Java: Selection, Iteration, Inheritance, Composition
M?250 Tutorial 04

Contents
1 Agenda 2
2 Adobe Connect 3
2.1 Interface e e e e e e e e e 3
2.2 Settings e e e e e e e e e e e e e e e e e e 4
2.3 Sharing Screen & Applications L e 5
2.4 EndingaMeeting e e e e e e 5
2.5 Invite Attendees e e e e e e e e 6
2.6 Layouts e e e e e e e e e e e e e e 7
2.7 Chat Pods e e e e e e e 7
2.8 Web Graphics o e e e e e e e 8
2.9 Recordings i e e e e e e e e e 8
3 Statements: Summary 8
3.1 Statements Overview e e e e e e e e e e e 8
3.2 Expression & Block Statements L o e 9
3.3 Selection Statements. e e e e e 9
3.4 lteration Statements e e e e e e e e e e e 10
3.4.1 forStatement e 10
3.4.2 whileStatement e 11
3.4.3 foreach Statement 12
3.4.4 Removing While lterating 12
3.5 Returns, Exits and Exceptions e 13
3.6 assert Statement L e e e e e e e e e e e e 15
4 Composition 15
4.1 Initialising a Lollipop Object i 16
4.2 Circle,Rectangle e e 17
4.3 Lollipop Class e e e e e 19
4.4 Lollipop Interaction i e e e e e e e e 22
4.5 Composition SUMmMaAry o i i e e e e e e e e e e e 23
5 JShell 23
6 What Next ? 23
7 References 24
7.1 Java Documentation L e e e e e e e 24
7.2 Books Phil Likes e e 25
References e e e e e e e e 26

2 Java: Selection, Iteration, Inheritance, Composition 18 January 2026

1 M250 Java: Selection, Iteration, Inheritance, Composition:
Tutorial Agenda

e Introductions
e Adobe Connect reminders
e Adobe Connect — if you or | get cut off, wait till we reconnect (or send you an email)

e Statements: Select, Iteration and others

Composition

JShell (optional)

Some useful Web & other references

e Time: about 1 hour
e Do ask questions or raise points.

e Slides/Notes M250Tutorial20260118CompositionPrsntn2025)

Introductions — Phil
e Name Phil Molyneux
e Background
- Undergraduate: Physics and Maths (Sussex)

- Postgraduate: Physics (Sussex), Operational Research (Brunel), Computer Sci-
ence (University College, London)

- Worked in Operational Research, Business IT, Web technologies, Functional Pro-
gramming

e First programming languages Fortran, BASIC, Pascal

e Favourite Software

Haskell — pure functional programming language

Text editors TextMate, Sublime Text — previously Emacs

Word processing in IATEX — all these slides and notes

Mac OS X

e Learning style — | read the manual before using the software

Introductions — You
e Name?
e Favourite software/Programming language ?
e Favourite text editor or integrated development environment (IDE)

e List of text editors, Comparison of text editors and Comparison of integrated devel-
opment environments

https://www.pmolyneux.co.uk/OU/M250FolderSync/M250Tutorial20260118CompositionPrsntn2025J/
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://www.haskell.org/
https://macromates.com
http://www.sublimetext.com
https://www.emacswiki.org/
https://www.latex-project.org/
https://developer.apple.com/
https://en.wikipedia.org/wiki/Text_editor
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/List_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments

Phil Molyneux M250 Tutorial 04

e Other OU courses?

e Anything else?

2 Adobe Connect Interface and Settings

2.1 Adobe Connect Interface

Adobe Connect Interface — Host View

‘ev0e B Adobe Comect.app

M250 Units 10, 11

Collections, Arrays, Sets, Maps, Lists

Phil Molyneux

18 April 2021

M250 Units 10, 11

Phil Molyneux
M250 Units 10, 11
Tutorial Agenda
Adobe Connect

Classes and
Interfaces

Sets
Maps
Lists

Collection
Implementations

TMAO3 Practice
Quiz

Common Mistakes
JShell
What Next ?

References

Adobe Connect Interface — Participant View

‘ece B Adobe Connect.app.

M250 Units 10, 11 Tutorial

Introductions

> Introductions
> Name Phil Molyneux
> Learning Style: Reads the manual
> Learnt last month Framework for Teaching Recursion
and wrote notes on Recursion Teaching
> You?

M250 Units 10, 11
Phil Molyneux
M250 Units 10, 11
Tutorial Agenda
Adobe Connect

Classes and
Interfaces

Sets
Maps
Lists

Collection
Implementations

TMAO3 Practice
Quiz

Common Mistakes

JShell

What Next ?

References

4 Java: Selection, Iteration, Inheritance, Composition 18 January 2026

2.2 Adobe Connect Settings

Adobe Connect — Settings

e Everybody [Menu bar>> Meeting>> Speaker & Microphone Setup}

{Menu bar>> Microphone>> Allow Participants to Use Microphone} v

Check Participants see the entire slide including slide numbers bottom right Workaround

- Disable Draw [Share pod>> Menu bar>> Draw icon}

- Fit Width {Share pod>> Bottom bar>> Fit Width icon} v

{Meeting>> Preferences>> General>> Host Cursor>> Show to all attendees

{Menu bar>> Video>> Enable Webcam for Participants} v

Do not Enable single speaker mode

Cancel hand tool

Do not enable green pointer

Recording {Meeting>> Record Session} 4

Documents Upload PDF with drag and drop to share pod

Delete [Meeting>> Manage Meeting Information>> Uploaded Content} and [check ﬁlename>> click on delete

Adobe Connect — Access

e Tutor Access

TutorHome>> M269 Website>> Tutorials}

Cluster Tutorials>> M269 Online tutorial room}

{
{
{Tutor Groups>> M269 Online tutor group room}
{

Module-wide Tutorials>> M269 Online module-wide room}

Attendance

{TutorHome>> Students>> View your tutorial timetables}

Beamer Slide Scaling 440% (422 x 563 mm)

