Java: Collections, Arrays, Sets, Maps, Lists
M?250 Tutorial 06

Contents

1 Tutorial Agenda

2 Adobe Connect
2.1 Interface e e e e e e
2.2 Settings e e e e e e e e e e e e e e e e e e
2.3 Sharing Screen & Applications L e
2.4 EndingaMeeting e e e e e e
2.5 Invite Attendees e e e e e e e e
2.6 Layouts e e e e e e e e e e e e e e
2.7 Chat Pods e e e e e e e
2.8 Web Graphics o e e e e e e e
2.9 Recordings i e e e e e e e e e

3 Classes and Interfaces

4 Sets

5 Maps

6 Lists

7 Collection Implementations

8 TMAO3 Practice Quiz
8.1 Information o e e e e e e e e e e e e
8.2 Question 1 e e e e e e e
8.2.1 Q1 SampleUsage i i i ittt e e
8.3 Question 2 e e e e e e e e e e
8.3.1 Q2SampleUsage i i e
8.4 Question 3 e e e e e e e e e e e e
8.4.1 Q3SampleUsage i

9 Common Mistakes
9.1 Arrayto List o e e e e e e e e e e e
9.2 UsingaTreeSet o i i e e e e e e
9.3 Remove List Elements o o i i e e e e e e e e

10 JShell
11 What Next ?

12 References
12.1Java Documentation v i i i e e e e e e e e e e e e e e e e e
12.2Books Phil Likes e e e
References o e e e e e e e e e e e

10
11
11

12
12
13
17
21
25
27
30

32
32
33
34

35

35

2 Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025

1 Java: Collections, Arrays, Sets, Maps, Lists: Tutorial Agenda

e Introductions

e Adobe Connect reminders

e Adobe Connect — if you or | get cut off, wait till we reconnect (or send you an email)
e Collections framework

e Arrays

e Sets, Maps

e Lists

e Review of TMAO3 Practice Quiz

e Common Mistakes

e JShell (optional)

e Some useful Web & other references
e Time: about 1 to 2 hours

e Do ask questions or raise points.

® Slides/Notes M250Tutorial06Collections

Introductions — Phil

e Name Phil Molyneux

Background
- Undergraduate: Physics and Maths (Sussex)

- Postgraduate: Physics (Sussex), Operational Research (Brunel), Computer Sci-
ence (University College, London)

- Worked in Operational Research, Business IT, Web technologies, Functional Pro-
gramming

e First programming languages Fortran, BASIC, Pascal

Favourite Software

Haskell — pure functional programming language

Text editors TextMate, Sublime Text — previously Emacs

Word processing in IATEX — all these slides and notes

Mac OS X

Learning style — | read the manual before using the software

Introductions — You
e Name?

e Favourite software/Programming language ?

http://pmolyneux.co.uk/OU/M250FolderSync/M250TutorialNotes/M250Tutorial06Collections/
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://www.haskell.org/
https://macromates.com
http://www.sublimetext.com
https://www.emacswiki.org/
https://www.latex-project.org/
https://developer.apple.com/

Phil Molyneux M250 Tutorial 06 3

Favourite text editor or integrated development environment (IDE)

List of text editors, Comparison of text editors and Comparison of integrated devel-
opment environments

Other OU courses ?

Anything else ?

2 Adobe Connect Interface and Settings

2.1 Adobe Connect Interface

Adobe Connect Interface — Host View

M250 Units 10, 11

Phil Molyneux

M250 Units 10, 11
Tutorial Agenda
Adobe Connect

Classes and
Interfaces

M250 Units 10, 11 sets

Collections, Arrays, Sets, Maps, Lists Haps

Lists

Collection
Implementations

TMAO3 Practice

Phil Molyneux Quiz
Common Mistakes

JShell

What Next ?

18 Aprll 2021 References

Adobe Connect Interface — Participant View

https://en.wikipedia.org/wiki/Text_editor
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/List_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments

4 Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025

‘ece B Adobe Connect.app.

M250 Units 10, 11

M250 Units 10, 11 Tutorial

Introductions

Phil Molyneux

M250 Units 10, 11
. Tutorial Agenda
> Introductions AR TR

> Name Phil Molyneux Classes and

> Learning Style: Reads the manual ptegacss

> Learnt last month Framework for Teaching Recursion
and wrote notes on Recursion Teaching

» YOU 7 Lists

Collection
Implementations

Sets

Maps

TMAO3 Practice
Quiz

Common Mistakes
JShell
What Next ? o W e

References

2.2 Adobe Connect Settings

Adobe Connect — Settings

Eve rybody [Menu bar>> Meeting>> Speaker & Microphone Setup}

{Menu bar>> Microphone>> Allow Participants to Use Microphone} v

Check Participants see the entire slide including slide numbers bottom right Workaround

- Disable Draw [Share p0d>> Menu bar>> Draw icon}

- Fit Width [Share pod>> Bottom bar>> Fit Width icon} v

° {Meeting>> Preferences>> General>> Host Cursor>> Show to all attendees

° {Menu bar>> Video>> Enable Webcam for Participants} v

e Do not Enable single speaker mode

e Cancel hand tool

e Do not enable green pointer

e Recording {Meeting>> Record Session} 4

e Documents Upload PDF with drag and drop to share pod

e Delete [Meeting>> Manage Meeting Information>> Uploaded Content} and [check ﬁlename>> click on delete

Adobe Connect — Access

e Tutor Access

{TutorHome>> M269 Website>> Tutorials}

{Cluster Tutorials>> M269 Online tutorial room}

{Tutor Groups>> M269 Online tutor group room}

Phil Molyneux M250 Tutorial 06 5

{Module-wide Tutorials>> M269 Online module-wide room}

Attendance

{TutorHome>> Students>> View your tutorial timetables}

Beamer Slide Scaling 440% (422 x 563 mm)

Clear Everyone’s Status

{Attendee Pod>> Menu>> Clear Everyone’s Status}

Grant Access and send link via email

{Meeting>> Manage Access & Entry>> Invite Participants. . . }

Presenter Only Area

[Meeting>> Enable/Disable Presenter Only Area}

Adobe Connect — Keystroke Shortcuts

2.3

2.4

Keyboard shortcuts in Adobe Connect

Toggle Mic %]+ M] (Mac), [cer)+(M] (win) (On/Disconnect)
Toggle Raise-Hand status [32])+E |

Close dialog box [®] (Mac), [Esc] (win)
End meeting [+ \]

Adobe Connect — Sharing Screen & Applications

{Share My Screen>> Application tab>> Terminal} for Terminal

Share menu)) Change View)) Zoom in| for mismatch of screen size/resolution (Participants)

(Presenter) Change to 75% and back to 100% (solves participants with smaller screen
image overlap)

Leave the application on the original display

Beware blued hatched rectangles — from other (hidden) windows or contextual
menus

Presenter screen pointer affects viewer display — beware of moving the pointer away
from the application

First time: {System Preferences>> Security & Privacy>> Privacy>> Accessibility}

Adobe Connect — Ending a Meeting

Notes for the tutor only

Student: [Meeting>> Exit Adobe Connect]

Tutor:

Recording [Meeting)) Stop Recording| v/

Remove Participants [Meeting) End Meeting. .. | v/

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html
https://en.wikipedia.org/wiki/Terminal_(macOS)

6 Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025
- Dialog box allows for message with default message:
- The host has ended this meeting. Thank you for attending.
e Recording availability In course Web site for joining the room, click on the eye icon
in the list of recordings under your recording — edit description and name
e Meeting Information [Meeting)) Manage Meeting Information| — can access a range of informa-
tion in Web page.
e Delete File Upload {Meeting>> Manage Meeting Information>> Uploaded Content tab} select file(s) and
click
e Attendance Report see course Web site for joining room
2.5 Adobe Connect — Invite Attendees

Provide Meeting URL {Menu>> Meeting>> Manage Access & Entry>> Invite Participants. . . }

Allow Access without Dialog [Menu)) Meeting)) Manage Meeting Information| provides new browser
window with Meeting Information [Tab bar)) Edit Information|

Check Anyone who has the URL for the meeting can enter the room
Default Only registered users and accepted guests may enter the room
Reverts to default next session but URL is fixed

Guests have blue icon top, registered participants have yellow icon top — same icon
if URL is open

See Start, attend, and manage Adobe Connect meetings and sessions
Click on the link sent in email from the Host

Get the following on a Web page

As Guest enter your name and click on

https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html

Phil Molyneux M250 Tutorial 06 7

a Adobe Connect

M269-21) Online tutorial room
London/SE (1,13) CG [2311] (M269-21))

)

Guest Registered User
Name

Guest Name

By entering a Name & clicking "Enter Room'", you agree that
you have read and accept the Terms of Use & Privacy Policy,

e See the Waiting for Entry Access for Host to give permission

k74 Adobe Connect

Waiting for Entry Access

This is a private meeting. Your request to enter has

been sent to the host. Please wait for a response.

e Host sees the following dialog in Adobe Connect and grants access

! Guest entry o

1 guest would like to enter the room. Do you want
to allow or deny entry to incoming guests?

Guest Name (guest) 9 O ’Ave?

