
Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition

JShell

What Next ?

References

Java: Selection, Iteration, Inheritance,
Composition
M250 Tutorial 04

Phil Molyneux

18 January 2026

1/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition

JShell

What Next ?

References

Java: Selection, Iteration, Inheritance,
Composition
M250 Tutorial Agenda

▶ Introductions

▶ Adobe Connect reminders

▶ Adobe Connect — if you or I get cut off, wait till we
reconnect (or send you an email)

▶ Statements: Select, Iteration and others

▶ Composition

▶ JShell (optional)

▶ Some useful Web & other references

▶ Time: about 1 hour

▶ Do ask questions or raise points.

▶ Slides/Notes
M250Tutorial20260118CompositionPrsntn2025J

2/87

https://www.pmolyneux.co.uk/OU/M250FolderSync/M250Tutorial20260118CompositionPrsntn2025J/

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition

JShell

What Next ?

References

Tutorial
Introductions — Phil

▶ Name Phil Molyneux
▶ Background

▶ Undergraduate: Physics and Maths (Sussex)
▶ Postgraduate: Physics (Sussex), Operational Research

(Brunel), Computer Science (University College, London)
▶ Worked in Operational Research, Business IT, Web

technologies, Functional Programming

▶ First programming languages Fortran, BASIC, Pascal
▶ Favourite Software

▶ Haskell — pure functional programming language
▶ Text editors TextMate, Sublime Text — previously Emacs
▶ Word processing in LATEX — all these slides and notes
▶ Mac OS X

▶ Learning style — I read the manual before using the
software

3/87

https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://www.haskell.org/
https://macromates.com
http://www.sublimetext.com
https://www.emacswiki.org/
https://www.latex-project.org/
https://developer.apple.com/

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition

JShell

What Next ?

References

Tutorial
Introductions — You

▶ Name ?

▶ Favourite software/Programming language ?

▶ Favourite text editor or integrated development
environment (IDE)

▶ List of text editors, Comparison of text editors and
Comparison of integrated development environments

▶ Other OU courses ?

▶ Anything else ?

4/87

https://en.wikipedia.org/wiki/Text_editor
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/List_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Statements:
Summary

Composition

JShell

What Next ?

References

Adobe Connect
Interface — Host View

5/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Statements:
Summary

Composition

JShell

What Next ?

References

Adobe Connect
Interface — Participant View

6/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Statements:
Summary

Composition

JShell

What Next ?

References

Adobe Connect
Settings

▶ Everybody Menu bar Meeting Speaker & Microphone Setup

▶ Menu bar Microphone Allow Participants to Use Microphone ✔

▶ Check Participants see the entire slide Workaround
▶ Disable Draw Share pod Menu bar Draw icon

▶ Fit Width Share pod Bottom bar Fit Width icon ✔

▶ Meeting Preferences General Host Cursor Show to all attendees

▶ Menu bar Video Enable Webcam for Participants ✔

▶ Do not Enable single speaker mode

▶ Cancel hand tool

▶ Do not enable green pointer

▶ Recording Meeting Record Session ✔

▶ Documents Upload PDF with drag and drop to share
pod

▶ Delete Meeting Manage Meeting Information Uploaded Content

and check filename click on delete

7/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Statements:
Summary

Composition

JShell

What Next ?

References

Adobe Connect
Access

▶ Tutor Access

TutorHome M269 Website Tutorials

Cluster Tutorials M269 Online tutorial room

Tutor Groups M269 Online tutor group room

Module-wide Tutorials M269 Online module-wide room

▶ Attendance

TutorHome Students View your tutorial timetables

▶ Beamer Slide Scaling 440% (422 x 563 mm)

▶ Clear Everyone’s Status

Attendee Pod Menu Clear Everyone’s Status

▶ Grant Access and send link via email

Meeting Manage Access & Entry Invite Participants. . .

▶ Presenter Only Area

Meeting Enable/Disable Presenter Only Area

8/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Statements:
Summary

Composition

JShell

What Next ?

References

Adobe Connect
Keystroke Shortcuts

▶ Keyboard shortcuts in Adobe Connect

▶ Toggle Mic + M (Mac), Ctrl + M (Win) (On/Disconnect)

▶ Toggle Raise-Hand status + E

▶ Close dialog box (Mac), Esc (Win)

▶ End meeting + \

9/87

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Statements:
Summary

Composition

JShell

What Next ?

References

Adobe Connect Interface
Sharing Screen & Applications

▶ Share My Screen Application tab Terminal for Terminal

▶ Share menu Change View Zoom in for mismatch of screen
size/resolution (Participants)

▶ (Presenter) Change to 75% and back to 100% (solves
participants with smaller screen image overlap)

▶ Leave the application on the original display

▶ Beware blued hatched rectangles — from other (hidden)
windows or contextual menus

▶ Presenter screen pointer affects viewer display —
beware of moving the pointer away from the application

▶ First time: System Preferences Security & Privacy Privacy

Accessibility

10/87

https://en.wikipedia.org/wiki/Terminal_(macOS)

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Statements:
Summary

Composition

JShell

What Next ?

References

Adobe Connect
Ending a Meeting

▶ Notes for the tutor only
▶ Student: Meeting Exit Adobe Connect

▶ Tutor:
▶ Recording Meeting Stop Recording ✔

▶ Remove Participants Meeting End Meeting. . . ✔

▶ Dialog box allows for message with default message:
▶ The host has ended this meeting. Thank you for

attending.

▶ Recording availability In course Web site for joining
the room, click on the eye icon in the list of recordings
under your recording — edit description and name

▶ Meeting Information Meeting Manage Meeting Information —
can access a range of information in Web page.

▶ Delete File Upload Meeting Manage Meeting Information

Uploaded Content tab select file(s) and click Delete

▶ Attendance Report see course Web site for joining
room

11/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Statements:
Summary

Composition

JShell

What Next ?

