
M250 Revision 2021

M250 Exam 2018J

Contents

1 Agenda 2
1.1 Introductions . 2

2 Adobe Connect 3
2.1 Student View . 3
2.2 Settings . 4
2.3 Student & Tutor Views . 6
2.4 Sharing Screen & Applications . 8
2.5 Ending a Meeting . 8
2.6 Invite Attendees . 8
2.7 Layouts . 9
2.8 Chat Pods . 9

3 Instructions 2018J 9
3.1 Qs . 9
3.2 Solns . 10

4 Qs 10
4.1 Q 1 . 10

4.1.1 Q 1(a) . 10
4.1.2 Q 1(b) . 11
4.1.3 Q 1(c) . 12
4.1.4 Q 1(d) . 12

4.2 Q 2 . 12
4.2.1 Q 2(a) . 12
4.2.2 A 2(b) . 12
4.2.3 Q 2(c) . 13
4.2.4 Q 2(d) . 13
4.2.5 Q 2(e)(f) . 13

4.3 Q 3 . 14
4.3.1 Q 3(a) . 14
4.3.2 Q 3(b) . 15
4.3.3 Q 3(c) . 15
4.3.4 Q 3(d) . 15
4.3.5 Q 3(e) . 16

5 Solns 16
5.1 Soln 1 . 16

5.1.1 Soln 1(a) . 16
5.1.2 Soln 1(b) . 17
5.1.3 Soln 1(c) . 17
5.1.4 Soln 1(d) . 18

5.2 Soln 2 . 18
5.2.1 Soln 2(a) . 18

1

2 M250 Revision 2021 23 May 2021

5.2.2 Soln 2(b) . 18
5.2.3 Soln 2(c) . 19
5.2.4 Soln 2(d) . 19
5.2.5 Soln 2(e) . 19
5.2.6 Soln 2(f) . 20

5.3 Soln 3 . 20
5.3.1 Soln 3(a) . 20
5.3.2 Soln 3(b) . 20
5.3.3 Soln 3(c) . 21
5.3.4 Soln 3(d) . 21
5.3.5 Soln 3(e) . 22

6 Exam Reminders 22

7 White Slide 22

1 M250 Exam Revision Agenda & Aims

• Welcome and introductions

• Revision strategies

• M250 Exam — Online Friday 11 June 2021 – see Assessment

• M250 2018J exam (June 2019)

• Topics and discussion for each question

• Exam techniques

• These slides and notes are at

www.pmolyneux.co.uk/OU/M250FolderSync/M250ExamRevision/ at

M250Prsntn2020JExamRevision/

• Recording Meeting Record Meeting. . . 4

1.1 Introductions & Revision Strategies

• Introductions

• What other exams are you doing this year ?

• Each give one exam tip to the group

http://www.pmolyneux.co.uk/OU/M250FolderSync/M250ExamRevision/
http://www.pmolyneux.co.uk/OU/M250FolderSync/M250ExamRevision/M250Prsntn2020JExamRevision/

Phil Molyneux M250 Exam 2018J 3

2 Adobe Connect Interface and Settings

2.1 Adobe Connect Interface — Student View

Adobe Connect Interface — Student Quick Reference

4 M250 Revision 2021 23 May 2021

Adobe Connect Interface — Student View

2.2 Adobe Connect Settings

Adobe Connect Settings

• Everybody: Audio Settings Meeting Audio Setup Wizard. . .

• Audio Menu bar Audio Microphone rights for Participants 4

• Do not Enable single speaker mode

• Drawing Tools Share pod menu bar Draw (1 slide/screen)

• Share pod menu bar Menu icon Enable Participants to draw 4 gray

• Meeting Preferences Whiteboard Enable Participants to draw 4

• Cancel hand tool . . . Do not enable green pointer. . .

• Meeting Preferences Attendees Pod 8 Raise Hand notification

• Meeting Preferences Display Name Display First & Last Name

• Cursor Meeting Preferences General tab Host Cursors Show to all attendees 4 (default Off)

• Meeting Preferences Screen Share Cursor Show Application Cursor

• Webcam Menu bar Webcam Enable Webcam for Participants 4

• Recording Meeting Record Meeting. . . 4

Phil Molyneux M250 Exam 2018J 5

Adobe Connect — Access

• Tutor Access

TutorHome M269 Website Tutorials

Cluster Tutorials M269 Online tutorial room

Tutor Groups M269 Online tutor group room

Module-wide Tutorials M269 Online module-wide room

• Attendance

TutorHome Students View your tutorial timetables

• Beamer Slide Scaling 440% (422 x 563 mm)

• Clear Everyone’s Status

Attendee Pod Menu Clear Everyone’s Status

• Grant Access and send link via email

Meeting Manage Access & Entry Invite Participants. . .

