M250 Exam Revision
M250 Tutorial 07

Contents

1 M250 Exam Revision: Agenda

2 Adobe Connect
2.1 Interface e e e e e e
2.2 Settings e e e e e e e e e e e e
2.3 Sharing Screen & Applications e e
2.4 EndingaMeeting e e e e e e e e
2.5 Invite Attendees e e e e e e e e e e
2.6 Layouls e e e e e e e e e e e e e e e e
2.7 Chat Pods e e e e e
2.8 Web Graphics e e
2.9 Recordings e e e e e e e e

3 Spec 2021 Rubric

4 Spec 2021 Questions
2 O
4.2 Q 2 . e e e e e e
4.3 Q 3 . e e e e e e e
4.4 Q4 . . . e e e e
4.5 Q5 . e e e e e
4.6 Q6 . . . e e e e e e e e e
4.7 Q7 .« e e e e e e e e
4.8 Q 8 . . i e e e e e e e e
4.9 QO . . e e e e e e e
4.10Q 10 . . .t e e e e e e e e e

5 Spec 2021 Solns
5.1 Soln 1 . . e e e e e e e e
5.2 Soln 2 . . . e e e e e e e e e e
5.3 Soln 3 . . . e e e e e e e e e e
5.4 Soln 4 e e e e e e e e
5.5 Soln 5 . . . e e e e e e e e e
5.6 Soln 6 e e e e e e e e e e e
5.7 Soln 7 . . e e e e e e e e e e e
5.8 Soln 8 e e e e e e e e e e e
5.9 Soln O e e e e e e e e e
5.10S0ln 10 . . o o e e e e e e e e

6 Prsntn 2018J Qs
6.1 QS . . e e e e e e e e e e e
6.2 Q1 . e e e e e e e e e e e
6.2.1 QT(a) . . v e e e e e e e e e e e e
6.2.2 Q1(b) . . . e e e e e e

M250 Exam Revision 11 May 2025

8
9

6.2.3 Q1(Q) . . v i e e e e e e e 28
6.2.4 Q1) . . . e e e e e e 28
6.3 Q 2 . . e e e e e e 28
6.3.1T Q2(2) . . v i e e e e e e e e e e e e 28
6.3.2 A2(b) . .. e e e e e e e e 28
6.3.3 Q2(0) . . i e e e e e e e e e 29
6.3.4 Q2(d) e e e e e e 29
6.3.5 Q2@)F) e e e e e e e e 29
6.4 Q 3 . . . e e e e e e e e e 30
6.4.1 Q3(2) . . i e e e e e e e 30
6.4.2 Q3(b) e e e e e 31
6.4.3 Q3(0) . . . e e e e e 31
6.4.4 Q3(d) e e e e e e 31
6.4.5 Q3(8) . . . i e e e e e e e e e 32
Prsntn 2018]J Solns 32
7.1 SoINS . . e e e e e e e e e 32
7.2 Soln 1 o o e e e e e e e 32
7.2.1 SoIn T(Q) . . . v o e e e e e e e e e e 32
7.2.2 Soln T(b). e e e e e e e e 33
7.2.3 SoIn 1(C) . . . v e e e e e e e e e e e e e 34
7.2.4 Soln 1(d) e e e e e e e e 34
7.3 Soln 2 . . e e e e e e e e 34
7.3.1T SoIn2(Q) o e e e e e e e e e e e e 34
7.3.2 Soln2(b). e e e e e e e 35
7.3.3 SoIn 2(C) . . . e e e e e e e e e e e e e 35
7.3.4 Soln2(d) e e e e e e e e e 36
7.3.5 Soln 2(e) L e e e e e e e e e 36
7.3.6 Soln2(f) e e e 36
7.4 Soln 3 . . e e e e e e e e e e 36
7.4.1 Soln 3(a) . . . v e e e e e e e e e e e 36
7.4.2 Soln3(b) e e e e e e e e 37
7.4.3 SoIn3(0) e e e e e 37
7.4.4 Soln3(d). e e e e e e 38
7.4.5 Soln 3(e) e e e e e e e e e e 38
What Next ? 38
References 39
9.1 Java Documentation i i e e e e e e e e e e e e e e e e 39
9.2 Books Phil Likes e e e e e 40
References o i e e e e e e e e e 41

M250 Exam Revision: Agenda

e Introductions
e Adobe Connect reminders
e Adobe Connect — if you or | get cut off, wait till we reconnect (or send you an email)

e M250 Specimen Exam from 2021

Phil Molyneux M250 Tutorial 07 3

e M250 Exam 2019 from Presentation 2018

e Revision strategies and exam techniques

Introductions — Phil
e Name Phil Molyneux
e Background
- Undergraduate: Physics and Maths (Sussex)

- Postgraduate: Physics (Sussex), Operational Research (Brunel), Computer Sci-
ence (University College, London)

- Worked in Operational Research, Business IT, Web technologies, Functional Pro-
gramming

e First programming languages Fortran, BASIC, Pascal

e Favourite Software

Haskell — pure functional programming language

Text editors TextMate, Sublime Text — previously Emacs

Word processing in IATEX — all these slides and notes

Mac OS X

e Learning style — | read the manual before using the software

Introductions — You
e Name?
e What other exams are you taking this year ?

e Give one revision tip and exam tip to the group

2 Adobe Connect Interface and Settings

2.1 Adobe Connect Interface

Adobe Connect Interface — Host View

https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://www.haskell.org/
https://macromates.com
http://www.sublimetext.com
https://www.emacswiki.org/
https://www.latex-project.org/
https://developer.apple.com/

4 M250 Exam Revision 11 May 2025

‘ece B Adobe Connect.app.

M250 Units 10, 11
Phil Molyneux
M250 Units 10, 11
Tutorial Agenda
Adobe Connect

Classes and
Interfaces

M250 Units 10, 11 sets

Maps

Collections, Arrays, Sets, Maps, Lists

Lists

Collection
Implementations

Phil Molyneux THAD3 Practce

Common Mistakes
JShell
What Next ?

18 Apr|| 2021 References

Adobe Connect Interface — Participant View

‘ece @ Adobe Connect.app.
o a
. . M250 Units 10, 11
M250 Units 10, 11 Tutorial _
Phil Molyneux
Introductions
M250 Units 10, 11
. Tutorial Agenda
> Introductions Adobe Connect
»> Name Phil Molyneux Classes and
> Learning Style: Reads the manual ESraces
> Learnt last month Framework for Teaching Recursion Ses -
and wrote notes on Recursion Teaching Maps
> YOU 7 Lists
Collection retcves! W
Implementations G
TMAO3 Practice
Quiz
Common Mistakes
JShell
What Next ? PuoLvcHAT =
References) @

2.2 Adobe Connect Settings

Adobe Connect — Settings

e Everybody [Menu bar>> Meeting>> Speaker & Microphone Setup}

° {Menu bar>> Microphone>> Allow Participants to Use Microphone} v

e Check Participants see the entire slide including slide numbers bottom right Workaround

- Disable Draw [Share pod>> Menu bar>> Draw icon}

- Fit Width {Share pod>> Bottom bar>> Fit Width icon} 4

Phil Molyneux M250 Tutorial 07

) {Meeting>> Preferences>> General>> Host Cursor>> Show to all attendees

{Menu bar>> Video>> Enable Webcam for Participants} v

Do not Enable single speaker mode

Cancel hand tool

Do not enable green pointer

Recording {Meeting>> Record Session} v

Documents Upload PDF with drag and drop to share pod

Delete [Meeting>> Manage Meeting Information>> Uploaded Content} and [check filename>> click on delete

Adobe Connect — Access

e Tutor Access

TutorHome>> M269 Website>> Tutorials}

Tutor Groups>> M269 Online tutor group room}

{
{Cluster Tutorials>> M269 Online tutorial room}
{
{

Module-wide Tutorials>> M269 Online module-wide room}

e Attendance

{TutorHome>> Students>> View your tutorial timetables}

e Beamer Slide Scaling 440% (422 x 563 mm)

e Clear Everyone’s Status

{Attendee Pod>> Menu>> Clear Everyone’s Status}

e Grant Access and send link via email

{Meeting>> Manage Access & Entry>> Invite Participants. .. }

e Presenter Only Area

{Meeting>> Enable/Disable Presenter Only Area}

Adobe Connect — Keystroke Shortcuts
e Keyboard shortcuts in Adobe Connect
Toggle Mic 3]+ M] (Mao), [ctrl]+[M] (Win) (On/Disconnect)
Toggle Raise-Hand status [32])+E |
Close dialog box [©] (Mac), [Esc] (win)
End meeting [32)+\]

2.3 Adobe Connect — Sharing Screen & Applications

) {Share My Screen>> Application tab>> Terminal} for Terminal

e [Share menu)) Change View)) Zoom in| for mismatch of screen size/resolution (Participants)

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html
https://en.wikipedia.org/wiki/Terminal_(macOS)