Allow everyone Deny everyone Close

2.6 Layouts

e Creating new layouts example Sharing layout

° [Menu>> Layouts>> Create New Layout. . } [Create a New Layout dialog>> Create a new blank Iayout} and name it
PMolyMain

e New layout has no Pods but does have Layouts Bar open (see Layouts menu)

e Pods

8 Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025

[Menu)) Pods) Share) Add New Share| and resize/position — initial name is Share n — rename
PMolyShare

e Rename Pod {Menu>> Pods>> Manage Pods. . } [Manage Pods>> Select>> Rename} or [Double-click & rename

e Add Video pod and resize/reposition
e Add Attendance pod and resize/reposition
e Add Chat pod — rename it PMolyChat — and resize/reposition

e Dimensions of Sharing layout (on 27-inch iMac)

Width of Video, Attendees, Chat column 14 cm

Height of Video pod 9 cm

Height of Attendees pod 12 cm

Height of Chat pod 8 cm

e Duplicating Layouts does not give new instances of the Pods and is probably not a
good idea (apart from local use to avoid delay in reloading Pods)

e Auxiliary Layouts name PMolyAux0On
- Create new Share pod
- Use existing Chat pod

- Use same Video and Attendance pods

2.7 Chat Pods

e Format Chat text

° {Chat Pod>> menu icon>> My Chat Color}

e Choices: Red, Orange, Green, Brown, Purple, Pink, Blue, Black

e Note: Color reverts to Black if you switch layouts

) {Chat Pod>> menu icon>> Show Timestamps}

2.8 Graphics Conversion for Web
e Conversion of the screen snaps for the installation of Anaconda on 1 May 2020

e Using GraphicConverter 11

° > Convert & Modify>> Conversion>> Convert}

e Select files to convert and destination folder

e Click on [Start selected Function] or +

2.9 Adobe Connect Recordings

° {Menu bar>> Meeting>> Preferences>> Video}

e [Aspect ratio)) Standard (4:3)] (not Wide screen (16:9) default)

Phil Molyneux M250 Tutorial 06 9

|Video quality)) Full HD| (1080p not High default 480p)

Recording {Menu bar>> Meeting>> Record Session} 4

Export Recording

{Menu bar>> Meeting>> Manage Meeting Information}

{New window>> Recordings>> check Tutorial>> Access Type button

{check Public>> check Allow viewers to download}

Download Recording

{New window>> Recordings>> check Tutorial>> Actions>> Download File

3 Classes and Interfaces

Classes and Interfaces were introduced in Unit 6 and there is a reminder on page
105 of Unit 10

It is worth discussing of the roles of Classes and Interfaces — some students will be
finding the detail gets in the way of some broad concepts

Focus on the Java type system

Question: How does a Class define a type ?

Question: How does an Interface define a type ?

Page 105 of Unit 10 gives the view of this

Class: tells you how to construct a thing of a new type

Interface: to be of this type you have to implement the specified actions

There are parallels in other languages but you have to be careful of the use of termi-
nology here

ToC

Sets

A Set is a collection with no order, no duplicates, no index and varying size
Discuss a number of examples similar to Unit 10

The examples below use JShell, a Read-Eval-Print loop (REPL) tool available for Java

e Java Shell User’s Guide describes its usage

Note: JShell is not directly in M250 (it arrived in JDK 9) but for demonstrations
students only need to know:

- Java statements and class definitions can be executed at the prompt jshel/> and
continuation prompt ...>

- The result is reported on the line following

https://en.wikipedia.org/wiki/JShell
https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
https://docs.oracle.com/en/java/javase/12/jshell/

10 Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025

- Most common libraries are automatically imported

Set<String> keywordSet = new HashSet<String>(Q);

jshell> String[] pArray =

Lo> {"d", "ar, ", Ma, "b", "a" }
pArray ==> String[6] { "d", "a", "c¢", "a", "b", "a" }
jshell> Set<String> ¢Set =

o> new TreeSet<String>(Arrays.asList(pArray))
gqSet ==> [a, b, c, d]

jshell> boolean b = gSet.add("bb")
b ==> true

jshell> gSet
gSet ==> [a, b, bb, c, d]

5 Maps

e Mapping keys to values — sometimes called Dictionaries

e Exercise: mapping file names to content types — what part of the filename gives us
the information ?

e Mapping file extensions to file types

jshell> Map<String, String> fileTypeMap =

> new HashMap<String, String>()
fileTypeMap ==> {}
jshell> String retVal = fileTypeMap.put("java","
retvVal ==> null

Java")

jshell> String retVal = fileTypeMap.put("py","Python™)
retVal ==> null

jshell> String retVal = fileTypeMap.put("Ths","Haskell")
retvVal ==> null

jshell> String retVal = fileTypeMap.put("hs","Haskell™)
retvVal ==> null

e Repeating a key in put overwrites an entry but reports the previous value

jshell> String retVal
= fileTypeMap.put("Ths","Literate_Haskell™)
retVal ==> "Haskell"

jshell> fileTypeMap

fileTypeMap ==>
{java=Java, Ths=Literate Haskell,
py=Python, hs=Haskell}

jshell> Set<String> fTypes =
..> fileTypeMap.keySet()
fTypes ==> [java, 1lhs, py, hs]

e Possible further discussion of citation keys for bibliographies — see JabRef (imple-
mented in Java) or BibDesk

ToC

http://www.jabref.org/
https://bibdesk.sourceforge.io/

Phil Molyneux M250 Tutorial 06 11

6 Lists

Lists implement the idea of a sequence of items

Dynamic size — items can be added, removed or modified (though you can have lists
of fixed size)

Ordered and indexed by integers (starting at 0)

Duplicates allowed

Summary in M250 Exam Handbook page 24

List interface implemented by ArraylList and LinkedList

Covered in Unit 11 — would not have time for more than a brief mention in this
session

ToC

Collection Implementations

This section discusses the hierarchy of interfaces, abstract classes and concrete
classes that make up the Collections Framework

It follows Unit 10 with some similar exercises

Classes that implement the collection interfaces typically have names in the form of
<Implementation-style><Interface>

Note that the diagrams may have some conventions that | may have missed — see,
for example, UML Class and Object Diagrams Overview

M250 follows some conventions from Javadoc — see Javadoc Guide

&

N s

Collection m

Set] [List] Queue

SortedSet

A \

J

e The blue rectangles denote interfaces and subinterfaces.

e Exercise Using M250 Exam Handbook to find some details of Set (page 26) and

SortedSet (page 27)

https://www.uml-diagrams.org/class-diagrams-overview.html
https://en.wikipedia.org/wiki/Javadoc
https://docs.oracle.com/en/java/javase/12/javadoc/
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Collection.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Set.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/SortedSet.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/List.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Queue.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/SortedMap.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Set.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/SortedSet.html

12 Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025

AbstractCollection
AbstractList AbstractSet

AbstractSequentialList HashSet TreeSet

LinkedList ArrayList

e The red rectangles denote abstract classes which implement various interfaces

e Yellow rectangles denote concrete classes extending abstract classes and (possibly)
implementing interfaces

e Note that TreeSet also implements the SortedSet interface

AbstractMap

HashMap TreeMap

e Note that TreeMap also implements the SortedMap interface

e Exercise Using M250 Exam Handbook to find some details of HashMap (page 30) and
TreeMap (page 31)

e Timing: 10 mins

e Note: | would prefer to have a diagram with interface, abstract classes and concrete
classes all in one diagram but this would take some time to produce — see, for
example, Sestoft, Java Precisely (2016) section 22, page 102

ToC

8 TMAO3 Practice Quiz

8.1 Information
e The quiz is intended to help with TMAO3 Q2 and exam Q3
e There are three questions about the usage of List, Map and Set

e The code can be checked with Precheck and Check

Precheck checks that the code compiles and is not missing some features

Check checks the functionality

You are advised to develop your code in BlueJ first

The quiz can be repeated any number of times to improve the score

https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/AbstractCollection.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/AbstractList.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/AbstractSequentialList.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/LinkedList.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/ArrayList.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/AbstractSet.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/HashSet.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/TreeSet.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/TreeSet.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/SortedSet.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/AbstractMap.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/HashMap.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/TreeMap.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/TreeMap.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/SortedMap.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/HashMap.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/TreeMap.html

147
148
149
150
151
152

154
155
156
157
158
159
160
161
162
163
164
165

230

167
168
169
170
171
172

174
175
176
177
178
179

181
182
183
184
185
186

188
189
190
191
192
193

195
196

Phil Molyneux M250 Tutorial 06 13

8.2 AQuestion 1
e This CodeRunner question concerns an animal shelter that keeps records about ani-
mals brought to the shelter.
e We will model this using two classes, Animal and Shelter, and we have provided
incomplete code for the Shelter class in the answer box.
e Your task is to complete the Shelter class. You do not need to add anything to the
Animal class.
e Before you start, (1) read over the provided Animal class.
e Animal Class
class Animal {

// instance variables

private int week ; // 1 to 52
private String kind ;

private String name ;

private String description ;

VAT

* Constructor for objects of class Animal

5/

public Animal(int aWeek

this.week
this.kind
this.name

,String aKind

,String aName

,String aDescription) {
aWeek ;

aKind ;

aName ;

this.description = aDescription ;

3/

% getter for week

public int getWeek() {
return this.week ;

}
/

* getter for type

public String getKind() {

return this.kind ;

}
/

% getter for name

public String getName() {

return this.name ;

}

/

* getter for description

public String getDescription() {
return this.description ;

3
[k

* setter for description

197
198
199
200
201
202

204
205
206
207
208
209
210
211
212
213

215
216
217
218
219
220
221

223
224
225
226
227
228

14

Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025

+ Note - concatenates new description to end of existing one

+/

public void setDescription(String moreDescription) {

this.description

this.description

won

+ moreDescription ;

YAz
e/

@Override

* A simple equals method

public boolean equals(Object o) {
Animal anml = (Animal) o ;

return (getKind().
&& getWeek()
&& getName().

