Undergraduate ICT and Computing: Level 2
M257 Putting Java to work

M257 Exam Handbook

The Open University

Important: This Exam Handbook may be taken into the Examination but it must not contain any
annotations or any other additions except for any official Errata that appear on the M257 website.

The materials are drawn chiefly from the course units and Java APIs. Although this handbook includes
material not discussed in M257, because we may wish to refer to such material in an exam, this does not
imply a need to study details outside of the course materials.

This booklet is not designed to be read from cover to cover; rather you should use its table of contents to
find the documentation for a particular method, class or interface. The information presented has
generally been abbreviated.

Methods and constructors are public unless otherwise indicated.

Contents

1 SOME JAVA SYNTAX 2
1.0 Keywords 2
1.1 Operators 2
1.2 TIteration 3
1.3 Selection 4
1.4 Arrays 5
1.5 Exceptions 5
2 JAVA API EXCERPTS 6
2.0 Errors and exceptions 6
2.1 Some common methods of the Thread class 7
2.2 Some common methods of the String class 8
2.3 Some important interfaces 9
2.4 Collection classes 11
2.5 Input and output streams and related classes 11
2.6 Java Swing classes 18
2.7 Event handling 22
2.8 Layout managers 23
2.9 Graphics 24
2.10 Some common methods of the MID1et class 24
Copyright © 2008 The Open University ISBN 978 07492 1996 3

Printed in the United Kingdom 21

1 Some Java syntax

1.0 Keywords

abstract | case default | final if long return this
boolean catch do finally | implements | new short throw
break char double float instanceof | package static throws
byte class else for int private super try
continue | enum interface protected | switch void
extends public synchronized | while
1.1 Operators
Arithmetic and assignment operators
Symbol Operator Written as Meaning
* multiplication a * b a times b
/ division a /b a divided by b
% remainder a % b the remainder of (a divided by b)
+ addition a +b a addedtob
- subtraction a-b a minus b
++ postfix increment x++ increments x by 1 and returns the old value
++ prefix increment ++x increments x by 1 and returns the new value
-- postfix decrement X—= decrements x by 1 and returns the old value
-- prefix decrement --x decrements x by 1 and returns the new value
= assign a=> put the value of b into a
+= add and assign a +=Db put the value of a + b into a
-= subtract and assign a-=>» put the value of a — binto a
*= multiply and assign a *=b put the value of a * b into a
/= divide and assign a /=b put the value of a / binto a
&= remainder and a %$=b put the value of 2 % binto a
assign

Logical and relational operators

Symbol Operator Written as Meaning
&& Logical and a && b returns true if both a and b are true, otherwise
false
|l Logical or allb returns false if both a and b are false, otherwise
true
! Logical negation la returns false if a is true, returns true if a is false
== equal to X ==y true if x equals y, otherwise false
> greater than X >y true if x is greater than vy, otherwise false
< less than x <y true if x is less than vy, otherwise false
>= greater than or equal X >=y true if x is greater than or equal to y, otherwise
to false
<= less than or equal to x <=y true if x is less than or equal to y, otherwise
false
= not equal to x l=vy true if x is not equal to y, otherwise false
1.2 Iteration
Keyword Meaning Example of use
for A looping statement indicating a for (int j = 1; 3 < 107 3++)
starting value of a control variable, a {
condition to evaluate that determines System.out.println(j + ")");
when the loop should end, and an)
adjustment to the control variable,
together with statements to be
performed while the loop condition
holds.
A variant form of for-loop called for- for (Pupil p : pupilCollection)
each iterates over the objects {
contained in a collection implementing if (p.getBAge() > 10)
Iterable, or an array, and extracts (
each of them. If the collection '
guarantees ordering, that order is System.out.println(p);
used. }
}
while A looping statement, the body of which | While (countdown != 0)
will be repeatedly executed as longas | {
some condition continues to evaluate System.out.println (countdown) ;
to true.
countdown--;
}
A variant form of while begins with the | 9°
keyword do. In this case, the condition | {
is only checked after the first execution System.out.println (countdown) ;
of the body. .
countdown--;
}
while (countdown > 1);

1.3 Selection

Keyword Meaning Example of use
if A selection statement, allowing the if (day == 0)
flow of program control to be changed. | {
A logical condition is evaluated and a System.out.println("Sunday") ;

block of code executed only if the
condition evaluates to true.

