
M250 Exam Revision

M250 Tutorial 07

Contents

1 M250 Exam Revision: Agenda 2

2 Adobe Connect 3
2.1 Interface . 3
2.2 Settings . 4
2.3 Sharing Screen & Applications . 5
2.4 Ending a Meeting . 6
2.5 Invite Attendees . 6
2.6 Layouts . 7
2.7 Chat Pods . 8
2.8 Web Graphics . 8
2.9 Recordings . 9

3 Spec 2021 Rubric 9

4 Spec 2021 Questions 9
4.1 Q 1 . 9
4.2 Q 2 . 10
4.3 Q 3 . 11
4.4 Q 4 . 12
4.5 Q 5 . 13
4.6 Q 6 . 13
4.7 Q 7 . 14
4.8 Q 8 . 15
4.9 Q 9 . 16
4.10Q 10 . 18

5 Spec 2021 Solns 18
5.1 Soln 1 . 18
5.2 Soln 2 . 19
5.3 Soln 3 . 19
5.4 Soln 4 . 20
5.5 Soln 5 . 20
5.6 Soln 6 . 21
5.7 Soln 7 . 21
5.8 Soln 8 . 23
5.9 Soln 9 . 23
5.10Soln 10 . 25

6 Prsntn 2018J Qs 26
6.1 Qs . 26
6.2 Q 1 . 26

6.2.1 Q 1(a) . 26
6.2.2 Q 1(b) . 27

1

2 M250 Exam Revision 11 May 2025

6.2.3 Q 1(c) . 28
6.2.4 Q 1(d) . 28

6.3 Q 2 . 28
6.3.1 Q 2(a) . 28
6.3.2 A 2(b) . 28
6.3.3 Q 2(c) . 29
6.3.4 Q 2(d) . 29
6.3.5 Q 2(e)(f) . 29

6.4 Q 3 . 30
6.4.1 Q 3(a) . 30
6.4.2 Q 3(b) . 31
6.4.3 Q 3(c) . 31
6.4.4 Q 3(d) . 31
6.4.5 Q 3(e) . 32

7 Prsntn 2018J Solns 32
7.1 Solns . 32
7.2 Soln 1 . 32

7.2.1 Soln 1(a) . 32
7.2.2 Soln 1(b) . 33
7.2.3 Soln 1(c) . 34
7.2.4 Soln 1(d) . 34

7.3 Soln 2 . 34
7.3.1 Soln 2(a) . 34
7.3.2 Soln 2(b) . 35
7.3.3 Soln 2(c) . 35
7.3.4 Soln 2(d) . 36
7.3.5 Soln 2(e) . 36
7.3.6 Soln 2(f) . 36

7.4 Soln 3 . 36
7.4.1 Soln 3(a) . 36
7.4.2 Soln 3(b) . 37
7.4.3 Soln 3(c) . 37
7.4.4 Soln 3(d) . 38
7.4.5 Soln 3(e) . 38

8 What Next ? 38

9 References 39
9.1 Java Documentation . 39
9.2 Books Phil Likes . 40
References . 41

1 M250 Exam Revision: Agenda

• Introductions

• Adobe Connect reminders

• Adobe Connect — if you or I get cut off, wait till we reconnect (or send you an email)

• M250 Specimen Exam from 2021

Phil Molyneux M250 Tutorial 07 3

• M250 Exam 2019 from Presentation 2018J

• Revision strategies and exam techniques

Introductions — Phil

• Name Phil Molyneux

• Background

– Undergraduate: Physics and Maths (Sussex)

– Postgraduate: Physics (Sussex), Operational Research (Brunel), Computer Sci-
ence (University College, London)

– Worked in Operational Research, Business IT, Web technologies, Functional Pro-
gramming

• First programming languages Fortran, BASIC, Pascal

• Favourite Software

– Haskell — pure functional programming language

– Text editors TextMate, Sublime Text — previously Emacs

– Word processing in LATEX — all these slides and notes

– Mac OS X

• Learning style — I read the manual before using the software

Introductions — You

• Name ?

• What other exams are you taking this year ?

• Give one revision tip and exam tip to the group

ToC

2 Adobe Connect Interface and Settings

2.1 Adobe Connect Interface

Adobe Connect Interface — Host View

https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://www.haskell.org/
https://macromates.com
http://www.sublimetext.com
https://www.emacswiki.org/
https://www.latex-project.org/
https://developer.apple.com/

4 M250 Exam Revision 11 May 2025

Adobe Connect Interface — Participant View

2.2 Adobe Connect Settings

Adobe Connect — Settings

• Everybody Menu bar Meeting Speaker & Microphone Setup

• Menu bar Microphone Allow Participants to Use Microphone ✔

• Check Participants see the entire slide including slide numbers bottom right Workaround

– Disable Draw Share pod Menu bar Draw icon

– Fit Width Share pod Bottom bar Fit Width icon ✔

Phil Molyneux M250 Tutorial 07 5

• Meeting Preferences General Host Cursor Show to all attendees

• Menu bar Video Enable Webcam for Participants ✔

• Do not Enable single speaker mode

• Cancel hand tool

• Do not enable green pointer

• Recording Meeting Record Session ✔

• Documents Upload PDF with drag and drop to share pod

• Delete Meeting Manage Meeting Information Uploaded Content and check filename click on delete

Adobe Connect — Access

• Tutor Access

TutorHome M269 Website Tutorials

Cluster Tutorials M269 Online tutorial room

Tutor Groups M269 Online tutor group room

Module-wide Tutorials M269 Online module-wide room

• Attendance

TutorHome Students View your tutorial timetables

• Beamer Slide Scaling 440% (422 x 563 mm)

• Clear Everyone’s Status

Attendee Pod Menu Clear Everyone’s Status

• Grant Access and send link via email

Meeting Manage Access & Entry Invite Participants. . .

• Presenter Only Area

Meeting Enable/Disable Presenter Only Area

Adobe Connect — Keystroke Shortcuts

• Keyboard shortcuts in Adobe Connect

• Toggle Mic + M (Mac), Ctrl + M (Win) (On/Disconnect)

• Toggle Raise-Hand status + E

• Close dialog box (Mac), Esc (Win)

• End meeting + \

2.3 Adobe Connect — Sharing Screen & Applications

• Share My Screen Application tab Terminal for Terminal

• Share menu Change View Zoom in for mismatch of screen size/resolution (Participants)

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html
https://en.wikipedia.org/wiki/Terminal_(macOS)

6 M250 Exam Revision 11 May 2025

• (Presenter) Change to 75% and back to 100% (solves participants with smaller screen
image overlap)

• Leave the application on the original display

• Beware blued hatched rectangles — from other (hidden) windows or contextual
menus

• Presenter screen pointer affects viewer display — beware of moving the pointer away
from the application

• First time: System Preferences Security & Privacy Privacy Accessibility

2.4 Adobe Connect — Ending a Meeting

• Notes for the tutor only

• Student: Meeting Exit Adobe Connect

• Tutor:

• Recording Meeting Stop Recording ✔

• Remove Participants Meeting End Meeting. . . ✔

– Dialog box allows for message with default message:

– The host has ended this meeting. Thank you for attending.

• Recording availability In course Web site for joining the room, click on the eye icon
in the list of recordings under your recording — edit description and name

• Meeting Information Meeting Manage Meeting Information — can access a range of informa-
tion in Web page.

• Delete File Upload Meeting Manage Meeting Information Uploaded Content tab select file(s) and
click Delete

• Attendance Report see course Web site for joining room

2.5 Adobe Connect — Invite Attendees

• Provide Meeting URL Menu Meeting Manage Access & Entry Invite Participants. . .

