
Java: Selection, Iteration, Inheritance, Composition

M250 Tutorial 04

Contents

1 Agenda 2

2 Adobe Connect 3
2.1 Interface . 3
2.2 Settings . 4
2.3 Sharing Screen & Applications . 5
2.4 Ending a Meeting . 5
2.5 Invite Attendees . 6
2.6 Layouts . 7
2.7 Chat Pods . 7
2.8 Web Graphics . 8
2.9 Recordings . 8

3 Statements: Summary 8
3.1 Statements Overview . 8
3.2 Expression & Block Statements . 9
3.3 Selection Statements . 9
3.4 Iteration Statements . 10

3.4.1 for Statement . 10
3.4.2 while Statement . 11
3.4.3 foreach Statement . 12
3.4.4 Removing While Iterating . 12

3.5 Returns, Exits and Exceptions . 13
3.6 assert Statement . 15

4 Composition 15
4.1 Initialising a Lollipop Object . 16
4.2 Circle,Rectangle . 17
4.3 Lollipop Class . 19
4.4 Lollipop Interaction . 22
4.5 Composition Summary . 23

5 JShell 23

6 What Next ? 23

7 References 24
7.1 Java Documentation . 24
7.2 Books Phil Likes . 25
References . 26

1

2 Java: Selection, Iteration, Inheritance, Composition 18 January 2026

1 M250 Java: Selection, Iteration, Inheritance, Composition:
Tutorial Agenda

• Introductions

• Adobe Connect reminders

• Adobe Connect — if you or I get cut off, wait till we reconnect (or send you an email)

• Statements: Select, Iteration and others

• Composition

• JShell (optional)

• Some useful Web & other references

• Time: about 1 hour

• Do ask questions or raise points.

• Slides/Notes M250Tutorial20260118CompositionPrsntn2025J

Introductions — Phil

• Name Phil Molyneux

• Background

– Undergraduate: Physics and Maths (Sussex)

– Postgraduate: Physics (Sussex), Operational Research (Brunel), Computer Sci-
ence (University College, London)

– Worked in Operational Research, Business IT, Web technologies, Functional Pro-
gramming

• First programming languages Fortran, BASIC, Pascal

• Favourite Software

– Haskell — pure functional programming language

– Text editors TextMate, Sublime Text — previously Emacs

– Word processing in LATEX — all these slides and notes

– Mac OS X

• Learning style — I read the manual before using the software

Introductions — You

• Name ?

• Favourite software/Programming language ?

• Favourite text editor or integrated development environment (IDE)

• List of text editors, Comparison of text editors and Comparison of integrated devel-
opment environments

https://www.pmolyneux.co.uk/OU/M250FolderSync/M250Tutorial20260118CompositionPrsntn2025J/
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://www.haskell.org/
https://macromates.com
http://www.sublimetext.com
https://www.emacswiki.org/
https://www.latex-project.org/
https://developer.apple.com/
https://en.wikipedia.org/wiki/Text_editor
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/List_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments

Phil Molyneux M250 Tutorial 04 3

• Other OU courses ?

• Anything else ?

2 Adobe Connect Interface and Settings

2.1 Adobe Connect Interface

Adobe Connect Interface — Host View

Adobe Connect Interface — Participant View

4 Java: Selection, Iteration, Inheritance, Composition 18 January 2026

2.2 Adobe Connect Settings

Adobe Connect — Settings

• Everybody Menu bar Meeting Speaker & Microphone Setup

• Menu bar Microphone Allow Participants to Use Microphone ✔

• Check Participants see the entire slide including slide numbers bottom right Workaround

– Disable Draw Share pod Menu bar Draw icon

– Fit Width Share pod Bottom bar Fit Width icon ✔

• Meeting Preferences General Host Cursor Show to all attendees

• Menu bar Video Enable Webcam for Participants ✔

• Do not Enable single speaker mode

• Cancel hand tool

• Do not enable green pointer

• Recording Meeting Record Session ✔

• Documents Upload PDF with drag and drop to share pod

• Delete Meeting Manage Meeting Information Uploaded Content and check filename click on delete

Adobe Connect — Access

• Tutor Access

TutorHome M269 Website Tutorials

Cluster Tutorials M269 Online tutorial room

Tutor Groups M269 Online tutor group room

Module-wide Tutorials M269 Online module-wide room

• Attendance

TutorHome Students View your tutorial timetables

• Beamer Slide Scaling 440% (422 x 563 mm)

• Clear Everyone’s Status

Attendee Pod Menu Clear Everyone’s Status

• Grant Access and send link via email

Meeting Manage Access & Entry Invite Participants. . .