Optionally the keyword e1se can be if (num $ 2 == 0)

used to specify code to be executed if | {

the condition evaluates to false. System.out.println("even");
}
else

System.out.println ("odd");
}

switch This keyword is used for a selection switch (val)
statement allowing choice of one of {
several paths of program control

A} T .

depending on the value of an case '@
argument (here val) of primitive, enum {
or wrapper type. videoId = 3;
break;
}
case 'b':

{
videoId = 19;
break;
}
default:
{
System.out.println ("42");

break;

1.4 Arrays

Aspects Example of use

A linear form of storage, indexed by an int beginning | 1Rt [} ia; //array of ints

from 0. An array can be declared using the type it String[] sa; //array of String refs
stores, followed by square brackets.

Arrays are instantiated using the keyword new and ia = new int[4]; //room for 4 ints
then the type, with a size argument.

Default values are used to initialize an array if no char(] myChars = {'a', 'c', 'x'};
explicit initialization is performed. You can also use

an array initializer when creating an array.

Array contents are accessed using an int index. char £ = myChars([0];

An array's length can be found using its 1ength int len = ia.length;

instance data.

1.5 Exceptions

Keyword Meaning Example of use
try Introduces a block of code in whichan | try
exception can occur. {
//something
}
catch Follows a try block and introduces catch (Exception ex)
code to handle an exception of the {
specified type. System.out.println ("Caught exception
ex.getMessage ());
}
finally Introduces a block of code that will finally
always be performed, after a try-catch (
statement.
//always do something
}
throws Used to Indicate that one or more throws Exception
exceptions (separated by commas)
may be thrown by a method or
constructor.
throw Used to throw an exception. throw new Exception();

2 Java API excerpts

2.0 Errors and exceptions

The following table includes a number of common exception types.

Class Meaning

ArithemeticException Thrown when an illegal arithmetic condition occurs for integral

extends RunTimeException types.

ArrayIndexOutOfBoundsException | Thrown by an attempt to access an element in an array which

. . i tside its declared boundaries.
extends RunTimeException IS ou

EOFException Thrown on attempting to read past the end of a file or stream.

extends IOException

Exception Top-level class of checked exceptions.

extends Throwable

FileNotFoundException Thrown on attempting to open or write to a file and the file is

extends IOException not found.

IOException General class of exceptions due to failed or interrupted input

extends Exception and output operations.

MalformedURLException Thrown on constructing an incorrectly formed URL.

extends IOException

NullPointerException Thrown on an attempt to access an object from a null

. . reference.
extends RunTimeException ererence

RunTimeException Top-level class of exceptions that may be thrown by the virtual

extends Exception machine at runtime (unchecked).

Throwable Top-level class of all errors and exceptions (unchecked and

extends Object checked).

UnsupportedOperationException | Thrown to indicate that the requested operation is not
supported; for example, if an optional interface operation is not

extends RunTimeException
supported.

Error Top-level class of exceptions that occur when some internal
Java error has happened - for example, the Java system has

extends Throwable
* " run out of memory (unchecked).

2.1 Some common methods of the Thread class

The Java Virtual Machine allows an application to have multiple threads of execution running concurrently.

Threads are instances of the Thread class.

