M269

Summaries
Contents
1 Introduction 1
2 Jupyter Notebook 2
2.1 Notebook Terminology i 2
2.2 User Interface: Key Bindings, 2
2.2.1 Jupyter Notebook Key Bindings Table Notes 5
3 Python 6
3.1 Python Expressions & Operator Precedence 6
3.1.1 Python Operator Precedence TableNotes 8
3.2 Python Data Types: Complexities i, 8
4 Haskell 11
4.1 Haskell Operator Precedence & Fixity 11
5 Java 13
5.1 Java Operator Precedence & Associativity 13
5.2 Java Statements e e e e e e e e e e e e e e e 15
5.2.1 Expression & Block Statements 15
5.2.2 Selection Statements e e e e e 15
5.2.3 lteration Statements L e e e e e e 16
6 JavaScript 19
6.1 JavaScript Operator Precedence & Associativity 19
7 CSS 21
7.1 CSS Links e e e e e e e e e 21
8 macOS 21
8.1 HiddenFiles. 21
References 21

1 Introduction

These notes give some summaries or cheatsheets for various parts of M269 and related
topics — it is not intended for any particular audience other than the author and includes
some topics which may not be directly in M269

2 M269 20 June 2020

2 Jupyter Notebook

e Jupyter jupyter.org

Jupyter Notebook Documentation jupyter-notebook.readthedocs.io

IPython ipython.org

IPython Documentation ipython.readthedocs.io

Anaconda anaconda.com

Anaconda Cloud anaconda.org

Conda Docs docs.conda.io

Conda User Guide conda.io/projects/conda/en/latest/user-guide

2.1 Notebook Terminology
e Notebook Dashboard When you launch jupyter notebook the first page that you
encounter is the Notebook Dashboard.

e Notebook Editor Once a Notebook is selected to edit, the Notebook will open in the
Notebook Editor

e See User interface components

2.2 User Interface: Key Bindings

e The tables below give key bindings for some of the Command Mode and Edit Mode
commands

e A more complete set of commands for Command Mode can be seen from
> Edit Keyboard Shortcuts}

https://jupyter.org/
https://jupyter-notebook.readthedocs.io/en/stable/index.html
https://ipython.org/
https://ipython.readthedocs.io/en/stable/
https://www.anaconda.com/
https://anaconda.org/
https://docs.conda.io/en/latest/
https://conda.io/projects/conda/en/latest/user-guide/index.html
https://jupyter-notebook.readthedocs.io/en/stable/ui_components.html

{Jupyter Notebook] {Key Bindings]

Modifier & Other Special Keys

macOS

[macos]
[macos]

Cmd Command @ Shift
Ctrl Control
AIt Option Return

Enter

Space

Caps Lock Tab

Del

Up
Down
Right
Back Del Left

[Jupyter Notebook] {Command Mode]

Find & replace

Enter edit mode

iy
iy

ga
:

E
i

FEELEE BEE

o=

Run selected cells

o=
o=

o=

BEW

+

+
HEE

+

Select all cells
Insert cell above

Cut selected cells

=

=

Paste cells above

Undo cell deletion

o=

()
)

Interrupt the kernel

Esc Close the pager

o=

+
He0e0LMEEHEYEOELUDEEEUE

BEC

Scroll notebook up

L

Open command palette

Run cell, select below

Run cell, insert below

Extend selected cells below

Save and Checkpoint
Toggle line numbers

Toggle selected cells output

Extend selected cells above

HB

pEeE

+ + +

DEECEEEEEEHEREEEREEREE

Change cell to code

Change cell to markdown
Change cell to raw

Change cell to heading 1
Change cell to heading 2
Change cell to heading 3
Change cell to heading 4
Change cell to heading 5
Change cell to heading 6
Select cell above

Select cell below

Insert cell below

Copy selected cells

Paste cells below

Delete selected cells

Merge selected cells

Toggle all cells line numbers
Toggle selected cells output scrolling
Restart the kernel (with dialog)
Show keyboard shortcuts

Scroll notebook down

—

Jupyter Notebook] {Edit Mode]

Code completion or indent
@+ Tooltip
+E] Indent
+E] Dedent
+ Select all
+ Undo
+ Comment
+@ Delete whole line
+ Undo selection

=3
w
)
=
~t
—
S
]

Toggle overwrite flag (?)

