M269

Phil Molyneux

M269 Exam Revision Agenda & Aims

Units 6 & 7

Offics I & Z

Section B

Exam Techniques

M269 Exam Revision

Phil Molyneux

17 May 2014

M269 Exam Revision

Agenda & Aims

- 1. Welcome and introductions
- 2. Revision strategies
- 3. Specimen exam Part A in reverse order
- 4. Topics and discussion for each question
- 5. Exam technique

M269

Phil Molyneux

M269 Exam

Revision Agenda & Aims

Revision strategies

Units 6 & 7

Jilits 5, 4 & .

Inits 1 & 2

M269 Exam Section B

M269 Exam

Revision strategies

- Organising your knowledge
- Each give one exam tip to the group
- ▶ TODO: add some more points

M269

Phil Molyneux

M269 Exam Revision Agenda 8 Aims

Revision strategies

Units 6 & 7

Units 3, 4 & 5

Units 1 & 2

M269 Exam Section B

Q15 Topics

- ▶ Unit 7
- Computability and ideas of computation
- Complexity
- P and NP
- ▶ NP-complete

M269

Phil Molyneux

Computability

Ideas of Computation

- The idea of an algorithm and what is effectively computable
- Church-Turing thesis Every function that would naturally be regarded as computable can be computed by a deterministic Turing Machine. (Unit 7 Section 4)

M269

Phil Molyneux

M269 Exam Revision Agenda &

Jnits 6 & 7

Computability

Reducing one problem to another

Computability — Models Computation

Church-Turing Thes Computability — Tu

uring Macine notatio

omputability ecidability

mplexity

ic

ified Arguments

С

Jnits 3, 4 & 5

Jnits 1 & 2

M269 Exam Section B

Reducing one problem to another

- ▶ To reduce problem P_1 to P_2 , invent a construction that converts instances of P_1 to P_2 that have the same answer. That is:
 - any string in the language P_1 is converted to some string in the language P_2
 - any string over the alphabet of P₁ that is not in the language of P₁ is converted to a string that is not in the language P₂
- With this construction we can solve P₁
 - Given an instance of P₁, that is, given a string w that may be in the language P₁, apply the construction algorithm to produce a string x
 - ► Test whether *x* is in *P*₂ and give the same answer for *w* in *P*₁

Phil Molyneux

M269 Exam Revision Agenda & Aims

Units 6 & /

Computability

Reducing one problem to another

mputability — Models o mputation

Computability — Church-Turing Thes

Machine Turing Macine notation

mputability cidability

Complexity

gic

istined Arguments nit 6 Sets, Databases igic

Units 3, 4 & 5

Units 1 & 2

M269 Exam Section B

Direction of Reduction

- The direction of reduction is important
- ▶ If we can reduce P_1 to P_2 then (in some sense) P_2 is at least as hard as P_1 (since a solution to P_2 will give us a solution to P_1)
- ▶ So, if P_2 is decidable then P_1 is decidable
- To show a problem is undecidable we have to reduce from an known undecidable problem to it
- ▶ Since, if P_1 is undecidable then P_2 is undecidable

M269

Phil Molyneux

M269 Exam Revision Agenda &

Units 6 & 7

Computability

Reducing one problem to

omputability — Models omputation

Church-Turing Thesis
Computability — Turing

Turing Macine notation

Computability —
Decidability

omplexity

ogic

ified Argument

ic

Jnits 3, 4 & 5

Jnits 1 & 2

M269 Exan Section B

Models of Computation

- In automata theory, a problem is the question of deciding whether a given string is a member of some particular language
- ▶ If Σ is an alphabet, and L is a language over Σ , that is $L \subseteq \Sigma^*$, where Σ^* is the set of all strings over the alphabet Σ then we have a more formal definition of decision problem
- ▶ Given a string $w \in \Sigma^*$, decide whether $w \in L$
- ► Example: Testing for a prime number can be expressed as the language *L*_p consisting of all binary strings whose value as a binary number is a prime number (only divisible by 1 or itself)

