ourselves recursively).

(d) The two defining features of a binary search tree are (1) that, for each node, all the
keys in the left subtree are less than the key of the node, while all the keys in the right
subtree are greater than the key of the node; and (2) that each key value is present
only once.

An insertion algorithm based on these insights. Given the root node of a binary search
tree, and a key value: if the node is undefined (ie it’s a leaf node), then create a new
node with the provided key value and a null left child and a null right child, and return
this node; if the node is defined and the key value equals the key of the node then
return a value to show the key is already present.

Otherwise if the key value is greater than the value of this node’s key, then call our-
selves recursively on this node’s right child, with the same key, and return the result.

34 M269 16 May 2015

Finally if the key value is less than the value of this node’s key, then call ourselves
recursively on this node’s left child, with the same key, and return the result.

5.2 M269 Exam 2013J Q 17

• Write short report on a computational topic

• Suitable title for the topic and audience

• Paragraph setting the scene — the context of the topic

• Paragraph describing the topic

• Paragraph on the role the topic plays in some area

• Conclusions justifying the importance of the topic

• See notes version for text.

5.2.1 M269 Exam 2013J Q 17 Text

Imagine that you are a potential speaker for your local University of the Third Age (U3A).
Along with other potential speakers you’ve been asked to write a short report on a partic-
ular topic. The organising group will then look at these reports and choose which potential
speaker to ask for a full evening presentation. Your topic is The Turing Machine. Write a
short report. Your report must have the following structure:

1. A suitable title.

2. A paragraph setting the scene and explaining the historical importance of the deter-
ministic Turing Machine [about three sentences].

3. One paragraph in which you describe in layperson’s terms what a deterministic Turing
Machine is [about three sentences].

4. One paragraph in which you describe the role that Turing Machines play in Turing’s
proof that there are computational problems that are not computable [about three
sentences].

5. A conclusion in which you give a reasoned conclusion about the importance of Turing
Machines [one sentence].

Note that a significant number of marks will be awarded for coherence and clarity, so avoid
abrupt changes of topic and make sure your sentences fit together to tell an overall story.
Allow up to four additional sentences to ensure this.

M269 Exam 2013J Q 17 Sample Solution

Alan Turing and his Marvellous Machine

Alan Turing who was one of the mathematical and computing heroes of Bletchley Park.
Many U3A members may have visited the famous WW2 code-breaking centre at Bletchley
Park — some of them may even have worked there — and will know that Turing was closely
involved with building the first electronic computers and using them to decipher enemy
radio messages. Members may also be interested to know that Turing had been working

Phil Molyneux Exam Revision 35

before the war in Cambridge on the fundamental ideas of computing and can be regarded
as one of the founders of modern computer science.

Turing was interested in what humans do when they compute the answer to a problem, and
whether this process could be done by a machine, and if it could, what would be be the
limits of what such a machine could do. He imagined a simple, idealized machine that could
read and write and erase symbols on an endless paper tape, and that could be set up to
follow instructions by responding in a particular way to each different symbol. He showed
that given enough time and a long enough tape, such a simplified machine could be set up
to add up, or take away, or do arbitrarily complex mathematics. These imaginary machines
became known as Turing Machines.

Turing’s design was a purely theoretical one. But he used it to prove one of the most impor-
tant practical results about computers: no matter how fast and how efficient we make our
computers, there will always be problems that the computer cannot solve. His argument
was based on the idea that if you made a long list of all possible Turing Machines that solve
a particular type problem, it is always possible to construct another problem that cannot be
solved by any possible machine. This fundamental result still shapes the way that computer
scientists search for algorithms and develop programs to solve problems.

The real beauty of the Turing Machine is that it is so simple; this simplicity allows computer
scientists to reason about computing and what can be computed without the distracting
details of any particular real-world machine.

