
Java: Collections, Arrays, Sets, Maps, Lists

M250 Tutorial 06

Contents

1 Tutorial Agenda 2

2 Adobe Connect 3
2.1 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Sharing Screen & Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Ending a Meeting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 Invite Attendees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.6 Layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.7 Chat Pods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.8 Web Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.9 Recordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Classes and Interfaces 9

4 Sets 9

5 Maps 10

6 Lists 11

7 Collection Implementations 11

8 TMA03 Practice Quiz 12
8.1 Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
8.2 Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

8.2.1 Q 1 Sample Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
8.3 Question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

8.3.1 Q 2 Sample Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.4 Question 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

8.4.1 Q 3 Sample Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

9 Common Mistakes 32
9.1 Array to List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
9.2 Using a TreeSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
9.3 Remove List Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

10 JShell 35

11 What Next ? 35

12 References 36
12.1Java Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
12.2Books Phil Likes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1



2 Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025

1 Java: Collections, Arrays, Sets, Maps, Lists: Tutorial Agenda

• Introductions

• Adobe Connect reminders

• Adobe Connect — if you or I get cut off, wait till we reconnect (or send you an email)

• Collections framework

• Arrays

• Sets, Maps

• Lists

• Review of TMA03 Practice Quiz

• Common Mistakes

• JShell (optional)

• Some useful Web & other references

• Time: about 1 to 2 hours

• Do ask questions or raise points.

• Slides/Notes M250Tutorial06Collections

Introductions — Phil

• Name Phil Molyneux

• Background

– Undergraduate: Physics and Maths (Sussex)

– Postgraduate: Physics (Sussex), Operational Research (Brunel), Computer Sci-
ence (University College, London)

– Worked in Operational Research, Business IT, Web technologies, Functional Pro-
gramming

• First programming languages Fortran, BASIC, Pascal

• Favourite Software

– Haskell — pure functional programming language

– Text editors TextMate, Sublime Text — previously Emacs

– Word processing in LATEX — all these slides and notes

– Mac OS X

• Learning style — I read the manual before using the software

Introductions — You

• Name ?

• Favourite software/Programming language ?

http://pmolyneux.co.uk/OU/M250FolderSync/M250TutorialNotes/M250Tutorial06Collections/
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://www.haskell.org/
https://macromates.com
http://www.sublimetext.com
https://www.emacswiki.org/
https://www.latex-project.org/
https://developer.apple.com/


Phil Molyneux M250 Tutorial 06 3

• Favourite text editor or integrated development environment (IDE)

• List of text editors, Comparison of text editors and Comparison of integrated devel-
opment environments

• Other OU courses ?

• Anything else ?

ToC

2 Adobe Connect Interface and Settings

2.1 Adobe Connect Interface

Adobe Connect Interface — Host View

Adobe Connect Interface — Participant View

https://en.wikipedia.org/wiki/Text_editor
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/List_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments


4 Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025

2.2 Adobe Connect Settings

Adobe Connect — Settings

• Everybody Menu bar Meeting Speaker & Microphone Setup

• Menu bar Microphone Allow Participants to Use Microphone ✔

• Check Participants see the entire slide including slide numbers bottom right Workaround

– Disable Draw Share pod Menu bar Draw icon

– Fit Width Share pod Bottom bar Fit Width icon ✔

• Meeting Preferences General Host Cursor Show to all attendees

• Menu bar Video Enable Webcam for Participants ✔

• Do not Enable single speaker mode

• Cancel hand tool

• Do not enable green pointer

• Recording Meeting Record Session ✔

• Documents Upload PDF with drag and drop to share pod

• Delete Meeting Manage Meeting Information Uploaded Content and check filename click on delete

Adobe Connect — Access

• Tutor Access

TutorHome M269 Website Tutorials

Cluster Tutorials M269 Online tutorial room

Tutor Groups M269 Online tutor group room



Phil Molyneux M250 Tutorial 06 5

Module-wide Tutorials M269 Online module-wide room

• Attendance

TutorHome Students View your tutorial timetables

• Beamer Slide Scaling 440% (422 x 563 mm)

• Clear Everyone’s Status

Attendee Pod Menu Clear Everyone’s Status

• Grant Access and send link via email

Meeting Manage Access & Entry Invite Participants. . .

• Presenter Only Area

Meeting Enable/Disable Presenter Only Area

Adobe Connect — Keystroke Shortcuts

• Keyboard shortcuts in Adobe Connect

• Toggle Mic + M (Mac), Ctrl + M (Win) (On/Disconnect)

• Toggle Raise-Hand status + E

• Close dialog box (Mac), Esc (Win)

• End meeting + \

2.3 Adobe Connect — Sharing Screen & Applications

• Share My Screen Application tab Terminal for Terminal

• Share menu Change View Zoom in for mismatch of screen size/resolution (Participants)

• (Presenter) Change to 75% and back to 100% (solves participants with smaller screen
image overlap)

• Leave the application on the original display

• Beware blued hatched rectangles — from other (hidden) windows or contextual
menus

• Presenter screen pointer affects viewer display — beware of moving the pointer away
from the application

• First time: System Preferences Security & Privacy Privacy Accessibility

2.4 Adobe Connect — Ending a Meeting

• Notes for the tutor only

• Student: Meeting Exit Adobe Connect

• Tutor:

• Recording Meeting Stop Recording ✔

• Remove Participants Meeting End Meeting. . . ✔

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html
https://en.wikipedia.org/wiki/Terminal_(macOS)


6 Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025

– Dialog box allows for message with default message:

– The host has ended this meeting. Thank you for attending.

• Recording availability In course Web site for joining the room, click on the eye icon
in the list of recordings under your recording — edit description and name

• Meeting Information Meeting Manage Meeting Information — can access a range of informa-
tion in Web page.

• Delete File Upload Meeting Manage Meeting Information Uploaded Content tab select file(s) and
click Delete

• Attendance Report see course Web site for joining room

2.5 Adobe Connect — Invite Attendees

• Provide Meeting URL Menu Meeting Manage Access & Entry Invite Participants. . .

• Allow Access without Dialog Menu Meeting Manage Meeting Information provides new browser
window with Meeting Information Tab bar Edit Information

• Check Anyone who has the URL for the meeting can enter the room

• Default Only registered users and accepted guests may enter the room

• Reverts to default next session but URL is fixed

• Guests have blue icon top, registered participants have yellow icon top — same icon
if URL is open

• See Start, attend, and manage Adobe Connect meetings and sessions

• Click on the link sent in email from the Host

• Get the following on a Web page

• As Guest enter your name and click on Enter Room

https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html


Phil Molyneux M250 Tutorial 06 7

• See the Waiting for Entry Access for Host to give permission

• Host sees the following dialog in Adobe Connect and grants access

2.6 Layouts

• Creating new layouts example Sharing layout

• Menu Layouts Create New Layout. . . Create a New Layout dialog Create a new blank layout and name it
PMolyMain

• New layout has no Pods but does have Layouts Bar open (see Layouts menu)

• Pods



8 Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025

• Menu Pods Share Add New Share and resize/position — initial name is Share n — rename
PMolyShare

• Rename Pod Menu Pods Manage Pods. . . Manage Pods Select Rename or Double-click & rename

• Add Video pod and resize/reposition

• Add Attendance pod and resize/reposition

• Add Chat pod — rename it PMolyChat — and resize/reposition

• Dimensions of Sharing layout (on 27-inch iMac)

– Width of Video, Attendees, Chat column 14 cm

– Height of Video pod 9 cm

– Height of Attendees pod 12 cm

– Height of Chat pod 8 cm

• Duplicating Layouts does not give new instances of the Pods and is probably not a
good idea (apart from local use to avoid delay in reloading Pods)

• Auxiliary Layouts name PMolyAux0n

– Create new Share pod

– Use existing Chat pod

– Use same Video and Attendance pods

2.7 Chat Pods

• Format Chat text

• Chat Pod menu icon My Chat Color

• Choices: Red, Orange, Green, Brown, Purple, Pink, Blue, Black

• Note: Color reverts to Black if you switch layouts

• Chat Pod menu icon Show Timestamps

2.8 Graphics Conversion for Web

• Conversion of the screen snaps for the installation of Anaconda on 1 May 2020

• Using GraphicConverter 11

• File Convert & Modify Conversion Convert

• Select files to convert and destination folder

• Click on Start selected Function or +

2.9 Adobe Connect Recordings

• Menu bar Meeting Preferences Video

• Aspect ratio Standard (4:3) (not Wide screen (16:9) default)



Phil Molyneux M250 Tutorial 06 9

• Video quality Full HD (1080p not High default 480p)

• Recording Menu bar Meeting Record Session ✔

• Export Recording

• Menu bar Meeting Manage Meeting Information

• New window Recordings check Tutorial Access Type button

• check Public check Allow viewers to download

• Download Recording

• New window Recordings check Tutorial Actions Download File

ToC

3 Classes and Interfaces

• Classes and Interfaces were introduced in Unit 6 and there is a reminder on page
105 of Unit 10

• It is worth discussing of the roles of Classes and Interfaces — some students will be
finding the detail gets in the way of some broad concepts

• Focus on the Java type system

• Question: How does a Class define a type ?