Phil Molyneux

M269 Exam Revision Agenda &

Units 6 & 7

Reducing one problem

Computability — Models of Computation

Church-Turing Thesis
Computability — Turing

Turing Macine not Computability —

Complexity

omplexity

istified Arguments nit 6 Sets, Database

Jnits 3, 4 & 5

Unite 1 8, 2

Units 1 & 2

M269 Exan Section B

- Church-Turing thesis Every function that would naturally be regarded as computable can be computed by a deterministic Turing Machine.
- physical Church-Turing thesis Any finite physical system can be simulated (to any degree of approximation) by a Universal Turing Machine.
- strong Church-Turing thesis Any finite physical system can be simulated (to any degree of approximation) with polynomial slowdown by a Universal Turing Machine.
- ► Shor's algorithm (1994) quantum algorithm for factoring integers an NP problem that is not known to be P also not known to be NP-complete and we have no proof that it is not in P

M269

Phil Molyneux

M269 Exam Revision Agenda &

Units 6 & /

Reducing one problem

Computability — Mo Computation

Computability — Church-Turing Thesis

Lomputability — Turing Machine

ecidability

Complexity

stified Argument nit 6 Sets, Databa

nits 3, 4 & 5

Jnits 1 & 2

M269 Exam Section B

Turing Machine

- ▶ Finite control which can be in any of a finite number of states
- ► Tape divided into cells, each of which can hold one of a finite number of symbols
- Initially, the input, which is a finite-length string of symbols in the input alphabet, is placed on the tape
- All other tape cells (extending infinitely left and right) hold a special symbol called blank
- A tape head which initially is over the leftmost input symbol
- A move of the Turing Machine depends on the state and the tape symbol scanned
- A move can change state, write a symbol in the current cell, move left, right or stay

Computability - Turing

Machine

Turing Machine notation

- Q finite set of states of the finite control
- Σ finite set of input symbols (M269 S)
- ▶ Γ complete set of *tape symbols* $\Sigma \subset \Gamma$
- ▶ δ Transition function (M269 instructions, I) $\delta :: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$ $\delta(q, X) \mapsto (p, Y, D)$
- ▶ q_0 start state $q_0 \in Q$
- ▶ B blank symbol B $\in \Gamma$ and B $\notin \Sigma$
- ▶ F set of final or accepting states $F \subseteq Q$

M269

Phil Molyneux

M269 Exam Revision Agenda &

Units 6 & 7

Computability

Reducing one problem to another

Computation

Computability —

Church Turing Thesis

Computability — Turing Machine

Turing Macine notation

Complexity

. .

ogic

stified Arguments nit 6 Sets, Databases

ic

Jnits 3, 4 & 5

Jnits 1 & 2

M269 Exam Section B

Decidable

- ▶ Decidable there is a TM that will halt with yes/no for a decision problem — that is, given a string w over the alphabet of P the TM with halt and return yes.no the string is in the language P (same as recursive in Recursion theory — old use of the word)
- ► Semi-decidable there is a TM will halt with yes if some string is in P but may loop forever on some inputs (same as recursively enumerable) Halting Problem
- ► **Highly-undecidable** no outcome for any input Totality, Equivalence Problems

M269

Phil Molyneux

M269 Exam
Revision Agenda &

Units 6 &

Computability

Reducing one problem to another

Computability — Mod Computation

Computability — Church-Turing Thesis Computability — Turing

Computability — Turin_i Machine Turing Macine notatior

Computability — Decidability

mplexity

tified Arguments

ic Sets, bataba

Jnits 3, 4 & 5

Jnits 1 & 2

M269 Exam

Undecidable Problems

- ▶ Halting problem the problem of deciding, given a program and an input, whether the program will eventually halt with that input, or will run forever term first used by Martin Davis 1952
- Entscheidungsproblem the problem of deciding whether a given statement is provable from the axioms using the rules of logic — shown to be undecidable by Turing (1936) by reduction from the Halting problem to it
- Type inference and type checking in the second-order lambda calculus (important for functional programmers, Haskell, GHC implementation)
- Undecidable problem see link to list

Phil Molyneux

Computability --Decidability

Why undecidable problems must exist

- A problem is really membership of a string in some language
- The number of different languages over any alphabet of more than one symbol is uncountable
- Programs are finite strings over a finite alphabet (ASCII or Unicode and hence countable.
- ► There must be an infinity (big) of problems more than programs.

