Java Classes & Statements
M250 Tutorial 03

Contents
1 Agenda 1
2 Adobe Connect 3
2.1 Interface e e e e 3
2.2 Settings e e e e e e e e e e e 3
2.3 Sharing Screen & Applications L e 5
2.4 EndingaMeeting i i e e e e e e 5
2.5 Invite Attendees e e e e e e 5
2.6 Layouls e e e e e e e e e e e e e e e e 6
2.7 ChatPods e e e 7
2.8 Web Graphics e 7
2.9 Recordings e e e e e e e e e e e e 8
3 Classes: Introduction 8
3.1 Classes Overview and Structure v i v v i e e e e e e e e e e e 8
3.2 TMAOT Practice QUIz i e 9
3.3 Field, Method and Constructor Declarations 15
4 Statements: Summary 16
4.1 Statements OVerview e e e 16
4.2 Expression & Block Statements 0. 16
4.3 Selection Statements e e e e e e e e e e e e e e e 17
4.4 lteration Statementst e 18
4.4.1 foreach statement 20
4.5 Returns, Exits and Exceptions e e 21
4.6 assert Statement L e 24
5 JShell 24
6 What Next ? 25
7 Web Links & References 25
7.1 Java Documentation L e e e e e e e e e e e e e e 25
7.2 Books Phil Likes e e e e e e e 27
References e 28
1 Agenda

e Introductions
e Adobe Connect reminders
e Adobe Connect — if you or | get cut off, wait till we reconnect (or send you an email)

e Classes: Introduction

2 Java Classes & Statements 17 November 2024

Statements: Select, Iteration and others

JShell (optional)

Some useful Web & other references

Time: about 1 hour

Do ask questions or raise points.

Slides/Notes M250Tutorial20241117ClassesStmntsPrsntn2024)

Introductions — Phil

e Name Phil Molyneux

Background
- Undergraduate: Physics and Maths (Sussex)

- Postgraduate: Physics (Sussex), Operational Research (Brunel), Computer Sci-
ence (University College, London)

- Worked in Operational Research, Business IT, Web technologies, Functional Pro-
gramming

e First programming languages Fortran, BASIC, Pascal

Favourite Software

Haskell — pure functional programming language

Text editors TextMate, Sublime Text — previously Emacs

Word processing in IATEX — all these slides and notes

Mac OS X

Learning style — | read the manual before using the software

Introductions — You
e Name?
e Favourite software/Programming language ?
e Favourite text editor or integrated development environment (IDE)

e List of text editors, Comparison of text editors and Comparison of integrated devel-
opment environments

e Other OU courses?

e Anything else?

http://pmolyneux.co.uk/OU/M250FolderSync/M250TutorialNotes/M250Tutorial20241117ClassesStmntsPrsntn2024J/
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://www.haskell.org/
https://macromates.com
http://www.sublimetext.com
https://www.emacswiki.org/
https://www.latex-project.org/
https://developer.apple.com/
https://en.wikipedia.org/wiki/Text_editor
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/List_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_text_editors
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments
https://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments

Phil Molyneux M250 Tutorial 03 3

2 Adobe Connect Interface and Settings

2.1 Adobe Connect Interface

Adobe Connect Interface — Host View

‘e0e B Adobe Comect.app

M250 Units 10, 11

Phil Molyneux
M250 Units 10, 11
Tutorial Agenda
Adobe Connect

Classes and
Interfaces

M250 Units 10, 11 sets

Maps

Collections, Arrays, Sets, Maps, Lists

Lists

Collection
Implementations

TMAOS3 Practice

Phil Molyneux Quiz
Common Mistakes
JShell
What Next ?

18 Aprll 2021 References

Adobe Connect Interface — Participant View

‘ece @ Adobe Connect.app
e a
. . M250 Units 10, 11
M250 Units 10, 11 Tutorial _
Phil Molyneux
Introductions
M250 Units 10, 11
. Tutorial Agenda
> Introductions Adobe Comnect
> Name Phil Molyneux Classes and
> Learning Style: Reads the manual hterfaces
> Learnt last month Framework for Teaching Recursion Se Z
and wrote notes on Recursion Teaching S
» YOU 7 Lists
Collection [N "t D
Implementations
TMAO3 Practice
Quiz
Common Mistakes
JShell
What Next ? W
References Lot &7

2.2 Adobe Connect Settings

Adobe Connect — Settings

e Everybody [Menu bar>> Meeting>> Speaker & Microphone Setup}

) {Menu bar>> Microphone>> Allow Participants to Use Microphone} v

4 Java Classes & Statements 17 November 2024

e Check Participants see the entire slide including slide numbers bottom right Workaround

— Disable Draw [Share pod>> Menu bar>> Draw icon}

- Fit Width [Share pod>> Bottom bar>> Fit Width icon} v

) {Meeting>> Preferences>> General>> Host Cursor>> Show to all attendees

[Menu bar>> Video>> Enable Webcam for Participants} v

Do not Enable single speaker mode

Cancel hand tool

Do not enable green pointer

Recording {Meeting>> Record Session} 4

Documents Upload PDF with drag and drop to share pod

Delete [Meeting>> Manage Meeting Information>> Uploaded Content} and [check ﬁlename>> click on delete

Adobe Connect — Access

e Tutor Access

TutorHome>> M269 Website>> Tutorials}

Cluster Tutorials>> M269 Online tutorial room}

{
{
{Tutor Groups>> M269 Online tutor group room}
{

Module-wide Tutorials>> M269 Online module-wide room}

e Attendance

{TutorHome>> Students>> View your tutorial timetables}

e Beamer Slide Scaling 440% (422 x 563 mm)

e Clear Everyone’s Status

{Attendee Pod>> Menu>> Clear Everyone’s Status}

e Grant Access and send link via email

{Meeting>> Manage Access & Entry>> Invite Participants. .. }

e Presenter Only Area

{Meeting>> Enable/Disable Presenter Only Area}

Adobe Connect — Keystroke Shortcuts
e Keyboard shortcuts in Adobe Connect
Toggle Mic 3]+ M] (Mao), [ctrl)+[M] (win) (On/Disconnect)
Toggle Raise-Hand status [38])+E]
Close dialog box [®] (Mac), [Esc] (win)
End meeting [32])+\]