* hashCode
5/

@Override

public int hashCode() {

equals(Canml.getKind())
== anml.getWeek ()
equals(anml.getName())) ;

return getName().length(Q);

3

@Override

public String toString() {
return (this.getKind(Q)

non

+ " " + this.getName()

nwon

+ ":" + this.getDescription()) ;

e (2) Note that in this question an instance of Shelter holds data about a number
of Animal objects in an ArrayList. For example, the ArrayList might contain the

following data:

Index

Value

1
2

Animal object with week 50, kind "cat", name "Billy", description "Black
diabetic"

Animal object with week 50, kind "cat", name "Zoe", description "Black
and white"

Animal object with week 51, kind "dog", name "Rover", description
"mongrel"

Animal object with week 52, kind "tortoise", name "Speedy", description
"Horsefield"

e Note that the ArrayList stores entries in the order in which they were added.

(a) (i) Declare an additional private instance variable animals in the Shelter class,
capable of referencing an ArrayList whose values are Animal objects, as in the
example table above.

Add a standard getter method for the animals collection.

e (ii) The class Shelter should now have these instance variables:

- animals, which you added in part (i) above

- currentWeek of type int, which is the current week of the year, and will be
used when calculating how long an animal has been in the shelter.

e Amend the provided zero-argument constructor for Shelter so that when a new
instance of Shelter is created animals is assigned a suitable empty ArraylList
object and currentWeek is set to 1.

10
11

13
14
15
16
17

27
28
29
30
31
32
33
34

36
37
38
39
40
41
42

Phil Molyneux M250 Tutorial 06 15

class Shelter {

private 1int currentWeek ;
private List<Animal> animals ;

public Shelter () {
super() ;
this.animals = new ArrayList<Animal>() ;
this.currentWeek = 1 ;

}

(a) (iii) Complete the skeleton instance method addAnimal () for the class Shelter, with
the header

public void addAnimal(String aKind
,String aName
,String aDescription)

e The method should use its three arguments to create an instance of Animal, us-
ing the value of currentWeek for its week, then add the Animal to the animals
ArraylList.

public void addAnimal(String aKind
,String aName
,String aDescription) {
Animal anml
= new Animal(this.currentWeek
, aKind, aName, aDescription) ;
this.animals.add(anml) ;

}

(b) (i) Write a public instance method with the signature inTheLastMonth(Animal) for
the Shelter class.

e The method should determine whether the Animal received as an argument has
been brought into the shelter in the last month — that is, if the number of weeks
between currentWeek and the animal’s week is 4 or less

Note, however, that when currentWeek gets to 52, then the next currentWeek’s
value is 1.

You'll need to watch out for this when calculating how many weeks it has been since
the animal arrived. For two examples, see below.

currentWeek in Shelter Animal’s week value Weeks since arrived

52 50 2
1 50 3

e The method should return true if it has been less than or equal to four weeks since
the animal arrived; otherwise it should return false. You can assume that an animal
is never in the shelter for more than a year.

public boolean inTheLastMonth(Animal anml1) {
int currWeek = this.currentWeek ;
int animalWeek = anml.getWeek() ;
return ((currWeek - animalWeek <= 4
&& currWeek - animalWeek >= 0)
|| CcurrWeek - animalWeek + 52 <= 4)) ;

(b) (ii) Write a public instance method showRecentAnimals() for the Shelter class.

44
45

47
48
49
50
51
52
53
54

56
57
58
59

61
62
63
64
65
66
67
68
69
70
71

16 Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025

e For each Animal in the collection referenced by animals, if the animal was brought
into the shelter in the last month (it has been less than or equal to four weeks since
the animal arrived) then data about that animal should be printed to the standard
output, with the details of each such animal on a separate line.

e If no animals have been brought in in the last month then No recent animals should
be printed.

e For example, using the data from the table in part (a), the output from showRecentAnimals ()

when currentWeek is 3 should be:

dog Rover:mongrel
tortoise Speedy:Horsefield

public void showRecentAnimals() {
boolean noRecentAnimals = true ;

for (Animal anml : this.animals) {
if (inTheLastMonth(anm1)) {
System.out.printin(anml.getKind()

+ " " 4+ anml.getName()
+ ":" + anml.getDescription()) ;
noRecentAnimals = false ;
}
}

if (noRecentAnimals) {
System.out.printin("No_recent_animals") ;
3
}

(c) Write a public method homed() in the Shelter class with the header

public boolean homed(int aWeek
,String aKind
,String aName)

e This method should determine whether or not the ArrayList referenced by animals
contains an Animal with a week, kind and name matching the method arguments.

e If there is such an animal, it should be removed from the list and true should be
returned. Otherwise false should be returned.

e This version uses List operations

public boolean homed(int aWeek
,String aKind
,String aName) {
Animal anml = new Animal(aWeek,aKind,aName,"No_Desc") ;
boolean anm1IsIn
= this.animals.contains(anml) ;
if (anmlIsIn) {
this.animals.remove(anml) ;
}

return anm1IsIn ;

remove () here is from the Collections Interface

It takes an object as argument and removes a single instance of the element, if
present

It returns true if it succeeds

It uses equals() to check elements

We could have made the above method shorter — how ?

https://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/util/Collection.html

73
74
75

77
78
79
80
81
82
83
84
85
86
87
88

90
91
92

94
95
96
97
98
99
100
101
102
103

Phil Molyneux M250 Tutorial 06 17

e This version uses an Iterator

public boolean homedA(int aWeek
,String aKind
,String aName) {

Iterator<Animal> animalIter = this.animals.iterator() ;
while (animalIter.hasNext()) {
Animal anml = animalIter.next() ;
if (. anml.getWeek() == aWeek
&& anml.getKind() == aKind
&& anml.getName() == aName) {
animalIter.remove() ;
return true ;
}
}

return false ;

e The code below may work but it is unpredictable

e See Iterating through a Collection, avoiding ConcurrentModificationException when
removing objects in a loop

e See java.base > java.util > Class ConcurrentModificationException

public boolean homedB(int aWeek
,String aKind
,String aName) {

for (Animal anml : this.animals) {
if (. anml.getWeek() == aWeek
&& anml.getKind() == aKind
&& anml.getName() == aName) {
this.animals.remove(anml) ;
return true ;
}
}
return false ;

}

8.2.1 Q1 Sample Usage

e The code is in M250TMAO3PracticeQuizSolnA. java and we use jShell to do evalu-
ations — see Java Shell User’s Guide

e We have several classes in one file — see Java: Multiple class declarations in one file

import java.util.= ;

class M250TMAO3PracticeQuizSoTnA {
public static void main(String[] args) {
// further code here or in Utilities
}
}

[class Shelter {

(c]ass Animal {

-)

(c1ass UtiTities {

e Open the Java file at the jShell prompt — it will compile it

jshell> /open M250TMAO3PracticeQuizSolnA.java

jshell> Shelter shelter0l = new Shelter()
shelter0l ==> Shelter@46f7f36a

https://stackoverflow.com/questions/223918/iterating-through-a-collection-avoiding-concurrentmodificationexception-when-re
https://stackoverflow.com/questions/223918/iterating-through-a-collection-avoiding-concurrentmodificationexception-when-re
https://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/util/ConcurrentModificationException.html
M250TMA03PracticeQuizSolnA.java
https://en.wikipedia.org/wiki/JShell
https://docs.oracle.com/en/java/javase/14/jshell/
https://stackoverflow.com/questions/2336692/java-multiple-class-declarations-in-one-file

108
109
110
111
112
113
114
115
116
117

119
120
121
122
123
124
125
126
127

302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

18 Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025

jshell> Animal anm101l = new Animal(50,"cat","Billy","No_Description™)
anm101 ==> Animal@5
jshell> Animal anm102 = new Animal(51,"dog", "Rover","No_Description™)
anm102 ==> Animal@5

jshell> Animal anm103 = new Animal(l,"rabbit","Roger","No_Description")
anm103 ==> Animal@5

jshell> shelter0l.populate()
jshell> shelter0l.showRecentAnimals()
dog Rover:mongrel

tortoise Speedy:Horsefield

jshell> /exit
| Goodbye

e Shelter has populate() and toString() definitions to facilitate sample usage

public void populate() {
this.currentWeek = 50 ;
this.addAnimal ("cat","Bil1ly","Black_diabetic") ;
this.addAnimal("cat","Zoe","Black_and_white") ;
this.currentWeek = 51 ;
this.addAnimal ("dog", "Rover", "mongrel™)
this.currentWeek =52 ;
this.addAnimal ("tortoise","Speedy","Horsefield") ;
this.currentWeek = 3 ;

3

@Override
public String toString() {
String outStr = "" ;
outStr = outStr + "currentWeek s,
for (Animal anml : this.animals) {
outStr = outStr + "\n" + anml.toString(Q ;
}

return outStr ;

+ currentWeek ;

jshell> /open M250TMAO3PracticeQuizSolnA.java

jshell> Shelter shelter0l = new Shelter()
shelter0l ==> currentWeek is 1

jshell> shelter0l.populate()

jshell> shelter0l

shelter0l ==> currentWeek is 3
cat Billy:Black diabetic

cat Zoe:Black and white

dog Rover:mongrel

tortoise Speedy:Horsefield

public static void testHomed() {
Shelter shelter0l = new Shelter() ;
shelterOl.populate() ;
System.out.printin("At_start_shelter0l: "

