
Undergraduate ICT and Computing: Level 2

M257 Putting Java to work

M257 Exam Handbook

Important: This Exam Handbook may be taken into the Examination but it must not contain any

annotations or any other additions except for any official Errata that appear on the M257 website.

The materials are drawn chiefly from the course units and Java APIs. Although this handbook includes

material not discussed in M257, because we may wish to refer to such material in an exam, this does not

imply a need to study details outside of the course materials.

This booklet is not designed to be read from cover to cover; rather you should use its table of contents to

find the documentation for a particular method, class or interface. The information presented has

generally been abbreviated.

Methods and constructors are public unless otherwise indicated.

Contents

1 SOME JAVA SYNTAX 2

1.0 Keywords 2

1.1 Operators 2

1.2 Iteration 3

1.3 Selection 4

1.4 Arrays 5

1.5 Exceptions 5

2 JAVA API EXCERPTS 6

2.0 Errors and exceptions 6

2.1 Some common methods of the Thread class 7

2.2 Some common methods of the String class 8

2.3 Some important interfaces 9

2.4 Collection classes 11

2.5 Input and output streams and related classes 11

2.6 Java Swing classes 18

2.7 Event handling 22

2.8 Layout managers 23

2.9 Graphics 24

2.10 Some common methods of the MIDlet class 24

Copyright © 2008 The Open University ISBN 978 07492 1996 3

Printed in the United Kingdom 2.1

--

--

1 Some Java syntax

1.0 Keywords

abstract

boolean

break

byte

case

catch

char

class

continue

default

do

double

else

enum

extends

final

finally

float

for

if

implements

instanceof

int

interface

long

new

package

private

protected

public

return

short

static

super

switch

synchronized

this

throw

throws

try

void

while

1.1 Operators

Arithmetic and assignment operators

Symbol Operator Written as Meaning

* multiplication a * b a times b

/ division a / b a divided by b

% remainder a % b the remainder of (a divided by b)

+ addition a + b a added to b

- subtraction a – b a minus b

++ postfix increment x++ increments x by 1 and returns the old value

++ prefix increment ++x increments x by 1 and returns the new value

postfix decrement x-- decrements x by 1 and returns the old value

prefix decrement --x decrements x by 1 and returns the new value

= assign a = b put the value of b into a

+= add and assign a += b put the value of a + b into a

-= subtract and assign a -= b put the value of a – b into a

*= multiply and assign a *= b put the value of a * b into a

/= divide and assign a /= b put the value of a / b into a

%= remainder and

assign

a %= b put the value of a % b into a

2

Logical and relational operators

Symbol Operator Written as Meaning

&& Logical and a && b returns true if both a and b are true, otherwise

false

|| Logical or a || b returns false if both a and b are false, otherwise

true

! Logical negation !a returns false if a is true, returns true if a is false

== equal to x == y true if x equals y, otherwise false

> greater than x > y true if x is greater than y, otherwise false

< less than x < y true if x is less than y, otherwise false

>= greater than or equal

to

x >= y true if x is greater than or equal to y, otherwise

false

<= less than or equal to x <= y true if x is less than or equal to y, otherwise

false

!= not equal to x != y true if x is not equal to y, otherwise false

1.2 Iteration

Keyword Meaning Example of use

for A looping statement indicating a

starting value of a control variable, a

condition to evaluate that determines

when the loop should end, and an

adjustment to the control variable,

together with statements to be

performed while the loop condition

holds.

for (int j = 1; j < 10; j++)

{

 System.out.println(j + ")");

}

A variant form of for-loop called for­

each iterates over the objects

contained in a collection implementing
Iterable, or an array, and extracts

each of them. If the collection

guarantees ordering, that order is

used.

for (Pupil p : pupilCollection)

{

if (p.getAge() > 10)

{

 System.out.println(p);

}

}

while A looping statement, the body of which

will be repeatedly executed as long as

some condition continues to evaluate
to true.

while (countdown != 0)

{

System.out.println(countdown);

countdown--;

}

A variant form of while begins with the do

keyword do. In this case, the condition {

is only checked after the first execution System.out.println(countdown);
of the body.

countdown--;

}

while(countdown > 1);

3

1.3 Selection

Keyword Meaning Example of use

if A selection statement, allowing the

flow of program control to be changed.