• Allow Access without Dialog Menu Meeting Manage Meeting Information provides new browser
window with Meeting Information Tab bar Edit Information

• Check Anyone who has the URL for the meeting can enter the room

• Default Only registered users and accepted guests may enter the room

• Reverts to default next session but URL is fixed

• Guests have blue icon top, registered participants have yellow icon top — same icon
if URL is open

• See Start, attend, and manage Adobe Connect meetings and sessions

• Click on the link sent in email from the Host

• Get the following on a Web page

https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html

Phil Molyneux M250 Tutorial 07 7

• As Guest enter your name and click on Enter Room

• See the Waiting for Entry Access for Host to give permission

• Host sees the following dialog in Adobe Connect and grants access

2.6 Layouts

• Creating new layouts example Sharing layout

• Menu Layouts Create New Layout. . . Create a New Layout dialog Create a new blank layout and name it
PMolyMain

• New layout has no Pods but does have Layouts Bar open (see Layouts menu)

8 M250 Exam Revision 11 May 2025

• Pods

• Menu Pods Share Add New Share and resize/position — initial name is Share n — rename
PMolyShare

• Rename Pod Menu Pods Manage Pods. . . Manage Pods Select Rename or Double-click & rename

• Add Video pod and resize/reposition

• Add Attendance pod and resize/reposition

• Add Chat pod — rename it PMolyChat — and resize/reposition

• Dimensions of Sharing layout (on 27-inch iMac)

– Width of Video, Attendees, Chat column 14 cm

– Height of Video pod 9 cm

– Height of Attendees pod 12 cm

– Height of Chat pod 8 cm

• Duplicating Layouts does not give new instances of the Pods and is probably not a
good idea (apart from local use to avoid delay in reloading Pods)

• Auxiliary Layouts name PMolyAux0n

– Create new Share pod

– Use existing Chat pod

– Use same Video and Attendance pods

2.7 Chat Pods

• Format Chat text

• Chat Pod menu icon My Chat Color

• Choices: Red, Orange, Green, Brown, Purple, Pink, Blue, Black

• Note: Color reverts to Black if you switch layouts

• Chat Pod menu icon Show Timestamps

2.8 Graphics Conversion for Web

• Conversion of the screen snaps for the installation of Anaconda on 1 May 2020

• Using GraphicConverter 11

• File Convert & Modify Conversion Convert

• Select files to convert and destination folder

• Click on Start selected Function or +

Phil Molyneux M250 Tutorial 07 9

2.9 Adobe Connect Recordings

• Menu bar Meeting Preferences Video

• Aspect ratio Standard (4:3) (not Wide screen (16:9) default)

• Video quality Full HD (1080p not High default 480p)

• Recording Menu bar Meeting Record Session ✔

• Export Recording

• Menu bar Meeting Manage Meeting Information

• New window Recordings check Tutorial Access Type button

• check Public check Allow viewers to download

• Download Recording

• New window Recordings check Tutorial Actions Download File

ToC

3 Specimen Exam for 2021 — Rubric

• Time limit 3 hours 30 minutes

• Answer all questions

• Part 1 — 4 Short Questions (25 marks)

• Part 2 — A simple class (2 questions 15 marks)

• Part 3 — Class relationships (2 questions 30 marks)

• Part 4 — Collections (2 questions 30 marks)

• Note that the order of sub-questions varies from attempt to attempt — so my slides
may vary in presentation from the version you used

ToC

4 Spec 2021 Questions

4.1 M250 From 2021 Specimen 2021 Exam Q 1

• The following code does not compile. Why not? Select all the reasons that lead to
compilation errors.� �

1 Public class Robot
2 {
3 private int x;

5 public Robot()
6 {
7 s = 1;
8 }

10 public getX()
11 {
12 return x;
13 }

10 M250 Exam Revision 11 May 2025

15 public void DecreaseX()
16 {
17 x++;
18 }� �

• Select one or more:

1. The method DecreaseX does not follow naming conventions.

2. The constructor uses an undeclared variable.

3. The method getX should have an argument.

4. The method DecreaseX needs to decrement x.

5. The keyword this must be used to access the field x.

6. There is a brace (curly bracket) missing.

7. The constructor should declare a return type.

8. The method getX should declare a return type.

9. The code is not indented correctly.

10. The class header is not valid.

11. The instance variable x is not explicitly initialised.

Go to Soln 1

ToC

4.2 M250 From 2021 Specimen 2021 Exam Q 2

• Given the following declarations and initialisations, select the two correct options
below.� �

1 String fish1 = "FISH";
2 String fish2 = "FiSh".toUpperCase();
3 String fish3 = fish1;
4 String fish = "fish";

6 System.out.println(fish1 == fish2); // line 1
7 System.out.println(fish1.equals(fish2)); // line 2
8 System.out.println(fish1 == fish3); // line 3
9 System.out.println(fish == fish1); // line 4

10 System.out.println(fish.equals(fish1)); // line 5� �
• Select one or more:

1. The result of executing line 1 is true because fish1 and fish2 both reference
strings consisting of the four characters F, I, S and H.

2. The result of executing line 2 is true because fish1 and fish2 both reference a
string consisting of, in that order, the four characters F, I, S and H.

3. The result of executing line 3 is true because fish1 and fish3 both reference the
same String object consisting of the four characters F, I, S and H.

4. The result of executing line 4 is true because fish and fish1 both reference the
same string consisting of the four characters F, I, S and H.

Phil Molyneux M250 Tutorial 07 11

5. The result of executing line 5 is true because fish and fish1 both reference the
same string consisting of the four characters F, I, S and H.

Go to Soln 2

ToC

4.3 M250 From 2021 Specimen 2021 Exam Q 3

• Given the following class modelling a music CD, answer the four sets of questions
about it.� �

1 class CD {
2 private String artist ;
3 private String title ;
4 private int minutes ;

6 public CD(String anArtist, String aTitle, int numMinutes) {
7 artist = anArtist ;
8 title = aTitle ;
9 minutes = numMinutes ;

10 }

12 public String toString() {
13 return "Artist: " + artist + " Title: " + title + " Playing time: " + minutes ;
14 }� �

• Code continued:� �
16 public void hours() {
17 if (minutes < 60) {
18 System.out.println("Less than one hour") ;
19 }
20 else {
21 int hrs ;
22 hrs = minutes / 60 ;
23 System.out.println("hours " + hrs) ;
24 }
25 }
26 }� �

1 Match the following features to their correct names

(a) public CD(String anArtist, String aTitle, int numMinutes)

(b) private String title ;

(c) minutes = 60

(d) int hrs ;

(e) /

(f) anArtist

Choose. . .

expression operand signature
method header actual parameter formal parameter
local variable declaration constructor header operator
literal field declaration

2 Which of the following features occur? (Tick the correct ones)

(a) method chaining

(b) multiple inheritance

12 M250 Exam Revision 11 May 2025

(c) overloading

(d) overriding

(e) composition

(f) polymorphism

3 How many are there of each of the following? (Type in a digit, not a word)

(a) different operators (don’t count repeats of the same operator)

(b) methods

(c) primitive type instance variables

(d) reference type instance variables

4 Which sets of variables have the same scope?

Select true if the variables have the same scope, otherwise select false.

(a) artist, title true/false

(b) artist, title, minutes true/false

(c) hrs, minutes true/false

(d) anArtist, aTitle, numMinutes true/false

Go to Soln 3

ToC

4.4 M250 From 2021 Specimen 2021 Exam Q 4

• Write a public method in the class Test that has the signature concatenateThese(int,
int) and does not return any value.

• The method concatenates all of the elements between the given indexes of the nums
array into a single string and prints that string out (see the example below).

• You do not have to perform any checks on the parameters to see whether they are
in bounds for the array.

• For example

Test Result
Test t = new Test(new int[]{1,3,7,9,10}); 7910
t.concatenateThese(2,4);

• Complete your code in the following:� �
1 public class Test {
2 private int[] nums;
3 public Test(int[] vals) {
4 nums = vals;
5 }
6 // Write your concatenateThese(int, int) method here
7 }� �

Go to Soln 4

ToC

Phil Molyneux M250 Tutorial 07 13

4.5 M250 From 2021 Specimen 2021 Exam Q 5

• Scenario This question concerns a class called House which is to be developed to
model some aspects of a house.

• Write a class to complete the requirements in (a)-(g) below:

(a) The class is to be called House.

(b) The class requires two private instance variables called material of type String,
and age of type int.

(c) Add a public constructor to the class that takes two parameters. The first parameter
is of type String and the second parameter is of type int. Use the first parameter
to set the material field, and the second parameter to set the age field.

(d) Write standard getter methods for the two fields.

(e) Write standard setter methods for the two fields.

(f) Write a public method called about that returns a string of the following form:

A material house of age age

• The material and age should be replaced by the actual material and age of the
house.

(g) Write a public method with the signature equals(House) that returns true if the
fields of the actual parameter have the same values as the fields of this object, and
returns false otherwise.

• Below is an example test case for this class.

• For example

Test Result
House a = new House("brick", 23); brick
System.out.println(a.getMaterial());

• Complete your code in the following:� �
1 // write your answer here� �

Go to Soln 5

ToC

4.6 M250 From 2021 Specimen 2021 Exam Q 6

• Based on the House class just described, select the correct answers below:

(a) The class overrides 0,1,2,. . . method(s).