M269

Phil Molyneux

M269 Exam Revision Agenda &

Jnits 6 & 7

Computability

Reducing one problem to another

Computability — Mo Computation

Computability —
Church-Turing Thesis
Computability — Turing

Machine Turing Macine notation

Computability — Decidability

mplexity

С

stified Arguments it 6 Sets, Database

Jnits 3, 4 & 5

Inite 1 8, 2

M269 Exam

P and NP

- P, the set of all decision problems that can be solved in polynomial time on a deterministic Turing machine
- ▶ NP, the set of all decision problems whose solutions can be verified (certificate) in polynomial time
- Equivalently, NP, the set of all decision problems that can be solved in polynomial time on a non-deterministic Turing machine
- ▶ A decision problem, dp is NP-complete if
 - 1. dp is in NP and
 - 2. Every problem in NP is reducible to dp in polynomial time
- ▶ NP-hard a problem satisfying the second condition, whether or not it satisfies the first condition. Class of problems which are at least as hard as the hardest problems in NP. NP-hard problems do not have to be in NP and may not be decision problems

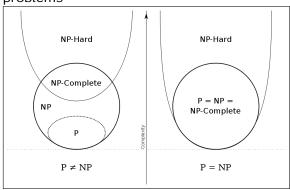
Complexity

15/42

Complexity

P and NP — Diagram

Euler diagram for P, NP, NP-complete and NP-hard set of problems



Source: Wikipedia NP-complete entry

Phil Molyneux

M269 Exam

Revision Agenda &

Units 6 & 7

Computability

Reducing one problem to another

Lomputability — Mod Computation

Church-Turing Thesis

Machine

Computability —

Complexity

.ogic

ustified Arguments nit 6 Sets, Databas

nite 3 4 8, 5

11.5.10.2

Units 1 & 2

M269 Exam Section B

Complexity

NP-complete problems

- ► Boolean satisfiability (SAT) Cook-Levin theorem
- Conjunctive Normal Form 3SAT
- ► Hamiltonian path problem
- ► Travelling salesman problem
- ► NP-complete see list of problems

M269

Phil Molyneux

M269 Exam Revision Agenda &

nits 6 & 7

Computability

Computability

Reducing one problem to another

Computation — Model

Computability — Church-Turing The

> omputability — Turin. Machine

computability —

Complexity

ogic

stified Arguments

gic

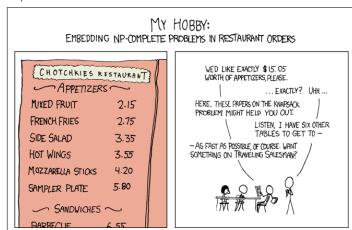
Jnits 3, 4 & 5

Jnits 1 & 2

M269 Exam Section B

Complexity

Knapsack Problem



Source & Explanation: XKCD 287

M269

Phil Molyneux

M269 Exam Revision Agenda &

Inita 6 8 7

Computability

Reducing one problem to another

Computability — Models (Computation

Computability — Church-Turing Thesis

Machine
Turing Macine potation

Computability —

Complexity

.ogic

ustified Arguments

ogic

Units 3, 4 & 5

Units 1 & 2

M269 Exam

Q14 topics

- ▶ Unit 7
- Proofs
- Natural deduction

M269

Phil Molyneux

M269 Exam Revision Agenda

Units 6 & 7

Computability

Reducing one problem to another

Computability — Mo Computation

Computability — Church-Turing Thesis Computability — Turing

Machine
Turing Macine notation

Computability —

Complexit

Logic

Justified Arguments
Unit 6 Sets, Databases,

Units 3, 4 & 5

Units 1 & 2

M269 Exam

Logicians, Logics, Notations

- ▶ A plethora of logics, proof systems, and different notations can be puzzling.
- Martin Davis, Logician When I was a student, even the topologists regarded mathematical logicians as living in outer space. Today the connections between logic and computers are a matter of engineering practice at every level of computer organization
- Various logics, proof systems, were developed well before programming languages and with different motivations,