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html

Phil Molyneux M250 Tutorial 03 5

2.3 Adobe Connect — Sharing Screen & Applications

) {Share My Screen>> Application tab>> Terminal} for Terminal

e [Share menu)) Change View)) Zoom in| for mismatch of screen size/resolution (Participants)

(Presenter) Change to 75% and back to 100% (solves participants with smaller screen
image overlap)

e Leave the application on the original display

e Beware blued hatched rectangles — from other (hidden) windows or contextual
menus

e Presenter screen pointer affects viewer display — beware of moving the pointer away
from the application

e First time: {System Preferences>> Security & Privacy>> Privacy>> Accessibility}

2.4 Adobe Connect — Ending a Meeting

e Notes for the tutor only

e Student: [Meeting>> Exit Adobe Connect]

e Tutor:

e Recording [Meeting>> Stop Recording} v

e Remove Participants [Meeting)) End Meeting. .. | o/

- Dialog box allows for message with default message:
- The host has ended this meeting. Thank you for attending.

e Recording availability /In course Web site for joining the room, click on the eye icon
in the list of recordings under your recording — edit description and name

e Meeting Information [Meeting)) Manage Meeting Information] — can access a range of informa-
tion in Web page.

e Delete File Upload {Meeting) Manage Meeting Information>> Uploaded Content tab} select file(s) and

click

e Attendance Report see course Web site for joining room

2.5 Adobe Connect — Invite Attendees

e Provide Meeting URL {Menu>> Meeting>> Manage Access & Entry>> Invite Participants. .. }

e Allow Access without Dialog [Menu) Meeting)) Manage Meeting Information| provides new browser
window with Meeting Information [Tab bar)) Edit Information |

e Check Anyone who has the URL for the meeting can enter the room
e Default Only registered users and accepted guests may enter the room
e Reverts to default next session but URL is fixed

e Guests have blue icon top, registered participants have yellow icon top — same icon
if URL is open

https://en.wikipedia.org/wiki/Terminal_(macOS)

6 Java Classes & Statements 17 November 2024

See Start, attend, and manage Adobe Connect meetings and sessions

Click on the link sent in email from the Host

Get the following on a Web page

As Guest enter your name and click on

B Adobe Connect

M269-21) Online tutorial room
London/SE (1,13) CG [231] (M269-21))

)

Guest Registered User
Name

Guest Name

By entering a Name & clicking "Enter Room'", you agree that
you have read and accept the Terms of Use & Privacy Policy,

e See the Waiting for Entry Access for Host to give permission

k4 Adobe Connect

Waiting for Entry Access

This is a private meeting. Your request to enter has

been sent to the host. Please wait for a response.

e Host sees the following dialog in Adobe Connect and grants access

I Guest entry 0

1 guest would like to enter the room. Do you want
to allow or deny entry to incoming guests?

Guest Name (guest) Q Q ’dvez

Allow everyone Deny everyone Close

2.6 Layouts

e Creating new layouts example Sharing layout

https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html

Phil Molyneux M250 Tutorial 03 7

2.7

{Menu>> Layouts>> Create New Layout. .. } {Create a New Layout dialog>> Create a new blank Iayout} and name it
PMolyMain

New layout has no Pods but does have Layouts Bar open (see Layouts menu)

Pods

[Menu)) Pods) Share) Add New Share| and resize/position — initial name is Share n — rename
PMolyShare

Rename Pod {Menu>> Pods>> Manage Pods. .. } [Manage Pods>> Select>> Rename} or {Double-click & rename

Add Video pod and resize/reposition
Add Attendance pod and resize/reposition
Add Chat pod — rename it PMolyChat — and resize/reposition

Dimensions of Sharing layout (on 27-inch iMac)

Width of Video, Attendees, Chat column 14 cm

Height of Video pod 9 cm

Height of Attendees pod 12 cm

Height of Chat pod 8 cm

Duplicating Layouts does not give new instances of the Pods and is probably not a
good idea (apart from local use to avoid delay in reloading Pods)

Auxiliary Layouts name PMolyAux0n
- Create new Share pod
- Use existing Chat pod

- Use same Video and Attendance pods

Chat Pods

Format Chat text

{Chat Pod>> menu icon>> My Chat Color}

Choices: Red, Orange, Green, Brown, Purple, Pink, Blue, Black

Note: Color reverts to Black if you switch layouts

{Chat Pod>> menu icon>> Show Timestamps}

Graphics Conversion for Web
Conversion of the screen snaps for the installation of Anaconda on 1 May 2020

Using GraphicConverter 11

> Convert & Modify>> Conversion>> Convert}

Select files to convert and destination folder

Click on [Start selected Function] or +

8 Java Classes & Statements 17 November 2024

2.9 Adobe Connect Recordings

° {Menu bar>> Meeting>> Preferences>> Video}

e [Aspect ratio)) Standard (4:3)| (not Wide screen (16:9) default)

e [Video quality) Full HD| (1080p not High default 480p)

) Recording {Menu bar>> Meeting>> Record Session} v

e Export Recording

° {Menu bar>> Meeting>> Manage Meeting Information}

) {New window>> Recordings>> check Tutorial>> Access Type button

) {check Public>> check Allow viewers to download}

e Download Recording

° {New window>> Recordings>> check Tutorial>> Actions>> Download File

3 Classes: Introduction

3.1 Classes Overview and Structure
e A class represents a concept, a template for creating instances (objects)
e An object is an instance of a concept (a class)

e A classDeclaration of class C has the form

classModifiers class C extendsClause implementsClause
classBody

e extendsClause and implementsClause refer to superclasses and interface (see later
in M250)

e For a top-level class classModifiers may be a list of public and at most one of
abstract or final

e The classBody contains declarations of fields, constructors, methods, nested classes,
nested interfaces, and initialiser blocks (M250 mainly uses the first three)

e The declarations may appear in any order but you should use the order suggested
in M250 Code Conventions

fieldDeclarations
/% class (static) variables =/
/* instance variables =/
constructorDeclarations
methodDeclarations

e A source file may begin with package (not used in M250) and import declarations
(to be covered later)