References

Adobe Connect
Invite Attendees

▶ Provide Meeting URL Menu Meeting Manage Access & Entry

Invite Participants. . .

▶ Allow Access without Dialog Menu Meeting

Manage Meeting Information provides new browser window
with Meeting Information Tab bar Edit Information

▶ Check Anyone who has the URL for the meeting can
enter the room

▶ Default Only registered users and accepted guests may
enter the room

▶ Reverts to default next session but URL is fixed

▶ Guests have blue icon top, registered participants have
yellow icon top — same icon if URL is open

▶ See Start, attend, and manage Adobe Connect meetings
and sessions

12/87

https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html
https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Statements:
Summary

Composition

JShell

What Next ?

References

Adobe Connect
Entering a Room as a Guest (1)

▶ Click on the link sent in email from the Host

▶ Get the following on a Web page

▶ As Guest enter your name and click on Enter Room

13/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Statements:
Summary

Composition

JShell

What Next ?

References

Adobe Connect
Entering a Room as a Guest (2)

▶ See the Waiting for Entry Access for Host to give
permission

14/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Statements:
Summary

Composition

JShell

What Next ?

References

Adobe Connect
Entering a Room as a Guest (3)

▶ Host sees the following dialog in Adobe Connect and
grants access

15/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Statements:
Summary

Composition

JShell

What Next ?

References

Adobe Connect
Layouts

▶ Creating new layouts example Sharing layout

▶ Menu Layouts Create New Layout. . . Create a New Layout dialog

Create a new blank layout and name it PMolyMain

▶ New layout has no Pods but does have Layouts Bar open
(see Layouts menu)

▶ Pods

▶ Menu Pods Share Add New Share and resize/position —
initial name is Share n — rename PMolyShare

▶ Rename Pod Menu Pods Manage Pods. . . Manage Pods

Select Rename or Double-click & rename

▶ Add Video pod and resize/reposition

▶ Add Attendance pod and resize/reposition

▶ Add Chat pod — rename it PMolyChat — and
resize/reposition

16/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Statements:
Summary

Composition

JShell

What Next ?

References

Adobe Connect
Layouts

▶ Dimensions of Sharing layout (on 27-inch iMac)
▶ Width of Video, Attendees, Chat column 14 cm
▶ Height of Video pod 9 cm
▶ Height of Attendees pod 12 cm
▶ Height of Chat pod 8 cm

▶ Duplicating Layouts does not give new instances of
the Pods and is probably not a good idea (apart from
local use to avoid delay in reloading Pods)

▶ Auxiliary Layouts name PMolyAux0n
▶ Create new Share pod
▶ Use existing Chat pod
▶ Use same Video and Attendance pods

17/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Statements:
Summary

Composition

JShell

What Next ?

References

Adobe Connect
Chat Pods

▶ Format Chat text

▶ Chat Pod menu icon My Chat Color

▶ Choices: Red, Orange, Green, Brown, Purple, Pink, Blue,
Black

▶ Note: Color reverts to Black if you switch layouts

▶ Chat Pod menu icon Show Timestamps

18/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Statements:
Summary

Composition

JShell

What Next ?

References

Graphics Conversion
PDF to PNG/JPG

▶ Conversion of the screen snaps for the installation of
Anaconda on 1 May 2020

▶ Using GraphicConverter 11

▶ File Convert & Modify Conversion Convert

▶ Select files to convert and destination folder

▶ Click on Start selected Function or +

19/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Statements:
Summary

Composition

JShell

What Next ?

References

Adobe Connect Recordings
Exporting Recordings

▶ Menu bar Meeting Preferences Video

▶ Aspect ratio Standard (4:3) (not Wide screen (16:9) default)

▶ Video quality Full HD (1080p not High default 480p)

▶ Recording Menu bar Meeting Record Session ✔

▶ Export Recording

▶ Menu bar Meeting Manage Meeting Information

▶ New window Recordings check Tutorial Access Type button

▶ check Public check Allow viewers to download

▶ Download Recording

▶ New window Recordings check Tutorial Actions Download File

20/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

Returns, Exits and
Exceptions

assert Statement

Composition

JShell

What Next ?

References

Statements
Overview

▶ A statement may change the computer’s state: value of
variables, fields, array elements, the contents of files
and so on — the execution of a statement may:

▶ terminate normally (and execution continues with the
next statement, if any) or

▶ terminate abruptly by throwing an exception or

▶ exit by executing a return statement (if inside a
method or constructor) or

▶ exit a switch or loop by executing a break statement or

▶ exit the current iteration of a loop and start a new
iteration by executing a continue stement or

▶ does not terminate at all (eg, while (true) {})

21/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

Returns, Exits and
Exceptions

assert Statement

Composition

JShell

What Next ?

References

Statements
Expression & Block Statements

▶ An expression statement is an expression followed by a
;

expression ;

▶ The only forms of expression that may be used here are
assignments, increment and decrements, method call,
and object creation

▶ A block statement is a sequence of variable
declarations, class declarations and statements

{
variableDeclarations
classDeclarations
statements

}

▶ An empty statement consists of ; only — it is equivalent
to the block statement { }

22/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

Returns, Exits and
Exceptions

assert Statement

Composition

JShell

What Next ?

References

Selection Statements
if Statement

▶ The if statement has the form

if (condition)
trueBranch

▶ The if-else statement has the form

if (condition)
trueBranch

else
falseBranch

▶ The condition must have type boolean or Boolean

▶ trueBranch and falseBranch are statements

23/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

Returns, Exits and
Exceptions

assert Statement

Composition

JShell

What Next ?

References

Selection Statements
Common if errors (a)

▶ What is wrong with the following

if (dataAvailable) ;
processData() ;

if (dataAvailable)
processData() ;
reportResults() ;

if (dataAvailable)
processData() ;
reportResults() ;

else
reportNoData() ;

24/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

Returns, Exits and
Exceptions

assert Statement

Composition

JShell

What Next ?

