
Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary

JShell

What Next ?

Web Links &
References

Java Classes & Statements
M250 Tutorial 03

Phil Molyneux

17 November 2024

1/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary

JShell

What Next ?

Web Links &
References

M250 Java Classes & Statements Tutorial
Agenda

▶ Introductions

▶ Adobe Connect reminders

▶ Adobe Connect — if you or I get cut off, wait till we
reconnect (or send you an email)

▶ Classes: Introduction

▶ Statements: Select, Iteration and others

▶ JShell (optional)

▶ Some useful Web & other references

▶ Time: about 1 hour

▶ Do ask questions or raise points.

▶ Slides/Notes M250Tutorial20241117ClassesStmntsPrsntn2024J

2/91

http://pmolyneux.co.uk/OU/M250FolderSync/M250TutorialNotes/M250Tutorial20241117ClassesStmntsPrsntn2024J/

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary

JShell

What Next ?

Web Links &
References

M250 Tutorial
Introductions — Phil

▶ Name Phil Molyneux
▶ Background

▶ Undergraduate: Physics and Maths (Sussex)
▶ Postgraduate: Physics (Sussex), Operational Research

(Brunel), Computer Science (University College, London)
▶ Worked in Operational Research, Business IT, Web

technologies, Functional Programming

▶ First programming languages Fortran, BASIC, Pascal
▶ Favourite Software

▶ Haskell — pure functional programming language
▶ Text editors TextMate, Sublime Text — previously Emacs
▶ Word processing in LATEX — all these slides and notes
▶ Mac OS X

▶ Learning style — I read the manual before using the
software

3/91

https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://www.haskell.org/
https://macromates.com
http://www.sublimetext.com
https://www.emacswiki.org/
https://www.latex-project.org/
https://developer.apple.com/

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary

JShell

What Next ?

Web Links &
References

M250 Tutorial
Introductions — You

▶ Name ?

▶ Favourite software/Programming language ?

▶ Favourite text editor or integrated development
environment (IDE)

▶ List of text editors, Comparison of text editors and
Comparison of integrated development environments

▶ Other OU courses ?

▶ Anything else ?

4/91

https://en.wikipedia.org/wiki/Text_editor
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/List_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Classes:
Introduction

Statements:
Summary

JShell

What Next ?

Web Links &
References

Adobe Connect
Interface — Host View

5/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Classes:
Introduction

Statements:
Summary

JShell

What Next ?

Web Links &
References

Adobe Connect
Interface — Participant View

6/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Classes:
Introduction

Statements:
Summary

JShell

What Next ?

Web Links &
References

Adobe Connect
Settings

▶ Everybody Menu bar Meeting Speaker & Microphone Setup

▶ Menu bar Microphone Allow Participants to Use Microphone ✔

▶ Check Participants see the entire slide Workaround
▶ Disable Draw Share pod Menu bar Draw icon

▶ Fit Width Share pod Bottom bar Fit Width icon ✔

▶ Meeting Preferences General Host Cursor Show to all attendees

▶ Menu bar Video Enable Webcam for Participants ✔

▶ Do not Enable single speaker mode

▶ Cancel hand tool

▶ Do not enable green pointer

▶ Recording Meeting Record Session ✔

▶ Documents Upload PDF with drag and drop to share
pod

▶ Delete Meeting Manage Meeting Information Uploaded Content

and check filename click on delete

7/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Classes:
Introduction

Statements:
Summary

JShell

What Next ?

Web Links &
References

Adobe Connect
Access

▶ Tutor Access

TutorHome M269 Website Tutorials

Cluster Tutorials M269 Online tutorial room

Tutor Groups M269 Online tutor group room

Module-wide Tutorials M269 Online module-wide room

▶ Attendance

TutorHome Students View your tutorial timetables

▶ Beamer Slide Scaling 440% (422 x 563 mm)

▶ Clear Everyone’s Status

Attendee Pod Menu Clear Everyone’s Status

▶ Grant Access and send link via email

Meeting Manage Access & Entry Invite Participants. . .

▶ Presenter Only Area

Meeting Enable/Disable Presenter Only Area

8/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Classes:
Introduction

Statements:
Summary

JShell

What Next ?

Web Links &
References

Adobe Connect
Keystroke Shortcuts

▶ Keyboard shortcuts in Adobe Connect

▶ Toggle Mic + M (Mac), Ctrl + M (Win) (On/Disconnect)

▶ Toggle Raise-Hand status + E

▶ Close dialog box (Mac), Esc (Win)

▶ End meeting + \

9/91

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Classes:
Introduction

Statements:
Summary

JShell

What Next ?

Web Links &
References

Adobe Connect Interface
Sharing Screen & Applications

▶ Share My Screen Application tab Terminal for Terminal

▶ Share menu Change View Zoom in for mismatch of screen
size/resolution (Participants)

▶ (Presenter) Change to 75% and back to 100% (solves
participants with smaller screen image overlap)

▶ Leave the application on the original display

▶ Beware blued hatched rectangles — from other (hidden)
windows or contextual menus

▶ Presenter screen pointer affects viewer display —
beware of moving the pointer away from the application

▶ First time: System Preferences Security & Privacy Privacy

Accessibility

10/91

https://en.wikipedia.org/wiki/Terminal_(macOS)

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Classes:
Introduction

Statements:
Summary

JShell

What Next ?

Web Links &
References

Adobe Connect
Ending a Meeting

▶ Notes for the tutor only
▶ Student: Meeting Exit Adobe Connect

▶ Tutor:
▶ Recording Meeting Stop Recording ✔

▶ Remove Participants Meeting End Meeting. . . ✔

▶ Dialog box allows for message with default message:
▶ The host has ended this meeting. Thank you for

attending.

▶ Recording availability In course Web site for joining
the room, click on the eye icon in the list of recordings
under your recording — edit description and name

▶ Meeting Information Meeting Manage Meeting Information —
can access a range of information in Web page.

▶ Delete File Upload Meeting Manage Meeting Information

Uploaded Content tab select file(s) and click Delete

▶ Attendance Report see course Web site for joining
room

11/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Classes:
Introduction

Statements:
Summary

JShell

What Next ?

Web Links &
References

Adobe Connect
Invite Attendees

▶ Provide Meeting URL Menu Meeting Manage Access & Entry

Invite Participants. . .

▶ Allow Access without Dialog Menu Meeting

Manage Meeting Information provides new browser window
with Meeting Information Tab bar Edit Information

▶ Check Anyone who has the URL for the meeting can
enter the room

▶ Default Only registered users and accepted guests may
enter the room

▶ Reverts to default next session but URL is fixed

▶ Guests have blue icon top, registered participants have
yellow icon top — same icon if URL is open

▶ See Start, attend, and manage Adobe Connect meetings
and sessions

12/91

https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html
https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Classes:
Introduction

Statements:
Summary

JShell

What Next ?