6 M250 Exam Revision 11 May 2025
e (Presenter) Change to 75% and back to 100% (solves participants with smaller screen
image overlap)
e Leave the application on the original display
e Beware blued hatched rectangles — from other (hidden) windows or contextual
menus
e Presenter screen pointer affects viewer display — beware of moving the pointer away
from the application
e First time: {System Preferences>> Security & Privacy>> Privacy>> Accessibility}
2.4 Adobe Connect — Ending a Meeting
e Notes for the tutor only
e Student: [Meeting)) Exit Adobe Connect|
e Tutor:
e Recording [Meeting)) Stop Recording| v/
e Remove Participants [Meeting)) End Meeting. .. | v/
- Dialog box allows for message with default message:
- The host has ended this meeting. Thank you for attending.
e Recording availability In course Web site for joining the room, click on the eye icon
in the list of recordings under your recording — edit description and name
e Meeting Information [Meeting)) Manage Meeting Information| — can access a range of informa-
tion in Web page.
e Delete File Upload [Meeting)) Manage Meeting Information)) Uploaded Content tab select file(s) and
click
e Attendance Report see course Web site for joining room
2.5 Adobe Connect — Invite Attendees

Provide Meeting URL {Menu>> Meeting>> Manage Access & Entry>> Invite Participants. . . }

Allow Access without Dialog [Menu)) Meeting)) Manage Meeting Information| provides new browser

window with Meeting Information [Tab bar)) Edit Information|

Check Anyone who has the URL for the meeting can enter the room
Default Only registered users and accepted guests may enter the room
Reverts to default next session but URL is fixed

Guests have blue icon top, registered participants have yellow icon top — same icon
if URL is open

See Start, attend, and manage Adobe Connect meetings and sessions
Click on the link sent in email from the Host

Get the following on a Web page

https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html

Phil Molyneux M250 Tutorial 07 7

e As Guest enter your name and click on

B Adobe Connect

M269-21) Online tutorial room
London/SE (1,13) CG [2311] (M269-21))

(1)

Guest Registered User
Name

Guest Name

By entering a Name & clicking "Enter Room'", you agree that
you have read and accept the Terms of Use & Privacy, Policy,

e See the Waiting for Entry Access for Host to give permission

k%8 Adobe Connect

Waiting for Entry Access

This is a private meeting. Your request to enter has

been sent to the host. Please wait for a response.

e Host sees the following dialog in Adobe Connect and grants access

I Guest entry 0

1 guest would like to enter the room. Do you want
to allow or deny entry to incoming guests?

Guest Name (guest) 9 Q "vez

Allow everyone Deny everyone Close

2.6 Layouts

e Creating new layouts example Sharing layout

° [Menu>> Layouts>> Create New Layout. . } [Create a New Layout dialog>> Create a new blank Iayout} and name it
PMolyMain

e New layout has no Pods but does have Layouts Bar open (see Layouts menu)

8 M250 Exam Revision 11 May 2025
e Pods
e [Menu)) Pods)) Share)) Add New Share| and resize/position — initial name is Share n — rename
PMolyShare
e Rename Pod [Menu) Pods)) Manage Pods. .. | [Manage Pods)) Select)) Rename| Or Double-click & rename
e Add Video pod and resize/reposition
e Add Attendance pod and resize/reposition
e Add Chat pod — rename it PMolyChat — and resize/reposition
e Dimensions of Sharing layout (on 27-inch iMac)
- Width of Video, Attendees, Chat column 14 cm
- Height of Video pod 9 cm
- Height of Attendees pod 12 cm
- Height of Chat pod 8 cm
e Duplicating Layouts does not give new instances of the Pods and is probably not a
good idea (apart from local use to avoid delay in reloading Pods)
e Auxiliary Layouts name PMolyAuxOn
- Create new Share pod
- Use existing Chat pod
- Use same Video and Attendance pods
2.7 Chat Pods
e Format Chat text
e [Chat Pod)) menu icon)) My Chat Color|
e Choices: Red, Orange, Green, Brown, Purple, Pink, Blue, Black
e Note: Color reverts to Black if you switch layouts
e [Chat Pod)) menu icon)) Show Timestamps |
2.8 Graphics Conversion for Web

Conversion of the screen snaps for the installation of Anaconda on 1 May 2020

Using GraphicConverter 11

> Convert & Modify>> Conversion>> Convert}

Select files to convert and destination folder

Click on [Start selected Function] or +

© N o wv

11
12
13

Phil Molyneux M250 Tutorial 07 9

2.9 Adobe Connect Recordings

° {Menu bar>> Meeting>> Preferences>> Video}

e [Aspect ratio)) Standard (4:3)| (not Wide screen (16:9) default)

e [Video quality)) Full HD (1080p not High default 480p)

) Recording {Menu bar>> Meeting>> Record Session} v

e Export Recording

° {Menu bar>> Meeting>> Manage Meeting Information}

) {New window>> Recordings>> check Tutorial>> Access Type button

) {check Public>> check Allow viewers to download}

e Download Recording

° {New window>> Recordings>> check Tutorial>> Actions>> Download File

3 Specimen Exam for 2021 — Rubric

e Time limit 3 hours 30 minutes

e Answer all questions

e Part 1 — 4 Short Questions (25 marks)

e Part 2 — A simple class (2 questions 15 marks)

e Part 3 — Class relationships (2 questions 30 marks)
e Part 4 — Collections (2 questions 30 marks)

e Note that the order of sub-questions varies from attempt to attempt — so my slides
may vary in presentation from the version you used

ToC

4 Spec 2021 Questions

4.1 M250 From 2021 Specimen 2021 Exam Q 1

e The following code does not compile. Why not? Select all the reasons that lead to
compilation errors.

PubTic class Robot
{

private 1int x;
public Robot()

=1;

N -

public getX(
{

return x;

}

A w N =

o W N O

10

M250 Exam Revision 11 May 2025

publ
{

X++;

}

ic void DecreaseX()

j—

© © 0 N o U A WN

RN R —
J—

4.2

Select one or more:

. The method DecreaseX does not follow naming conventions.

The constructor uses an undeclared variable.

The method getX should have an argument.

The method DecreaseX needs to decrement x.

The keyword this must be used to access the field x.
There is a brace (curly bracket) missing.

The constructor should declare a return type.

The method getX should declare a return type.

The code is not indented correctly.

The class header is not valid.

. The instance variable x is not explicitly initialised.

M250 From 2021 Specimen 2021 Exam Q 2

Go to Soln 1

Given the following declarations and initialisations, select the two correct options

below.

String fishl
String fish2
String fish3

"FISH";
"FiSh".toUpperCase();
fishl;

String fish = "fish";

System.out.printin(fishl == fish2); // line 1

System.out.println(fishl.equals(fish2)); // line 2

System.out.printin(fishl == fish3); // line 3

System.out.println(fish == fishl); // line 4

System.out.printin(fish.equals(fishl)); // line 5
e Select one or more:

1.

The result of executing line 1 is true because fishl and fish2 both reference

strings consisting of the four characters F, I, S and H.

. The result of executing line 2 is true because fishl and fish2 both reference a

string consisting of, in that order, the four characters F, I, S and H.

. The result of executing line 3 is true because fishl and fish3 both reference the

same String object consisting of the four characters F, I, S and H.

same string consisting of the four characters F, I, S and H.

. The result of executing line 4 is true because fish and fishl both reference the

A w N =

o VW o N O

13
14

16
17
18
19
20
21
22
23
24
25
26

Phil Molyneux M250 Tutorial 07 11

5. The result of executing line 5 is true because fish and fishl both reference the
same string consisting of the four characters F, I, S and H.

Go to Soln 2

4.3 M250 From 2021 Specimen 2021 Exam Q 3

e Given the following class modelling a music CD, answer the four sets of questions
about it.

class (D {
private String artist ;
private String title ;
private int minutes ;

public CD(String anArtist, String aTitle, int numMinutes) {
artist = anArtist ;
title = aTitle ;
minutes = numMinutes ;

}

public String toString() {
return "Artist: " + artist + " Title: |

}

n

+ title + " _Playing time:_" + minutes ;

e Code continued:

public void hours() {
if (minutes < 60) {
System.out.printin("Less_than_one_hour") ;
}
else {
int hrs ;
hrs = minutes / 60 ;
System.out.println("hours_ '
}
}
}

1

+ hrs) ;

1 Match the following features to their correct names
(@) public CD(String anArtist, String aTitle, int numMinutes)
(b) private String title ;
(c) minutes = 60
(d) int hrs ;
(e) /
(f) anArtist

Choose...

expression operand signature
method header actual parameter formal parameter
local variable declaration constructor header operator

literal field declaration

2 Which of the following features occur? (Tick the correct ones)
(@) method chaining

(b) multiple inheritance

N o v wN =

12

M250 Exam Revision 11 May 2025

(0
(d)
(e)
()

3

@
(b)
(0
(d)

(@
(b)
(0
(d)

4.4

overloading

overriding

composition

polymorphism

How many are there of each of the following? (Type in a digit, not a word)

different operators |:| (don’t count repeats of the same operator)

methods |:|

primitive type instance variables |:|

reference type instance variables |:|

Which sets of variables have the same scope?