(b) The class overloads 0,1,2,. . . method(s).

(c) The class is not/is a subclass of Object.

(d) The class does not demonstrate/demonstrates information hiding.

(e) The class needs to/does not need to use at least one external method call.

14 M250 Exam Revision 11 May 2025

Go to Soln 6

ToC

4.7 M250 From 2021 Specimen 2021 Exam Q 7

• Scenario This question concerns a class called Child which is to be developed as a
subclass of the class Person (click to view this file), which has already been devel-
oped.

• Persons have a first name, a last name, wear white shirts by default, have a number
of friends, and have an amount of money.

• Children may be in a playing state, or not playing.

• The Java library class java.awt.Color is used to represent shirt colours such as
Color.WHITE.

• Note that printing out a colour produces output such as java.awt.Color[r=0,g=0,b=255]
(which represents Color.BLUE in this case). The three numbers represent compo-
nents of Red, Green, and Blue colour.

• Develop only the class Child

(a) Add the class Child below, making it a subclass of Person.

(b) Add a private instance variable to the class called playing of type boolean.

(c) Add a public constructor for Child whose first parameter is the child’s first name
and whose second parameter is the child’s second name.

The constructor should initialise the child’s first and last names using the received
arguments.

The instance variable playing should be set to true. The initial money should be
set to 10.

(d) Add a standard getter method for playing called isPlaying.

(e) Add a public method play, which takes no arguments and returns no value.

The method sets playing to true and increments the child’s number of friends by
1.

(f) Add a public method work, which takes no arguments and returns no value.

The method sets sets playing to false and and decrements the child’s number of
friends by 1.

(Don’t worry about the value becoming negative.)

(g) Add a public method getNickname that returns a nickname for the child based on
their first and last names at the time the method is called.

The method returns the first three letters of the child’s first name concatenated to
the last three letters of the child’s last name in lowercase.

(You can assume the names are long enough.)

For example, if the child’s first name is "Betsy" and their last name is "Corble"
the method will return the string "Betble".

Phil Molyneux M250 Tutorial 07 15

(h) Add a public method buySnack which does not return a value and has a single
parameter of type int representing the cost of a snack.

If the child has enough money to buy the snack then the method decreases the
money the child owns by the argument received, otherwise it just prints

I need money

(i) Add a public method goHome which does not return a value and takes no arguments.

If the child has no friends then the method prints

I’m going home

Otherwise the method prints

Bye

as many times as the child has friends.

(i) Add a public setShirtColour method to override the inherited method of that
name.

The child’s method behaves in the same way as the inherited method provided that
the child is not playing.

When a child is playing, its setShirtColour method behaves as follows:

If the child is wearing a shirt that is Color.WHITE then the method prints

I’m changing now

before setting the child’s shirt colour to the received argument.

If the child is not wearing a shirt that is Color.WHITE then the method prints

I’m wearing play clothes already

but doesn’t change the shirt colour.

• Below is an example test case for this class.

• For example

Test Result
Child f = new Child("Jan", "Feb"); 1
System.out.println(f.getNumFriends()); false
f.work(); 0
System.out.println(f.isPlaying());
System.out.println(f.getNumFriends());

Go to Soln 7

ToC

4.8 M250 From 2021 Specimen 2021 Exam Q 8

• Answer parts (a)–(d) below.

(a) Consider the following code based on the person and child scenario and the code
developed in this question.

Select all of the following statements that will compile.

16 M250 Exam Revision 11 May 2025

(i) Child c = new Child("Celia", "Goth");

(ii) Person p = new Child("Penny", "Bun");

(iii) Person p = new Person("Kim", "Wilde");

(iv) Person p = new Object("Janet", "Becker");

(v) Person p = new Child("Penny");

(vi) Child c = new Person("Tom", "Sawyer");

(b) Suppose that the following further code is added to the class Child� �
1 public String playingString() {
2 return (playing ? "not playing" : "playing") ;
3 }� �

Select all of the true statements in this scenario:

(i) The playingString method contains a logical error.

(ii) The playingString method overloads the toString method in the Object class.

(iii) The playingString method will not compile because it contains a syntax error.

(iv) The playingString method overloads the toString method in the Person class.

(v) The playingString method will not compile because it is missing the @Override
annotation.

(vi) The playingString method will cause an exception.

ToC

4.9 M250 From 2021 Specimen 2021 Exam Q 9

• Scenario A concert hall hosts musical concerts.

A concert has a programme of musical performances.

Each item of music in a programme has a title and a composer.

• The class Music (click to view this file) has already been developed.

• Please note that the answer box below contains two classes to complete.

You can only use import statements at the top of the answer box.

• The answer box below includes some methods of the class Concert that you should
not alter, as well as a wrapper for the ConcertHall class.

(a) Develop only the class Concert in this part.

(i) Add a declaration for a private instance variable called programme, which should be
declared as a List containing elements of type Music.

(ii) Add a public constructor for Concert that takes two string parameters representing
the date of the concert and the concert name, and initialises the related variables
accordingly.

The constructor should also initialise programme to a suitable empty collection.

(iii) Add a standard getter method for the programme collection.

Phil Molyneux M250 Tutorial 07 17

(iv) Write a public instance method getConcertLength that takes no parameters and
returns the length of the concert in minutes.

The method will need to loop through the Music items in programme, and add up
all their performance times then return the total.

(v) Write a public instance method addProgrammeItem that takes an argument of type
Music and returns no value.

If the running time of the concert will not exceed MAX_LENGTH by adding the music
to the programme list then it is added, otherwise the error message

Running time exceeded

is printed instead.

(vi) The concert hall owners want to be able to sort concerts by their concertName.

Modify the Concert class so that it implements the appropriate interface, and then
implement the compareTo method that will allow the ordering required.

(b) Develop only the class ConcertHall in this part.

(i) Add a public instance variable whatsOn to the ConcertHall class that will be used to
map between sorted composers’ names and sorted sets of names of their music that
are performed in a concert.

(For example, when populated the map might include a mapping from the name
"Elgar" to a sorted set of Elgar’s music including "Engima Variations" and "Sospiri".)

Note that this field needs to be made public for testing purposes.

(ii) Add a public ConcertHall constructor that initialises whatsOn to a suitable collec-
tion type (initially empty).

(iii) Add a public instance method addConcert that takes a parameter of type Concert
and does not return a value.

This method’s job is to populate the whatsOn map according to the contents of the
concert.

Remember that a Concert has a programme of music.

When the addConcert method is finished running the whatsOn map should contain
a mapping for each composer whose music is in the concert programme, with the
value being the sorted set of the composer’s music in the programme.

• Below is an example test case for this class.

• For example

Test Result
//check constructor executes and initialisation 2021-12-20
Concert c = new Concert("2021-12-20", "Happy days"); Happy Days
System.out.println(c.getDate()); []
System.out.println(c.getConcertName());
System.out.println(c.getProgramme());

Go to Soln 9

ToC

18 M250 Exam Revision 11 May 2025

4.10 M250 From 2021 Specimen 2021 Exam Q 10

• Thinking about the scenario of the concert hall in the previous question:

(a) Select two reasons why it is preferable to declare the whatsOn collection using an
interface type, such as a Map, rather than a concrete class such as HashMap, which
implements that interface.

(i) A HashMap is abstract while a Map is concrete.

(ii) A Map provides more opportunity for reuse, due to substitutability of subtypes.

(iii) Using a Map allows us to change the implementation type more easily later on.

(iv) A Map supports multiple inheritance while a HashMap does not.

(v) A Map is more efficient than a HashMap.

(b) Select two reasons why a set is appropriate for the values in the whatsOn map, while
a list was chosen for the programme in the Concert class:

(i) Titles of music by a composer are unique, so a set is appropriate for storing them.

(ii) A set is more efficient for storing music titles associated with a composer than a list.

(iii) A set maintains the order of items added to it so is best for a music programme.

(iv) A concert hall has a set of music, so composition with sets and lists is appropriate.

(v) A programme of music has a particular playing order, so a list is appropriate for the
programme.