Web Links &
References

Adobe Connect
Entering a Room as a Guest (1)

▶ Click on the link sent in email from the Host

▶ Get the following on a Web page

▶ As Guest enter your name and click on Enter Room

13/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Classes:
Introduction

Statements:
Summary

JShell

What Next ?

Web Links &
References

Adobe Connect
Entering a Room as a Guest (2)

▶ See the Waiting for Entry Access for Host to give
permission

14/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Classes:
Introduction

Statements:
Summary

JShell

What Next ?

Web Links &
References

Adobe Connect
Entering a Room as a Guest (3)

▶ Host sees the following dialog in Adobe Connect and
grants access

15/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Classes:
Introduction

Statements:
Summary

JShell

What Next ?

Web Links &
References

Adobe Connect
Layouts

▶ Creating new layouts example Sharing layout

▶ Menu Layouts Create New Layout. . . Create a New Layout dialog

Create a new blank layout and name it PMolyMain

▶ New layout has no Pods but does have Layouts Bar open
(see Layouts menu)

▶ Pods

▶ Menu Pods Share Add New Share and resize/position —
initial name is Share n — rename PMolyShare

▶ Rename Pod Menu Pods Manage Pods. . . Manage Pods

Select Rename or Double-click & rename

▶ Add Video pod and resize/reposition

▶ Add Attendance pod and resize/reposition

▶ Add Chat pod — rename it PMolyChat — and
resize/reposition

16/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Classes:
Introduction

Statements:
Summary

JShell

What Next ?

Web Links &
References

Adobe Connect
Layouts

▶ Dimensions of Sharing layout (on 27-inch iMac)
▶ Width of Video, Attendees, Chat column 14 cm
▶ Height of Video pod 9 cm
▶ Height of Attendees pod 12 cm
▶ Height of Chat pod 8 cm

▶ Duplicating Layouts does not give new instances of
the Pods and is probably not a good idea (apart from
local use to avoid delay in reloading Pods)

▶ Auxiliary Layouts name PMolyAux0n
▶ Create new Share pod
▶ Use existing Chat pod
▶ Use same Video and Attendance pods

17/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Classes:
Introduction

Statements:
Summary

JShell

What Next ?

Web Links &
References

Adobe Connect
Chat Pods

▶ Format Chat text

▶ Chat Pod menu icon My Chat Color

▶ Choices: Red, Orange, Green, Brown, Purple, Pink, Blue,
Black

▶ Note: Color reverts to Black if you switch layouts

▶ Chat Pod menu icon Show Timestamps

18/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Classes:
Introduction

Statements:
Summary

JShell

What Next ?

Web Links &
References

Graphics Conversion
PDF to PNG/JPG

▶ Conversion of the screen snaps for the installation of
Anaconda on 1 May 2020

▶ Using GraphicConverter 11

▶ File Convert & Modify Conversion Convert

▶ Select files to convert and destination folder

▶ Click on Start selected Function or +

19/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect
Interface

Settings

Sharing Screen &
Applications

Ending a Meeting

Invite Attendees

Layouts

Chat Pods

Web Graphics

Recordings

Classes:
Introduction

Statements:
Summary

JShell

What Next ?

Web Links &
References

Adobe Connect Recordings
Exporting Recordings

▶ Menu bar Meeting Preferences Video

▶ Aspect ratio Standard (4:3) (not Wide screen (16:9) default)

▶ Video quality Full HD (1080p not High default 480p)

▶ Recording Menu bar Meeting Record Session ✔

▶ Export Recording

▶ Menu bar Meeting Manage Meeting Information

▶ New window Recordings check Tutorial Access Type button

▶ check Public check Allow viewers to download

▶ Download Recording

▶ New window Recordings check Tutorial Actions Download File

20/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction
Classes Overview and
Structure

TMA01 Practice Quiz

Field, Method and
Constructor
Declarations

Statements:
Summary

JShell

What Next ?

Web Links &
References

Classes
Overview and Structure

▶ A class represents a concept, a template for creating
instances (objects)

▶ An object is an instance of a concept (a class)

▶ A classDeclaration of class C has the form

classModifiers class C extendsClause implementsClause
classBody

▶ extendsClause and implementsClause refer to
superclasses and interface (see later in M250)

▶ For a top-level class classModifiers may be a list of
public and at most one of abstract or final

21/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction
Classes Overview and
Structure

TMA01 Practice Quiz

Field, Method and
Constructor
Declarations

Statements:
Summary

JShell

What Next ?

Web Links &
References

Classes
Overview and Structure (2)

▶ The classBody contains declarations of fields,
constructors, methods, nested classes, nested
interfaces, and initialiser blocks (M250 mainly uses the
first three)

▶ The declarations may appear in any order but you
should use the order suggested in M250 Code
Conventions

{
fieldDeclarations
/* class (static) variables */
/* instance variables */

constructorDeclarations
methodDeclarations

}

▶ A source file may begin with package (not used in
M250) and import declarations (to be covered later)

22/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction
Classes Overview and
Structure

TMA01 Practice Quiz

Field, Method and
Constructor
Declarations

Statements:
Summary

JShell

What Next ?

Web Links &
References

Classes
Example Class Declaration (a)

class Point {
int x, y ;

Point(int x, int y) {
this.x = x ;
this.y = y ;

}

void move(int dx, int dy) {
x = x + dx ;
y = y + dy ;

}

public String toString() {
return "(" + x + "," + y + ")" ;

}
}

▶ The Point class is declared to have two instance fields
x and y, one constructer, and two instance methods

23/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction
Classes Overview and
Structure

TMA01 Practice Quiz

Field, Method and
Constructor
Declarations

Statements:
Summary

JShell

What Next ?

Web Links &
References

Classes
Example Class Declaration (b)

jshell> Point p1 = new Point(3,4)
p1 ==> (3,4)

jshell> p1 = p1.move(1,2)
| Error:
| incompatible types: void cannot be converted to Point
| p1 = p1.move(1,2)
| ^----------^

jshell> p1.move(1,2)

jshell> p1
p1 ==> (4,6)

▶ Notice the error message — move() works by side effect

24/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction
Classes Overview and
Structure

TMA01 Practice Quiz

Field, Method and
Constructor
Declarations

Statements:
Summary

JShell

What Next ?

Web Links &
References

Class Example
TMA01 Practice Quiz (1)

▶ Open BlueJ and create a new Project

▶ Project New Project. . .

▶ There may be a problem navigating folders — in that
case use the text box

▶ Create new class Edit New Class. . . M250Colour

/**
* Write a description of class M250Colour here.
*
* @author (your name)
* @version (a version number or a date)
*/
public class M250Colour
{

}

25/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction
Classes Overview and
Structure

TMA01 Practice Quiz

Field, Method and
Constructor
Declarations

Statements:
Summary

JShell

What Next ?