10
11

Phil Molyneux M250 Tutorial 03 9

class Point {
int x, y ;

Point(int x, int y) {

this.x = x ;
this.y =y ;
}
void move(int dx, int dy) {
X = X + dx ;
y=y+dy;
}
public String toString() {
return "(" + X + ", +y + "
}

}

e The Point class is declared to have two instance fields x and y, one constructer, and
two instance methods

jshell> Point pl = new Point(3,4)
pl ==> (3,4)

jshell> pl = pl.move(l,2)

| Error:

| dincompatible types: void cannot be converted to Point
| pl = pl.move(l,2)

| Ao A

jshell> pl.move(l,2)

jshell> pl
pl ==> (4,6)

e Notice the error message — move () works by side effect

3.2 TMAOI1 Practice Quiz

e Open BlueJ and create a new Project

° {Project>> New Project. .. }

e There may be a problem navigating folders — in that case use the text box

e Create new class M250Colour

* Write a description of class M250Colour here.

* @author (your name)

% @version (a version number or a date)
%/

public class M250Colour

{

B

e (a)(i) Write a private instance field String hexColour

e (a)(ii) Write a constructor for M250CoTour initialising hexColour to "#000000"

// instance variables
private String hexColour ;

VAT

14
15
16
17
18
19
20

23
24
25
26
27
28
29
30

48
49
50
51
52
53
54
55
56

63
64
65
66
67

74
75
76
77

79
80
81
82
83
84

10

Java Classes & Statements 17 November 2024

% Constructor for objects of class M250Colour

%/
public M250CoTour()
{

// initialise instance variables
hexColour = "#000000" ;

e (a)(iii) Write a getter method for hexColour

% Returns the value of hexColour of the receiver

% @return hexColour of the receiver
%/

public String getHexColour(){
return this.hexColour

}

e Notice | prefer K&R layout

e (b)(i) Write a public method isValidLength(String hStr) to check hStr has 7
characters

VAT
% Returns true if the input String has length 7

% @return true if the input String has length 7
%/
public boolean isValidlLength(String hStr){
final int hexStrLen = 7 ;
return hStr.length() == hexStrLen ;
}

e Note alternative

public boolean isValidLength(String hStr){
return hStr.length() == 7;
}

e (b)(ii) Write isValidFirst(String hStr) to check the first character is ’#’

public boolean isValidFirst(String hStr){
final char hexStrPrefix = "#’ ;
return hStr.length(Q) > 0
&& (hStr.charAt(0) == hexStrPrefix) ;

e Alternative

public boolean isValidFirst(String hStr){
return hStr.length() > 0
&& (hStr.charAt(0) == "#’);

e (b)(iii) Write a method isValidCharacters(String hStr) to check the rest of the
characters are valid hex

public boolean isValidCharacters(String hStr){
boolean validChr ;
int hStrLen = hStr.length(Q) ;
char hStrCharAtI ;

for (int i =1 ; i <= hStrLen - 1 ; i++) {
hStrCharAtI = hStr.charAt(i) ;
validChr
= ((’0’ <= hStrCharAtI
&& hStrCharAtI <= '9’)
|| (A’ <= hStrCharAtI

85
86
87
88
89
90
91

Phil Molyneux M250 Tutorial 03 11

&% hStrCharAtI <= 'F’)) ;
if (!validChr) {
return false ;
}
}
return true ;

}

e (b)(iii) What are the errors in:

public boolean isValidCharacters(String h){

for (int position = 1; position < 7; position ++){
if ((h.charAt(position) >= 0
&& h.charAt(position) <= 9)
|| Ch.charAt(position) >= ’A’
&& h.charAt(position) <= "F’)){
return true;
}
}
return false;

3

1. In the code for isValidCharacters() there is a for loop with an if condition —
if the condition is true for at least one character in the 6 (six) characters then the
whole lot are regarded as valid — the loop will only return false if the if condition
always evaluates to false

2. The condition is comparing a character to the values denoted by 0 and 9 and not
the characters 0’ and 9’ — why does this not generate an error ? Because in Java
characters are regarded as numeric types — so in the comparison, the character is
coerced to its value as a Unicode code point — for example, ’2’ has Unicode code
point 50 so is coerced to 50

e (b)(iii) Alternative

public boolean isValidCharactersA(String hStr)
{
String validValues = "0123456789ABCDEF" ;
int hStrLen = hStr.length(Q) ;
String hSubStr ;

for(int index = 1; index <= hStrLen - 1; index++)
{
hSubStr = hStr.substring(index, index + 1) ;
if (!validvalues.contains(hSubStr)) {
return false ;
}
}

return true ;

e (b)(iii) Alternative with Regular Expressions

public boolean isValidCharactersB(String hStr)
{

}

return hStr.matches(".[A-FO-9]+") ;

matches () is an instance method of the class String

".[A-F0-9]+" string representing a regular expression

. metacharacter matches any single character

[A-F0-9] is a character class matching any one of Ato For 0 to 9

+ matches the preceding pattern 1 or more times

https://en.wikipedia.org/wiki/Regular_expression

98
99
100
101
102

35
36
37

39
40
41

42
43
44
45
46

12 Java Classes & Statements 17 November 2024

e Class Pattern in Package java.util.regex describes the syntax

e (b)(iv) Write a method isValidHexColour(String hStr) that combines the three
checks

public boolean isValidHexColour(String hStr){
return isValidLength(hStr)
&& isValidFirst(hStr)
&& isValidCharacters(hStr) ;

e (b)(iv) Write a method isValidHexColour(String hStr) using regular expressions

public boolean isValidHexCoTlour(String hStr) {
return hStr.matches("#[A-F0-9]1{6}") ;
b

e {6} matches 6 copies of the preceding regular expression

jshell> public boolean isValidHexColour(String hStr) {
> return hStr.matches("#[A-F0-9]{6}") ;
S
oo
| created method isValidHexColour(String)

jshell> boolean bl =
> isValidHexColour("#FFAABB")
bl ==> true

jshell> boolean b2 =
> isValidHexColour ("FFAABB™)
b2 ==> false

jshell> boolean b3 =
> isValidHexColour("#FAB™)
b3 ==> false

jshell> boolean b4 =
> isValidHexColour ("#FFAABBCC™)
b4 ==> false

e (c) Write a setter method for M250CoTour that outputs an appropriate message

public void setHexColour(String hStr){
boolean validStr = isValidHexColour(hStr) ;
String msg ;

if (validStr) {
msg = ("Colour_" + hStr + " _is_valid") ;
this.hexColour = hStr ;