Go to Soln 10

ToC

5 Spec 2021 Solns

5.1 M250 From 2021 Specimen 2021 Exam Soln 1

• The following lead to compilation errors:

2. The constructor uses an undeclared variable.

6. There is a brace (curly bracket) missing.

8. The method getX should declare a return type.

10. The class header is not valid.

• Code that does compile is given below

Go to Q 1

• The following does compile� �
1 public class Robot {
2 private int x ;

4 public Robot() {
5 x = 1 ;
6 }

8 public int getX() {

Phil Molyneux M250 Tutorial 07 19

9 return x ;
10 }

12 public void DecreaseX() {
13 x++ ;
14 }
15 }� �

Go to Q 1

ToC

5.2 M250 From 2021 Specimen 2021 Exam Soln 2

• Answers� �
1 String fish1 = "FISH";
2 String fish2 = "FiSh".toUpperCase();
3 String fish3 = fish1;
4 String fish = "fish";

6 System.out.println(fish1 == fish2); // line 1 false
7 System.out.println(fish1.equals(fish2)); // line 2 true
8 System.out.println(fish1 == fish3); // line 3 true
9 System.out.println(fish == fish1); // line 4 false

10 System.out.println(fish.equals(fish1)); // line 5 false� �
Go to Q 2

ToC

5.3 M250 From 2021 Specimen 2021 Exam Soln 3

(a) public CD(String anArtist, String aTitle, int numMinutes) constructor
header

(b) private String title ; field declaration

(c) minutes = 60 expression

(d) int hrs ; local variable declaration

(e) / operator

(f) anArtist formal parameter

2 Which of the following features occur? (Tick the correct ones)

(a) method chaining

(b) multiple inheritance

(c) overloading

(d) overriding yes

(e) composition yes

(f) polymorphism

3 How many are there of each of the following? (Type in a digit, not a word)

20 M250 Exam Revision 11 May 2025

(a) different operators 4 (don’t count repeats of the same operator) {=,+,<,/} Do
not forget (.) is a separator not an operator, see Java Language Specification
3.11 Separators, 3.12 Operators

(b) methods 2

(c) primitive type instance variables 1

(d) reference type instance variables 2

4 Which sets of variables have the same scope?

Select true if the variables have the same scope, otherwise select false.

(a) artist, title true/false

(b) artist, title, minutes true/false

(c) hrs, minutes true/false

(d) anArtist, aTitle, numMinutes true/false

ToC

5.4 M250 From 2021 Specimen 2021 Exam Soln 4

• Sample answer� �
1 public class Test {
2 private int[] nums;
3 public Test(int[] vals) {
4 nums = vals;
5 }
6 // Write your concatenateThese(int, int) method here
7 public void concatenateThese(int x, int y) {
8 String numsStr = "" ;
9 for (int i = x; i <= y; i++) {

10 numsStr = numsStr + this.nums[i] ;
11 }
12 System.out.println(numsStr) ;
13 }
14 }� �

Go to Q 4

ToC

5.5 M250 From 2021 Specimen 2021 Exam Soln 5

• Possible answer� �
1 // (a) class header

3 public class House {
4 // (b) private instance variables
5 private String material ;
6 private int age ;

8 // (c) public constructor
9 public House(String aMaterial, int anAge) {

10 material = aMaterial ;
11 age = anAge ;
12 }

14 // (d) standard getter methods
15 public String getMaterial() {
16 return material ;

https://docs.oracle.com/javase/specs/jls/se17/html/jls-3.html
https://docs.oracle.com/javase/specs/jls/se17/html/jls-3.html

Phil Molyneux M250 Tutorial 07 21

17 }

19 public int getAge() {
20 return age ;
21 }� �� �
23 // (e) standard setter methods
24 public void setMaterial(String aMaterial) {
25 material = aMaterial ;
26 }

28 public void setAge(int anAge) {
29 age = anAge ;
30 }

32 // (f) public method called about that returns a string
33 public String about() {
34 return "A " + material + " house of age " + age ;
35 }

37 // (g) public method with the signature equals(House)
38 public boolean equals(House aHouse) {
39 return this.getMaterial().equals(aHouse.getMaterial()) && this.age == aHouse.getAge() ;
40 }
41 }� �

• Note in (g) return of Boolean instead of boolean loses marks

Go to Q 5

ToC

5.6 M250 From 2021 Specimen 2021 Exam Soln 6

• Sample answers:

(a) The class overrides 0 method(s).

(b) The class overloads 1 method(s).

The equals method (since not same signature as equals inherited from Object)

(c) The class is a subclass of Object.

(d) The class demonstrates information hiding.

(e) The class needs to use at least one external method call.

The equals method of String

Go to Q 6

ToC

5.7 M250 From 2021 Specimen 2021 Exam Soln 7

• Sample answer� �
1 import java.awt.Color ;

4 // (a) Child class header
5 public class Child extends Person {
6 // (b) private instance variable
7 private boolean playing ;

9 // (c) Child constructor

22 M250 Exam Revision 11 May 2025

10 public Child(String aFirstName, String aLastName) {
11 super(aFirstName,aLastName) ;
12 playing = true ;
13 this.setMoney(10) ;
14 }� �� �
16 // (d) getter
17 public boolean isPlaying() {
18 return this.playing ;
19 }

21 // (e) setter
22 public void play() {
23 this.playing = true ;
24 this.setNumFriends(this.getNumFriends() + 1) ;
25 }� �� �
27 // (f) public method work
28 public void work() {
29 this.playing = false ;
30 this.setNumFriends(this.getNumFriends() - 1) ;
31 }

33 // (g) public method getNickname
34 public String getNickname() {
35 String lstNm = this.getLastName() ;
36 int lenLstNm = lstNm.length() ;
37 String fstNm = this.getFirstName() ;
38 String fst3 = fstNm.substring(0,3) ;
39 String lst3 = lstNm.substring(lenLstNm - 3) ;
40 return fst3 + lst3 ;
41 }� �� �
43 // (h) public method buySnack
44 public void buySnack(int snkCst) {
45 int mny = this.getMoney() ;
46 if (snkCst <= mny) {
47 this.setMoney(mny - snkCst) ;
48 } else {
49 System.out.println("I need money") ;
50 }
51 }

53 // (i) public method goHome
54 public void goHome() {
55 int nmFrnds = this.getNumFriends() ;
56 if (nmFrnds > 0) {
57 for (int i = 1; i <= nmFrnds; i++) {
58 System.out.println("Bye") ;
59 }
60 } else {
61 System.out.println("I’m going home") ;
62 }
63 }� �� �
65 // (j) public method setShirtColour
66 @Override
67 public void setShirtColour(Color aColour) {
68 Color shrtClr = this.getShirtColour() ;
69 if (shrtClr.equals(Color.WHITE)) {
70 System.out.println("I’m changing now") ;
71 super.setShirtColour(aColour) ;
72 } else {
73 System.out.println("I’m wearing play clothes already") ;
74 }
75 }

77 }� �
ToC

Phil Molyneux M250 Tutorial 07 23

5.8 M250 From 2021 Specimen 2021 Exam Soln 8

(a) Consider the following code based on the person and child scenario and the code
developed in this question.

Select all of the following statements that will compile.

(i) Child c = new Child("Celia", "Goth"); yes

(ii) Person p = new Child("Penny", "Bun"); yes

(iii) Person p = new Person("Kim", "Wilde"); yes

(iv) Person p = new Object("Janet", "Becker");

(v) Person p = new Child("Penny");

(vi) Child c = new Person("Tom", "Sawyer");

(b) Suppose that the following further code is added to the class Child� �
1 public String playingString() {
2 return (playing ? "not playing" : "playing") ;
3 }� �

Select all of the true statements in this scenario:

(i) The playingString method contains a logical error. yes

(ii) The playingString method overloads the toString method in the Object class.

(iii) The playingString method will not compile because it contains a syntax error.

(iv) The playingString method overloads the toString method in the Person class.

(v) The playingString method will not compile because it is missing the @Override
annotation.

(vi) The playingString method will cause an exception.