• Presenter Only Area

Meeting Enable/Disable Presenter Only Area

Adobe Connect — Keystroke Shortcuts

• Keyboard shortcuts in Adobe Connect

• Toggle Mic + M (Mac), Ctrl + M (Win) (On/Disconnect)

• Toggle Raise-Hand status + E

• Close dialog box (Mac), Esc (Win)

• End meeting + \

https://helpx.adobe.com/adobe-connect/using/connect-keyboard-shortcut.html

6 M250 Revision 2021 23 May 2021

2.3 Adobe Connect Interface — Student & Tutor Views

Adobe Connect Interface — Student View (default)

Phil Molyneux M250 Exam 2018J 7

Adobe Connect Interface — Tutor Quick Reference

Adobe Connect Interface — Tutor View

8 M250 Revision 2021 23 May 2021

2.4 Adobe Connect — Sharing Screen & Applications

• Share My Screen Application tab Terminal for Terminal

• Share menu Change View Zoom in for mismatch of screen size/resolution (Participants)

• (Presenter) Change to 75% and back to 100% (solves participants with smaller screen
image overlap)

• Leave the application on the original display

• Beware blued hatched rectangles — from other (hidden) windows or contextual
menus

• Presenter screen pointer affects viewer display — beware of moving the pointer away
from the application

• First time: System Preferences Security & Privacy Privacy Accessibility

2.5 Adobe Connect — Ending a Meeting

• Notes for the tutor only

• Student: Meeting Exit Adobe Connect

• Tutor:

• Recording Meeting Stop Recording 4

• Remove Participants Meeting End Meeting. . . 4

– Dialog box allows for message with default message:

– The host has ended this meeting. Thank you for attending.

• Recording availability In course Web site for joining the room, click on the eye icon
in the list of recordings under your recording — edit description and name

• Meeting Information Meeting Manage Meeting Information — can access a range of informa-
tion in Web page.

• Attendance Report see course Web site for joining room

2.6 Adobe Connect — Invite Attendees

• Provide Meeting URL Menu Meeting Manage Access & Entry Invite Participants. . .

• Allow Access without Dialog Menu Meeting Manage Meeting Information provides new browser
window with Meeting Information Tab bar Edit Information

• Check Anyone who has the URL for the meeting can enter the room

• Default Only registered users and accepted guests may enter the room

• Reverts to default next session but URL is fixed

• Guests have blue icon top, registered participants have yellow icon top — same icon
if URL is open

https://en.wikipedia.org/wiki/Terminal_(macOS)

Phil Molyneux M250 Exam 2018J 9

• See Start, attend, and manage Adobe Connect meetings and sessions

2.7 Layouts

• Creating new layouts example Sharing layout

• Menu Layouts Create New Layout. . . Create a New Layout dialog Create a new blank layout and name it
PMolyMain

• New layout has no Pods but does have Layouts Bar open (see Layouts menu)

• Pods

• Menu Pods Share Add New Share and resize/position — initial name is Share n

• Rename Pod Menu Pods Manage Pods. . . Manage Pods Select Rename or Double-click & rename

• Add Video pod and resize/reposition

• Add Attendance pod and resize/reposition

• Add Chat pod — name it PMolyChat — and resize/reposition

• Dimensions of Sharing layout (on 27-inch iMac)

– Width of Video, Attendees, Chat column 14 cm

– Height of Video pod 9 cm

– Height of Attendees pod 12 cm

– Height of Chat pod 8 cm

• Duplicating Layouts does not give new instances of the Pods and is probably not a
good idea (apart from local use to avoid delay in reloading Pods)

2.8 Chat Pods

• Format Chat text

• Chat Pod menu icon My Chat Color

• Choices: Red, Orange, Green, Brown, Purple, Pink, Blue, Black

• Note: Color reverts to Black if you switch layouts

• Chat Pod menu icon Show Timestamps

Go to Table of Contents

3 M250 Prsntn 2018J Instructions

3.1 M250 2018J Exam Qs

• M250 Object-oriented Java Programming

https://helpx.adobe.com/adobe-connect/using/starting-attending-meetings.html

10 M250 Revision 2021 23 May 2021

• Presentation 2018J Exam

• Date Monday, 10 June 2019 Time 10:00–13:00

• You should attempt ALL questions

• Note see the original exam paper for exact wording and formatting — these slides
and notes may change some wording and formatting

Go to Solns

3.2 M250 2018J Exam Solns

• The solutions given below are not official solutions

• For some questions, alternatives are given — a student would only have to provide
one

• No marks are given for code comments

• You may assume any import statements required, unless otherwise indicated.