• Presenter Only Area

Meeting Enable/Disable Presenter Only Area

Phil Molyneux M250 Tutorial 04 5

Adobe Connect — Keystroke Shortcuts

• Keyboard shortcuts in Adobe Connect

• Toggle Mic + M (Mac), Ctrl + M (Win) (On/Disconnect)

• Toggle Raise-Hand status + E

• Close dialog box (Mac), Esc (Win)

• End meeting + \

2.3 Adobe Connect — Sharing Screen & Applications

• Share My Screen Application tab Terminal for Terminal

• Share menu Change View Zoom in for mismatch of screen size/resolution (Participants)

• (Presenter) Change to 75% and back to 100% (solves participants with smaller screen
image overlap)

• Leave the application on the original display

• Beware blued hatched rectangles — from other (hidden) windows or contextual
menus

• Presenter screen pointer affects viewer display — beware of moving the pointer away
from the application

• First time: System Preferences Security & Privacy Privacy Accessibility

2.4 Adobe Connect — Ending a Meeting

• Notes for the tutor only

• Student: Meeting Exit Adobe Connect

• Tutor:

• Recording Meeting Stop Recording ✔

• Remove Participants Meeting End Meeting. . . ✔

– Dialog box allows for message with default message:

– The host has ended this meeting. Thank you for attending.

• Recording availability In course Web site for joining the room, click on the eye icon
in the list of recordings under your recording — edit description and name

• Meeting Information Meeting Manage Meeting Information — can access a range of informa-
tion in Web page.

• Delete File Upload Meeting Manage Meeting Information Uploaded Content tab select file(s) and
click Delete

• Attendance Report see course Web site for joining room

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html
https://en.wikipedia.org/wiki/Terminal_(macOS)

6 Java: Selection, Iteration, Inheritance, Composition 18 January 2026

2.5 Adobe Connect — Invite Attendees

• Provide Meeting URL Menu Meeting Manage Access & Entry Invite Participants. . .

• Allow Access without Dialog Menu Meeting Manage Meeting Information provides new browser
window with Meeting Information Tab bar Edit Information

• Check Anyone who has the URL for the meeting can enter the room

• Default Only registered users and accepted guests may enter the room

• Reverts to default next session but URL is fixed

• Guests have blue icon top, registered participants have yellow icon top — same icon
if URL is open

• See Start, attend, and manage Adobe Connect meetings and sessions

• Click on the link sent in email from the Host

• Get the following on a Web page

• As Guest enter your name and click on Enter Room

• See the Waiting for Entry Access for Host to give permission

• Host sees the following dialog in Adobe Connect and grants access

https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html

Phil Molyneux M250 Tutorial 04 7

2.6 Layouts

• Creating new layouts example Sharing layout

• Menu Layouts Create New Layout. . . Create a New Layout dialog Create a new blank layout and name it
PMolyMain

• New layout has no Pods but does have Layouts Bar open (see Layouts menu)

• Pods

• Menu Pods Share Add New Share and resize/position — initial name is Share n — rename
PMolyShare

• Rename Pod Menu Pods Manage Pods. . . Manage Pods Select Rename or Double-click & rename

• Add Video pod and resize/reposition

• Add Attendance pod and resize/reposition

• Add Chat pod — rename it PMolyChat — and resize/reposition

• Dimensions of Sharing layout (on 27-inch iMac)

– Width of Video, Attendees, Chat column 14 cm

– Height of Video pod 9 cm

– Height of Attendees pod 12 cm

– Height of Chat pod 8 cm

• Duplicating Layouts does not give new instances of the Pods and is probably not a
good idea (apart from local use to avoid delay in reloading Pods)

• Auxiliary Layouts name PMolyAux0n

– Create new Share pod

– Use existing Chat pod

– Use same Video and Attendance pods

2.7 Chat Pods

• Format Chat text

• Chat Pod menu icon My Chat Color

• Choices: Red, Orange, Green, Brown, Purple, Pink, Blue, Black

• Note: Color reverts to Black if you switch layouts

8 Java: Selection, Iteration, Inheritance, Composition 18 January 2026

• Chat Pod menu icon Show Timestamps

2.8 Graphics Conversion for Web

• Conversion of the screen snaps for the installation of Anaconda on 1 May 2020

• Using GraphicConverter 11

• File Convert & Modify Conversion Convert

• Select files to convert and destination folder

• Click on Start selected Function or +

2.9 Adobe Connect Recordings

• Menu bar Meeting Preferences Video

• Aspect ratio Standard (4:3) (not Wide screen (16:9) default)

• Video quality Full HD (1080p not High default 480p)

• Recording Menu bar Meeting Record Session ✔

• Export Recording

• Menu bar Meeting Manage Meeting Information

• New window Recordings check Tutorial Access Type button

• check Public check Allow viewers to download

• Download Recording

• New window Recordings check Tutorial Actions Download File

3 Statements: Summary

3.1 Statements Overview

• A statement may change the computer’s state: value of variables, fields, array ele-
ments, the contents of files and so on — the execution of a statement may:

• terminate normally (and execution continues with the next statement, if any) or

• terminate abruptly by throwing an exception or

• exit by executing a return statement (if inside a method or constructor) or

• exit a switch or loop by executing a break statement or

• exit the current iteration of a loop and start a new iteration by executing a continue
stement or

• does not terminate at all (eg, while (true) {})