} else {

msg = ("Colour_" + hStr + "_is_not_valid") ;
}
System.out.println(msg) ;

}

e Not returning a boolean by incomplete expression

jshell> public boolean isValidLength(String hStr){
> return hStr.length(Q;
> }
000>
| Error:
| dncompatible types: int cannot be converted to boolean
| return hStr.length(Q;
|

e Using assignment where you meant equality test

jshell> public boolean isValidLength(String hStr){
> return hStr.length(Q) = 7;

https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/util/regex/Pattern.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/util/regex/package-summary.html

Phil Molyneux M250 Tutorial 03 13

> }

“aa>

| Error:

| unexpected type

| required: variable
| found: value
[

|

e Example usage in JShell
e mClris areference to an object —itis displayed inJShell in the form <cTass>@<hexDigits>

e See Object toString() method for an explanation

jshell> M250CoTlour mClr = new M250Colour()
mClr ==> M250Colour@68del45s

jshell> String strl = mClr.getHexColour()
strl ==> "#000000"

jshell> mClr.setHexColour("#FF0000")
Colour #FF0000 is valid

jshell> String str2 = mClr.getHexColour()
str2 ==> "#FF0000"

jshell> String str3 = mClr.getClass().getName()
+ '@ + Integer.toHexString(mClr.hashCode())
str3 ==> "M250Colour@68del45"

e The toString() method for class Object returns a string in the form <cTassName>@hexD1ig1 t:

getClass().getName() + '@’ + Integer.toHexString(hashCode())

See StackOverflow: Object reference

See Object toString() Method in Java

Example usage in JShell

Note that isValidLength(), isValidFirst(), isValidCharacters(), isValidHexColour(
are instance methods

jshell> M250CoTlour mClr = new M250Colour()
mClr ==> M250Colour@306a30c7

jshell> boolean bl = isValidlLength("asdf")

| Error:

| cannot find symbol

| symbol: method isValidLength(java.lang.String)
| boolean bl = isValidLength("asdf");

| A

jshell> boolean bl = mClr.isValidLength("asdf")
bl ==> false

e what might (almost certainly) wrong with the following:

public boolean isValidHexCoTlour(String h){

if (isValidCharacters(h) == true
&& isValidFirst(h) == true
&& isValidLength(h) == true){
return true;
} else {
return false;

}

https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/lang/Object.html#toString()
https://stackoverflow.com/questions/580984/how-do-you-get-the-object-reference-of-an-object-in-java-when-tostring-and-h
https://www.geeksforgeeks.org/object-tostring-method-in-java/

14 Java Classes & Statements 17 November 2024

1. What happens if the string is empty ?
2. If the first character is not valid, it is not worth checking the rest

e The following does not compile — what is the error message and why ?

public boolean isValidCharactersA(String h) {
for (int i = 1; i < 8; i++) {
if (!I((h.charAt(i)>= 48
&& h.charAt(i) <= 57)
|| Ch.charAt(i) >= 65
&& h.charAt(i) <= 70))) {
return false;
}
return true;
}
}

e Here is the error message — but why ?

jshell> public boolean isValidCharactersA(String h) {
. for (Aint i = 1; i < 8; i++) {

v

> if (I((h.charAt(i)>= 48
> && h.charAt(i) <= 57)
> || Ch.charAt(i) >= 65
> && h.charAt(i) <= 70))) {
> return false;
> }
> return true;
> }
>}
>
Error:

missing return statement
public boolean isValidCharactersA(String h) {
A

e If a method is declared to have a return type, then the method must return a value
— it must not be possible for execution to reach the end of a method body without
executing a return statement (see Java Language Specification (JLS) Section 8.4.7
(Edition 13) Method Body for full details, but a bit formal)

e Why is the compiler saying Missing return when we can see two and the code is
bound to hit one ?

e The compiler has to work for every syntactically valid program so it has to have
some effectively computable rules

e We go back to Java Language Specification (JLS) Section 14.21 (Edition 13) Unreach-
able Statements and try and work out what the Java compiler is expected to do with
for statements

e Essentially a for statement can complete normally if the statement is reachable and
the condition is not a constant true

e So in terms of program flow the compiler doesn’t know whether the loop terminates
or not

e The analysis of the compiler is a syntactic check on where the program execution
could go

e to work out whether an arbitrary block of code or statement would or would not
terminate is equivalent to solving the Halting problem which we know is not solvable
(see M269)

e So the code is missing a return statement after the for loop

https://en.wikipedia.org/wiki/Halting_problem

Phil Molyneux M250 Tutorial 03 15

e However, if the compiler had accepted the code, then it would still have returned
true if the first character was valid

ToC

3.3 Field, Method and Constructor Declarations
e A field holds a value inside an object (if non-static) or a class (if static)

e A fieldDeclaration has one of the forms

fieldModifiers type fieldNamel, fieldName2, ... ;
fieldModifiers type fieldNamel = initializerl, ... ;

e fieldModifiers may be a list of the modifiers static, final, and
(last two in M250) and at most one of the access modifiers private, ,
public

e A field f in a class C declared static is a class field and can be referred to as C.f
or o.f where o is an expression of type C — in the declaration of C it can be referred
toas f

e A field not declared static is an instance field

Member Visibility

Accessible to Public Private
Defining class Yes Yes
Class in same package Yes No
Subclass in different package Yes No
Nonsubclass different package Yes No