Clear Everyone’s Status

{Attendee Pod>> Menu>> Clear Everyone’s Status}

Grant Access and send link via email

{Meeting>> Manage Access & Entry>> Invite Participants. .. }

Presenter Only Area

[Meeting>> Enable/Disable Presenter Only Area

Phil Molyneux M250 Tutorial 04 5

Adobe Connect — Keystroke Shortcuts

2.4

Keyboard shortcuts in Adobe Connect

Toggle Mic 3]+ M] (Mao), [ctrl)+[M] (Win) (On/Disconnect)
Toggle Raise-Hand status 2]+ |

Close dialog box [©] (Mac), [Esc] (Win)
End meeting [32)+\]

Adobe Connect — Sharing Screen & Applications

{Share My Screen>> Application tab>> Terminal} for Terminal

(Share menu)) Change View)) Zoom in| for mismatch of screen size/resolution (Participants)

(Presenter) Change to 75% and back to 100% (solves participants with smaller screen
image overlap)

Leave the application on the original display

Beware blued hatched rectangles — from other (hidden) windows or contextual
menus

Presenter screen pointer affects viewer display — beware of moving the pointer away
from the application

First time: [System Preferences>> Security & Privacy>> Privacy>> Accessibility}

Adobe Connect — Ending a Meeting

Notes for the tutor only

Student: [Meeting>> Exit Adobe Connect]

Tutor:

Recording [Meeting>> Stop Recording} v

Remove Participants [Meeting)) End Meeting. .. | o/

- Dialog box allows for message with default message:
- The host has ended this meeting. Thank you for attending.

Recording availability In course Web site for joining the room, click on the eye icon
in the list of recordings under your recording — edit description and name

Meeting Information [Meeting)) Manage Meeting Information]| — can access a range of informa-
tion in Web page.

Delete File Upload {Meeting>> Manage Meeting Information>> Uploaded Content tab} select file(s) and

click

Attendance Report see course Web site for joining room

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html
https://en.wikipedia.org/wiki/Terminal_(macOS)

6 Java: Selection, Iteration, Inheritance, Composition 18 January 2026

2.5 Adobe Connect — Invite Attendees

e Provide Meeting URL {Menu>> Meeting>> Manage Access & Entry>> Invite Participants. . . }

e Allow Access without Dialog [Menu)) Meeting)) Manage Meeting Information| provides new browser
window with Meeting Information [Tab bar)) Edit Information |

e Check Anyone who has the URL for the meeting can enter the room
e Default Only registered users and accepted guests may enter the room
e Reverts to default next session but URL is fixed

e Guests have blue icon top, registered participants have yellow icon top — same icon
if URL is open

e See Start, attend, and manage Adobe Connect meetings and sessions
e Click on the link sent in email from the Host

e Get the following on a Web page

e As Guest enter your name and click on

B Adobe Connect

M269-21) Online tutorial room
London/SE (1,13) CG [231] (M269-21))
Q)

Guest Registered User

Name

Guest Name

By entering a Name & clicking "Enter Room", you agree that
you have read and accept the Terms of Use & Privacy, Policy,

e See the Waiting for Entry Access for Host to give permission

k%8 Adobe Connect

Waiting for Entry Access

This is a private meeting. Your request to enter has

been sent to the host. Please wait for a response.

e Host sees the following dialog in Adobe Connect and grants access

https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html

Phil Molyneux M250 Tutorial 04 7

Guest entry o

1 guest would like to enter the room. Do you want
to allow or deny entry to incoming guests?

Guest Name (guest) Q QO =
Allow everyone Deny everyone Close
2.6 Layouts

2.7

Creating new layouts example Sharing layout

[Menu>> Layouts>> Create New Layout. .. } {Create a New Layout dialog>> Create a new blank Iayout} and name it
PMolyMain

New layout has no Pods but does have Layouts Bar open (see Layouts menu)

Pods

[Menu) Pods) Share) Add New Share| and resize/position — initial name is Share n — rename
PMolyShare

Rename Pod {Menu>> Pods>> Manage Pods. . . } [Manage Pods>> Select>> Rename} or [Double—click & rename

Add Video pod and resize/reposition
Add Attendance pod and resize/reposition
Add Chat pod — rename it PMolyChat — and resize/reposition

Dimensions of Sharing layout (on 27-inch iMac)

Width of Video, Attendees, Chat column 14 cm

Height of Video pod 9 cm

Height of Attendees pod 12 cm

Height of Chat pod 8 cm

Duplicating Layouts does not give new instances of the Pods and is probably not a
good idea (apart from local use to avoid delay in reloading Pods)

Auxiliary Layouts name PMolyAux0On
- Create new Share pod
- Use existing Chat pod

- Use same Video and Attendance pods

Chat Pods

Format Chat text

° {Chat Pod>> menu icon>> My Chat Color}

Choices: Red, Orange, Green, Brown, Purple, Pink, Blue, Black

Note: Color reverts to Black if you switch layouts

8 Java: Selection, Iteration, Inheritance, Composition 18 January 2026

) {Chat Pod>> menu icon>> Show Timestamps}

2.8 Graphics Conversion for Web

e Conversion of the screen snaps for the installation of Anaconda on 1 May 2020

Using GraphicConverter 11

> Convert & Modify>> Conversion>> Convert}

Select files to convert and destination folder

Click on [Start selected Function] or +

2.9 Adobe Connect Recordings

° {Menu bar>> Meeting>> Preferences>> Video}

e [Aspect ratio)) Standard (4:3)] (not Wide screen (16:9) default)
e (Video quality)) Full HD| (1080p not High default 480p)