• Question: How does an Interface define a type ?

• Page 105 of Unit 10 gives the view of this

• Class: tells you how to construct a thing of a new type

• Interface: to be of this type you have to implement the specified actions

• There are parallels in other languages but you have to be careful of the use of termi-
nology here

ToC

4 Sets

• A Set is a collection with no order, no duplicates, no index and varying size

• Discuss a number of examples similar to Unit 10

• The examples below use JShell, a Read-Eval-Print loop (REPL) tool available for Java

• Java Shell User’s Guide describes its usage

• Note: JShell is not directly in M250 (it arrived in JDK 9) but for demonstrations
students only need to know:

– Java statements and class definitions can be executed at the prompt jshell> and
continuation prompt ...>

– The result is reported on the line following

https://en.wikipedia.org/wiki/JShell
https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
https://docs.oracle.com/en/java/javase/12/jshell/


10 Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025

– Most common libraries are automatically imported� �
Set<String> keywordSet = new HashSet<String>();� �� �
jshell> String[] pArray =

...> {"d", "a", "c", "a", "b", "a" }
pArray ==> String[6] { "d", "a", "c", "a", "b", "a" }

jshell> Set<String> qSet =
...> new TreeSet<String>(Arrays.asList(pArray))

qSet ==> [a, b, c, d]

jshell> boolean b = qSet.add("bb")
b ==> true

jshell> qSet
qSet ==> [a, b, bb, c, d]� �

ToC

5 Maps

• Mapping keys to values — sometimes called Dictionaries

• Exercise: mapping file names to content types — what part of the filename gives us
the information ?

• Mapping file extensions to file types� �
jshell> Map<String, String> fileTypeMap =

...> new HashMap<String, String>()
fileTypeMap ==> {}

jshell> String retVal = fileTypeMap.put("java","Java")
retVal ==> null

jshell> String retVal = fileTypeMap.put("py","Python")
retVal ==> null

jshell> String retVal = fileTypeMap.put("lhs","Haskell")
retVal ==> null

jshell> String retVal = fileTypeMap.put("hs","Haskell")
retVal ==> null� �
• Repeating a key in put overwrites an entry but reports the previous value� �

jshell> String retVal
= fileTypeMap.put("lhs","Literate Haskell")

retVal ==> "Haskell"

jshell> fileTypeMap
fileTypeMap ==>
{java=Java, lhs=Literate Haskell,
py=Python, hs=Haskell}

jshell> Set<String> fTypes =
...> fileTypeMap.keySet()

fTypes ==> [java, lhs, py, hs]� �
• Possible further discussion of citation keys for bibliographies — see JabRef (imple-

mented in Java) or BibDesk

ToC

http://www.jabref.org/
https://bibdesk.sourceforge.io/


Phil Molyneux M250 Tutorial 06 11

6 Lists

• Lists implement the idea of a sequence of items

• Dynamic size — items can be added, removed or modified (though you can have lists
of fixed size)

• Ordered and indexed by integers (starting at 0)

• Duplicates allowed

• Summary in M250 Exam Handbook page 24

• List interface implemented by ArrayList and LinkedList

• Covered in Unit 11 — would not have time for more than a brief mention in this
session

ToC

7 Collection Implementations

• This section discusses the hierarchy of interfaces, abstract classes and concrete
classes that make up the Collections Framework

• It follows Unit 10 with some similar exercises

• Classes that implement the collection interfaces typically have names in the form of
<Implementation-style><Interface>

• Note that the diagrams may have some conventions that I may have missed — see,
for example, UML Class and Object Diagrams Overview

• M250 follows some conventions from Javadoc — see Javadoc Guide

Collection

Set

SortedSet

List Queue

Map

SortedMap

• The blue rectangles denote interfaces and subinterfaces.

• Exercise Using M250 Exam Handbook to find some details of Set (page 26) and
SortedSet (page 27)

https://www.uml-diagrams.org/class-diagrams-overview.html
https://en.wikipedia.org/wiki/Javadoc
https://docs.oracle.com/en/java/javase/12/javadoc/
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Collection.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Set.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/SortedSet.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/List.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Queue.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/SortedMap.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Set.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/SortedSet.html


12 Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025

AbstractCollection

AbstractList

AbstractSequentialList

LinkedList ArrayList

AbstractSet

HashSet TreeSet

• The red rectangles denote abstract classes which implement various interfaces

• Yellow rectangles denote concrete classes extending abstract classes and (possibly)
implementing interfaces

• Note that TreeSet also implements the SortedSet interface

AbstractMap

HashMap TreeMap

• Note that TreeMap also implements the SortedMap interface

• Exercise Using M250 Exam Handbook to find some details of HashMap (page 30) and
TreeMap (page 31)

• Timing: 10 mins

• Note: I would prefer to have a diagram with interface, abstract classes and concrete
classes all in one diagram but this would take some time to produce — see, for
example, Sestoft, Java Precisely (2016) section 22, page 102

ToC

8 TMA03 Practice Quiz

8.1 Information

• The quiz is intended to help with TMA03 Q2 and exam Q3

• There are three questions about the usage of List, Map and Set

• The code can be checked with Precheck and Check

• Precheck checks that the code compiles and is not missing some features

• Check checks the functionality

• You are advised to develop your code in BlueJ first

• The quiz can be repeated any number of times to improve the score

https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/AbstractCollection.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/AbstractList.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/AbstractSequentialList.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/LinkedList.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/ArrayList.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/AbstractSet.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/HashSet.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/TreeSet.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/TreeSet.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/SortedSet.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/AbstractMap.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/HashMap.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/TreeMap.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/TreeMap.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/SortedMap.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/HashMap.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/TreeMap.html


Phil Molyneux M250 Tutorial 06 13

ToC

8.2 Question 1

• This CodeRunner question concerns an animal shelter that keeps records about ani-
mals brought to the shelter.

• We will model this using two classes, Animal and Shelter, and we have provided
incomplete code for the Shelter class in the answer box.

• Your task is to complete the Shelter class. You do not need to add anything to the
Animal class.

• Before you start, (1) read over the provided Animal class.

• Animal Class� �
147 class Animal {
148 // instance variables
149 private int week ; // 1 to 52
150 private String kind ;
151 private String name ;
152 private String description ;

154 /**
155 * Constructor for objects of class Animal
156 */
157 public Animal(int aWeek
158 ,String aKind
159 ,String aName
160 ,String aDescription) {
161 this.week = aWeek ;
162 this.kind = aKind ;
163 this.name = aName ;
164 this.description = aDescription ;
165 }� �� �
230 }� �� �
167 /**
168 * getter for week
169 */
170 public int getWeek() {
171 return this.week ;
172 }

174 /**
175 * getter for type
176 */
177 public String getKind() {
178 return this.kind ;
179 }

181 /**
182 * getter for name
183 */
184 public String getName() {
185 return this.name ;
186 }� �� �
188 /**
189 * getter for description
190 */
191 public String getDescription() {
192 return this.description ;
193 }

195 /**
196 * setter for description



14 Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025

197 * Note - concatenates new description to end of existing one
198 */
199 public void setDescription(String moreDescription) {
200 this.description = this.description
201 + " " + moreDescription ;
202 }� �� �
204 /**
205 * A simple equals method
206 */
207 @Override
208 public boolean equals(Object o) {
209 Animal anml = (Animal) o ;
210 return ( getKind().equals(anml.getKind())
211 && getWeek() == anml.getWeek()
212 && getName().equals(anml.getName())) ;
213 }

215 /**
216 * hashCode
217 */
218 @Override
219 public int hashCode() {
220 return getName().length();
221 }

223 @Override
224 public String toString() {
225 return (this.getKind()
226 + " " + this.getName()
227 + ":" + this.getDescription()) ;
228 }� �

• (2) Note that in this question an instance of Shelter holds data about a number
of Animal objects in an ArrayList. For example, the ArrayList might contain the
following data:

Index Value

1 Animal object with week 50, kind "cat", name "Billy", description "Black
diabetic"

2 Animal object with week 50, kind "cat", name "Zoe", description "Black
and white"

3 Animal object with week 51, kind "dog", name "Rover", description
"mongrel"

4 Animal object with week 52, kind "tortoise", name "Speedy", description
"Horsefield"

• Note that the ArrayList stores entries in the order in which they were added.

(a) (i) Declare an additional private instance variable animals in the Shelter class,
capable of referencing an ArrayList whose values are Animal objects, as in the
example table above.

