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Agenda & Aims

M269 Exam
Revision Agenda &

Welcome and introductions Aims
Revision strategies
Specimen exam — Part A in reverse order

Topics and discussion for each question

vk wN e

Exam technique
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M269 Exam e

Phil Molyneux
Revision strategies

» Organising your knowledge
Revision strategies

» Each give one exam tip to the group

» TODO: add some more points
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M269 Specimen Exam

Q15 Topics

Phil Molyneux

Unit 7

Computability and ideas of computation

v

v

Computability

v

Complexity
P and NP
NP-complete

v

v
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Computability

Phil Molyneux
Ideas of Computation

» The idea of an algorithm and what is effectively
computable

Computability

» Church-Turing thesis Every function that would
naturally be regarded as computable can be
computed by a deterministic Turing Machine. (Unit 7
Section 4)
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Computability

Reducing one problem to another

» To reduce problem P; to P, invent a construction
that converts instances of P; to P> that have the
same answer. That is:

» any string in the language P; is converted to some
string in the language P>

» any string over the alphabet of P; that is not in the
language of P; is converted to a string that is not in
the language P>

» With this construction we can solve P;

» Given an instance of P;, that is, given a string w that
may be in the language P;, apply the construction
algorithm to produce a string x

» Test whether x is in P> and give the same answer for
win Pp

M269

Phil Molyneux

Reducing one problem to
another
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Computability

Phil Molyneux
Direction of Reduction

» The direction of reduction is important

» If we can reduce P; to P> then (in some sense) P> is
at least as hard as P; (since a solution to P> will give RS e e
us a solution to Py)

» So, if P> is decidable then P; is decidable

» To show a problem is undecidable we have to reduce
from an known undecidable problem to it

» Since, if P; is undecidable then Ps is undecidable
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Computability

Phil Molyneux
Models of Computation
» In automata theory, a problem is the question of
deciding whether a given string is a member of some
particular language
» If > is an alphabet, and L is a language over %, that ST Ty

is L €Y% where Y is the set of all strings over the
alphabet ¥ then we have a more formal definition of
decision problem

» Given a string w € ¥*, decide whether w e L

» Example: Testing for a prime number — can be
expressed as the language L, consisting of all
binary strings whose value as a binary number is a
prime number (only divisible by 1 or itself)
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Computability
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Church-Turing Thesis & Quantum Computing

» Church-Turing thesis Every function that would
naturally be regarded as computable can be
computed by a deterministic Turing Machine.

» physical Church-Turing thesis Any finite physical
system can be simulated (to any degree of e
approximation) by a Universal Turing Machine.

» strong Church-Turing thesis Any finite physical
system can be simulated (to any degree of
approximation) with polynomial slowdown by a
Universal Turing Machine.

» Shor’s algorithm (1994) — quantum algorithm for
factoring integers — an NP problem that is not
known to be P — also not known to be NP-complete
and we have no proof that it is not in P
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http://en.wikipedia.org/wiki/Shor's_algorithm

M269

Computability

Turing Machine

Phil Molyneux

» Finite control which can be in any of a finite number
of states

» Tape divided into cells, each of which can hold one
of a finite number of symbols

» Initially, the input, which is a finite-length string of
symbols in the input alphabet, is placed on the tape

Computability — Turing
Machine

> All other tape cells (extending infinitely left and
right) hold a special symbol called blank

» A tape head which initially is over the leftmost input
symbol

» A move of the Turing Machine depends on the state
and the tape symbol scanned

» A move can change state, write a symbol in the
current cell, move left, right or stay
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Computability

Turing Machine notation

Phil Molyneux

v

Q finite set of states of the finite control

v

3 finite set of input symbols (M269 S)

v

[ complete set of tape symbols Y C I’

v

6 Transition function (M269 instructions, /)
6:0QxIN—>QxIx{L,R,S}

5(q,X)—(p,Y,D) Turng Macie notaen
qo start state gg € Q

B blank symbolB el and B ¢ ¥

F set of final or accepting states F C Q

\4

\4

v
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Computability

Decidable

» Decidable — there is a TM that will halt with yes/no
for a decision problem — that is, given a string w
over the alphabet of P the TM with halt and return
yes.no the string is in the language P (same as
recursive in Recursion theory — old use of the word)

» Semi-decidable — there is a TM will halt with yes if
some string is in P but may loop forever on some
inputs (same as recursively enumerable) — Halting
Problem