Select true if the variables have the same scope, otherwise select false.
artist, title true/false

artist, title, minutes true/false

hrs, minutes true/false

anArtist, aTitle, numMinutes true/false

Goto Soln 3

M250 From 2021 Specimen 2021 Exam Q 4

Write a public method in the class Test that has the signature concatenateThese(int,
int) and does not return any value.

The method concatenates all of the elements between the given indexes of the nums
array into a single string and prints that string out (see the example below).

You do not have to perform any checks on the parameters to see whether they are
in bounds for the array.

For example

Test Result
Test t = new Test(new int[}{1,3,7,9,10}); 7910
t.concatenateThese(2,4);

Complete your code in the following:

public class Test {
private int[] nums;
public Test(int[] vals) {

}

nums = vals;

// Write your concatenateThese(int, int) method here

Go to Soln 4

Phil Molyneux M250 Tutorial 07 13

4.5 M250 From 2021 Specimen 2021 Exam Q 5

e Scenario This question concerns a class called House which is to be developed to
model some aspects of a house.

e Write a class to complete the requirements in (a)-(g) below:
(@) The class is to be called House.

(b) The class requires two private instance variables called material of type String,
and age of type int.

(c) Add a public constructor to the class that takes two parameters. The first parameter
is of type String and the second parameter is of type int. Use the first parameter
to set the material field, and the second parameter to set the age field.

(d) Write standard getter methods for the two fields.

(e) Write standard setter methods for the two fields.

(F) Write a public method called about that returns a string of the following form:
A material house of age age

e The material and age should be replaced by the actual material and age of the
house.

(g) Write a public method with the signature equals(House) that returns true if the
fields of the actual parameter have the same values as the fields of this object, and
returns false otherwise.

e Below is an example test case for this class.
e For example

Test Result
House a = new House("brick", 23); brick
System.out.printin(a.getMaterial());

e Complete your code in the following:

// write your answer here J

Go to Soln 5

4.6 M250 From 2021 Specimen 2021 Exam Q 6

e Based on the House class just described, select the correct answers below:

(a) The class overrides method(s).
(b) The class overloads method(s).
(c) The class a subclass of Object.

(d) The class ’ does not demonstrate/demonstrates‘ information hiding.

(e) The class] needs to/does not need to‘ use at least one external method call.

14 M250 Exam Revision 11 May 2025

Go to Soln 6

4.7 M250 From 2021 Specimen 2021 Exam Q 7

e Scenario This question concerns a class called Child which is to be developed as a
subclass of the class Person (click to view this file), which has already been devel-
oped.

e Persons have a first name, a last name, wear white shirts by default, have a number
of friends, and have an amount of money.

e Children may be in a playing state, or not playing.

e The Java library class java.awt.Color is used to represent shirt colours such as
Color.WHITE.

e Note that printing out a colour produces output such as java.awt.Color[r=0,g=0,b=255]
(which represents Color.BLUE in this case). The three numbers represent compo-
nents of Red, Green, and Blue colour.

e Develop only the class Child
(a) Add the class Child below, making it a subclass of Person.
(b) Add a private instance variable to the class called playing of type boolean.

(c) Add a public constructor for Child whose first parameter is the child’s first name
and whose second parameter is the child’s second name.

The constructor should initialise the child’s first and last names using the received
arguments.

The instance variable playing should be set to true. The initial money should be
set to 10.

(d) Add a standard getter method for pTaying called isPlaying.
(e) Add a public method pTlay, which takes no arguments and returns no value.

The method sets playing to true and increments the child’s number of friends by
1.

(f) Add a public method work, which takes no arguments and returns no value.

The method sets sets playing to false and and decrements the child’s number of
friends by 1.

(Don’t worry about the value becoming negative.)

(g) Add a public method getNickname that returns a nickname for the child based on
their first and last names at the time the method is called.

The method returns the first three letters of the child’s first name concatenated to
the last three letters of the child’s last nhame in lowercase.

(You can assume the names are long enough.)

For example, if the child’s first name is "Betsy" and their last name is "Corble"
the method will return the string "Betble".

Phil Molyneux M250 Tutorial 07 15

(h) Add a public method buySnack which does not return a value and has a single
parameter of type int representing the cost of a snack.

If the child has enough money to buy the snack then the method decreases the
money the child owns by the argument received, otherwise it just prints

I need money
(i) Add a public method goHome which does not return a value and takes no arguments.
If the child has no friends then the method prints
I’'m going home
Otherwise the method prints
Bye
as many times as the child has friends.

(i) Add a public setShirtColour method to override the inherited method of that
name.

The child’s method behaves in the same way as the inherited method provided that
the child is not playing.

When a child is playing, its setShirtColour method behaves as follows:
If the child is wearing a shirt that is Color.WHITE then the method prints
I’'m changing now
before setting the child’s shirt colour to the received argument.
If the child is not wearing a shirt that is Color .WHITE then the method prints
I'm wearing play clothes already
but doesn’t change the shirt colour.
e Below is an example test case for this class.

e For example

Test Result
Child f = new Child("Jan", "Feb"); 1
System.out.printin(f.getNumFriends()); false
f.work(); 0

System.out.printin(f.isPlaying());
System.out.printin(f.getNumFriends());

Goto Soln 7

4.8 M250 From 2021 Specimen 2021 Exam Q 8

e Answer parts (a)-(d) below.

(@) Consider the following code based on the person and child scenario and the code
developed in this question.

Select all of the following statements that will compile.

16 M250 Exam Revision 11 May 2025

(i) Child ¢ = new Child("Celia", "Goth");

(ii) Person p = new Child("Penny", "Bun");

(iii) Person p = new Person("Kim", "Wilde");
(iv) Person p = new Object("Janet", "Becker');
(v) Person p = new Child("Penny");

(vi) Child ¢ = new Person("Tom", "Sawyer");

(b) Suppose that the following further code is added to the class Child

1 public String playingString() {
2 return (playing ? "not_playing" : "playing") ;
3 }

Select all of the true statements in this scenario:
(i) The playingString method contains a logical error.
(ii)) The playingString method overloads the toString method in the Object class.
(iii) The playingString method will not compile because it contains a syntax error.
(iv) The playingString method overloads the toString method in the Person class.

(v) The playingString method will not compile because it is missing the @Override
annotation.

(vi) The playingString method will cause an exception.

4.9 M250 From 2021 Specimen 2021 Exam Q 9

e Scenario A concert hall hosts musical concerts.
A concert has a programme of musical performances.
Each item of music in a programme has a title and a composer.

e The class Music (click to view this file) has already been developed.

e Please note that the answer box below contains two classes to complete.
You can only use import statements at the top of the answer box.

e The answer box below includes some methods of the class Concert that you should
not alter, as well as a wrapper for the ConcertHal1l class.

(a) Develop only the class Concert in this part.

(i) Add a declaration for a private instance variable called programme, which should be
declared as a List containing elements of type Mus-ic.

(ii) Add a public constructor for Concert that takes two string parameters representing
the date of the concert and the concert name, and initialises the related variables
accordingly.

The constructor should also initialise programme to a suitable empty collection.

(iii) Add a standard getter method for the programme collection.

Phil Molyneux M250 Tutorial 07 17

(iv) Write a public instance method getConcertlLength that takes no parameters and
returns the length of the concert in minutes.

The method will need to loop through the Music items in programme, and add up
all their performance times then return the total.

(v) Write a public instance method addProgrammeItem that takes an argument of type
Music and returns no value.

If the running time of the concert will not exceed MAX_LENGTH by adding the music
to the programme list then it is added, otherwise the error message

Running time exceeded
is printed instead.
(vi) The concert hall owners want to be able to sort concerts by their concertName.

Modify the Concert class so that it implements the appropriate interface, and then
implement the compareTo method that will allow the ordering required.

(b) Develop only the class ConcertHall in this part.

(i) Add a public instance variable whatsOn to the ConcertHall class that will be used to
map between sorted composers’ names and sorted sets of names of their music that
are performed in a concert.

(For example, when populated the map might include a mapping from the name
"ETgar" to a sorted set of Elgar’s music including "Engima Variations" and "Sospiri".)

Note that this field needs to be made public for testing purposes.

(ii) Add a public ConcertHall constructor that initialises whatsOn to a suitable collec-
tion type (initially empty).

(iii) Add a public instance method addConcert that takes a parameter of type Concert
and does not return a value.

This method’s job is to populate the whatsOn map according to the contents of the
concert.

Remember that a Concert has a programme of music.

When the addConcert method is finished running the whatsOn map should contain
a mapping for each composer whose music is in the concert programme, with the
value being the sorted set of the composer’s music in the programme.

e Below is an example test case for this class.

e For example

Test Result
//check constructor executes and initialisation 2021-12-20
Concert c = new Concert("2021-12-20", "Happy days"); Happy Days
System.out.println(c.getDate());]
System.out.printin(c.getConcertName());
System.out.printin(c.getProgramme());

Go to Soln 9

18 M250 Exam Revision 11 May 2025

4,10 M250 From 2021 Specimen 2021 Exam Q 10

e Thinking about the scenario of the concert hall in the previous question:

(a) Select two reasons why it is preferable to declare the whatsOn collection using an
interface type, such as a Map, rather than a concrete class such as HashMap, which
implements that interface.