.

Go to cell start

I

Go to cell end

Go one word left

+

Go one word right

+

Delete word before

4] (4] (] (] (38 (3¢

.

+
JeUDEHE

Delete word after

£

@ @
LEE

e

L)

8
g

() (]

+

e

CEEGEEER

M
(g}

S

+

HEEEE

e

HEHEREEEEDER

+

[z

+ + o+ o+ o+

s

+ + +

+

aT

=
>
c
w

Redo

Redo selection
Emacs-style line kill
Delete line left of cursor
Delete line right of cursor

Enter command mode

Open command palette

Run cell, select below
Run selected cells
Run cell, insert below
Split cell at cursor
Save and Checkpoint
Move cursor down

Move cursor up

{Jupyter Notebook] {Key Bindings]
Windows|

Modifier & Other Special Keys Windows

Menu [E] Win Menu Shift Space Up
Ctrl Control Caps Lock Tab Down
Alt [Alt] Alt Return Del Right

Enter| Enter Back Del Left

[Jupyter Notebook] {Command Mode]

Find & replace

£
i@

Enter| Enter edit mode

s

B[E
BE
FEE

o=

Open command palette

e
m
=}

g
&)

ter| Run cell, select below

+E Run selected cells

>
e
[0}
=

]
~
+
-]
EIG)E
~
+
m
=}

ter| Run cell, insert below

=

Extend selected cells above

S[E
HEE

o=

BE

Extend selected cells below

Select all cells
Insert cell above
Cut selected cells
Paste cells above

Undo cell deletion

[

C B

+ +
HeEEHHMEHEEER

=

Save and Checkpoint

Toggle line numbers

e

HE
HEEEREREEUEENEEEEHEER

Toggle selected cells output

EEEEE

Interrupt the kernel

Close the pager

o=

=EE

Scroll notebook up

L

Change cell to code

Change cell to markdown
Change cell to raw

Change cell to heading 1
Change cell to heading 2
Change cell to heading 3
Change cell to heading 4
Change cell to heading 5
Change cell to heading 6
Select cell above

Select cell below

Insert cell below

Copy selected cells

Paste cells below

Delete selected cells

Merge selected cells

Toggle all cells line numbers
Toggle selected cells output scrolling
Restart the kernel (with dialog)
Show keyboard shortcuts

Scroll notebook down

—

Jupyter Notebook] {Edit Mode]

Code completion or indent ++
@+ Tooltip ++
+@ Indent +
+E] Dedent +
+ Select all +
+ Undo +@
+ Comment esc|, |Esc
+@ Delete whole line ++
+ Undo selection ++E]

5
wn
D
=
—
—
~J
~

+
8] (@)L

g
m
=}

Toggle overwrite flag (?)

8
&)

.

Go to cell start

>
T
m
>
=
o
=

Go to cell end

>
-
4
g
s
2 m
=
=3
M
=

Go one word left

H
+

ﬂ
+
=
=
c
w

aF

Go one word right

'
E

BEEHE
~ ~ ~

;
B

Delete word before

+

>
~
T

Delete word after

Redo

Redo selection
Emacs-style line kill
Delete line left of cursor
Delete line right of cursor

Enter command mode

Open command palette

ter| Run cell, select below
Run selected cells
Run cell, insert below
Split cell at cursor
Save and Checkpoint
Move cursor down

Move cursor up

Phil Molyneux Summaries 5

2.2.1

Jupyter Notebook Key Bindings Table Notes

The colors are:
- Keys background: yellow | #FFFFO0

- Odd row background: user defined myJupyterMacOSBgClrOdd |#FFFF7F| —
this is a tint of yellow — see color-hex: yellow

- Even row background: user defined myJupyterMacOSBgClrEven|gray!10

The colors are:
- Keys background: PaleTurquoise |#AFEEEE

- Odd row background: user defined myJupyterWinBgClrOdd |#C4F2F2 | — first
monochromatic color — see color-hex: #AFEEEE

- Even row background: user defined myJupyterWinBgClrEven
The tables are derived from the Jupyter Notebook interface and