» Highly-undecidable — no outcome for any input —
Totality, Equivalence Problems

M269

Phil Molyneux
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http://en.wikipedia.org/wiki/Recursion_theory

M269

Computability

Undecidable Problems

Phil Molyneux

» Halting problem — the problem of deciding, given a
program and an input, whether the program will
eventually halt with that input, or will run forever —
term first used by Martin Davis 1952

» Entscheidungsproblem — the problem of deciding
whether a given statement is provable from the
axioms using the rules of logic — shown to be s
undecidable by Turing (1936) by reduction from the =
Halting problem to it

» Type inference and type checking in the
second-order lambda calculus (important for
functional programmers, Haskell, GHC
implementation)

» Undecidable problem — see link to list
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http://en.wikipedia.org/wiki/Halting_problem
http://en.wikipedia.org/wiki/Entscheidungsproblem
http://en.wikipedia.org/wiki/System_F
http://en.wikipedia.org/wiki/Undecidable_problem

M269

Computability

Why undecidable problems must exist

Phil Molyneux

» A problem is really membership of a string in some
language

» The number of different languages over any
alphabet of more than one symbol is uncountable

» Programs are finite strings over a finite alphabet
(ASCIl or Unicode and hence countable.

» There must be an infinity (big) of problems more
than programs.
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Complexity
P and NP

>

P, the set of all decision problems that can be solved
in polynomial time on a deterministic Turing machine
NP, the set of all decision problems whose solutions
can be verified (certificate) in polynomial time
Equivalently, NP, the set of all decision problems that
can be solved in polynomial time on a
non-deterministic Turing machine
A decision problem, dp is NP-complete if

1. dpisin NP and

2. Every problem in NP is reducible to dp in polynomial

time

NP-hard — a problem satisfying the second
condition, whether or not it satisfies the first
condition. Class of problems which are at least as
hard as the hardest problems in NP. NP-hard
problems do not have to be in NP and may not be
decision problems

M269

Phil Molyneux

Complexity
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http://en.wikipedia.org/wiki/P_(complexity)
http://en.wikipedia.org/wiki/NP_(complexity)
http://en.wikipedia.org/wiki/NP-complete
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Complexity
Phil Molyneux
P and NP — Diagram

Euler diagram for P, NP, NP-complete and NP-hard set of
problems

NP-Hard

NP-Hard

NP-Complete

P=NP=
NP-Complete
Complexity

Complexity

P = NP P =NP

Source: Wikipedia NP-complete entry
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http://en.wikipedia.org/wiki/Euler_diagram
http://en.wikipedia.org/wiki/NP-complete

M269

Complexity

NP-complete problems

Phil Molyneux

v

Boolean satisfiability (SAT) Cook-Levin theorem

» Conjunctive Normal Form 3SAT

v

Hamiltonian path problem

v

Travelling salesman problem

v

NP-complete — see list of problems

Complexity
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http://en.wikipedia.org/wiki/Cook–Levin_theorem
http://en.wikipedia.org/wiki/3-satisfiability
http://en.wikipedia.org/wiki/Hamiltonian_path_problem
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/NP-complete

Complexity
Knapsack Problem
MY HOBBY:
EMBEDDING NP-QUMPLETE PROBLEMS IN RESTAURKNT ORDERS
<« APPENZERS — | < EXACTLY? UK.
MIXED FRUTT 215 HERE, THESE PAPERS ON THE KNAPSACK, )
PROBLEM MIGHT HELP YOU QUT.
FRENCH FRIES 275 \ LISTEN, T HAVE Six (THER
SIDE SALAD 335 TABLES T0 GET T —
P FRST A5 POSSIBLE, (F (DURSE. WANT
HOT WINGS 3.55 SOMETHING ON TRAVELING GALESHAN?
MOZZAREUP STIKS  4.20 \
SAMPLER PLATE 5.80 % O %% %
—— SANDWICHES ~— !
RARREAIIE A~
n: XKCD 287

Source & Explanatio

M269

Phil Molyneux

Complexity
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http://www.explainxkcd.com/wiki/index.php/287:_NP-Complete

M269

M269 Specimen Exam

Phil Molyneux
Q14 topics
» Unit7
» Proofs .
» Natural deduction il
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Logic
g Phil Molyneux
Logicians, Logics, Notations
» A plethora of logics, proof systems, and different
notations can be puzzling.