A logical condition is evaluated and a

block of code executed only if the
condition evaluates to true.

if (day == 0)

{

System.out.println("Sunday");

}

Optionally the keyword else can be

used to specify code to be executed if
the condition evaluates to false.

if (num % 2 == 0)

{

System.out.println("even");

}

else

{

System.out.println("odd");

}

switch This keyword is used for a selection
statement allowing choice of one of
several paths of program control
depending on the value of an

argument (here val) of primitive, enum

or wrapper type.

switch (val)

{

 case 'a':

{

videoId = 3;

break;

}

 case 'b':

{

 videoId = 19;

break;

}

 default:

{

 System.out.println("42");

break;

}

}

4

1.4 Arrays

Aspects Example of use

A linear form of storage, indexed by an int beginning

from 0. An array can be declared using the type it

stores, followed by square brackets.

int[] ia; //array of ints

String[] sa; //array of String refs

Arrays are instantiated using the keyword new and ia = new int[4]; //room for 4 ints

then the type, with a size argument.

Default values are used to initialize an array if no

explicit initialization is performed. You can also use

an array initializer when creating an array.

char[] myChars = {'a', 'c', 'x'};

Array contents are accessed using an int index. char f = myChars[0];

An array's length can be found using its length

instance data.

int len = ia.length;

1.5 Exceptions

Keyword Meaning Example of use

try Introduces a block of code in which an

exception can occur.

try

{

//something

}

catch Follows a try block and introduces

code to handle an exception of the

specified type.

catch(Exception ex)

{

 System.out.println("Caught exception

ex.getMessage());

}

finally Introduces a block of code that will

always be performed, after a try-catch

statement.

finally

{

//always do something

}

throws Used to Indicate that one or more

exceptions (separated by commas)

may be thrown by a method or

constructor.

throws Exception

throw Used to throw an exception. throw new Exception();

5

2 Java API excerpts

2.0 Errors and exceptions

The following table includes a number of common exception types.

Class Meaning

ArithemeticException Thrown when an illegal arithmetic condition occurs for integral

extends RunTimeException
types.

ArrayIndexOutOfBoundsException Thrown by an attempt to access an element in an array which

is outside its declared boundaries.
extends RunTimeException

EOFException Thrown on attempting to read past the end of a file or stream.

extends IOException

Exception Top-level class of checked exceptions.

extends Throwable

FileNotFoundException Thrown on attempting to open or write to a file and the file is

not found.
extends IOException

IOException General class of exceptions due to failed or interrupted input

extends Exception
and output operations.

MalformedURLException Thrown on constructing an incorrectly formed URL.

extends IOException

NullPointerException Thrown on an attempt to access an object from a null

reference.
extends RunTimeException

RunTimeException Top-level class of exceptions that may be thrown by the virtual

extends Exception
machine at runtime (unchecked).

Throwable Top-level class of all errors and exceptions (unchecked and

extends Object
checked).

UnsupportedOperationException Thrown to indicate that the requested operation is not

extends RunTimeException
supported; for example, if an optional interface operation is not

supported.

Error Top-level class of exceptions that occur when some internal

extends Throwable
Java error has happened – for example, the Java system has

run out of memory (unchecked).

6

2.1 Some common methods of the Thread class

The Java Virtual Machine allows an application to have multiple threads of execution running concurrently.
Threads are instances of the Thread class.