Phil Molyneux M250 Tutorial 04 9

3.2 Expression & Block Statements

• An expression statement is an expression followed by a ;� �
expression ;� �
• The only forms of expression that may be used here are assignments, increment and

decrements, method call, and object creation

• A block statement is a sequence of variable declarations, class declarations and
statements� �

{
variableDeclarations
classDeclarations
statements

}� �
• An empty statement consists of ; only — it is equivalent to the block statement { }

3.3 Selection Statements

• The if statement has the form� �
if (condition)
trueBranch� �
• The if-else statement has the form� �

if (condition)
trueBranch

else
falseBranch� �
• The condition must have type boolean or Boolean

• trueBranch and falseBranch are statements

• What is wrong with the following� �
if (dataAvailable) ;
processData() ;� �� �

if (dataAvailable)
processData() ;
reportResults() ;� �� �

if (dataAvailable)
processData() ;
reportResults() ;

else
reportNoData() ;� �� �

if (dataAvailable) ;
processData() ;� �
• The trueBranch is an empty statement (;)� �

if (dataAvailable)
processData() ;
reportResults() ;� �
• reportResults() ; will always be executed

10 Java: Selection, Iteration, Inheritance, Composition 18 January 2026

� �
if (dataAvailable)
processData() ;
reportResults() ;

else
reportNoData() ;� �
• Will not compile

• Moral Always use block statements

• A switch statement has the form� �
switch (expression) {
case constant1: branch1
case constant2: branch2
...
default: branchN

}� �
• expression must be of type int, short, char, byte or a boxed version of these or
String or an enum type

• Each constant must be a compile-time constant expression, consisting only of liter-
als, final variables, final fields declared with explicit field initialisers or an un-
qualified enum value

• (not used in M250)

3.4 Iteration Statements

3.4.1 for Statement

• A for statement has the form� �
for (initialization ; condition ; step)
body� �
• initialization is a variableDeclaration or an expression

• condition is an expression of type boolean or Boolean

• step is an expression

• body is a statement

• initialization and step may be comma-separated lists of expressions

• initialization, condition and step may be empty. An empty condition is equivalent to
true

• The for statement is executed as follows

1. The initialization is executed

2. The condition is evaluated. If it is false, the loop terminates.

3. If it is true then

(a) the body is executed

(b) the step is executed

(c) execution continues at (2.)

Phil Molyneux M250 Tutorial 04 11

• What does the following code do ?� �
for (int i = 1 ; i <= 4 ; i++) {
for (int j = 1 ; j <= i ; j++) {
System.out.print("*") ;

}
System.out.println() ;

}� �� �
jshell> for (int i = 1 ; i <= 4 ; i++) {

...> for (int j = 1 ; j <= i ; j++) {

...> System.out.print("*") ;

...> }

...> System.out.println() ;

...> }

...>

*
**

****� �

3.4.2 while Statement

• A while statement has the form� �
while (condition)
body� �
• condition is an expression of type boolean or Boolean and body is a statement

• It is executed as follows:

1. The condition is evaluated. If it is false, the loop terminates

2. If it is true, then

(a) The body is executed

(b) Execution continues at (1.)

• Example linear search with while loop� �
String[] wdays =
{"Monday","Tuesday","Wednesday"
,"Thursday","Friday","Saturday","Sunday"} ;

int wdayno(String wday) {
int i = 0 ;
while (i < wdays.length

&& ! wday.equals(wdays[i])) {
i++ ;

}
if (i < wdays.length) {
return i ;

} else {
return -1 ;

}
} ;� �� �
String[] wdays =
{"Monday","Tuesday","Wednesday"
,"Thursday","Friday","Saturday","Sunday"} ;

int wdayno(String wday) {
int i = 0 ;
while (i < wdays.length

&& ! wday.equals(wdays[i])) {
i++ ;

}
if (i < wdays.length) {

12 Java: Selection, Iteration, Inheritance, Composition 18 January 2026

return i ;
} else {
return -1 ;

}
} ;� �� �
jshell> int d1 = wdayno("Friday") ;
d1 ==> 4

jshell> int d2 = wdayno("Dimanche") ;
d2 ==> -1� �
• Write code using a while statement that is equivalent to a for loop statement

• Write code using a while statement that is equivalent to a for loop statement� �
initialization
while (condition) {
body
step

}� �� �
for (initialization ; condition ; step)
body� �
• Note that this is different behaviour to the for statement in Python where assign-

ments to variables in the suite of the loop does not change the assignments made
in the target list

• See Python: for statement

3.4.3 foreach Statement

• A variant of the for statement to iterate over elements of a collection (or iterable)� �
for (ElementType x : expression)
body� �
• expression must have type Iterable<t> where t is some subtype of ElementType

or an array

• All collections are directly iterable since Collection<t> has superinterface Iterable<t>

• Entries of a map can be iterated over because interface Map<K,V> describes a method
entrySet that returns a Set<Map.Entry<K,V>> which implements Iterable(Map.Entry<K,V>>)

3.4.4 Removing While Iterating

• Removing elements from a collection while iterating over it is fraught with problems