Sample methods

Meaning

String getName ()

Returns this thread's name.

int getPriority()

Returns this thread's priority.

void join ()

Waits for this thread to die.

void run()

If this thread was constructed using a separate Runnable run
object, then that Runnable object’'s run method is called;
otherwise, this method does nothing and returns.

void setName (String name)

Changes the name of this thread to be equal to the argument
name.

void setPriority(int priority)

Changes the priority of this thread.

static void sleep(long millis)

Causes the currently executing thread to sleep (temporarily
cease execution) for the specified number of milliseconds.

void start ()

Causes this thread to begin execution; the Java Virtual
Machine calls the run method of this thread.

String toString()

Returns a string representation of this thread, including the
thread's name, priority, and thread group.

static void yield()

Causes the currently executing thread object to temporarily
pause and allow other threads to execute.

2.2 Some common methods of the string class

Sample Methods

Meaning

char charAt (int i)

Finds and returns the character at position i.

boolean equals (Object o)

Compares this string to the specified object.

int indexOf (int ch)

Returns the index within this string of the first occurrence of the
specified character or -1 if not found.

int indexOf (String str)

Searches for a particular string st r within the destination object
and returns the position of the first index of str within the string.
The search starts at the front of the string.

int lastIndexOf (String str)

This is the same as indexOf but searches from the back of the
destination string object.

int length{()

Returns the length of the string.

String substring(int
beginIndex, int endIndex)

This returns a substring starting at position beginIndex and
ends at position endIndex — 1 of the destination string object.

String toLowerCase ()

Returns the characters in this String in lower case using the
rules of the default locale.

String toUpperCase ()

Returns the characters in this String in upper case using the
rules of the default locale.

String valueOf (x)

Returns a string representation of the argument x, which may be
of any primitive type, or of type Object.

2.3 Some important interfaces

In some cases* we have listed only the more commonly required methods defined by the interface. The list
of classes that implement the interfaces are not intended to be complete.

Interface Sample methods Implemented
by
Collection<E> boolean add(E o) The JDK
extends Iterable<E> boolean contains (Object o) gnvﬂes
boolean isEmpty () implement-

*

The root interface in the collection
hierarchy representing a group of

Iterator<E> iterator ()

boolean remove (Object o)

ations only of
more specific
subinterfaces

objects, known as its elements. int size() Iik.e Set and
Object[] toArray() List.
Comparable<T> int compareTo(T o) Boolean
. . for order. Character
of each class that implements it.
Double
Float
Integer
Long
Short
String
Tterable<T> Iterator<T> iterator () ArrayList
. . HashSet
Implementing this interface allows an . .
. LinkedList
object to be the target of a for-each
TreeSet
statement.
Iterator<kE> boolean hasNext () Scanner
An iterator over a collection. E next ()
The remove operation is optional; that void remove ()
is, a class can throw
UnsupportedOperationException
if remove is not implemented.
List<E> In addition to Collection methods, ArrayList
extends Collection<E> E get(int index) LinkedList
* int indexOf (Object o)
. E t(int index, E el t
An ordered collection. set(int index element)
Map<K, V> boolean containsKey (Object key) HashMap
* boolean containsValue (Object value)
TreeMap
. V get (Object ke
An object that maps keys to values. get (0b] v)
V put (K key, V value)
int size()
Runnable void run() Thread

The Runnable interface should be
implemented by any class whose
instances are intended to be executed
by a thread.

Interface Sample methods Implemented
by
Serializable The serialization interface has no methods or ArrayList
Implementing this interface enables flelds'and Serves only to identify the semantics HashMap
serializability of a class of being serializable.
’ HashSet

Qlasses thgt do not implement thls LinkedList
interface will not have any of their state
serialized or deserialized. All subtypes TreeMap
of a serializable class are themselves

L TreeSet
serializable.
Set<E> In addition to Collection methods, HashSet
extends Collection<E> boolean equals (Object o) TreeSet
* boolean isEmpty()
A collection that contains no duplicate
elements.
SortedMap<K, V> In addition to Map methods, TreeMap
extends Map<K, V> K firstKey()
* K lastKey ()
A map that further guarantees that it will
be in ascending key order according to
the natural ordering of its keys (see
Comparable).
SortedSet<E> In addition to Set methods, TreeSet

extends Set<E>

*

A set that further guarantees that its
iterator will traverse the set in ascending
element order, sorted according to the
natural ordering of its elements (see
Comparable).