- Cheatography: Jupyter Notebook Keyboard Shortcuts

- Cheatography: Jupyter Notebook Editor Keyboard Shortcuts

- For both of the above you can download the LaTeX source
Queries

1. Does Q close the pager (as well as Escape) ?

2. Does S do a Save and Checkpoint (as well as Ctrl+S) ?

3. Does Ctrl+Return do Run Selected Cells (as well as Ctrl+Enter) ?

It may be possible to typset the tables in Markdown but not done that yet with the
colour banding

M269 Colors for Marking
from 2021) TMA files

.answercell{background-color : #FFFFCC;}
.feedbackcell{background-color : #C8ECFF;} |#C8ECFF
.guidancecell{background-color : #F2COD4;} |#F2COD4

See Converting Colors for display of colors

FFFFCC is a Websafe version with name conditioner

Websafe version of C8ECFF is CCFFFF | #CCFFFF
Websafe version of F2C0D4 is FFCCCC |#FFCCCC

https://www.color-hex.com/color/ffff00
https://www.color-hex.com/color/afeeee
https://cheatography.com/weidadeyue/cheat-sheets/jupyter-notebook/
https://cheatography.com/jorgejuan007/cheat-sheets/jupyter-notebook-editor/
https://convertingcolors.com/

6 M269 20 June 2020

3 Python

3.1 Python Expressions & Operator Precedence

The following table is from Python Reference: Section 6.17 Operator precedence in the
Python documentation with highest precedence (most binding) at the top of the table.
Operators in the same delimited row are left associative except for exponentiation which
is right associative.

If in doubt, keep the brackets — you can still be surprised by some expressions

‘ O //2) % (9 //2) = 16 ‘
9 //2 %9/ 2 == 18

The power operator ** binds less tightly than an arithmetic or bitwise unary operator on
its right (but | would put the brackets in anyway)

(2#%-1 == 2%%(-1) == 0.5 J

M269 uses a subset of the operators given below — any student slides/notes would need
a cut-down version

The table below include set operators, which are part of the Python Library

https://docs.python.org/3/reference/expressions.html#operator-precedence
https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset

Python Operator Precedence

Operator(s) Description
(expr...), Parenthesized form,
[expr...], Displays for lists, sets, dictionaries (comprehensions)
{expr...}, Set displays
{key:value...} Dictionary displays
xs[index], Sequence subscription,
xs[index:index], Slicing,
f(args...), Function call,
o.attr Attribute reference

await expr

Await expression

FOWON
W

Exponentiation

+X, =X, ~X Unary arithmetic and bitwise operations
Unary positive, unary negative, bitwise not

% @, /, Binary arithmetic operations

//, % Multiplication, matrix multiplication, division,
floor division, remainder or string formatting

+, - Addition, subtraction, set difference

<<, >> Shifts

& Binary bitwise operations Bitwise and, set intersection

A Bitwise xor, set symmetric difference

| Bitwise or, set union

<, <=, >, >=, Comparisons, set subset, superset,

s, ==, value comparisons,

in, not 1in, Membership tests, set membership

is,1is not Identity tests

not bexpr Boolean operations Boolean not

and Boolean and

or Boolean or

exprT if bexpr else exprF

Conditional expression

Tambda

Lambda expression

Assignment expression

https://docs.python.org/3/reference/expressions.html#operator-precedence
https://docs.python.org/3/reference/expressions.html#parenthesized-forms
https://docs.python.org/3/reference/expressions.html#displays-for-lists-sets-and-dictionaries
https://docs.python.org/3/reference/expressions.html#set-displays
https://docs.python.org/3/reference/expressions.html#dictionary-displays
https://docs.python.org/3/reference/expressions.html#subscriptions
https://docs.python.org/3/reference/expressions.html#slicings
https://docs.python.org/3/reference/expressions.html#calls
https://docs.python.org/3/reference/expressions.html#attribute-references
https://docs.python.org/3/reference/expressions.html#await-expression
https://docs.python.org/3/reference/expressions.html#the-power-operator
https://docs.python.org/3/reference/expressions.html#unary-arithmetic-and-bitwise-operations
https://docs.python.org/3/reference/expressions.html#binary-arithmetic-operations
https://docs.python.org/3/library/stdtypes.html#old-string-formatting
https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset
https://docs.python.org/3/reference/expressions.html#shifting-operations
https://docs.python.org/3/reference/expressions.html#binary-bitwise-operations
https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset
https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset
https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset
https://docs.python.org/3/reference/expressions.html#comparisons
https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset
https://docs.python.org/3/reference/expressions.html#value-comparisons
https://docs.python.org/3/reference/expressions.html#membership-test-operations
https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset
https://docs.python.org/3/reference/expressions.html#is-not
https://docs.python.org/3/reference/expressions.html#boolean-operations
https://docs.python.org/3/reference/expressions.html#conditional-expressions
https://docs.python.org/3/reference/expressions.html#lambda
https://docs.python.org/3/reference/expressions.html#assignment-expressions