Web Links &
References

Class Example
TMA01 Practice Quiz (2)

▶ (a)(i) Write a private instance field String hexColour

▶ (a)(ii) Write a constructor for M250Colour initialising
hexColour to "#000000"

10 // instance variables
11 private String hexColour ;

13 /**
14 * Constructor for objects of class M250Colour
15 */
16 public M250Colour()
17 {
18 // initialise instance variables
19 hexColour = "#000000" ;
20 }

26/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction
Classes Overview and
Structure

TMA01 Practice Quiz

Field, Method and
Constructor
Declarations

Statements:
Summary

JShell

What Next ?

Web Links &
References

Class Example
TMA01 Practice Quiz (3)

▶ (a)(iii) Write a getter method for hexColour

23 /**
24 * Returns the value of hexColour of the receiver
25 *
26 * @return hexColour of the receiver
27 */
28 public String getHexColour(){
29 return this.hexColour ;
30 }

▶ Notice I prefer K&R layout

27/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction
Classes Overview and
Structure

TMA01 Practice Quiz

Field, Method and
Constructor
Declarations

Statements:
Summary

JShell

What Next ?

Web Links &
References

Class Example
TMA01 Practice Quiz (4)

▶ (b)(i) Write a public method isValidLength(String
hStr) to check hStr has 7 characters

48 /**
49 * Returns true if the input String has length 7
50 *
51 * @return true if the input String has length 7
52 */
53 public boolean isValidLength(String hStr){
54 final int hexStrLen = 7 ;
55 return hStr.length() == hexStrLen ;
56 }

▶ Note alternative

public boolean isValidLength(String hStr){
return hStr.length() == 7;

}

28/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction
Classes Overview and
Structure

TMA01 Practice Quiz

Field, Method and
Constructor
Declarations

Statements:
Summary

JShell

What Next ?

Web Links &
References

Class Example
TMA01 Practice Quiz (5)

▶ (b)(ii) Write isValidFirst(String hStr) to check the
first character is ’#’

63 public boolean isValidFirst(String hStr){
64 final char hexStrPrefix = ’#’ ;
65 return hStr.length() > 0
66 && (hStr.charAt(0) == hexStrPrefix) ;
67 }

▶ Alternative

public boolean isValidFirst(String hStr){
return hStr.length() > 0

&& (hStr.charAt(0) == ’#’);
}

29/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction
Classes Overview and
Structure

TMA01 Practice Quiz

Field, Method and
Constructor
Declarations

Statements:
Summary

JShell

What Next ?

Web Links &
References

Class Example
TMA01 Practice Quiz (6)

▶ (b)(iii) Write a method isValidCharacters(String
hStr) to check the rest of the characters are valid hex

74 public boolean isValidCharacters(String hStr){
75 boolean validChr ;
76 int hStrLen = hStr.length() ;
77 char hStrCharAtI ;

79 for (int i = 1 ; i <= hStrLen - 1 ; i++) {
80 hStrCharAtI = hStr.charAt(i) ;
81 validChr
82 = ((’0’ <= hStrCharAtI
83 && hStrCharAtI <= ’9’)
84 || (’A’ <= hStrCharAtI
85 && hStrCharAtI <= ’F’)) ;
86 if (!validChr) {
87 return false ;
88 }
89 }
90 return true ;
91 }

30/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction
Classes Overview and
Structure

TMA01 Practice Quiz

Field, Method and
Constructor
Declarations

Statements:
Summary

JShell

What Next ?

Web Links &
References

Class Example
TMA01 Practice Quiz — Error 1(a)

▶ (b)(iii) What are the errors in:

public boolean isValidCharacters(String h){

for (int position = 1; position < 7; position ++){
if ((h.charAt(position) >= 0

&& h.charAt(position) <= 9)
|| (h.charAt(position) >= ’A’

&& h.charAt(position) <= ’F’)){
return true;

}
}
return false;

}

31/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction
Classes Overview and
Structure

TMA01 Practice Quiz

Field, Method and
Constructor
Declarations

Statements:
Summary

JShell

What Next ?

Web Links &
References

Class Example
TMA01 Practice Quiz — Error 1(b)

1. In the code for isValidCharacters() there is a for
loop with an if condition — if the condition is true for
at least one character in the 6 (six) characters then the
whole lot are regarded as valid — the loop will only
return false if the if condition always evaluates to
false

2. The condition is comparing a character to the values
denoted by 0 and 9 and not the characters ’0’ and ’9’
— why does this not generate an error ? Because in Java
characters are regarded as numeric types — so in the
comparison, the character is coerced to its value as a
Unicode code point — for example, ’2’ has Unicode
code point 50 so is coerced to 50

32/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction
Classes Overview and
Structure

TMA01 Practice Quiz

Field, Method and
Constructor
Declarations

Statements:
Summary

JShell

What Next ?

Web Links &
References

Class Example
TMA01 Practice Quiz — isValidCharacters() alternative 1

▶ (b)(iii) Alternative

public boolean isValidCharactersA(String hStr)
{

String validValues = "0123456789ABCDEF" ;
int hStrLen = hStr.length() ;
String hSubStr ;

for(int index = 1; index <= hStrLen - 1; index++)
{
hSubStr = hStr.substring(index, index + 1) ;
if (!validValues.contains(hSubStr)) {

return false ;
}

}
return true ;

}

33/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction
Classes Overview and
Structure

TMA01 Practice Quiz

Field, Method and
Constructor
Declarations

Statements:
Summary

JShell

What Next ?

Web Links &
References

Class Example
TMA01 Practice Quiz — isValidCharacters() alternative 2(a)

▶ (b)(iii) Alternative with Regular Expressions

public boolean isValidCharactersB(String hStr)
{

return hStr.matches(".[A-F0-9]+") ;
}

▶ matches() is an instance method of the class String

▶ ".[A-F0-9]+" string representing a regular expression

▶ . metacharacter matches any single character

▶ [A-F0-9] is a character class matching any one of A to
F or 0 to 9

▶ + matches the preceding pattern 1 or more times

▶ Class Pattern in Package java.util.regex describes the
syntax

34/91

https://en.wikipedia.org/wiki/Regular_expression
https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/util/regex/Pattern.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/util/regex/package-summary.html

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction
Classes Overview and
Structure

TMA01 Practice Quiz

Field, Method and
Constructor
Declarations

Statements:
Summary

JShell

What Next ?

Web Links &
References

Class Example
TMA01 Practice Quiz (8)

▶ (b)(iv) Write a method isValidHexColour(String
hStr) that combines the three checks

98 public boolean isValidHexColour(String hStr){
99 return isValidLength(hStr)

100 && isValidFirst(hStr)
101 && isValidCharacters(hStr) ;
102 }

35/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction
Classes Overview and
Structure

TMA01 Practice Quiz

Field, Method and
Constructor
Declarations

Statements:
Summary

JShell

What Next ?