Table from Evans and Flanagan (2014, p 126)
e A method must be declared inside a class

e A methodDeclaration declaring method m has the form

methodModifiers returnType m(formallList) throwsClause
methodBody

e The formallist is a comma-separated list of zero or more formal parameter declara-
tions, of one of the forms

parameterModifier type parameterName
parameterModifier type... parameterName

e The parameterModifier may be final meaning that the parameter cannot be modi-
fied inside the method

e The second form of parameter declaration can only appear last and declares a pa-
rameter array (TODO: check if this is used in M250)

e The purpose of a constructor in class C is to initialize new objects (instances) of the
class

e A constructorDeclaration in class C has the form

constructorModifiers C(formallList) throwsClause
constructorBody

16 Java Classes & Statements 17 November 2024

The constructorModifiers may be a list of at most one of private, and
public

Constructors may be overloaded in the same way as methods

The constructor signature (a list of parameter types in formallist) is used to distin-
guish constructors in the same class

e A constructor may call another overloaded constructor in the same class using the
syntax

[this(actuallist) J

e A class that does not explicitly declare a constructor implicitly declares a public,
argumentless default constructor whose only (implicit) action is to call the superclass
constructor

(public CO { super() ; } J

e A class C may be declared a subclass of class B by an extendsClause of the form
(class C extends B {...} J

e The very first action of a constructor in C may be an explicit call to a constructor in
superclass B

e If a constructor C(...) does not explicitly call super(...) as its first action, then
it implicitly calls the argumentless default constructor B() as its first action, as if by
super()

ToC

4 Statements: Summary

4.1 Statements Overview

e A statement may change the computer’s state: value of variables, fields, array ele-
ments, the contents of files and so on — the execution of a statement may:

e terminate normally (and execution continues with the next statement, if any) or
e terminate abruptly by throwing an exception or

e exit by executing a return statement (if inside a method or constructor) or

e exit a switch or loop by executing a break statement or

e exit the current iteration of a loop and start a new iteration by executing a continue
statement or

e does not terminate at all (eg, while (true) {})

4.2 Expression & Block Statements

e An expression statement is an expression followed by a ;

Phil Molyneux M250 Tutorial 03 17

(expression ; J

e The only forms of expression that may be used here are assignments, increment and
decrements, method call, and object creation

e A block statement is a sequence of variable declarations, class declarations and
statements

variableDeclarations
classDeclarations
statements

e An empty statement consists of ; only — it is equivalent to the block statement { }

ToC

4.3 Selection Statements

e The if statement has the form

if (condition)
trueBranch

e The if-else statement has the form

if (condition)
trueBranch

else
falseBranch

e The condition must have type boolean or Boolean
e trueBranch and falseBranch are statements

e What is wrong with the following

if (dataAvailable) ;
processData() ;

if (dataAvailable)
processData() ;
reportResults() ;

if (dataAvailable)
processData() ;
reportResults() ;
else
reportNoData() ;

if (dataAvailable) ;
processData() ;

e The trueBranch is an empty statement (;)

if (dataAvailable)
processData() ;
reportResults() ;

e reportResults() ; will always be executed

18

Java Classes & Statements 17 November 2024

if (dataAvailable)
processData() ;
reportResults() ;

else

reportNoData() ;

e Will not compile

Moral Always use block statements

e A switch statement has the form

switch (expression) {
case constantl: branchl
case constant2: branch2

Aé%au1t: branchN

}

4.4

expression must be of type int, short, char, byte or a boxed version of these or
String or an enum type

Each branch is a sequence of statements, usually terminated by break or return (if
inside a method or constructor) or continue (inside a loop).

If a branch is not exited by break, return,or continue, then execution continues
with the next branch in the switch regardless of the case clauses, until a branch
exits or the switch ends

(not used in M250)

ToC

Iteration Statements

A for statement has the form

for (initialization ; condition ; step)
body

initialization is a variableDeclaration or an expression

condition is an expression of type boolean or Boolean

step is an expression

body is a statement

initialization and step may be comma-separated lists of expressions

initialization, condition and step may be empty. An empty condition is equivalent to
true

The for statement is executed as follows

. The initialization is executed

The condition is evaluated. If it is false, the loop terminates.
If it is true then

(a) the body is executed

Phil Molyneux M250 Tutorial 03

19

(b) the step is executed
(c) execution continues at (2.)

e What does the following code do ?

for (Aint i =1 ; i <=4 ; i++) {
for (1|1t]=1,]<=1,]++){
System.out.print("=") ;
}
System.out.println() ;

}

jshell> for (inti=1; 1 <=4 ; i++) {
Cn for (int j =1; j <=1 ; j++) {
System.out.print("=") ;
}
System.out.printin() ;
}

vvivivivy

ek

el

dededede

e A while statement has the form

while (condition)
body

e condition is an expression of type boolean or Boolean and body is a statement
e It is executed as follows:
1. The condition is evaluated. If it is false, the loop terminates
2. If itis true, then
(@) The body is executed
(b) Execution continues at (1.)

e Example linear search with while loop

String[] wdays =

{"Monday","Tuesday", "Wednesday"
, "Thursday","Friday", "Saturday", "Sunday"} ;

int wdayno(String wday) {
int i = 0 ;
while (i < wdays.Tlength
&& ! wday.equals(wdays[i])) {
i++

if (i < wdays.length) {
return i ;
} else {
return -1 ;
}
L g

String[] wdays =
{"Monday","Tuesday", "Wednesday"

non non nwon

, "Thursday","Friday", "Saturday", "Sunday"} ;

int wdayno(String wday) {

int i =0 ;

while (i < wdays.Tlength
&& ! wday.equals(wdays[i])) {
i+

}

20 Java Classes & Statements 17 November 2024

if (i < wdays.length) {
return i ;
} else {
return -1 ;
}
L og

jshell> int dl1 = wdayno("Friday") ;
dl ==> 4

jshell> 1int d2 = wdayno("Dimanche") ;
d2 ==> -1

e Write code using a while statement that is equivalent to a for loop statement

e Write code using a while statement that is equivalent to a for loop statement

initialization
while (condition) {
body
step
}

for (initialization ; condition ; step)
body

e Note that this is different behaviour to the for statement in Python where assign-
ments to variables in the suite of the loop does not change the assignments made
in the target list

e See Python: for statement

4.4.1 foreach statement

for (tx x : expression)
body

e The expression must have type Iterable<t> where t is a subtype of type tx
e lIterators obtained from expression will generate elements that can be assigned to x

e expression must be a statement

int[] primes = new 1int[] {2,3,5,7,11,13,17,19,23,29} ;
for (int n : primes) {

System.out.println(n) ;
}

int[] iarr = new int[] { 2, 3, 5, 7, 11 } ;
int sum = 0 ;
for (int p : diarr) {
sum = sum + p ;
}