(i) A HashMap is abstract while a Map is concrete.

(ii) A Map provides more opportunity for reuse, due to substitutability of subtypes.
(iii) Using a Map allows us to change the implementation type more easily later on.
(iv) A Map supports multiple inheritance while a HashMap does not.

(v) A Map is more efficient than a HashMap.

(b) Select two reasons why a set is appropriate for the values in the whatsOn map, while
a list was chosen for the programme in the Concert class:

(i) Titles of music by a composer are unique, so a set is appropriate for storing them.
(ii) A setis more efficient for storing music titles associated with a composer than a list.
(iii) A set maintains the order of items added to it so is best for a music programme.
(iv) A concert hall has a set of music, so composition with sets and lists is appropriate.

(v) A programme of music has a particular playing order, so a list is appropriate for the
programme.

GotoSoln 10

5 Spec 2021 Solns

5.1 M250 From 2021 Specimen 2021 Exam Soln 1
e The following lead to compilation errors:
2. The constructor uses an undeclared variable.
6. There is a brace (curly bracket) missing.
8. The method getX should declare a return type.
10. The class header is not valid.
e Code that does compile is given below

GotoQ1

e The following does compile

public class Robot {
private int x ;

public Robot() {
X =1 ;
}

public int getX() {

A w N =

O VW o N O

Phil Molyneux M250 Tutorial 07 19
return x ;
}
public void DecreaseX() {
X++ 3
}
}
GotoQ1
ToC
5.2 M250 From 2021 Specimen 2021 Exam Soln 2
e Answers
String fishl = "FISH";
String fish2 = "FiSh".toUpperCase();
String fish3 = fishl;
String fish = "fish";
System.out.printin(fishl == fish2); // line 1 false
System.out.println(fishl.equals(fish2)); // line 2 true
System.out.printin(fishl == fish3); // line 3 true
System.out.println(fish == fishl); // line 4 false
System.out.printin(fish.equals(fishl)); // line 5 false
GotoQ?2
ToC

5.3 M250 From 2021 Specimen 2021 Exam Soln 3

(@) public CD(String anArtist, String aTitle, int numMinutes) constructor
header

(b) private String title ; field declaration

(c) minutes = 60 expression

(d) int hrs ; local variable declaration

(e) / operator

() anArtist formal parameter

2 Which of the following features occur? (Tick the correct ones)

(@) method chaining

(b) multiple inheritance

(c) overloading

(d) overriding yes

(e) composition yes

(F) polymorphism

3 How many are there of each of the following? (Type in a digit, not a word)

20 M250 Exam Revision 11 May 2025

(a) different operators (don’t count repeats of the same operator) {=,+,<,/} Do
not forget (.) is a separator not an operator, see Java Language Specificati

00 N VT A WN =

A W N —= O VO

(o2 BV, N N OY]

10
11
12

14
15
16

3.11 Separators, 3.12 Operators

(b) methods

(c) primitive type instance variables
(d) reference type instance variables
4 Which sets of variables have the same scope?
Select true if the variables have the same scope, otherwise select false.
(@) artist, title true/false
(b) artist, title, minutes true/false
(c) hrs, minutes true/false

(d) anArtist, aTitle, numMinutes true/false

5.4 M250 From 2021 Specimen 2021 Exam Soln 4

e Sample answer

public class Test {
private int[] nums;
public Test(int[] vals) {
nums = vals;
}
// Write your concatenateThese(int, int) method here
public void concatenateThese(int x, int y) {
String numsStr = "" ;
for (int i = x; i <=vy; i++) {
numsStr = numsStr + this.nums[i] ;
}
System.out.printin(numsStr) ;

GotoQ4

5.5 M250 From 2021 Specimen 2021 Exam Soln 5

e Possible answer

// (a) class header

public class House {
// (b) private instance variables
private String material ;
private 1int age ;

// (c) public constructor

public House(String aMaterial, int anAge) {
material = aMaterial ;
age = anAge ;

}

// (d) standard getter methods
public String getMaterial() {
return material ;

https://docs.oracle.com/javase/specs/jls/se17/html/jls-3.html
https://docs.oracle.com/javase/specs/jls/se17/html/jls-3.html

19
20
21

23
24
25
26

28
29
30

32
33
34
35

37
38
39
40
41

Phil Molyneux M250 Tutorial 07 21

}

public int getAge() {
return age ;

}

// (e) standard setter methods
public void setMaterial(String aMaterial) {
material = aMaterial ;

}

public void setAge(int anAge) {
age = anAge ;

}

// (f) public method called about that returns a string
public String about() {
return "A_" + material + " _house_of_age_ " + age ;

}

// (g) public method with the signature equals(House)
public boolean equals(House aHouse) {

return this.getMaterial().equals(aHouse.getMaterial()) && this.age == aHouse.getAge() ;
}

e Note in (g) return of Boolean instead of boolean loses marks

GotoQ>5

5.6 M250 From 2021 Specimen 2021 Exam Soln 6
e Sample answers:
(@) The class overrides [0] method(s).
(b) The class overloads [1] method(s).

The equals method (since not same signature as equals inherited from Object)

(c) The class |E| a subclass of Object.

(d) The class]demonstrates\ information hiding.

(e) The class use at least one external method call.

The equals method of String

GCotoQ6

5.7 M250 From 2021 Specimen 2021 Exam Soln 7

e Sample answer

N O v

import java.awt.Color ;

// (a) Child class header

public class Child extends Person {
// (b) private instance variable
private boolean playing ;

// (c) Child constructor

10
11
12
13
14

16
17
18
19

21
22
23
24
25

27
28
29
30
31

33
34
35
36
37
38
39
40
41

43
44
45
46
47
48
49
50
51

53
54
55
56
57
58
59
60
61
62
63

65
66
67
68
69
70
71
72
73
74
75

77

22 M250 Exam Revision

11 May 2025

public Child(String aFirstName, String alLastName) {
super(aFirstName,alLastName) ;
playing = true ;
this.setMoney(10) ;

}

// (d) getter
public boolean isPlaying() {
return this.playing ;

}

// (e) setter
public void play() {
this.playing = true ;
this.setNumFriends(this.getNumFriends() + 1) ;
}

// (f) public method work
public void work() {
this.playing = false ;
this.setNumFriends(this.getNumFriends() - 1) ;
}

// (g) public method getNickname
public String getNickname() {
String TstNm = this.getLastName() ;
int lenLstNm 1stNm.Tength(Q) ;
String fstNm = this.getFirstName() ;
String fst3 fstNm.substring(0,3) ;
String Tst3 1stNm.substring(lenLstNm - 3) ;
return fst3 + 1st3 ;

// (h) public method buySnack
public void buySnack(int snkCst) {
int mny = this.getMoney() ;
if (snkCst <= mny) {
this.setMoney(mny - snkCst) ;
} else {
System.out.printin("I_need_money") ;
}
}

// (i) public method goHome
public void goHome() {
int nmFrnds = this.getNumFriends() ;
if (nmFrnds > 0) {
for (int i = 1; i <= nmFrnds; i++) {
System.out.println("Bye") ;

}
} else {
System.out.printin("I’m_going_home") ;
}
}

// (3) public method setShirtColour
@Override
public void setShirtColour(Color aColour) {
Color shrtClr = this.getShirtColour() ;
if (shrtCir.equals(Color.WHITE)) {
System.out.printIin("I’m_changing_now") ;
super.setShirtColour(aColour) ;
} else {
System.out.printin("I’m_wearing_play, clothes_already") ;
}
}

Phil Molyneux M250 Tutorial 07 23

5.8 M250 From 2021 Specimen 2021 Exam Soln 8

(@) Consider the following code based on the person and child scenario and the code
developed in this question.

Select all of the following statements that will compile.
(i) Child c¢ = new Child("Celia", "Goth"); vyes

(ii) Person p new Child("Penny", "Bun"); yes

(iii) Person p = new Person("Kim", "Wilde"); yes

(iv) Person p

new Object("Janet", "Becker");
(v) Person p = new Child("Penny");
(vi) Child c = new Person("Tom", "Sawyer");

(b) Suppose that the following further code is added to the class Child

1 public String playingString() {
2 return (playing ? "not_playing" : "playing") ;
3 }

Select all of the true statements in this scenario:
(i) The playingString method contains a logical error. yes
(ii) The playingString method overloads the toString method in the Object class.
(iii) The playingString method will not compile because it contains a syntax error.
(iv) The playingString method overloads the toString method in the Person class.

(v) The playingString method will not compile because it is missing the @Override
annotation.

(vi) The playingString method will cause an exception.