Web Links &
References

Class Example
TMA01 Practice Quiz — isValidHexColour() alternative 1(a)

▶ (b)(iv) Write a method isValidHexColour(String
hStr) using regular expressions

public boolean isValidHexColour(String hStr) {
return hStr.matches("#[A-F0-9]{6}") ;

}

▶ {6} matches 6 copies of the preceding regular
expression

36/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction
Classes Overview and
Structure

TMA01 Practice Quiz

Field, Method and
Constructor
Declarations

Statements:
Summary

JShell

What Next ?

Web Links &
References

Class Example
TMA01 Practice Quiz — isValidHexColour() alternative 1(b)

jshell> public boolean isValidHexColour(String hStr) {
...> return hStr.matches("#[A-F0-9]{6}") ;
...> }
...>

| created method isValidHexColour(String)

jshell> boolean b1 =
...> isValidHexColour("#FFAABB")

b1 ==> true

jshell> boolean b2 =
...> isValidHexColour("FFAABB")

b2 ==> false

jshell> boolean b3 =
...> isValidHexColour("#FAB")

b3 ==> false

jshell> boolean b4 =
...> isValidHexColour("#FFAABBCC")

b4 ==> false

37/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction
Classes Overview and
Structure

TMA01 Practice Quiz

Field, Method and
Constructor
Declarations

Statements:
Summary

JShell

What Next ?

Web Links &
References

Class Example
TMA01 Practice Quiz (9)

▶ (c) Write a setter method for M250Colour that outputs
an appropriate message

35 public void setHexColour(String hStr){
36 boolean validStr = isValidHexColour(hStr) ;
37 String msg ;

39 if (validStr) {
40 msg = ("Colour " + hStr + " is valid") ;
41 this.hexColour = hStr ;
42 } else {
43 msg = ("Colour " + hStr + " is not valid") ;
44 }
45 System.out.println(msg) ;
46 }

38/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction
Classes Overview and
Structure

TMA01 Practice Quiz

Field, Method and
Constructor
Declarations

Statements:
Summary

JShell

What Next ?

Web Links &
References

Class Example
TMA01 Practice Quiz — Sample Tests 1(a)

▶ Not returning a boolean by incomplete expression

jshell> public boolean isValidLength(String hStr){
...> return hStr.length();
...> }
...>

| Error:
| incompatible types: int cannot be converted to boolean
| return hStr.length();
| ^-----------^

39/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction
Classes Overview and
Structure

TMA01 Practice Quiz

Field, Method and
Constructor
Declarations

Statements:
Summary

JShell

What Next ?

Web Links &
References

Class Example
TMA01 Practice Quiz — Sample Tests 1(b)

▶ Using assignment where you meant equality test

jshell> public boolean isValidLength(String hStr){
...> return hStr.length() = 7;
...> }
...>

| Error:
| unexpected type
| required: variable
| found: value
| return hStr.length() = 7;
| ^-----------^

40/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction
Classes Overview and
Structure

TMA01 Practice Quiz

Field, Method and
Constructor
Declarations

Statements:
Summary

JShell

What Next ?

Web Links &
References

Class Example
TMA01 Practice Quiz — Sample Tests 1(c)

▶ Example usage in JShell

▶ mClr is a reference to an object — it is displayed in
JShell in the form <class>@<hexDigits>

▶ See Object toString() method for an explanation

jshell> M250Colour mClr = new M250Colour()
mClr ==> M250Colour@68de145

jshell> String str1 = mClr.getHexColour()
str1 ==> "#000000"

jshell> mClr.setHexColour("#FF0000")
Colour #FF0000 is valid

jshell> String str2 = mClr.getHexColour()
str2 ==> "#FF0000"

jshell> String str3 = mClr.getClass().getName()
+ ’@’ + Integer.toHexString(mClr.hashCode())

str3 ==> "M250Colour@68de145"

41/91

https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/lang/Object.html#toString()

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction
Classes Overview and
Structure

TMA01 Practice Quiz

Field, Method and
Constructor
Declarations

Statements:
Summary

JShell

What Next ?

Web Links &
References

Class Example
TMA01 Practice Quiz — Sample Tests 1(d)

▶ Example usage in JShell

▶ Note that isValidLength(), isValidFirst(),
isValidCharacters(), isValidHexColour() are
instance methods

jshell> M250Colour mClr = new M250Colour()
mClr ==> M250Colour@306a30c7

jshell> boolean b1 = isValidLength("asdf")
| Error:
| cannot find symbol
| symbol: method isValidLength(java.lang.String)
| boolean b1 = isValidLength("asdf");
| ^-----------^

jshell> boolean b1 = mClr.isValidLength("asdf")
b1 ==> false

42/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction
Classes Overview and
Structure

TMA01 Practice Quiz

Field, Method and
Constructor
Declarations

Statements:
Summary

JShell

What Next ?

Web Links &
References

Class Example
TMA01 Practice Quiz — Error 2(a)

▶ what might (almost certainly) wrong with the following:

public boolean isValidHexColour(String h){

if (isValidCharacters(h) == true
&& isValidFirst(h) == true
&& isValidLength(h) == true){

return true;
} else {
return false;

}
}

43/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction
Classes Overview and
Structure

TMA01 Practice Quiz

Field, Method and
Constructor
Declarations

Statements:
Summary

JShell

What Next ?

Web Links &
References

Class Example
TMA01 Practice Quiz — Error 2(b)

1. What happens if the string is empty ?

2. If the first character is not valid, it is not worth checking
the rest

44/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction
Classes Overview and
Structure

TMA01 Practice Quiz

Field, Method and
Constructor
Declarations

Statements:
Summary

JShell

What Next ?

Web Links &
References

Class Example
TMA01 Practice Quiz — Error 3(a)

▶ The following does not compile — what is the error
message and why ?

public boolean isValidCharactersA(String h) {
for (int i = 1; i < 8; i++) {
if (!((h.charAt(i)>= 48

&& h.charAt(i) <= 57)
|| (h.charAt(i) >= 65

&& h.charAt(i) <= 70))) {
return false;

}
return true;

}
}

45/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction
Classes Overview and
Structure

TMA01 Practice Quiz

Field, Method and
Constructor
Declarations

Statements:
Summary

JShell

What Next ?

Web Links &
References

Class Example
TMA01 Practice Quiz — Error 3(b)

▶ Here is the error message — but why ?

jshell> public boolean isValidCharactersA(String h) {
...> for (int i = 1; i < 8; i++) {
...> if (!((h.charAt(i)>= 48
...> && h.charAt(i) <= 57)
...> || (h.charAt(i) >= 65
...> && h.charAt(i) <= 70))) {
...> return false;
...> }
...> return true;
...> }
...> }
...>

| Error:
| missing return statement
| public boolean isValidCharactersA(String h) {
| ^

46/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction
Classes Overview and
Structure

TMA01 Practice Quiz

Field, Method and
Constructor
Declarations

Statements:
Summary

JShell

What Next ?