References

Selection Statements
Common if errors (b)

if (dataAvailable) ;
processData() ;

▶ The trueBranch is an empty statement (;)

if (dataAvailable)
processData() ;
reportResults() ;

▶ reportResults() ; will always be executed

if (dataAvailable)
processData() ;
reportResults() ;

else
reportNoData() ;

▶ Will not compile

▶ Moral Always use block statements

25/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

Returns, Exits and
Exceptions

assert Statement

Composition

JShell

What Next ?

References

Selection Statements
switch Statement

▶ A switch statement has the form

switch (expression) {
case constant1: branch1
case constant2: branch2
...
default: branchN

}

▶ expression must be of type int, short, char, byte or a
boxed version of these or String or an enum type

▶ Each constant must be a compile-time constant
expression, consisting only of literals, final variables,
final fields declared with explicit field initialisers or an
unqualified enum value

▶ (not used in M250)

26/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

for Statement

while Statement

foreach Statement

Removing While
Iterating

Returns, Exits and
Exceptions

assert Statement

Composition

JShell

What Next ?

References

Iteration Statements
for Statement

▶ A for statement has the form

for (initialization ; condition ; step)
body

▶ initialization is a variableDeclaration or an expression

▶ condition is an expression of type boolean or Boolean

▶ step is an expression

▶ body is a statement

▶ initialization and step may be comma-separated lists of
expressions

▶ initialization, condition and step may be empty. An
empty condition is equivalent to true

27/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

for Statement

while Statement

foreach Statement

Removing While
Iterating

Returns, Exits and
Exceptions

assert Statement

Composition

JShell

What Next ?

References

for Statement
Execution

▶ The for statement is executed as follows

1. The initialization is executed

2. The condition is evaluated. If it is false, the loop
terminates.

3. If it is true then
(a) the body is executed
(b) the step is executed
(c) execution continues at (2.)

28/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

for Statement

while Statement

foreach Statement

Removing While
Iterating

Returns, Exits and
Exceptions

assert Statement

Composition

JShell

What Next ?

References

for Statement
for Example 1(a)

▶ What does the following code do ?

for (int i = 1 ; i <= 4 ; i++) {
for (int j = 1 ; j <= i ; j++) {
System.out.print("*") ;

}
System.out.println() ;

}

29/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

for Statement

while Statement

foreach Statement

Removing While
Iterating

Returns, Exits and
Exceptions

assert Statement

Composition

JShell

What Next ?

References

for Statement
for Example 1(b)

jshell> for (int i = 1 ; i <= 4 ; i++) {
...> for (int j = 1 ; j <= i ; j++) {
...> System.out.print("*") ;
...> }
...> System.out.println() ;
...> }
...>

*
**

30/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

for Statement

while Statement

foreach Statement

Removing While
Iterating

Returns, Exits and
Exceptions

assert Statement

Composition

JShell

What Next ?

References

Iteration Statements
while Statement

▶ A while statement has the form

while (condition)
body

▶ condition is an expression of type boolean or Boolean
and body is a statement

▶ It is executed as follows:

1. The condition is evaluated. If it is false, the loop
terminates

2. If it is true, then
(a) The body is executed
(b) Execution continues at (1.)

31/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

for Statement

while Statement

foreach Statement

Removing While
Iterating

Returns, Exits and
Exceptions

assert Statement

Composition

JShell

What Next ?

References

while Statement
while Example 1(a)

▶ Example linear search with while loop

String[] wdays =
{"Monday","Tuesday","Wednesday"
,"Thursday","Friday","Saturday","Sunday"} ;

int wdayno(String wday) {
int i = 0 ;
while (i < wdays.length

&& ! wday.equals(wdays[i])) {
i++ ;

}
if (i < wdays.length) {
return i ;

} else {
return -1 ;

}
} ;

32/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

for Statement

while Statement

foreach Statement

Removing While
Iterating

Returns, Exits and
Exceptions

assert Statement

Composition

JShell

What Next ?

References

while Statement
while Example 1(b)

String[] wdays =
{"Monday","Tuesday","Wednesday"
,"Thursday","Friday","Saturday","Sunday"} ;

int wdayno(String wday) {
int i = 0 ;
while (i < wdays.length

&& ! wday.equals(wdays[i])) {
i++ ;

}
if (i < wdays.length) {
return i ;

} else {
return -1 ;

}
} ;

jshell> int d1 = wdayno("Friday") ;
d1 ==> 4

jshell> int d2 = wdayno("Dimanche") ;
d2 ==> -1

33/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

for Statement

while Statement

foreach Statement

Removing While
Iterating

Returns, Exits and
Exceptions

assert Statement

Composition

JShell

What Next ?

References

while Statement
while Example 2(a)

▶ Write code using a while statement that is equivalent
to a for loop statement

34/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

for Statement

while Statement

foreach Statement

Removing While
Iterating

Returns, Exits and
Exceptions

assert Statement

Composition

JShell

What Next ?

References

while Statement
while Example 2(b)

▶ Write code using a while statement that is equivalent
to a for loop statement

initialization
while (condition) {
body
step

}

for (initialization ; condition ; step)
body

▶ Note that this is different behaviour to the for
statement in Python where assignments to variables in
the suite of the loop does not change the assignments
made in the target list

▶ See Python: for statement

35/87

https://docs.python.org/3/reference/compound_stmts.html#the-for-statement

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

for Statement

while Statement

foreach Statement

Removing While
Iterating

Returns, Exits and
Exceptions

assert Statement

Composition

JShell

What Next ?

References

Iteration Statements
foreach Statement

▶ A variant of the for statement to iterate over elements
of a collection (or iterable)

for (ElementType x : expression)
body

▶ expression must have type Iterable<t> where t is
some subtype of ElementType or an array

▶ All collections are directly iterable since
Collection<t> has superinterface Iterable<t>

▶ Entries of a map can be iterated over because interface
Map<K,V> describes a method entrySet that returns a
Set<Map.Entry<K,V>> which implements
Iterable(Map.Entry<K,V>>)

36/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

for Statement

while Statement

foreach Statement

Removing While
Iterating

Returns, Exits and
Exceptions

assert Statement

Composition

JShell

What Next ?