8 M269 20 June 2020

3.1.1 Python Operator Precedence Table Notes

e The table here is derived from Python Reference: Section 6.17 Operator precedence
for version 3.8.3 — the table here is reversed compared to the Python documentation
so that the highest precedence is at the top of the table.

e The odd row background colour is the HTML color | #EEFFCC | — the same as the code
background colour in the Python documentation

e Lutz (2013, Table 5-2, page 137) also has yield expr at the lowest precedence —
parentheses probably required everywhere except parentheses may be omitted when
the yield expression is the sole expression on the right hand side of an assignment
statement.

3.2 Python Data Types: Complexities

e The following tables are based on wiki.python.org/moin/TimeComplexity

Health Warning these notes are work in progress and need to be read with the
Python documentation

Sequence Type — list, tuple, range

Set Types — set, frozenset

Mapping Types — dict

collections.deque

The complexities here may have some errors or typos or be misleading — beware

https://docs.python.org/3/reference/expressions.html#operator-precedence
https://en.wikipedia.org/wiki/Web_colors
https://docs.python.org/3/reference/expressions.html#yield-expressions
https://wiki.python.org/moin/TimeComplexity
https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range
https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset
https://docs.python.org/3/library/stdtypes.html#mapping-types-dict
https://docs.python.org/3/library/collections.html#collections.deque

Python Data Types: Complexities List

Operation Average Amortized Worst

Get item X = xs[i] o(1) o(1)
Set item xs[i] = x o(1) o(1)
Append XS = yS + ZS o(1) o(1)
Copy xs = ys[:] O(n) O(n)
Pop last xs.pop() o(1) o(1)
Pop other xs.pop(i) O(k) O(k)
Insert(i,x) xs[i:i] = [x] O(n) O(n)
Delete item del xs[i:i+1] O(n) O(n)
Get slice xs = ys[i:j] O(k) O(k)
Set slice xs[i:j] = ys O(k + n) O(k + n)
Delete slice xs[i:j] = [] O(n) O(n)
Member X in xs O(n)

Get length n = Ten(xs) Oo(1) Oo(1)
Count(x) n = xs.count(x) O(n) O(n)

https://en.wikipedia.org/wiki/Amortized_analysis

Complexities: Set Python Haskell
Operation Average Worst Worst

Member X in s o(1) O(n) O(logn)

Union s |t O(m + n) O(mlog(ss + 1))

Intersection s & t O@min(m,n)) O(m xn) O(m log(% +1))

Difference s - t O(m) O(mlog(= + 1))

Insert s.add(x) o(1) O(n) O(logn)

Delete s.discard(x) O(1) O(n) O(logn)

Remove s.remove(x) O(1) O(n) O(logn)

Python Data Types: Complexities Dict

Operation Average Amortized Worst
Member k in d o(1) O(n)
Get item d.get(k) o(1) O(n)
Set item d.get(k) o(1) O(n)
Delete d.pop(k,default) o(1) O(n)
Copy d.copy O O(n) O(n)
Iterate iter(d) O(n) O(n)