Web Links &
References

Class Example
TMA01 Practice Quiz — Error 3(c)

▶ If a method is declared to have a return type, then the
method must return a value — it must not be possible
for execution to reach the end of a method body
without executing a return statement (see Java
Language Specification (JLS) Section 8.4.7 (Edition 13)
Method Body for full details, but a bit formal)

▶ Why is the compiler saying Missing return when we can
see two and the code is bound to hit one ?

▶ The compiler has to work for every syntactically valid
program so it has to have some effectively computable
rules

▶ We go back to Java Language Specification (JLS) Section
14.21 (Edition 13) Unreachable Statements and try and
work out what the Java compiler is expected to do with
for statements

47/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction
Classes Overview and
Structure

TMA01 Practice Quiz

Field, Method and
Constructor
Declarations

Statements:
Summary

JShell

What Next ?

Web Links &
References

Class Example
TMA01 Practice Quiz — Error 3(d)

▶ Essentially a for statement can complete normally if the
statement is reachable and the condition is not a
constant true

▶ So in terms of program flow the compiler doesn’t know
whether the loop terminates or not

▶ The analysis of the compiler is a syntactic check on
where the program execution could go

▶ to work out whether an arbitrary block of code or
statement would or would not terminate is equivalent to
solving the Halting problem which we know is not
solvable (see M269)

▶ So the code is missing a return statement after the
for loop

▶ However, if the compiler had accepted the code, then it
would still have returned true if the first character was
valid

48/91

https://en.wikipedia.org/wiki/Halting_problem

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction
Classes Overview and
Structure

TMA01 Practice Quiz

Field, Method and
Constructor
Declarations

Statements:
Summary

JShell

What Next ?

Web Links &
References

Field, Method and Constructor Declarations
Field Declarations

▶ A field holds a value inside an object (if non-static) or a
class (if static)

▶ A fieldDeclaration has one of the forms

fieldModifiers type fieldName1, fieldName2, ... ;
fieldModifiers type fieldName1 = initializer1, ... ;

▶ fieldModifiers may be a list of the modifiers static,
final, transient and volatile (last two not in
M250) and at most one of the access modifiers
private, protected, public

▶ A field f in a class C declared static is a class field and
can be referred to as C.f or o.f where o is an
expression of type C — in the declaration of C it can be
referred to as f

▶ A field not declared static is an instance field

49/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction
Classes Overview and
Structure

TMA01 Practice Quiz

Field, Method and
Constructor
Declarations

Statements:
Summary

JShell

What Next ?

Web Links &
References

Field, Method and Constructor Declarations
Member Access Modifiers private, protected, public

Member Visibility
Accessible to Public Protected Default Private

Defining class Yes Yes Yes Yes
Class in same package Yes Yes Yes No
Subclass in different package Yes Yes No No
Nonsubclass different package Yes No No No

50/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction
Classes Overview and
Structure

TMA01 Practice Quiz

Field, Method and
Constructor
Declarations

Statements:
Summary

JShell

What Next ?

Web Links &
References

Field, Method and Constructor Declarations
Method Declarations

▶ A method must be declared inside a class

▶ A methodDeclaration declaring method m has the form

methodModifiers returnType m(formalList) throwsClause
methodBody

▶ The formalList is a comma-separated list of zero or
more formal parameter declarations, of one of the
forms

parameterModifier type parameterName
parameterModifier type... parameterName

▶ The parameterModifier may be final meaning that the
parameter cannot be modified inside the method

▶ The second form of parameter declaration can only
appear last and declares a parameter array (TODO:
check if this is used in M250)

51/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction
Classes Overview and
Structure

TMA01 Practice Quiz

Field, Method and
Constructor
Declarations

Statements:
Summary

JShell

What Next ?

Web Links &
References

Field, Method and Constructor Declarations
Constructor Declarations

▶ The purpose of a constructor in class C is to initialize
new objects (instances) of the class

▶ A constructorDeclaration in class C has the form

constructorModifiers C(formalList) throwsClause
constructorBody

▶ The constructorModifiers may be a list of at most one of
private, protected and public

▶ Constructors may be overloaded in the same way as
methods

▶ The constructor signature (a list of parameter types in
formalList) is used to distinguish constructors in the
same class

▶ A constructor may call another overloaded constructor
in the same class using the syntax

this(actualList)

52/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction
Classes Overview and
Structure

TMA01 Practice Quiz

Field, Method and
Constructor
Declarations

Statements:
Summary

JShell

What Next ?

Web Links &
References

Field, Method and Constructor Declarations
Constructor Declarations and super

▶ A class that does not explicitly declare a constructor
implicitly declares a public, argumentless default
constructor whose only (implicit) action is to call the
superclass constructor

public C() { super() ; }

▶ A class C may be declared a subclass of class B by an
extendsClause of the form

class C extends B {...}

▶ The very first action of a constructor in C may be an
explicit call to a constructor in superclass B

▶ If a constructor C(...) does not explicitly call
super(...) as its first action, then it implicitly calls the
argumentless default constructor B() as its first action,
as if by super()

53/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

Returns, Exits and
Exceptions

assert Statement

JShell

What Next ?

Web Links &
References

Statements
Overview

▶ A statement may change the computer’s state: value of
variables, fields, array elements, the contents of files
and so on — the execution of a statement may:

▶ terminate normally (and execution continues with the
next statement, if any) or

▶ terminate abruptly by throwing an exception or

▶ exit by executing a return statement (if inside a
method or constructor) or

▶ exit a switch or loop by executing a break statement or

▶ exit the current iteration of a loop and start a new
iteration by executing a continue statement or

▶ does not terminate at all (eg, while (true) {})

54/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

Returns, Exits and
Exceptions

assert Statement

JShell

What Next ?

Web Links &
References

Statements
Expression & Block Statements

▶ An expression statement is an expression followed by a
;

expression ;

▶ The only forms of expression that may be used here are
assignments, increment and decrements, method call,
and object creation

▶ A block statement is a sequence of variable
declarations, class declarations and statements

{
variableDeclarations
classDeclarations
statements

}

▶ An empty statement consists of ; only — it is equivalent
to the block statement { }

55/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

Returns, Exits and
Exceptions

assert Statement

JShell

What Next ?

Web Links &
References

Selection Statements
if Statement

▶ The if statement has the form

if (condition)
trueBranch

▶ The if-else statement has the form

if (condition)
trueBranch

else
falseBranch

▶ The condition must have type boolean or Boolean

▶ trueBranch and falseBranch are statements

56/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

Returns, Exits and
Exceptions

assert Statement

JShell

What Next ?