6 Exam Techniques

• Surviving in a time of great stress

• Each give one exam tip to the group

• TODO: add some more points

7 Web References

TODO: More Web links

Logic

• WFF, WFF’N Proof online http://www.oercommons.org/authoring/1364-basic-
wff-n-proof-a-teaching-guide/view

Computability

• Computability

• Computable function

• Decidability (logic)

• Turing Machines

• Universal Turing Machine

• Turing machine simulator

http://en.wikipedia.org/wiki/Well-formed_formula
http://www.oercommons.org/authoring/1364-basic-wff-n-proof-a-teaching-guide/view
http://www.oercommons.org/authoring/1364-basic-wff-n-proof-a-teaching-guide/view
http://en.wikipedia.org/wiki/Computability
http://en.wikipedia.org/wiki/Computable_function
http://en.wikipedia.org/wiki/Decidability_(logic)
http://en.wikipedia.org/wiki/Turing_machine
http://en.wikipedia.org/wiki/Universal_Turing_machine
http://morphett.info/turing/turing.html

36 M269 16 May 2015

• Lambda Calculus

• Von Neumann Architecture

Complexity

• Complexity class

• NP complexity

• NP complete

• Reduction (complexity)

• P versus NP problem

• Graph of NP-Complete Problems

Acknowledgements Toby Thurston for sample answers

Note on References — the list of references is mainly to remind me where I obtained some
of the material and is not required reading.

References

Adelson-Velskii, G M and E M Landis (1962). An algorithm for the organization of informa-
tion. In Doklady Akademia Nauk SSSR, volume 146, pages 263–266. Translated from
Soviet Mathematics — Doklady ; 3(5), 1259–1263.

Arora, Sanjeev and Boaz Barak (2009). Computational Complexity: A Modern Approach.
Cambridge University Press. ISBN 0521424267. URL http://www.cs.princeton.edu/

theory/complexity/.

Chiswell, Ian and Wilfrid Hodges (2007). Mathematical Logic. Oxford University Press. ISBN
0199215626.

Church, Alonzo et al. (1937). Review: Am turing, on computable numbers, with an applica-
tion to the entscheidungsproblem. Journal of Symbolic Logic, 2(1):42–43.

Cook, Stephen A. (1971). The Complexity of Theorem-proving Procedures. In Proceedings
of the Third Annual ACM Symposium on Theory of Computing, STOC ’71, pages 151–158.
ACM, New York, NY, USA. doi:10.1145/800157.805047. URL http://doi.acm.org/10.

1145/800157.805047.

Copeland, B. Jack; Carl J. Posy; and Oron Shagrir (2013). Computability: Turing, Gödel,
Church, and Beyond. The MIT Press. ISBN 0262018993.

Cormen, Thomas H.; Charles E. Leiserson; Ronald L. Rivest; and Clifford Stein (2009). In-
troduction to Algorithms. MIT Press, third edition. ISBN 0262533057. URL http:

//mitpress.mit.edu/books/introduction-algorithms.

Davis, Martin (1995). Influences of mathematical logic on computer science. In The Univer-
sal Turing Machine A Half-Century Survey, pages 289–299. Springer.

Davis, Martin (2012). The Universal Computer: The Road from Leibniz to Turing. A K Peter-
s/CRC Press. ISBN 1466505192.

Dowsing, R.D.; V.J Rayward-Smith; and C.D Walter (1986). First Course in Formal Logic and
Its Applications in Computer Science. Blackwells Scientific. ISBN 0632013087.

http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Von_Neumann_architecture
http://en.wikipedia.org/wiki/Complexity_class
http://en.wikipedia.org/wiki/NP_(complexity)
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/Reduction_(complexity)
http://en.wikipedia.org/wiki/P_%3D_NP_problem
http://adriann.github.io/npc/npc.html
http://www.cs.princeton.edu/theory/complexity/
http://www.cs.princeton.edu/theory/complexity/
http://doi.acm.org/10.1145/800157.805047
http://doi.acm.org/10.1145/800157.805047
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms

Phil Molyneux Exam Revision 37

Franzén, Torkel (2005). Gödel’s Theorem: An Incomplete Guide to Its Use and Abuse. A K
Peters, Ltd. ISBN 1568812388.

Fulop, Sean A. (2006). On the Logic and Learning of Language. Trafford Publishing. ISBN
1412023815.

Garey, Michael R. and David S. Johnson (1979). Computers and Intractability: A Guide to the
Theory of NP-completeness. W.H.Freeman Co Ltd. ISBN 0716710455.

Halbach, Volker (2010). The Logic Manual. OUP Oxford. ISBN 0199587841. URL http:

//logicmanual.philosophy.ox.ac.uk/index.html.

Halpern, Joseph Y; Robert Harper; Neil Immerman; Phokion G Kolaitis; Moshe Y Vardi; and
Victor Vianu (2001). On the unusual effectiveness of logic in computer science. Bulletin
of Symbolic Logic, pages 213–236.

