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Exam Revision 17 May 2014

1.1

Revision strategies

Organising your knowledge
Each give one exam tip to the group

TODO: add some more points

2 Units6 &7

2.1 Computability
Q15 topics

e Unit/

* Computability and ideas of computation

* Complexity

* Pand NP

* NP-complete

* The idea of an algorithm and what is effectively computable

* Church-Turing thesis Every function that would naturally be regarded as com-

putable can be computed by a deterministic Turing Machine. (Unit 7 Section 4)

2.2 Reducing one problem to another

To reduce problem P, to P, invent a construction that converts instances of P, to
P, that have the same answer. That is:

— any string in the language P, is converted to some string in the language P>

— any string over the alphabet of P, that is not in the language of P, is converted
to a string that is not in the language P>

With this construction we can solve P

— Given an instance of P, that is, given a string w that may be in the language
P;, apply the construction algorithm to produce a string x

— Test whether x is in P, and give the same answer for win P,

(Hopcroft et al., 2007, page 322)

The direction of reduction is important

If we can reduce P, to P> then (in some sense) P; is at least as hard as P, (since a
solution to P> will give us a solution to P,)

So, if P, is decidable then P, is decidable

To show a problem is undecidable we have to reduce from an known undecidable
problem to it
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* Since, if P, is undecidable then P is undecidable

2.3

Computability — Models of Computation

In automata theory, a problem is the question of deciding whether a given string is
a member of some particular language

If 3> is an alphabet, and L is a language over %, that is L C ¥*, where ¥" is the set
of all strings over the alphabet ¥ then we have a more formal definition of decision
problem

Given a string w € ¥, decide whether w € L

Example: Testing for a prime number — can be expressed as the language L, con-
sisting of all binary strings whose value as a binary number is a prime number (only
divisible by 1 or itself)

(Hopcroft et al., 2007, section 1.5.4)

2.4

Computability — Church-Turing Thesis

Church-Turing thesis Every function that would naturally be regarded as com-
putable can be computed by a deterministic Turing Machine.

physical Church-Turing thesis Any finite physical system can be simulated (to any
degree of approximation) by a Universal Turing Machine.

strong Church-Turing thesis Any finite physical system can be simulated (to any
degree of approximation) with polynomial slowdown by a Universal Turing Machine.

Shor’s algorithm (1994) — quantum algorithm for factoring integers — an NP prob-
lem that is not known to be P — also not known to be NP-complete and we have no
proof that it is not in P

Reference: Section 4 of Unit 6 & 7 Reader

2.5

Computability — Turing Machine

Finite control which can be in any of a finite number of states
Tape divided into cells, each of which can hold one of a finite number of symbols

Initially, the input, which is a finite-length string of symbols in the input alphabet, is
placed on the tape

All other tape cells (extending infinitely left and right) hold a special symbol called
blank

A tape head which initially is over the leftmost input symbol
A move of the Turing Machine depends on the state and the tape symbol scanned

A move can change state, write a symbol in the current cell, move left, right or stay

References: Hopcroft et al. (2007, page 326), Unit 6 & 7 Reader (section 5.3)


http://en.wikipedia.org/wiki/Shor's_algorithm
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2.6

2.7

Turing Macine notation

Q finite set of states of the finite control
Y finite set of input symbols (M269 S)
[ complete set of tape symbols > C I

6 Transition function (M269 instructions, /)
5:QxIN—>QxIx{LR,S)
6(q,X) = (p,Y,D)

qg start state qg € Q
B blank symbol Bel and B ¢ X

F set of final or accepting states F C Q

Computability — Decidability

Decidable — there is a TM that will halt with yes/no for a decision problem — that
is, given a string w over the alphabet of P the TM with halt and return yes.no the
string is in the language P (same as recursive in Recursion theory — old use of the
word)

Semi-decidable — there is a TM will halt with yes if some string is in P but may loop
forever on some inputs (same as recursively enumerable) — Halting Problem