E first ()
E last()

SortedSet<E> subSet (E fromEl,
E toEl)

10

2.4 Collection classes

Legacy data structures such as Hashtable and Stack and Vector have been omitted.

Collection class Meaning Implements

ArrayList<E> Can store a variable number of references, similar to an Collection<k>
array. Iterable<E>

List<E>

Serializable

HashMap<K, V> Hash table based implementation of the Map interface. Map<K, V>
Serializable

HashSet<E> Implements the Set interface, backed by a hash table. Collection<k>
Iterable<E>

Serializable
Set<E>

LinkedList<E> | Linked listimplementation of the List interface. Collection<k>
Iterable<E>

List<E>

Serializable

TreeMap<K, V> Tree based implementation of the SortedMap interface. Map<k, V>
Serializable

SortedMap<K, V>

TreeSet<E> Implements the set and the SortedSet interfaces, Collection<k>
backed by a TreeMap. Iterable<E>

Serializable
Set<E>
SortedSet<E>

2.5 Input and output streams and related classes

A stream is a sequence of bytes and the various stream classes provide ways of interacting
with such streams. We have only listed the more commonly used input and output streams.

Classes whose names end in Stream handle raw data in terms of bytes. Bytes are read as
int values in the range 0 to 255. If no byte is available because the end of the stream has
been reached, —1 is returned.

Classes whose names end in Reader or Writer handle character data, represented as an
int.

Stream methods may throw an TOException.

The remainder of this document is printed in a landscape format to accommodate
some wide tables.

11

2.5.1 Input streams

We list here some of the more commonly used input streams.

InputStream and its descendants

Stream Sample methods and comments Constructors

InputStream void close() InputStream()

The abstract superclass of all | abstract int read()
classes representing an input

stream of bytes. int read(byte[] b)

Methods listed here are also
available to subclasses (but
may have been overridden).

FileInputStream see InputStream FileInputStream(File f)
Obtains bytes from a file. FileInputStream(String name)
BufferedInputStream Adds methods to mark a place in a stream | BufferedInputStream(InputStream in)

Adds ability to buffer input to and return to it, while the readLimit is

another input stream. not exceeded.

void mark (int readlimit)
volid reset ()

DatalInputStream Adds methods to read primitive types, for | DataInputStream(InputStream in)

Reads from an underlying example:

input stream and converts to float readFloat ()
primitive types.

boolean readBoolean()

12

Reader and its descendants

Classes based on Reader are for reading character streams.

A read character is returned as an int value.

Stream Sample methods and comments Constructors
Reader abstract void close() protected Reader ()
Abstract class for reading int read()

character streams.

Methods listed here are also
available to subclasses (but
may have been overridden).

BufferedReader Adds methods to mark a place in a BufferedReader (Reader in)
stream and return to it, while the

Read text from a character- R
readLimit is not exceeded.

input stream, buffering
characters. void mark (int readLimit)

BufferedReader (Reader in, int bufSiz)

String readLine ()

void reset ()

InputStreamReader see Reader InputStreamReader (InputStream in)

A bridge from byte streams
to character streams.

FileReader see Reader FileReader (File f)

Convenience class for FileReader (String name)
reading character files.

13

2.5.2 Output streams

Operations may throw an TOException. Output streams may be flushed.

OutputStream and its descendants

A character to be written is contained in the 16 low-order bits of a given integer value; the 16 high-order bits
are ignored. (So, an int represents a single character to be written.)

Stream

Sample methods and comments

Constructors

OutputStream

The abstract superclass of all classes
representing an output stream of bytes.

Methods listed here are also available to
subclasses (but may have been overridden).

void close ()
void flush ()
void write (byte[] b)

void write (int Db)

OutputStream()

FileOutputStream
extends OutputStream

An output stream for writing bytes to a file.