System.out.println("sum_=_" + sum) ;

jshell> System.out.printin("sum_=_
sum = 28

+ sum) ;

e Note that print and println convert a value to textual representation and outputs
it to a PrintWriter or PrintStream (System.out is a PrintStream)

e Python programmers may be tempted by the following but see the error

https://docs.python.org/3/reference/compound_stmts.html#the-for-statement
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/io/PrintWriter.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/io/PrintStream.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/System.html#out
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/io/PrintStream.html

Phil Molyneux M250 Tutorial 03 21
jshell> System.out.printin('sum_=_", sum) ;
| Error:
| no suitable method found for printin(java.lang.String,int)
| method java.io.PrintStream.printin() 1is not applicable
| (actual and formal argument lists differ in Tength)
//and lots of other error messages
e Explicitly going through an iterable using for
e Example 79 from Sestoft (2016,page 57)
Iterable<Integer> ible = fromTo(13, 17);
for (Iterator<Integer> iter = ible.iterator(); iter.hasNext(); /* none =/) {
int i = iter.next();
System.out.printin(i);
}
e Method fromTo generates an Iterable collection
jshell> Iterable<Integer> ible = fromTo(13, 17);
Ao os for (Iterator<Integer> iter = ible.iterator(); iter.hasNext(); /* none =/) {
> int i = iter.next(Q);
> System.out.printin(i);
> }
0ooe
ible ==> 1lFromTolterable@7aec35a
13
14
15
16
17
e Method fromTo generates an Iterable collection
e Example 143 from Sestoft (2016, page 113)
public Iterable<Integer> fromTo(final int m, final int n) {
class FromToIterator implements Iterator<Integer> {
private int i = m;
public boolean hasNext() { return i <= n; }
public Integer next() {
if (i <= n)
return i++;
else
throw new NoSuchElementException();
}
public void remove() { throw new UnsupportedOperationException(); }
class FromToIterable implements Iterable<Integer> {
public Iterator<Integer> iterator() {
return new FromToIterator();
}
}
return new FromToIterable();
}
ToC

4.5 Returns, Exits and Exceptions

e A return statement with an expression argument has the form:

[return expression ;

e This form of return must occur in the body of a method (not constructor) whose

return type is a supertype or boxed or unboxed version of the type of expression

22 Java Classes & Statements 17 November 2024

e The return statement is executed as follows:
e expression is evaluated to some value v

e It then exits the method and continues execution at the method call expression that
called the method

e The value of that expression will be v, possible after application of a widening,
boxing or unboxing conversion

e wdayno using a for loop

int wdayno(String wday) {
for (int i = 0 ; i < wdays.length ; i++) {
if (wday.equals(wdays[i])) {
return i ;
}
}
return -1 ;

}

e Notice that the final return is after the for loop

e What is the effect of the code below?

int wdayno(String wday) {
for (int i = 0 ; i < wdays.length ; i++) {
if (wday.equals(wdays[i])) {
return i ;
}
return -1 ;
}
}

jshell> 1int wdayno(String wday) {
. for (int i = 0 ; i < wdays.length ; i++) {

v

> if (wday.equals(wdays[i])) {
> return i ;
> }
> return -1 ;
> }
>}
“aa>
Error:

missing return statement
int wdayno(String wday) {
A

e A break statement is legal only inside a loop or switch and has one of the forms

break ;
break TabelName ;

e Executing break exits the innermost enclosing loop or switch and continues execu-
tion after that loop or switch

e A continue statement is legal only inside a loop and has one of the forms

continue ;
continue TabelName ;

e Executing continue terminates the current iteration of the innermost enclosing loop
and continues execution at the step in for loops or the condition in while and
do-while loops

e A Tabel statement has the form

Phil Molyneux M250 Tutorial 03 23

(labelName : statement

e The scope of labelName is statement, where it can be used in break or continue
e Use of labels is evidence of poor program design
e Just don’t

e A throw statement has the form:

(throw expression ;

e The type of expression must be a subtype of class Throwable
e The throw statement is executed as follows:

e expression is evaluated to obtain an exception object v

e Ifitis null then a NulTPointerException is thrown

e Otherwise the exception object v is thrown

e The enclosing block statement terminates abruptly

e The thrown exception may be caught by a dynamically enclosing try-catch state-
ment

e If the exception is not caught then the entire program execution will be aborted

e A try-catch statement is used to catch particular exceptions thrown by a code
block

e It has the following form:

try
body
catch (E1 x1) catchBodyl
catch (E21 | E22 | ... | E2k x2) catchBody2

finally finallyBody

e All the various bodies are block statements

e There can be zero or more catch clauses and the finally clause may be absent,
but there must be at least one catch or finally clause

class WeekdayException extends Exception {
public WeekdayException(String wday) {
super("Illegal_weekday: " + wday) ;
3
}

int wdayno(String wday) throws WeekdayException {
for (int i = 0; i < wdays.length; i++) {
if (wday.equals(wdays[i])) {
return i ;
}
}
throw new WeekdayException(wday) ;

}

jshell> class WeekdayException extends Exception {
public WeekdayException(String wday) {
super("ITlegal_weekday: " + wday) ;

v

>
o>
..>)

>

24 Java Classes & Statements

17 November 2024

jshell> int wdayno(String wday) throws WeekdayException {
. for (int i = 0; i < wdays.length; i++) {
if (wday.equals(wdays[i])) {
return i ;
3
}
throw new WeekdayException(wday) ;
}

v

VYV VYV VY

jshell> int d4 = wdayno("Dimanche™)

| Exception REPL.dJShelld31ldWeekdayException:
ITlegal weekday: Dimanche

| at wdayno (#25:7)

| at (#27:1)