Highly-undecidable — no outcome for any input — Totality, Equivalence Problems

Halting problem — the problem of deciding, given a program and an input, whether
the program will eventually halt with that input, or will run forever — term first used
by Martin Davis 1952

Entscheidungsproblem — the problem of deciding whether a given statement is
provable from the axioms using the rules of logic — shown to be undecidable by
Turing (1936) by reduction from the Halting problem to it

Type inference and type checking in the second-order lambda calculus (impor-
tant for functional programmers, Haskell, GHC implementation)

Undecidable problem — see link to list

(Turing, 1936, 1937)

A problem is really membership of a string in some language

The number of different languages over any alphabet of more than one symbol is
uncountable

Programs are finite strings over a finite alphabet (ASCIl or Unicode and hence count-
able.

There must be an infinity (big) of problems more than programs.

Reference: Hopcroft et al. (2007, page 318)


http://en.wikipedia.org/wiki/Recursion_theory
http://en.wikipedia.org/wiki/Halting_problem
http://en.wikipedia.org/wiki/Entscheidungsproblem
http://en.wikipedia.org/wiki/System_F
http://en.wikipedia.org/wiki/Undecidable_problem
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2.8

Euler

Complexity

P, the set of all decision problems that can be solved in polynomial time on a deter-
ministic Turing machine

NP, the set of all decision problems whose solutions can be verified (certificate) in
polynomial time

Equivalently, NP, the set of all decision problems that can be solved in polynomial
time on a non-deterministic Turing machine

A decision problem, dp is NP-complete if
1. dpisin NP and
2. Every problem in NP is reducible to dp in polynomial time

NP-hard — a problem satisfying the second condition, whether or not it satisfies
the first condition. Class of problems which are at least as hard as the hardest
problems in NP. NP-hard problems do not have to be in NP and may not be decision
problems

diagram for P, NP, NP-complete and NP-hard set of problems

NP-Complete

P=NP=
NP-Complete

EComp\exity

P = NP P =NP

Source: Wikipedia NP-complete entry

Boolean satisfiability (SAT) Cook-Levin theorem
Conjunctive Normal Form 3SAT

Hamiltonian path problem

Travelling salesman problem

NP-complete — see list of problems


http://en.wikipedia.org/wiki/P_(complexity)
http://en.wikipedia.org/wiki/NP_(complexity)
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/Euler_diagram
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/Cook–Levin_theorem
http://en.wikipedia.org/wiki/3-satisfiability
http://en.wikipedia.org/wiki/Hamiltonian_path_problem
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/NP-complete
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MY HOBBY:
EMBEDDING NP-(OMPLETE PROBLEMS IN RESTRURANT ORDERS

{ CHOTCHKIES RESTAURAWT ﬁgﬁ%ﬁgﬁg

" APPENZERS — 1 - EXACY? U
MIXED FRUT 2.15 HERE, THESE PAPERS ON THE KNAPSACK. )
PROBLEM MIGHT HELP YOU OUT.
FRENCH FRIES 275 \ LISTEN, T HAVE 5ix OTHER
SM SALFD 335-. TABLES TG GET T0 —
— AS FRST S POSSIBLE, OF (OURSE. WANT
HOT WINGS 2.55 SOMETHING ON TRAVELING SALESHAN?

MOZZARELLA STICRS  4.20 \
SAMPLER PLATE 5.80 % O ;E %
—1 SHNDUICHES T !

RACBFNE L 5T

Source & Explanation: XKCD 287

2.9 Logic

Q14 topics
e Unit7/
* Proofs
* Natural deduction
* A plethora of logics, proof systems, and different notations can be puzzling.