+ shelter0l.toString(Q) ;
System.out.printin("Deleting existing_animal:_cat _Billy") ;
boolean homedRetVal0l

= shelter01l.homed(50,"cat","Bil1ly") ;
System.out.printin("After_deletion_shelter0l:

+ shelter0l.toString(Q)) ;
System.out.printin("Deleting_non-existing_animal:_dog_Spot") ;
boolean homedRetVal02

= shelter01l.homed(51,"dog","Spot™) ;
System.out.printin("After_non-existing _animal_shelter0l:
+ shelter0l.toString()) ;

n

"

231
232
233
234
235
236
237
238
239
240
241
242
243
244

246
247
248
249
250
251
252
253
254
255
256
257
258
259

261
262
263
264
265
266

Phil Molyneux M250 Tutorial 06 19

jshell> UtiTlities.testHomed()

At start shelterOl: currentWeek is 3

cat Billy:Black diabetic

cat Zoe:Black and white

dog Rover:mongrel

tortoise Speedy:Horsefield

Deleting existing animal: cat Billy

After deletion shelter0l: currentWeek is 3
cat Zoe:Black and white

dog Rover:mongrel

tortoise Speedy:Horsefield

Deleting non-existing animal: dog Spot
After non-existing animal shelterOl: currentWeek is 3
cat Zoe:Black and white

dog Rover:mongrel

tortoise Speedy:Horsefield

jshell>

public static List<Integer> testRemoveForeach() {
List<Integer> intList0l
= Utilities.sampleIntList01(Q) ;
System.out.printin("intList01l_at_call_is_
+ intList0l.toString(Q) ;
for (Integer iNum : intList01l) {
if (iNum % 2 == 1) {
intList01.remove(iNum) ;

}

}
System.out.printin("intList0l_at _return_is,_

+ intList0l.toString()) ;
return intList0l ;

n

jshell> List<Integer> intListA = Utilities.testRemoveForeach()
intListO1l at call 1is [1, 2, 3, 4, 5, 6]

| Exception java.util.ConcurrentModificationException

| at ArrayList$Itr.checkForComodification (ArraylList.java:1042)
| at ArrayList$Itr.next (ArraylList.java:996)

| at Utilities.testRemoveForeach (#5:20)

| at (#6:1)

public static List<Integer> testRemoveForLoop() {

List<Integer> intList0l

= Utilities.sampleIntList01() ;
System.out.println("intList0l _at _call_is "

+ intList0l.toString()) ;

for (int idx = 0 ; idx < intList0l.size() ; idx++) {

if (intListOl.get(idx) % 2 == 1) {

intListO0l.remove(idx) ;
}

3

System.out.println("intList0l _at_return_is "
+ intList0l.toString()) ;

return intList0l ;

jshell> List<Integer> intListB = Utilities.testRemoveForLoop()
intList0l at call is [1, 2, 3, 4, 5, 6]

intListO0l at return is [2, 4, 6]

intListB ==> [2, 4, 6]

e This version is to remove every element from the list

e But what happens ...

public static List<Integer> testRemoveForLoop0l() {
List<Integer> intListOl
= Utilities.sampleIntList01() ;
System.out.printin("intList0l _at _call_is "
+ intList0l.toString()) ;
for (int idx = 0 ; idx < intList0l.size() ; idx++) {

267
268
269
270
271
272

274
275
276
277
278
279
280
281
282
283
284
285

287
288
289
290
291
292
293
294
295
296
297
298
299
300

20 Java: Collections, Arrays, Sets, Maps, Lists

16 March 2025

intList0l.remove(idx) ;
}
System.out.printin("intList01_at, return_is "
+ intList0l.toString()) ;
return intList0l ;

}

jshell> List<Integer> intListC = Utilities.testRemoveForLoop01()
intList0l at call is [1, 2, 3, 4, 5, 6]

intList0l at return 1is [2, 4, 6]

intListC ==> [2, 4, 6]

e Try with the list of strings

e As before only every other element is removed — why ?

public static List<String> testRemoveForLoop02() {
List<String> strListOl
= Utilities.sampleStrList01(Q) ;
System.out.println("strList0l at _call_is "
+ strList0l.toString()) ;
for (int idx = 0 ; idx < strListO0l.size() ; idx++) {
strListO0l.remove(idx) ;
}
System.out.printin("strList0l at_return_is "
+ strList0l.toString()) ;
return strListO0l ;

jshell> List<String> strListA = Utilities.testRemoveForLoop02()
strList0l at call is [a, b, c, d]

strList0l at return is [b, d]

strListA ==> [b, d]

Iteration strList0l strristol.size() idx Deleted
Loop 1 [a, b, ¢, d] 4 0 a
Loop 2 [b,c,d] 3 1 C
Loop 3 [b,d] 2 2

e At the beginning of Loop 3,

[(idx < strList0l.size()) == false

e Hence the for loop terminates with

(strlist0l == [b,d]

e The Iterator works as we want

public static List<String> testRemovelterator() {
List<String> strList0l
= Utilities.sampleStrList01(Q) ;
System.out.printin("strList01l_at_call_is_
+ strList0l.toString(Q) ;
Iterator<String> strIter = strListO0l.iterator() ;
while (strIter.hasNext()) {
String str = striter.next() ;
striter.remove() ;
}
System.out.printin("strList0l_at_return_is,_
+ strList0l.toString(Q) ;
return strList0l ;

n

jshell> List<String> strListB = Utilities.testRemoveIterator()
strList0l at call is [a, b, c, d]

strList0l at return is []

strListB ==> []

Phil Molyneux M250 Tutorial 06 21

8.3

(@)

(@)

Question 2

This CodeRunner question concerns an animal shelter that keeps records about ani-
mals brought to the shelter.

We will model this using two classes, Animal and Shelter, and we have provided
incomplete code for these classes in the answer box.

Your task is to complete those classes.

Before you start, (1) read over the provided Animal class.The class has four instance
variables:

- week (of type int), which is a number from 1 to 52 denoting the week of the
year the animal was brought to the shelter.

- kind, name and description, which are of type String, and which store the
kind of animal, its name and its description.

Also note the provided constructor and methods of the Animal class and what they
do.

(2) Note that an instance of Shelter is used to hold data about a number of Animal
objects, in a map. For example, the map might contain the following data:

Key Value

2 Animal object with week 50, kind "cat", name "Billy", description "Black
diabetic"

1 Animal object with week 50, kind "cat", name "Zoe", description "Black
and white"

3 Animal object with week 51, kind "dog", name "Rover", description
"mongrel”

4 Animal object with week 52, kind "tortoise", name "Speedy”, description
"Horsefield"

The order of the keys in the map shown above is just for illustration. The map does
not store entries in any particular order.

(i) Declare an additional private instance variable animals in the Shelter class,
capable of referencing a map whose keys are integers and whose values are Animal
objects, as in the example table above.

Add a standard getter method for the animals collection.
(ii) The class Shelter should now have these instance variables:
- animals, which you added in part (i) above

- currentWeek of type int, which is the current week of the year, and will be
used when calculating how long an animal has been in the shelter.

- currentId of type int which is the key for the last animal which was admitted
to the shelter

10
11
12

14
15
16
17
18
19

33
34
35
36
37
38
39
40
41

22 Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025

e Amend the provided zero-argument constructor for Shelter so that when a new
instance of Shelter is created animals is assigned a suitable empty map object
and currentWeek is set to 1 and the currentld is set to O.

class Shelter {
private int currentWeek ;
private int currentld ;
private Map<Integer, Animal> animals ;

public Shelter() {
super() ;
this.animals = new HashMap<>() ;
this.currentWeek = 1 ;
this.currentId = 0 ;

}

(a) (iii) Complete the skeleton instance method addAnimal () for the class Shelter, with
the header

public void addAnimal(String aKind
,String aName
,String aDescription)

e The method should use its three arguments to create an instance of Animal, using
the value of currentWeek for its week, then add the Animal to the animals map,
using the next value of currentId as the key.

e currentId will need to be kept updated so that each animal gets a unique ID.

e The first animal should have a currentId of 1.

public void addAnimal(String aKind
,String aName
,String aDescription) {
Animal anml
= new Animal(this.currentWeek
, aKind, aName, aDescription) ;
this.currentld = this.currentld + 1 ;
this.animals.put(this.currentId, anml) ;

3

(b) (i) Write a public instance method with the signature inTheLastMonth(Animal) for
the Shelter class.

e The method should determine whether the Animal received as an argument has
been brought into the shelter in the last month — that is, if the number of weeks
between currentWeek and the animal’s week is 4 or less

Note, however, that when currentWeek gets to 52, then the next currentWeek’s
value is 1.

You’ll need to watch out for this when calculating how many weeks it has been since
the animal arrived. For two examples, see below.

currentWeek in Shelter Animal’s week value Weeks since arrived

52 50 2
1 50 3

e The method should return true if it has been less than or equal to four weeks since
the animal arrived; otherwise it should return false. You can assume that an animal
is never in the shelter for more than a year.