Add a standard getter method for the animals collection.

• (ii) The class Shelter should now have these instance variables:

– animals, which you added in part (i) above

– currentWeek of type int, which is the current week of the year, and will be
used when calculating how long an animal has been in the shelter.

• Amend the provided zero-argument constructor for Shelter so that when a new
instance of Shelter is created animals is assigned a suitable empty ArrayList
object and currentWeek is set to 1.



Phil Molyneux M250 Tutorial 06 15

� �
9 class Shelter {

10 private int currentWeek ;
11 private List<Animal> animals ;

13 public Shelter () {
14 super() ;
15 this.animals = new ArrayList<Animal>() ;
16 this.currentWeek = 1 ;
17 }� �

(a) (iii) Complete the skeleton instance method addAnimal()for the class Shelter, with
the header� �

public void addAnimal(String aKind
,String aName
,String aDescription)� �

• The method should use its three arguments to create an instance of Animal, us-
ing the value of currentWeek for its week, then add the Animal to the animals
ArrayList.� �

27 public void addAnimal(String aKind
28 ,String aName
29 ,String aDescription) {
30 Animal anml
31 = new Animal(this.currentWeek
32 , aKind, aName, aDescription) ;
33 this.animals.add(anml) ;
34 }� �

(b) (i) Write a public instance method with the signature inTheLastMonth(Animal) for
the Shelter class.

• The method should determine whether the Animal received as an argument has
been brought into the shelter in the last month — that is, if the number of weeks
between currentWeek and the animal’s week is 4 or less

Note, however, that when currentWeek gets to 52, then the next currentWeek’s
value is 1.

You’ll need to watch out for this when calculating how many weeks it has been since
the animal arrived. For two examples, see below.

currentWeek in Shelter Animal’s week value Weeks since arrived

52 50 2
1 50 3

• The method should return true if it has been less than or equal to four weeks since
the animal arrived; otherwise it should return false. You can assume that an animal
is never in the shelter for more than a year.� �

36 public boolean inTheLastMonth(Animal anml) {
37 int currWeek = this.currentWeek ;
38 int animalWeek = anml.getWeek() ;
39 return ( ( currWeek - animalWeek <= 4
40 && currWeek - animalWeek >= 0)
41 || (currWeek - animalWeek + 52 <= 4) ) ;
42 }� �

(b) (ii) Write a public instance method showRecentAnimals() for the Shelter class.



16 Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025

• For each Animal in the collection referenced by animals, if the animal was brought
into the shelter in the last month (it has been less than or equal to four weeks since
the animal arrived) then data about that animal should be printed to the standard
output, with the details of each such animal on a separate line.

• If no animals have been brought in in the last month then No recent animals should
be printed.

• For example, using the data from the table in part (a), the output from showRecentAnimals()
when currentWeek is 3 should be:� �
dog Rover:mongrel
tortoise Speedy:Horsefield� �� �

44 public void showRecentAnimals() {
45 boolean noRecentAnimals = true ;

47 for (Animal anml : this.animals) {
48 if (inTheLastMonth(anml)) {
49 System.out.println(anml.getKind()
50 + " " + anml.getName()
51 + ":" + anml.getDescription()) ;
52 noRecentAnimals = false ;
53 }
54 }

56 if (noRecentAnimals) {
57 System.out.println("No recent animals") ;
58 }
59 }� �

(c) Write a public method homed() in the Shelter class with the header� �
public boolean homed(int aWeek

,String aKind
,String aName)� �

• This method should determine whether or not the ArrayList referenced by animals
contains an Animal with a week, kind and name matching the method arguments.

• If there is such an animal, it should be removed from the list and true should be
returned. Otherwise false should be returned.

• This version uses List operations� �
61 public boolean homed(int aWeek
62 ,String aKind
63 ,String aName) {
64 Animal anml = new Animal(aWeek,aKind,aName,"No Desc") ;
65 boolean anmlIsIn
66 = this.animals.contains(anml) ;
67 if (anmlIsIn) {
68 this.animals.remove(anml) ;
69 }
70 return anmlIsIn ;
71 }� �

• remove() here is from the Collections Interface

• It takes an object as argument and removes a single instance of the element, if
present

• It returns true if it succeeds

• It uses equals() to check elements

• We could have made the above method shorter — how ?

https://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/util/Collection.html


Phil Molyneux M250 Tutorial 06 17

• This version uses an Iterator� �
73 public boolean homedA(int aWeek
74 ,String aKind
75 ,String aName) {

77 Iterator<Animal> animalIter = this.animals.iterator() ;
78 while (animalIter.hasNext()) {
79 Animal anml = animalIter.next() ;
80 if ( anml.getWeek() == aWeek
81 && anml.getKind() == aKind
82 && anml.getName() == aName) {
83 animalIter.remove() ;
84 return true ;
85 }
86 }
87 return false ;
88 }� �

• The code below may work but it is unpredictable

• See Iterating through a Collection, avoiding ConcurrentModificationException when
removing objects in a loop

• See java.base > java.util > Class ConcurrentModificationException� �
90 public boolean homedB(int aWeek
91 ,String aKind
92 ,String aName) {

94 for (Animal anml : this.animals) {
95 if ( anml.getWeek() == aWeek
96 && anml.getKind() == aKind
97 && anml.getName() == aName) {
98 this.animals.remove(anml) ;
99 return true ;

100 }
101 }
102 return false ;
103 }� �

8.2.1 Q 1 Sample Usage

• The code is in M250TMA03PracticeQuizSolnA.java and we use jShell to do evalu-
ations — see Java Shell User’s Guide

• We have several classes in one file — see Java: Multiple class declarations in one file� �
import java.util.* ;

class M250TMA03PracticeQuizSolnA {
public static void main(String[] args) {
// further code here or in Utilities

}
}� �� �
class Shelter {� �� �
class Animal {� �� �
class Utilities {� �

• Open the Java file at the jShell prompt — it will compile it� �
jshell> /open M250TMA03PracticeQuizSolnA.java

jshell> Shelter shelter01 = new Shelter()
shelter01 ==> Shelter@46f7f36a

https://stackoverflow.com/questions/223918/iterating-through-a-collection-avoiding-concurrentmodificationexception-when-re
https://stackoverflow.com/questions/223918/iterating-through-a-collection-avoiding-concurrentmodificationexception-when-re
https://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/util/ConcurrentModificationException.html
M250TMA03PracticeQuizSolnA.java
https://en.wikipedia.org/wiki/JShell
https://docs.oracle.com/en/java/javase/14/jshell/
https://stackoverflow.com/questions/2336692/java-multiple-class-declarations-in-one-file


18 Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025

jshell> Animal anml01 = new Animal(50,"cat","Billy","No Description")
anml01 ==> Animal@5

jshell> Animal anml02 = new Animal(51,"dog","Rover","No Description")
anml02 ==> Animal@5

jshell> Animal anml03 = new Animal(1,"rabbit","Roger","No Description")
anml03 ==> Animal@5

jshell> shelter01.populate()

jshell> shelter01.showRecentAnimals()
dog Rover:mongrel
tortoise Speedy:Horsefield

jshell> /exit
| Goodbye� �

• Shelter has populate() and toString() definitions to facilitate sample usage� �
108 public void populate() {
109 this.currentWeek = 50 ;
110 this.addAnimal("cat","Billy","Black diabetic") ;
111 this.addAnimal("cat","Zoe","Black and white") ;
112 this.currentWeek = 51 ;
113 this.addAnimal("dog","Rover","mongrel") ;
114 this.currentWeek =52 ;
115 this.addAnimal("tortoise","Speedy","Horsefield") ;
116 this.currentWeek = 3 ;
117 }

119 @Override
120 public String toString() {
121 String outStr = "" ;
122 outStr = outStr + "currentWeek is " + currentWeek ;
123 for (Animal anml : this.animals) {
124 outStr = outStr + "\n" + anml.toString() ;
125 }
126 return outStr ;
127 }� �� �

jshell> /open M250TMA03PracticeQuizSolnA.java

jshell> Shelter shelter01 = new Shelter()
shelter01 ==> currentWeek is 1

jshell> shelter01.populate()

jshell> shelter01
shelter01 ==> currentWeek is 3
cat Billy:Black diabetic
cat Zoe:Black and white
dog Rover:mongrel
tortoise Speedy:Horsefield� �� �

302 public static void testHomed() {
303 Shelter shelter01 = new Shelter() ;
304 shelter01.populate() ;
305 System.out.println("At start shelter01: "
306 + shelter01.toString()) ;
307 System.out.println("Deleting existing animal: cat Billy") ;
308 boolean homedRetVal01
309 = shelter01.homed(50,"cat","Billy") ;
310 System.out.println("After deletion shelter01: "
311 + shelter01.toString()) ;
312 System.out.println("Deleting non-existing animal: dog Spot") ;
313 boolean homedRetVal02
314 = shelter01.homed(51,"dog","Spot") ;
315 System.out.println("After non-existing animal shelter01: "
316 + shelter01.toString()) ;
317 }� �



Phil Molyneux M250 Tutorial 06 19

� �
jshell> Utilities.testHomed()
At start shelter01: currentWeek is 3
cat Billy:Black diabetic
cat Zoe:Black and white
dog Rover:mongrel
tortoise Speedy:Horsefield
Deleting existing animal: cat Billy
After deletion shelter01: currentWeek is 3
cat Zoe:Black and white
dog Rover:mongrel
tortoise Speedy:Horsefield
Deleting non-existing animal: dog Spot
After non-existing animal shelter01: currentWeek is 3
cat Zoe:Black and white
dog Rover:mongrel
tortoise Speedy:Horsefield

jshell>� �� �
231 public static List<Integer> testRemoveForeach() {
232 List<Integer> intList01
233 = Utilities.sampleIntList01() ;
234 System.out.println("intList01 at call is "
235 + intList01.toString()) ;
236 for (Integer iNum : intList01) {
237 if (iNum % 2 == 1) {
238 intList01.remove(iNum) ;
239 }
240 }
241 System.out.println("intList01 at return is "
242 + intList01.toString()) ;
243 return intList01 ;
244 }� �� �

jshell> List<Integer> intListA = Utilities.testRemoveForeach()
intList01 at call is [1, 2, 3, 4, 5, 6]
| Exception java.util.ConcurrentModificationException
| at ArrayList$Itr.checkForComodification (ArrayList.java:1042)
| at ArrayList$Itr.next (ArrayList.java:996)
| at Utilities.testRemoveForeach (#5:20)
| at (#6:1)� �� �

246 public static List<Integer> testRemoveForLoop() {
247 List<Integer> intList01
248 = Utilities.sampleIntList01() ;
249 System.out.println("intList01 at call is "
250 + intList01.toString()) ;
251 for (int idx = 0 ; idx < intList01.size() ; idx++) {
252 if (intList01.get(idx) % 2 == 1) {
253 intList01.remove(idx) ;
254 }
255 }
256 System.out.println("intList01 at return is "
257 + intList01.toString()) ;
258 return intList01 ;
259 }� �� �

jshell> List<Integer> intListB = Utilities.testRemoveForLoop()
intList01 at call is [1, 2, 3, 4, 5, 6]
intList01 at return is [2, 4, 6]
intListB ==> [2, 4, 6]� �

• This version is to remove every element from the list

• But what happens . . .� �
261 public static List<Integer> testRemoveForLoop01() {
262 List<Integer> intList01
263 = Utilities.sampleIntList01() ;
264 System.out.println("intList01 at call is "
265 + intList01.toString()) ;
266 for (int idx = 0 ; idx < intList01.size() ; idx++) {



20 Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025

267 intList01.remove(idx) ;
268 }
269 System.out.println("intList01 at return is "
270 + intList01.toString()) ;
271 return intList01 ;
272 }� �� �

jshell> List<Integer> intListC = Utilities.testRemoveForLoop01()
intList01 at call is [1, 2, 3, 4, 5, 6]
intList01 at return is [2, 4, 6]
intListC ==> [2, 4, 6]� �

• Try with the list of strings

• As before only every other element is removed — why ?� �
274 public static List<String> testRemoveForLoop02() {
275 List<String> strList01
276 = Utilities.sampleStrList01() ;
277 System.out.println("strList01 at call is "
278 + strList01.toString()) ;
279 for (int idx = 0 ; idx < strList01.size() ; idx++) {
280 strList01.remove(idx) ;
281 }
282 System.out.println("strList01 at return is "
283 + strList01.toString()) ;
284 return strList01 ;
285 }� �� �

jshell> List<String> strListA = Utilities.testRemoveForLoop02()
strList01 at call is [a, b, c, d]
strList01 at return is [b, d]
strListA ==> [b, d]� �
Iteration strList01 strList01.size() idx Deleted

Loop 1 [a, b, c, d] 4 0 a
Loop 2 [b,c,d] 3 1 c
Loop 3 [b,d] 2 2 -

• At the beginning of Loop 3,� �
(idx < strList01.size()) == false� �

• Hence the for loop terminates with� �
strList01 == [b,d]� �

• The Iterator works as we want� �
287 public static List<String> testRemoveIterator() {
288 List<String> strList01
289 = Utilities.sampleStrList01() ;
290 System.out.println("strList01 at call is "
291 + strList01.toString()) ;
292 Iterator<String> strIter = strList01.iterator() ;
293 while (strIter.hasNext()) {
294 String str = strIter.next() ;
295 strIter.remove() ;
296 }
297 System.out.println("strList01 at return is "
298 + strList01.toString()) ;
299 return strList01 ;
300 }� �� �

jshell> List<String> strListB = Utilities.testRemoveIterator()
strList01 at call is [a, b, c, d]
strList01 at return is []
strListB ==> []� �



Phil Molyneux M250 Tutorial 06 21

ToC

ToC

8.3 Question 2

• This CodeRunner question concerns an animal shelter that keeps records about ani-
mals brought to the shelter.

• We will model this using two classes, Animal and Shelter, and we have provided
incomplete code for these classes in the answer box.

• Your task is to complete those classes.

• Before you start, (1) read over the provided Animal class.The class has four instance
variables:

– week (of type int), which is a number from 1 to 52 denoting the week of the
year the animal was brought to the shelter.

– kind, name and description, which are of type String, and which store the
kind of animal, its name and its description.

• Also note the provided constructor and methods of the Animal class and what they
do.

• (2) Note that an instance of Shelter is used to hold data about a number of Animal
objects, in a map. For example, the map might contain the following data:

Key Value

2 Animal object with week 50, kind "cat", name "Billy", description "Black
diabetic"

1 Animal object with week 50, kind "cat", name "Zoe", description "Black
and white"

3 Animal object with week 51, kind "dog", name "Rover", description
"mongrel"

4 Animal object with week 52, kind "tortoise", name "Speedy", description
"Horsefield"

• The order of the keys in the map shown above is just for illustration. The map does
not store entries in any particular order.

(a) (i) Declare an additional private instance variable animals in the Shelter class,
capable of referencing a map whose keys are integers and whose values are Animal
objects, as in the example table above.

Add a standard getter method for the animals collection.

(a) (ii) The class Shelter should now have these instance variables:

– animals, which you added in part (i) above

– currentWeek of type int, which is the current week of the year, and will be
used when calculating how long an animal has been in the shelter.

– currentId of type int which is the key for the last animal which was admitted
to the shelter



22 Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025

• Amend the provided zero-argument constructor for Shelter so that when a new
instance of Shelter is created animals is assigned a suitable empty map object
and currentWeek is set to 1 and the currentId is set to 0.� �

9 class Shelter {
10 private int currentWeek ;
11 private int currentId ;
12 private Map<Integer, Animal> animals ;

14 public Shelter() {
15 super() ;
16 this.animals = new HashMap<>() ;
17 this.currentWeek = 1 ;
18 this.currentId = 0 ;
19 }� �

(a) (iii) Complete the skeleton instance method addAnimal()for the class Shelter, with
the header� �

public void addAnimal(String aKind
,String aName
,String aDescription)� �

• The method should use its three arguments to create an instance of Animal, using
the value of currentWeek for its week, then add the Animal to the animals map,
using the next value of currentId as the key.

• currentId will need to be kept updated so that each animal gets a unique ID.

• The first animal should have a currentId of 1.� �
33 public void addAnimal(String aKind
34 ,String aName
35 ,String aDescription) {
36 Animal anml
37 = new Animal(this.currentWeek
38 , aKind, aName, aDescription) ;
39 this.currentId = this.currentId + 1 ;
40 this.animals.put(this.currentId, anml) ;
41 }� �

(b) (i) Write a public instance method with the signature inTheLastMonth(Animal) for
the Shelter class.

• The method should determine whether the Animal received as an argument has
been brought into the shelter in the last month — that is, if the number of weeks
between currentWeek and the animal’s week is 4 or less

Note, however, that when currentWeek gets to 52, then the next currentWeek’s
value is 1.

You’ll need to watch out for this when calculating how many weeks it has been since
the animal arrived. For two examples, see below.

currentWeek in Shelter Animal’s week value Weeks since arrived

52 50 2
1 50 3

• The method should return true if it has been less than or equal to four weeks since
the animal arrived; otherwise it should return false. You can assume that an animal
is never in the shelter for more than a year.