* Martin Davis, Logician When | was a student, even the topologists regarded mathe-
matical logicians as living in outer space. Today the connections between logic and
computers are a matter of engineering practice at every level of computer organi-

zation

* Various logics, proof systems , were developed well before programming languages
and with different motivations,

References: Davis (1995, page 289)

* Turing machines, Von Neumann architecture and procedural languages Fortran, C,
Java, Perl, Python, JavaScript

* Resolution theorem proving and logic programming — Prolog

* Logic and database query languages — SQL (Structured Query Language) and
QBE (Query-By-Example) are syntactic sugar for first order logic

* Lambda calculus and functional programming with Miranda, Haskell, ML, Scala

Reference: Halpern et al. (2001)


http://www.explainxkcd.com/wiki/index.php/287:_NP-Complete
http://en.wikipedia.org/wiki/Martin_Davis
http://en.wikipedia.org/wiki/Von_Neumann_architecture
http://en.wikipedia.org/wiki/Lambda_calculus
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2.10 Justified Arguments

Proofs, syntactic entailment, natural deduction

* Definition 7.1 An argument {P;, P,...,P,} + C is a justified argument if and only if
either the argument is an instance of an axiom or it can be derived by means of an
inference rule from one or more other justified arguments.

* Axioms
U {A} + A (axiom schema)
* This can be read as: any formula A can be derived from the assumption (premise)
of {A} itself
See (Thompson, 1991, Chp 1)

* Section 2.3 of Unit 7 (not the Unit 6, 7 Reader) gives the inference rules for —, A,
and V — only dealing with positive propositional logic so not making use of nega-
tion — see List of logic systems

* Usually (Classical logic) have a functionally complete set of logical connectives —
that is, every binary Boolean function can be expressed in terms the functions in
the set

Inference Rules — Notation
¢ |nference rule notation:

Argument; ... Argument,
Argument

(label)

Inference Rules — Conjunction

. M (A-introduction)
N-AAB
L M (A-elimination left)
N-A
o rl_réigB (A-elimination right)
Inference Rules — Implication
ru{A}+-B
¢ — — —  (—-introduction)
NIN-A—B

* The above should be read as: If there is a proof (justification, inference) for B un-
der the set of premises, I, augmented with A, then we have a proof (justification.
inference) of A — B, under the unaugmented set of premises, I'.

The unaugmented set of premises, [ may have contained A already so we cannot

assume
(TU{A})—{A}isequaltol

A F|—A—>B(

° —-elimination)

N-B
Inference Rules — Disjunction
° ”7/\ (V-introduction left)

lI'-AvB


http://en.wikipedia.org/wiki/List_of_logic_systems
http://en.wikipedia.org/wiki/Functional_completeness
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N-B

¢ ———— — (V-introduction right)

NN-AvB
e Disjunction elimination

N-AvB TU{A}-C TU{B}+rC
N-c¢

(V-elimination)
* The above should be read: if a set of premises [ justifies the conclusion AV B and
I augmented with each of A or B separately justifies C, then I justifies C
Self-Assessment activity 7.4 — tree layout
e letlMl={P>R,Q—>R,PVQ}
L, IFPVvQ TUfP}+rR TU{Q}+R

(V-elimination)

'FR
, TU{P}rP FU{P}l—P—>R( mination)
Fru{P}+R
LTUlQIFQ TUQIFQ—R
ru{Q}rR
* Complete tree layout
ruf{p} Tu{pr} ru{Q} ru{qg}
o P FPoR g FQ FQ%R(_)_E)
r-PvQ FU{P}FR ru{QirR
(V)
MR

Self-assessment activity 7.4 — Linear Layout

1. P>RQ—->RPVQ}I+-PVQ [Axiom]

2. P>R,Q—->RPVQIU{P}-P [Axiom]

3. {P>RQ—->RPVQIU{P}JrP—-R [Axiom]

4. {P>R Q—->RPVQIU{QI+Q [Axiom]

5. {P>R,Q—->RPVQIU{Q}+FQ—> R [Axiom]