Go to Q 8

ToC

5.9 M250 From 2021 Specimen 2021 Exam Soln 9

• Sample answer from file Concert.java� �
1 import java.util.* ;

3 //Scroll down to see the ConcertHall class below the Concert class
4 /**
5 * The class Concert models a musical event at a concert hall.
6 * Complete the class according to the instructions in part (a)
7 */
8 // (a)(vi) interface imlementation
9 class Concert implements Comparable<Concert> {

10 private String concertName;
11 private String date ; // in "yyyy-mm-dd" format
12 public static final int MAX_LENGTH = 120 ;
13 // (a)(i) private instance variable
14 private List<Music> programme ;� �� �
16 // (a)(ii) public constructor
17 public Concert(String aDate, String aConcertName) {
18 date = aDate ;
19 concertName = aConcertName ;

24 M250 Exam Revision 11 May 2025

20 programme = new ArrayList<>() ;
21 }

23 /**
24 * Getter for the date of the concert
25 */
26 public String getDate() {
27 return this.date ;
28 }

30 /**
31 * Getter for the name of the concert
32 */
33 public String getConcertName() {
34 return this.concertName;
35 }� �� �
37 // (a)(iii) getter for programme
38 public List<Music> getProgramme() {
39 return this.programme ;
40 }

42 // (a)(iv) public instance method getConcertLength
43 public int getConcertLength() {
44 List<Music> aProgramme = this.getProgramme() ;
45 int concertLength = 0 ;
46 for (Music progItem : aProgramme) {
47 concertLength = concertLength + progItem.getPerformanceTime() ;
48 }
49 return concertLength ;
50 }� �� �
52 // (a)(v) public instance method addProgrammeItem
53 public void addProgrammeItem(Music progItem) {
54 int concertLength = this.getConcertLength() ;
55 int progItemLength = progItem.getPerformanceTime() ;
56 if (concertLength + progItemLength <= MAX_LENGTH) {
57 this.getProgramme().add(progItem) ;
58 } else {
59 System.out.println("Running time exceeded") ;
60 }
61 }

63 // (a)(vi) natural ordering of concerts
64 public int compareTo(Concert aConcert) {
65 return (this.getConcertName().compareTo(aConcert.getConcertName())) ;
66 }� �� �
68 /**
69 * A simple equals method
70 */
71 public boolean equals(Object o) {
72 Concert c = (Concert) o;

74 return this.getDate().equals(c.getDate()) && this.getConcertName().equals(c.getConcertName());
75 }

77 /**
78 * return a hash code for this object based on its date and name
79 */
80 public int hashCode() {
81 return new Integer(this.getDate()).hashCode()*101 + this.getConcertName().hashCode();
82 }
83 }� �� �
85 /**
86 * This class models a concert hall that hosts concerts of music
87 * Complete this class using the instructions in part (b)
88 */
89 class ConcertHall {
90 // Add code for ConcertHall here

92 // (b)(i) public instance variable whatsOn
93 // SortedMap<composer,SortedSet<title>>

Phil Molyneux M250 Tutorial 07 25

94 public SortedMap<String,SortedSet<String>> whatsOn ;

96 // (b)(ii) public constructor
97 public ConcertHall() {
98 whatsOn = new TreeMap<String,SortedSet<String>>() ;
99 }� �� �

101 // (b)(iii) public instance method addConcert
102 public void addConcert(Concert aConcert) {
103 List<Music> aProgramme = aConcert.getProgramme() ;
104 SortedSet<String> ts ;
105 for (Music progItem : aProgramme) {
106 if (this.whatsOn.containsKey(progItem.getComposer())) {
107 ts = this.whatsOn.get(progItem.getComposer()) ;
108 } else {
109 ts = new TreeSet<String>() ;
110 this.whatsOn.put(progItem.getComposer(),ts) ;
111 }
112 ts.add(progItem.getTitle()) ;
113 }
114 }

116 }� �
• Errors in the development of the answer

(1) Wrong bracket in method calls) not (

(2) Forgot import java.util.*

(3) getConcertLength() got programme from wrong place

(4) Forgot implements clause

(5) Problem with compareTo()

(6) implements Comparable should have been implements Comparable<Concert>

(7) Did not expect @Override

Go to Q 9

ToC

5.10 M250 From 2021 Specimen 2021 Exam Soln 10

(a) Select two reasons why it is preferable to declare the whatsOn collection using an
interface type, such as a Map, rather than a concrete class such as HashMap, which
implements that interface.

(i) A HashMap is abstract while a Map is concrete.

(ii) A Map provides more opportunity for reuse, due to substitutability of subtypes. yes

(iii) Using a Map allows us to change the implementation type more easily later on. yes

(iv) A Map supports multiple inheritance while a HashMap does not.

(v) A Map is more efficient than a HashMap.

(b) Select two reasons why a set is appropriate for the values in the whatsOn map, while
a list was chosen for the programme in the Concert class:

(i) Titles of music by a composer are unique, so a set is appropriate for storing them.
yes

26 M250 Exam Revision 11 May 2025

(ii) A set is more efficient for storing music titles associated with a composer than a list.

(iii) A set maintains the order of items added to it so is best for a music programme.

(iv) A concert hall has a set of music, so composition with sets and lists is appropriate.

(v) A programme of music has a particular playing order, so a list is appropriate for the
programme. yes

Go to Q 10

ToC

6 Prsntn 2018J Qs

6.1 M250 2018J Exam Qs

• M250 Object-oriented Java Programming

• Presentation 2018J Exam

• Date Monday, 10 June 2019 Time 10:00–13:00

• You should attempt ALL questions

• Note see the original exam paper for exact wording and formatting — these slides
and notes may change some wording and formatting

Go to Solns

ToC

6.2 M250 2018J Exam Q 1

• Scenario Equity is a union of more than 43000 performers. All performers in Equity
have a professional name, known as their equity name which is unique to them, and
can choose to join a local branch of Equity.

• Performers can belong to a local branch which organises regular meetings, for ex-
ample on the second Saturday of each month.

• This question asks you to write parts of the class Performer, whose purpose is to
model this scenario.

• Assume a class Branch which has two private String instance variables, name,
address, a two-argument constructor allowing the branch name and address to be
initialised, an equals method, getter methods for name and address and a setter
method for address.

6.2.1 Q 1(a)

(a)(i) Write a class Performer with the following: (9 marks)

• a private instance variable of type String called equityName

• a private instance variable of type double called payRate, which will be used to hold
the agreed rate of pay for that performer

Phil Molyneux M250 Tutorial 07 27

• a private instance variable of type Branch called branch which will refer to the in-
stance of Branch which that performer has joined

• a public class variable of type double called minPayRate which is the minimum pay
rate agreed by Equity for performers.

• a public single-argument constructor which initializes equityName to the argument
string aName, sets branch to null and sets payRate to minPayRate

• a public setter method for payRate

• a public getter method for branch

• a public setter method for branch

• a public getter method for equityName

(ii) Write a public instance method isInSameBranchAs() that has a Performer argu-
ment.

• This method will return true if the receiver and the argument Performer objects
are members of the same branch, and false otherwise. (5 marks)

(iii) Write a public instance method getFirstName() that has no arguments.

• This method will return a String consisting of all the characters in the equityName,
up to but not including the first space. You may assume that there is a space in the
equityName. (5 marks)

ToC

6.2.2 Q 1(b)

(b) Given the code developed in part (a), assume that the following code is part of a
method and is executed:� �

Branch b1 ; // 1
b1 = new Branch("Kent", "The Alexander Centre") ; // 2
Branch b2 ; // 3
b2 = new Branch("Dorset", "Wessex fm Studios") ; // 4
Performer.minPayRate = 9.50 ; // 5
Performer p1 = new Performer("Happy Bunny") ; // 6
Performer p2 = new Performer("Silly Sausage") ; // 7
p1.setPayRate(10.00) ; // 8
p2.setPayRate(20.00) ; // 9
p1.setBranch(b1) ; // 10
p2.setBranch(b1) ; // 11
System.out.println(p1.isInSameBranchAs(p2)) ; // 12� �

• In the numbered lines of code above, identify all the examples of the following,
stating the line number(s) on which they occur. If there are no examples, state None
explicitly. (7 marks)

(i) messages are sent

(ii) reference variables are declared

(iii) primitive variables are declared

(iv) object construction

(v) operators are used

(vi) formal arguments are declared

28 M250 Exam Revision 11 May 2025

(vii) actual arguments are used

ToC

6.2.3 Q 1(c)

(c) For the class Performer, write the public instance method equals() that overrides
the equals() method inherited from Object.

• This method will return true if the equityName of the receiver is the same as the
equityName of the argument object, and otherwise return false. (5 marks)

ToC

6.2.4 Q 1(d)

(d) Based on the Performer class written so far, answer the following questions:

(i) What is the nature of the object-oriented relationship between the classes Performer
and Branch? Explain your answer. (2 marks)

(ii) Consider line // 5 in part (b) above. Why can the value of minPayRate be set at this
point when no Performer objects have been constructed? (2 marks)

(iii) Give two examples of how scope applies to the Performer class. One example
should relate to an instance variable and the other should relate to a formal ar-
gument. (5 marks)

Total (40 marks)

Go to Soln 1

ToC

6.3 M250 2018J Exam Q 2

6.3.1 Q 2(a)

• Scenario This question concerns a number of vehicle classes and the Drivable
interface that specifies some common behaviours.