• Likely to generate errors (ConcurrentModificationException)

• Proper way is to use an Iterator

• Example from Barnes and Kölling (2016, 134)� �
Iterator<Track> it = tracks.iterator() ;
while (it.hasNext()) {
Track t = it.next() ;
String artist = t.getArtist() ;
if (artist.equals(artistToRemove)) {
it.remove() ;

}
}� �

https://docs.python.org/3/reference/compound_stmts.html#the-for-statement

Phil Molyneux M250 Tutorial 04 13

3.5 Returns, Exits and Exceptions

• A return statement with an expression argument has the form:� �
return expression ;� �
• This form of return must occur in the body of a method (not constructor) whose

return type is a supertype or boxed or unboxed version of the type of expression

• The return statement is executed as follows:

• expression is evaluated to some value v

• It then exits the method and continues execution at the method call expression that
called the method

• The value of that expression will be v, possible after application of a widening,
boxing or unboxing conversion

• wdayno using a for loop� �
int wdayno(String wday) {
for (int i = 0 ; i < wdays.length ; i++) {
if (wday.equals(wdays[i])) {
return i ;

}
}
return -1 ;

}� �
• Notice that the final return is after the for loop

• What is the effect of the code below?� �
int wdayno(String wday) {
for (int i = 0 ; i < wdays.length ; i++) {
if (wday.equals(wdays[i])) {
return i ;

}
return -1 ;
}

}� �� �
jshell> int wdayno(String wday) {

...> for (int i = 0 ; i < wdays.length ; i++) {

...> if (wday.equals(wdays[i])) {

...> return i ;

...> }

...> return -1 ;

...> }

...> }

...>
| Error:
| missing return statement
| int wdayno(String wday) {
| ^� �
• A break statement is legal only inside a loop or switch and has one of the forms� �

break ;
break labelName ;� �
• Executing break exits the innermost enclosing loop or switch and continues execu-

tion after that loop or switch

• A continue statement is legal only inside a loop and has one of the forms

14 Java: Selection, Iteration, Inheritance, Composition 18 January 2026

� �
continue ;
continue labelName ;� �
• Executing continue terminates the current iteration of the innermost enclosing loop

and continues execution at the step in for loops or the condition in while and
do-while loops

• A label statement has the form� �
labelName : statement� �
• The scope of labelName is statement, where it can be used in break or continue

• Use of labels is evidence of poor program design

• Just don’t

• A throw statement has the form:� �
throw expression ;� �
• The type of expression must be a subtype of class Throwable

• The throw statement is executed as follows:

• expression is evaluated to obtain an exception object v

• If it is null then a NullPointerException is thrown

• Otherwise the exception object v is thrown

• The enclosing block statement terminates abruptly

• The thrown exception may be caught by a dynamically enclosing try-catch state-
ment

• If the exception is not caught then the entire program execution will be aborted

• A try-catch statement is used to catch particular exceptions thrown by a code
block

• It has the following form:� �
try
body

catch (E1 x1) catchBody1
catch (E21 | E22 | ... | E2k x2) catchBody2
...
finally finallyBody� �
• All the various bodies are block statements

• There can be zero or more catch clauses and the finally clause may be absent,
but there must be at least one catch or finally clause� �

class WeekdayException extends Exception {
public WeekdayException(String wday) {
super("Illegal weekday: " + wday) ;

}
}

int wdayno(String wday) throws WeekdayException {
for (int i = 0; i < wdays.length; i++) {
if (wday.equals(wdays[i])) {
return i ;

Phil Molyneux M250 Tutorial 04 15

}
}
throw new WeekdayException(wday) ;

}� �� �
jshell> class WeekdayException extends Exception {

...> public WeekdayException(String wday) {

...> super("Illegal weekday: " + wday) ;

...> }

...> }

...>

jshell> int wdayno(String wday) throws WeekdayException {
...> for (int i = 0; i < wdays.length; i++) {
...> if (wday.equals(wdays[i])) {
...> return i ;
...> }
...> }
...> throw new WeekdayException(wday) ;
...> }
...>

jshell> int d4 = wdayno("Dimanche")
| Exception REPL.dJShelld31dWeekdayException:

Illegal weekday: Dimanche
| at wdayno (#25:7)
| at (#27:1)� �
3.6 assert Statement

• The assert statement has one of the following forms:� �
assert booleanExpression ;
assert booleanExpression : expression ;� �
• booleanExpression must have type boolean or Boolean

• expression must be of type boolean, char, double, float, int, long, a boxed
version of these or Object

• When assertions are enabled at run-time, every execution of the assert command
will evaluate booleanExpression

• If the result is true, program execution contines normally

• If the result is false, the assertion fails, and an AssertionError will be thrown

• In the second form, expression will be evaluated, and its value passed to the appro-
priate AssertionError constructor

• See Unit 8 section 7� �
assert x > 2 : "x was " + x ;� �

4 Composition

• Unit 4 Section 8 and the Composition Supplement discuss composition and compare
it to inheritance