Sample methods Meaning

String getName() Returns this thread's name.

int getPriority() Returns this thread's priority.

void join() Waits for this thread to die.

void run() If this thread was constructed using a separate Runnable run

object, then that Runnable object’s run method is called;

otherwise, this method does nothing and returns.

void setName(String name) Changes the name of this thread to be equal to the argument
name.

void setPriority(int priority) Changes the priority of this thread.

static void sleep(long millis) Causes the currently executing thread to sleep (temporarily

cease execution) for the specified number of milliseconds.

void start() Causes this thread to begin execution; the Java Virtual
Machine calls the run method of this thread.

String toString() Returns a string representation of this thread, including the

thread's name, priority, and thread group.

static void yield() Causes the currently executing thread object to temporarily

pause and allow other threads to execute.

7

2.2 Some common methods of the String class

Sample Methods Meaning

char charAt(int i) Finds and returns the character at position i.

boolean equals(Object o) Compares this string to the specified object.

int indexOf(int ch) Returns the index within this string of the first occurrence of the
specified character or -1 if not found.

int indexOf(String str) Searches for a particular string str within the destination object

and returns the position of the first index of str within the string.

The search starts at the front of the string.

int lastIndexOf(String str) This is the same as indexOf but searches from the back of the

destination string object.

int length() Returns the length of the string.

String substring(int This returns a substring starting at position beginIndex and
beginIndex,int endIndex) ends at position endIndex – 1 of the destination string object.

String toLowerCase() Returns the characters in this String in lower case using the

rules of the default locale.

String toUpperCase() Returns the characters in this String in upper case using the

rules of the default locale.

String valueOf(x) Returns a string representation of the argument x, which may be
of any primitive type, or of type Object.

8

2.3 Some important interfaces

In some cases* we have listed only the more commonly required methods defined by the interface. The list

of classes that implement the interfaces are not intended to be complete.

Interface Sample methods Implemented

by

Collection<E>

extends Iterable<E>

*

The root interface in the collection

hierarchy representing a group of

objects, known as its elements.

boolean add(E o)

boolean contains(Object o)

boolean isEmpty()

Iterator<E> iterator()

boolean remove(Object o)

int size()

Object[] toArray()

The JDK

provides

implement­

ations only of

more specific

subinterfaces
like Set and

List.

Comparable<T>

Imposes a total ordering on the objects

of each class that implements it.

int compareTo(T o)

Compares this object with the specified object

for order.

Boolean

Byte

Character

Double

Float

Integer

Long

Short

String

Iterable<T>

Implementing this interface allows an

object to be the target of a for-each

statement.

Iterator<T> iterator() ArrayList

HashSet

LinkedList

TreeSet

Iterator<E> boolean hasNext() Scanner

An iterator over a collection. E next()

The remove operation is optional; that void remove()

is, a class can throw
UnsupportedOperationException

if remove is not implemented.

List<E> In addition to Collection methods, ArrayList

extends Collection<E> E get(int index) LinkedList

* int indexOf(Object o)

 An ordered collection.
E set(int index, E element)

Map<K,V>

*

An object that maps keys to values.

boolean containsKey(Object key)

boolean containsValue(Object value)

V get(Object key)

V put(K key, V value)

int size()

HashMap

TreeMap

Runnable void run() Thread

The Runnable interface should be

implemented by any class whose

instances are intended to be executed

by a thread.

9

Interface Sample methods Implemented

by

Serializable The serialization interface has no methods or ArrayList

Implementing this interface enables

serializability of a class.

fields and serves only to identify the semantics

of being serializable.
HashMap

HashSet

Classes that do not implement this
LinkedList

interface will not have any of their state

serialized or deserialized. All subtypes TreeMap

of a serializable class are themselves
TreeSet

serializable.

Set<E> In addition to Collection methods, HashSet

extends Collection<E> boolean equals(Object o) TreeSet

* boolean isEmpty()

A collection that contains no duplicate

elements.