Phil Molyneux M250 Tutorial 06 23

� �
43 public boolean inTheLastMonth(Animal anml) {
44 int currWeek = this.currentWeek ;
45 int animalWeek = anml.getWeek() ;
46 return ( ( currWeek - animalWeek <= 4
47 && currWeek - animalWeek >= 0)
48 || (currWeek - animalWeek + 52 <= 4) ) ;
49 }� �

(b) (ii) Write a public instance method showRecentAnimals() for the Shelter class.

• For each Animal in the collection referenced by animals, if the animal was brought
into the shelter in the last month (it has been less than or equal to four weeks since
the animal arrived) then data about that animal should be printed to the standard
output, with the details of each such animal on a separate line.

• If no animals have been brought in in the last month then No recent animals should
be printed.

• For example, using the data from the table in part (a), the output from showRecentAnimals()
when currentWeek is 3 should be:� �
dog Rover:mongrel
tortoise Speedy:Horsefield� �� �

public void showRecentAnimals() {
boolean noRecentAnimals = true ;

for (Animal anml : this.animals.values()) {
if (inTheLastMonth(anml)) {
System.out.println(anml.getKind()

+ " " + anml.getName()
+ ":" + anml.getDescription()) ;

noRecentAnimals = false ;
}

}

if (noRecentAnimals) {
System.out.println("No recent animals") ;

}
}� �
(c) Now turn to the Animal class.

• Two animals with the same week, kind and name should be considered to be the
same. (description is irrelevant). So we need to override the equals() method
inherited from Object.

• Whenever we override the inherited equals() method we also need to provide a
hashCode() method compatible with the redefined equals().

• (i) Write an equals() method to override that inherited from Object, which returns
true if the week, kind and name for two Animal objects are the same, and false
otherwise.

• (ii) Write a hashCode() method to override that inherited from Object, which re-
turns the number of characters in the name of an Animal object.� �

193 /**
194 * A simple equals method
195 */
196 @Override
197 public boolean equals(Object o) {
198 Animal anml = (Animal) o ;
199 return ( getKind().equals(anml.getKind())
200 && getWeek() == anml.getWeek()
201 && getName().equals(anml.getName())) ;



24 Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025

202 }

204 /**
205 * hashCode
206 */
207 @Override
208 public int hashCode() {
209 return getName().length() ;
210 }� �

(d) Return to the Shelter class. A public method with the header (below) is required� �
public boolean homed(int aWeek

,String aKind
,String aName)� �

• This method should determine whether or not the map referenced by animals con-
tains an Animal with a week, kind and name matching the method arguments.

• If there is such an animal, its key-value pair should be removed from the map and
true should be returned. Otherwise false should be returned.

• Write the homed() method.

• This version uses Map operations� �
68 public boolean homed(int aWeek
69 ,String aKind
70 ,String aName) {
71 Animal anml = new Animal(aWeek,aKind,aName,"No Desc") ;
72 boolean anmlWasRemoved
73 = this.animals.values().remove(anml) ;
74 return anmlWasRemoved ;
75 }� �

• This version uses an Iterator

• Note that we iterate over the keys not the Map itself

• We can iterate over a map — see below� �
77 public boolean homedA(int aWeek
78 ,String aKind
79 ,String aName) {

81 Animal anmlToGo = new Animal(aWeek,aKind,aName,"No Desc") ;
82 Iterator<Integer> animalKeyIter
83 = this.animals.keySet().iterator() ;
84 while (animalKeyIter.hasNext()) {
85 Animal anmlIn = this.animals.get(animalKeyIter.next()) ;
86 if (anmlToGo.equals(anmlIn)) {
87 animalKeyIter.remove() ;
88 return true ;
89 }
90 }
91 return false ;
92 }� �

• The entrySet() method of the Map interface returns a Set view of the mappings
contained in the map

• Any changes we make to the set will be reflected in the map� �
public boolean homedC(int aWeek

,String aKind
,String aName) {

Animal anmlToGo = new Animal(aWeek,aKind,aName,"No Desc") ;
Set<Map.Entry<Integer,Animal>> animalEntrySet



Phil Molyneux M250 Tutorial 06 25

= this.animals.entrySet() ;
Iterator<Map.Entry<Integer,Animal>> animalEntrylSetIter
= animalEntrySet.iterator() ;

while (animalEntrySetIter.hasNext()) {
Animal anmlIn = animalEntrySetIter.next().getValue() ;
if (anmlToGo.equals(anmlIn)) {
animalKeyIter.remove() ;
return true ;

}
}
return false ;

}� �
• The code below may work but it is unpredictable

• See Iterating through a Collection, avoiding ConcurrentModificationException when
removing objects in a loop

• See java.base > java.util > Class ConcurrentModificationException� �
94 public boolean homedB(int aWeek
95 ,String aKind
96 ,String aName) {

98 for (Integer anmlKey : this.animals.keySet()) {
99 Animal anml = this.animals.get(anmlKey) ;

100 if ( anml.getWeek() == aWeek
101 && anml.getKind() == aKind
102 && anml.getName() == aName) {
103 this.animals.remove(anmlKey) ;
104 return true ;
105 }
106 }
107 return false ;
108 }� �

8.3.1 Q 2 Sample Usage

• The code is in M250TMA03PracticeQuizSolnB.java and we use jShell to do evalu-
ations — see Java Shell User’s Guide

• We have several classes in one file — see Java: Multiple class declarations in one file� �
import java.util.* ;

class M250TMA03PracticeQuizSolnB {
public static void main(String[] args) {
// further code here or in Utilities

}
}� �� �
class Shelter {� �� �
class Animal {� �� �
class Utilities {� �

• Open the Java file at the jShell prompt — it will compile it� �
jshell> /open M250TMA03PracticeQuizSolnB.java

jshell> Shelter shelter01 = new Shelter()
shelter01 ==> currentWeek is 1

jshell>� �

https://stackoverflow.com/questions/223918/iterating-through-a-collection-avoiding-concurrentmodificationexception-when-re
https://stackoverflow.com/questions/223918/iterating-through-a-collection-avoiding-concurrentmodificationexception-when-re
https://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/util/ConcurrentModificationException.html
M250TMA03PracticeQuizSolnB.java
https://en.wikipedia.org/wiki/JShell
https://docs.oracle.com/en/java/javase/14/jshell/
https://stackoverflow.com/questions/2336692/java-multiple-class-declarations-in-one-file


26 Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025

• Note that in the first example usage shown in Q 1 the value of the shelter was
displayed as follows� �

jshell> /open M250TMA03PracticeQuizSolnA.java

jshell> Shelter shelter01 = new Shelter()
shelter01 ==> Shelter@46f7f36a

jshell>� �
• Note that in the first example usage shown in Q 1 the value of the shelter was

displayed as follows� �
jshell> /open M250TMA03PracticeQuizSolnA.java

jshell> Shelter shelter01 = new Shelter()
shelter01 ==> Shelter@46f7f36a

jshell>� �
• The original example had the default toString() definition from Object which

gives the textual representation of an object as its class, the @ sign character, and
the unsigned hexadecimal representation of the hash code of the object� �

x.getClass().getName() + "@" + Integer.toHexString(x.hashCode())� �
• Shelter has populate() and toString() definitions to facilitate sample usage� �

113 public void populate() {
114 this.currentWeek = 50 ;
115 this.addAnimal("cat","Billy","Black diabetic") ;
116 this.addAnimal("cat","Zoe","Black and white") ;
117 this.currentWeek = 51 ;
118 this.addAnimal("dog","Rover","mongrel") ;
119 this.currentWeek =52 ;
120 this.addAnimal("tortoise","Speedy","Horsefield") ;
121 this.currentWeek = 3 ;
122 }

124 @Override
125 public String toString() {
126 String outStr = "" ;
127 outStr = outStr + "currentWeek is " + currentWeek ;
128 for (Integer anmlKey : this.animals.keySet()) {
129 Animal anml = this.animals.get(anmlKey) ;
130 outStr = outStr + "\n"
131 + "ID " + anmlKey
132 + " " + anml.toString() ;
133 }
134 return outStr ;
135 }� �

• Utilities class has further definitions to facilitate sample usage� �
234 public static void testHomed() {
235 Shelter shelter01 = new Shelter() ;
236 shelter01.populate() ;
237 System.out.println("At start shelter01: "
238 + shelter01.toString()) ;
239 System.out.println("Deleting existing animal: cat Billy") ;
240 boolean homedRetVal01
241 = shelter01.homed(50,"cat","Billy") ;
242 System.out.println("After deletion shelter01: "
243 + shelter01.toString()) ;
244 System.out.println("Deleting non-existing animal: dog Spot") ;
245 boolean homedRetVal02
246 = shelter01.homed(51,"dog","Spot") ;
247 System.out.println("After non-existing animal shelter01: "
248 + shelter01.toString()) ;
249 }� �

https://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/lang/Object.html


Phil Molyneux M250 Tutorial 06 27

� �
jshell> shelter01.populate()

jshell> System.out.println(shelter01)
currentWeek is 3
ID 1 cat Billy:Black diabetic
ID 2 cat Zoe:Black and white
ID 3 dog Rover:mongrel
ID 4 tortoise Speedy:Horsefield� �� �
jshell> Utilities.testHomed()
At start shelter01: currentWeek is 3
ID 1 cat Billy:Black diabetic
ID 2 cat Zoe:Black and white
ID 3 dog Rover:mongrel
ID 4 tortoise Speedy:Horsefield
Deleting existing animal: cat Billy
After deletion shelter01: currentWeek is 3
ID 2 cat Zoe:Black and white
ID 3 dog Rover:mongrel
ID 4 tortoise Speedy:Horsefield
Deleting non-existing animal: dog Spot
After non-existing animal shelter01: currentWeek is 3
ID 2 cat Zoe:Black and white
ID 3 dog Rover:mongrel
ID 4 tortoise Speedy:Horsefield

jshell>� �
ToC

ToC

8.4 Question 3

• This CodeRunner question concerns an animal shelter that keeps records about ani-
mals brought to the shelter.