Python Data Types: Complexities

collections.deque

Operation Average Amortized Worst
Copy dg.copy) O(n) O(n)
Append dqg.append(x) o(1) o(1)
Append left dq.appendleft(x) o(1) o(1)
Pop da.popO) o(1) O(1)
Pop left dg.popleftQ o(1) o(1)
Extend dg.extend(iterable) O(k) O(k)
Extend left dq.extendleft(iterable) O(k) O(k)
Rotate dg.rotate(n=1) O(k) O(k)
Remove dq.pop(k,default) O(n) O(n)

https://en.wikipedia.org/wiki/Amortized_analysis
https://en.wikipedia.org/wiki/Amortized_analysis

Phil Molyneux Summaries 11

4 Haskell

4.1 Haskell Operator Precedence & Fixity

e In the following table
e P Precedence — 9 highest, 0 lowest, default 9
e A Fixity, associativity — L Left, N Non-associative, R Right

e The table is based on the Haskell 2010 Language Report (Section 4.4.2 Fixity Decla-
rations) — note that the Haskell libraries have more operators than are in the table

https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/onlinereport/haskell2010/haskellch4.html#x10-800004.4
https://www.haskell.org/onlinereport/haskell2010/haskellch4.html#x10-800004.4

Haskell Operator Precedence

Operator(s) Type Description A P
Il [a]l -> Int -> a List index L 9
(b->c) ->(@->b) >a->c Function composition R 9
! Ix i => Array i e -> i -> e Array index L 9
// Ix i => Array i e -> [(i, e)] -> Array i e Array update L 9
A (Integral b, Num a) => a -> b -> a Exponentiation R 8
AA (Fractional a, Integral b) => a -> b -> a EXponentiation R 8
Floating a => a -> a -> a Exponentiation R 8
Num a => a -> a -> a Multiply L 7
/ Fractional a => a -> a -> a Divide L 7
‘div‘, ‘mod‘, Integral a => a -> a -> a Integer division L 7
‘quot’, ‘rem"
% Integral a => a -> a -> Ratio a Ratio L 7
+, - Numa=>a->a->a Addition, Subtraction L 6
a -> [a] -> [a] List constructor R 5
++ [a] -> [a] -> [a] List append R 5
\\ Eq a => [a] -> [a] -> [a] List difference N 5
== /= Eq a => a -> a -> Bool Equality N 4
<, <=,>,>= Ord a => a -> a -> Bool Comparison N 4
‘elem‘, ‘notElem‘ (Foldable t, Eq a) => a -> t a -> Bool Membership N 4
<$> Functor f => (a -> b) -> fa -> f b Infix fmap L 4
<#E> Applicative f => f (a -> b) -> fa -> f b Sequential application L 4
&& Bool -> Bool -> Bool Logical and R 3
[] Bool -> Bool -> Bool Logical or R 2
>> Monad m =>ma ->mb ->m b Compose two actions L 1
>>= Monad m =>m a -> (a -> mb) ->m b Compose two actions L 1
$,8! (@a->b) >a->b Application (strict) R O
‘seqf a->b->b Strict eval R

https://www.haskell.org/onlinereport/haskell2010/haskellch4.html#x10-820004.4.2

Phil Molyneux Summaries 13

5 Java

5.1 Java Operator Precedence & Associativity

e In the table of expressions and operator precedence and associativity, operators in
the same group of rows have higher precedence than those below

e The column A represents operator associativity
- L left associative
el + e2 + e3 means (el + e2) + e3
- R right associative
el = e2 = e3meansel = (e2 = e3)
- N not associative
1 < x < 4isnotvalid

e integer means char, byte, short, int, Tong, or the boxed forms Character, Byte,
Short, Integer, Long

e numeric means integer or float, double or the boxed forms Float, Double
e The table is based on Sestoft (2016, section 11.1, page 37)
e Evans and Flanagan (2018, page 35) gives a similar table

e The information would be derived from Java Language Specification: Chapter 15.
Expressions but that is not an easy read

https://docs.oracle.com/javase/specs/jls/se14/html/jls-15.html
https://docs.oracle.com/javase/specs/jls/se14/html/jls-15.html