SortedMap<K,V>

extends Map<K,V>

*

A map that further guarantees that it will

be in ascending key order according to

the natural ordering of its keys (see
Comparable).

In addition to Map methods,

K firstKey()

K lastKey()

TreeMap

SortedSet<E>

extends Set<E>

*

A set that further guarantees that its

iterator will traverse the set in ascending

element order, sorted according to the

natural ordering of its elements (see
Comparable).

In addition to Set methods,

E first()

E last()

SortedSet<E> subSet(E fromEl,

E toEl)

TreeSet

10

2.4 Collection classes

Legacy data structures such as Hashtable and Stack and Vector have been omitted.

Collection class Meaning Implements

ArrayList<E> Can store a variable number of references, similar to an

array.

Collection<E>

Iterable<E>

List<E>

Serializable

HashMap<K,V> Hash table based implementation of the Map interface. Map<K,V>

Serializable

HashSet<E> Implements the Set interface, backed by a hash table. Collection<E>

Iterable<E>

Serializable

Set<E>

LinkedList<E> Linked list implementation of the List interface. Collection<E>

Iterable<E>

List<E>

Serializable

TreeMap<K,V> Tree based implementation of the SortedMap interface. Map<K,V>

Serializable

SortedMap<K,V>

TreeSet<E> Implements the Set and the SortedSet interfaces,

backed by a TreeMap.

Collection<E>

Iterable<E>

Serializable

Set<E>

SortedSet<E>

2.5 Input and output streams and related classes

A stream is a sequence of bytes and the various stream classes provide ways of interacting

with such streams. We have only listed the more commonly used input and output streams.

Classes whose names end in Stream handle raw data in terms of bytes. Bytes are read as

int values in the range 0 to 255. If no byte is available because the end of the stream has

been reached, –1 is returned.

Classes whose names end in Reader or Writer handle character data, represented as an

int.

Stream methods may throw an IOException.

The remainder of this document is printed in a landscape format to accommodate

some wide tables.

11

2.5.1 Input streams

We list here some of the more commonly used input streams.

InputStream and its descendants

Stream Sample methods and comments Constructors

InputStream void close() InputStream()

The abstract superclass of all abstract int read()
classes representing an input
stream of bytes. int read(byte[] b)

Methods listed here are also
available to subclasses (but
may have been overridden).

FileInputStream see InputStream FileInputStream(File f)

Obtains bytes from a file. FileInputStream(String name)

BufferedInputStream Adds methods to mark a place in a stream BufferedInputStream(InputStream in)

Adds ability to buffer input to
another input stream.

and return to it, while the readLimit is

not exceeded.

void mark(int readlimit)

void reset()

DataInputStream Adds methods to read primitive types, for DataInputStream(InputStream in)

Reads from an underlying
example:

input stream and converts to float readFloat()

primitive types.
boolean readBoolean()

12

Reader and its descendants

Classes based on Reader are for reading character streams.

A read character is returned as an int value.

Stream Sample methods and comments Constructors

Reader

Abstract class for reading
character streams.

Methods listed here are also
available to subclasses (but
may have been overridden).

abstract void close()

int read()

protected Reader()

BufferedReader

Read text from a character­
input stream, buffering
characters.

Adds methods to mark a place in a

stream and return to it, while the
readLimit is not exceeded.

void mark(int readLimit)

String readLine()

void reset()

BufferedReader(Reader in)

BufferedReader(Reader in, int bufSiz)

InputStreamReader see Reader InputStreamReader (InputStream in)

A bridge from byte streams
to character streams.

FileReader see Reader FileReader(File f)

Convenience class for FileReader(String name)

reading character files.

13

2.5.2 Output streams

Operations may throw an IOException. Output streams may be flushed.

OutputStream and its descendants

A character to be written is contained in the 16 low-order bits of a given integer value; the 16 high-order bits
are ignored. (So, an int represents a single character to be written.)