Web Links &
References

Selection Statements
Common if errors (a)

▶ What is wrong with the following

if (dataAvailable) ;
processData() ;

if (dataAvailable)
processData() ;
reportResults() ;

if (dataAvailable)
processData() ;
reportResults() ;

else
reportNoData() ;

57/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

Returns, Exits and
Exceptions

assert Statement

JShell

What Next ?

Web Links &
References

Selection Statements
Common if errors (b)

if (dataAvailable) ;
processData() ;

▶ The trueBranch is an empty statement (;)

if (dataAvailable)
processData() ;
reportResults() ;

▶ reportResults() ; will always be executed

if (dataAvailable)
processData() ;
reportResults() ;

else
reportNoData() ;

▶ Will not compile

▶ Moral Always use block statements

58/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

Returns, Exits and
Exceptions

assert Statement

JShell

What Next ?

Web Links &
References

Selection Statements
switch Statement

▶ A switch statement has the form

switch (expression) {
case constant1: branch1
case constant2: branch2
...
default: branchN

}

▶ expression must be of type int, short, char, byte or a
boxed version of these or String or an enum type

▶ Each branch is a sequence of statements, usually
terminated by break or return (if inside a method or
constructor) or continue (inside a loop).

▶ If a branch is not exited by break, return,or
continue, then execution continues with the next
branch in the switch regardless of the case clauses,
until a branch exits or the switch ends

▶ (not used in M250)

59/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

foreach statement

Returns, Exits and
Exceptions

assert Statement

JShell

What Next ?

Web Links &
References

Iteration Statements
for Statement

▶ A for statement has the form

for (initialization ; condition ; step)
body

▶ initialization is a variableDeclaration or an expression

▶ condition is an expression of type boolean or Boolean

▶ step is an expression

▶ body is a statement

▶ initialization and step may be comma-separated lists of
expressions

▶ initialization, condition and step may be empty. An
empty condition is equivalent to true

60/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

foreach statement

Returns, Exits and
Exceptions

assert Statement

JShell

What Next ?

Web Links &
References

for Statement
Execution

▶ The for statement is executed as follows

1. The initialization is executed

2. The condition is evaluated. If it is false, the loop
terminates.

3. If it is true then
(a) the body is executed
(b) the step is executed
(c) execution continues at (2.)

61/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

foreach statement

Returns, Exits and
Exceptions

assert Statement

JShell

What Next ?

Web Links &
References

for Statement
for Example 1(a)

▶ What does the following code do ?

for (int i = 1 ; i <= 4 ; i++) {
for (int j = 1 ; j <= i ; j++) {
System.out.print("*") ;

}
System.out.println() ;

}

62/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

foreach statement

Returns, Exits and
Exceptions

assert Statement

JShell

What Next ?

Web Links &
References

for Statement
for Example 1(b)

jshell> for (int i = 1 ; i <= 4 ; i++) {
...> for (int j = 1 ; j <= i ; j++) {
...> System.out.print("*") ;
...> }
...> System.out.println() ;
...> }
...>

*
**

63/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

foreach statement

Returns, Exits and
Exceptions

assert Statement

JShell

What Next ?

Web Links &
References

Iteration Statements
while Statement

▶ A while statement has the form

while (condition)
body

▶ condition is an expression of type boolean or Boolean
and body is a statement

▶ It is executed as follows:

1. The condition is evaluated. If it is false, the loop
terminates

2. If it is true, then
(a) The body is executed
(b) Execution continues at (1.)

64/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

foreach statement

Returns, Exits and
Exceptions

assert Statement

JShell

What Next ?

Web Links &
References

while Statement
while Example 1(a)

▶ Example linear search with while loop

String[] wdays =
{"Monday","Tuesday","Wednesday"
,"Thursday","Friday","Saturday","Sunday"} ;

int wdayno(String wday) {
int i = 0 ;
while (i < wdays.length

&& ! wday.equals(wdays[i])) {
i++ ;

}
if (i < wdays.length) {
return i ;

} else {
return -1 ;

}
} ;

65/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

foreach statement

Returns, Exits and
Exceptions

assert Statement

JShell

What Next ?

Web Links &
References

while Statement
while Example 1(b)

String[] wdays =
{"Monday","Tuesday","Wednesday"
,"Thursday","Friday","Saturday","Sunday"} ;

int wdayno(String wday) {
int i = 0 ;
while (i < wdays.length

&& ! wday.equals(wdays[i])) {
i++ ;

}
if (i < wdays.length) {
return i ;

} else {
return -1 ;

}
} ;

jshell> int d1 = wdayno("Friday") ;
d1 ==> 4

jshell> int d2 = wdayno("Dimanche") ;
d2 ==> -1

66/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

foreach statement

Returns, Exits and
Exceptions

assert Statement

JShell

What Next ?

Web Links &
References

while Statement
while Example 2(a)

▶ Write code using a while statement that is equivalent
to a for loop statement

67/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

foreach statement

Returns, Exits and
Exceptions

assert Statement

JShell

What Next ?

Web Links &
References

while Statement
while Example 2(b)

▶ Write code using a while statement that is equivalent
to a for loop statement

initialization
while (condition) {
body
step

}

for (initialization ; condition ; step)
body

▶ Note that this is different behaviour to the for
statement in Python where assignments to variables in
the suite of the loop does not change the assignments
made in the target list

▶ See Python: for statement

68/91

https://docs.python.org/3/reference/compound_stmts.html#the-for-statement

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

foreach statement

Returns, Exits and
Exceptions

assert Statement

JShell

What Next ?

Web Links &
References

foreach statement
Iterating over collections (1)

for (tx x : expression)
body

▶ The expression must have type Iterable<t> where t is
a subtype of type tx

▶ Iterators obtained from expression will generate
elements that can be assigned to x

▶ expression must be a statement

int[] primes = new int[] {2,3,5,7,11,13,17,19,23,29} ;
for (int n : primes) {
System.out.println(n) ;

}

69/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

foreach statement

Returns, Exits and
Exceptions

assert Statement

JShell

What Next ?

Web Links &
References

foreach statement
Iterating over collections (2)

int[] iarr = new int[] { 2, 3, 5, 7, 11 } ;
int sum = 0 ;
for (int p : iarr) {
sum = sum + p ;

}
System.out.println("sum = " + sum) ;

jshell> System.out.println("sum = " + sum) ;
sum = 28

▶ Note that print and println convert a value to textual
representation and outputs it to a PrintWriter or
PrintStream (System.out is a PrintStream)

▶ Python programmers may be tempted by the following
but see the error

jshell> System.out.println("sum = ", sum) ;
| Error:
| no suitable method found for println(java.lang.String,int)
| method java.io.PrintStream.println() is not applicable
| (actual and formal argument lists differ in length)
//and lots of other error messages

70/91

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/io/PrintWriter.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/io/PrintStream.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/System.html#out
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/io/PrintStream.html

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

foreach statement

Returns, Exits and
Exceptions

assert Statement

JShell

What Next ?