Phil Molyneux M250 Tutorial 06 23

43 public boolean inTheLastMonth(Animal anml1) {

44 int currWeek = this.currentWeek ;

45 int animalWeek = anml.getWeek() ;

46 return ((currWeek - animalWeek <= 4

47 && currWeek - animalWeek >= 0)

48 || CcurrWeek - animalWeek + 52 <= 4)) ;
49 }

(b) (ii) Write a public instance method showRecentAnimals() for the Shelter class.

e For each Animal in the collection referenced by animals, if the animal was brought
into the shelter in the last month (it has been less than or equal to four weeks since
the animal arrived) then data about that animal should be printed to the standard
output, with the details of each such animal on a separate line.

e If no animals have been brought in in the last month then No recent animals should
be printed.

e For example, using the data from the table in part (a), the output from showRecentAnimals ()
when currentWeek is 3 should be:

dog Rover:mongrel
tortoise Speedy:Horsefield

public void showRecentAnimals() {
boolean noRecentAnimals = true ;

for (Animal anml : this.animals.values()) {
if (inTheLastMonth(anm1)) {
System.out.printin(anml.getKind()

+ " " 4+ anml.getName()
+ ":" + anml.getDescription()) ;
noRecentAnimals = false ;
}
}

if (noRecentAnimals) {
System.out.printin("No_recent_animals") ;
3
}

(c) Now turn to the Animal class.

e Two animals with the same week, kind and name should be considered to be the
same. (description is irrelevant). So we need to override the equals() method
inherited from Object.

e Whenever we override the inherited equals() method we also need to provide a
hashCode () method compatible with the redefined equals().

e (i) Write an equals() method to override that inherited from Object, which returns
true if the week, kind and name for two Animal objects are the same, and false
otherwise.

e (ii) Write a hashCode () method to override that inherited from Object, which re-
turns the number of characters in the name of an Animal object.

193 S %

194 * A simple equals method

195 %/

196 @Override

197 public boolean equals(Object o) {

198 Animal anml = (Animal) o ;

199 return (getKind().equals(anml.getKind())
200 && getWeek() == anml.getWeek()

201 && getName() .equals(anml.getName())) ;

202

204
205
206
207
208
209
210

68
69
70
71
72
73
74
75

77
78
79

81
82
83
84
85
86
87
88
89
90
91
92

24 Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025

}

YAz

* hashCode

%/

@Override

public int hashCode() {
return getName().length() ;

}

(d) Return to the Shelter class. A public method with the header (below) is required

public boolean homed(int aWeek
,String aKind
,String aName)

This method should determine whether or not the map referenced by animals con-
tains an Animal with a week, kind and name matching the method arguments.

If there is such an animal, its key-value pair should be removed from the map and
true should be returned. Otherwise false should be returned.

Write the homed () method.

e This version uses Map operations

public boolean homed(int aWeek
,String aKind
,String aName) {
Animal anml = new Animal(aWeek,aKind,aName,"No_Desc") ;
boolean anmIWasRemoved
= this.animals.values().remove(anml) ;
return anmlWasRemoved ;

e This version uses an Iterator
e Note that we iterate over the keys not the Map itself

e We can iterate over a map — see below

public boolean homedA(int aWeek
,String aKind
,String aName) {

Animal anm1ToGo = new Animal(aWeek,aKind,aName, "No_Desc") ;
Iterator<Integer> animalKeyIter
= this.animals.keySet().iterator() ;
while (animalKeyIter.hasNext()) {
Animal anm1In = this.animals.get(animalKeyIter.next()) ;
if (anm1ToGo.equals(anmlIn)) {
animalKeyIter.remove() ;
return true ;
}
}
return false ;

}

e The entrySet() method of the Map interface returns a Set view of the mappings
contained in the map

e Any changes we make to the set will be reflected in the map

public boolean homedC(int aWeek
,String aKind
,String aName) {

Animal anm1ToGo = new Animal(aWeek,aKind,aName, "No _Desc") ;
Set<Map.Entry<Integer,Animal>> animalEntrySet

94
95
96

98

929
100
101
102
103
104
105
106
107
108

Phil Molyneux M250 Tutorial 06 25

= this.animals.entrySet() ;
Iterator<Map.Entry<Integer,Animal>> animalEntrylSetIter
= animalEntrySet.iterator() ;
while (animalEntrySetIter.hasNext()) {
Animal anmlIn = animalEntrySetIter.next().getValue() ;
if (anml1ToGo.equals(anm1In)) {
animalKeyIter.remove() ;
return true ;
}
}

return false ;

e The code below may work but it is unpredictable

e See Iterating through a Collection, avoiding ConcurrentModificationException when
removing objects in a loop

e See java.base > java.util > Class ConcurrentModificationException

public boolean homedB(int aWeek
,String aKind
,String aName) {

for (Integer anmlKey : this.animals.keySet()) {
Animal anml = this.animals.get(anmlKey) ;
if (. anml.getWeek() == aWeek
&& anml.getKind() == aKind
&& anml.getName() == aName) {
this.animals.remove(anmlKey) ;
return true ;
}
}
return false ;

}

8.3.1 Q 2 Sample Usage

e The code is in M250TMAO3PracticeQuizSolnB. java and we use jShell to do evalu-
ations — see Java Shell User’s Guide

e We have several classes in one file — see Java: Multiple class declarations in one file

import java.util.= ;

class M250TMAO3PracticeQuizSolnB {
public static void main(String[] args) {
// further code here or in Utilities
}
}

[class Shelter {

)
(c1ass Animal { J
)

(c1ass UtiTities {

e Open the Java file at the jShell prompt — it will compile it

jshell> /open M250TMAO3PracticeQuizSolnB.java

jshell> Shelter shelter0l = new Shelter()
shelter0l ==> currentWeek is 1

jshell>

https://stackoverflow.com/questions/223918/iterating-through-a-collection-avoiding-concurrentmodificationexception-when-re
https://stackoverflow.com/questions/223918/iterating-through-a-collection-avoiding-concurrentmodificationexception-when-re
https://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/util/ConcurrentModificationException.html
M250TMA03PracticeQuizSolnB.java
https://en.wikipedia.org/wiki/JShell
https://docs.oracle.com/en/java/javase/14/jshell/
https://stackoverflow.com/questions/2336692/java-multiple-class-declarations-in-one-file

113
114
115
116
117
118
119
120
121
122

124
125
126
127
128
129
130
131
132
133
134
135

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

26 Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025

e Note that in the first example usage shown in Q 1 the value of the shelter was
displayed as follows

jshell> /open M250TMAO3PracticeQuizSolnA.java

jshell> Shelter shelter0l = new Shelter()
shelter0l ==> Shelter@46f7f36a

jshell>

e Note that in the first example usage shown in Q 1 the value of the shelter was
displayed as follows

jshell> /open M250TMAO3PracticeQuizSolnA.java

jshell> Shelter shelter0l = new Shelter()
shelter0l ==> Shelter@46f7f36a

jshell>

e The original example had the default toString() definition from Object which
gives the textual representation of an object as its class, the @ sign character, and
the unsigned hexadecimal representation of the hash code of the object

(x.getClass().getName() + "@" + Integer.toHexString(x.hashCode())

e Shelter has populate() and toString() definitions to facilitate sample usage

public void populate() {
this.currentWeek = 50 ;
this.addAnimal("cat","Bi1ly","Black_diabetic") ;
this.addAnimal ("cat","Zoe","Black_and_white") ;
this.currentWeek = 51 ;
this.addAnimal ("dog", "Rover", "mongrel") ;
this.currentWeek =52 ;

non

this.addAnimal ("tortoise", "Speedy","Horsefield") ;
this.currentWeek = 3 ;

}

@Override

public String toString() {
String outStr = "" ;
outStr = outStr + "currentWeek is_ " + currentWeek ;
for (Integer anmlKey : this.animals.keySet()) {
Animal anml = this.animals.get(anmlKey) ;
outStr = outStr + "\n"
+ "ID_" + anmlKey

non

+ """ 4+ anml.toString(Q ;

}

return outStr ;

e Utilities class has further definitions to facilitate sample usage

public static void testHomed() {
Shelter shelter0l = new Shelter() ;
shelterOl.populate() ;
System.out.printin("At_start _shelter0l: "

+ shelter0l.toString(Q)) ;
System.out.println("Deleting _existing_animal: _cat Billy") ;
boolean homedRetVal0l

= shelter0l.homed(50,"cat","Billy") ;
System.out.printin("After_deletion_shelter0l:

+ shelter0l.toString(Q)) ;
System.out.printin("Deleting _non-existing_animal:_dog Spot") ;
boolean homedRetVal02

= shelter0l.homed(51,"dog", "Spot™) ;
System.out.printin("After_non-existing_animal_shelter0l:
+ shelter0l.toString()) ;

n

"

https://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/lang/Object.html

Phil Molyneux M250 Tutorial 06 27

jshell> shelter0l.populate()

jshell> System.out.printin(shelter0l)
currentWeek is 3

ID 1 cat Billy:Black diabetic

ID 2 cat Zoe:Black and white

ID 3 dog Rover:mongrel

ID 4 tortoise Speedy:Horsefield

jshell> UtiTlities.testHomed()

At start shelterOl: currentWeek is 3

ID 1 cat Billy:Black diabetic

ID 2 cat Zoe:Black and white

ID 3 dog Rover:mongrel

ID 4 tortoise Speedy:Horsefield

Deleting existing animal: cat Billy

After deletion shelter0l: currentWeek is 3
ID 2 cat Zoe:Black and white

ID 3 dog Rover:mongrel

ID 4 tortoise Speedy:Horsefield

Deleting non-existing animal: dog Spot
After non-existing animal shelter0l: currentWeek is 3
ID 2 cat Zoe:Black and white

ID 3 dog Rover:mongrel

ID 4 tortoise Speedy:Horsefield

jshell>

8.4 Question 3

e This CodeRunner question concerns an animal shelter that keeps records about ani-
mals brought to the shelter.

e We will model this using two classes, Animal and Shelter, and we have provided
incomplete code for the Shelter class in the answer box.

e Your task is to complete the Shelter class. In this question you do not need to add
anything to the Animal class.

e Before you start, The Animal class is provided in the answer box already.

e (2) Note that in this question an instance of Shelter holds data about a number of
Animal objects in a Set. For example, the Set might contain the following data:

Animal object with week 50, kind "cat", name "Billy", description "Black
diabetic”

Animal object with week 50, kind "cat", name "Zoe", description "Black
and white"

Animal object with week 51, kind "dog", name "Rover", description
"mongrel”

Animal object with week 52, kind "tortoise", name "Speedy", description
"Horsefield"

e The Set does not store entries in any particular order. Sets do not allow duplicate
entries.