GotoQ8

5.9 M250 From 2021 Specimen 2021 Exam Soln 9

e Sample answer from file Concert. java

import java.util.= ;

//Scroll down to see the ConcertHall class below the Concert class
VAT
* The class Concert models a musical event at a concert hall.
* Complete the class according to the instructions in part (a)
%/
// (a)(vi) interface imlementation
class Concert implements Comparable<Concert> {
private String concertName;
private String date ; // in "yyyy-mm-dd" format
public static final int MAX_LENGTH = 120 ;
// (a)(i) private instance variable
private List<Music> programme ;

// (a)(ii) public constructor

public Concert(String aDate, String aConcertName) {
date = aDate ;
concertName = aConcertName ;

20
21

23
24
25
26
27
28

30
31
32
33
34
35

37
38
39
40

42
43
44
45
46
47
48
49
50

52
53
54
55
56
57
58
59
60
61

63
64
65
66

68
69
70
71
72

74
75

77
78
79
80
81
82
83

85
86
87
88
89
90

92
93

24 M250 Exam Revision 11 May 2025

programme = new ArraylList<>() ;

3
/,.4 o

% Getter for the date of the concert
%/

public String getDate() {
return this.date ;

}

* Getter for the name of the concert
%/

public String getConcertName() {
return this.concertName;

3

// (a)(iii) getter for programme
public List<Music> getProgramme() {
return this.programme ;

}

// (a)(iv) public instance method getConcertlLength
public int getConcertLength() {
List<Music> aProgramme = this.getProgramme() ;
int concertlLength = 0 ;
for (Music progItem : aProgramme) {
concertLength = concertlLength + progItem.getPerformanceTime() ;
}

return concertlLength ;

// (a)(v) public instance method addProgrammeItem
public void addProgrammeItem(Music progItem) {
int concertlLength = this.getConcertLength(Q) ;
int progIltemLength = progItem.getPerformanceTime() ;
if (concertlLength + progItemLength <= MAX_LENGTH) {
this.getProgramme() .add(progItem) ;
} else {
System.out.printin("Running_time_exceeded") ;
3
}

// (a)(vi) natural ordering of concerts
public int compareTo(Concert aConcert) {
return (this.getConcertName().compareTo(aConcert.getConcertName())) ;

}

VeSS

* A simple equals method

*/

public boolean equals(Object o) {
Concert c¢ = (Concert) o;

return this.getDate().equals(c.getDate()) && this.getConcertName().equals(c.getConcertName());
}

[
% return a hash code for this object based on its date and name
*/
public int hashCode() {
return new Integer(this.getDate()).hashCode()*101 + this.getConcertName().hashCode();
3
b

VAT
* This class models a concert hall that hosts concerts of music
Complete this class using the instructions in part (b)
%/
class ConcertHall {
// Add code for ConcertHall here

// (b) (i) public instance variable whatsOn
// SortedMap<composer,SortedSet<title>>

Phil Molyneux M250 Tutorial 07 25

94 public SortedMap<String,SortedSet<String>> whatsOn ;
96 // (b)(i1) public constructor

97 public ConcertHall() {

98 whatsOn = new TreeMap<String,SortedSet<String>>() ;
99 }

101 // (b)(i11) public instance method addConcert

102 public void addConcert(Concert aConcert) {

103 List<Music> aProgramme = aConcert.getProgramme() ;
104 SortedSet<String> ts ;

105 for (Music progIltem : aProgramme) {

106 if (this.whatsOn.containsKey(progItem.getComposer())) {
107 ts = this.whatsOn.get(progItem.getComposer()) ;
108 } else {

109 ts = new TreeSet<String>() ;

110 this.whatsOn.put(progItem.getComposer(),ts) ;
111 }

112 ts.add(progItem.getTitle()) ;

113 }

114 }

116 }

e Errors in the development of the answer
(1) Wrong bracket in method calls) not (
(2) Forgot import java.util.*
(3) getConcertLength() got programme from wrong place
(4) Forgot implements clause
(5) Problem with compareTo()
(6) implements Comparable should have been implements Comparable<Concert>
(7) Did not expect @Override
GotoQ9

5.10 M250 From 2021 Specimen 2021 Exam Soln 10

(@) Select two reasons why it is preferable to declare the whatsOn collection using an
interface type, such as a Map, rather than a concrete class such as HashMap, which
implements that interface.

(i) A HashMap is abstract while a Map is concrete.

(i) A Map provides more opportunity for reuse, due to substitutability of subtypes. yes
(iii) Using a Map allows us to change the implementation type more easily later on. yes
(iv) A Map supports multiple inheritance while a HashMap does not.

(v) A Map is more efficient than a HashMap.

(b) Select two reasons why a set is appropriate for the values in the whatsOn map, while
a list was chosen for the programme in the Concert class:

(i) Titles of music by a composer are unique, so a set is appropriate for storing them.
yes

26 M250 Exam Revision 11 May 2025

(ii) A setis more efficient for storing music titles associated with a composer than a list.
(iii) A set maintains the order of items added to it so is best for a music programme.
(iv) A concert hall has a set of music, so composition with sets and lists is appropriate.

(v) A programme of music has a particular playing order, so a list is appropriate for the
programme. yes

GotoQ 10

6 Prsntn 2018)J Qs

6.1 M250 2018) Exam Qs

e M250 Object-oriented Java Programming

e Presentation 2018) Exam

e Date Monday, 10 June 2019 Time 10:00-13:00
e You should attempt ALL questions

e Note see the original exam paper for exact wording and formatting — these slides
and notes may change some wording and formatting

Go to Solns

6.2 M250 2018) Exam Q1

e Scenario Equity is a union of more than 43000 performers. All performers in Equity
have a professional name, known as their equity name which is unique to them, and
can choose to join a local branch of Equity.

e Performers can belong to a local branch which organises regular meetings, for ex-
ample on the second Saturday of each month.

e This question asks you to write parts of the class Performer, whose purpose is to
model this scenario.

e Assume a class Branch which has two private String instance variables, name,
address, a two-argument constructor allowing the branch name and address to be
initialised, an equals method, getter methods for name and address and a setter
method for address.

6.2.1 Q1(a)
(a)(i) Write a class Performer with the following: (9 marks)
e a private instance variable of type String called equityName

e a private instance variable of type doubTle called payRate, which will be used to hold
the agreed rate of pay for that performer

Phil Molyneux M250 Tutorial 07 27

(ii)

(iii)

a private instance variable of type Branch called branch which will refer to the in-
stance of Branch which that performer has joined

a public class variable of type double called minPayRate which is the minimum pay
rate agreed by Equity for performers.

a public single-argument constructor which initializes equityName to the argument
string aName, sets branch to nul1 and sets payRate to minPayRate

a public setter method for payRate

a public getter method for branch

a public setter method for branch

a public getter method for equityName

Write a public instance method isInSameBranchAs() that has a Performer argu-
ment.

This method will return true if the receiver and the argument Performer objects
are members of the same branch, and false otherwise. (5 marks)

Write a public instance method getFirstName() that has no arguments.

This method will return a String consisting of all the characters in the equityName,
up to but not including the first space. You may assume that there is a space in the

equityName. (5 marks)
ToC
6.2.2 Q 1(b)
(b) Given the code developed in part (a), assume that the following code is part of a
method and is executed:
Branch bl ; // 1
bl = new Branch("Kent", "The_Alexander_Centre") ; // 2
Branch b2 ; // 3
b2 = new Branch("Dorset", "Wessex_fm_Studios") ; // 4
Performer.minPayRate = 9.50 ; // 5
Performer pl = new Performer("Happy, Bunny") ; // 6
Performer p2 = new Performer("Silly_Sausage") ; /) 7
pl.setPayRate(10.00) ; // 8
p2.setPayRate(20.00) ; /79
pl.setBranch(bl) ; // 10
p2.setBranch(bl) ; // 11
System.out.printin(pl.isInSameBranchAs(p2)) ; // 12
e In the numbered lines of code above, identify all the examples of the following,

(M
(if)
(iii)
(iv)
)
(vi)

stating the line number(s) on which they occur. If there are no examples, state None
explicitly. (7 marks)

messages are sent
reference variables are declared
primitive variables are declared
object construction
operators are used

formal arguments are declared

28 M250 Exam Revision 11 May 2025

(vii) actual arguments are used

6.23 Q1(c)

(c) For the class Performer, write the public instance method equals() that overrides
the equals () method inherited from Object.

e This method will return true if the equityName of the receiver is the same as the
equityName of the argument object, and otherwise return false. (5 marks)

ToC

6.24 Q 1(d)
(d) Based on the Performer class written so far, answer the following questions:

(i) What is the nature of the object-oriented relationship between the classes Performer
and Branch? Explain your answer. (2 marks)

(ii) Consider line // 5 in part (b) above. Why can the value of minPayRate be set at this
point when no Performer objects have been constructed? (2 marks)

(iii) Give two examples of how scope applies to the Performer class. One example
should relate to an instance variable and the other should relate to a formal ar-

gument. (5 marks)

Total (40 marks)
GotoSoln 1

ToC

6.3 M250 2018) Exam Q 2
6.3.1 Q2(a)

e Scenario This question concerns a number of vehicle classes and the Drivable
interface that specifies some common behaviours.