Web Links &
References

foreach statement
Iterating over collections (3)

▶ Explicitly going through an iterable using for

▶ Example 79 from Sestoft (2016,page 57)

Iterable<Integer> ible = fromTo(13, 17);
for (Iterator<Integer> iter = ible.iterator(); iter.hasNext(); /* none */) {
int i = iter.next();
System.out.println(i);

}

▶ Method fromTo generates an Iterable collection

jshell> Iterable<Integer> ible = fromTo(13, 17);
...> for (Iterator<Integer> iter = ible.iterator(); iter.hasNext(); /* none */) {
...> int i = iter.next();
...> System.out.println(i);
...> }
...>

ible ==> 1FromToIterable@7aec35a
13
14
15
16
17

71/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

foreach statement

Returns, Exits and
Exceptions

assert Statement

JShell

What Next ?

Web Links &
References

foreach statement
Iterating over collections (4)

▶ Method fromTo generates an Iterable collection

▶ Example 143 from Sestoft (2016, page 113)

public Iterable<Integer> fromTo(final int m, final int n) {
class FromToIterator implements Iterator<Integer> {
private int i = m;
public boolean hasNext() { return i <= n; }
public Integer next() {
if (i <= n)
return i++;

else
throw new NoSuchElementException();

}
public void remove() { throw new UnsupportedOperationException(); }

}
class FromToIterable implements Iterable<Integer> {
public Iterator<Integer> iterator() {
return new FromToIterator();

}
}
return new FromToIterable();

}

72/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

Returns, Exits and
Exceptions

assert Statement

JShell

What Next ?

Web Links &
References

Returns, Exits and Exceptions
return Statement

▶ A return statement with an expression argument has
the form:

return expression ;

▶ This form of return must occur in the body of a
method (not constructor) whose return type is a
supertype or boxed or unboxed version of the type of
expression

▶ The return statement is executed as follows:

▶ expression is evaluated to some value v

▶ It then exits the method and continues execution at the
method call expression that called the method

▶ The value of that expression will be v, possible after
application of a widening, boxing or unboxing
conversion

73/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

Returns, Exits and
Exceptions

assert Statement

JShell

What Next ?

Web Links &
References

return Statement
return Example 1

▶ wdayno using a for loop

int wdayno(String wday) {
for (int i = 0 ; i < wdays.length ; i++) {
if (wday.equals(wdays[i])) {
return i ;

}
}
return -1 ;

}

▶ Notice that the final return is after the for loop

▶ What is the effect of the code below?

int wdayno(String wday) {
for (int i = 0 ; i < wdays.length ; i++) {
if (wday.equals(wdays[i])) {
return i ;

}
return -1 ;
}

}

74/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

Returns, Exits and
Exceptions

assert Statement

JShell

What Next ?

Web Links &
References

return Statement
return Example 1(b)

jshell> int wdayno(String wday) {
...> for (int i = 0 ; i < wdays.length ; i++) {
...> if (wday.equals(wdays[i])) {
...> return i ;
...> }
...> return -1 ;
...> }
...> }
...>

| Error:
| missing return statement
| int wdayno(String wday) {
| ^

75/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

Returns, Exits and
Exceptions

assert Statement

JShell

What Next ?

Web Links &
References

Returns, Exits and Exceptions
break, continue, label

▶ A break statement is legal only inside a loop or switch
and has one of the forms

break ;
break labelName ;

▶ Executing break exits the innermost enclosing loop or
switch and continues execution after that loop or switch

▶ A continue statement is legal only inside a loop and
has one of the forms

continue ;
continue labelName ;

▶ Executing continue terminates the current iteration of
the innermost enclosing loop and continues execution
at the step in for loops or the condition in while and
do-while loops

76/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

Returns, Exits and
Exceptions

assert Statement

JShell

What Next ?

Web Links &
References

Returns, Exits and Exceptions
break, continue, label

▶ A label statement has the form

labelName : statement

▶ The scope of labelName is statement, where it can be
used in break or continue

▶ Use of labels is evidence of poor program design

▶ Just don’t

77/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

Returns, Exits and
Exceptions

assert Statement

JShell

What Next ?

Web Links &
References

Returns, Exits and Exceptions
throw Statement

▶ A throw statement has the form:

throw expression ;

▶ The type of expression must be a subtype of class
Throwable

▶ The throw statement is executed as follows:

▶ expression is evaluated to obtain an exception object v

▶ If it is null then a NullPointerException is thrown

▶ Otherwise the exception object v is thrown

▶ The enclosing block statement terminates abruptly

▶ The thrown exception may be caught by a dynamically
enclosing try-catch statement

▶ If the exception is not caught then the entire program
execution will be aborted

78/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

Returns, Exits and
Exceptions

assert Statement

JShell

What Next ?

Web Links &
References

Returns, Exits and Exceptions
try-catch-finally Statement

▶ A try-catch statement is used to catch particular
exceptions thrown by a code block

▶ It has the following form:

try
body

catch (E1 x1) catchBody1
catch (E21 | E22 | ... | E2k x2) catchBody2
...
finally finallyBody

▶ All the various bodies are block statements

▶ There can be zero or more catch clauses and the
finally clause may be absent, but there must be at
least one catch or finally clause

79/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

Returns, Exits and
Exceptions

assert Statement

JShell

What Next ?

Web Links &
References

throw Statement
throw Example 1(a)

class WeekdayException extends Exception {
public WeekdayException(String wday) {
super("Illegal weekday: " + wday) ;

}
}

int wdayno(String wday) throws WeekdayException {
for (int i = 0; i < wdays.length; i++) {
if (wday.equals(wdays[i])) {
return i ;

}
}
throw new WeekdayException(wday) ;

}

80/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

Returns, Exits and
Exceptions

assert Statement

JShell

What Next ?

Web Links &
References

throw Statement
throw Example 1(b)

jshell> class WeekdayException extends Exception {
...> public WeekdayException(String wday) {
...> super("Illegal weekday: " + wday) ;
...> }
...> }
...>

jshell> int wdayno(String wday) throws WeekdayException {
...> for (int i = 0; i < wdays.length; i++) {
...> if (wday.equals(wdays[i])) {
...> return i ;
...> }
...> }
...> throw new WeekdayException(wday) ;
...> }
...>

jshell> int d4 = wdayno("Dimanche")
| Exception REPL.dJShelld31dWeekdayException:

Illegal weekday: Dimanche
| at wdayno (#25:7)
| at (#27:1)

81/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

Returns, Exits and
Exceptions

assert Statement

JShell

What Next ?