) Recording {Menu bar>> Meeting>> Record Session} v

e Export Recording

) {Menu bar>> Meeting>> Manage Meeting Information}

) {New window>> Recordings>> check Tutorial>> Access Type button

° {check Public>> check Allow viewers to download}

e Download Recording

) {New window>> Recordings>> check Tutorial>> Actions>> Download File

3 Statements: Summary

3.1 Statements Overview

e A statement may change the computer’s state: value of variables, fields, array ele-
ments, the contents of files and so on — the execution of a statement may:

e terminate normally (and execution continues with the next statement, if any) or
e terminate abruptly by throwing an exception or

e exit by executing a return statement (if inside a method or constructor) or

e exit a switch or loop by executing a break statement or

e exit the current iteration of a loop and start a new iteration by executing a continue
stement or

e does not terminate at all (eg, while (true) {})

Phil Molyneux M250 Tutorial 04 9

3.2 Expression & Block Statements

e An expression statement is an expression followed by a ;

(expression ; J

e The only forms of expression that may be used here are assignments, increment and
decrements, method call, and object creation

e A block statement is a sequence of variable declarations, class declarations and
statements

variableDeclarations
classDeclarations
statements

e An empty statement consists of ; only — it is equivalent to the block statement { }

3.3 Selection Statements

e The if statement has the form

if (condition)
trueBranch

e The if-else statement has the form

if (condition)
trueBranch

else
falseBranch

e The condition must have type boolean or Boolean
e trueBranch and falseBranch are statements

e What is wrong with the following

if (dataAvailable) ;
processData() ;

if (dataAvailable)
processData() ;
reportResults() ;

if (dataAvailable)
processData() ;
reportResults() ;
else
reportNoData() ;

if (dataAvailable) ;
processData() ;

e The trueBranch is an empty statement (;)

if (dataAvailable)
processData() ;
reportResults() ;

e reportResults() ; will always be executed

10 Java: Selection, Iteration, Inheritance, Composition 18 January 2026

if (dataAvailable)
processData() ;
reportResults() ;
else
reportNoData() ;

e Will not compile
e Moral Always use block statements

e A switch statement has the form

switch (expression) {
case constantl: branchl
case constant2: branch2

Aé%au1t: branchN
}

e expression must be of type int, short, char, byte or a boxed version of these or
String or an enum type

e Each constant must be a compile-time constant expression, consisting only of liter-
als, final variables, final fields declared with explicit field initialisers or an un-
qualified enum value

e (not used in M250)

3.4 Iteration Statements
3.4.1 for Statement

e A for statement has the form

for (initialization ; condition ; step)
body

e initialization is a variableDeclaration or an expression

e condition is an expression of type boolean or Boolean

e step is an expression

e body is a statement

e initialization and step may be comma-separated lists of expressions

e initialization, condition and step may be empty. An empty condition is equivalent to
true

e The for statement is executed as follows
1. The initialization is executed
2. The condition is evaluated. If it is false, the loop terminates.
3. Ifitis true then
(a) the body is executed
(b) the step is executed

(c) execution continues at (2.)

Phil Molyneux M250 Tutorial 04

11

e What does the following code do ?

for (Ant i =1 ; i <=4 ; i++) {
for (int j =1 ; j <=1 ; j++) {
System.out.print("=") ;
}
System.out.println() ;
}

jshell> for (int i =1; i <=4 ; i++) {
for (int j =1; j <=1 ; j+o) {
System.out.print("=") ;
}
System.out.println() ;
3

VvV

¥
e
dedek

Fededed

3.4.2 while Statement

e A while statement has the form

while (condition)
body

e condition is an expression of type boolean or Boolean and body is a statement
e It is executed as follows:
1. The condition is evaluated. If it is false, the loop terminates
2. If itis true, then
(a) The body is executed
(b) Execution continues at (1.)

e Example linear search with while loop

String[] wdays =
{"Monday","Tuesday", "Wednesday"

non non non

, "Thursday","Friday", "Saturday", "Sunday"} ;

int wdayno(String wday) {
int i = 0 ;
while (i < wdays.Tlength
&& ! wday.equals(wdays[i])) {
i++
}
if (i < wdays.length) {
return i ;
} else {
return -1 ;
}
1

String[] wdays =
{"Monday", "Tuesday", "Wednesday"

non non won

, "Thursday","Friday","Saturday", "Sunday"} ;

int wdayno(String wday) {
int i =0 ;
while (i < wdays.Tlength
&& ! wday.equals(wdays[i])) {
i+t

}
if (i < wdays.length) {

12 Java: Selection, Iteration, Inheritance, Composition 18 January 2026

return i ;
} else {
return -1 ;
}
L g

jshell> dint d1 = wdayno("Friday") ;
dl ==> 4

jshell> 1int d2 = wdayno("Dimanche") ;
d2 ==> -1

e Write code using a while statement that is equivalent to a for loop statement

e Write code using a while statement that is equivalent to a for loop statement

initialization
while (condition) {
body
step

}

for (initialization ; condition ; step)
body

e Note that this is different behaviour to the for statement in Python where assign-
ments to variables in the suite of the loop does not change the assignments made
in the target list

e See Python: for statement

3.4.3 foreach Statement

e A variant of the for statement to iterate over elements of a collection (or iterable)

for (ElementType x : expression)
body

e expression must have type Iterable<t> where t is some subtype of ElementType
or an array

e All collections are directly iterable since Collection<t> has superinterface Iterable<t>

e Entries of a map can be iterated over because interface Map<K, V> describes a method
entrySet that returns a Set<Map.Entry<K,V>> which implements Iterable(Map.Entry<K,V.