• We will model this using two classes, Animal and Shelter, and we have provided
incomplete code for the Shelter class in the answer box.

• Your task is to complete the Shelter class. In this question you do not need to add
anything to the Animal class.

• Before you start, The Animal class is provided in the answer box already.

• (2) Note that in this question an instance of Shelter holds data about a number of
Animal objects in a Set. For example, the Set might contain the following data:

Animal object with week 50, kind "cat", name "Billy", description "Black
diabetic"

Animal object with week 50, kind "cat", name "Zoe", description "Black
and white"

Animal object with week 51, kind "dog", name "Rover", description
"mongrel"

Animal object with week 52, kind "tortoise", name "Speedy", description
"Horsefield"

• The Set does not store entries in any particular order. Sets do not allow duplicate
entries.

(a) (i) Declare an additional private instance variable animals in the Shelter class,
capable of referencing a Set whose values are Animal objects, as in the example



28 Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025

table above.

Add a standard getter method for the animals collection and for the currentWeek
instance variable.

• (ii) The class Shelter should now have these instance variables:

– animals, which you added in part (i) above

– currentWeek of type int, which is the current week of the year, and will be
used when calculating how long an animal has been in the shelter.

• Amend the provided zero-argument constructor for Shelter so that when a new
instance of Shelter is created animals is assigned a suitable empty Set object and
currentWeek is set to 1.� �

9 class Shelter {
10 private int currentWeek ;
11 private Set<Animal> animals ;

13 public Shelter () {
14 super() ;
15 this.animals = new HashSet<Animal>() ;
16 this.currentWeek = 1 ;
17 }� �

(a) (iii) Complete the skeleton instance method addAnimal()for the class Shelter, with
the header� �

public void addAnimal(String aKind
,String aName
,String aDescription)� �

• The method should use its three arguments to create an instance of Animal, using
the value of currentWeek for its week, then add the Animal to the animals Set.� �

27 public void addAnimal(String aKind
28 ,String aName
29 ,String aDescription) {
30 Animal anml
31 = new Animal(this.currentWeek
32 , aKind, aName, aDescription) ;
33 this.animals.add(anml) ;
34 }� �

(b) (i) Write a public instance method with the signature inTheLastMonth(Animal) for
the Shelter class.

• The method should determine whether the Animal received as an argument has
been brought into the shelter in the last month — that is, if the number of weeks
between currentWeek and the animal’s week is 4 or less

Note, however, that when currentWeek gets to 52, then the next currentWeek’s
value is 1.

You’ll need to watch out for this when calculating how many weeks it has been since
the animal arrived. For two examples, see below.

currentWeek in Shelter Animal’s week value Weeks since arrived

52 50 2
1 50 3



Phil Molyneux M250 Tutorial 06 29

• The method should return true if it has been less than or equal to four weeks since
the animal arrived; otherwise it should return false. You can assume that an animal
is never in the shelter for more than a year.� �

36 public boolean inTheLastMonth(Animal anml) {
37 int currWeek = this.currentWeek ;
38 int animalWeek = anml.getWeek() ;
39 return ( ( currWeek - animalWeek <= 4
40 && currWeek - animalWeek >= 0)
41 || (currWeek - animalWeek + 52 <= 4) ) ;
42 }� �

(b) (ii) Write a public instance method showRecentAnimals() for the Shelter class.

• For each Animal in the collection referenced by animals, if the animal was brought
into the shelter in the last month (it has been less than or equal to four weeks since
the animal arrived) then data about that animal should be printed to the standard
output, with the details of each such animal on a separate line.

• If no animals have been brought in in the last month then No recent animals should
be printed.

• For example, using the data from the table in part (a), the output from showRecentAnimals()
when currentWeek is 3 should be:� �
dog Rover:mongrel
tortoise Speedy:Horsefield� �� �

44 public void showRecentAnimals() {
45 boolean noRecentAnimals = true ;

47 for (Animal anml : this.animals) {
48 if (inTheLastMonth(anml)) {
49 System.out.println(anml.getKind()
50 + " " + anml.getName()
51 + ":" + anml.getDescription()) ;
52 noRecentAnimals = false ;
53 }
54 }

56 if (noRecentAnimals) {
57 System.out.println("No recent animals") ;
58 }
59 }� �

(c) Write a public method homed() in the Shelter class with the header� �
public boolean homed(int aWeek

,String aKind
,String aName)� �

• This method should determine whether or not the Set referenced by animals con-
tains an Animal with a week, kind and name matching the method arguments.

• If there is such an animal, it should be removed from the set and true should be
returned. Otherwise false should be returned.

• This version uses Set operations� �
61 public boolean homed(int aWeek
62 ,String aKind
63 ,String aName) {
64 Animal anml = new Animal(aWeek,aKind,aName,"No Desc") ;
65 boolean anmlIsIn
66 = this.animals.contains(anml) ;
67 if (anmlIsIn) {
68 this.animals.remove(anml) ;



30 Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025

69 }
70 return anmlIsIn ;
71 }� �

• This version uses an Iterator� �
73 public boolean homedA(int aWeek
74 ,String aKind
75 ,String aName) {

77 Iterator<Animal> animalIter = this.animals.iterator() ;
78 while (animalIter.hasNext()) {
79 Animal anml = animalIter.next() ;
80 if ( anml.getWeek() == aWeek
81 && anml.getKind() == aKind
82 && anml.getName() == aName) {
83 animalIter.remove() ;
84 return true ;
85 }
86 }
87 return false ;
88 }� �

• The code below may work but it is unpredictable

• See Iterating through a Collection, avoiding ConcurrentModificationException when
removing objects in a loop

• See java.base > java.util > Class ConcurrentModificationException� �
90 public boolean homedB(int aWeek
91 ,String aKind
92 ,String aName) {

94 for (Animal anml : this.animals) {
95 if ( anml.getWeek() == aWeek
96 && anml.getKind() == aKind
97 && anml.getName() == aName) {
98 this.animals.remove(anml) ;
99 return true ;

100 }
101 }
102 return false ;
103 }� �

8.4.1 Q 3 Sample Usage

• The code is in M250TMA03PracticeQuizSolnC.java and we use jShell to do evalu-
ations — see Java Shell User’s Guide

• We have several classes in one file — see Java: Multiple class declarations in one file� �
import java.util.* ;

class M250TMA03PracticeQuizSolnC {
public static void main(String[] args) {
// further code here or in Utilities

}
}� �� �
class Shelter {� �� �
class Animal {� �� �
class Utilities {� �

• Open the Java file at the jShell prompt — it will compile it

https://stackoverflow.com/questions/223918/iterating-through-a-collection-avoiding-concurrentmodificationexception-when-re
https://stackoverflow.com/questions/223918/iterating-through-a-collection-avoiding-concurrentmodificationexception-when-re
https://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/util/ConcurrentModificationException.html
M250TMA03PracticeQuizSolnC.java
https://en.wikipedia.org/wiki/JShell
https://docs.oracle.com/en/java/javase/14/jshell/
https://stackoverflow.com/questions/2336692/java-multiple-class-declarations-in-one-file


Phil Molyneux M250 Tutorial 06 31

� �
jshell> /open M250TMA03PracticeQuizSolnC.java

jshell> Shelter shelter01 = new Shelter()
shelter01 ==> currentWeek is 1

jshell>� �
• Note that in the first example usage shown in Q 1 the value of the shelter was

displayed as follows� �
jshell> /open M250TMA03PracticeQuizSolnA.java

jshell> Shelter shelter01 = new Shelter()
shelter01 ==> Shelter@46f7f36a

jshell>� �
• Note that in the first example usage shown in Q 1 the value of the shelter was

displayed as follows� �
jshell> /open M250TMA03PracticeQuizSolnA.java

jshell> Shelter shelter01 = new Shelter()
shelter01 ==> Shelter@46f7f36a

jshell>� �
• The original example had the default toString() definition from Object which

gives the textual representation of an object as its class, the @ sign character, and
the unsigned hexadecimal representation of the hash code of the object� �

x.getClass().getName() + "@" + Integer.toHexString(x.hashCode())� �
• Shelter has populate() and toString() definitions to facilitate sample usage� �

108 public void populate() {
109 this.currentWeek = 50 ;
110 this.addAnimal("cat","Billy","Black diabetic") ;
111 this.addAnimal("cat","Zoe","Black and white") ;
112 this.currentWeek = 51 ;
113 this.addAnimal("dog","Rover","mongrel") ;
114 this.currentWeek =52 ;
115 this.addAnimal("tortoise","Speedy","Horsefield") ;
116 this.currentWeek = 3 ;
117 }

119 @Override
120 public String toString() {
121 String outStr = "" ;
122 outStr = outStr + "currentWeek is " + currentWeek ;
123 for (Animal anml : this.animals) {
124 outStr = outStr + "\n" + anml.toString() ;
125 }
126 return outStr ;
127 }� �

• Utilities class has further definitions to facilitate sample usage� �
226 public static void testHomed() {
227 Shelter shelter01 = new Shelter() ;
228 shelter01.populate() ;
229 System.out.println("At start shelter01: "
230 + shelter01.toString()) ;
231 System.out.println("Deleting existing animal: cat Billy") ;
232 boolean homedRetVal01
233 = shelter01.homed(50,"cat","Billy") ;
234 System.out.println("After deletion shelter01: "
235 + shelter01.toString()) ;
236 System.out.println("Deleting non-existing animal: dog Spot") ;

https://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/lang/Object.html


32 Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025

237 boolean homedRetVal02
238 = shelter01.homed(51,"dog","Spot") ;
239 System.out.println("After non-existing animal shelter01: "
240 + shelter01.toString()) ;
241 }� �� �

jshell> shelter01.populate()

jshell> System.out.println(shelter01)
currentWeek is 3
ID 1 cat Billy:Black diabetic
ID 2 cat Zoe:Black and white
ID 3 dog Rover:mongrel
ID 4 tortoise Speedy:Horsefield� �� �
jshell> Utilities.testHomed()
At start shelter01: currentWeek is 3
cat Zoe:Black and white
cat Billy:Black diabetic
dog Rover:mongrel
tortoise Speedy:Horsefield
Deleting existing animal: cat Billy
After deletion shelter01: currentWeek is 3
cat Zoe:Black and white
dog Rover:mongrel
tortoise Speedy:Horsefield
Deleting non-existing animal: dog Spot
After non-existing animal shelter01: currentWeek is 3
cat Zoe:Black and white
dog Rover:mongrel
tortoise Speedy:Horsefield

jshell>� �
ToC

ToC

ToC

9 Common Mistakes

• All programming languages have some sharp edges or subtle points, including Java

• This section discusses some common mistakes

• The examples below use JShell, a Read-Eval-Print loop (REPL) tool available for Java

• Java Shell User’s Guide describes its usage

• Note: JShell is not directly in M250 (it arrived in JDK 9) but for demonstrations
students only need to know:

– Java statements and class definitions can be executed at the prompt jshell> and
continuation prompt ...>

– The result is reported on the line following

– Most common libraries are automatically imported

• The examples refer to the M250 Units and M250 Exam Handbook for further points

9.1 Converting an Array to a List

https://en.wikipedia.org/wiki/JShell
https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
https://docs.oracle.com/en/java/javase/12/jshell/


Phil Molyneux M250 Tutorial 06 33

� �
jshell> String[] xArray = {"a","b","c","d"}
xArray ==> String[4] { "a", "b", "c", "d" }

jshell> List<String> yList = Arrays.asList(xArray)
yList ==> [a, b, c, d]

jshell> yList.add("e")
| Exception java.lang.UnsupportedOperationException
| at AbstractList.add (AbstractList.java:153)
| at AbstractList.add (AbstractList.java:111)
| at (#20:1)� �
• See M250 Exam Handbook section 5.3 Collection utility classes Class Arrays (page

32)

• asList returns an ArrayList which is of fixed size — this ArrayList is a private
static class inside Arrays — it is not the java.util.ArrayList class

• Solution: the ArrayList constructor can accept a Collection type, which is also a
super type for java.util.Arrays.ArrayList� �

jshell> String[] xArray = {"a","b","c","d"}
xArray ==> String[4] { "a", "b", "c", "d" }

jshell> List<String> yList =
...> new ArrayList<String>(Arrays.asList(xArray))

yList ==> [a, b, c, d]

jshell> boolean b = yList.add("e")
b ==> true

jshell> yList
yList ==> [a, b, c, d, e]� �

ToC

9.2 Using a TreeSet� �
jshell> String[] pArray =

...> {"d", "a", "c", "a", "b", "a" }
pArray ==> String[6] { "d", "a", "c", "a", "b", "a" }

jshell> Set<String> qSet =
...> new TreeSet<String>(Arrays.asList(pArray))

qSet ==> [a, b, c, d]

jshell> String elmnt = qSet.first()
| Error:
| cannot find symbol
| symbol: method first()
| String elmnt = qSet.first();
| ^--------^� �
• TreeSet implements the SortedSet interface

• first() is a method implemented by TreeSet

• So what is wrong ?� �
jshell> String[] pArray =

...> {"d", "a", "c", "a", "b", "a" }
pArray ==> String[6] { "d", "a", "c", "a", "b", "a" }

jshell> SortedSet<String> rSet =
...> new TreeSet<String>(Arrays.asList(pArray))

rSet ==> [a, b, c, d]

jshell> String elmnt = rSet.first()
elmnt ==> "a"� �



34 Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025

• elmnt was declared to be of type Set

• first() is not in the protocol of Set

• Declare the set to be of type SortedSet

• (See SAQ 10 in Unit 10)

ToC

9.3 Remove Elements from List Inside Loop� �
jshell> List<String> yList =

...> new ArrayList<String>(Arrays.asList(xArray))
yList ==> [a, b, c, d]

jshell> for (String str : yList) {
...> if (str.equals("a")) {
...> yList.remove(str) ;
...> }
...> }

| Exception java.util.ConcurrentModificationException
| at ArrayList$Itr.checkForComodification

(ArrayList.java:1042)
| at ArrayList$Itr.next (ArrayList.java:996)
| at (#67:1)� �
• Unit 9 page 33 describes the for-each statement — a note on page 35 mentions that

the collection should not be modified in the loop — hence the error

• When iterating over a collection or map, the underlying collection should not be
modified except through the iterator’s remove method. If it is modified in any other
way, the result is unpredictable.

• If we have just one element to remove, here is an alternative using list methods� �
jshell> List<String> yList =

...> new ArrayList<String>(Arrays.asList(xArray))
yList ==> [a, b, c, d]

jshell> int idx = yList.indexOf("a")
idx ==> 0

jshell> String str = yList.remove(0)
str ==> "a"

jshell> yList
yList ==> [b, c, d]� �
• The Iterable interface provides the iterator method — see Iterator and ListIterator

interfaces

• See M269 Exam Handbook page 24 (and mentioned in Exercise 2 Unit 10, p 87,
solution p 236)� �

jshell> List<String> yList =
...> new ArrayList<String>(Arrays.asList(xArray))

yList ==> [a, b, c, d]

jshell> Iterator<String> iter = yList.iterator()
iter ==> java.util.ArrayList$Itr@12bc6874

jshell> while (iter.hasNext()) {
...> String str = iter.next();
...> if (str.equals("a")) {
...> iter.remove();
...> }
...> }

https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/lang/Iterable.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Iterator.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/ListIterator.html


Phil Molyneux M250 Tutorial 06 35

jshell> yList
ys ==> [b, c, d]� �� �
jshell> String[] jArray = {"a","b","c","a","d","a"}
jArray ==> String[6] { "a", "b", "c", "a", "d", "a" }

jshell> List<String> kList =
...> new ArrayList<String>(Arrays.asList(jArray))

kList ==> [a, b, c, a, d, a]

jshell> Iterator<String> iter = ks.iterator()
iter ==> java.util.ArrayList$Itr@5d3411d

jshell> while (iter.hasNext()) {
...> String str = iter.next();
...> if (str.equals("a")) {
...> iter.remove();
...> }
...> }

jshell> kList
kList ==> [b, c, d]� �
• The collection should not be modified other than using remove but can use add and
set with ListIterator

ToC

ToC

10 JShell

• JShell is a Java read-eval-print loop (REPL) introduced in 2017 with JDK 9

• Java Shell User’s Guide (Release 12, March 2019)

• Tools Reference: jshell

• JShell Tutorial (30 June 2019)

• How to run a whole Java file added as a snippet in JShell? (15 July 2019)

ToC

11 What Next ?

Programming, Debugging, Psychology

Although programming techniques have improved immensely since the early days, the
process of finding and correcting errors in programming — known graphically if inele-
gantly as debugging — still remains a most difficult, confused and unsatisfactory opera-
tion. The chief impact of this state of affairs is psychological. Although we are happy to
pay lip-service to the adage that to err is human, most of us like to make a small pri-
vate reservation about our own performance on special occasions when we really try. It
is somewhat deflating to be shown publicly and incontrovertibly by a machine that even
when we do try, we in fact make just as many mistakes as other people. If your pride
cannot recover from this blow, you will never make a programmer.