References

Iteration Statements
Removing While Iterating

▶ Removing elements from a collection while iterating
over it is fraught with problems

▶ Likely to generate errors
(ConcurrentModificationException)

▶ Proper way is to use an Iterator

▶ Example from Barnes (2016, page 134) Objects First
with Java

Iterator<Track> it = tracks.iterator() ;
while (it.hasNext()) {
Track t = it.next() ;
String artist = t.getArtist() ;
if (artist.equals(artistToRemove)) {
it.remove() ;

}
}

37/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

Returns, Exits and
Exceptions

assert Statement

Composition

JShell

What Next ?

References

Returns, Exits and Exceptions
return Statement

▶ A return statement with an expression argument has
the form:

return expression ;

▶ This form of return must occur in the body of a
method (not constructor) whose return type is a
supertype or boxed or unboxed version of the type of
expression

▶ The return statement is executed as follows:

▶ expression is evaluated to some value v

▶ It then exits the method and continues execution at the
method call expression that called the method

▶ The value of that expression will be v, possible after
application of a widening, boxing or unboxing
conversion

38/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

Returns, Exits and
Exceptions

assert Statement

Composition

JShell

What Next ?

References

return Statement
return Example 1

▶ wdayno using a for loop

int wdayno(String wday) {
for (int i = 0 ; i < wdays.length ; i++) {
if (wday.equals(wdays[i])) {
return i ;

}
}
return -1 ;

}

▶ Notice that the final return is after the for loop

▶ What is the effect of the code below?

int wdayno(String wday) {
for (int i = 0 ; i < wdays.length ; i++) {
if (wday.equals(wdays[i])) {
return i ;

}
return -1 ;
}

}

39/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

Returns, Exits and
Exceptions

assert Statement

Composition

JShell

What Next ?

References

return Statement
return Example 1(b)

jshell> int wdayno(String wday) {
...> for (int i = 0 ; i < wdays.length ; i++) {
...> if (wday.equals(wdays[i])) {
...> return i ;
...> }
...> return -1 ;
...> }
...> }
...>

| Error:
| missing return statement
| int wdayno(String wday) {
| ^

40/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

Returns, Exits and
Exceptions

assert Statement

Composition

JShell

What Next ?

References

Returns, Exits and Exceptions
break, continue, label

▶ A break statement is legal only inside a loop or switch
and has one of the forms

break ;
break labelName ;

▶ Executing break exits the innermost enclosing loop or
switch and continues execution after that loop or switch

▶ A continue statement is legal only inside a loop and
has one of the forms

continue ;
continue labelName ;

▶ Executing continue terminates the current iteration of
the innermost enclosing loop and continues execution
at the step in for loops or the condition in while and
do-while loops

41/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

Returns, Exits and
Exceptions

assert Statement

Composition

JShell

What Next ?

References

Returns, Exits and Exceptions
break, continue, label

▶ A label statement has the form

labelName : statement

▶ The scope of labelName is statement, where it can be
used in break or continue

▶ Use of labels is evidence of poor program design

▶ Just don’t

42/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

Returns, Exits and
Exceptions

assert Statement

Composition

JShell

What Next ?

References

Returns, Exits and Exceptions
throw Statement

▶ A throw statement has the form:

throw expression ;

▶ The type of expression must be a subtype of class
Throwable

▶ The throw statement is executed as follows:

▶ expression is evaluated to obtain an exception object v

▶ If it is null then a NullPointerException is thrown

▶ Otherwise the exception object v is thrown

▶ The enclosing block statement terminates abruptly

▶ The thrown exception may be caught by a dynamically
enclosing try-catch statement

▶ If the exception is not caught then the entire program
execution will be aborted

43/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

Returns, Exits and
Exceptions

assert Statement

Composition

JShell

What Next ?

References

Returns, Exits and Exceptions
try-catch-finally Statement

▶ A try-catch statement is used to catch particular
exceptions thrown by a code block

▶ It has the following form:

try
body

catch (E1 x1) catchBody1
catch (E21 | E22 | ... | E2k x2) catchBody2
...
finally finallyBody

▶ All the various bodies are block statements

▶ There can be zero or more catch clauses and the
finally clause may be absent, but there must be at
least one catch or finally clause

44/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

Returns, Exits and
Exceptions

assert Statement

Composition

JShell

What Next ?

References

throw Statement
throw Example 1(a)

class WeekdayException extends Exception {
public WeekdayException(String wday) {
super("Illegal weekday: " + wday) ;

}
}

int wdayno(String wday) throws WeekdayException {
for (int i = 0; i < wdays.length; i++) {
if (wday.equals(wdays[i])) {
return i ;

}
}
throw new WeekdayException(wday) ;

}

45/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

Returns, Exits and
Exceptions

assert Statement

Composition

JShell

What Next ?

References

throw Statement
throw Example 1(b)

jshell> class WeekdayException extends Exception {
...> public WeekdayException(String wday) {
...> super("Illegal weekday: " + wday) ;
...> }
...> }
...>

jshell> int wdayno(String wday) throws WeekdayException {
...> for (int i = 0; i < wdays.length; i++) {
...> if (wday.equals(wdays[i])) {
...> return i ;
...> }
...> }
...> throw new WeekdayException(wday) ;
...> }
...>

jshell> int d4 = wdayno("Dimanche")
| Exception REPL.dJShelld31dWeekdayException:

Illegal weekday: Dimanche
| at wdayno (#25:7)
| at (#27:1)

46/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

Returns, Exits and
Exceptions

assert Statement

Composition

JShell

What Next ?