3.4.4 Removing While Iterating

e Removing elements from a collection while iterating over it is fraught with problems
e Likely to generate errors (ConcurrentModificationException)
e Proper way is to use an Iterator

e Example from Barnes and Kélling (2016, 134)

Iterator<Track> it = tracks.iterator() ;
while (it.hasNext()) {

Track t = it.next() ;

String artist = t.getArtist(Q) ;

if (artist.equals(artistToRemove)) {

it.remove() ;

}

}

https://docs.python.org/3/reference/compound_stmts.html#the-for-statement

Phil Molyneux M250 Tutorial 04 13

3.5 Returns, Exits and Exceptions

e A return statement with an expression argument has the form:

(return expression ; J

e This form of return must occur in the body of a method (not constructor) whose
return type is a supertype or boxed or unboxed version of the type of expression

e The return statement is executed as follows:
e expression is evaluated to some value v

e It then exits the method and continues execution at the method call expression that
called the method

e The value of that expression will be v, possible after application of a widening,
boxing or unboxing conversion

e wdayno using a for loop

int wdayno(String wday) {
for (int i = 0 ; i < wdays.length ; i++) {
if (wday.equals(wdays[i])) {
return i ;
}
}
return -1 ;

}

e Notice that the final return is after the for loop

e What is the effect of the code below?

int wdayno(String wday) {
for (int i = 0 ; i < wdays.length ; i++) {
if (wday.equals(wdays[i])) {
return i ;
}
return -1 ;
}
}

jshell> int wdayno(String wday) {
. for (int i = 0 ; i < wdays.length ; i++) {

v

> if (wday.equals(wdays[i])) {
> return i ;
> }
> return -1 ;
> }
>}
0ooe
Error:

missing return statement
int wdayno(String wday) {
A

e A break statement is legal only inside a loop or switch and has one of the forms

break ;
break TabelName ;

e Executing break exits the innermost enclosing loop or switch and continues execu-
tion after that loop or switch

e A continue statement is legal only inside a loop and has one of the forms

14 Java: Selection, Iteration, Inheritance, Composition 18 January 2026

continue ;
continue TabelName ;

e Executing continue terminates the current iteration of the innermost enclosing loop
and continues execution at the step in for loops or the condition in while and
do-while loops

e A Tabel statement has the form

labelName : statement

e The scope of labelName is statement, where it can be used in break or continue
e Use of labels is evidence of poor program design
e Just don’t

e A throw statement has the form:

throw expression ; J

e The type of expression must be a subtype of class Throwable
e The throw statement is executed as follows:

e expression is evaluated to obtain an exception object v

e Ifitis null then a NulTPointerException is thrown

e Otherwise the exception object v is thrown

e The enclosing block statement terminates abruptly

e The thrown exception may be caught by a dynamically enclosing try-catch state-
ment

e If the exception is not caught then the entire program execution will be aborted

e A try-catch statement is used to catch particular exceptions thrown by a code
block

e It has the following form:

try
body
catch (E1 x1) catchBodyl
catch (E21 | E22 | ... | E2k x2) catchBody2

finally finallyBody

e All the various bodies are block statements

e There can be zero or more catch clauses and the finally clause may be absent,
but there must be at least one catch or finally clause

class WeekdayException extends Exception {
public WeekdayException(String wday) {
super("Illegal_weekday: " + wday) ;
3
}

int wdayno(String wday) throws WeekdayException {
for (int i = 0; i < wdays.length; i++) {
if (wday.equals(wdays[i])) {
return i ;

Phil Molyneux M250 Tutorial 04 15

}
}
throw new WeekdayException(wday) ;

}

jshell> class WeekdayException extends Exception {
..> public WeekdayException(String wday) {
super("Illegal_weekday: " + wday) ;

}

>
> }
>
>

jshell> int wdayno(String wday) throws WeekdayException {

> for (int i = 0; i < wdays.length; i++) {
> if (wday.equals(wdays[i])) {

> return i ;

> }

> }

> throw new WeekdayException(wday) ;

>}

>

jshell> 1int d4 = wdayno("Dimanche")

| Exception REPL.dJShelld31ldWeekdayException:
IT11egal weekday: Dimanche

| at wdayno (#25:7)

| at (#27:1)

3.6 assert Statement

e The assert statement has one of the following forms:

assert booleanExpression ;
assert booleanExpression : expression ;

e booleanExpression must have type boolean or Boolean

e expression must be of type boolean, char, double, float, int, long, a boxed
version of these or Object

e When assertions are enabled at run-time, every execution of the assert command
will evaluate booleanExpression

e If the result is true, program execution contines normally
o If the result is false, the assertion fails, and an AssertionError will be thrown

e In the second form, expression will be evaluated, and its value passed to the appro-
priate AssertionError constructor

e See Unit 8 section 7

(assert x > 2 : "x_was " + X ;

4 Composition

e Unit 4 Section 8 and the Composition Supplement discuss composition and compare
it to inheritance

e Composition is preferred where there is a has-a or is-part-of relation

16 Java: Selection, Iteration, Inheritance, Composition 18 January 2026

4.1 Initialising a Lollipop Object
e Lollipop Example 1 (a)

e Initialise the component objects

e Use them to initialise the composite object

Circle ¢ = new Circle(100, OUColour.RED);
Rectangle r = new Rectangle(10, 100, OUCoTlour.PINK);
LoTTipop 1o = new LolTipop(c, r);

e Lollipop Example 1 (b)

e Initialise the sweet in OUWorkspace

° {Graphical Display>> Open}

[Circle ¢ = new Circle(100, OUColour.RED);

00 Shapes [NON) OUWorkspace [Project: Unit4_Project_6]

Code Pane

Circle ¢ = new Circle(100, OUColour.RED);

Display Pane

Show Results

e Lollipop Example 1 (¢)

e Initialise the stick in OUWorkspace

° [Graphical Display>> Open}

rVariables (Double click to i...