Java Operator Precedence

Expression Meaning A P Arg Types Result Types
al...] array access 16 t[], integer t
o.f non-static field access object o type of f
C.f static field access type of f
this current object reference this class
o.m(...) instance method call object o return type
C.m(...) static method call return type
super.m(...) superclass method call return type
C.super.m(...) encl. superclass meth. call return type
t.class class object for t type t Class<t>
t::more::m method reference
X++ Or X-- postincrement/decrement numeric numeric
++X Or —-X preincrement/decrement 15 numeric numeric
-X negation numeric numeric
~e bitwise complement integer int/Tong
le logical negation boolean boolean
new t[...] array creation 14 typet t[]
new C(...) object creation class C C
(t) e type cast type, any t
%, / multiplication, division L 13 numeric numeric
el % e2 remainder L numeric numeric
+, - addition, subtraction L 12 numeric numeric
el + e2 string concatenation L String, any String
el + e2 string concatenation L any, String String
el << e2 left shift L 11 integer int/Tong
el >> e2 signed right shift L integer int/Tong
el >>> e2 unsigned right shift L integer int/Tong
<<=h =1 comparison N 10 numeric boolean
e instanceof t instance test N any, reference type boolean
el == e2 equal L 9 compatible boolean
el != e2 not equal L compatible boolean
el & e2 bitwise and L 8 integer int/long
el & e2 logical strict and L boolean boolean
el A e2 bitwise exclusive-or L 7 integer int/long
el A e2 logical strict exclusive-or L boolean boolean
el | e2 bitwise or L 6 integer int/long
el | e2 logical strict or L boolean boolean
el && e2 logical and L 5 boolean boolean
el || e2 logical or L 4 boolean boolean
el ? e2 : e3 conditional L 3 boolean, any, any any
X = e assignment R 2 e subtype of x type of x
X += e compound assignment R compatible type of x
X -> ebs lambda expression R 1

Phil Molyneux Summaries 15

5.2 Java Statements

e A statement is the basic unit of execution in Java

e A statement may change the computer’s state: the value of variables, fields and array
elements; the contents of files; and so on

e The execution of a statement can:

terminate normally (meaning execution will continue with the next statement,
if any)

- terminate abruptly by throwing an exception
- exit by executing a return statement (if inside a method or constructor)
- exit a switch or loop by executing a break (if inside a switch or loop)

- exit the current iteration of a loop and start a new iteration by executing a
continue statement or

- does not terminate at all (eg, while (true) {3})

5.2.1 Expression & Block Statements

e An expression statement is an expression followed by a ;

[expression ;]

e The only forms of expression that may be used here are assignments, increment and
decrements, method call, and object creation

e A block statement is a sequence of variable declarations, class declarations and
statements

variableDeclarations
classDeclarations
statements

e An empty statement consists of ; only — it is equivalent to the block statement { }

5.2.2 Selection Statements

e The if statement has the form

if (condition)
trueBranch

e The if-else statement has the form

if (condition)
trueBranch

else
falseBranch

e The condition must have type boolean or Boolean

16 M269 20 June 2020

e trueBranch and falseBranch are statements

e What is wrong with the following

if (dataAvailable) ;
processData() ;

if (dataAvailable)
processData() ;
reportResults() ;

if (dataAvailable)
processData() ;
reportResults() ;
else
reportNoData() ;

if (dataAvailable) ;
processData() ;

e The trueBranch is an empty statement (;)

if (dataAvailable)
processData() ;
reportResults() ;

e reportResults() ; will always be executed

if (dataAvailable)
processData() ;
reportResults() ;
else
reportNoData() ;

e Will not compile
e Moral Always use block statements

e A switch statement has the form

switch (expression) {
case constantl: branchl
case constant2: branch2

Aé%au1t: branchN
}

e expression must be of type int, short, char, byte or a boxed version of these or
String or an enum type

e Each constant must be a compile-time constant expression, consisting only of liter-
als, final variables, final fields declared with explicit field initialisers or an un-
qualified enum value

e (not used in M250)

5.2.3 Iteration Statements

e A for statement has the form

for (initialization ; condition ; step)
body

Phil Molyneux Summaries 17

initialization is a variableDeclaration or an expression

condition is an expression of type boolean or BooTlean

step is an expression

body is a statement

initialization and step may be comma-separated lists of expressions

initialization, condition and step may be empty. An empty condition is equivalent to
true

The for statement is executed as follows

. The initialization is executed

. The condition is evaluated. If it is false, the loop terminates.