• Composition is preferred where there is a has-a or is-part-of relation

16 Java: Selection, Iteration, Inheritance, Composition 18 January 2026

4.1 Initialising a Lollipop Object

• Lollipop Example 1 (a)

• Initialise the component objects

• Use them to initialise the composite object� �
Circle c = new Circle(100, OUColour.RED);
Rectangle r = new Rectangle(10, 100, OUColour.PINK);
Lollipop lo = new Lollipop(c, r);� �
• Lollipop Example 1 (b)

• Initialise the sweet in OUWorkspace

• Graphical Display Open� �
Circle c = new Circle(100, OUColour.RED);� �

• Lollipop Example 1 (c)

• Initialise the stick in OUWorkspace

• Graphical Display Open� �
Rectangle r = new Rectangle(10, 100, OUColour.PINK);� �

• Lollipop Example 1 (d)

• Initialise the Lollipop in OUWorkspace

• Graphical Display Open� �
Lollipop lo = new Lollipop(c, r);� �

Phil Molyneux M250 Tutorial 04 17

• Lollipop Example 2 (a)

• Pass in anonymous objects as actual arguments

• To make the Lollipop visible we have to create references to the components in
OUWorkspace� �

Lollipop lo
= new Lollipop(new Circle(100, OUColour.RED),

new Rectangle(10, 100, OUColour.PINK));
// lo created but not visible
Circle c = lo.getSweet();
Rectangle r = lo.getStick();� �
• Lollipop Example 3 (a)

• The component object is initialised by the composite object

• To make the Lollipop visible we have to create references to the components in
OUWorkspace� �

Lollipop lo = new Lollipop();
// lo created but with default values
// but not yet visible
Circle c = lo.getSweet();
Rectangle r = lo.getStick();� �

4.2 Circle and Rectangle Classes� �
import ou.*;

public class Circle extends OUAnimatedObject {
/* Instance variables */
private OUColour colour ;
private int xPos ;
private int yPos ;
private int diameter ;� �� �
public Circle() {
super() ;
this.colour = OUColour.BLUE ;
this.xPos = 0 ;
this.yPos = 0 ;
this.diameter = 30 ;

}

public Circle(int aDiameter, OUColour aColour) {
super() ;
this.diameter = aDiameter ;
this.colour = aColour ;
this.xPos = 0 ;
this.yPos = 0 ;

}� �

18 Java: Selection, Iteration, Inheritance, Composition 18 January 2026

� �
/* Instance methods */

public void setDiameter(int aDiameter) {
this.diameter = aDiameter ;
this.update() ;

}

public int getDiameter() {
return this.diameter ;

}

public void setColour (OUColour aColour) {
this.colour = aColour ;
this.update() ;

}

public OUColour getColour () {
return this.colour ;

}� �� �
public void setXPos(int x) {
this.xPos = x ;
this.update() ;

}

public int getXPos() {
return this.xPos ;

}

public void setYPos(int y) {
this.yPos = y ;
this.update() ;

}

public int getYPos() {
return this.yPos ;

}� �� �
public String toString() {
return ("An instance of class "

+ this.getClass().getName()
+ ": position ("
+ this.getXPos() + ", " + this.getYPos()
+ "), diameter " + this.getDiameter()
+ ", colour " + this.getColour()) ;

}
}� �� �
import ou.*;

public class Rectangle extends OUAnimatedObject {
/* Instance variables */

private OUColour colour ;
private int xPos ;
private int yPos ;
private int width ;
private int height ;� �� �
public Rectangle() {
super() ;
this.colour = OUColour.PURPLE ;
this.xPos = 0 ;
this.yPos = 0 ;
this.width = 40 ;
this.height = 20 ;

}

public Rectangle(int aWidth, int aHeight,
OUColour aColour) {

super() ;
this.width = aWidth ;
this.height = aHeight ;

Phil Molyneux M250 Tutorial 04 19

this.colour = aColour ;
this.xPos = 0 ;
this.yPos = 0 ;

}� �� �
/* Instance methods */

public void setWidth(int aWidth) {
this.width = aWidth ;
this.update() ;

}

public void setHeight(int aHeight) {
this.height = aHeight ;
this.update() ;

}

public int getWidth() {
return this.width ;

}

public int getHeight() {
return this.height ;

}� �� �
public void setColour (OUColour aColour) {
this.colour = aColour ;
this.update() ;

}

public OUColour getColour () {
return this.colour ;

}� �� �
public void setXPos(int x) {
this.xPos = x ;
this.update() ;

}

public int getXPos() {
return this.xPos ;

}

public void setYPos(int y) {
this.yPos = y ;
this.update() ;

}

public int getYPos() {
return this.yPos ;

}� �� �
public String toString() {

return ("An instance of class "
+ this.getClass().getName()
+ ": position ("
+ this.getXPos() + ", " + this.getYPos()
+ "), width " + this.getWidth()
+ ", height " + this.getHeight()
+ ", colour " + this.getColour()) ;