C

(Rectangle r = new Rectangle(10, 100, OUCoTour.PINK);

[NN) OUWorkspace [Project: Unit4_Project_6]

Code Pane

Circle ¢ = new Circle(100, OUColour.RED);

Rectangle r = new Rectangle(10, 100, OUColour.PINK);

Display Pane

Show Results

e Lollipop Example 1 (d)

e Initialise the Lol 1ipop in OUWorkspace

° [Graphical Display>> Open}

rVariables (Double click to i...

C

(LolTipop 1o = new LolTipop(c, r);

Phil Molyneux M250 Tutorial 04 17

[] [] OUWorkspace [Project: Unit4_Project_6]

Code Pane

Circle ¢ = new Circle(100, OUColour.RED);

Rectangle r = new Rectangle(10, 100, OUColour.PINK);
Lollipop lo = new Lollipop(c, r);

Display Pane : Variables (Double click to i...
C

r

Show Results

e Lollipop Example 2 (a)
e Pass in anonymous objects as actual arguments

e To make the Lol11ipop visible we have to create references to the components in
OUWorkspace

LoTTipop 1o
= new LolTipop(new Circle(100, OUColour.RED),
new Rectangle(10, 100, OUCoTlour.PINK));
// lo created but not visible
Circle ¢ = To.getSweet();
Rectangle r = lo.getStick(Q;

e Lollipop Example 3 (a)
e The component object is initialised by the composite object

e To make the Lol11ipop visible we have to create references to the components in
OUWorkspace

LolTipop 1o = new LolTipop(Q);

// lo created but with default values
// but not yet visible

Circle ¢ = To.getSweet();

Rectangle r = lo.getStick();

4.2 Circle and Rectangle Classes

import ou.x;

public class Circle extends OUAnimatedObject {
/% Instance variables */
private OUColour colour ;
private int xPos ;
private int yPos ;
private int diameter ;

public Circle() {
super() ;
this.colour = OUColour.BLUE ;
this.xPos = 0 ;
this.yPos = 0 ;
this.diameter =

3

30 ;

public Circle(int aDiameter, OUColour aColour) {
super() ;
this.diameter = aDiameter ;
this.colour aColour ;
this.xPos

0
this.yPos = 0

18 Java: Selection, Iteration, Inheritance, Composition 18 January 2026

/% Instance methods =/

public void setDiameter(int aDiameter) {
this.diameter = aDiameter ;
this.update() ;

}

public int getDiameter() {
return this.diameter ;

3

public void setColour (OUCoTlour aColour) {
this.colour = aColour ;
this.update(Q) ;

}

public OUCoTour getColour OO {
return this.colour

3

public void setXPos(int x) {
this.xPos = x ;
this.update() ;

}

public int getXPos() {
return this.xPos ;

}

public void setYPos(int y) {
this.yPos =y ;
this.update() ;

}

public int getYPos() {
return this.yPos ;

}

public String toString() {
return ("An_instance_of_class "
+ this.getClass() .getName()
":_position_("
this.getXPos() + ",." + this.getYPos()
"), diameter_" + this.getDiameter()
",.colour_" + this.getColour()) ;

+ + + +

import ou.x;

public class Rectangle extends OUAnimatedObject {
/% Instance variables =/

private OUColour colour ;
private int xPos ;
private int yPos ;
private int width ;
private 1int height ;

public Rectangle() {
super() ;
this.colour
this.xPos = ;
this.yPos = 0 ;
this.width = 40 ;
this.height = 20 ;

}

= OUColour.PURPLE ;
0

public Rectangle(int aWidth, 1int aHeight,
OUColour aColour) {
super() ;
this.width = aWidth ;
this.height = aHeight ;

Phil Molyneux M250 Tutorial 04

19

this.colour = aColour ;

this.xPos = 0 ;
this.yPos = 0

}

/% Instance methods =/

public void setWidth(int awidth) {
this.width = aWidth ;
this.update() ;

}

public void setHeight(int aHeight) {
this.height = aHeight ;
this.update() ;

}

public int getWidth() {
return this.width ;

}

public int getHeight() {
return this.height ;
}

public void setColour (OUCoTlour aColour) {
this.colour = aColour ;
this.update() ;

}

public OUColour getColour () {
return this.colour

}

public void setXPos(int x) {
this.xPos = x ;
this.update() ;

}

public int getXPos() {
return this.xPos ;

}

public void setYPos(int y) {
this.yPos =y ;
this.update() ;

}

public int getYPos() {
return this.yPos ;

}

public String toString() {
return ("An_instance_of class "

+ this.getClass() .getName()

+ ":_position ("
this.getXPos() + ",." + this.getYPos()
"), width" + this.getWidthQ
",_height_" + this.getHeight()
",.colour" + this.getColour()) ;

+ + + +

4.3 Lollipop Class
e Lollipop Class in LolTipop.java

e Instance and Class variables

Lollipop.java

20 Java: Selection, Iteration, Inheritance, Composition

18 January 2026

import ou.x;

public class LolTlipop {
private Circle sweet ;
private Rectangle stick ;
private int Tlicks ;

private static final OUColour SWEET_COLOUR
= OUColour.RED ;
private static final OUColour STICK_COLOUR
= new OUCoTlour(200,200,200) ;
private static final int SIZE = 100 ;
//sweet diameter and stick height
private static final int STICK_WIDTH = 10 ;

item Lollipop Constructor with defaults

public LolTipop() {
Circle ¢ = new Circle(SIZE, SWEET_COLOUR) ;

c.setXPos(75) ;
c.setYPos(75) ;

this.sweet = c ;

this.stick
= new Rectangle(STICK_WIDTH
, SIZE
, STICK_COLOUR) ;

this.attachStick(Q) ;

this.Ticks = 0 ;

e Lollipop Constructor with two arguments

public LolTlipop(Circle aSweet, Rectangle aStick) {
this.sweet = aSweet ;
this.stick = aStick ;

this.attachStick(Q) ;

this.Ticks = 0 ;
}

e Lollipop attachStick()

S %
Attach a stick to an existing sweet.
+ The sweet must have been initialised already.