References

assert Statement
Description

▶ The assert statement has one of the following forms:

assert booleanExpression ;
assert booleanExpression : expression ;

▶ booleanExpression must have type boolean or Boolean

▶ expression must be of type boolean, char, double,
float, int, long, a boxed version of these or Object

▶ When assertions are enabled at run-time, every
execution of the assert command will evaluate
booleanExpression

▶ If the result is true, program execution contines
normally

▶ If the result is false, the assertion fails, and an
AssertionError will be thrown

▶ In the second form, expression will be evaluated, and
its value passed to the appropriate AssertionError
constructor

47/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

Returns, Exits and
Exceptions

assert Statement

Composition

JShell

What Next ?

References

assert Statement
assert Example 1(a)

▶ See Unit 8 section 7

assert x > 2 : "x was " + x ;

48/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition
Initialising a Lollipop
Object

Circle,Rectangle

Lollipop Class

Lollipop Interaction

Composition Summary

JShell

What Next ?

References

Composition
Unit 4 Composition Supplement

▶ Unit 4 Section 8 and the Composition Supplement
discuss composition and compare it to inheritance

▶ Composition is preferred where there is a has-a or
is-part-of relation

49/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition
Initialising a Lollipop
Object

Circle,Rectangle

Lollipop Class

Lollipop Interaction

Composition Summary

JShell

What Next ?

References

Lollipop Class
Initialising a Lollipop Object (1)

▶ Lollipop Example 1 (a)

▶ Initialise the component objects

▶ Use them to initialise the composite object

Circle c = new Circle(100, OUColour.RED);
Rectangle r = new Rectangle(10, 100, OUColour.PINK);
Lollipop lo = new Lollipop(c, r);

50/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition
Initialising a Lollipop
Object

Circle,Rectangle

Lollipop Class

Lollipop Interaction

Composition Summary

JShell

What Next ?

References

Lollipop Class
Initialising a Lollipop Object (2)

▶ Lollipop Example 1 (b)

▶ Initialise the sweet in OUWorkspace

▶ Graphical Display Open

Circle c = new Circle(100, OUColour.RED);

51/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition
Initialising a Lollipop
Object

Circle,Rectangle

Lollipop Class

Lollipop Interaction

Composition Summary

JShell

What Next ?

References

Lollipop Class
Initialising a Lollipop Object (3)

▶ Lollipop Example 1 (c)

▶ Initialise the stick in OUWorkspace

▶ Graphical Display Open

Rectangle r = new Rectangle(10, 100, OUColour.PINK);

52/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition
Initialising a Lollipop
Object

Circle,Rectangle

Lollipop Class

Lollipop Interaction

Composition Summary

JShell

What Next ?

References

Lollipop Class
Initialising a Lollipop Object (4)

▶ Lollipop Example 1 (d)

▶ Initialise the Lollipop in OUWorkspace

▶ Graphical Display Open

Lollipop lo = new Lollipop(c, r);

53/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition
Initialising a Lollipop
Object

Circle,Rectangle

Lollipop Class

Lollipop Interaction

Composition Summary

JShell

What Next ?

References

Lollipop Class
Initialising a Lollipop Object (5)

▶ Lollipop Example 2 (a)

▶ Pass in anonymous objects as actual arguments

▶ To make the Lollipop visible we have to create
references to the components in OUWorkspace

Lollipop lo
= new Lollipop(new Circle(100, OUColour.RED),

new Rectangle(10, 100, OUColour.PINK));
// lo created but not visible
Circle c = lo.getSweet();
Rectangle r = lo.getStick();

54/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition
Initialising a Lollipop
Object

Circle,Rectangle

Lollipop Class

Lollipop Interaction

Composition Summary

JShell

What Next ?

References

Lollipop Class
Initialising a Lollipop Object (6)

▶ Lollipop Example 3 (a)

▶ The component object is initialised by the composite
object

▶ To make the Lollipop visible we have to create
references to the components in OUWorkspace

Lollipop lo = new Lollipop();
// lo created but with default values
// but not yet visible
Circle c = lo.getSweet();
Rectangle r = lo.getStick();

55/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition
Initialising a Lollipop
Object

Circle,Rectangle

Lollipop Class

Lollipop Interaction

Composition Summary

JShell

What Next ?

References

Circle and Rectangle Classes
Circle Class (1)

import ou.*;

public class Circle extends OUAnimatedObject {
/* Instance variables */
private OUColour colour ;
private int xPos ;
private int yPos ;
private int diameter ;

56/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition
Initialising a Lollipop
Object

Circle,Rectangle

Lollipop Class

Lollipop Interaction

Composition Summary

JShell

What Next ?

References

Circle and Rectangle Classes
Circle Class (2)

public Circle() {
super() ;
this.colour = OUColour.BLUE ;
this.xPos = 0 ;
this.yPos = 0 ;
this.diameter = 30 ;

}

public Circle(int aDiameter, OUColour aColour) {
super() ;
this.diameter = aDiameter ;
this.colour = aColour ;
this.xPos = 0 ;
this.yPos = 0 ;

}

57/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition
Initialising a Lollipop
Object

Circle,Rectangle

Lollipop Class

Lollipop Interaction

Composition Summary

JShell

What Next ?

References

Circle and Rectangle Classes
Circle Class (3)

/* Instance methods */

public void setDiameter(int aDiameter) {
this.diameter = aDiameter ;
this.update() ;

}

public int getDiameter() {
return this.diameter ;

}

public void setColour (OUColour aColour) {
this.colour = aColour ;
this.update() ;

}

public OUColour getColour () {
return this.colour ;

}

58/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition
Initialising a Lollipop
Object

Circle,Rectangle

Lollipop Class

Lollipop Interaction

Composition Summary

JShell

What Next ?

References

Circle and Rectangle Classes
Circle Class (4)

public void setXPos(int x) {
this.xPos = x ;
this.update() ;

}

public int getXPos() {
return this.xPos ;

}

public void setYPos(int y) {
this.yPos = y ;
this.update() ;

}

public int getYPos() {
return this.yPos ;

}

59/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition
Initialising a Lollipop
Object

Circle,Rectangle

Lollipop Class

Lollipop Interaction

Composition Summary

JShell

What Next ?