Stream Sample methods and comments Constructors

OutputStream

The abstract superclass of all classes
representing an output stream of bytes.

Methods listed here are also available to
subclasses (but may have been overridden).

void close()

void flush()

void write(byte[] b)

void write(int b)

OutputStream()

FileOutputStream See OutputStream FileOutputStream(File f)

extends OutputStream FileoutputStream(String name)

An output stream for writing bytes to a file. FileoutputStream(String name, boolean append)

DataOutputStream Adds methods for writing primitive DataOutputStream (OutputStream out)

extends OutputStream
types, for example:

Writes primitive types to an underlying output
void writeInt(int v)

stream. void writeFloat(float v)

BufferedOutputStream See OutputStream BufferedOutputStream(OutputStream out)

extends FilterOutputStream

Adds buffering to another output stream.

PrintStream Adds print and println PrintStream (File f)

extends FilterOutputStream methods for primitive data types, for

example:
PrintStream(OutputStream out)

Adds ability to print representations of various

data values.
print(boolean b)

PrintStream(OutputStream out, boolean autoflush)

println(char c)
PrintStream(String filename)

14

Writer and its descendants

Stream Sample methods and comments Constructors

Writer

Abstract class for writing to character
streams.

Methods listed here are also
available to subclasses (but may
have been overridden).

abstract void close()

abstract void flush()

void write(int c)

void write(String s)

protected Writer()

BufferedWriter See Writer BufferedWriter(Writer out)

Writes text to a character-output
stream, buffering characters.

OutputStreamWriter See Writer OutputStreamWriter(OutputStream out)

A bridge from character streams to
byte streams.

PrintWriter Adds print and println methods PrintWriter (File f)

Prints formatted representations of

objects to a text-output stream.

for primitives and String, for

example:

print(int b)

PrintWriter(OutputStream out)

PrintWriter(OutputStream out, boolean autoflush)

println(String s)
PrintWriter(String filename)

PrintWriter(Writer out)

FileWriter See Writer FileWriter (File f)

Convenience class for writing FileWriter(File f, boolean append)
character files.

FileWriter(String filename)

15

2.5.3 Standard streams

Stream Comments Examples

System.in

Standard input, normally the

keyboard.

in is a static InputStream in the

System class.

This stream is already open and ready to

supply input data.

Scanner scnr = new Scanner(System.in)

System.out

Standard output, normally

the screen console.

out is a static PrintStream in the

System class.

This stream is already open and ready to

accept output data.

System.out.println("Off they go!");

System.err

Standard error stream,

normally the screen console.

err is a static PrintStream in the

System class.

This stream is already open and ready to

accept output data.

System.err.println("bad wolf");

16

2.5.4 Scanner

Stream Sample methods and comments Sample constructors

Scanner boolean hasNext() Scanner(File source)

Implements the String next() //next token Scanner(InputStream source)

Iterator<String>

interface and can read text
String nextLine() Scanner(String source)

from files, input streams, Similar methods are provided for primitive

strings or any object that types, for example:
implements the Readable

interface.
int nextInt()

The default delimiter for
boolean hasNextInt()

tokens is whitespace.

2.5.5 Sockets

Class Sample methods Sample constructors

ServerSocket Socket accept() ServerSocket(int port)

Implements a server socket void close()

which waits for requests to

come in over a network.
int getLocalPort()

String toString()

Socket InputStream getInputStream() Socket(String host, int port);

Implements a client socket; OutputStream getOutputStream()

an endpoint for

communication between two
int getPort()

machines. void close()

17

2.6 Java Swing classes

Note that most widgets have many variant constructors and methods and space would not permit listing them all. In

the examples below we have simply picked the commonest constructors for each widget and some of the frequently

used methods.

Top-level Swing containers – such as JFrame, JDialog and JApplet – are specialized components that provide a

place for other Swing components to paint themselves. These classes inherit from the Container class, and provide

methods to add components, with or without constraints (such as can be applied to a BorderLayout), as well as a

method to remove a component.