M269

Phil Molyneux

Logic

Logic and Programming Languages

- Turing machines, Von Neumann architecture and procedural languages Fortran, C, Java, Perl, Python, **JavaScript**
- Resolution theorem proving and logic programming — Prolog
- Logic and database query languages SQL (Structured Query Language) and QBE (Query-By-Example) are syntactic sugar for first order logic
- ► Lambda calculus and functional programming with Miranda, Haskell, ML, Scala

M269

Phil Molyneux

Logic

Justified Arguments

- ▶ Definition 7.1 An argument $\{P_1, P_2, ..., P_n\}$ \vdash C is a justified argument if and only if either the argument is an instance of an axiom or it can be derived by means of an inference rule from one or more other justified arguments.
- Axioms

$$\Gamma \cup \{A\} \vdash A \text{ (axiom schema)}$$

▶ This can be read as: any formula A can be derived from the assumption (premise) of $\{A\}$ itself

M269

Phil Molyneux

Justified Arguments

Justified Arguments

- Section 2.3 of Unit 7 (not the Unit 6, 7 Reader) gives the inference rules for \rightarrow , \land , and \lor — only dealing with positive propositional logic so not making use of negation — see List of logic systems
- Usually (Classical logic) have a functionally complete set of logical connectives — that is, every binary Boolean function can be expressed in terms the functions in the set

M269

Phil Molyneux

Justified Arguments

Inference Rules — Notation

▶ Inference rule notation:

```
\frac{\textit{Argument}_1 \quad \dots \quad \textit{Argument}_n}{\textit{Argument}} \, ^{(\textit{label})}
```

M269

Phil Molyneux

M269 Exam Revision Agenda &

Jnits 6 & 7

Computability

Reducing one problem to another

Computation Mo

Computability —
Church-Turing Thesis

lachine

ıring Macine notation omnutability —

omplexity

ogic

Justified Arguments

Init 6 Sets, Databases,

Units 3, 4 & 5

Units 1 & 2

M269 Exam

Inference Rules — Conjunction

$$\qquad \qquad \frac{\Gamma \vdash A \qquad \Gamma \vdash B}{\Gamma \vdash A \land B} \ (\land \text{-introduction})$$

$$\qquad \qquad \frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \ (\land \text{-elimination left})$$

$$\qquad \qquad \frac{\Gamma \vdash A \land B}{\Gamma \vdash B} \ (\land \text{-elimination right})$$

M269

Phil Molyneux

M269 Exam Revision Agenda 8

.

Computability

Reducing one prob

Computability — Models

Computation

Computability —

Computability — Turin Machine

Computability —

Complexity

.ogic

Justified Arguments

nit 6 Sets, Database

Inits 3, 4 & 5

Jnits 1 & 2

Maco F

Section B

Inference Rules — Implication

$$\qquad \qquad \frac{\Gamma \cup \{A\} \vdash B}{\Gamma \vdash A \rightarrow B} \ (\rightarrow \text{-introduction})$$

The above should be read as: If there is a proof (justification, inference) for B under the set of premises, Γ, augmented with A, then we have a proof (justification. inference) of A → B, under the unaugmented set of premises, Γ.