. If it is true then

(a) the body is executed
(b) the step is executed
(c) execution continues at (2.)

What does the following code do ?

for
for (int j =1; j <=1 ; j++) {

}

}

Gint i =1; 1 <=4 ; i++) {

System.out.print("=") ;

System.out.println() ;

jshell> for (Aint i =1; 1 <=4 ; i++) {

for (int j =1 ; j <=1 ; j++) {
System.out.print("=") ;
b
System.out.println() ;
3

VVVVVY

A while statement has the form

while (condition)
body

1.

condition is an expression of type boolean or Boolean and body is a statement
It is executed as follows:

The condition is evaluated. If it is false, the loop terminates

. Ifitis true, then

(a) The body is executed
(b) Execution continues at (1.)

Example linear search with while loop

18 M269 20 June 2020

String[] wdays =
{"Monday","Tuesday", "Wednesday"

non non non

, "Thursday","Friday", "Saturday", "Sunday"} ;

int wdayno(String wday) {
int i =0 ;
while (i < wdays.Tlength
&& ! wday.equals(wdays[i])) {
i++

}
if (i < wdays.length) {
return i ;
} else {
return -1 ;
}
L g

String[] wdays =
{"Monday", "Tuesday", "Wednesday"

non non nwon

, "Thursday","Friday","Saturday", "Sunday"} ;

int wdayno(String wday) {
int i =0 ;
while (i < wdays.length
&& ! wday.equals(wdays[i])) {
it
}
if (i < wdays.length) {
return i ;
} else {
return -1 ;
}
L g

jshell> dnt dl
dl ==> 4

wdayno("Friday") ;

jshell> 1int d2 = wdayno("Dimanche") ;
d2 ==> -1

e Write code using a while statement that is equivalent to a for loop statement

initialization
while (condition) {
body
step
}

for (initialization ; condition ; step)
body

e Note that this is different behaviour to the for statement in Python where assign-
ments to variables in the suite of the loop does not change the assignments made
in the target list

e See Python: for statement

e A foreach statement has the form

for (tx x : expression)
body

e The expression must have type Iterable<t> where t is a subtype of tx

https://docs.python.org/3/reference/compound_stmts.html#the-for-statement

Phil Molyneux Summaries 19

6 JavaScript

6.1 JavaScript Operator Precedence & Associativity

e Mozilla Developers Network: JavaScript
e Mozilla Developers Network: JavaScript reference

e The following table is based on Mozilla Developer Network: JavaScript Reference:
Operator precedence

e The column A represents operator associativity
- R right associative
el = e2 = e3meansel = (e2 = e3)
- L left associative
el + e2 + e3 means (el + e2) + e3
3 > 2 > lisvalid and evaluates to false — why?
- N not associative
e For information about APIs see
- Web APIs
- Document Object Model (DOM)

https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Operator_Precedence
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Operator_Precedence
https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Glossary/DOM

JavaScript Operator Precedence

Operator(s) Description A P
(expr...) Grouping 21
0.prop Member Access L 20
o[propStr] Computed Member Access L
new C(args) new (with arg list)
f(args) Function Call L
?. Optional chaining
new C new (without arg list) R 19
X4+, X-- post-increment/decrement 18
' b Logical NOT R 17
~ X Bitwise NOT R
+X, -X Unary plus, negation R
++X, --X pre-increment/decrement R

typeof,void,delete,await R
X %%y Exponentiation R 16
/% Multiplication,Division,Remainder L 15
+,- Addition,Subtraction L 14
<<, >>,>>> Bitwise Left Shift,Right,Unsigned L 13
<, <=,>,>= Comparisons L 12

in,instanceof L
==, l=,===, == Equality, Strict Equality L 11
& Bitwise AND L 10
A Bitwise XOR L 9
| Bitwise OR L 8
&& Logical AND L 7
| | Logical OR L 6
?7? Nullish coalescing operator L 5
b?x:y Conditional R 4
= Assignment R 3
op= Assignment with operation R