Hindley, J. Roger and Jonathan P. Seldin (1986). Introduction to Combinators and Ý-
Calculus. Cambridge University Press. ISBN 0521318394. URL http://www-maths.swan.
ac.uk/staff/jrh/.

Hindley, J. Roger and Jonathan P. Seldin (2008). Lambda-Calculus and Combinators: An
Introduction. Cambridge University Press. ISBN 0521898854. URL http://www-maths.

swan.ac.uk/staff/jrh/.

Hodges, Wilfred (1977). Logic. Penguin. ISBN 0140219854.

Hodges, Wilfred (2001). Logic. Penguin, second edition. ISBN 0141003146.

Hopcroft, John E.; Rajeev Motwani; and Jeffrey D. Ullman (2001). Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, second edition. ISBN 0-201-
44124-1.

Hopcroft, John E.; Rajeev Motwani; and Jeffrey D. Ullman (2007). Introduction to Automata
Theory, Languages, and Computation. Pearson, third edition. ISBN 0321514483. URL
http://infolab.stanford.edu/~ullman/ialc.html.

Hopcroft, John E. and Jeffrey D. Ullman (2001). Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, first edition. ISBN 020102988X.

Lemmon, Edward John (1965). Beginning Logic. Van Nostrand Reinhold. ISBN 0442306768.

Levin, Leonid A (1973). Universal sorting problems. Problemy Peredachi Informatsii,
9(3):265–266.

Manna, Zoher (1974). Mathematical Theory of Computation. McGraw-Hill. ISBN 0-07-
039910-7.

Miller, Bradley W. and David L. Ranum (2011). Problem Solving with Algorithms and
Data Structures Using Python. Franklin, Beedle Associates Inc, second edition. ISBN
1590282574. URL http://interactivepython.org/courselib/static/pythonds/

index.html.

Pelletier, Francis Jeffrey and Allen P Hazen (2012). A history of natural deduction. In
Gabbay, Dov M; Francis Jeffrey Pelletier; and John Woods, editors, Logic: A History of
Its Central Concepts, volume 11 of Handbook of the History of Logic, pages 341–414.
North Holland. ISBN 0444529373. URL http://www.ualberta.ca/~francisp/papers/

PellHazenSubmittedv2.pdf.

http://logicmanual.philosophy.ox.ac.uk/index.html
http://logicmanual.philosophy.ox.ac.uk/index.html
http://www-maths.swan.ac.uk/staff/jrh/
http://www-maths.swan.ac.uk/staff/jrh/
http://www-maths.swan.ac.uk/staff/jrh/
http://www-maths.swan.ac.uk/staff/jrh/
http://infolab.stanford.edu/~ullman/ialc.html
http://interactivepython.org/courselib/static/pythonds/index.html
http://interactivepython.org/courselib/static/pythonds/index.html
http://www.ualberta.ca/~francisp/papers/PellHazenSubmittedv2.pdf
http://www.ualberta.ca/~francisp/papers/PellHazenSubmittedv2.pdf

38 M269 16 May 2015

Pelletier, Francis Jeffry (2000). A history of natural deduction and elementary logic text-
books. Logical consequence: Rival approaches, 1:105–138. URL http://www.sfu.ca/

~jeffpell/papers/pelletierNDtexts.pdf.

Rayward-Smith, V J (1983). A First Course in Formal Language Theory. Blackwells Scientific.
ISBN 0632011769.

Rayward-Smith, V J (1985). A First Course in Computability. Blackwells Scientific. ISBN
0632013079.

Rich, Elaine A. (2007). Automata, Computability and Complexity: Theory and Applica-
tions. Prentice Hall. ISBN 0132288060. URL http://www.cs.utexas.edu/~ear/cs341/

automatabook/.

Smith, Peter (2003). An Introduction to Formal Logic. Cambridge University Press. ISBN
0521008042. URL http://www.logicmatters.net/ifl/.

Smith, Peter (2007). An Introduction to Gödel’s Theorems. Cambridge University Press, first
edition. ISBN 0521674530.

Smith, Peter (2013). An Introduction to Gödel’s Theorems. Cambridge University Press,
second edition. ISBN 1107606756. URL http://godelbook.net.

Smullyan, Raymond M. (1995). First-Order Logic. Dover Publications Inc. ISBN 0486683702.