• You may assume that methods receive sensible values when a message is sent,
unless otherwise indicated.

• When writing code, you will not be penalised for minor errors, as long as the meaning
is clear.

Go to Qs

4 M250 Prsntn 2018J Exam Qs

4.1 M250 2018J Exam Q 1

• Scenario Equity is a union of more than 43000 performers. All performers in Equity
have a professional name, known as their equity name which is unique to them, and
can choose to join a local branch of Equity.

• Performers can belong to a local branch which organises regular meetings, for ex-
ample on the second Saturday of each month.

• This question asks you to write parts of the class Performer, whose purpose is to
model this scenario.

• Assume a class Branch which has two private String instance variables, name,
address, a two-argument constructor allowing the branch name and address to be
initialised, an equals method, getter methods for name and address and a setter
method for address.

4.1.1 Q 1(a)

(a)(i) Write a class Performer with the following: (9 marks)

Phil Molyneux M250 Exam 2018J 11

• a private instance variable of type String called equityName

• a private instance variable of type double called payRate, which will be used to hold
the agreed rate of pay for that performer

• a private instance variable of type Branch called branch which will refer to the in-
stance of Branch which that performer has joined

• a public class variable of type double called minPayRate which is the minimum pay
rate agreed by Equity for performers.

• a public single-argument constructor which initializes equityName to the argument
string aName, sets branch to null and sets payRate to minPayRate

• a public setter method for payRate

• a public getter method for branch

• a public setter method for branch

• a public getter method for equityName

(ii) Write a public instance method isInSameBranchAs() that has a Performer argu-
ment.

• This method will return true if the receiver and the argument Performer objects
are members of the same branch, and false otherwise. (5 marks)

(iii) Write a public instance method getFirstName() that has no arguments.

• This method will return a String consisting of all the characters in the equityName,
up to but not including the first space. You may assume that there is a space in the
equityName. (5 marks)

4.1.2 Q 1(b)

(b) Given the code developed in part (a), assume that the following code is part of a
method and is executed:� �

Branch b1; // 1
b1 = new Branch("Kent", "The Alexander Centre"); // 2
Branch b2; // 3
b2 = new Branch("Dorset", "Wessex fm Studios"); // 4
Performer.minPayRate = 9.50; // 5
Performer p1 = new Performer("Happy Bunny"); // 6
Performer p2 = new Performer("Silly Sausage"); // 7
p1.setPayRate(10.00); // 8
p2.setPayRate(20.00); // 9
p1.setBranch(b1); // 10
p2.setBranch(b1); // 11
System.out.println(p1.isInSameBranchAs(p2)); // 12� �

• In the numbered lines of code above, identify all the examples of the following,
stating the line number(s) on which they occur. If there are no examples, state None
explicitly. (7 marks)

(i) messages are sent

(ii) reference variables are declared

(iii) primitive variables are declared

12 M250 Revision 2021 23 May 2021

(iv) object construction

(v) operators are used

(vi) formal arguments are declared

(vii) actual arguments are used

4.1.3 Q 1(c)

(c) For the class Performer, write the public instance method equals() that overrides
the equals() method inherited from Object.

• This method will return true if the equityName of the receiver is the same as the
equityName of the argument object, and otherwise return false. (5 marks)

4.1.4 Q 1(d)

(d) Based on the Performer class written so far, answer the following questions:

(i) What is the nature of the object-oriented relationship between the classes Performer
and Branch? Explain your answer. (2 marks)

(ii) Consider line // 5 in part (b) above. Why can the value of minPayRate be set at this
point when no Performer objects have been constructed? (2 marks)

(iii) Give two examples of how scope applies to the Performer class. One example
should relate to an instance variable and the other should relate to a formal ar-
gument. (5 marks)

(40 marks total)

Go to Soln 1

4.2 M250 2018J Exam Q 2

4.2.1 Q 2(a)

• Scenario This question concerns a number of vehicle classes and the Drivable
interface that specifies some common behaviours.