yield,yield* R 2
exprl , expr2 Comma/Sequence L 1

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Operator_Precedence
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Grouping
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Property_Accessors#Dot_notation
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Property_Accessors#Bracket_notation
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/new
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Optional_chaining
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/new
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Increment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Logical_NOT
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Bitwise_NOT
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Unary_negation
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Decrement
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/typeof
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/void
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/delete
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Exponentiation
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Multiplication
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Division
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Remainder
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Addition
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Subtraction
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Left_shift
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Right_shift
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Unsigned_right_shift
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Less_than
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/in
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/instanceof
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Equality
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Strict_equality
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Bitwise_AND
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Bitwise_XOR
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Bitwise_OR
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Logical_AND
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Logical_OR
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Nullish_coalescing_operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Conditional_Operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators#Assignment_operators
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/yield
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/yield*
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comma_Operator

Phil Molyneux Summaries 21

7 CSS

7.1 CSS Links

e CSS Snapshot 2018
e Selectors Level 4 W3C Working Draft 21 November 2018

8 macOS

8.1 Hidden Files

e Some files and folders in macOS are not displayed by default in Finder or Terminal

e These are files with names starting with a dot (.), Library folders (there are sev-
eral) and some system folders.

e Here are several ways of making these files visible

e Finder (1) with Finder selected, type [38])+(]+[.] — the keystroke command is a
toggle so to turn viewing off just re-type the same

e Finder (2) to make the change permanent, type the following in Terminal

defaults write com.apple.Finder AppleShowAll1Files true
ki11all Finder

e Finder (3) to make a permanent change without using Terminal have a look at
TinkerTool from https://www.bresink.com/osx/TinkerTool.html — this is free
and does lots of other tweaks — the Finder tab first item is Show hidden and
system files

e Also make sure you display filename extensions with [Finder)) Preferences)) Advanced| and
check [Show all filename extensions}

References

Beazley, David and Brian K. Jones (2013). Python Cookbook. O’Reilly, third edition. ISBN
9781449340377.

Evans, Benjamin J and David Flanagan (2018). Java In A Nutshell. O’Reilly, seventh edition.
ISBN 1492037257.

Lutz, Mark (2011). Programming Python. O’Reilly, fourth edition. ISBN 0596158106. URL
http://learning-python.com/books/about-ppde.html.

Lutz, Mark (2013). Learning Python. O’Reilly, fifth edition. ISBN 1449355730. URL
http://learning-python.com/books/about-Tp5e.html.

Lutz, Mark (2014). Python Pocket Reference. O’Reilly. ISBN 9781449357016. URL https:
//learning-python.com/about-pyref5e.html.

https://www.w3.org/TR/css-2018/
https://www.w3.org/TR/selectors/
https://www.bresink.com/osx/TinkerTool.html
https://www.bresink.com/osx/TinkerTool.html
http://learning-python.com/books/about-pp4e.html
http://learning-python.com/books/about-lp5e.html
https://learning-python.com/about-pyref5e.html
https://learning-python.com/about-pyref5e.html

22 M269 20 June 2020

Martelli, Alex; Anna Ravenscroft; and Steve Holden (2017). Python in a Nutshell: A Desktop
Quick Reference. O’Reilly, third edition. ISBN 144939292X.

Sestoft, Peter (2016). Java Precisely. MIT, third edition. ISBN 0262529076. URL http:
//www.itu.dk/people/sestoft/javaprecisely/.

Author Phil Molyneux Written 20 June 2020 Printed 9th October 2021
Subject dir: (baseURL)/0U/M269
Topic path: /M269CriticalReader2020/M269Summaries/M269Summaries.pdf

http://www.itu.dk/people/sestoft/javaprecisely/
http://www.itu.dk/people/sestoft/javaprecisely/

	Introduction
	Jupyter Notebook
	Notebook Terminology
	User Interface: Key Bindings
	Jupyter Notebook Key Bindings Table Notes

	Python
	Python Expressions & Operator Precedence
	Python Operator Precedence Table Notes

	Python Data Types: Complexities

	Haskell
	Haskell Operator Precedence & Fixity

	Java
	Java Operator Precedence & Associativity
	Java Statements
	Expression & Block Statements
	Selection Statements
	Iteration Statements

	JavaScript
	JavaScript Operator Precedence & Associativity

	CSS
	CSS Links

	macOS
	Hidden Files

	References