(a) Drivable is a Java interface that specifies three methods accelerate(), brake()
and stop().

These methods take no argument and return no value.

Write down the Drivable interface. (3 marks)

ToC

6.3.2 A 2(b)

(b) In this part of the question you will develop code for the Vehicle class. The class
Vehicle inherits directly from Object and implements the Drivable interface.

(i) Write down the header for the Vehicle class. (1 mark)

(ii) Suppose Vehicle has a single private instance variable speed of type int. Vehicle
implements the methods of the Drivable interface according to the following rules.

Phil Molyneux M250 Tutorial 07 29

• accelerate() causes speed to be increased by 1.

• brake() causes speed to be decreased by 1, as long as it is greater than 0, otherwise
it leaves it unchanged.

• stop() causes speed to be repeatedly decreased by 1 until it reaches 0.

• Write the code for these three methods. (5 marks)

ToC

6.3.3 Q 2(c)

(c) In this part of the question you will develop code for the Car class. The class Car is
a subclass of Vehicle.

Car has two extra int instance variables maxSpeed and increment. (7 marks)

(i) When an instance of Car receives the message accelerate(), it increases its speed
by increment if that would not take the speed over maxSpeed, otherwise speed is
left unchanged.

Write the accelerate() method for Car.

(ii) What is the benefit of adding the @Override annotation to the accelerate() method
for Car?

(iii) Suppose that we want to keep a count of the number of Car objects that have been
created. Explain using code fragments how we could achieve this.

ToC

6.3.4 Q 2(d)

(d) Suppose that a class called SpeedBoat, which is unrelated to Car, also implements
the Drivable interface, and that a class called Service has a public constructor
that takes a formal argument of type Drivable. (4 marks)

(i) Briefly explain why lines //1 and //2 below are valid:� �
Car c = new Car();
SpeedBoat sb = new SpeedBoat();
Service s1 = new Service(c); //1
Service s2 = new Service(sb); //2� �
(iii) Suppose that we want to keep a count of the number of Car objects that have been

created. Explain using code fragments how we could achieve this.

ToC

6.3.5 Q 2(e)(f)

(e) Describe three differences between abstract classes and interfaces. (6 marks)

(f) Suppose that SportsCar is a subclass of Car. Describe what needs to be added to
the class SportsCar (if anything) so that SportsCar will implement the interface
Drivable. Briefly justify your answer. (4 marks)

Total (30 marks)

30 M250 Exam Revision 11 May 2025

Go to Soln 2

ToC

6.4 M250 2018J Exam Q 3

• Scenario Caravan owners who belong to a club make bookings in advance for their
stays on various sites, giving their estimated time of arrival for each stay on a site.

The club wants to look at the pattern of estimated arrival times for all their caravan
sites for a particular weekend so that they can organise staffing appropriately.

Two classes, Booking and CaravanSite, have already been partially completed.

• The class Booking already has the following instance variables, constructor and get-
ters:

• A private instance variable makeAndModel of type String which represents the make
and model of the caravan e.g. "Swift Basecamp",

• A private instance variable owner of type String, which represents an owner name
e.g. "Sue Smith",

• A private instance variable estArrivalHour of type int, which represents the es-
timated arrival hour as a whole number using the 24-hour clock (e.g. 16 is used to
represent 4pm),

• A three-argument constructor that takes arguments of types String, String and
int and uses them to set the instance variables,

• Getter methods for makeAndModel, owner and estArrivalHour.

• The class CaravanSite already has the following instance variables:

• A private instance variable siteName of type String, which represents the unique
name of the caravan site (e.g. "Park Coppice"),

• A private instance variable maxVans of type int, which represents the maximum
number of caravans that can be accommodated on that site.

6.4.1 Q 3(a)

(a) In this part of the question you will develop additional code for the CaravanSite
class.

(i) Write down the declaration of a private instance variable called bookings, which
should be declared as a List of Booking elements, representing bookings currently
made for the site, in the order the bookings were made. (1 mark)

(ii) Write a two-argument constructor for CaravanSite that takes a String argument
representing the name of the caravan site, and an int representing the maximum
number of caravans that can be accommodated, and initialises the instance variables
accordingly. The constructor should also initialise bookings with a suitable empty
collection. (3 marks)

(iii) Write a public instance method addBooking() that takes a Booking argument rep-
resenting the booking of a caravan.

Phil Molyneux M250 Tutorial 07 31

As long as the number of bookings already made is less than the maximum number
of caravans the site can accommodate, the Booking is added to bookings.

If there is not enough room then a suitable message is printed.

In both cases the remaining number of vans that can still be accommodated after
this booking is returned. (4 marks)

ToC

6.4.2 Q 3(b)

(b) In this part of the question you will develop extra code for the Booking class so that
instances of Booking may be sorted from earliest to latest estimated arrival hour.

Assume the equals() and hashCode() methods for Booking have already been
written.

(i) Write down the new class header for Booking, which must now implement an appro-
priate interface. (1 mark)

(ii) Write a compareTo(Booking) method for Booking that will allow ordering of Booking
instances as above. (3 marks)

ToC

6.4.3 Q 3(c)

(c) Write a public instance method orderBookings() for the CaravanSite class that
takes no argument and returns no value.

This method should reorder the elements of bookings by estimated arrival hour.
(2 marks)

ToC

6.4.4 Q 3(d)

(d) In this part of the question you will develop code for a further class, CaravanClub.
This class will help to determine the pattern of estimated arrival times across all
caravan sites.

The class CaravanClub requires a single private instance variable arrByTime. This
is a map where the key is a particular estimated arrival hour as a whole number (e.g.
16) and the value is an unordered set of Booking with that arrival time, from all
caravan sites.

(i) Write down the declaration of a private instance variable arrByTime of a suitable
interface type to reference the map described above. (2 marks)

(ii) Write a zero argument constructor that initialises arrByTime to a suitable collection.
(2 marks)

(iii) Write the public instance method addSite(). This method takes a CaravanSite
instance as the argument and has no return value. The method adds each of the
bookings for that particular site to the arrByTime map, according to the bookings’
estimated arrival hours.

32 M250 Exam Revision 11 May 2025

Assume that the class CaravanSite has a public instance method getBookings()
that returns a list of the bookings for that site.

Note that you cannot assume that a particular estimated arrival hour exists as a key
in the map. (8 marks)

ToC

6.4.5 Q 3(e)

(e)(i) Why is it preferable to declare a collection variable in terms of an interface type,
such as List, rather than a concrete class, such as ArrayList, which implements
that interface? Explain your answer, making two points. (2 marks)

(ii) Give two ways in which an ArrayList is different from an array. (2 marks)

Total (30 marks)

Go to Soln 3

ToC

7 Prsntn 2018J Solns

7.1 M250 2018J Exam Solns

• The solutions given below are not official solutions

• For some questions, alternatives are given — a student would only have to provide
one

• No marks are given for code comments

• You may assume any import statements required, unless otherwise indicated.

• You may assume that methods receive sensible values when a message is sent,
unless otherwise indicated.

• When writing code, you will not be penalised for minor errors, as long as the meaning
is clear.