Soare, Robert Irving (1996). Computability and Recursion. Bulletin of Symbolic Logic, 2:284–
321. URL http://www.people.cs.uchicago.edu/~soare/History/.

Soare, Robert Irving (2013). Interactive computing and relativized computability. In Com-
putability: Turing, Gödel, Church, and Beyond, chapter 9, pages 203–260. The MIT Press.
URL http://www.people.cs.uchicago.edu/~soare/Turing/shagrir.pdf.

Teller, Paul (1989a). A Modern Formal Logic Primer: Predicate and Metatheory: 2. Prentice-
Hall. ISBN 0139031960. URL http://tellerprimer.ucdavis.edu.

Teller, Paul (1989b). A Modern Formal Logic Primer: Sentence Logic: 1. Prentice-Hall. ISBN
0139031707. URL http://tellerprimer.ucdavis.edu.

Thompson, Simon (1991). Type Theory and Functional Programming. Addison Wesley. ISBN
0201416670. URL http://www.cs.kent.ac.uk/people/staff/sjt/TTFP/.

Tomassi, Paul (1999). Logic. Routledge. ISBN 0415166969. URL http://emilkirkegaard.

dk/en/wp-content/uploads/Paul-Tomassi-Logic.pdf.

Turing, Alan Mathison (1936). On computable numbers, with an application to the entschei-
dungsproblem. Proceedings of the London Mathematical Society, 42:230–265.

Turing, Alan Mathison (1937). On computable numbers, with an application to the entschei-
dungsproblem. a correction. Proceedings of the London Methematical Society, 43:544–
546.

van Dalen, Dirk (1994). Logic and Structure. Springer-Verlag, third edition. ISBN
0387578390.

van Dalen, Dirk (2012). Logic and Structure. Springer-Verlag, fifth edition. ISBN
1447145577.

Author Phil Molyneux Written 16 May 2015 Printed 15th May 2015
Subject dir: 〈baseURL〉/OU/M269/M269Exams/M269SpecimenExam
Topic path: /M269ExamRevision/M269ExamRevision2014J/M269ExamRevision2014J.pdf

http://www.sfu.ca/~jeffpell/papers/pelletierNDtexts.pdf
http://www.sfu.ca/~jeffpell/papers/pelletierNDtexts.pdf
http://www.cs.utexas.edu/~ear/cs341/automatabook/
http://www.cs.utexas.edu/~ear/cs341/automatabook/
http://www.logicmatters.net/ifl/
http://godelbook.net
http://www.people.cs.uchicago.edu/~soare/History/
http://www.people.cs.uchicago.edu/~soare/Turing/shagrir.pdf
http://tellerprimer.ucdavis.edu
http://tellerprimer.ucdavis.edu
http://www.cs.kent.ac.uk/people/staff/sjt/TTFP/
http://emilkirkegaard.dk/en/wp-content/uploads/Paul-Tomassi-Logic.pdf
http://emilkirkegaard.dk/en/wp-content/uploads/Paul-Tomassi-Logic.pdf

	M269 Exam Revision Agenda & Aims
	Revision strategies

	Units 6 & 7
	Computability
	M269 Exam 2013J Q 15

	Complexity
	NP-Completeness and Boolean Satisfiability

	Logic
	M269 Exam 2013J Q 14

	SQL Queries
	M269 Exam 2013J Q 13

	Predicate Logic
	M269 Exam 2013J Q 12

	Propositional Logic
	M269 Exam 2013J Q 11

	Units 3, 4 & 5
	Unit 5 Optimisation
	M269 Exam 2013J Q 10
	M269 Exam 2013J Q 9

	Unit 4 Searching
	M269 Exam 2013J Q 8
	M269 Exam 2013J Q 7

	Unit 3 Sorting
	M269 Exam 2013J Q 6
	M269 Exam 2013J Q 5

	Units 1 & 2
	Unit 2 From Problems to Programs
	M269 Exam 2013J Q 4
	M269 Exam 2013J Q 3
	Example Algorithm Design — Searching

	Unit 1 Introduction
	M269 Exam 2013J Q 2
	M269 Exam 2013J Q 1

	M269 Exam Section 2
	M269 Exam 2013J Q 16
	M269 Exam 2013J Q 16 Text

	M269 Exam 2013J Q 17
	M269 Exam 2013J Q 17 Text

	Exam Techniques
	Web References
	References