See also the event-handling classes in Section 2.7.

Class Sample methods Sample constructors

ButtonGroup Component add(JRadioButton j) ButtonGroup ()

A group of radio buttons. void remove(JRadioButton j)

JApplet void add(Component c) JApplet()

An applet container with support for
Swing component architecture.

void add(Component c, Object constraints)

void init()

Default layout for content pane is
BorderLayout

void remove(Component c)

void setLayout(LayoutManager m)

void start()

void stop()

void destroy()

JButton String getText() JButton ()

An implementation of a button that void setText(String text) JButton(String text)

can be clicked.

18

Class

JCheckBox

An implementation of a check box

that can be selected or deselected.

JComboBox

A component that combines a button

or editable field and a drop-down list.

JFrame

A top-level container; the window

used in a graphical user interface.

JLabel

A display area for a short text string.

Sample methods Sample constructors

Object[] getSelectedObjects() JCheckBox (String text)

String getText()

boolean isSelected()

void setSelected(boolean b)

void addItem(Object o) JComboBox()

Object getItemAt(int index) JComboBox(Object[] items)

Object getSelectedItem()

Object[] getSelectedObjects()

void setSelectedItem(Object o)

void add(Component c) JFrame (String title)

void add(Component c, Object constraints) Default layout is BorderLayout

Container getContentPane()

void paint(Graphics g)

void remove(Component c)

void repaint()

void setDefaultCloseOperation(int operation)

void setJMenuBar(JMenuBar m)

void setLayout(LayoutManager m)

void setTitle(String title)

void setVisible(boolean value)

void update(Graphics g)

String getText() JLabel (String text)

void setText(String text)

19

Class Sample methods Sample constructors

JList Object[] getSelectedValues() JList (Object[] listData);

A component that allows the user to int[] getSelectedIndices()

select one or more objects from a

list. Occupies a fixed number of

lines.

JMenu JMenuItem add(JMenuItem j) JMenu (String text)

An implementation of a pull-down JMenuItem add(String s)

menu that can be held in a
JMenuBar.

void insert (String s, int pos)

void remove (int pos)

JMenuBar JMenu add(JMenu c) JMenuBar ()

An implementation of a menu bar

acting as a holder for menus.

JMenuItem void add(Component c) JMenuItem (String text)

An implementation of an item in a void init(String text, Icon icon)

menu.
void setEnabled(boolean b)

JPanel Component add(Component c) JPanel ()

A container used to place widgets void add(Component c, Object constraints) JPanel (LayoutManager layout)

and which can be added to a
JFrame or to another panel.

void paintComponent(Graphics g) Default layout is FlowLayout

void remove(Component c)

void repaint()

void setLayout(LayoutManager m)

20

Class Sample methods Sample constructors

JRadioButton void setText(String text) JRadioButton (String text)

An implementation of a radio button, boolean isSelected() JRadioButton (String text,

used in conjunction with a

ButtonGroup so that only one radio
void setSelected(boolean b)

 boolean selected)

button at once can be selected.

JScrollBar int getMinimum() JScrollBar ();

An implementation of a scroll bar int getMaximum() JScrollBar (int orientation);

with a slider that can be moved.
int getValue()

int setMinimum()

JScrollPane Used to add scrolling ability to a Component such as a JScrollPane (Component c)

JList or JTextArea.
A scrolling pane that includes

horizontal and vertical scroll bars

and can contain a list or text area.

JTextArea void append(String s) JTextArea(String s)

An implementation of a multi-line int getLineCount() JTextArea (String s, int rows,

holder of text.
void setColumns(int c)

int cols)

JTextArea (int rows, int cols)
void setRows(int r)

void setText(String s)

JTextField String getText() JTextField()

An implementation of a single line void setText(String s) JTextField(int columns)

holder of text.
JTextField(String text)

21

2.7 Event handling

Relevant components have an add method formed from the name of the listener, for example,

addActionListener or addAdjustmentListener. The ActionEvent class provides a method

Object getSource() method to return a reference to the object that produced an event.