%/

private void attachStick() {
int radius = this.sweet.getDiameter() / 2 ;

//move stick to the right to reach sweet centre
this.stick.setXPos(this.sweet.getXPos()

+ radius

- this.stick.getWidth() / 2) ;

//move stick down near the bottom of the sweet
this.stick.setYPos(this.sweet.getYPos()
+ this.sweet.getDiameter()
- STICK_WIDTH) ;

e Lollipop Horizontal, Vertical Movement

VAL
Method to move a lollipop horizontally.

Phil Molyneux M250 Tutorial 04

21

+ The direction depends on the sign of the argument.

public void horiz(int xinc) {
this.sweet.setXPos(this.sweet.getXPos() + xinc) ;
this.stick.setXPos(this.stick.getXPos() + xinc) ;
}

% Method to move a lollipop vertically.
The direction depends on the sign of the argument.

public void vert(int yinc) {
this.sweet.setYPos(this.sweet.getYPos() + yinc) ;
this.stick.setYPos(this.stick.getYPos() + yinc) ;
}

e Lollipop Eat Sweet

VAT
= When you lick a 1ollipop, its sweet shrinks and

v 7ts stick changes colour

+ to get closer to the sweet’s colour.

%/
public void Tick() {

if (this.sweet.getDiameter() > 1) {

this.licks = this.licks + 1 ;

this.sweet.setDiameter(this.sweet.getDiameter()
-2)

//Move the sweet so it stays on the stick
//If we used attachStick,

//the Tollipop would move when Ticked.

//This is because the circle is drawn relative
//to the top-Tleft corner of its bounding box.

this.sweet.setXPos(this.sweet.getXPos() + 1) ;
this.sweet.setYPos(this.sweet.getYPos() + 2) ;

e Lollipop Eat Sweet (contd)

//Transfer some colour to the stick.

OUColour stickCol = this.stick.getColour(Q);

int str = stickCol.getRed() ;
int stg = stickCol.getGreen() ;
int stb = stickCol.getBlue() ;

OUColour sweetCol = this.sweet.getColour();

int swr = sweetCol.getRed() ;
int swg = sweetCol.getGreen() ;
int swb = sweetCol.getBlue() ;

e Lollipop Eat Sweet (contd)

//Now add some colour

//from the sweet to the stick!

//Fudge factor:

//1/50th of the difference between

//the colours of the sweet and the stick

//1s added to the stick colour

OUCoTour newCol

= new OUColour(str + (swr - str) / 50,

stg + (swg - stg) / 50,
stb + (swb - stb) / 50) ;

this.stick.setColour(newCol) ;
} else {
OUDialog.alert("It’s all _gone!™) ;

22

Java: Selection, Iteration, Inheritance, Composition 18 January 2026

e Lollipop getStick, getSweet, getLicks

3

/%
= Enable workspace to see the stick part
%/
public Rectangle getStick() {
return this.stick ;
}

VAT
% Enable workspace to see the sweet part
%/
public Circle getSweet() {
return this.sweet ;
}

public int getlLicks() {
return this.licks ;
}

4.4 Lollipop Interaction

e Lollipop Example 1 (a) (contd)

Tlo.vert(10);
lo.horiz(20);
To.Tick(Q);
lo.Tick(Q;
To.Tick(Q;
lo.getLicks(Q);

Code Pane

Circle ¢ = new Circle(100, OUColour.RED);

OUWorkspace [Project: Unit4_Project_6]

Rectangle r = new Rectangle(10, 100, O0UColour.PINK);

Lollipop lo = new Lollipop(c, r);

Display Pane

Show Results

e Lollipop Example 1 (a) (contd)

e After the above code is executed

Code Pane

lo.vert(10);
lo.horiz(20);
lo. lick();

lo. lick();

lo. lick();
lo.getLicks();

OUWorkspace [Project: Unit4_Project_6]

Lollipap lo = new Lollipap(é, r);

rVariables (Double click to i...

C

r

Display Pane
3

Show Results

e Lollipop Example 1 (a) (contd)

¥ rVariables (Double click to i...

c
lo
r

Phil Molyneux M250 Tutorial 04 23

lo.vert(10);
lo.horiz(20);
To.Tlick(Q);
Tlo.Tick(Q);
lo.Tick(Q);
lo.getLicks(Q);

e We can see the instance of the Lol11ipop has moved down, right
e The sweet has shrunk and the stick has changed colour (slightly)

e Notice that the sweet is now displayed overlapping the stick — what code should
we have had to avoid this ?

4.5 Composition Summary

e Composition is a relationship between classes in which component objects form part
of composite objects.

e Composite object classes have instance variables that are of their component object
class types.

e When initialising a composite object, its component parts also need to be suitably
initialised.

e Anonymous objects can be used to avoid storing unnecessary references to objects
that might break encapsulation.

e Favour composition over inheritance — see Bloch (2017, Item18, page 87)

e Composition has-a relationship

e Inheritance is-a relationship

5 JShell

e JShell is a Java read-eval-print loop (REPL) introduced in 2017 with JDK 9
e Java Shell User’s Guide (Release 12, March 2019)

e Tools Reference: jshell

e JShell Tutorial (30 June 2019)

e How to run a whole Java file added as a snippet in JShell? (15 July 2019)