}

}� �
4.3 Lollipop Class

• Lollipop Class in Lollipop.java

• Instance and Class variables

Lollipop.java

20 Java: Selection, Iteration, Inheritance, Composition 18 January 2026

� �
import ou.*;

public class Lollipop {
private Circle sweet ;
private Rectangle stick ;
private int licks ;

private static final OUColour SWEET_COLOUR
= OUColour.RED ;

private static final OUColour STICK_COLOUR
= new OUColour(200,200,200) ;

private static final int SIZE = 100 ;
//sweet diameter and stick height

private static final int STICK_WIDTH = 10 ;� �
item Lollipop Constructor with defaults� �
public Lollipop() {

Circle c = new Circle(SIZE, SWEET_COLOUR) ;

c.setXPos(75) ;
c.setYPos(75) ;

this.sweet = c ;

this.stick
= new Rectangle(STICK_WIDTH

, SIZE
, STICK_COLOUR) ;

this.attachStick() ;

this.licks = 0 ;
}� �
• Lollipop Constructor with two arguments� �

public Lollipop(Circle aSweet, Rectangle aStick) {
this.sweet = aSweet ;
this.stick = aStick ;

this.attachStick() ;

this.licks = 0 ;
}� �
• Lollipop attachStick()� �

/**
* Attach a stick to an existing sweet.

* The sweet must have been initialised already.

*/

private void attachStick() {
int radius = this.sweet.getDiameter() / 2 ;

//move stick to the right to reach sweet centre
this.stick.setXPos(this.sweet.getXPos()

+ radius
- this.stick.getWidth() / 2) ;

//move stick down near the bottom of the sweet
this.stick.setYPos(this.sweet.getYPos()

+ this.sweet.getDiameter()
- STICK_WIDTH) ;

}� �
• Lollipop Horizontal, Vertical Movement� �

/**
* Method to move a lollipop horizontally.

Phil Molyneux M250 Tutorial 04 21

* The direction depends on the sign of the argument.

*/
public void horiz(int xinc) {
this.sweet.setXPos(this.sweet.getXPos() + xinc) ;
this.stick.setXPos(this.stick.getXPos() + xinc) ;

}

/**
* Method to move a lollipop vertically.

* The direction depends on the sign of the argument.

*/
public void vert(int yinc) {
this.sweet.setYPos(this.sweet.getYPos() + yinc) ;
this.stick.setYPos(this.stick.getYPos() + yinc) ;

}� �
• Lollipop Eat Sweet� �

/**
* When you lick a lollipop, its sweet shrinks and

* its stick changes colour

* to get closer to the sweet’s colour.

*/
public void lick() {
if (this.sweet.getDiameter() > 1) {
this.licks = this.licks + 1 ;

this.sweet.setDiameter(this.sweet.getDiameter()
- 2) ;

//Move the sweet so it stays on the stick
//If we used attachStick,
//the lollipop would move when licked.
//This is because the circle is drawn relative
//to the top-left corner of its bounding box.

this.sweet.setXPos(this.sweet.getXPos() + 1) ;
this.sweet.setYPos(this.sweet.getYPos() + 2) ;� �

• Lollipop Eat Sweet (contd)� �
//Transfer some colour to the stick.

OUColour stickCol = this.stick.getColour();
int str = stickCol.getRed() ;
int stg = stickCol.getGreen() ;
int stb = stickCol.getBlue() ;

OUColour sweetCol = this.sweet.getColour();
int swr = sweetCol.getRed() ;
int swg = sweetCol.getGreen() ;
int swb = sweetCol.getBlue() ;� �

• Lollipop Eat Sweet (contd)� �
//Now add some colour
//from the sweet to the stick!
//Fudge factor:
//1/50th of the difference between
//the colours of the sweet and the stick
//is added to the stick colour
OUColour newCol
= new OUColour(str + (swr - str) / 50,

stg + (swg - stg) / 50,
stb + (swb - stb) / 50) ;

this.stick.setColour(newCol) ;
} else {
OUDialog.alert("It’s all gone!") ;

}

}� �

22 Java: Selection, Iteration, Inheritance, Composition 18 January 2026

• Lollipop getStick, getSweet, getLicks� �
/**
* Enable workspace to see the stick part

*/
public Rectangle getStick() {
return this.stick ;

}

/**
* Enable workspace to see the sweet part

*/
public Circle getSweet() {
return this.sweet ;

}

public int getLicks() {
return this.licks ;

}
}� �
4.4 Lollipop Interaction

• Lollipop Example 1 (a) (contd)� �
lo.vert(10);
lo.horiz(20);
lo.lick();
lo.lick();
lo.lick();
lo.getLicks();� �

• Lollipop Example 1 (a) (contd)

• After the above code is executed

• Lollipop Example 1 (a) (contd)

Phil Molyneux M250 Tutorial 04 23

� �
lo.vert(10);
lo.horiz(20);
lo.lick();
lo.lick();
lo.lick();
lo.getLicks();� �
• We can see the instance of the Lollipop has moved down, right

• The sweet has shrunk and the stick has changed colour (slightly)

• Notice that the sweet is now displayed overlapping the stick — what code should
we have had to avoid this ?