» Martin Davis, Logician When | was a student, even
the topologists regarded mathematical logicians as
living in outer space. Today the connections between
logic and computers are a matter of engineering
practice at every level of computer organization

» Various logics, proof systems , were developed well
before programming languages and with different
motivations,

Logic
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http://en.wikipedia.org/wiki/Martin_Davis
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Logic

Phil Molyneux
Logic and Programming Languages

» Turing machines, Von Neumann architecture and
procedural languages Fortran, C, Java, Perl, Python,
JavaScript

» Resolution theorem proving and logic programming
— Prolog

» Logic and database query languages — SQL
(Structured Query Language) and QBE
(Query-By-Example) are syntactic sugar for first
order logic

» Lambda calculus and functional programming with
Miranda, Haskell, ML, Scala
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http://en.wikipedia.org/wiki/Von_Neumann_architecture
http://en.wikipedia.org/wiki/Lambda_calculus
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Logic

Phil Molyneux
Justified Arguments

» Definition 7.1 An argument {P;,P>,...,P,}+ Cisa
justified argument if and only if either the argument
is an instance of an axiom or it can be derived by
means of an inference rule from one or more other
justified arguments.

» Axioms
FU{A}+ A (axiom schema)

» This can be read as: any formula A can be derived
from the assumption (premise) of {A} itself

Justified Arguments
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Logic

Justified Arguments

Phil Molyneux

» Section 2.3 of Unit 7 (not the Unit 6, 7 Reader) gives
the inference rules for —, A, and V — only dealing
with positive propositional logic so not making use of
negation — see List of logic systems

» Usually (Classical logic) have a functionally
complete set of logical connectives — that is, every
binary Boolean function can be expressed in terms
the functions in the set

Justified Arguments
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http://en.wikipedia.org/wiki/List_of_logic_systems
http://en.wikipedia.org/wiki/Functional_completeness
http://en.wikipedia.org/wiki/Functional_completeness

Justified Arguments

Inference Rules — Notation

> Inference rule notation:
Argument; ... Argument,

Argument

M269

Phil Molyneux

(label)

Justified Arguments
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Justified Arguments

Inference Rules — Conjunction

, I+FA T+B
N-AnB

> r}_Ai/\B(/\felimination left)
N-A

TFAAB (

B

Phil Molyneux

(A-introduction)

> A-elimination right)

Justified Arguments
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Justified Arguments e

Phil Molyneux
Inference Rules — Implication

L Ty {A}+B
N-A—B

» The above should be read as: If there is a proof
(justification, inference) for B under the set of
premises, I, augmented with A, then we have a proof
(justification. inference) of A — B, under the
unaugmented set of premises, I'.
The unaugmented set of premises, [ may have
contained A already so we cannot assume

(—-introduction)

Justified Arguments

(TU{A})-{A}isequaltol

lN-A I'-A—B
l-B

(—-elimination)
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Justified Arguments
Phil Molyneux

Inference Rules — Disjunction

> M (V-introduction left)
lN-AvB

”78 (V-introduction right)
lIN-AvB
» Disjunction elimination
r-rAvB TU{A}+C TU{B}+C o
(V-elimination)
N-C
» The above should be read: if a set of premises I’
justifies the conclusion A vV B and I' augmented with
each of A or B separately justifies C, then I justifies

c

Justified Arguments
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Justified Arguments

Phil Molyneux
Self-Assessment activity 7.4
» LetF={P—>R,Q—>R,PVQ}
. rNFkPvQ TU{PIFR TU{Q}ER (v-elimination)
MR
FrUu{P}rP TU{P}-rP—-R
> (—-elimination)
FU{P}FR
rufQirQ TufQjrQ—R N
> (—-elimination)
FU{Q}+R
» Complete tree layout
ru{p} Truip} ru{Q} rufo} s
> FP FPoR g FQ FQ—>R(_,_E)
rN-PvQ FU{P}rR I'U{Q}I—R(V{)

MR
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Justified Arguments

Self-assessment activity 7.4 — Linear Layout

Phil Molyneux

1. {P—>R,Q—>R,P\/Q}I—PVQ [Axiom]
2. {P>R,Q—>R,PVQIU{P}+ [Axiom]
3. {P>R,Q—->RPVQ}U {}I—P—)R [Axiom]
4, {P>R,Q—>R,PVQIU{Q}FQ [Axiom]
5. P>R,Q—>RPVQIU{Q}+FQ —>R [Axiom]
6. {P—)R,Q—>R,PVQ}U{P}I—R (2,3, —>-E]
7. {P>R,Q—>R,PVQIU{Q}F (4,5, —>-E]
8. {P—>R,Q—RPVQFR [1,6,7, V-E]