See OutputStream

FileOutputStream(File f)
FileoutputStream (String name)

FileoutputStream(String name, boolean append)

DataOutputStream
extends OutputStream

Writes primitive types to an underlying output
stream.

Adds methods for writing primitive
types, for example:

void writelInt (int wv)

volid writeFloat (float v)

DataOutputStream (OutputStream out)

BufferedOutputStream
extends FilterOutputStream

Adds buffering to another output stream.

See OutputStream

BufferedOutputStream (OutputStream out)

PrintStream

extends FilterOutputStream

Adds ability to print representations of various
data values.

Adds print and println
methods for primitive data types, for
example:

print (boolean b)

println(char c¢)

PrintStream (File f)
PrintStream (OutputStream out)
PrintStream (OutputStream out, boolean autoflush)

PrintStream(String filename)

14

Writer and its descendants

Stream

Sample methods and comments

Constructors

Writer

streams.

Methods listed here are also
available to subclasses (but may
have been overridden).

Abstract class for writing to character

abstract void close()
abstract void flush/{()
void write (int c)

void write(String s)

protected Writer ()

BufferedWriter

Wirites text to a character-output
stream, buffering characters.

See Writer

BufferedWriter (Writer out)

OutputStreamWriter

A bridge from character streams to
byte streams.

See Writer

OutputStreamWriter (OutputStream out)

PrintWriter

Prints formatted representations of
objects to a text-output stream.

Adds print and println methods
for primitives and string, for
example:

print (int b)

println(String s)

PrintWriter (File f)

PrintWriter (OutputStream out)

PrintWriter (OutputStream out, boolean autoflush)
PrintWriter (String filename)

PrintWriter (Writer out)

FileWriter

Convenience class for writing
character files.

See Writer

FileWriter (File f)
FileWriter (File f, boolean append)

FileWriter (String filename)

15

2.5.3 Standard streams

Stream

Comments

Examples

System.in

Standard input, normally the
keyboard.

in is a static InputStream in the
System class.

This stream is already open and ready to
supply input data.

Scanner scnr = new Scanner (System.in)

System.out

Standard output, normally
the screen console.

out is a static PrintStream in the
System class.

This stream is already open and ready to
accept output data.

System.out.println ("Off they go!");

System.err

Standard error stream,

normally the screen console.

err is a static PrintStream in the
System class.

This stream is already open and ready to
accept output data.

System.err.println("bad wolf");

16

2.5.4 Scanner

Stream

Sample methods and comments

Sample constructors

Scanner

Implements the
Iterator<String>
interface and can read text
from files, input streams,
strings or any object that
implements the Readable
interface.

The default delimiter for
tokens is whitespace.

boolean hasNext ()
String next () //next token
String nextLine ()

Similar methods are provided for primitive
types, for example:

int nextInt ()

boolean hasNextInt ()

Scanner (File source)
Scanner (InputStream source)

Scanner (String source)

2.5.5 Sockets

Class

Sample methods

Sample constructors

ServerSocket

Implements a server socket
which waits for requests to
come in over a network.

Socket accept ()
void close ()
int getLocalPort ()

String toString/()

ServerSocket (int port)

Socket

Implements a client socket;
an endpoint for
communication between two
machines.

InputStream getInputStream()
OutputStream getOutputStream()
int getPort ()

void close ()

Socket (String host, int port);

17

2.6 Java Swing classes

Note that most widgets have many variant constructors and methods and space would not permit listing them all. In
the examples below we have simply picked the commonest constructors for each widget and some of the frequently

used methods.

Top-level Swing containers — such as JFrame, JDialog and JApplet — are specialized components that provide a
place for other Swing components to paint themselves. These classes inherit from the Container class, and provide
methods to add components, with or without constraints (such as can be applied to a BorderLayout), as well as a

method to remove a component.

See also the event-handling classes in Section 2.7.