4.5 Composition Summary

• Composition is a relationship between classes in which component objects form part
of composite objects.

• Composite object classes have instance variables that are of their component object
class types.

• When initialising a composite object, its component parts also need to be suitably
initialised.

• Anonymous objects can be used to avoid storing unnecessary references to objects
that might break encapsulation.

• Favour composition over inheritance — see Bloch (2017, Item18, page 87)

• Composition has-a relationship

• Inheritance is-a relationship

5 JShell

• JShell is a Java read-eval-print loop (REPL) introduced in 2017 with JDK 9

• Java Shell User’s Guide (Release 12, March 2019)

• Tools Reference: jshell

• JShell Tutorial (30 June 2019)

• How to run a whole Java file added as a snippet in JShell? (15 July 2019)

Go to Table of Contents

6 What Next ?

Programming, Debugging, Psychology

Although programming techniques have improved immensely since the early days, the
process of finding and correcting errors in programming — known graphically if inele-
gantly as debugging — still remains a most difficult, confused and unsatisfactory opera-
tion. The chief impact of this state of affairs is psychological. Although we are happy to

https://en.wikipedia.org/wiki/JShell
https://docs.oracle.com/en/java/javase/12/jshell/
https://docs.oracle.com/en/java/javase/12/tools/jshell.html
http://cr.openjdk.java.net/~rfield/tutorial/JShellTutorial.html
https://stackoverflow.com/questions/44399338/how-to-run-a-whole-java-file-added-as-a-snippet-in-jshell

24 Java: Selection, Iteration, Inheritance, Composition 18 January 2026

pay lip-service to the adage that to err is human, most of us like to make a small pri-
vate reservation about our own performance on special occasions when we really try. It
is somewhat deflating to be shown publicly and incontrovertibly by a machine that even
when we do try, we in fact make just as many mistakes as other people. If your pride
cannot recover from this blow, you will never make a programmer.

Christopher Strachey, Scientific American 1966 vol 215 (3) September pp112–124

• To err is human, to really foul things up requires a computer.

• Attributed to Paul R. Ehrlich in 101 Great Programming Quotes

• Attributed to Bill Vaughn in Quote Investigator

• Derived from Alexander Pope (1711, An Essay on Criticism)

• To Err is Humane; to Forgive, Divine

• This also contains

A little learning is a dangerous thing;

Drink deep, or taste not the Pierian Spring

• In programming, this means you have to read the fabulous manual (RTFM)

Units 1–5, TMA01

• Tutorial Online 10:00 Sunday 16 February 2025 Inheritance and Interfaces

• TMA02 Thursday 6 March 2025

• Tutorial Online 10:00 Sunday 16 March 2025 Collections

• TMA03 Thursday 8 May 2025

• Tutorial Online Sunday 11 May 2025 Exam revision

Go to Table of Contents

7 Web Links & References

7.1 Java Documentation

• Java Documentation — BlueJ has JDK 7 embedded, JDK 13 is current (2019)

• JDK 13 Documentation

• Java Platform API Specification

• Java Language Specification

• JDK Documentation API Documentation java.base

– java.lang — fundamental classes for the Java programming language

– java.util — Collections framework

https://en.wikipedia.org/wiki/Christopher_Strachey
https://en.wikipedia.org/wiki/Paul_R._Ehrlich
http://www.devtopics.com/101-great-computer-programming-quotes/
https://en.wikipedia.org/wiki/William_E._Vaughan
http://quoteinvestigator.com/2010/12/07/foul-computer/
https://en.wikipedia.org/wiki/Alexander_Pope
https://en.wikipedia.org/wiki/An_Essay_on_Criticism
https://en.wikipedia.org/wiki/Pierian_Spring
https://lmgtfy.com/?q=rtfm
https://docs.oracle.com/en/java/javase/
https://docs.oracle.com/en/java/javase/13/index.html
https://docs.oracle.com/en/java/javase/13/docs/api/index.html
https://docs.oracle.com/javase/specs/index.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/lang/package-summary.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/util/package-summary.html

Phil Molyneux M250 Tutorial 04 25

• Strings are immutable objects

• See java.lang.StringBuilder for mutable strings

• In a functional programming approach everything is immutable — it makes life sim-
pler (but at a cost)

• Remember (==) tests for identity — what does this mean ?

Go to Table of Contents

7.2 Books Phil Likes

• M250 is self contained — you do not need further books — but you might like to
know about some:

• Sestoft (2016) — the best short reference

• Evans and Flanagan (2018) — the best longer reference

• Barnes and Kölling (2016) — the BlueJ book — see www.bluej.org for documentation
and tutorial

https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/lang/StringBuilder.html
https://www.bluej.org/

26 Java: Selection, Iteration, Inheritance, Composition 18 January 2026

• Bloch (2017) — guide to best practice

Go to Table of Contents

References
Barnes, David J. and Michael Kolling (2009). Objects First with Java. Pearson Education,

fourth edition. ISBN 0-13-606086-2. URL http://www.bluej.org/objects-first/.