4.6 assert Statement

e The assert statement has one of the following forms:

assert booleanExpression ;
assert booleanExpression : expression ;

e booleanExpression must have type booTlean or Boolean

e expression must be of type boolean, char, double, float, int, lTong, a boxed

version of these or Object

e When assertions are enabled at run-time, every execution of the assert command

will evaluate booleanExpression

e If the result is true, program execution contines normally

e If the result is false, the assertion fails, and an AssertionError will be thrown

e In the second form, expression will be evaluated, and its value passed to the appro-

priate AssertionError constructor

e See Unit 8 section 7

(assert x > 2 : "x was " + X ;

5 JShell

e JShell is a Java read-eval-print loop (REPL) introduced in 2017 with JDK 9

e Java Shell User’s Guide (Release 12, March 2019)
e Tools Reference: jshell

e JShell Tutorial (30 June 2019)

e How to run a whole Java file added as a snippet in JShell? (15 July 2019)

https://en.wikipedia.org/wiki/JShell
https://docs.oracle.com/en/java/javase/12/jshell/
https://docs.oracle.com/en/java/javase/12/tools/jshell.html
http://cr.openjdk.java.net/~rfield/tutorial/JShellTutorial.html
https://stackoverflow.com/questions/44399338/how-to-run-a-whole-java-file-added-as-a-snippet-in-jshell

Phil Molyneux M250 Tutorial 03 25

6 What Next ?

Programming, Debugging, Psychology

Although programming techniques have improved immensely since the early days, the
process of finding and correcting errors in programming — known graphically if inele-
gantly as debugging — still remains a most difficult, confused and unsatisfactory opera-
tion. The chief impact of this state of affairs is psychological. Although we are happy to
pay lip-service to the adage that to err is human, most of us like to make a small pri-
vate reservation about our own performance on special occasions when we really try. It
is somewhat deflating to be shown publicly and incontrovertibly by a machine that even
when we do try, we in fact make just as many mistakes as other people. If your pride
cannot recover from this blow, you will never make a programmer.

Christopher Strachey, Scientific American 1966 vol 215 (3) September pp112-124

e To err is human, to really foul things up requires a computer.

Attributed to Paul R. Ehrlich in 101 Great Programming Quotes

Attributed to Bill Vaughn in Quote Investigator

Derived from Alexander Pope (1711, An Essay on Criticism)

To Err is Humane;, to Forgive, Divine

This also contains

A little learning is a dangerous thing;

Drink deep, or taste not the Pierian Spring

In programming, this means you have to read the fabulous manual (RTFM)

Chps 1-4, TMAO1
e Chps 4-5, Iteration, collections; Functional Java (optional)
e Tutorial 03 10:00 Sunday 17 November 2024 online
e TMAO1 Thursday 12 December 2024
e Chps 6,7 Arrays
e Tutorial 04 10:00 Sunday 19 January 2025 online
e Chps 8-10 Inheritance
e Tutorial 05 10:00 Sunday 16 February 2025 online
e TMAO2 Thursday 6 March 2025

7 Web Links & References

7.1 Java Documentation

e Java Documentation — BlueJ has JDK 7 embedded, JDK 13 is current (2019)

https://en.wikipedia.org/wiki/Christopher_Strachey
https://en.wikipedia.org/wiki/Paul_R._Ehrlich
http://www.devtopics.com/101-great-computer-programming-quotes/
https://en.wikipedia.org/wiki/William_E._Vaughan
http://quoteinvestigator.com/2010/12/07/foul-computer/
https://en.wikipedia.org/wiki/Alexander_Pope
https://en.wikipedia.org/wiki/An_Essay_on_Criticism
https://en.wikipedia.org/wiki/Pierian_Spring
https://lmgtfy.com/?q=rtfm
https://docs.oracle.com/en/java/javase/

Java Classes & Statements 17 November 2024

e JDK 13 Documentation
e Java Platform API Specification

e Java Language Specification

) [JDK Documentation >> API Documentation >>java.basel

- java.lang — fundamental classes for the Java programming language

- java.util — Collections framework

© © ®]| S[5[6] 55|32 2 2o 5 2 W[] w 35] 2 o o 2 B] [355155 o W €[5]] 2] 2|52 +

<« C ¢ (& docs.oracle. javafj 13/ i i ing.html o %)@

i Apps BX) Apple B Books EX) CompNews B} Computing [Finance [Information BS) Kingston [News B OU B3 Scripts B3 Shopping B3 Topics »
OVERVIEW MODULE PACKAGE USE TREE DEPRECATED INDEX HELP Java SE 13 & JDK 13
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD SEARCH: [0 Search X

Module java.base
Package java.lang

Class String

java.lang.Object
java.lang.String

All Implemented Interfaces:
Serializable, CharSequence, Comparable<String>, Constable, ConstantDesc

public final class String
extends Object
implements Serializable, Comparable<String>, CharSequence, Constable, ConstantDesc

The String class represents character strings. All string literals in Java programs, such as "abc", are implemented as instances of this class.

Strings are constant; their values cannot be changed after they are created. String buffers support mutable strings. Because String objects are immutable
they can be shared. For example:

String str = "abc";

¢ LBOA-2019102..zip ~ % Christina2007N....jpg ~ % Christina2012N....jpg ~ system-f-with-t...b... ~ Show All X

e Strings are immutable objects
e See java.lang.StringBuilder for mutable strings

e In a functional programming approach everything is immutable — it makes life sim-
pler (but at a cost)

© © ©[afoc| 3|] 35]¢[2] 8] 1]oe 5o 2] 2 WIIE| 2w 355 | o[o2 o] R 51515 2 w2] [2]]]2 2|5 2|

< C (0 & docs.oracle.com/en/javalj /13/d i/java.base/java/lang/String.html#equals(java.lang.Object) * .

Apps B3 Apple B Books [CompNews ES Computing [Finance E3 Information [Kingston ES) News ES) OU [3 Scripts B3 Shopping B Topics »

OVERVIEW MODULE PACKAGE USE TREE DEPRECATED INDEX HELP Java SE 13 & JDK 13

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD SEARCH: O Search X

public boolean equals(Object anObject)

Compares this string to the specified object. The result is true if and only if the argument is not null and is a String object that represents the
same sequence of characters as this object.

For finer-grained String comparison, refer to Collator.