References

Circle and Rectangle Classes
Circle Class (5)

public String toString() {
return ("An instance of class "

+ this.getClass().getName()
+ ": position ("
+ this.getXPos() + ", " + this.getYPos()
+ "), diameter " + this.getDiameter()
+ ", colour " + this.getColour()) ;

}
}

60/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition
Initialising a Lollipop
Object

Circle,Rectangle

Lollipop Class

Lollipop Interaction

Composition Summary

JShell

What Next ?

References

Circle and Rectangle Classes
Rectangle Class (1)

import ou.*;

public class Rectangle extends OUAnimatedObject {
/* Instance variables */

private OUColour colour ;
private int xPos ;
private int yPos ;
private int width ;
private int height ;

61/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition
Initialising a Lollipop
Object

Circle,Rectangle

Lollipop Class

Lollipop Interaction

Composition Summary

JShell

What Next ?

References

Circle and Rectangle Classes
Rectangle Class (2)

public Rectangle() {
super() ;
this.colour = OUColour.PURPLE ;
this.xPos = 0 ;
this.yPos = 0 ;
this.width = 40 ;
this.height = 20 ;

}

public Rectangle(int aWidth, int aHeight,
OUColour aColour) {

super() ;
this.width = aWidth ;
this.height = aHeight ;
this.colour = aColour ;
this.xPos = 0 ;
this.yPos = 0 ;

}

62/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition
Initialising a Lollipop
Object

Circle,Rectangle

Lollipop Class

Lollipop Interaction

Composition Summary

JShell

What Next ?

References

Circle and Rectangle Classes
Rectangle Class (3)

/* Instance methods */

public void setWidth(int aWidth) {
this.width = aWidth ;
this.update() ;

}

public void setHeight(int aHeight) {
this.height = aHeight ;
this.update() ;

}

public int getWidth() {
return this.width ;

}

public int getHeight() {
return this.height ;

}

63/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition
Initialising a Lollipop
Object

Circle,Rectangle

Lollipop Class

Lollipop Interaction

Composition Summary

JShell

What Next ?

References

Circle and Rectangle Classes
Rectangle Class (4)

public void setColour (OUColour aColour) {
this.colour = aColour ;
this.update() ;

}

public OUColour getColour () {
return this.colour ;

}

64/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition
Initialising a Lollipop
Object

Circle,Rectangle

Lollipop Class

Lollipop Interaction

Composition Summary

JShell

What Next ?

References

Circle and Rectangle Classes
Rectangle Class (5)

public void setXPos(int x) {
this.xPos = x ;
this.update() ;

}

public int getXPos() {
return this.xPos ;

}

public void setYPos(int y) {
this.yPos = y ;
this.update() ;

}

public int getYPos() {
return this.yPos ;

}

65/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition
Initialising a Lollipop
Object

Circle,Rectangle

Lollipop Class

Lollipop Interaction

Composition Summary

JShell

What Next ?

References

Circle and Rectangle Classes
Rectangle Class (6)

public String toString() {
return ("An instance of class "

+ this.getClass().getName()
+ ": position ("
+ this.getXPos() + ", " + this.getYPos()
+ "), width " + this.getWidth()
+ ", height " + this.getHeight()
+ ", colour " + this.getColour()) ;

}

}

66/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition
Initialising a Lollipop
Object

Circle,Rectangle

Lollipop Class

Lollipop Interaction

Composition Summary

JShell

What Next ?

References

Composition
Lollipop Class (1)

▶ Lollipop Class in Lollipop.java

▶ Instance and Class variables

import ou.*;

public class Lollipop {
private Circle sweet ;
private Rectangle stick ;
private int licks ;

private static final OUColour SWEET_COLOUR
= OUColour.RED ;

private static final OUColour STICK_COLOUR
= new OUColour(200,200,200) ;

private static final int SIZE = 100 ;
//sweet diameter and stick height

private static final int STICK_WIDTH = 10 ;

67/87

Lollipop.java

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition
Initialising a Lollipop
Object

Circle,Rectangle

Lollipop Class

Lollipop Interaction

Composition Summary

JShell

What Next ?

References

Composition
Lollipop Class (2) Constructors

item Lollipop Constructor with defaults

public Lollipop() {

Circle c = new Circle(SIZE, SWEET_COLOUR) ;

c.setXPos(75) ;
c.setYPos(75) ;

this.sweet = c ;

this.stick
= new Rectangle(STICK_WIDTH

, SIZE
, STICK_COLOUR) ;

this.attachStick() ;

this.licks = 0 ;
}

68/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition
Initialising a Lollipop
Object

Circle,Rectangle

Lollipop Class

Lollipop Interaction

Composition Summary

JShell

What Next ?

References

Composition
Lollipop Class (3) Constructors

▶ Lollipop Constructor with two arguments

public Lollipop(Circle aSweet, Rectangle aStick) {
this.sweet = aSweet ;
this.stick = aStick ;

this.attachStick() ;

this.licks = 0 ;
}

69/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition
Initialising a Lollipop
Object

Circle,Rectangle

Lollipop Class

Lollipop Interaction

Composition Summary

JShell

What Next ?

References

Composition
Lollipop Class (4) attachStick()

▶ Lollipop attachStick()

/**
* Attach a stick to an existing sweet.
* The sweet must have been initialised already.
*/

private void attachStick() {
int radius = this.sweet.getDiameter() / 2 ;

//move stick to the right to reach sweet centre
this.stick.setXPos(this.sweet.getXPos()

+ radius
- this.stick.getWidth() / 2) ;

//move stick down near the bottom of the sweet
this.stick.setYPos(this.sweet.getYPos()

+ this.sweet.getDiameter()
- STICK_WIDTH) ;

}

70/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition
Initialising a Lollipop
Object

Circle,Rectangle

Lollipop Class

Lollipop Interaction

Composition Summary

JShell

What Next ?