Barnes, David J. and Michael Kolling (2011). Objects First with Java. Pearson Education,
fifth edition. ISBN 0132835541. URL http://www.bluej.org/objects-first/.

Barnes, David J. and Michael Kölling (2016). Objects First with Java. Pearson, sixth edition.
ISBN 1292159049. URL http://www.bluej.org/objects-first/. 12, 25

Bloch, Joshua (2017). Effective Java. Addison-Wesley Professional, third edition. ISBN
9780134685991. 23, 26

Darwin, Ian F (2014). Java Cookbook. O’Reilly, third edition. ISBN 9781449337049.

Evans, Benjamin J and David Flanagan (2014). Java In A Nutshell. O’Reilly, sixth edition.
ISBN 1449370829. URL https://github.com/kittylyst/javanut6-examples.

Evans, Benjamin J and David Flanagan (2018). Java In A Nutshell. O’Reilly, seventh edition.
ISBN 1492037257. 25

Felleisen, Matthias and Daniel P. Friedman (1998). A Little Java, A Few Patterns. MIT Press.
ISBN 0262561158. URL http://felleisen.org/matthias/BALJ-index.html.

Gosling, James; Bill Joy; Guy L. Steele Jr.; Gilad Bracha; and Alex Buckley (2014). The Java
Language Specification, Java SE 8 Edition (Java Series) (Java (Addison-Wesley)). Addison
Wesley, eighth edition. ISBN 013390069X. URL https://docs.oracle.com/en/java/
javase/12/index.html.

Naftalin, Maurice and Philip Wadler (2006). Java Generics and Collections. O’Reilly. ISBN
059610247X.

Schildt, Herbert (2018a). Java: A Beginner’s Guide. McGraw-Hill, eighth edition.
ISBN 1260440214. URL http://mhprofessional.com/9781260440218-usa-java-a-
beginners-guide-eighth-edition-group.

Schildt, Herbert (2018b). Java: The Complete Reference, Eleventh Edition. McGraw-
Hill, eleventh edition. ISBN 1260440230. URL http://mhprofessional.com/
9781260440232-usa-java-the-complete-reference-eleventh-edition-group.

Sestoft, Peter (2002). Java Precisely. MIT Press. ISBN 0-262-69276-7.

Sestoft, Peter (2005). Java Precisely. MIT, second edition. ISBN 0262693259.

Sestoft, Peter (2016). Java Precisely. MIT, third edition. ISBN 0262529076. URL http:
//www.itu.dk/people/sestoft/javaprecisely/. 25

Thimbleby, Harold (1999). A critique of Java. Software: Practice and Experience,
29(5):457–478.

Waldo, Jim (2010). Java: The Good Parts. O’Reilly. ISBN 9780596803735. URL http:
//shop.oreilly.com/product/9780596803742.do.

Go to Table of Contents

http://www.bluej.org/objects-first/
http://www.bluej.org/objects-first/
http://www.bluej.org/objects-first/
https://github.com/kittylyst/javanut6-examples
http://felleisen.org/matthias/BALJ-index.html
https://docs.oracle.com/en/java/javase/12/index.html
https://docs.oracle.com/en/java/javase/12/index.html
http://mhprofessional.com/9781260440218-usa-java-a-beginners-guide-eighth-edition-group
http://mhprofessional.com/9781260440218-usa-java-a-beginners-guide-eighth-edition-group
http://mhprofessional.com/9781260440232-usa-java-the-complete-reference-eleventh-edition-group
http://mhprofessional.com/9781260440232-usa-java-the-complete-reference-eleventh-edition-group
http://www.itu.dk/people/sestoft/javaprecisely/
http://www.itu.dk/people/sestoft/javaprecisely/
http://shop.oreilly.com/product/9780596803742.do
http://shop.oreilly.com/product/9780596803742.do

Phil Molyneux M250 Tutorial 04 27

Author Phil Molyneux Written 18 January 2026 Printed 16th January 2026
Subject dir: ⟨baseURL⟩/OU/Courses/Computing/M250/M250Presentations/M250Prsntn2025J
Topic path:
/M250Prsntn2025JTutorials/M250Tutorial20260118CompositionPrsntn2025J/M250Tutorial20260118CompositionPrsntn2025J.pdf

	Agenda
	Adobe Connect
	Interface
	Settings
	Sharing Screen & Applications
	Ending a Meeting
	Invite Attendees
	Layouts
	Chat Pods
	Web Graphics
	Recordings

	Statements: Summary
	Statements Overview
	Expression & Block Statements
	Selection Statements
	Iteration Statements
	for Statement
	while Statement
	foreach Statement
	Removing While Iterating

	Returns, Exits and Exceptions
	assert Statement

	Composition
	Initialising a Lollipop Object
	Circle,Rectangle
	Lollipop Class
	Lollipop Interaction
	Composition Summary

	JShell
	What Next ?
	References
	Java Documentation
	Books Phil Likes
	References