Go to Table of Contents

6 What Next ?

Programming, Debugging, Psychology

Although programming techniques have improved immensely since the early days, the
process of finding and correcting errors in programming — known graphically if inele-
gantly as debugging — still remains a most difficult, confused and unsatisfactory opera-
tion. The chief impact of this state of affairs is psychological. Although we are happy to

https://en.wikipedia.org/wiki/JShell
https://docs.oracle.com/en/java/javase/12/jshell/
https://docs.oracle.com/en/java/javase/12/tools/jshell.html
http://cr.openjdk.java.net/~rfield/tutorial/JShellTutorial.html
https://stackoverflow.com/questions/44399338/how-to-run-a-whole-java-file-added-as-a-snippet-in-jshell

24 Java: Selection, Iteration, Inheritance, Composition 18 January 2026

pay lip-service to the adage that to err is human, most of us like to make a small pri-
vate reservation about our own performance on special occasions when we really try. It
is somewhat deflating to be shown publicly and incontrovertibly by a machine that even
when we do try, we in fact make just as many mistakes as other people. If your pride
cannot recover from this blow, you will never make a programmer.

Christopher Strachey, Scientific American 1966 vol 215 (3) September pp112-124

e To err is human, to really foul things up requires a computer.

Attributed to Paul R. Ehrlich in 101 Great Programming Quotes

Attributed to Bill Vaughn in Quote Investigator

Derived from Alexander Pope (1711, An Essay on Criticism)

To Err is Humane; to Forgive, Divine

This also contains
A little learning is a dangerous thing;
Drink deep, or taste not the Pierian Spring

e In programming, this means you have to read the fabulous manual (RTFM)

Units 1-5, TMAOI
e Tutorial Online 10:00 Sunday 16 February 2025 Inheritance and Interfaces
TMAO2 Thursday 6 March 2025
Tutorial Online 10:00 Sunday 16 March 2025 Collections
TMAO3 Thursday 8 May 2025

Tutorial Online Sunday 11 May 2025 Exam revision

Go to Table of Contents

7 Web Links & References

7.1 Java Documentation
e Java Documentation — BlueJ has JDK 7 embedded, JDK 13 is current (2019)
e JDK 13 Documentation
e Java Platform API Specification

e Java Language Specification

o {JDK Documentation>> API Documentation>>java.base}

- java.lang — fundamental classes for the Java programming language

- java.util — Collections framework

https://en.wikipedia.org/wiki/Christopher_Strachey
https://en.wikipedia.org/wiki/Paul_R._Ehrlich
http://www.devtopics.com/101-great-computer-programming-quotes/
https://en.wikipedia.org/wiki/William_E._Vaughan
http://quoteinvestigator.com/2010/12/07/foul-computer/
https://en.wikipedia.org/wiki/Alexander_Pope
https://en.wikipedia.org/wiki/An_Essay_on_Criticism
https://en.wikipedia.org/wiki/Pierian_Spring
https://lmgtfy.com/?q=rtfm
https://docs.oracle.com/en/java/javase/
https://docs.oracle.com/en/java/javase/13/index.html
https://docs.oracle.com/en/java/javase/13/docs/api/index.html
https://docs.oracle.com/javase/specs/index.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/lang/package-summary.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/util/package-summary.html

Phil Molyneux M250 Tutorial 04 25

© O 5[]]3] [2] 52w 5o 2 o 15 5] o 2o 2 o] B[5[5 2 e W €| 2= o]2 255

e
<« G ¢ [& docs.oracle. javalj 13 i i ing.html o %)@
Apps ES) Apple B Books ES) CompNews ES Computing B Finance E3 Information [Kingston ES) News ES) OU [Scripts B Shopping ES) Topics »
OVERVIEW MODULE PACKAGE C5] USE TREE DEPRECATED INDEX HELP Java SE 13 & JDK 13
SUMMARY: NESTED | FIELD | CONSTR | METHOD ~ DETAIL: FIELD | CONSTR | METHOD SEARCH: [O_ Search X

Module java.base
Package java.lang

Class String

java.lang.Object
java.lang.String

All Implemented Interfaces:

Serializable, CharSequence, Comparable<String>, Constable, ConstantDesc

public final class String
extends Object
implements Serializable, Comparable<String>, CharSequence, Constable, ConstantDesc

The String class represents character strings. All string literals in Java programs, such as "abc", are implemented as instances of this class.

Strings are constant; their values cannot be changed after they are created. String buffers support mutable strings. Because String objects are immutable
they can be shared. For example:

String str = "abc";

¢ LBOA-2019102...zip ~ % Christina2007N...jpg ~ % Christina2012N...jpg » " system-f-with-t....b... ~ Show All X

e Strings are immutable objects
e See java.lang.StringBuilder for mutable strings

e In a functional programming approach everything is immutable — it makes life sim-
pler (but at a cost)

© © ®]| S[5[6] 55| B[] 2 2|55 2 W[| 3 5] 2 o o 2 3 B[[35[5[55 o] €[5 o]] 2] 2|2 i

<« Cc O @& docs.oracle.com/en/javalj /13/do: .base/java/lang/String.html#equals(java.lang.Object) Y ‘

i Apps [5) Apple B Books [CompNews [Computing EBS Finance E5 Information ES Kingston E5 News [E5 OU [E3 Scripts B3 Shopping B3 Topics »
OVERVIEW MODULE PACKAGE -1 USE TREE DEPRECATED INDEX HELP Java SE 13 & JDK 13
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD SEARCH: O Search x

equals
public boolean equals(Object anObject)
Compares this string to the specified object. The result is true if and only if the argument is not null and is a String object that represents the
same sequence of characters as this object.
For finer-grained String comparison, refer to Collator.
Overrides:
equals in class Object
Parameters:
anObject - The object to compare this String against
Returns:
true if the given object represents a String equivalent to this string, false otherwise
See Also:
compareTo(String), equalsIgnoreCase(String)
¢ LBOA-2019102..zip ~ % Christina2007N....jpg * % Christina2012N...jpg * ¥ system-f-with-t...b... ~ Show All X

e Remember (==) tests for identity — what does this mean ?