Christopher Strachey, Scientific American 1966 vol 215 (3) September pp112–124

https://en.wikipedia.org/wiki/JShell
https://docs.oracle.com/en/java/javase/12/jshell/
https://docs.oracle.com/en/java/javase/12/tools/jshell.html
http://cr.openjdk.java.net/~rfield/tutorial/JShellTutorial.html
https://stackoverflow.com/questions/44399338/how-to-run-a-whole-java-file-added-as-a-snippet-in-jshell
https://en.wikipedia.org/wiki/Christopher_Strachey


36 Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025

• To err is human, to really foul things up requires a computer.

• Attributed to Paul R. Ehrlich in 101 Great Programming Quotes

• Attributed to Bill Vaughn in Quote Investigator

• Derived from Alexander Pope (1711, An Essay on Criticism)

• To Err is Humane; to Forgive, Divine

• This also contains

A little learning is a dangerous thing;

Drink deep, or taste not the Pierian Spring

• In programming, this means you have to read the fabulous manual (RTFM)

Units 1–5, TMA01

• TMA03 Thursday 8 May 2025

• Tutorial: Exam revision: Online 10:00 Sunday 11 May 2025

• Exam Friday 30 May 2025

ToC

12 Web Links & References

12.1 Java Documentation

• Java Documentation — BlueJ has JDK 7 embedded, JDK 13 is current (2019)

• JDK 13 Documentation

• Java Platform API Specification

• Java Language Specification

• JDK Documentation API Documentation java.base

– java.lang — fundamental classes for the Java programming language

– java.util — Collections framework

https://en.wikipedia.org/wiki/Paul_R._Ehrlich
http://www.devtopics.com/101-great-computer-programming-quotes/
https://en.wikipedia.org/wiki/William_E._Vaughan
http://quoteinvestigator.com/2010/12/07/foul-computer/
https://en.wikipedia.org/wiki/Alexander_Pope
https://en.wikipedia.org/wiki/An_Essay_on_Criticism
https://en.wikipedia.org/wiki/Pierian_Spring
https://lmgtfy.com/?q=rtfm
https://docs.oracle.com/en/java/javase/
https://docs.oracle.com/en/java/javase/13/index.html
https://docs.oracle.com/en/java/javase/13/docs/api/index.html
https://docs.oracle.com/javase/specs/index.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/lang/package-summary.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/util/package-summary.html


Phil Molyneux M250 Tutorial 06 37

• Strings are immutable objects

• See java.lang.StringBuilder for mutable strings

• In a functional programming approach everything is immutable — it makes life sim-
pler (but at a cost)

• Remember (==) tests for identity — what does this mean ?

ToC

12.2 Books Phil Likes

• M250 is self contained — you do not need further books — but you might like to
know about some:

• Sestoft (2016) — the best short reference

• Evans and Flanagan (2018) — the best longer reference

• Barnes and Kölling (2016) — the BlueJ book — see www.bluej.org for documentation
and tutorial

https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/lang/StringBuilder.html
https://www.bluej.org/


38 Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025

• Bloch (2017) — guide to best practice

ToC

References
Barnes, David J. and Michael Kolling (2009). Objects First with Java. Pearson Education,

fourth edition. ISBN 0-13-606086-2. URL http://www.bluej.org/objects-first/.

Barnes, David J. and Michael Kolling (2011). Objects First with Java. Pearson Education,
fifth edition. ISBN 0132835541. URL http://www.bluej.org/objects-first/.

Barnes, David J. and Michael Kölling (2016). Objects First with Java. Pearson, sixth edition.
ISBN 1292159049. URL http://www.bluej.org/objects-first/. 37

Bloch, Joshua (2017). Effective Java. Addison-Wesley Professional, third edition. ISBN
9780134685991. 38

Darwin, Ian F (2014). Java Cookbook. O’Reilly, third edition. ISBN 9781449337049.

Evans, Benjamin J and David Flanagan (2014). Java In A Nutshell. O’Reilly, sixth edition.
ISBN 1449370829. URL https://github.com/kittylyst/javanut6-examples.

Evans, Benjamin J and David Flanagan (2018). Java In A Nutshell. O’Reilly, seventh edition.
ISBN 1492037257. 37

Felleisen, Matthias and Daniel P. Friedman (1998). A Little Java, A Few Patterns. MIT Press.
ISBN 0262561158. URL http://felleisen.org/matthias/BALJ-index.html.

Gosling, James; Bill Joy; Guy L. Steele Jr.; Gilad Bracha; and Alex Buckley (2014). The Java
Language Specification, Java SE 8 Edition (Java Series) (Java (Addison-Wesley)). Addison
Wesley, eighth edition. ISBN 013390069X. URL https://docs.oracle.com/en/java/
javase/12/index.html.

Naftalin, Maurice and Philip Wadler (2006). Java Generics and Collections. O’Reilly. ISBN
059610247X.

Schildt, Herbert (2018a). Java: A Beginner’s Guide. McGraw-Hill, eighth edition.
ISBN 1260440214. URL http://mhprofessional.com/9781260440218-usa-java-a-
beginners-guide-eighth-edition-group.

Schildt, Herbert (2018b). Java: The Complete Reference, Eleventh Edition. McGraw-
Hill, eleventh edition. ISBN 1260440230. URL http://mhprofessional.com/
9781260440232-usa-java-the-complete-reference-eleventh-edition-group.

Sestoft, Peter (2002). Java Precisely. MIT Press. ISBN 0-262-69276-7.

Sestoft, Peter (2005). Java Precisely. MIT, second edition. ISBN 0262693259.

Sestoft, Peter (2016). Java Precisely. MIT, third edition. ISBN 0262529076. URL http:
//www.itu.dk/people/sestoft/javaprecisely/. 37

Thimbleby, Harold (1999). A critique of Java. Software: Practice and Experience,
29(5):457–478.

Waldo, Jim (2010). Java: The Good Parts. O’Reilly. ISBN 9780596803735. URL http:
//shop.oreilly.com/product/9780596803742.do.

ToC

http://www.bluej.org/objects-first/
http://www.bluej.org/objects-first/
http://www.bluej.org/objects-first/
https://github.com/kittylyst/javanut6-examples
http://felleisen.org/matthias/BALJ-index.html
https://docs.oracle.com/en/java/javase/12/index.html
https://docs.oracle.com/en/java/javase/12/index.html
http://mhprofessional.com/9781260440218-usa-java-a-beginners-guide-eighth-edition-group
http://mhprofessional.com/9781260440218-usa-java-a-beginners-guide-eighth-edition-group
http://mhprofessional.com/9781260440232-usa-java-the-complete-reference-eleventh-edition-group
http://mhprofessional.com/9781260440232-usa-java-the-complete-reference-eleventh-edition-group
http://www.itu.dk/people/sestoft/javaprecisely/
http://www.itu.dk/people/sestoft/javaprecisely/
http://shop.oreilly.com/product/9780596803742.do
http://shop.oreilly.com/product/9780596803742.do


Phil Molyneux M250 Tutorial 06 39

Author Phil Molyneux Written 16 March 2025 Printed 13th March 2025
Subject dir: ⟨baseURL⟩/OU/Courses/Computing/M250/M250Presentations/M250Prsntn2024J
Topic path:
/M250Prsntn2024JTutorials/M250Tutorial20250316CollectionsPrsntn2024J/M250Tutorial20250316CollectionsPrsntn2024J.pdf


	Tutorial Agenda
	Adobe Connect
	Interface
	Settings
	Sharing Screen & Applications
	Ending a Meeting
	Invite Attendees
	Layouts
	Chat Pods
	Web Graphics
	Recordings

	Classes and Interfaces
	Sets
	Maps
	Lists
	Collection Implementations
	TMA03 Practice Quiz
	Information
	Question 1
	Q 1 Sample Usage

	Question 2
	Q 2 Sample Usage

	Question 3
	Q 3 Sample Usage


	Common Mistakes
	Array to List
	Using a TreeSet
	Remove List Elements

	JShell
	What Next ?
	References
	Java Documentation
	Books Phil Likes
	References