(a) (i) Declare an additional private instance variable animals in the Shelter class,
capable of referencing a Set whose values are Animal objects, as in the example

10
11

13
14
15
16
17

27
28
29
30
31
32
33
34

28 Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025

table above.

Add a standard getter method for the animals collection and for the currentWeek
instance variable.

e (ii) The class Shelter should now have these instance variables:
- animals, which you added in part (i) above

- currentWeek of type int, which is the current week of the year, and will be
used when calculating how long an animal has been in the shelter.

e Amend the provided zero-argument constructor for Shelter so that when a new
instance of Shelter is created animals is assigned a suitable empty Set object and
currentWeek is setto 1.

class Shelter {
private int currentWeek ;
private Set<Animal> animals ;

public Shelter () {
super() ;
this.animals = new HashSet<Animal>() ;
this.currentWeek = 1 ;

}

(a) (iii) Complete the skeleton instance method addAnimal ()for the class Shelter, with
the header

public void addAnimal(String aKind
,String aName
,String aDescription)

e The method should use its three arguments to create an instance of Animal, using
the value of currentWeek for its week, then add the Animal to the animals Set.

public void addAnimal(String aKind
,String aName
,String aDescription) {
Animal anml
= new Animal(this.currentWeek
, aKind, aName, aDescription) ;
this.animals.add(anml) ;

}

(b) (i) Write a public instance method with the signature inTheLastMonth(Animal) for
the Shelter class.

e The method should determine whether the Animal received as an argument has
been brought into the shelter in the last month — that is, if the number of weeks
between currentWeek and the animal’s week is 4 or less

Note, however, that when currentWeek gets to 52, then the next currentWeek’s
value is 1.

You’ll need to watch out for this when calculating how many weeks it has been since
the animal arrived. For two examples, see below.

currentWeek in Shelter Animal’s week value Weeks since arrived

52 50 2
1 50 3

36
37
38
39
40
41
42

44
45

47
48
49
50
51
52
53
54

56
57
58
59

61
62
63
64
65
66
67
68

Phil Molyneux M250 Tutorial 06 29

e The method should return true if it has been less than or equal to four weeks since
the animal arrived; otherwise it should return false. You can assume that an animal
is never in the shelter for more than a year.

public boolean inTheLastMonth(Animal anml1) {
int currWeek = this.currentWeek ;
int animalWeek = anml.getWeek() ;
return ((currWeek - animalWeek <= 4
&& currWeek - animalWeek >= 0)
|| CcurrWeek - animalWeek + 52 <= 4)) ;

(b) (ii) Write a public instance method showRecentAnimals() for the Shelter class.

e For each Animal in the collection referenced by animals, if the animal was brought
into the shelter in the last month (it has been less than or equal to four weeks since
the animal arrived) then data about that animal should be printed to the standard
output, with the details of each such animal on a separate line.

e If no animals have been brought in in the last month then No recent animals should
be printed.

e For example, using the data from the table in part (a), the output from showRecentAnimals ()
when currentWeek is 3 should be:

dog Rover:mongrel
tortoise Speedy:Horsefield

public void showRecentAnimals() {
boolean noRecentAnimals = true ;

for (Animal anml : this.animals) {
if (inTheLastMonth(anm1)) {
System.out.println(anml.getKind(Q)
+ "." + anml.getName()
+ ":" + anml.getDescription()) ;
noRecentAnimals = false ;
}
}

if (noRecentAnimals) {
System.out.printin("No_recent_animals") ;
}
}

(c) Write a public method homed() in the Shelter class with the header

public boolean homed(int aWeek
,String aKind
,String aName)

e This method should determine whether or not the Set referenced by animals con-
tains an Animal with a week, kind and name matching the method arguments.

e If there is such an animal, it should be removed from the set and true should be
returned. Otherwise false should be returned.

e This version uses Set operations

public boolean homed(int aWeek
,String aKind
,String aName) {
Animal anm]l = new Animal(aWeek,aKind,aName,"No_Desc") ;
boolean anm1IsIn
= this.animals.contains(anml) ;
if (anmlIsIn) {
this.animals.remove(anml) ;

30 Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025

69 }
70 return anmlIsIn ;
71 }

e This version uses an Iterator

73 public boolean homedA(int aWeek

74 ,String aKind

75 ,String aName) {
77 Iterator<Animal> animalIter = this.animals.iterator() ;
78 while (animalIter.hasNext()) {

79 Animal anml = animalIter.next() ;
80 if (. anml.getWeek() == aWeek

81 && anml.getKind() == aKind

82 && anml.getName() == aName) {
83 animalIter.remove() ;

84 return true ;

85 }

86 }

87 return false ;

88 }

e The code below may work but it is unpredictable

e See Iterating through a Collection, avoiding ConcurrentModificationException when
removing objects in a loop

e See java.base > java.util > Class ConcurrentModificationException

90 public boolean homedB(int aWeek

91 ,String aKind

92 ,String aName) {
94 for (Animal anml : this.animals) {
95 if (. anml.getWeek() == aWeek

96 && anml.getKind() == aKind

97 && anml.getName() == aName) {
98 this.animals.remove(anml) ;

99 return true ;

100 }

101 }

102 return false ;

103 }

8.4.1 Q 3 Sample Usage

e The code is in M250TMAO3PracticeQuizSolnC. java and we use jShell to do evalu-
ations — see Java Shell User’s Guide

e We have several classes in one file — see Java: Multiple class declarations in one file

import java.util.= ;

class M250TMAO3PracticeQuizSoInC {
public static void main(String[] args) {
// further code here or in Utilities
}
}

[class Shelter {

(c]ass Animal {

—)

(cTass UtiTities {

e Open the Java file at the jShell prompt — it will compile it

https://stackoverflow.com/questions/223918/iterating-through-a-collection-avoiding-concurrentmodificationexception-when-re
https://stackoverflow.com/questions/223918/iterating-through-a-collection-avoiding-concurrentmodificationexception-when-re
https://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/util/ConcurrentModificationException.html
M250TMA03PracticeQuizSolnC.java
https://en.wikipedia.org/wiki/JShell
https://docs.oracle.com/en/java/javase/14/jshell/
https://stackoverflow.com/questions/2336692/java-multiple-class-declarations-in-one-file

Phil Molyneux M250 Tutorial 06 31

jshell> /open M250TMAO3PracticeQuizSolnC.java

jshell> Shelter shelter0l = new Shelter()
shelter0l ==> currentWeek is 1

jshell>

e Note that in the first example usage shown in Q 1 the value of the shelter was
displayed as follows

jshell> /open M250TMAO3PracticeQuizSolnA.java

jshell> Shelter shelter0l = new Shelter()
shelter0l ==> Shelter@46f7f36a

jshell>

e Note that in the first example usage shown in Q 1 the value of the shelter was
displayed as follows

jshell> /open M250TMAO3PracticeQuizSolnA.java

jshell> Shelter shelter0l = new Shelter()
shelter0l ==> Shelter@46f7f36a

jshell>

e The original example had the default toString() definition from Object which
gives the textual representation of an object as its class, the @ sign character, and
the unsigned hexadecimal representation of the hash code of the object

[x.getClass().getName() + "@" + Integer.toHexString(x.hashCode())

e Shelter has populate() and toString() definitions to facilitate sample usage

108 public void populate() {

109 this.currentWeek = 50 ;

110 this.addAnimal("cat","Bi1ly","Black_diabetic") ;
111 this.addAnimal ("cat","Zoe","Black_and_white") ;
112 this.currentWeek = 51 ;

113 this.addAnimal ("dog", "Rover", "mongrel") ;

114 this.currentWeek =52 ;

115 this.addAnimal ("tortoise", "Speedy","Horsefield") ;
116 this.currentWeek = 3 ;

117 }

119 @Override

120 public String toString() {

121 String outStr = "" ;

122 outStr = outStr + "currentWeek is " + currentWeek ;
123 for (Animal anml : this.animals) {

124 outStr = outStr + "\n" + anml.toString() ;

125 }

126 return outStr ;

127 }

e Utilities class has further definitions to facilitate sample usage

226 public static void testHomed() {

227 Shelter shelter0l = new Shelter() ;

228 shelterOl.populate() ;

229 System.out.printin("At_start_shelter0l: "

230 + shelter0l.toString(Q) ;