6. P>R Q—->RPVQJU{P}IFR [2, 3, >-E]
7. (P>RQ—RPVQIU|[Q}FR (4,5, >-E]
8. (P>RQ—>RPVQFR (1,6,7, V-E]

2.11 Unit 6 Sets, Databases, Logic

Q13 Topics
* Unit6
* SQL queries
Q12 Topics
* Unit6
* Predicate Logic
* Translation to/from English
* Interpretations
Q11 Topics
* Unit6
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* Sets

* Propositional Logic
* Truth tables

* Valid arguments

¢ |nfinite sets

3 Units3,4&5

3.1 Unit 5 Optimisation

* Unit 5 Optimisation
* Graphs searching: DFS, BFS
* Distance: Dijkstra’s algorithm
* Greedy algorithms: Minimum spanning trees, Prim’s algorithm
* Dynamic programming: Knapsack problem, Edit distance
Q10 Topics
Q9 Topics

3.2 Unit 4 Searching

* Unit 4 Searching
* String searching: Quick search Sunday algorithm, Knuth-Morris-Pratt algorithm
* Hashing and hash tables
* Search trees: Binary Search Trees
* Search trees: Height balanced trees: AVL trees
Q8 Topics
Q7 Topics

3.3 Unit 3 Sorting

* Unit 3 Sorting

* Elementary methods: Bubble sort, Selection sort, Insertion sort
* Recursion (see recursion)

* Quicksort, Merge sort

* Sorting with data structures: Tree sort, Heap sort

* See sorting notes for abstract sorting algorithm
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Q6 Topics
Q5 Topics

3.4 Sorting Algorithms

[unsorted list xs]

!

[if (length xs > 1) then}

split xs

/ N

xsl xsl

[ysl = sort xsl] [ysZ = sort xsl]

N o

[ys = join (ysl,ysZ)]

!

[sorted list ys]

Using the Abstract sorting algorithm, describe the split and join for:
* Insertion sort
* Selection sort
* Merge sort
* Quicksort

* Bubble sort (the odd one out)

4 Units1 &2

4.1 Unit 2 From Problems to Programs

* Unit 2 From Problems to Programs
* Abstract Data Types
* Pre and Post Conditions
* Logic for loops
Q4 Topics
Q3 Topics



M269 Phil Molyneux 11

4.2 Unit 1 Introduction

* Unit 1 Introduction
* Computation, computable, tractable
* Introducing Python
* What are the three most important concepts in programming ?
1. Abstraction
2. Abstraction
3.
Q2 Topics
Q1 Topics

5 M269 Exam Section B

Q16
* Multipart question
* Binary Min Heap is a complete binary tree with the min heap property

* Min heap property — each node is greater than or equal to its parent — a partial
ordering

* Heapsort
1. Build a heap

2. Create sorted array/list by removing the root of the heap until it is empty

6 Exam Techniques

* Surviving in a time of great stress
* Each give one exam tip to the group

* TODO: add some more points

7 Web References

TODO: More Web links
Logic

* WFF, WFF'N Proof onlinehttp://www.oercommons.org/authoring/1364-basic-
wff-n-proof-a-teaching-guide/view

Computability


http://en.wikipedia.org/wiki/Heap_(data_structure)
http://en.wikipedia.org/wiki/Binary_tree
http://en.wikipedia.org/wiki/Heapsort
http://en.wikipedia.org/wiki/Well-formed_formula
http://www.oercommons.org/authoring/1364-basic-wff-n-proof-a-teaching-guide/view
http://www.oercommons.org/authoring/1364-basic-wff-n-proof-a-teaching-guide/view

12 Exam Revision 17 May 2014

e Computability

e Computable function

* Decidability (logic)

* Turing Machines

* Universal Turing Machine

* Turing machine simulator

* Lambda Calculus

* Von Neumann Architecture
Complexity

* Complexity class

* NP complexity

* NP complete

* Reduction (complexity)

* Pversus NP problem

¢ Graph of NP-Complete Problems
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