Overrides:

equals in class Object

Parameters:

anObject - The object to compare this String against

Returns:

true if the given object represents a String equivalent to this string, false otherwise

See Also:
compareTo(String), equalsIgnoreCase(String)

¢ LBOA-2019102..zip ~ # Christina2007N...jpg ~ % Christina2012N...jpg ~ ¥ system-f-with-t....b... ~ Show All X

e Remember (==) tests for identity — what does this mean ?

https://docs.oracle.com/en/java/javase/13/index.html
https://docs.oracle.com/en/java/javase/13/docs/api/index.html
https://docs.oracle.com/javase/specs/index.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/lang/package-summary.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/util/package-summary.html
https://docs.oracle.com/en/java/javase/13/docs/api/java.base/java/lang/StringBuilder.html

Phil Molyneux M250 Tutorial 03 27

7.2 Books Phil Likes

e M250 is self contained — you do not need further books — but you might like to
know about some:

e Sestoft (2016) — the best short reference
e Evans and Flanagan (2018) — the best longer reference

e Barnes and Kolling (2016) — the Blue) book — see www.bluej.org for documentation
and tutorial

e Bloch (2017) — guide to best practice

References

Barnes, David J. and Michael Kolling (2009). Objects First with Java. Pearson Education,
fourth edition. ISBN 0-13-606086-2. URL http://www.bTuej.org/objects-first/.

Barnes, David J. and Michael Kolling (2011). Objects First with Java. Pearson Education,
fifth edition. ISBN 0132835541. URL http://www.bluej.org/objects-first/.

Barnes, David J. and Michael Kélling (2016). Objects First with Java. Pearson, sixth edition.
ISBN 1292159049. URL http://www.bluej.org/objects-first/. 27

Bloch, Joshua (2017). Effective Java. Addison-Wesley Professional, third edition. ISBN
9780134685991. 27

Darwin, lan F (2014). Java Cookbook. O’Reilly, third edition. ISBN 9781449337049.

Evans, Benjamin J and David Flanagan (2014). Java In A Nutshell. O’Reilly, sixth edition.
ISBN 1449370829. URL https://github.com/kittylyst/javanutb-examples. 15

Evans, Benjamin J and David Flanagan (2018). Java In A Nutshell. O’Reilly, seventh edition.
ISBN 1492037257. 27

Felleisen, Matthias and Daniel P. Friedman (1998). A Little Java, A Few Patterns. MIT Press.
ISBN 0262561158. URL http://felleisen.org/matthias/BAL]-index.html.

Gosling, James; Bill Joy; Guy L. Steele Jr.; Gilad Bracha; and Alex Buckley (2014). The Java
Language Specification, Java SE 8 Edition (Java Series) (Java (Addison-Wesley)). Addison
Wesley, eighth edition. ISBN 013390069X. URL https://docs.oracle.com/en/java/
javase/12/index.html.

Naftalin, Maurice and Philip Wadler (2006). Java Generics and Collections. O’Reilly. ISBN
059610247X.

Schildt, Herbert (2018a). Java: A Beginner’s Guide. McGraw-Hill, eighth edition.
ISBN 1260440214. URL http://mhprofessional.com/9781260440218-usa-java-a-
beginners-guide-eighth-edition-group.

Schildt, Herbert (2018b). Java: The Complete Reference, Eleventh Edition. McGraw-
Hill, eleventh edition. ISBN 1260440230. URL http://mhprofessional.com/
9781260440232-usa-java-the-complete-reference-eleventh-edition-group.

Sestoft, Peter (2002). Java Precisely. MIT Press. ISBN 0-262-69276-7.

https://www.bluej.org/
http://www.bluej.org/objects-first/
http://www.bluej.org/objects-first/
http://www.bluej.org/objects-first/
https://github.com/kittylyst/javanut6-examples
http://felleisen.org/matthias/BALJ-index.html
https://docs.oracle.com/en/java/javase/12/index.html
https://docs.oracle.com/en/java/javase/12/index.html
http://mhprofessional.com/9781260440218-usa-java-a-beginners-guide-eighth-edition-group
http://mhprofessional.com/9781260440218-usa-java-a-beginners-guide-eighth-edition-group
http://mhprofessional.com/9781260440232-usa-java-the-complete-reference-eleventh-edition-group
http://mhprofessional.com/9781260440232-usa-java-the-complete-reference-eleventh-edition-group

28 Java Classes & Statements 17 November 2024

Sestoft, Peter (2005). Java Precisely. MIT, second edition. ISBN 0262693259.

Sestoft, Peter (2016). Java Precisely. MIT, third edition. ISBN 0262529076. URL http:
//www.itu.dk/people/sestoft/javaprecisely/. 27

Thimbleby, Harold (1999). A critique of Java. Software: Practice and Experience,
29(5):457-478.

Waldo, Jim (2010). Java: The Good Parts. O’Reilly. ISBN 9780596803735. URL http:
//shop.oreilly.com/product/9780596803742.do.

ToC

Author Phil Molyneux Written 17 November 2024 Printed 15th November 2024

Subject dir: (baseURL)/0U/Courses/Computing/M250/M250Presentations/M250Prsntn2024]

Topic path:
/M250Prsntn2024]JTutorials/M250Tutorial20241117ClassesStmntsPrsntn20243/M250Tutorial20241117ClassesStmntsPrsntn2024].

http://www.itu.dk/people/sestoft/javaprecisely/
http://www.itu.dk/people/sestoft/javaprecisely/
http://shop.oreilly.com/product/9780596803742.do
http://shop.oreilly.com/product/9780596803742.do

	Agenda
	Adobe Connect
	Interface
	Settings
	Sharing Screen & Applications
	Ending a Meeting
	Invite Attendees
	Layouts
	Chat Pods
	Web Graphics
	Recordings

	Classes: Introduction
	Classes Overview and Structure
	TMA01 Practice Quiz
	Field, Method and Constructor Declarations

	Statements: Summary
	Statements Overview
	Expression & Block Statements
	Selection Statements
	Iteration Statements
	foreach statement

	Returns, Exits and Exceptions
	assert Statement

	JShell
	What Next ?
	Web Links & References
	Java Documentation
	Books Phil Likes
	References