Justified Arguments
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M269 Specimen Exam
Q13 Topics

» Unit 6
» SQL queries

Exam Techniques
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M269 Specimen Exam

Q12 Topics

Phil Molyneux

» Unit6
» Predicate Logic
» Translation to/from English

» Interpretations

Unit 6 Sets, Databases,
Logic
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M269 Specimen Exam

Q11 Topics

Phil Molyneux

» Unit 6

» Sets

v

Propositional Logic
Truth tables

v

v

Valid arguments

Infinite sets

v

Unit 6 Sets, Databases,
Logic

32/42
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Unit 5 Topics, Q9, Q10
» Unit 5 Optimisation
» Graphs searching: DFS, BFS
» Distance: Dijkstra’s algorithm Unie 5 Oprimisaion

» Greedy algorithms: Minimum spanning trees, Prim'’s
algorithm

» Dynamic programming: Knapsack problem, Edit
distance
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M269 Specimen Exam
Unit 4 Topics, Q7, Q8

Phil Molyneux

v

Unit 4 Searching

» String searching: Quick search Sunday algorithm,
Knuth-Morris-Pratt algorithm

Unit 4 Searching

\4

Hashing and hash tables

v

Search trees: Binary Search Trees

v

Search trees: Height balanced trees: AVL trees
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M269 Specimen Exam
Unit 3 Topics, Q5, Q6

Phil Molyneux

» Unit 3 Sorting

v

Elementary methods: Bubble sort, Selection sort,
Insertion sort

\4

Recursion (see recursion) Unit3Sorting

v

Quicksort, Merge sort

v

Sorting with data structures: Tree sort, Heap sort

» See sorting notes for abstract sorting algorithm
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Unit 3 Sorting

Abstract Sorting Algorithm

Phil Molyneux

[unsorted list xs]

if (length xs > 1) then
(xs1,xs2) = split xs

/ \ Sorting Algorithms.

xsl Xs2

[ysl = sort xsl] [ysZ = sort xsZ]

. o

[ys = join (ys l,ySZ)J
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Unit 3 Sorting

Sorting Algorithms

Phil Molyneux

Using the Abstract sorting algorithm, describe the split
and join for:

» Insertion sort
» Selection sort
» Merge sort Sorting Algorithms

» Quicksort

v

Bubble sort (the odd one out)
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M269 Specimen Exam
Unit 2 Topics, Q3, Q4
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» Unit 2 From Problems to Programs
» Abstract Data Types
» Pre and Post Conditions

> Logic for loops Ui 2rom Prosems o
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M269 Specimen Exam
Unit 1 Topics, Q1, Q2

» Unit 1 Introduction
» Computation, computable, tractable

> Introducing Python

» What are the three most important concepts
programming ?
1.
2.
3.

M269

Phil Molyneux

n

Unit 1 Introduction
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M269 Specimen Exam
Unit 1 Topics, Q1, Q2

Phil Molyneux

» Unit 1 Introduction
» Computation, computable, tractable

> Introducing Python
» What are the three most important concepts in
programming ? Unit introduction

1. Abstraction
2.
3.

39/42
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Unit 1 Topics, Q1, Q2

Phil Molyneux

» Unit 1 Introduction
» Computation, computable, tractable

> Introducing Python
» What are the three most important concepts in
programming ? Unit introduction

1. Abstraction
2. Abstraction
3.
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Unit 1 Topics, Q1, Q2
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» Unit 1 Introduction
» Computation, computable, tractable

> Introducing Python
» What are the three most important concepts in
programming ? Unit introduction

1. Abstraction
2. Abstraction
3.
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M269 Exam Section B

Q16 Topics

» Multipart question

M269

Phil Molyneux

M269 Exam
Section B
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Binary Min Heap & Heapsort

» Binary Min Heap is a complete binary tree with the

min heap property
» Min heap property — each node is greater than or

equal to its parent — a partial ordering

M269 Exam

> Heapsort Section B

1. Build a heap
2. Create sorted array/list by removing the root of the
heap until it is empty
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http://en.wikipedia.org/wiki/Heap_(data_structure)
http://en.wikipedia.org/wiki/Binary_tree
http://en.wikipedia.org/wiki/Heapsort
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Exam Techniques

» Surviving in a time of great stress
» Each give one exam tip to the group

» TODO: add some more points

Exam Techniques
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