The unaugmented set of premises, Γ may have contained A already so we cannot assume

$$(\Gamma \cup \{A\}) - \{A\}$$
 is equal to Γ

$$\frac{\Gamma \vdash A \qquad \Gamma \vdash A \to B}{\Gamma \vdash B} \ (\to \text{-elimination})$$

M269

Phil Molyneux

M269 Exam Revision Agenda &

Jnits 6 & 7

Computability

Reducing one problem to another

Computability — Mode Computation

Computability — Church-Turing The

> Computability — Turi Machine

Turing Macine notation

omputability ecidability

omplexity

gic

Justified Arguments

Jnit 6 Sets, Databases, .ogic

Jnits 3, 4 & 5

Units 1 & 2

M269 Exam

Inference Rules — Disjunction

- $\qquad \qquad \frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} \text{ (V-introduction left)}$
- $\qquad \qquad \frac{\Gamma \vdash B}{\Gamma \vdash A \lor B} \text{ (V-introduction right)}$
- ► Disjunction elimination

$$\frac{\Gamma \vdash A \lor B \qquad \Gamma \cup \{A\} \vdash C \qquad \Gamma \cup \{B\} \vdash C}{\Gamma \vdash C} \text{ (\lor-elimination)}$$

▶ The above should be read: if a set of premises Γ justifies the conclusion $A \vee B$ and Γ augmented with each of A or B separately justifies C, then Γ justifies C

M269

Phil Molyneux

M269 Exam Revision Agenda 8

Units 6 & 7

Computability

Reducing one proble another

> Computability — Models (Computation

Computability —
Church-Turing Thesis
Computability — Turing

Machine Turing Macine notation

Decidability Complexity

omplexity.

Justified Arguments

Jnit 6 Sets, Databases, .ogic

Jnits 3, 4 & 5

Units 1 & 2

M269 Exam

Self-Assessment activity 7.4

Let
$$\Gamma = \{P \to R, Q \to R, P \lor Q\}$$

$$\frac{\Gamma \vdash P \lor Q \quad \Gamma \cup \{P\} \vdash R \quad \Gamma \cup \{Q\} \vdash R}{\Gamma \vdash R} \text{ (\lor-elimination)}$$

$$\frac{\Gamma \cup \{P\} \vdash P \quad \Gamma \cup \{P\} \vdash P \to R}{\Gamma \cup \{P\} \vdash R} \text{ (\to-elimination)}$$

$$\frac{\Gamma \cup \{Q\} \vdash Q \quad \Gamma \cup \{Q\} \vdash Q \to R}{\Gamma \cup \{Q\} \vdash R} \text{ (\to-elimination)}$$

$$\begin{array}{c|cccc}
\Gamma \cup \{P\} & \Gamma \cup \{P\} & \Gamma \cup \{Q\} & \Gamma \cup \{Q\} \\
\hline
\Gamma + P & + P \to R \\
\hline
\Gamma \cup \{P\} + R & (\to -E) & \Gamma \cup \{Q\} + R \\
\hline
\Gamma + R & (\lor -E) & \Gamma \cup \{Q\} + R
\end{array}$$

M269

Phil Molyneux

M269 Exam Revision Agenda &

Jnits 6 & 7

Computability

Reducing one problem to another

> omputability — Models of omputation

Church-Turing Thesis
Computability — Turin

Machine Turing Macine notation

Decidability —

Logic

Logic

Justified Arguments

Unit 6 Sets, Databases, Logic

Units 3, 4 & 5

Units 1 & 2

M269 Exam Section B

Self-assessment activity 7.4 — Linear Layout

1.	$\{P \to R, Q \to R, P \lor Q\} \vdash P \lor Q$	[Axiom]
	$\{P \to R, Q \to R, P \lor Q\} \cup \{P\} \vdash P$	[Axiom]
	$\{P \to R, Q \to R, P \lor Q\} \cup \{P\} \vdash P \to R$	[Axiom]
4.	${P \rightarrow R, Q \rightarrow R, P \lor Q} \cup {Q} \vdash Q$	[Axiom]
5.	${P \rightarrow R, Q \rightarrow R, P \lor Q} \cup {Q} \vdash Q \rightarrow R$	[Axiom]
6.	${P \rightarrow R, Q \rightarrow R, P \lor Q} \cup {P} \vdash R$	$[2, 3, \rightarrow -E]$
7.	${P \rightarrow R, Q \rightarrow R, P \lor Q} \cup {Q} \vdash R$	$[4, 5, \rightarrow -E]$
8.	$\{P \to R, Q \to R, P \lor Q\} \vdash R$	$[1, 6, 7, \lor$