(a) Drivable is a Java interface that specifies three methods accelerate(), brake()
and stop().

These methods take no argument and return no value.

Write down the Drivable interface. (3 marks)

4.2.2 A 2(b)

(b) In this part of the question you will develop code for the Vehicle class. The class
Vehicle inherits directly from Object and implements the Drivable interface.

Phil Molyneux M250 Exam 2018J 13

(i) Write down the header for the Vehicle class. (1 mark)

(ii) Suppose Vehicle has a single private instance variable speed of type int. Vehicle
implements the methods of the Drivable interface according to the following rules.

• accelerate() causes speed to be increased by 1.

• brake() causes speed to be decreased by 1, as long as it is greater than 0, otherwise
it leaves it unchanged.

• stop() causes speed to be repeatedly decreased by 1 until it reaches 0.

• Write the code for these three methods. (5 marks)

4.2.3 Q 2(c)

(c) In this part of the question you will develop code for the Car class. The class Car is
a subclass of Vehicle.

Car has two extra int instance variables maxSpeed and increment. (7 marks)

(i) When an instance of Car receives the message accelerate(), it increases its speed
by increment if that would not take the speed over maxSpeed, otherwise speed is
left unchanged.

Write the accelerate() method for Car.

(ii) What is the benefit of adding the @Override annotation to the accelerate() method
for Car?

(iii) Suppose that we want to keep a count of the number of Car objects that have been
created. Explain using code fragments how we could achieve this.

4.2.4 Q 2(d)

(d) Suppose that a class called SpeedBoat, which is unrelated to Car, also implements
the Drivable interface, and that a class called Service has a public constructor
that takes a formal argument of type Drivable. (4 marks)

(i) Briefly explain why lines //1 and //2 below are valid:� �
Car c = new Car();
SpeedBoat sb = new SpeedBoat();
Service s1 = new Service(c); //1
Service s2 = new Service(sb); //2� �
(iii) Suppose that we want to keep a count of the number of Car objects that have been

created. Explain using code fragments how we could achieve this.

4.2.5 Q 2(e)(f)

(e) Describe three differences between abstract classes and interfaces. (6 marks)

(f) Suppose that SportsCar is a subclass of Car. Describe what needs to be added to
the class SportsCar (if anything) so that SportsCar will implement the interface
Drivable. Briefly justify your answer. (4 marks)

14 M250 Revision 2021 23 May 2021

(30 marks total)

Go to Soln 2

4.3 M250 2018J Exam Q 3

• Scenario Caravan owners who belong to a club make bookings in advance for their
stays on various sites, giving their estimated time of arrival for each stay on a site.

The club wants to look at the pattern of estimated arrival times for all their caravan
sites for a particular weekend so that they can organise staffing appropriately.

Two classes, Booking and CaravanSite, have already been partially completed.

• The class Booking already has the following instance variables, constructor and get-
ters:

• A private instance variable makeAndModel of type String which represents the make
and model of the caravan e.g. "Swift Basecamp",

• A private instance variable owner of type String, which represents an owner name
e.g. "Sue Smith",

• A private instance variable estArrivalHour of type int, which represents the es-
timated arrival hour as a whole number using the 24-hour clock (e.g. 16 is used to
represent 4pm),

• A three-argument constructor that takes arguments of types String, String and
int and uses them to set the instance variables,

• Getter methods for makeAndModel, owner and estArrivalHour.

• The class CaravanSite already has the following instance variables:

• A private instance variable siteName of type String, which represents the unique
name of the caravan site (e.g. "Park Coppice"),

• A private instance variable maxVans of type int, which represents the maximum
number of caravans that can be accommodated on that site.

4.3.1 Q 3(a)

(a) In this part of the question you will develop additional code for the CaravanSite
class.

(i) Write down the declaration of a private instance variable called bookings, which
should be declared as a List of Booking elements, representing bookings currently
made for the site, in the order the bookings were made. (1 mark)

(ii) Write a two-argument constructor for CaravanSite that takes a String argument
representing the name of the caravan site, and an int representing the maximum
number of caravans that can be accommodated, and initialises the instance variables
accordingly. The constructor should also initialise bookings with a suitable empty
collection. (3 marks)

Phil Molyneux M250 Exam 2018J 15

(iii) Write a public instance method addBooking() that takes a Booking argument rep-
resenting the booking of a caravan.