References

Composition
Lollipop Class (5) Horizontal, Vertical Movement

▶ Lollipop Horizontal, Vertical Movement

/**
* Method to move a lollipop horizontally.
* The direction depends on the sign of the argument.
*/
public void horiz(int xinc) {
this.sweet.setXPos(this.sweet.getXPos() + xinc) ;
this.stick.setXPos(this.stick.getXPos() + xinc) ;

}

/**
* Method to move a lollipop vertically.
* The direction depends on the sign of the argument.
*/
public void vert(int yinc) {
this.sweet.setYPos(this.sweet.getYPos() + yinc) ;
this.stick.setYPos(this.stick.getYPos() + yinc) ;

}

71/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition
Initialising a Lollipop
Object

Circle,Rectangle

Lollipop Class

Lollipop Interaction

Composition Summary

JShell

What Next ?

References

Composition
Lollipop Class (6) Eat Sweet

▶ Lollipop Eat Sweet

/**
* When you lick a lollipop, its sweet shrinks and
* its stick changes colour
* to get closer to the sweet’s colour.
*/
public void lick() {
if (this.sweet.getDiameter() > 1) {
this.licks = this.licks + 1 ;

this.sweet.setDiameter(this.sweet.getDiameter()
- 2) ;

//Move the sweet so it stays on the stick
//If we used attachStick,
//the lollipop would move when licked.
//This is because the circle is drawn relative
//to the top-left corner of its bounding box.

this.sweet.setXPos(this.sweet.getXPos() + 1) ;
this.sweet.setYPos(this.sweet.getYPos() + 2) ;

72/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition
Initialising a Lollipop
Object

Circle,Rectangle

Lollipop Class

Lollipop Interaction

Composition Summary

JShell

What Next ?

References

Composition
Lollipop Class (7) Eat Sweet (contd)

▶ Lollipop Eat Sweet (contd)

//Transfer some colour to the stick.

OUColour stickCol = this.stick.getColour();
int str = stickCol.getRed() ;
int stg = stickCol.getGreen() ;
int stb = stickCol.getBlue() ;

OUColour sweetCol = this.sweet.getColour();
int swr = sweetCol.getRed() ;
int swg = sweetCol.getGreen() ;
int swb = sweetCol.getBlue() ;

73/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition
Initialising a Lollipop
Object

Circle,Rectangle

Lollipop Class

Lollipop Interaction

Composition Summary

JShell

What Next ?

References

Composition
Lollipop Class (8) Eat Sweet (contd)

▶ Lollipop Eat Sweet (contd)

//Now add some colour
//from the sweet to the stick!
//Fudge factor:
//1/50th of the difference between
//the colours of the sweet and the stick
//is added to the stick colour
OUColour newCol
= new OUColour(str + (swr - str) / 50,

stg + (swg - stg) / 50,
stb + (swb - stb) / 50) ;

this.stick.setColour(newCol) ;
} else {
OUDialog.alert("It’s all gone!") ;

}

}

74/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition
Initialising a Lollipop
Object

Circle,Rectangle

Lollipop Class

Lollipop Interaction

Composition Summary

JShell

What Next ?

References

Composition
Lollipop Class (9) getStick, getSweet, getLicks

▶ Lollipop getStick, getSweet, getLicks

/**
* Enable workspace to see the stick part
*/
public Rectangle getStick() {
return this.stick ;

}

/**
* Enable workspace to see the sweet part
*/
public Circle getSweet() {
return this.sweet ;

}

public int getLicks() {
return this.licks ;

}
}

75/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition
Initialising a Lollipop
Object

Circle,Rectangle

Lollipop Class

Lollipop Interaction

Composition Summary

JShell

What Next ?

References

Composition
Lollipop Interaction (1)

▶ Lollipop Example 1 (a) (contd)

lo.vert(10);
lo.horiz(20);
lo.lick();
lo.lick();
lo.lick();
lo.getLicks();

76/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition
Initialising a Lollipop
Object

Circle,Rectangle

Lollipop Class

Lollipop Interaction

Composition Summary

JShell

What Next ?

References

Composition
Lollipop Interaction (2)

▶ Lollipop Example 1 (a) (contd)

▶ After the above code is executed

77/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition
Initialising a Lollipop
Object

Circle,Rectangle

Lollipop Class

Lollipop Interaction

Composition Summary

JShell

What Next ?

References

Composition
Lollipop Interaction (3)

▶ Lollipop Example 1 (a) (contd)

lo.vert(10);
lo.horiz(20);
lo.lick();
lo.lick();
lo.lick();
lo.getLicks();

▶ We can see the instance of the Lollipop has moved
down, right

▶ The sweet has shrunk and the stick has changed
colour (slightly)

▶ Notice that the sweet is now displayed overlapping the
stick — what code should we have had to avoid this ?

78/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition
Initialising a Lollipop
Object

Circle,Rectangle

Lollipop Class

Lollipop Interaction

Composition Summary

JShell

What Next ?

References

Composition
Summary

▶ Composition is a relationship between classes in which
component objects form part of composite objects.

▶ Composite object classes have instance variables that
are of their component object class types.

▶ When initialising a composite object, its component
parts also need to be suitably initialised.

▶ Anonymous objects can be used to avoid storing
unnecessary references to objects that might break
encapsulation.

▶ Favour composition over inheritance — see Bloch
(2017, Item 18, page 87)

▶ Composition has-a relationship

▶ Inheritance is-a relationship

79/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition

JShell

What Next ?