Class Sample methods Sample constructors
ButtonGroup Component add(JRadioButton 7j) ButtonGroup ()

A group of radio buttons. void remove (JRadioButton 7j)

JRApplet void add(Component c) JRhpplet ()

An applet container with support for
Swing component architecture.

void add(Component c, Object constraints)
void 1init ()

void remove (Component c)

void setLayout (LayoutManager m)

void start ()

void stop /()

void destroy ()

Default layout for content pane is
BorderLayout

JButton

An implementation of a button that
can be clicked.

String getText ()

void setText (String text)

JButton ()

JButton (String text)

18

Class

Sample methods

Sample constructors

JCheckBox

An implementation of a check box
that can be selected or deselected.

Object[] getSelectedObjects ()
String getText ()
boolean isSelected()

void setSelected (boolean b)

JCheckBox (String text)

JComboBox

A component that combines a button
or editable field and a drop-down list.

void addItem (Object o)

Object getItemAt (int index)
Object getSelectedItem()
Object[] getSelectedObjects()

void setSelectedItem(Object o)

JComboBox ()

JComboBox (Object[] items)

JFrame

A top-level container; the window
used in a graphical user interface.

void add(Component c)

void add(Component ¢, Object constraints)

Container getContentPane ()
void paint (Graphics g)
void remove (Component c)

void repaint ()

void setDefaultCloseOperation (int operation)

void setJMenuBar (JMenuBar m)

void setLayout (LayoutManager m)

void setTitle(String title)
void setVisible (boolean value)

void update (Graphics g)

JFrame (String title)

Default layout is BorderLayout

JLabel

A display area for a short text string.

String getText ()

void setText (String text)

JLabel (String text)

19

Class

Sample methods

Sample constructors

JList

A component that allows the user to
select one or more objects from a
list. Occupies a fixed number of
lines.

Object[] getSelectedValues/()

int[] getSelectedIndices()

JList (Object[] listDhata);

JMenu

An implementation of a pull-down
menu that can be held in a
JMenuBar.

JMenultem add(JMenultem 7)
JMenultem add(String s)
void insert (String s, int pos)

void remove (int pos)

JMenu (String text)

JMenuBar

An implementation of a menu bar
acting as a holder for menus.

JMenu add(JMenu c)

JMenuBar ()

JMenultem

An implementation of an item in a
menu.

void add(Component c)
void init (String text, Icon icon)

void setEnabled(boolean b)

JMenultem (String text)

JPanel

A container used to place widgets
and which can be added to a
JFrame or to another panel.

Component add (Component c)

void add(Component c, Object constraints)
void paintComponent (Graphics g)

void remove (Component c)

void repaint ()

void setLayout (LayoutManager m)

JPanel ()
JPanel (LayoutManager layout)

Default layout is FlowLayout

20

Class Sample methods Sample constructors

JRadioButton void setText (String text) JRadioButton (String text)
An implementation of a radio button, | boolean isSelected() JRadioButton (String text,
used in conjunction with a boolean selected)

ButtonGroup so that only one radio | Vo+¢ SetSelected(boolean b)

button at once can be selected.

JScrollBar int getMinimum () JScrollBar ();

An implementation of a scroll bar int getMaximum () JScrollBar (int orientation);
with a slider that can be moved.)
int getValue()

int setMinimum ()

JScrollPane Used to add scrolling ability to a Component such as a JScrollPane (Component c)

. . JList or JTextArea
A scrolling pane that includes

horizontal and vertical scroll bars
and can contain a list or text area.

JTextArea void append(String s) JTextArea (String s)
An implementation of a multi-line int getLineCount () JTextArea (String s, int rows,
holder of text. int cols)

void setColumns (int c)

)) JTextArea (int rows, int cols)
void setRows (int r)

void setText (String s)

JTextField String getText () JTextField()

An implementation of a single line vold setText (String s) JTextField(int columns)

holder of text. i ,
JTextField (String text)

21

2.7 Event handling

Relevant components have an add method formed from the name of the listener, for example,
addActionListener or addAdjustmentListener. The ActionEvent class provides a method

Object getSource () method to return a reference to the object that produced an event.