Go to Table of Contents

7.2 Books Phil Likes

e M250 is self contained — you do not need further books — but you might like to
know about some:

e Sestoft (2016) — the best short reference
e Evans and Flanagan (2018) — the best longer reference

e Barnes and Kolling (2016) — the Blue) book — see www.bluej.org for documentation
and tutorial

https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/lang/StringBuilder.html
https://www.bluej.org/

26 Java: Selection, Iteration, Inheritance, Composition 18 January 2026

e Bloch (2017) — guide to best practice
Go to Table of Contents

References

Barnes, David J. and Michael Kolling (2009). Objects First with Java. Pearson Education,
fourth edition. ISBN 0-13-606086-2. URL http://www.bluej.org/objects-first/.

Barnes, David J. and Michael Kolling (2011). Objects First with Java. Pearson Education,
fifth edition. ISBN 0132835541. URL http://www.bluej.org/objects-first/.

Barnes, David J. and Michael Kolling (2016). Objects First with Java. Pearson, sixth edition.
ISBN 1292159049. URL http://www.bluej.org/objects-first/. 12, 25

Bloch, Joshua (2017). Effective Java. Addison-Wesley Professional, third edition. ISBN
9780134685991. 23, 26

Darwin, lan F (2014). Java Cookbook. O’Reilly, third edition. ISBN 97814493370409.

Evans, Benjamin J and David Flanagan (2014). Java In A Nutshell. O’Reilly, sixth edition.
ISBN 1449370829. URL https://github.com/kittylyst/javanutb-examples.

Evans, Benjamin J and David Flanagan (2018). Java In A Nutshell. O’Reilly, seventh edition.
ISBN 1492037257. 25

Felleisen, Matthias and Daniel P. Friedman (1998). A Little Java, A Few Patterns. MIT Press.
ISBN 0262561158. URL http://felleisen.org/matthias/BAL]-index.html.

Gosling, James; Bill Joy; Guy L. Steele Jr.; Gilad Bracha; and Alex Buckley (2014). The Java
Language Specification, Java SE 8 Edition (Java Series) (Java (Addison-Wesley)). Addison
Wesley, eighth edition. ISBN 013390069X. URL https://docs.oracle.com/en/java/
javase/12/index.html.

Naftalin, Maurice and Philip Wadler (2006). Java Generics and Collections. O’Reilly. ISBN
059610247X.

Schildt, Herbert (2018a). Java: A Beginner’s Guide. McGraw-Hill, eighth edition.
ISBN 1260440214. URL http://mhprofessional.com/9781260440218-usa-java-a-
beginners-guide-eighth-edition-group.

Schildt, Herbert (2018b). Java: The Complete Reference, Eleventh Edition. McGraw-
Hill, eleventh edition. ISBN 1260440230. URL http://mhprofessional.com/
9781260440232-usa-java-the-complete-reference-eleventh-edition-group.

Sestoft, Peter (2002). Java Precisely. MIT Press. ISBN 0-262-69276-7.
Sestoft, Peter (2005). Java Precisely. MIT, second edition. ISBN 0262693259.

Sestoft, Peter (2016). Java Precisely. MIT, third edition. ISBN 0262529076. URL http:
//www.itu.dk/people/sestoft/javaprecisely/. 25

Thimbleby, Harold (1999). A critique of Java. Software: Practice and Experience,
29(5):457-478.

Waldo, Jim (2010). Java: The Good Parts. O’Reilly. ISBN 9780596803735. URL http:
//shop.oreilly.com/product/9780596803742.do.

Go to Table of Contents

http://www.bluej.org/objects-first/
http://www.bluej.org/objects-first/
http://www.bluej.org/objects-first/
https://github.com/kittylyst/javanut6-examples
http://felleisen.org/matthias/BALJ-index.html
https://docs.oracle.com/en/java/javase/12/index.html
https://docs.oracle.com/en/java/javase/12/index.html
http://mhprofessional.com/9781260440218-usa-java-a-beginners-guide-eighth-edition-group
http://mhprofessional.com/9781260440218-usa-java-a-beginners-guide-eighth-edition-group
http://mhprofessional.com/9781260440232-usa-java-the-complete-reference-eleventh-edition-group
http://mhprofessional.com/9781260440232-usa-java-the-complete-reference-eleventh-edition-group
http://www.itu.dk/people/sestoft/javaprecisely/
http://www.itu.dk/people/sestoft/javaprecisely/
http://shop.oreilly.com/product/9780596803742.do
http://shop.oreilly.com/product/9780596803742.do

Phil Molyneux M250 Tutorial 04 27

Author Phil Molyneux Written 18 January 2026 Printed 16th January 2026

Subject dir: (baseURL)/0U/Courses/Computing/M250/M250Presentations/M250Prsntn2025]

Topic path:
/M250Prsntn2025]Tutorials/M250Tutorial20260118CompositionPrsntn20253/M250Tutorial20260118CompositionPrsntn2025].pdf

	Agenda
	Adobe Connect
	Interface
	Settings
	Sharing Screen & Applications
	Ending a Meeting
	Invite Attendees
	Layouts
	Chat Pods
	Web Graphics
	Recordings

	Statements: Summary
	Statements Overview
	Expression & Block Statements
	Selection Statements
	Iteration Statements
	for Statement
	while Statement
	foreach Statement
	Removing While Iterating

	Returns, Exits and Exceptions
	assert Statement

	Composition
	Initialising a Lollipop Object
	Circle,Rectangle
	Lollipop Class
	Lollipop Interaction
	Composition Summary

	JShell
	What Next ?
	References
	Java Documentation
	Books Phil Likes
	References