(a) Drivable is a Java interface that specifies three methods accelerate(), brake()

and stop().
These methods take no argument and return no value.
Write down the Drivable interface. (3 marks)
ToC
6.3.2 A 2(b)

(b) In this part of the question you will develop code for the Vehicle class. The class
Vehicle inherits directly from Object and implements the Drivable interface.

(i) Write down the header for the Vehicle class. (1 mark)

(ii) Suppose Vehicle has a single private instance variable speed of type int. Vehicle
implements the methods of the DrivabTe interface according to the following rules.

Phil Molyneux M250 Tutorial 07 29

accelerate() causes speed to be increased by 1.

brake () causes speed to be decreased by 1, as long as it is greater than 0, otherwise
it leaves it unchanged.

stop() causes speed to be repeatedly decreased by 1 until it reaches 0.

Write the code for these three methods. (5 marks)

ToC

6.3.3 Q2(c)

(c) In this part of the question you will develop code for the Car class. The class Car is
a subclass of Vehicle.

Car has two extra int instance variables maxSpeed and increment. (7 marks)

(i) When an instance of Car receives the message accelerate(), it increases its speed
by increment if that would not take the speed over maxSpeed, otherwise speed is
left unchanged.

Write the accelerate() method for Car.

(ii) What is the benefit of adding the @0verride annotation to the accelerate() method
for Car?

(iii) Suppose that we want to keep a count of the number of Car objects that have been
created. Explain using code fragments how we could achieve this.

6.3.4 Q2(d)

(d) Suppose that a class called SpeedBoat, which is unrelated to Car, also implements
the Drivable interface, and that a class called Service has a public constructor
that takes a formal argument of type DrivabTle. (4 marks)

(i) Briefly explain why lines //1 and //2 below are valid:

Car ¢ = new Car(Q);

SpeedBoat sb = new SpeedBoat();
Service sl new Service(c); //1
Service s2 = new Service(sh); //2

(iii) Suppose that we want to keep a count of the number of Car objects that have been
created. Explain using code fragments how we could achieve this.

6.3.5 Q 2(e)(f)
(e) Describe three differences between abstract classes and interfaces. (6 marks)

(f) Suppose that SportsCar is a subclass of Car. Describe what needs to be added to
the class SportsCar (if anything) so that SportsCar will implement the interface
DrivabTle. Briefly justify your answer. (4 marks)

Total (30 marks)

30

M250 Exam Revision 11 May 2025

6.4

6.4.1
(@)

(i)

(if)

Go to Soln 2

M250 2018) Exam Q 3

Scenario Caravan owners who belong to a club make bookings in advance for their
stays on various sites, giving their estimated time of arrival for each stay on a site.

The club wants to look at the pattern of estimated arrival times for all their caravan
sites for a particular weekend so that they can organise staffing appropriately.

Two classes, Booking and CaravanSite, have already been partially completed.

The class Booking already has the following instance variables, constructor and get-
ters:

A private instance variable makeAndMode of type String which represents the make
and model of the caravan e.g. "Swift Basecamp",

A private instance variable owner of type String, which represents an owner name
e.g. "Sue Smith",

A private instance variable estArrivalHour of type int, which represents the es-
timated arrival hour as a whole number using the 24-hour clock (e.g. 16 is used to
represent 4pm),

A three-argument constructor that takes arguments of types String, String and
int and uses them to set the instance variables,

Getter methods for makeAndModel, owner and estArrivalHour.
The class CaravanSite already has the following instance variables:

A private instance variable siteName of type String, which represents the unique
name of the caravan site (e.g. "Park Coppice"),

A private instance variable maxVans of type int, which represents the maximum
number of caravans that can be accommodated on that site.

Q 3(@a)

In this part of the question you will develop additional code for the CaravanSite
class.

Write down the declaration of a private instance variable called bookings, which
should be declared as a List of Booking elements, representing bookings currently
made for the site, in the order the bookings were made. (1 mark)

Write a two-argument constructor for CaravanSite that takes a String argument
representing the name of the caravan site, and an int representing the maximum
number of caravans that can be accommodated, and initialises the instance variables
accordingly. The constructor should also initialise bookings with a suitable empty
collection. (3 marks)

(iii) Write a public instance method addBooking() that takes a Booking argument rep-

resenting the booking of a caravan.

Phil Molyneux M250 Tutorial 07 31

As long as the number of bookings already made is less than the maximum number
of caravans the site can accommodate, the Booking is added to bookings.

If there is not enough room then a suitable message is printed.

In both cases the remaining number of vans that can still be accommodated after
this booking is returned. (4 marks)

ToC

6.4.2 Q 3(b)

(b) In this part of the question you will develop extra code for the Booking class so that
instances of Booking may be sorted from earliest to latest estimated arrival hour.

Assume the equals() and hashCode() methods for Booking have already been
written.

(i) Write down the new class header for Booking, which must now implement an appro-

priate interface. (1 mark)
(ii) Write a compareTo(Booking) method for Booking that will allow ordering of Booking
instances as above. (3 marks)
ToC
6.4.3 Q 3(c)

(c) Write a public instance method orderBookings() for the CaravanSite class that
takes no argument and returns no value.

This method should reorder the elements of bookings by estimated arrival hour.
(2 marks)

ToC

6.4.4 Q 3(d)

(d) In this part of the question you will develop code for a further class, CaravanClub.
This class will help to determine the pattern of estimated arrival times across all
caravan sites.

The class CaravanClub requires a single private instance variable arrByTime. This
is @ map where the key is a particular estimated arrival hour as a whole number (e.g.
16) and the value is an unordered set of Booking with that arrival time, from all
caravan sites.

(i) Write down the declaration of a private instance variable arrByTime of a suitable
interface type to reference the map described above. (2 marks)

(ii) Write a zero argument constructor that initialises arrByTime to a suitable collection.
(2 marks)

(iii) Write the public instance method addSite(). This method takes a CaravanSite
instance as the argument and has no return value. The method adds each of the
bookings for that particular site to the arrByTime map, according to the bookings’
estimated arrival hours.

v A W =

32 M250 Exam Revision 11 May 2025

Assume that the class CaravanSite has a public instance method getBookings()
that returns a list of the bookings for that site.

Note that you cannot assume that a particular estimated arrival hour exists as a key
in the map. (8 marks)

ToC

6.4.5 Q 3(e)

(e)(i) Why is it preferable to declare a collection variable in terms of an interface type,
such as List, rather than a concrete class, such as ArrayList, which implements

that interface? Explain your answer, making two points. (2 marks)

(ii) Give two ways in which an ArrayList is different from an array. (2 marks)

Total (30 marks)
GotoSoln 3

ToC

7 Prsntn 2018]J Solns

7.1 M250 2018) Exam Solns

e The solutions given below are not official solutions

e For some questions, alternatives are given — a student would only have to provide
one

e No marks are given for code comments
e You may assume any import statements required, unless otherwise indicated.

e You may assume that methods receive sensible values when a message is sent,
unless otherwise indicated.

e When writing code, you will not be penalised for minor errors, as long as the meaning
is clear.

Go to Qs

7.2 M250 2018) Exam Soln 1
7.2.1 Soln 1(a)

@@ Q1

public class Performer {
private String equityName ;
private double payRate ;
private Branch branch ;
public static double minPayRate ;

public Performer(String aName) {
super() ;
equityName = aName ;

10
11
12
13
14

v A W N =

o v A W N =

Phil Molyneux M250 Tutorial 07

33

branch = null ;

payRate = Performer.minPayRate ;
/% or %/

// payRate = minPayRate ;

public void setPayRate(double aPayRate) {

}

payRate = aPayRate ;

public Branch getBranch() {

}

return branch ;

public void setBranch(Branch aBranch) {

}

branch = aBranch ;

public String getEquityName() {

}

return equityName ;

(i)

public boolean isInSameBranchAs(Performer p) {

}

return branch.equals(p.getBranch(Q)) ;
/* or #/
// return getBranch().equals(p.getBranch()) ;

(iii)

public String getFirstName() {

int spacelndex = equityName.indexOf("_ ") ;

/* or #/

// int spaceIndex = equityName.indexOf(’ ’) ;
return equityName.substring(0,spaceIndex) ;

7.2.2 Soln 1(b)

(b)
()
(if)
(iii)
(iv)
v)
(vi)
(vii)

messages are sent: lines 8,9,10,11,12
reference variables are declared: lines 1,3,6,7
primitive variables are declared: None

object construction: lines 2,4,6,7

operators are used: 2,4,6,7

formal arguments are declared: None

actual arguments are used: 2,4,6,7,8,9,10,11,12

GotoQ1

v A W N =

— O W O NO VI WwN —

34 M250 Exam Revision 11 May 2025

7.2.3 Soln 1(c)
(0)

@0verride
public boolean equals(Object obj) {
Performer pfmr = (Performer) obj ;
return equityName.equals(pfmr.equityName) ;

}

e This version assumes that the object is of type Performer
e See below for a more robust version

(c) Alternative, more robust version

@Override
public boolean equals(Object obj) {
if (obj == this) {
return true ;

if (!(obj dinstanceof Performer)) {
return false ;
}
Performer pfmr = (Performer) obj ;
return equityName.equals(pfmr.equityName) ;

e It is recommended to override hashcode() if you are overriding equals()

7.2.4 Soln 1(d)
(d)
(i) A Performer object has a Branch — object composition not inheritance

(ii) minPayRate can be set since it is a class (static) variable and hence already exists
with the class Performer definition.