231 System.out.printin("Deleting existing_animal:_cat _Billy") ;
232 boolean homedRetValOl

233 = shelter0l1l.homed(50,"cat","Billy") ;

234 System.out.printin("After_deletion_shelter0l: "

235 + shelter0l.toString()) ;

236 System.out.printin("Deleting_non-existing_animal:_dog_Spot") ;

https://docs.oracle.com/en/java/javase/14/docs/api/java.base/java/lang/Object.html

237
238
239
240
241

32 Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025

boolean homedRetVal02
= shelter0l.homed(51,"dog","Spot™) ;
System.out.println("After_non-existing_animal_shelter0l: '
+ shelter0l.toString(Q)) ;

jshell> shelter0l.populate()

jshell> System.out.printin(shelter0l)
currentWeek is 3

ID 1 cat Billy:Black diabetic

ID 2 cat Zoe:Black and white

ID 3 dog Rover:mongrel

ID 4 tortoise Speedy:Horsefield

jshell> UtiTlities.testHomed()

At start shelter0l: currentWeek is 3

cat Zoe:Black and white

cat Billy:Black diabetic

dog Rover:mongrel

tortoise Speedy:Horsefield

Deleting existing animal: cat Billy

After deletion shelter0l: currentWeek is 3
cat Zoe:Black and white

dog Rover:mongrel

tortoise Speedy:Horsefield

Deleting non-existing animal: dog Spot
After non-existing animal shelter0l: currentWeek is 3
cat Zoe:Black and white

dog Rover:mongrel

tortoise Speedy:Horsefield

jshell>

ToC
ToC

ToC

9 Common Mistakes

e All programming languages have some sharp edges or subtle points, including Java
e This section discusses some common mistakes
e The examples below use JShell, a Read-Eval-Print loop (REPL) tool available for Java

Java Shell User’s Guide describes its usage

Note: JShell is not directly in M250 (it arrived in JDK 9) but for demonstrations
students only need to know:

- Java statements and class definitions can be executed at the prompt jshel/> and
continuation prompt ...>

- The result is reported on the line following
- Most common libraries are automatically imported

e The examples refer to the M250 Units and M250 Exam Handbook for further points

9.1 Converting an Array to a List

https://en.wikipedia.org/wiki/JShell
https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
https://docs.oracle.com/en/java/javase/12/jshell/

Phil Molyneux M250 Tutorial 06

33

jshell> String[] xArray = {"a","b","c","d"}
xArray ==> String[4] { "a", "b", "c", "d" }

jshell> List<String> yList = Arrays.asList(xArray)
yList ==> [a, b, c, d]

jshell> yList.add("e")

| Exception java.lang.UnsupportedOperationException
| at AbstractlList.add (AbstractlList.java:153)
| at AbstractList.add (AbstractlList.java:111)
| at (#20:1)

e See M250 Exam Handbook section 5.3 Collection utility classes Class Arrays (page

32)

e aslList returns an ArraylList which is of fixed size — this ArrayList is a private

static class inside Arrays — it is not the java.util.ArrayList class

e Solution: the ArraylList constructor can accept a Collection type, which is also a

super type for java.util.Arrays.ArraylList

jshell> String[] xArray = {"a","b","c","d"}
xArray ==> String[4] { "a", "b", "c", "d" }

jshell> List<String> yList =
> new ArraylList<String>(Arrays.asList(xArray))
yList ==> [a, b, c, d]

jshell> boolean b = yList.add("e")
b ==> true

jshell> yList
yList ==> [a, b, c, d, e]

9.2 Using a TreeSet

jshell> String[] pArray =
Lo> {"d", "ar, te, "a, "b", "a" }
pArray ==> String[6] { "d", "a", "c", "a", "b", "a" }

jshell> Set<String> gSet =
...> new TreeSet<String>(Arrays.asList(pArray))
gSet ==> [a, b, c, d]

jshell> String elmnt = gSet.first()
| Error:

| cannot find symbol

| symbol: method first()

| String elmnt = gSet.first(Q);

|

e TreeSet implements the SortedSet interface
e first() is a method implemented by TreeSet

e So what is wrong ?

jshell> String[] pArray =
Co> o {"d",Mat, e, Mat, "b", "a" }
pArray ==> String[6] { "d", "a", "c", "a", "b", "a" }

jshell> SortedSet<String> rSet =
> new TreeSet<String>(Arrays.asList(pArray))
rSet ==> [a, b, c, d]

jshell> String elmnt = rSet.first()

elmnt ==> "a

34 Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025

elmnt was declared to be of type Set

first() is not in the protocol of Set

Declare the set to be of type SortedSet
(See SAQ 10 in Unit 10)

9.3 Remove Elements from List Inside Loop

jshell> List<String> yList =
> new ArraylList<String>(Arrays.asList(xArray))
yList ==> [a, b, c, d]

jshell> for (String str : yList) {
..> if (str.equals("a")) {
> yList.remove(str) ;
> }
L..>
| Exception java.util.ConcurrentModificationException
| at ArraylList$Itr.checkForComodification
(ArraylList.java:1042)
| at ArrayList$Itr.next (ArraylList.java:996)
| at (#67:1)

e Unit 9 page 33 describes the for-each statement — a note on page 35 mentions that
the collection should not be modified in the loop — hence the error

e When iterating over a collection or map, the underlying collection should not be
modified except through the iterator’s remove method. If it is modified in any other
way, the result is unpredictable.

e If we have just one element to remove, here is an alternative using 1ist methods

jshell> List<String> yList =
...> new ArraylList<String>(Arrays.asList(xArray))
yList ==> [a, b, c, d]

jshell> dnt idx = yList.index0f("a")
idx ==> 0

jshell> String str = yList.remove(0)

str ==> "a

jshell> yList
yList ==> [b, c, d]

e The Iterable interface provides the iterator method — see Iterator and Listlterator
interfaces

e See M269 Exam Handbook page 24 (and mentioned in Exercise 2 Unit 10, p 87,
solution p 236)

jshell> List<String> yList =
...> new ArraylList<String>(Arrays.asList(xArray))
yList ==> [a, b, c, d]

jshell> Iterator<String> iter = ylList.iterator()
iter ==> java.util.ArraylList$Itr@l2bc6874

jshell> while (iter.hasNext()) {
Ce> String str = iter.next(Q);
> if (str.equals("a")) {
> iter.remove();
> }
>

}

https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/lang/Iterable.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Iterator.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/ListIterator.html

Phil Molyneux M250 Tutorial 06 35

jshell> ylList
ys ==> [b, ¢, d]

jshell> String[] jArray = {"a","b","c","a","d","a"}
jArray ==> String[6] { "a", "b", "c", "a", "d", "a" }

jshell> List<String> kList =
...> new ArraylList<String>(Arrays.asList(jArray))
kList ==> [a, b, c, a, d, a]

jshell> Iterator<String> iter = ks.iterator()
iter ==> java.util.ArraylList$Itr@5d3411d

jshell> while (iter.hasNext()) {
Ce> String str = iter.next(Q);
..> if (str.equals("a")) {
o> iter.remove();
> }
>}

jshell> kList
kList ==> [b, c, d]

e The collection should not be modified other than using remove but can use add and
set with ListIterator

ToC
ToC
10 JShell

e JShell is a Java read-eval-print loop (REPL) introduced in 2017 with JDK 9

e Java Shell User’s Guide (Release 12, March 2019)

e Tools Reference: jshell

e JShell Tutorial (30 June 2019)

e How to run a whole Java file added as a snippet in JShell? (15 July 2019)
ToC

11 What Next ?

Programming, Debugging, Psychology

Although programming techniques have improved immensely since the early days, the
process of finding and correcting errors in programming — known graphically if inele-
gantly as debugging — still remains a most difficult, confused and unsatisfactory opera-
tion. The chief impact of this state of affairs is psychological. Although we are happy to
pay lip-service to the adage that to err is human, most of us like to make a small pri-
vate reservation about our own performance on special occasions when we really try. It
is somewhat deflating to be shown publicly and incontrovertibly by a machine that even
when we do try, we in fact make just as many mistakes as other people. If your pride
cannot recover from this blow, you will never make a programmer.

Christopher Strachey, Scientific American 1966 vol 215 (3) September pp112-124

https://en.wikipedia.org/wiki/JShell
https://docs.oracle.com/en/java/javase/12/jshell/
https://docs.oracle.com/en/java/javase/12/tools/jshell.html
http://cr.openjdk.java.net/~rfield/tutorial/JShellTutorial.html
https://stackoverflow.com/questions/44399338/how-to-run-a-whole-java-file-added-as-a-snippet-in-jshell
https://en.wikipedia.org/wiki/Christopher_Strachey

36 Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025

To err is human, to really foul things up requires a computer.