Go to Qs

ToC

7.2 M250 2018J Exam Soln 1

7.2.1 Soln 1(a)

(a)(i) Q 1� �
1 public class Performer {
2 private String equityName ;
3 private double payRate ;
4 private Branch branch ;
5 public static double minPayRate ;

7 public Performer(String aName) {
8 super() ;
9 equityName = aName ;

Phil Molyneux M250 Tutorial 07 33

10 branch = null ;
11 payRate = Performer.minPayRate ;
12 /* or */
13 // payRate = minPayRate ;
14 }� �� �

1 public void setPayRate(double aPayRate) {
2 payRate = aPayRate ;
3 }

5 public Branch getBranch() {
6 return branch ;
7 }

9 public void setBranch(Branch aBranch) {
10 branch = aBranch ;
11 }

13 public String getEquityName() {
14 return equityName ;
15 }� �

(ii)� �
1 public boolean isInSameBranchAs(Performer p) {
2 return branch.equals(p.getBranch()) ;
3 /* or */
4 // return getBranch().equals(p.getBranch()) ;
5 }� �

(iii)� �
1 public String getFirstName() {
2 int spaceIndex = equityName.indexOf(" ") ;
3 /* or */
4 // int spaceIndex = equityName.indexOf(’ ’) ;
5 return equityName.substring(0,spaceIndex) ;
6 }� �

ToC

7.2.2 Soln 1(b)

(b)

(i) messages are sent: lines 8,9,10,11,12

(ii) reference variables are declared: lines 1,3,6,7

(iii) primitive variables are declared: None

(iv) object construction: lines 2,4,6,7

(v) operators are used: 2,4,6,7

(vi) formal arguments are declared: None

(vii) actual arguments are used: 2,4,6,7,8,9,10,11,12

Go to Q 1

ToC

34 M250 Exam Revision 11 May 2025

7.2.3 Soln 1(c)

(c)� �
1 @Override
2 public boolean equals(Object obj) {
3 Performer pfmr = (Performer) obj ;
4 return equityName.equals(pfmr.equityName) ;
5 }� �

• This version assumes that the object is of type Performer

• See below for a more robust version

(c) Alternative, more robust version� �
1 @Override
2 public boolean equals(Object obj) {
3 if (obj == this) {
4 return true ;
5 }
6 if (!(obj instanceof Performer)) {
7 return false ;
8 }
9 Performer pfmr = (Performer) obj ;

10 return equityName.equals(pfmr.equityName) ;
11 }� �

• It is recommended to override hashcode() if you are overriding equals()

ToC

7.2.4 Soln 1(d)

(d)

(i) A Performer object has a Branch — object composition not inheritance

(ii) minPayRate can be set since it is a class (static) variable and hence already exists
with the class Performer definition.

(iii) The scope of a class member such as an instance variable is the entire class (except
where shadowed by another declaration with the same name — there is none here).

The scope of a formal parameter is the body of the method

Go to Q 1

ToC

7.3 M250 2018J Exam Soln 2

7.3.1 Soln 2(a)

(a) Q 2� �
1 public interface Drivable {
2 void accelerate() ;
3 void brake() ;
4 void stop() ;
5 }� �

• The method description modifiers of abstract and public are implicit

ToC

Phil Molyneux M250 Tutorial 07 35

7.3.2 Soln 2(b)

(b)� �
1 public class Vehicle implements Drivable {
2 private int speed ;

4 public Vehicle() {
5 super() ;
6 speed = 0 ;
7 }

9 public void accelerate() {
10 speed = speed + 1 ;
11 }
12 // } // continued below� �� �

1 public void brake() {
2 if (speed > 0) {
3 speed = speed - 1 ;
4 }
5 }

7 public void stop() {
8 while (speed > 0) {
9 speed = speed - 1 ;

10 }
11 }

13 public int getSpeed() {// required later
14 return speed ;
15 }

17 public void setSpeed(int spd) {// required later
18 speed = spd ;
19 }
20 }� �

ToC

7.3.3 Soln 2(c)

(c)� �
1 public class Car extends Vehicle {
2 private int maxSpeed ;
3 private int increment ;
4 public static int count = 0 ; // Q2(c)(iii)

6 public Car() {
7 super() ;
8 Car.count = Car.count + 1 ; // Q2(c)(iii)
9 }

11 @Override
12 public void accelerate() {
13 if ((getSpeed() + increment) <= maxSpeed) {
14 super.setSpeed(super.getSpeed() + increment) ;
15 }
16 }
17 }� �

(c)

(ii) @Override gets the Java compiler to check that the method signature is correct —
see Unit 6, page 15

(iii) See comments on code above

ToC

36 M250 Exam Revision 11 May 2025

7.3.4 Soln 2(d)

(d) Q 2

(i) Both Car and SpeedBoat implement the interface Drivable and the Service con-
structor takes an argument of type Drivable

(ii) Actual methods will depend on the class of object at runtime

ToC

7.3.5 Soln 2(e)

(e)

• Only one abstract class can be inherited but a class may implement more than one
interface

• Abstract classes can declare instance variables but interface can not

• Up to Java 8, interfaces could not declare default methods

ToC

7.3.6 Soln 2(f)

(f)

Nothing is required since SportsCar will inherit the interface fields from Car

Go to Q 2

ToC

7.4 M250 2018J Exam Soln 3

7.4.1 Soln 3(a)

(a) Q 3� �
1 public class CaravanSite {
2 // provided
3 private String siteName ;
4 private int maxVans ;

6 private List<Booking> bookings ;

8 public CaravanSite(String aName, int aMaxVans) {
9 super() ;

10 siteName = aName ;
11 maxVans = aMaxVans ;
12 bookings = new ArrayList<>() ;
13 }
14 // } // continued below� �� �

1 public int addBooking(Booking aBooking) {
2 if (bookings.size() < maxVans) {
3 bookings.add(aBooking) ;
4 }
5 else {
6 System.out.println("No space") ;
7 }
8 return maxVans - bookings.size() ;
9 }� �

Phil Molyneux M250 Tutorial 07 37

ToC

7.4.2 Soln 3(b)

(b) Q 3� �
1 public class Booking implements Comparable<Booking> {
2 // provided
3 private String makeAndModel ;
4 private String owner ;
5 private int estArrivalHour ;

7 public int compareTo(Booking aBooking) {
8 return estArrivalHour - aBooking.estArrivalHour ;
9 /* or */

10 // Integer.compare(estArrivalHour,
11 // aBooking.estArrivalHour)
12 }
13 }� �

(b) Q 3 provided parts� �
1 public Booking(String aMandM
2 ,String anOwner
3 ,int anHour) {
4 super() ;
5 makeAndModel = aMandM ;
6 owner = anOwner ;
7 estArrivalHour = anHour ;
8 }� �

(b) Q 3 provided parts� �
1 public String getMakeAndModel() {
2 return makeAndModel ;
3 }

5 public String getOwner() {
6 return owner ;
7 }

9 public int getEstArrivalHour() {
10 return estArrivalHour ;
11 }� �

(b) Q 3 provided parts� �
1 @Override
2 public boolean equals(Object obj) {
3 Booking bkg = (Booking) obj ;
4 return makeAndModel.equals(bkg.makeAndModel)
5 && owner.equals(bkg.owner) ;
6 }

8 @Override
9 public int hashCode() {

10 return (20 + makeAndModel.hashCode())
11 * owner.hashCode() ;
12 }� �

ToC

7.4.3 Soln 3(c)

(c) Q 3� �
1 public void orderBookings() {
2 Collections.sort(bookings) ;
3 }

38 M250 Exam Revision 11 May 2025

5 public List<Booking> getBookings() {
6 return bookings ;
7 }� �

ToC

7.4.4 Soln 3(d)

(d) Q 3� �
1 public class CaravanClub {
2 private Map<Integer,Set<Booking>> arrByTime ;

4 public CaravanClub() {
5 arrByTime = new HashMap<>() ;
6 }

8 public void addSite(CaravanSite aSite) {
9 for (Booking aBooking : aSite.getBookings()) {

10 Integer hour = aBooking.getEstArrivalHour() ;
11 if (!(arrByTime.containsKey(hour))) {
12 arrByTime.put(hour, new HashSet<>()) ;
13 }
14 arrByTime.get(hour).add(aBooking) ;
15 }
16 }
17 }� �

ToC

7.4.5 Soln 3(e)

(e) Q 3

(i) The interface is the real type of the variable, parameter, method of other field and
should be used instead of the implementation class — this enables flexibility and
maintainability

See page 76 of Unit 10 Sets and Maps and Bloch (2017, Item 64, page 280)

(ii) ArrayList is expandable unlike Array — it implements the List interface which
has different fields and methods to Array

See Bloch (2017, Item 28, page 126)

Go to Q 3

ToC

8 What Next ?

Programming, Debugging, Psychology

Although programming techniques have improved immensely since the early days, the
process of finding and correcting errors in programming — known graphically if inele-
gantly as debugging — still remains a most difficult, confused and unsatisfactory opera-
tion. The chief impact of this state of affairs is psychological. Although we are happy to
pay lip-service to the adage that to err is human, most of us like to make a small pri-
vate reservation about our own performance on special occasions when we really try. It

Phil Molyneux M250 Tutorial 07 39

is somewhat deflating to be shown publicly and incontrovertibly by a machine that even
when we do try, we in fact make just as many mistakes as other people. If your pride
cannot recover from this blow, you will never make a programmer.

Christopher Strachey, Scientific American 1966 vol 215 (3) September pp112–124

• To err is human, to really foul things up requires a computer.