(iii) The scope of a class member such as an instance variable is the entire class (except
where shadowed by another declaration with the same name — there is none here).

The scope of a formal parameter is the body of the method

GotoQ1

7.3 M250 2018) Exam Soln 2
7.3.1 Soln 2(a)

(@ Q2

v A W N =

public interface Drivable {
void accelerate() ;
void brake() ;
void stop() ;

}

e The method description modifiers of abstract and public are implicit

N —

N O v

10
11
12

Ui A W =

10
11

13
14
15

17
18
19
20

A w N =

© 0 N O

11

13
14
15
16
17

Phil Molyneux M250 Tutorial 07 35

7.3.2 Soln 2(b)
(b)

public class Vehicle implements Drivable {
private int speed ;

public Vehicle() {
super() ;
speed = 0 ;

}

public void accelerate() {
speed = speed + 1 ;

}
// } // continued below

public void brake() {
if (speed > 0) {
speed = speed - 1 ;
}
}

public void stop() {
while (speed > 0) {
speed = speed - 1 ;
}
3

public int getSpeed() {// required later
return speed ;

}

public void setSpeed(int spd) {// required later
speed = spd ;

}

}

7.3.3 Soln 2(c)
(©)

public class Car extends Vehicle {
private int maxSpeed ;
private int increment ;
public static int count = 0 ; // Q2(c)(i11)

public Car(Q) {

super() ;

Car.count = Car.count + 1 ; // Q2(c)(i17)
}

@0verride
public void accelerate() {
if ((getSpeed() + increment) <= maxSpeed) {
super.setSpeed(super.getSpeed() + increment) ;
}
}
}

(©)

(ii) @Override gets the Java compiler to check that the method signature is correct —
see Unit 6, page 15

(iii) See comments on code above

A wnNn =

10
11
12
13
14

W 00 N O VT B W N —

36

M250 Exam Revision 11 May 2025

7.3.4 Soln 2(d)
(d Q2

(i) Both Car and SpeedBoat implement the interface Drivable and the Service con-

structor takes an argument of type Drivable

(ii) Actual methods will depend on the class of object at runtime

7.3.5 Soln 2(e)
(e)

e Only one abstract class can be inherited but a class may implement more than one

interface

e Abstract classes can declare instance variables but interface can not

e Up toJava 8, interfaces could not declare default methods

7.3.6 Soln 2(f)
0]

Nothing is required since SportsCar will inherit the interface fields from Car

7.4 M250 2018) Exam Soln 3
7.4.1 Soln 3(a)
(@ Q3

GotoQ?2

public class CaravanSite {
// provided
private String siteName ;
private int maxVans ;

private List<Booking> bookings ;

public CaravanSite(String aName, int aMaxVans) {
super() ;
siteName = aName ;
maxVans = aMaxVans ;
bookings = new ArraylList<>() ;

3
// } // continued below

public int addBooking(Booking aBooking) {
if (bookings.size() < maxVans) {
bookings.add(aBooking) ;
}
else {
System.out.println("No_space") ;
3

return maxVans - bookings.size() ;

Ui A WwN =

10
11
12
13

00 N VA WN =

o v A W N =

10
11
12

Phil Molyneux M250 Tutorial 07

37

7.4.2 Soln 3(b)
(b) Q3

public class Booking implements Comparable<Booking> {
// provided
private String makeAndModel ;
private String owner ;
private int estArrivalHour

public int compareTo(Booking aBooking) {
return estArrivalHour - aBooking.estArrivalHour ;
/% or %/
// Integer.compare(estArrivalHour,
// aBooking.estArrivalHour)
}
}

(b) Q 3 provided parts

public Booking(String aMandM
,String anOwner
,int anHour) {
super() ;
makeAndModel = aMandM ;
owner = anOwner ;
estArrivalHour = anHour

(b) Q 3 provided parts

public String getMakeAndModel() {
return makeAndModel ;

}

public String getOwner() {
return owner ;

}

public int getEstArrivalHour() {
return estArrivalHour ;

}

(b) Q 3 provided parts

@0verride
public boolean equals(Object obj) {
Booking bkg = (Booking) obj ;
return makeAndModel.equals(bkg.makeAndModel)
&& owner.equals(bkg.owner) ;

}

@0verride
public 1int hashCode() {
return (20 + makeAndModel.hashCode())
* owner.hashCode() ;

7.4.3 Soln 3(c)
(c0Q3

public void orderBookings() {
Collections.sort(bookings) ;

}

38 M250 Exam Revision 11 May 2025

public List<Booking> getBookings() {
return bookings ;

}

7.4.4 Soln 3(d)
d Q3

public class CaravanClub {
private Map<Integer,Set<Booking>> arrByTime ;

public CaravanClub() {
arrByTime = new HashMap<>() ;

}

public void addSite(CaravanSite aSite) {
for (Booking aBooking : aSite.getBookings()) {
Integer hour = aBooking.getEstArrivalHour() ;
if (!(arrByTime.containsKeyChour))) {
arrByTime.putChour, new HashSet<>()) ;
}
arrByTime.get(hour) .add(aBooking) ;
}
}
}

7.4.5 Soln 3(e)
(e) Q3

(i) The interface is the real type of the variable, parameter, method of other field and
should be used instead of the implementation class — this enables flexibility and
maintainability

See page 76 of Unit 10 Sets and Maps and Bloch (2017, Item 64, page 280)

(ii) ArrayList is expandable unlike Array — it implements the List interface which
has different fields and methods to Array

See Bloch (2017, Item 28, page 126)
GotoQ3

8 What Next ?

Programming, Debugging, Psychology

Although programming techniques have improved immensely since the early days, the
process of finding and correcting errors in programming — known graphically if inele-
gantly as debugging — still remains a most difficult, confused and unsatisfactory opera-
tion. The chief impact of this state of affairs is psychological. Although we are happy to
pay lip-service to the adage that to err is human, most of us like to make a small pri-
vate reservation about our own performance on special occasions when we really try. It

Phil Molyneux M250 Tutorial 07 39

is somewhat deflating to be shown publicly and incontrovertibly by a machine that even
when we do try, we in fact make just as many mistakes as other people. If your pride
cannot recover from this blow, you will never make a programmer.

Christopher Strachey, Scientific American 1966 vol 215 (3) September pp112-124

e To err is human, to really foul things up requires a computer.

Attributed to Paul R. Ehrlich in 101 Great Programming Quotes

Attributed to Bill Vaughn in Quote Investigator

Derived from Alexander Pope (1711, An Essay on Criticism)

To Err is Humane; to Forgive, Divine

This also contains
A little learning is a dangerous thing;
Drink deep, or taste not the Pierian Spring

e In programming, this means you have to read the fabulous manual (RTFM)

Units 1-5, TMAOI1
e Tutorial: Exam revision: Online 10:00 Sunday 11 May 2025
e Exam Friday, 30 May 2025

9 Web Links & References

9.1 Java Documentation
e Java Documentation — BlueJ has JDK 7 embedded, JDK 13 is current (2019)
e JDK 13 Documentation
e Java Platform API Specification

e Java Language Specification

) [JDK Documentation>> API Documentation>>java.base}

- java.lang — fundamental classes for the Java programming language

- java.util — Collections framework

https://en.wikipedia.org/wiki/Christopher_Strachey
https://en.wikipedia.org/wiki/Paul_R._Ehrlich
http://www.devtopics.com/101-great-computer-programming-quotes/
https://en.wikipedia.org/wiki/William_E._Vaughan
http://quoteinvestigator.com/2010/12/07/foul-computer/
https://en.wikipedia.org/wiki/Alexander_Pope
https://en.wikipedia.org/wiki/An_Essay_on_Criticism
https://en.wikipedia.org/wiki/Pierian_Spring
https://lmgtfy.com/?q=rtfm
https://docs.oracle.com/en/java/javase/
https://docs.oracle.com/en/java/javase/13/index.html
https://docs.oracle.com/en/java/javase/13/docs/api/index.html
https://docs.oracle.com/javase/specs/index.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/lang/package-summary.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/util/package-summary.html

40 M250 Exam Revision 11 May 2025

© O 5[]]3] [2] 52w 5o 2 o 15 5] o 2o 2 o] B[5[5 2 e W €| 2= o]2 255

e
<« G ¢ [& docs.oracle. javalj 13 i i ing.html o %)@
Apps ES) Apple B Books ES) CompNews ES Computing B Finance E3 Information [Kingston ES) News ES) OU [Scripts B Shopping ES) Topics »
OVERVIEW MODULE PACKAGE C5] USE TREE DEPRECATED INDEX HELP Java SE 13 & JDK 13
SUMMARY: NESTED | FIELD | CONSTR | METHOD ~ DETAIL: FIELD | CONSTR | METHOD SEARCH: [O_ Search X

Module java.base
Package java.lang

Class String

java.lang.Object
java.lang.String

All Implemented Interfaces:

Serializable, CharSequence, Comparable<String>, Constable, ConstantDesc

public final class String
extends Object
implements Serializable, Comparable<String>, CharSequence, Constable, ConstantDesc

The String class represents character strings. All string literals in Java programs, such as "abc", are implemented as instances of this class.