Web Links &
References

assert Statement
Description

▶ The assert statement has one of the following forms:

assert booleanExpression ;
assert booleanExpression : expression ;

▶ booleanExpression must have type boolean or Boolean

▶ expression must be of type boolean, char, double,
float, int, long, a boxed version of these or Object

▶ When assertions are enabled at run-time, every
execution of the assert command will evaluate
booleanExpression

▶ If the result is true, program execution contines
normally

▶ If the result is false, the assertion fails, and an
AssertionError will be thrown

▶ In the second form, expression will be evaluated, and
its value passed to the appropriate AssertionError
constructor

82/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary
Statements Overview

Expression & Block
Statements

Selection Statements

Iteration Statements

Returns, Exits and
Exceptions

assert Statement

JShell

What Next ?

Web Links &
References

assert Statement
assert Example 1(a)

▶ See Unit 8 section 7

assert x > 2 : "x was " + x ;

83/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary

JShell

What Next ?

Web Links &
References

Java Shell, JShell
References

▶ JShell is a Java read-eval-print loop (REPL) introduced in
2017 with JDK 9

▶ Java Shell User’s Guide (Release 12, March 2019)

▶ Tools Reference: jshell

▶ JShell Tutorial (30 June 2019)

▶ How to run a whole Java file added as a snippet in
JShell? (15 July 2019)

84/91

https://en.wikipedia.org/wiki/JShell
https://docs.oracle.com/en/java/javase/12/jshell/
https://docs.oracle.com/en/java/javase/12/tools/jshell.html
http://cr.openjdk.java.net/~rfield/tutorial/JShellTutorial.html
https://stackoverflow.com/questions/44399338/how-to-run-a-whole-java-file-added-as-a-snippet-in-jshell
https://stackoverflow.com/questions/44399338/how-to-run-a-whole-java-file-added-as-a-snippet-in-jshell

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary

JShell

What Next ?

Web Links &
References

What Next ?
Programming, Debugging, Psychology

Although programming techniques have improved
immensely since the early days, the process of finding and
correcting errors in programming — known graphically if
inelegantly as debugging — still remains a most difficult,
confused and unsatisfactory operation. The chief impact of
this state of affairs is psychological. Although we are happy
to pay lip-service to the adage that to err is human, most of
us like to make a small private reservation about our own
performance on special occasions when we really try. It is
somewhat deflating to be shown publicly and
incontrovertibly by a machine that even when we do try, we
in fact make just as many mistakes as other people. If your
pride cannot recover from this blow, you will never make a
programmer.
Christopher Strachey, Scientific American 1966 vol 215 (3) September

pp112–124

85/91

https://en.wikipedia.org/wiki/Christopher_Strachey

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary

JShell

What Next ?

Web Links &
References

What Next ?
To err is human ?

▶ To err is human, to really foul things up requires a
computer.

▶ Attributed to Paul R. Ehrlich in 101 Great Programming
Quotes

▶ Attributed to Bill Vaughn in Quote Investigator

▶ Derived from Alexander Pope (1711, An Essay on
Criticism)

▶ To Err is Humane; to Forgive, Divine
▶ This also contains

A little learning is a dangerous thing;
Drink deep, or taste not the Pierian Spring

▶ In programming, this means you have to read the
fabulous manual (RTFM)

86/91

https://en.wikipedia.org/wiki/Paul_R._Ehrlich
http://www.devtopics.com/101-great-computer-programming-quotes/
http://www.devtopics.com/101-great-computer-programming-quotes/
https://en.wikipedia.org/wiki/William_E._Vaughan
http://quoteinvestigator.com/2010/12/07/foul-computer/
https://en.wikipedia.org/wiki/Alexander_Pope
https://en.wikipedia.org/wiki/An_Essay_on_Criticism
https://en.wikipedia.org/wiki/An_Essay_on_Criticism
https://en.wikipedia.org/wiki/Pierian_Spring
https://lmgtfy.com/?q=rtfm

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary

JShell

What Next ?

Web Links &
References

What Next ?
TMA01, Chps 6–10, TMA02

▶ Chps 4–5, Iteration, collections; Functional Java
(optional)

▶ Tutorial 03 10:00 Sunday 17 November 2024 online

▶ TMA01 Thursday 12 December 2024

▶ Chps 6,7 Arrays

▶ Tutorial 04 10:00 Sunday 19 January 2025 online

▶ Chps 8–10 Inheritance

▶ Tutorial 05 10:00 Sunday 16 February 2025 online

▶ TMA02 Thursday 6 March 2025

87/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary

JShell

What Next ?

Web Links &
References
Java Documentation

Books Phil Likes

M250
Web Links

▶ Java Documentation — BlueJ has JDK 7 embedded, JDK
13 is current (2019)

▶ JDK 13 Documentation

▶ Java Platform API Specification

▶ Java Language Specification
▶ JDK Documentation API Documentation java.base

▶ java.lang — fundamental classes for the Java
programming language

▶ java.util — Collections framework

88/91

https://docs.oracle.com/en/java/javase/
https://docs.oracle.com/en/java/javase/13/index.html
https://docs.oracle.com/en/java/javase/13/docs/api/index.html
https://docs.oracle.com/javase/specs/index.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/lang/package-summary.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/util/package-summary.html

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary

JShell

What Next ?

Web Links &
References
Java Documentation

Books Phil Likes

Java
API Documentation (1)

▶ Strings are immutable objects

▶ See java.lang.StringBuilder for mutable strings

▶ In a functional programming approach everything is
immutable — it makes life simpler (but at a cost)

89/91

https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/lang/StringBuilder.html

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary

JShell

What Next ?

Web Links &
References
Java Documentation

Books Phil Likes

Java
API Documentation (2)

▶ Remember (==) tests for identity — what does this
mean ?

90/91

Java Classes &
Statements

Phil Molyneux

Agenda

Adobe Connect

Classes:
Introduction

Statements:
Summary

JShell

What Next ?

Web Links &
References
Java Documentation

Books Phil Likes

M250
Books Phil Likes

▶ M250 is self contained — you do not need further
books — but you might like to know about some:

▶ Sestoft (2016) Java Precisely — the best short reference

▶ Evans, Flanagan (2018) Java in a Nutshell — the best
longer reference

▶ Barnes, Kölling (2016) Objects First with Java — the
BlueJ book — see www.bluej.org for documentation and
tutorial

▶ Bloch (2017) Effective Java — guide to best practice

91/91

https://www.bluej.org/

	Agenda
	Adobe Connect Interface and Settings
	Adobe Connect Interface
	Adobe Connect Settings
	Adobe Connect — Sharing Screen & Applications
	Adobe Connect — Ending a Meeting
	Adobe Connect — Invite Attendees
	Layouts
	Chat Pods
	Graphics Conversion for Web
	Adobe Connect Recordings

	Classes: Introduction
	Classes Overview and Structure
	TMA01 Practice Quiz
	Field, Method and Constructor Declarations

	Statements: Summary
	Statements Overview
	Expression & Block Statements
	Selection Statements
	Iteration Statements
	Returns, Exits and Exceptions
	assert Statement

	JShell
	What Next ?
	Web Links & References
	Java Documentation
	Books Phil Likes