Interface

Methods

Events generated by the following

ActionListener

void

actionPerformed (ActionEvent e)

Buttons, lists, menu items and text fields.

AdjustmentListener

void

adjustmentValueChanged (AdjustmentEvent e)

Scroll bars.

ComponentListener

void
void
void

void

componentHidden (ComponentEvent e)
componentMoved (ComponentEvent e)
componentResized (ComponentEvent e)

componentShown (ComponentEvent e)

Visual components; for example, being resized or
hidden.

ContainerListener

void

void

componentAdded (ContainerEvent e)

componentRemoved (ContainerEvent e)

Containers such as frames; for example, when a
component is added or removed.

FocusListener void focusGained(FocusEvent e) Components coming into focus or going out of
void focusLost (FocusEvent e) focus.
TtemListener void itemStateChanged(ItemEvent e) Check boxes, choices and lists.
KeyListener void keyPressed(KeyEvent e) Keys being pressed or released.
void keyReleased (KeyEvent e)
void keyTyped (KeyEvent e)
MouseListener void mouseClicked (MouseEvent e) Actions such as clicking or moving a mouse.
volid mouseEntered (MouseEvent e)
vold mouseExited (MouseEvent e)
voilid mousePressed (MouseEvent e)
voilid mouseReleased (MouseEvent e)
TextListener void textValueChanged (TextEvent e) Text components such as text fields and text areas.
WindowListener void windowClosing (WindowEvent e) Windows being opened or closed.

22

2.8 Layout managers

Layout manager

Effect

Sample code

absolute positioning

Components are placed manually. The layout
manager is specified to be null.

setBounds is used to place and size the
component.

holder.setLayout (null);
JButton Jjb = new JButton();
holder.add (jb) ;

jb.setBounds (10, 10,20, 20);

BorderLayout Components are placed at north, south, east, west, | BorderLayout ()
or centre.) ,
data includes static constants
BorderLayout.NORTH
BorderLayout.SOUTH
BorderLayout .WEST
BorderLayout.EAST
FlowLayout Components are arranged like words in a FlowLayout ()
paragraph, flowing to the next line if they will not fit
on the current one.
GridLayout Components are arranged in a grid of rows and GridLayout (int rows, int cols)

columns (arguments are in that order).

23

2.9 Graphics

Sample methods

Meaning

drawRect (int x, int vy,
int width, int height)

Draws the outline of the specified rectangle. The left and right edges of the
rectangle are at x and x + width. The top and bottom edges are at y and
y + height. The rectangle is drawn using the graphics context's current colour.

drawlLine (int x1, int vy1,
int x2, int y2)

Draws a line, using the current colour, between the points (x1, y1) and
(x2, y2) in this graphics context's coordinate system.

drawOval (int x, int vy,
int width, int height)

Draws the outline of an oval. The result is a circle or ellipse that fits within the
rectangle specified by the x, y, width, and height arguments.

drawString (String s, int x,
int vy)

Renders the text of the specified String, using the current text attribute in the
graphics context, starting from (x, v)

fillOval (int x, int vy,
int width, int height)

Fills an oval bounded by the specified rectangle with the current colour.

void setColor (Color c)

Sets this graphics context's current colour to the specified colour. All subsequent
graphics operations using this graphics context use this specified colour. Colours
are static constants, for example Color.GREEN, Color.RED efc.

2.10 Some common methods of the MID1let class

Method

Meaning

protected abstract void startApp()

Signals the MID1et that it has entered the Active state from
the Paused state.

protected abstract void pauselpp ()

Signals the MID1et to enter the Paused state from the
Active state.

protected abstract void destroyApp (Boolean b) | Signals the MIDlet to terminate, releasing its resources,

and enter the Destroyed state.

Printed in the United Kingdom.

24