• Attributed to Paul R. Ehrlich in 101 Great Programming Quotes

• Attributed to Bill Vaughn in Quote Investigator

• Derived from Alexander Pope (1711, An Essay on Criticism)

• To Err is Humane; to Forgive, Divine

• This also contains

A little learning is a dangerous thing;

Drink deep, or taste not the Pierian Spring

• In programming, this means you have to read the fabulous manual (RTFM)

Units 1–5, TMA01

• Tutorial: Exam revision: Online 10:00 Sunday 11 May 2025

• Exam Friday, 30 May 2025

ToC

9 Web Links & References

9.1 Java Documentation

• Java Documentation — BlueJ has JDK 7 embedded, JDK 13 is current (2019)

• JDK 13 Documentation

• Java Platform API Specification

• Java Language Specification

• JDK Documentation API Documentation java.base

– java.lang — fundamental classes for the Java programming language

– java.util — Collections framework

https://en.wikipedia.org/wiki/Christopher_Strachey
https://en.wikipedia.org/wiki/Paul_R._Ehrlich
http://www.devtopics.com/101-great-computer-programming-quotes/
https://en.wikipedia.org/wiki/William_E._Vaughan
http://quoteinvestigator.com/2010/12/07/foul-computer/
https://en.wikipedia.org/wiki/Alexander_Pope
https://en.wikipedia.org/wiki/An_Essay_on_Criticism
https://en.wikipedia.org/wiki/Pierian_Spring
https://lmgtfy.com/?q=rtfm
https://docs.oracle.com/en/java/javase/
https://docs.oracle.com/en/java/javase/13/index.html
https://docs.oracle.com/en/java/javase/13/docs/api/index.html
https://docs.oracle.com/javase/specs/index.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/lang/package-summary.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/util/package-summary.html

40 M250 Exam Revision 11 May 2025

• Strings are immutable objects

• See java.lang.StringBuilder for mutable strings

• In a functional programming approach everything is immutable — it makes life sim-
pler (but at a cost)

• Remember (==) tests for identity — what does this mean ?

ToC

9.2 Books Phil Likes

• M250 is self contained — you do not need further books — but you might like to
know about some:

• Sestoft (2016) — the best short reference

• Evans and Flanagan (2018) — the best longer reference

• Barnes and Kölling (2016) — the BlueJ book — see www.bluej.org for documentation
and tutorial

https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/lang/StringBuilder.html
https://www.bluej.org/

Phil Molyneux M250 Tutorial 07 41

• Bloch (2017) — guide to best practice

ToC

References
Barnes, David J. and Michael Kolling (2009). Objects First with Java. Pearson Education,

fourth edition. ISBN 0-13-606086-2. URL http://www.bluej.org/objects-first/.

Barnes, David J. and Michael Kolling (2011). Objects First with Java. Pearson Education,
fifth edition. ISBN 0132835541. URL http://www.bluej.org/objects-first/.

Barnes, David J. and Michael Kölling (2016). Objects First with Java. Pearson, sixth edition.
ISBN 1292159049. URL http://www.bluej.org/objects-first/. 40

Bloch, Joshua (2017). Effective Java. Addison-Wesley Professional, third edition. ISBN
9780134685991. 38, 41

Darwin, Ian F (2014). Java Cookbook. O’Reilly, third edition. ISBN 9781449337049.

Evans, Benjamin J and David Flanagan (2014). Java In A Nutshell. O’Reilly, sixth edition.
ISBN 1449370829. URL https://github.com/kittylyst/javanut6-examples.

Evans, Benjamin J and David Flanagan (2018). Java In A Nutshell. O’Reilly, seventh edition.
ISBN 1492037257. 40

Felleisen, Matthias and Daniel P. Friedman (1998). A Little Java, A Few Patterns. MIT Press.
ISBN 0262561158. URL http://felleisen.org/matthias/BALJ-index.html.

Gosling, James; Bill Joy; Guy L. Steele Jr.; Gilad Bracha; and Alex Buckley (2014). The Java
Language Specification, Java SE 8 Edition (Java Series) (Java (Addison-Wesley)). Addison
Wesley, eighth edition. ISBN 013390069X. URL https://docs.oracle.com/en/java/
javase/12/index.html.

Naftalin, Maurice and Philip Wadler (2006). Java Generics and Collections. O’Reilly. ISBN
059610247X.

Schildt, Herbert (2018a). Java: A Beginner’s Guide. McGraw-Hill, eighth edition.
ISBN 1260440214. URL http://mhprofessional.com/9781260440218-usa-java-a-
beginners-guide-eighth-edition-group.

Schildt, Herbert (2018b). Java: The Complete Reference, Eleventh Edition. McGraw-
Hill, eleventh edition. ISBN 1260440230. URL http://mhprofessional.com/
9781260440232-usa-java-the-complete-reference-eleventh-edition-group.

Sestoft, Peter (2002). Java Precisely. MIT Press. ISBN 0-262-69276-7.

Sestoft, Peter (2005). Java Precisely. MIT, second edition. ISBN 0262693259.

Sestoft, Peter (2016). Java Precisely. MIT, third edition. ISBN 0262529076. URL http:
//www.itu.dk/people/sestoft/javaprecisely/. 40

Thimbleby, Harold (1999). A critique of Java. Software: Practice and Experience,
29(5):457–478.

Waldo, Jim (2010). Java: The Good Parts. O’Reilly. ISBN 9780596803735. URL http:
//shop.oreilly.com/product/9780596803742.do.

section WebLinksReferences (end)

http://www.bluej.org/objects-first/
http://www.bluej.org/objects-first/
http://www.bluej.org/objects-first/
https://github.com/kittylyst/javanut6-examples
http://felleisen.org/matthias/BALJ-index.html
https://docs.oracle.com/en/java/javase/12/index.html
https://docs.oracle.com/en/java/javase/12/index.html
http://mhprofessional.com/9781260440218-usa-java-a-beginners-guide-eighth-edition-group
http://mhprofessional.com/9781260440218-usa-java-a-beginners-guide-eighth-edition-group
http://mhprofessional.com/9781260440232-usa-java-the-complete-reference-eleventh-edition-group
http://mhprofessional.com/9781260440232-usa-java-the-complete-reference-eleventh-edition-group
http://www.itu.dk/people/sestoft/javaprecisely/
http://www.itu.dk/people/sestoft/javaprecisely/
http://shop.oreilly.com/product/9780596803742.do
http://shop.oreilly.com/product/9780596803742.do

42 M250 Exam Revision 11 May 2025

Author Phil Molyneux Written 11 May 2025 Printed 9th May 2025
Subject dir: ⟨baseURL⟩/OU/Courses/Computing/M250/M250Presentations/M250Prsntn2024J
Topic path:
/M250Prsntn2024JTutorials/M250Tutorial20250511ExamRevPrsntn2024J/M250Tutorial20250511ExamRevPrsntn2024J.pdf

	M250 Exam Revision: Agenda
	Adobe Connect
	Interface
	Settings
	Sharing Screen & Applications
	Ending a Meeting
	Invite Attendees
	Layouts
	Chat Pods
	Web Graphics
	Recordings

	Spec 2021 Rubric
	Spec 2021 Questions
	Q 1
	Q 2
	Q 3
	Q 4
	Q 5
	Q 6
	Q 7
	Q 8
	Q 9
	Q 10

	Spec 2021 Solns
	Soln 1
	Soln 2
	Soln 3
	Soln 4
	Soln 5
	Soln 6
	Soln 7
	Soln 8
	Soln 9
	Soln 10

	Prsntn 2018J Qs
	Qs
	Q 1
	Q 1(a)
	Q 1(b)
	Q 1(c)
	Q 1(d)

	Q 2
	Q 2(a)
	A 2(b)
	Q 2(c)
	Q 2(d)
	Q 2(e)(f)

	Q 3
	Q 3(a)
	Q 3(b)
	Q 3(c)
	Q 3(d)
	Q 3(e)

	Prsntn 2018J Solns
	Solns
	Soln 1
	Soln 1(a)
	Soln 1(b)
	Soln 1(c)
	Soln 1(d)

	Soln 2
	Soln 2(a)
	Soln 2(b)
	Soln 2(c)
	Soln 2(d)
	Soln 2(e)
	Soln 2(f)

	Soln 3
	Soln 3(a)
	Soln 3(b)
	Soln 3(c)
	Soln 3(d)
	Soln 3(e)

	What Next ?
	References
	Java Documentation
	Books Phil Likes
	References