M269

Phil Molyneux

M269 Exam Revision Agenda & Aims

Jnits 6 & 7

Computability
Reducing one r

Reducing one problem to another

Computation

Church-Turing Thesi
Computability — Tur

Turing Macine notation

Decidability Complexity

ogic

Justified Arguments

gic

Units 3, 4 & 5

Units 1 & 2

M269 Exam

Q13 Topics

- ▶ Unit 6
- SQL queries

M269

Phil Molyneux

M269 Exam Revision Agenda

Hnite 6.8.7

Computability

Reducing one problem to another

Computability — Mod Computation

Church-Turing Thesis
Computability — Turing

Machine
Turing Macine notation

Computability —

Complexit

Logic

Logic

Justified Arguments
Unit 6 Sets, Databases,

Units 3, 4 & 5

Heite 1.9.2

Units 1 & 2

M269 Exam Section B

Q12 Topics

- ▶ Unit 6
- Predicate Logic
- Translation to/from English
- Interpretations

M269

Phil Molyneux

M269 Exam Revision Agenda 8

J...... O C. 7

Computability

Reducing one problem to another

Computability — Mor Computation

Computability — Church-Turing Thesis

> omputability — Turing fachine

uring Macine notati Computability —

Complexity

Logic

ustified Argumen

Unit 6 Sets, Databases, Logic

Units 3, 4 & 5

Units 1 & 2

M260 F

Q11 Topics

- ▶ Unit 6
- Sets
- Propositional Logic
- Truth tables
- Valid arguments
- Infinite sets

M269

Phil Molyneux

M269 Exam Revision Agenda &

Revision Agenda & Aims

Units 6 & 7

Computability

Reducing one problem to another

Computability — Mor Computation

Computability — Church-Turing Thesis

Computability — Turing Machine

Turing Macine notat Computability —

Complexity

_ogic

ustified Arguments

Unit 6 Sets, Databases, Logic

Units 3, 4 & 5

Units 1 & 2

Units 1 & 2

M269 Exam Section B

Unit 5 Topics, Q9, Q10

- Unit 5 Optimisation
- Graphs searching: DFS, BFS
- Distance: Dijkstra's algorithm
- Greedy algorithms: Minimum spanning trees, Prim's algorithm
- Dynamic programming: Knapsack problem, Edit distance

M269

Phil Molyneux

M269 Exam Revision Agenda & Aims

Offics O & 7

Units 3, 4 & 5

Unit 5 Optimisation
Unit 4 Searching

Sorting Algorithm

Units 1 8

Section B

Unit 4 Topics, Q7, Q8

- Unit 4 Searching
- String searching: Quick search Sunday algorithm, Knuth-Morris-Pratt algorithm
- Hashing and hash tables
- Search trees: Binary Search Trees
- Search trees: Height balanced trees: AVL trees

M269

Phil Molyneux

M269 Exam Revision Agenda & Aims

Units 6 & 7

Units 3, 4 & 5

Unit 4 Searching

Unit 3 Sorting

Units 1 &

M269 Exam

Unit 3 Topics, Q5, Q6

- Unit 3 Sorting
- Elementary methods: Bubble sort, Selection sort, Insertion sort
- Recursion (see recursion)
- Quicksort, Merge sort
- Sorting with data structures: Tree sort, Heap sort
- See sorting notes for abstract sorting algorithm

M269

Phil Molyneux

M269 Exam Revision Agenda & Aims

5...c5 0 cc /

Units 3, 4 & 5

Jnit 5 Optimisation
Jnit 4 Searching

Unit 3 Sorting

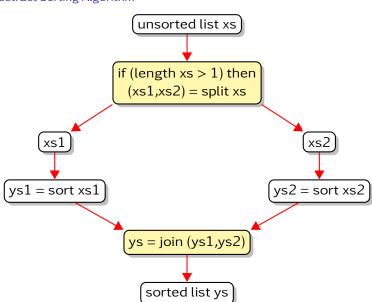
Sorting Algorith

Offits I & Z

Section B

Unit 3 Sorting

Abstract Sorting Algorithm



M269

Phil Molyneux

M269 Exam Revision Agenda & Aims

Units 6 & 7

nits 3, 4 & 5

Unit 4 Searching
Unit 3 Sorting
Sorting Algorithms

Jnits 1 &

M269 Exam Section B

Unit 3 Sorting

Sorting Algorithms

Using the Abstract sorting algorithm, describe the split and join for:

- Insertion sort
- Selection sort
- Merge sort
- Quicksort
- Bubble sort (the odd one out)

M269

Phil Molyneux

M269 Exam Revision Agenda & Aims

Omits o a 7

Units 3, 4 & 5

Jnit 5 Optimisation
Jnit 4 Searching
Jnit 3 Sorting

Sorting Algorithms

Units 1 8

1269 Exam

Unit 2 Topics, Q3, Q4

- Unit 2 From Problems to Programs
- Abstract Data Types
- Pre and Post Conditions
- Logic for loops

M269

Phil Molyneux

M269 Exam Revision Agenda & Aims

Offics O & 7

Units 3, 4 & 5

Units 1 & 2

Unit 2 From Problems to Programs

M269 Ехап

Unit 1 Topics, Q1, Q2

- Unit 1 Introduction
- Computation, computable, tractable
- Introducing Python
- What are the three most important concepts in programming?
 - 1.
 - 2.
 - 3.

M269

Phil Molyneux

M269 Exam Revision Agenda & Aims

Offics O & 7

Units 3, 4 & 5

Units 1 & 2

Unit 2 From Problems to Programs

M269 Exam

Section B

Unit 1 Topics, Q1, Q2

- Unit 1 Introduction
- Computation, computable, tractable
- Introducing Python
- What are the three most important concepts in programming?
 - 1. Abstraction
 - 2.
 - 3.

M269

Phil Molyneux

M269 Exam Revision Agenda & Aims

Offics O & 7

Ullits 5, 4 & 2

Units 1 & 2

Unit 2 From Problems to Programs

M269 Exam Section B

Unit 1 Topics, Q1, Q2

- Unit 1 Introduction
- Computation, computable, tractable
- Introducing Python
- What are the three most important concepts in programming?
 - 1. Abstraction
 - 2. Abstraction
 - 3.

M269

Phil Molyneux

M269 Exam Revision Agenda 8

Office O & 7

Units 3, 4 & 5

Units 1 & 2

Unit 2 From Problems to Programs

M269 Exam

Section B

Unit 1 Topics, Q1, Q2

- Unit 1 Introduction
- Computation, computable, tractable
- Introducing Python
- What are the three most important concepts in programming?
 - 1. Abstraction
 - 2. Abstraction
 - 3. Abstraction

M269

Phil Molyneux

M269 Exam Revision Agenda & Aims

Offics O & 7

Units 3, 4 & 5

Units 1 & 2

Unit 2 From Problems to Programs

М269 Ехап

M269 Exam Section B Q16 Topics

Multipart question

M269

Phil Molyneux

M269 Exam Revision Agenda & Aims

Units 6 & 7

Inite 3 4 8, 5

Jnits 1 & 2

M269 Exam Section B

Q16 Topics

Binary Min Heap & Heapsort

- Binary Min Heap is a complete binary tree with the min heap property
- Min heap property each node is greater than or equal to its parent — a partial ordering
- ▶ Heapsort
 - 1. Build a heap
 - 2. Create sorted array/list by removing the root of the heap until it is empty

M269

Phil Molyneux

M269 Exam Revision Agenda & Aims

Offics O & 7

Units 3, 4 & 5

M269 Exam

Section B

M269 Exam

Exam Techniques

- Surviving in a time of great stress
- Each give one exam tip to the group
- TODO: add some more points

M269

Phil Molyneux

M269 Exam Revision Agenda & Aims

0111120007

Units 3, 4 & 3

Jnits 1 & 2

l269 Exam ection B