Strings are constant; their values cannot be changed after they are created. String buffers support mutable strings. Because String objects are immutable
they can be shared. For example:

String str = "abc";

¢ LBOA-2019102...zip ~ % Christina2007N...jpg ~ % Christina2012N...jpg » " system-f-with-t....b... ~ Show All X

e Strings are immutable objects
e See java.lang.StringBuilder for mutable strings

e In a functional programming approach everything is immutable — it makes life sim-
pler (but at a cost)

© © ®]| S[5[6] 55| B[] 2 2|55 2 W[| 3 5] 2 o o 2 3 B[[35[5[55 o] €[5 o]] 2] 2|2 i

<« Cc O @& docs.oracle.com/en/javalj /13/do: .base/java/lang/String.html#equals(java.lang.Object) Y ‘

i Apps [5) Apple B Books [CompNews [Computing EBS Finance E5 Information ES Kingston E5 News [E5 OU [E3 Scripts B3 Shopping B3 Topics »
OVERVIEW MODULE PACKAGE -1 USE TREE DEPRECATED INDEX HELP Java SE 13 & JDK 13
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD SEARCH: O Search x

equals
public boolean equals(Object anObject)
Compares this string to the specified object. The result is true if and only if the argument is not null and is a String object that represents the
same sequence of characters as this object.
For finer-grained String comparison, refer to Collator.
Overrides:
equals in class Object
Parameters:
anObject - The object to compare this String against
Returns:
true if the given object represents a String equivalent to this string, false otherwise
See Also:
compareTo(String), equalsIgnoreCase(String)
¢ LBOA-2019102..zip ~ % Christina2007N....jpg * % Christina2012N...jpg * ¥ system-f-with-t...b... ~ Show All X

e Remember (==) tests for identity — what does this mean ?

9.2 Books Phil Likes

e M250 is self contained — you do not need further books — but you might like to
know about some:

e Sestoft (2016) — the best short reference
e Evans and Flanagan (2018) — the best longer reference

e Barnes and Kolling (2016) — the Blue) book — see www.bluej.org for documentation
and tutorial

https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/lang/StringBuilder.html
https://www.bluej.org/

Phil Molyneux M250 Tutorial 07 41

e Bloch (2017) — guide to best practice

References

Barnes, David J. and Michael Kolling (2009). Objects First with Java. Pearson Education,
fourth edition. ISBN 0-13-606086-2. URL http://www.bluej.org/objects-first/.

Barnes, David J. and Michael Kolling (2011). Objects First with Java. Pearson Education,
fifth edition. ISBN 0132835541. URL http://www.bluej.org/objects-first/.

Barnes, David J. and Michael Kolling (2016). Objects First with Java. Pearson, sixth edition.
ISBN 1292159049. URL http://www.bluej.org/objects-first/. 40

Bloch, Joshua (2017). Effective Java. Addison-Wesley Professional, third edition. ISBN
9780134685991. 38, 41

Darwin, lan F (2014). Java Cookbook. O’Reilly, third edition. ISBN 97814493370409.

Evans, Benjamin J and David Flanagan (2014). Java In A Nutshell. O’Reilly, sixth edition.
ISBN 1449370829. URL https://github.com/kittylyst/javanutb-examples.

Evans, Benjamin J and David Flanagan (2018). Java In A Nutshell. O’Reilly, seventh edition.
ISBN 1492037257. 40

Felleisen, Matthias and Daniel P. Friedman (1998). A Little Java, A Few Patterns. MIT Press.
ISBN 0262561158. URL http://felleisen.org/matthias/BAL]-index.html.

Gosling, James; Bill Joy; Guy L. Steele Jr.; Gilad Bracha; and Alex Buckley (2014). The Java
Language Specification, Java SE 8 Edition (Java Series) (Java (Addison-Wesley)). Addison
Wesley, eighth edition. ISBN 013390069X. URL https://docs.oracle.com/en/java/
javase/12/index.html.

Naftalin, Maurice and Philip Wadler (2006). Java Generics and Collections. O’Reilly. ISBN
059610247X.

Schildt, Herbert (2018a). Java: A Beginner’s Guide. McGraw-Hill, eighth edition.
ISBN 1260440214. URL http://mhprofessional.com/9781260440218-usa-java-a-
beginners-guide-eighth-edition-group.

Schildt, Herbert (2018b). Java: The Complete Reference, Eleventh Edition. McGraw-
Hill, eleventh edition. ISBN 1260440230. URL http://mhprofessional.com/
9781260440232-usa-java-the-complete-reference-eleventh-edition-group.

Sestoft, Peter (2002). Java Precisely. MIT Press. ISBN 0-262-69276-7.
Sestoft, Peter (2005). Java Precisely. MIT, second edition. ISBN 0262693259.

Sestoft, Peter (2016). Java Precisely. MIT, third edition. ISBN 0262529076. URL http:
//www.itu.dk/people/sestoft/javaprecisely/. 40

Thimbleby, Harold (1999). A critique of Java. Software: Practice and Experience,
29(5):457-478.

Waldo, Jim (2010). Java: The Good Parts. O’Reilly. ISBN 9780596803735. URL http:
//shop.oreilly.com/product/9780596803742.do.

section WebLinksReferences (end)

http://www.bluej.org/objects-first/
http://www.bluej.org/objects-first/
http://www.bluej.org/objects-first/
https://github.com/kittylyst/javanut6-examples
http://felleisen.org/matthias/BALJ-index.html
https://docs.oracle.com/en/java/javase/12/index.html
https://docs.oracle.com/en/java/javase/12/index.html
http://mhprofessional.com/9781260440218-usa-java-a-beginners-guide-eighth-edition-group
http://mhprofessional.com/9781260440218-usa-java-a-beginners-guide-eighth-edition-group
http://mhprofessional.com/9781260440232-usa-java-the-complete-reference-eleventh-edition-group
http://mhprofessional.com/9781260440232-usa-java-the-complete-reference-eleventh-edition-group
http://www.itu.dk/people/sestoft/javaprecisely/
http://www.itu.dk/people/sestoft/javaprecisely/
http://shop.oreilly.com/product/9780596803742.do
http://shop.oreilly.com/product/9780596803742.do

42 M250 Exam Revision 11 May 2025

Author Phil Molyneux Written 11 May 2025 Printed 9th May 2025

Subject dir: (baseURL)/0U/Courses/Computing/M250/M250Presentations/M250Prsntn2024]

Topic path:
/M250Prsntn2024]Tutorials/M250Tutorial20250511ExamRevPrsntn2024]/M250Tutorial20250511ExamRevPrsntn2024].pdf

	M250 Exam Revision: Agenda
	Adobe Connect
	Interface
	Settings
	Sharing Screen & Applications
	Ending a Meeting
	Invite Attendees
	Layouts
	Chat Pods
	Web Graphics
	Recordings

	Spec 2021 Rubric
	Spec 2021 Questions
	Q 1
	Q 2
	Q 3
	Q 4
	Q 5
	Q 6
	Q 7
	Q 8
	Q 9
	Q 10

	Spec 2021 Solns
	Soln 1
	Soln 2
	Soln 3
	Soln 4
	Soln 5
	Soln 6
	Soln 7
	Soln 8
	Soln 9
	Soln 10

	Prsntn 2018J Qs
	Qs
	Q 1
	Q 1(a)
	Q 1(b)
	Q 1(c)
	Q 1(d)

	Q 2
	Q 2(a)
	A 2(b)
	Q 2(c)
	Q 2(d)
	Q 2(e)(f)

	Q 3
	Q 3(a)
	Q 3(b)
	Q 3(c)
	Q 3(d)
	Q 3(e)

	Prsntn 2018J Solns
	Solns
	Soln 1
	Soln 1(a)
	Soln 1(b)
	Soln 1(c)
	Soln 1(d)

	Soln 2
	Soln 2(a)
	Soln 2(b)
	Soln 2(c)
	Soln 2(d)
	Soln 2(e)
	Soln 2(f)

	Soln 3
	Soln 3(a)
	Soln 3(b)
	Soln 3(c)
	Soln 3(d)
	Soln 3(e)

	What Next ?
	References
	Java Documentation
	Books Phil Likes
	References