As long as the number of bookings already made is less than the maximum number
of caravans the site can accommodate, the Booking is added to bookings.

If there is not enough room then a suitable message is printed.

In both cases the remaining number of vans that can still be accommodated after
this booking is returned. (4 marks)

4.3.2 Q 3(b)

(b) In this part of the question you will develop extra code for the Booking class so that
instances of Booking may be sorted from earliest to latest estimated arrival hour.

Assume the equals() and hashCode() methods for Booking have already been
written.

(i) Write down the new class header for Booking, which must now implement an appro-
priate interface. (1 mark)

(ii) Write a compareTo(Booking) method for Booking that will allow ordering of Booking
instances as above. (3 marks)

4.3.3 Q 3(c)

(c) Write a public instance method orderBookings() for the CaravanSite class that
takes no argument and returns no value.

This method should reorder the elements of bookings by estimated arrival hour.
(2 marks)

4.3.4 Q 3(d)

(d) In this part of the question you will develop code for a further class, CaravanClub.
This class will help to determine the pattern of estimated arrival times across all
caravan sites.

The class CaravanClub requires a single private instance variable arrByTime. This
is a map where the key is a particular estimated arrival hour as a whole number (e.g.
16) and the value is an unordered set of Booking with that arrival time, from all
caravan sites.

(i) Write down the declaration of a private instance variable arrByTime of a suitable
interface type to reference the map described above. (2 marks)

(ii) Write a zero argument constructor that initialises arrByTime to a suitable collection.
(2 marks)

(iii) Write the public instance method addSite(). This method takes a CaravanSite
instance as the argument and has no return value. The method adds each of the

16 M250 Revision 2021 23 May 2021

bookings for that particular site to the arrByTime map, according to the bookings’
estimated arrival hours.

Assume that the class CaravanSite has a public instance method getBookings()
that returns a list of the bookings for that site.

Note that you cannot assume that a particular estimated arrival hour exists as a key
in the map. (8 marks)

4.3.5 Q 3(e)

(e)(i) Why is it preferable to declare a collection variable in terms of an interface type,
such as List, rather than a concrete class, such as ArrayList, which implements
that interface? Explain your answer, making two points. (2 marks)

(ii) Give two ways in which an ArrayList is different from an array. (2 marks)

(30 marks total)

Go to Soln 3

5 M250 Prsntn 2018J Exam Solns

5.1 M250 2018J Exam Soln 1

5.1.1 Soln 1(a)

(a)(i) Q 1� �
1 public class Performer {
2 private String equityName ;
3 private double payRate ;
4 private Branch branch ;
5 public static double minPayRate ;

7 public Performer(String aName) {
8 super() ;
9 equityName = aName ;

10 branch = null ;
11 payRate = Performer.minPayRate ;
12 /* or */
13 // payRate = minPayRate ;
14 }� �� �

1 public void setPayRate(double aPayRate) {
2 payRate = aPayRate ;
3 }

5 public Branch getBranch() {
6 return branch ;
7 }

9 public void setBranch(Branch aBranch) {
10 branch = aBranch ;
11 }

13 public String getEquityName() {
14 return equityName ;
15 }� �

Phil Molyneux M250 Exam 2018J 17

(ii)� �
1 public boolean isInSameBranchAs(Performer p) {
2 return branch.equals(p.getBranch()) ;
3 /* or */
4 // return getBranch().equals(p.getBranch()) ;
5 }� �

(iii)� �
1 public String getFirstName() {
2 int spaceIndex = equityName.indexOf(" ") ;
3 /* or */
4 // int spaceIndex = equityName.indexOf(’ ’) ;
5 return equityName.substring(0,spaceIndex) ;
6 }� �

5.1.2 Soln 1(b)

(b)

(i) messages are sent: lines 8,9,10,11,12

(ii) reference variables are declared: lines 1,3, 6, 7 (note latter two include initialization)

(iii) primitive variables are declared: None

(iv) object construction: lines 2,4,6,7

(v) operators are used: 2,4,6,7

(vi) formal arguments are declared: None

(vii) actual arguments are used: 2,4,6,7,8,9,10,11,12

Go to Q 1

5.1.3 Soln 1(c)

(c)� �
1 @Override
2 public boolean equals(Object obj) {
3 Performer pfmr = (Performer) obj ;
4 return equityName.equals(pfmr.equityName) ;
5 }� �

• This version assumes that the object is of type Performer

• See below for a more robust version

(c) Alternative, more robust version� �
1 @Override
2 public boolean equals(Object obj) {
3 if (obj == this) {
4 return true ;
5 }
6 if (!(obj instanceof Performer)) {
7 return false ;
8 }
9 Performer pfmr = (Performer) obj ;

10 return equityName.equals(pfmr.equityName) ;
11 }� �

18 M250 Revision 2021 23 May 2021

• It is recommended to override hashcode() if you are overriding equals()

5.1.4 Soln 1(d)

(d)

(i) A Performer object has a Branch — object composition not inheritance

(ii) minPayRate can be set since it is a class (static) variable and hence already exists
with the class Performer definition.

(iii) The scope of a class member such as an instance variable is the entire class (except
where shadowed by another declaration with the same name — there is none here).

The scope of a formal parameter is the body of the method

Go to Q 1

5.2 M250 2018J Exam Soln 2

5.2.1 Soln 2(a)

(a) Q 2� �
1 public interface Drivable {
2 void accelerate() ;
3 void brake() ;
4 void stop() ;
5 }� �

• The method description modifiers of abstract and public are implicit

5.2.2 Soln 2(b)

(b)� �
1 public class Vehicle implements Drivable {
2 private int speed ;

4 public Vehicle() {
5 super() ;
6 speed = 0 ;
7 }

9 public void accelerate() {
10 speed = speed + 1 ;
11 }
12 // } // continued below� �� �

1 public void brake() {
2 if (speed > 0) {
3 speed = speed - 1 ;
4 }
5 }

7 public void stop() {
8 while (speed > 0) {
9 speed = speed - 1 ;

10 }
11 }

Phil Molyneux M250 Exam 2018J 19

13 public int getSpeed() {// required later
14 return speed ;
15 }

17 public void setSpeed(int spd) {// required later
18 speed = spd ;
19 }
20 }� �

5.2.3 Soln 2(c)

(c)� �
1 public class Car extends Vehicle {
2 private int maxSpeed ;
3 private int increment ;
4 public static int count = 0 ; // Q2(c)(iii)

6 public Car() {
7 super() ;
8 Car.count = Car.count + 1 ; // Q2(c)(iii)
9 }

11 @Override
12 public void accelerate() {
13 if ((getSpeed() + increment) <= maxSpeed) {
14 super.setSpeed(super.getSpeed() + increment) ;
15 }
16 }
17 }� �

(c)

(ii) @Override gets the Java compiler to check that the method signature is correct —
see Unit 6, page 15

(iii) See comments on code above

5.2.4 Soln 2(d)

(d) Q 2

(i) Both Car and SpeedBoat implement the interface Drivable and the Service con-
structor takes an argument of type Drivable

(ii) Actual methods will depend on the class of object at runtime

5.2.5 Soln 2(e)

(e)

• Only one abstract class can be inherited but a class may implement more than one
interface

• Abstract classes can declare instance variables but interface can not

• Up to Java 8, interfaces could not declare default methods

20 M250 Revision 2021 23 May 2021

5.2.6 Soln 2(f)

(f)

Nothing is required since SportsCar will inherit the interface fields from Car

Go to Q 2

5.3 M250 2018J Exam Soln 3

5.3.1 Soln 3(a)

(a) Q 3� �
1 public class CaravanSite {
2 // provided
3 private String siteName ;
4 private int maxVans ;

6 private List<Booking> bookings ;

8 public CaravanSite(String aName, int aMaxVans) {
9 super() ;

10 siteName = aName ;
11 maxVans = aMaxVans ;
12 bookings = new ArrayList<>() ;
13 }
14 // } // continued below� �� �

1 public int addBooking(Booking aBooking) {
2 if (bookings.size() < maxVans) {
3 bookings.add(aBooking) ;
4 }
5 else {
6 System.out.println("No space") ;
7 }
8 return maxVans - bookings.size() ;
9 }� �

5.3.2 Soln 3(b)

(b) Q 3� �
1 public class Booking implements Comparable<Booking> {
2 // provided
3 private String makeAndModel ;
4 private String owner ;
5 private int estArrivalHour ;

7 public int compareTo(Booking aBooking) {
8 return estArrivalHour - aBooking.estArrivalHour ;
9 /* or */

10 // Integer.compare(estArrivalHour,
11 // aBooking.estArrivalHour)
12 }
13 }� �

(b) Q 3 provided parts� �
1 public Booking(String aMandM
2 ,String anOwner
3 ,int anHour) {
4 super() ;
5 makeAndModel = aMandM ;

Phil Molyneux M250 Exam 2018J 21

6 owner = anOwner ;
7 estArrivalHour = anHour ;
8 }� �

(b) Q 3 provided parts� �
1 public String getMakeAndModel() {
2 return makeAndModel ;
3 }

5 public String getOwner() {
6 return owner ;
7 }

9 public int getEstArrivalHour() {
10 return estArrivalHour ;
11 }� �

(b) Q 3 provided parts� �
1 @Override
2 public boolean equals(Object obj) {
3 Booking bkg = (Booking) obj ;
4 return makeAndModel.equals(bkg.makeAndModel)
5 && owner.equals(bkg.owner) ;
6 }

8 @Override
9 public int hashCode() {

10 return (20 + makeAndModel.hashCode())
11 * owner.hashCode() ;
12 }� �

5.3.3 Soln 3(c)

(c) Q 3� �
1 public void orderBookings() {
2 Collections.sort(bookings) ;
3 }

5 public List<Booking> getBookings() {
6 return bookings ;
7 }� �

5.3.4 Soln 3(d)

(d) Q 3� �
1 public class CaravanClub {
2 private Map<Integer,Set<Booking>> arrByTime ;

4 public CaravanClub() {
5 arrByTime = new HashMap<>() ;
6 }

8 public void addSite(CaravanSite aSite) {
9 for (Booking aBooking : aSite.getBookings()) {

10 Integer hour = aBooking.getEstArrivalHour() ;
11 if (!(arrByTime.containsKey(hour))) {
12 arrByTime.put(hour, new HashSet<>()) ;
13 }
14 arrByTime.get(hour).add(aBooking) ;
15 }
16 }
17 }� �

22 M250 Revision 2021 23 May 2021

5.3.5 Soln 3(e)

(e) Q 3

(i) The interface is the real type of the variable, parameter, method of other field and
should be used instead of the implementation class — this enables flexibility and
maintainability

See page 76 of Unit 10 Sets and Maps and ?, Item 64, page 280

(ii) ArrayList is expandable unlike Array — it implements the List interface which
has different fields and methods to Array

See ?, Item 28, page 126

Go to Q 3

6 Exam Reminders

• Read the Exam arrangements booklet

• Before the exam — check the date, time and location (and how to get there)

• At the exam centre – arrive early

• Bring photo ID with signature

• Use black or blue pens (not erasable and not pencil) — see Cult Pens for choices —
pencils for preparing diagrams (HB or blacker)

• Practice writing by hand

• In the exam — Read the questions — carefully — before and after answering them

• Don’t get stuck on a question — move on, come back later

• But do make sure you have attempted all questions

• . . . and finally Good Luck

7 White Slide

Author Phil Molyneux Written 23 May 2021 Printed 19th May 2021
Subject dir: 〈baseURL〉/OU/Courses/Computing/M250/M250Presentations/M250Prsntn2020J
Topic path: /M250Prsntn2020JExam/M250Prsntn2020JExamRevision/M250Prsntn2020JExamRevision.pdf

http://www2.open.ac.uk/students/help/exam-arrangements-booklet
http://www.cultpens.com/

	Agenda
	Introductions

	Adobe Connect
	Student View
	Settings
	Student & Tutor Views
	Sharing Screen & Applications
	Ending a Meeting
	Invite Attendees
	Layouts
	Chat Pods

	Instructions 2018J
	Qs
	Solns

	Qs
	Q 1
	Q 1(a)
	Q 1(b)
	Q 1(c)
	Q 1(d)

	Q 2
	Q 2(a)
	A 2(b)
	Q 2(c)
	Q 2(d)
	Q 2(e)(f)

	Q 3
	Q 3(a)
	Q 3(b)
	Q 3(c)
	Q 3(d)
	Q 3(e)

	Solns
	Soln 1
	Soln 1(a)
	Soln 1(b)
	Soln 1(c)
	Soln 1(d)

	Soln 2
	Soln 2(a)
	Soln 2(b)
	Soln 2(c)
	Soln 2(d)
	Soln 2(e)
	Soln 2(f)

	Soln 3
	Soln 3(a)
	Soln 3(b)
	Soln 3(c)
	Soln 3(d)
	Soln 3(e)

	Exam Reminders
	White Slide