References

Java Shell, JShell
References

▶ JShell is a Java read-eval-print loop (REPL) introduced in
2017 with JDK 9

▶ Java Shell User’s Guide (Release 12, March 2019)

▶ Tools Reference: jshell

▶ JShell Tutorial (30 June 2019)

▶ How to run a whole Java file added as a snippet in
JShell? (15 July 2019)

80/87

https://en.wikipedia.org/wiki/JShell
https://docs.oracle.com/en/java/javase/12/jshell/
https://docs.oracle.com/en/java/javase/12/tools/jshell.html
http://cr.openjdk.java.net/~rfield/tutorial/JShellTutorial.html
https://stackoverflow.com/questions/44399338/how-to-run-a-whole-java-file-added-as-a-snippet-in-jshell
https://stackoverflow.com/questions/44399338/how-to-run-a-whole-java-file-added-as-a-snippet-in-jshell

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition

JShell

What Next ?

References

What Next ?
Programming, Debugging, Psychology

Although programming techniques have improved
immensely since the early days, the process of finding and
correcting errors in programming — known graphically if
inelegantly as debugging — still remains a most difficult,
confused and unsatisfactory operation. The chief impact of
this state of affairs is psychological. Although we are happy
to pay lip-service to the adage that to err is human, most of
us like to make a small private reservation about our own
performance on special occasions when we really try. It is
somewhat deflating to be shown publicly and
incontrovertibly by a machine that even when we do try, we
in fact make just as many mistakes as other people. If your
pride cannot recover from this blow, you will never make a
programmer.
Christopher Strachey, Scientific American 1966 vol 215 (3) September

pp112–124

81/87

https://en.wikipedia.org/wiki/Christopher_Strachey

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition

JShell

What Next ?

References

What Next ?
To err is human ?

▶ To err is human, to really foul things up requires a
computer.

▶ Attributed to Paul R. Ehrlich in 101 Great Programming
Quotes

▶ Attributed to Bill Vaughn in Quote Investigator

▶ Derived from Alexander Pope (1711, An Essay on
Criticism)

▶ To Err is Humane; to Forgive, Divine
▶ This also contains

A little learning is a dangerous thing;
Drink deep, or taste not the Pierian Spring

▶ In programming, this means you have to read the
fabulous manual (RTFM)

82/87

https://en.wikipedia.org/wiki/Paul_R._Ehrlich
http://www.devtopics.com/101-great-computer-programming-quotes/
http://www.devtopics.com/101-great-computer-programming-quotes/
https://en.wikipedia.org/wiki/William_E._Vaughan
http://quoteinvestigator.com/2010/12/07/foul-computer/
https://en.wikipedia.org/wiki/Alexander_Pope
https://en.wikipedia.org/wiki/An_Essay_on_Criticism
https://en.wikipedia.org/wiki/An_Essay_on_Criticism
https://en.wikipedia.org/wiki/Pierian_Spring
https://lmgtfy.com/?q=rtfm

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition

JShell

What Next ?

References

What Next ?
TMA02, TMA03, Exam

▶ Tutorial Online 10:00 Sunday 16 February 2025
Inheritance and Interfaces

▶ TMA02 Thursday 6 March 2025

▶ Tutorial Online 10:00 Sunday 16 March 2025
Collections

▶ TMA03 Thursday 8 May 2025

▶ Tutorial Online Sunday 11 May 2025 Exam revision

83/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition

JShell

What Next ?

References
Java Documentation

Books Phil Likes

M250
Web Links

▶ Java Documentation — BlueJ has JDK 7 embedded, JDK
13 is current (2019)

▶ JDK 13 Documentation

▶ Java Platform API Specification

▶ Java Language Specification
▶ JDK Documentation API Documentation java.base

▶ java.lang — fundamental classes for the Java
programming language

▶ java.util — Collections framework

84/87

https://docs.oracle.com/en/java/javase/
https://docs.oracle.com/en/java/javase/13/index.html
https://docs.oracle.com/en/java/javase/13/docs/api/index.html
https://docs.oracle.com/javase/specs/index.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/lang/package-summary.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/util/package-summary.html

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition

JShell

What Next ?

References
Java Documentation

Books Phil Likes

Java
API Documentation (1)

▶ Strings are immutable objects

▶ See java.lang.StringBuilder for mutable strings

▶ In a functional programming approach everything is
immutable — it makes life simpler (but at a cost)

85/87

https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/lang/StringBuilder.html

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition

JShell

What Next ?

References
Java Documentation

Books Phil Likes

Java
API Documentation (2)

▶ Remember (==) tests for identity — what does this
mean ?

86/87

Java: Selection,
Iteration,

Inheritance,
Composition

Phil Molyneux

Agenda

Adobe Connect

Statements:
Summary

Composition

JShell

What Next ?

References
Java Documentation

Books Phil Likes

M250
Books Phil Likes

▶ M250 is self contained — you do not need further
books — but you might like to know about some:

▶ Sestoft (2016) Java Precisely — the best short reference

▶ Evans, Flanagan (2018) Java in a Nutshell — the best
longer reference

▶ Barnes, Kölling (2016) Objects First with Java — the
BlueJ book — see www.bluej.org for documentation and
tutorial

▶ Bloch (2017) Effective Java — guide to best practice

87/87

https://www.bluej.org/

	M250 Java: Selection, Iteration, Inheritance, Composition: Tutorial Agenda
	Adobe Connect Interface and Settings
	Adobe Connect Interface
	Adobe Connect Settings
	Adobe Connect — Sharing Screen & Applications
	Adobe Connect — Ending a Meeting
	Adobe Connect — Invite Attendees
	Layouts
	Chat Pods
	Graphics Conversion for Web
	Adobe Connect Recordings

	Statements: Summary
	Statements Overview
	Expression & Block Statements
	Selection Statements
	Iteration Statements
	Returns, Exits and Exceptions
	assert Statement

	Composition
	Initialising a Lollipop Object
	Circle and Rectangle Classes
	Lollipop Class
	Lollipop Interaction
	Composition Summary

	JShell
	What Next ?
	Web Links & References
	Java Documentation
	Books Phil Likes