Attributed to Paul R. Ehrlich in 101 Great Programming Quotes

Attributed to Bill Vaughn in Quote Investigator

Derived from Alexander Pope (1711, An Essay on Criticism)

To Err is Humane; to Forgive, Divine

This also contains

A little learning is a dangerous thing;

Drink deep, or taste not the Pierian Spring

In programming, this means you have to read the fabulous manual (RTFM)

Units 1-5, TMAO1
e TMAO3 Thursday 8 May 2025
e Tutorial: Exam revision: Online 10:00 Sunday 11 May 2025
e Exam Friday 30 May 2025

12 Web Links & References

12.1 Java Documentation
e Java Documentation — BlueJ has JDK 7 embedded, JDK 13 is current (2019)
e JDK 13 Documentation
e Java Platform API Specification

e Java Language Specification

° [JDK Documentation>> API Documentation>>java.base}

- java.lang — fundamental classes for the Java programming language

- java.util — Collections framework

https://en.wikipedia.org/wiki/Paul_R._Ehrlich
http://www.devtopics.com/101-great-computer-programming-quotes/
https://en.wikipedia.org/wiki/William_E._Vaughan
http://quoteinvestigator.com/2010/12/07/foul-computer/
https://en.wikipedia.org/wiki/Alexander_Pope
https://en.wikipedia.org/wiki/An_Essay_on_Criticism
https://en.wikipedia.org/wiki/Pierian_Spring
https://lmgtfy.com/?q=rtfm
https://docs.oracle.com/en/java/javase/
https://docs.oracle.com/en/java/javase/13/index.html
https://docs.oracle.com/en/java/javase/13/docs/api/index.html
https://docs.oracle.com/javase/specs/index.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/lang/package-summary.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/util/package-summary.html

Phil Molyneux M250 Tutorial 06 37

© O 5[]]3] [2] 52w 5o 2 o 15 5] o 2o 2 o] B[5[5 2 e W €| 2= o]2 255

e
<« G ¢ [& docs.oracle. javalj 13 i i ing.html o %)@
Apps ES) Apple B Books ES) CompNews ES Computing B Finance E3 Information [Kingston ES) News ES) OU [Scripts B Shopping ES) Topics »
OVERVIEW MODULE PACKAGE C5] USE TREE DEPRECATED INDEX HELP Java SE 13 & JDK 13
SUMMARY: NESTED | FIELD | CONSTR | METHOD ~ DETAIL: FIELD | CONSTR | METHOD SEARCH: [O_ Search X

Module java.base
Package java.lang

Class String

java.lang.Object
java.lang.String

All Implemented Interfaces:

Serializable, CharSequence, Comparable<String>, Constable, ConstantDesc

public final class String
extends Object
implements Serializable, Comparable<String>, CharSequence, Constable, ConstantDesc

The String class represents character strings. All string literals in Java programs, such as "abc", are implemented as instances of this class.

Strings are constant; their values cannot be changed after they are created. String buffers support mutable strings. Because String objects are immutable
they can be shared. For example:

String str = "abc";

¢ LBOA-2019102...zip ~ % Christina2007N...jpg ~ % Christina2012N...jpg » " system-f-with-t....b... ~ Show All X

e Strings are immutable objects
e See java.lang.StringBuilder for mutable strings

e In a functional programming approach everything is immutable — it makes life sim-
pler (but at a cost)

© © ®]| S[5[6] 55| B[] 2 2|55 2 W[| 3 5] 2 o o 2 3 B[[35[5[55 o] €[5 o]] 2] 2|2 i

<« Cc O @& docs.oracle.com/en/javalj /13/do: .base/java/lang/String.html#equals(java.lang.Object) Y ‘

i Apps [5) Apple B Books [CompNews [Computing EBS Finance E5 Information ES Kingston E5 News [E5 OU [E3 Scripts B3 Shopping B3 Topics »
OVERVIEW MODULE PACKAGE -1 USE TREE DEPRECATED INDEX HELP Java SE 13 & JDK 13
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD SEARCH: O Search x

equals
public boolean equals(Object anObject)
Compares this string to the specified object. The result is true if and only if the argument is not null and is a String object that represents the
same sequence of characters as this object.
For finer-grained String comparison, refer to Collator.
Overrides:
equals in class Object
Parameters:
anObject - The object to compare this String against
Returns:
true if the given object represents a String equivalent to this string, false otherwise
See Also:
compareTo(String), equalsIgnoreCase(String)
¢ LBOA-2019102..zip ~ % Christina2007N....jpg * % Christina2012N...jpg * ¥ system-f-with-t...b... ~ Show All X

e Remember (==) tests for identity — what does this mean ?

12.2 Books Phil Likes

e M250 is self contained — you do not need further books — but you might like to
know about some:

e Sestoft (2016) — the best short reference
e Evans and Flanagan (2018) — the best longer reference

e Barnes and Kolling (2016) — the Blue) book — see www.bluej.org for documentation
and tutorial

https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/lang/StringBuilder.html
https://www.bluej.org/

38 Java: Collections, Arrays, Sets, Maps, Lists 16 March 2025

e Bloch (2017) — guide to best practice

References

Barnes, David J. and Michael Kolling (2009). Objects First with Java. Pearson Education,
fourth edition. ISBN 0-13-606086-2. URL http://www.bluej.org/objects-first/.

Barnes, David J. and Michael Kolling (2011). Objects First with Java. Pearson Education,
fifth edition. ISBN 0132835541. URL http://www.bluej.org/objects-first/.

Barnes, David J. and Michael Kolling (2016). Objects First with Java. Pearson, sixth edition.
ISBN 1292159049. URL http://www.bluej.org/objects-first/. 37

Bloch, Joshua (2017). Effective Java. Addison-Wesley Professional, third edition. ISBN
9780134685991. 38

Darwin, lan F (2014). Java Cookbook. O’Reilly, third edition. ISBN 97814493370409.

Evans, Benjamin J and David Flanagan (2014). Java In A Nutshell. O’Reilly, sixth edition.
ISBN 1449370829. URL https://github.com/kittylyst/javanutb-examples.

Evans, Benjamin J and David Flanagan (2018). Java In A Nutshell. O’Reilly, seventh edition.
ISBN 1492037257. 37

Felleisen, Matthias and Daniel P. Friedman (1998). A Little Java, A Few Patterns. MIT Press.
ISBN 0262561158. URL http://felleisen.org/matthias/BAL]-index.html.

Gosling, James; Bill Joy; Guy L. Steele Jr.; Gilad Bracha; and Alex Buckley (2014). The Java
Language Specification, Java SE 8 Edition (Java Series) (Java (Addison-Wesley)). Addison
Wesley, eighth edition. ISBN 013390069X. URL https://docs.oracle.com/en/java/
javase/12/index.html.

Naftalin, Maurice and Philip Wadler (2006). Java Generics and Collections. O’Reilly. ISBN
059610247X.

Schildt, Herbert (2018a). Java: A Beginner’s Guide. McGraw-Hill, eighth edition.
ISBN 1260440214. URL http://mhprofessional.com/9781260440218-usa-java-a-
beginners-guide-eighth-edition-group.

Schildt, Herbert (2018b). Java: The Complete Reference, Eleventh Edition. McGraw-
Hill, eleventh edition. ISBN 1260440230. URL http://mhprofessional.com/
9781260440232-usa-java-the-complete-reference-eleventh-edition-group.

Sestoft, Peter (2002). Java Precisely. MIT Press. ISBN 0-262-69276-7.
Sestoft, Peter (2005). Java Precisely. MIT, second edition. ISBN 0262693259.

Sestoft, Peter (2016). Java Precisely. MIT, third edition. ISBN 0262529076. URL http:
//www.itu.dk/people/sestoft/javaprecisely/. 37

Thimbleby, Harold (1999). A critique of Java. Software: Practice and Experience,
29(5):457-478.

Waldo, Jim (2010). Java: The Good Parts. O’Reilly. ISBN 9780596803735. URL http:
//shop.oreilly.com/product/9780596803742.do.

ToC

http://www.bluej.org/objects-first/
http://www.bluej.org/objects-first/
http://www.bluej.org/objects-first/
https://github.com/kittylyst/javanut6-examples
http://felleisen.org/matthias/BALJ-index.html
https://docs.oracle.com/en/java/javase/12/index.html
https://docs.oracle.com/en/java/javase/12/index.html
http://mhprofessional.com/9781260440218-usa-java-a-beginners-guide-eighth-edition-group
http://mhprofessional.com/9781260440218-usa-java-a-beginners-guide-eighth-edition-group
http://mhprofessional.com/9781260440232-usa-java-the-complete-reference-eleventh-edition-group
http://mhprofessional.com/9781260440232-usa-java-the-complete-reference-eleventh-edition-group
http://www.itu.dk/people/sestoft/javaprecisely/
http://www.itu.dk/people/sestoft/javaprecisely/
http://shop.oreilly.com/product/9780596803742.do
http://shop.oreilly.com/product/9780596803742.do

Phil Molyneux M250 Tutorial 06 39

Author Phil Molyneux Written 16 March 2025 Printed 13th March 2025

Subject dir: (baseURL)/0U/Courses/Computing/M250/M250Presentations/M250Prsntn2024]

Topic path:
/M250Prsntn2024]Tutorials/M250Tutorial20250316CoTTectionsPrsntn20243/M250Tutorial20250316CollectionsPrsntn2024].pdf

	Tutorial Agenda
	Adobe Connect
	Interface
	Settings
	Sharing Screen & Applications
	Ending a Meeting
	Invite Attendees
	Layouts
	Chat Pods
	Web Graphics
	Recordings

	Classes and Interfaces
	Sets
	Maps
	Lists
	Collection Implementations
	TMA03 Practice Quiz
	Information
	Question 1
	Q 1 Sample Usage

	Question 2
	Q 2 Sample Usage

	Question 3
	Q 3 Sample Usage

	Common Mistakes
	Array to List
	Using a TreeSet
	Remove List Elements

	JShell
	What Next ?
	References
	Java Documentation
	Books Phil Likes
	References