Interface Methods Events generated by the following

ActionListener void actionPerformed(ActionEvent e) Buttons, lists, menu items and text fields.

AdjustmentListener void adjustmentValueChanged(AdjustmentEvent e) Scroll bars.

ComponentListener void componentHidden(ComponentEvent e)

void componentMoved(ComponentEvent e)

void componentResized(ComponentEvent e)

void componentShown(ComponentEvent e)

Visual components; for example, being resized or

hidden.

ContainerListener void componentAdded(ContainerEvent e)

void componentRemoved(ContainerEvent e)

Containers such as frames; for example, when a
component is added or removed.

FocusListener void focusGained(FocusEvent e)

void focusLost(FocusEvent e)

Components coming into focus or going out of

focus.

ItemListener void itemStateChanged(ItemEvent e) Check boxes, choices and lists.

KeyListener void keyPressed(KeyEvent e)

void keyReleased(KeyEvent e)

void keyTyped(KeyEvent e)

Keys being pressed or released.

MouseListener void mouseClicked(MouseEvent e)

void mouseEntered(MouseEvent e)

void mouseExited(MouseEvent e)

void mousePressed(MouseEvent e)

void mouseReleased(MouseEvent e)

Actions such as clicking or moving a mouse.

TextListener void textValueChanged(TextEvent e) Text components such as text fields and text areas.

WindowListener void windowClosing(WindowEvent e) Windows being opened or closed.

22

2.8 Layout managers

Layout manager Effect Sample code

absolute positioning Components are placed manually. The layout
manager is specified to be null.

setBounds is used to place and size the

component.

holder.setLayout(null);

JButton jb = new JButton();

holder.add(jb);

jb.setBounds(10,10,20,20);

BorderLayout Components are placed at north, south, east, west,

or centre.

BorderLayout()

data includes static constants

BorderLayout.NORTH

BorderLayout.SOUTH

BorderLayout.WEST

BorderLayout.EAST

FlowLayout Components are arranged like words in a

paragraph, flowing to the next line if they will not fit

on the current one.

FlowLayout()

GridLayout Components are arranged in a grid of rows and

columns (arguments are in that order).

GridLayout(int rows, int cols)

23

2.9 Graphics

Sample methods Meaning

drawRect(int x, int y,

int width, int height)

Draws the outline of the specified rectangle. The left and right edges of the
rectangle are at x and x + width. The top and bottom edges are at y and

y + height. The rectangle is drawn using the graphics context's current colour.

drawLine(int x1, int y1,

int x2, int y2)

Draws a line, using the current colour, between the points (x1, y1) and

(x2, y2) in this graphics context's coordinate system.

drawOval(int x, int y,

int width, int height)

Draws the outline of an oval. The result is a circle or ellipse that fits within the
rectangle specified by the x, y, width, and height arguments.

drawString(String s, int x,

int y)

Renders the text of the specified String, using the current text attribute in the

graphics context, starting from (x, y)

fillOval(int x, int y,

int width, int height)

Fills an oval bounded by the specified rectangle with the current colour.

void setColor(Color c) Sets this graphics context's current colour to the specified colour. All subsequent

graphics operations using this graphics context use this specified colour. Colours
are static constants, for example Color.GREEN, Color.RED etc.

2.10 Some common methods of the MIDlet class

Method Meaning

protected abstract void startApp() Signals the MIDlet that it has entered the Active state from

the Paused state.

protected abstract void pauseApp() Signals the MIDlet to enter the Paused state from the

Active state.

protected abstract void destroyApp(Boolean b) Signals the MIDlet to terminate, releasing its resources,

and enter the Destroyed state.

Printed in the United Kingdom.

24

