
M257 Unit 9

9Unit
Putting Java to work
UNDERGRADUATE COMPUTING

Internet programming

course M257 Putting

courses

courses

course

Copyright ª

–

course

2.1

This publication forms part of an Open University

Java to work. Details of this and other Open University can be

obtained from the Student Registration and Enquiry Service, The Open

University, PO Box 197, Milton Keynes MK7 6BJ, United Kingdom:

tel. +44 (0)870 333 4340, email general-enquiries@open.ac.uk

Alternatively, you may visit the Open University website at

http://www.open.ac.uk where you can learn more about the wide range of

and packs offered at all levels by The Open University.

To purchase a selection of Open University materials visit

http://www.ouw.co.uk, or contact Open University Worldwide, Michael

Young Building, Walton Hall, Milton Keynes MK7 6AA, United Kingdom for

a brochure. tel. +44 (0)1908 858785; fax +44 (0)1908 858787;

email ouwenq@open.ac.uk

The Open University

Walton Hall, Milton Keynes

MK7 6AA

First published 2007. Second edition 2008.

2007, 2008 The Open University

All rights reserved. No part of this publication may be reproduced, stored

in a retrieval system, transmitted or utilised in any form or by any means,

electronic, mechanical, photocopying, recording or otherwise, without

written permission from the publisher or a licence from the Copyright

Licensing Agency Ltd. Details of such licences (for reprographic

reproduction) may be obtained from the Copyright Licensing Agency Ltd,

Saffron House, 6 10 Kirby Street, London EC1N 8TS;

website http://www.cla.co.uk/.

Open University course materials may also be made available in electronic

formats for use by students of the University. All rights, including copyright

and related rights and database rights, in electronic materials and

their contents are owned by or licensed to The Open University, or

otherwise used by The Open University as permitted by applicable law.

In using electronic course materials and their contents you agree that your

use will be solely for the purposes of following an Open University course

of study or otherwise as licensed by The Open University or its assigns.

Except as permitted above you undertake not to copy, store in any

medium (including electronic storage or use in a website), distribute,

transmit or retransmit, broadcast, modify or show in public such electronic

materials in whole or in part without the prior written consent of

The Open University or in accordance with the Copyright, Designs and

Patents Act 1988.

Edited, designed and typeset by The Open University.

Printed and bound in the United Kingdom by Martins the Printers, Berwick-

upon-Tweed.

ISBN 978 0 7492 1994 9

CONTENTS

1 Introduction 5

2 Accessing the web using Java 6

2.1 The URL class 6

3 Distributed systems 9

3.1 Advantages and disadvantages of distributed
systems 9

3.2 Distributed system architectures 9

3.3 Client–server computing on the internet 12

4 Internet and web protocols 13

4.1 Web servers 13

4.2 Internet protocols 13

4.3 Application protocols 15

4.4 Connections over the internet 17

5 Addressing on the internet 19

5.1 Symbolic addressing 19

5.2 IP addressing 19

5.3 The Internet Domain Name Service 20

5.4 Ports and sockets 20

5.5 Addressing resources on the web 21

6 Programming with sockets 24

6.1 Sockets on the client 24

6.2 Sockets on the server 24

7 A simple client–server example 28

7.1 Simple server 28

7.2 Simple client 30

8 A name service 33

8.1 The server code 33

8.2 The client code 38

9 Serving multiple clients 43

10 Datagram communication 47

10.1 The client code 47

10.2 The server code 49

11 Summary 53

Index 55

M257 COURSE TEAM

M257 Putting Java to work was adapted from M254 Java everywhere.

M254 was produced by the following team.

Martin Smith, Course Team Chair and Author

Anton Dil, Author

Brendan Quinn, Author

Janet Van der Linden, Academic Editor

Barbara Poniatowska, Course Manager

Ralph Greenwell, Course Manager

Alkis Stavrinides, External Assessor, Coventry University

Critical readers
Pauline Curtis, Associate Lecturer

David Knowles, Associate Lecturer

Robin Walker, Associate Lecturer

Richard Walker, Associate Lecturer

The M257 adaptation was produced by:

Darrel Ince, Course Team Chair and Author

Richard Walker, Consultant Author and Critical Reader

Matthew Nelson, Critical Reader

Barbara Poniatowska, Course Manager

Ralph Greenwell, Course Manager

Alkis Stavrinides, External Assessor, Coventry University

Media development staff
Andrew Seddon, Media Project Manager

Garry Hammond, Editor

Ian Blackham, Editor

Anna Edgley-Smith, Editor

Jenny Brown, Freelance Editor

Andrew Whitehead, Designer and Graphic Artist

Glen Derby, Designer

Phillip Howe, Compositor

Lisa Hale, Compositor

Thanks are due to the Desktop Publishing Unit of the Faculty of Mathematics and

Computing.

1 Introduction 5

Introduction1
So far, we have described many features of the Java programming language that are

broadly equivalent to those in other programming languages. This unit marks a change

in that we will consider some of the more distinctive aspects of Java, which make it very

popular for internet-related programming.

We will describe how to use Java to program internet-based applications, such as those

associated with ecommerce or internet chat rooms.

In this unit, we aim to:

c show how programs can access data from websites;

c outline how the internet is structured and how it works;

c explain the roles of clients and servers, and how to program them;

c demonstrate how servers can handle multiple clients;

c look at connectionless communication using datagrams.

First, we look at an example program to see how easy it is to access data from the web

using Java.

6 Unit 9 Internet programming

Accessing the web using Java 2

In this section, we demonstrate with a simple example how we can use Java to access

websites. In later sections, we shall look at some of the underlying technology involved

in using the internet for such things. Although the technical details of this are rather

complex, Java makes it easy to write programs to access data on the web by providing

powerful classes in its standard packages. In particular, the important Java class URL
provides facilities for accessing resources that are identified by their uniform resource

locator or URL.

Many people are broadly familiar with the idea of a URL, such as:

http://www.open.ac.uk

You may be used to thinking of a URL as a web page address, in this case the address

of the home page of The Open University. However, the concept of a URL is more

general than this and includes other kinds of resources. We shall return to consider

URLs in more detail later in this unit.

2.1 The URL class

The class URL has a number of constructors that allow the programmer to create uniform

resource locators. For the moment, we consider only the simplest constructor – a single

argument constructor that creates a URL object from its string description. For example:

URL openUniversity = new URL("http://www.open.ac.uk");

An important method, called openStream, opens a stream to a web resource such as a

web page and allows the programmer to access the contents of the resource.

The following code is for a class called WebReader that accesses a website and
displays the contents of the home page of the site. If you execute the associated test

program, you will see the HTML for the home page of The Open University displayed on

System.out.

2 Accessing the web using Java 7

import java.net. *;
import java.io.*;

public class WebReader
{

private BufferedReader fromWebSite;
private String webAddress;

public WebReader (String address)
{

webAddress = address;

try

{

System.out.println("Trying to contact " + webAddress);
URL selectedURL = new URL(webAddress);
fromWebSite = new BufferedReader(

new InputStreamReader(
selectedURL.openStream()));

}
catch (MalformedURLException me)
{

System.out.println("Malformed URL found " + me);
}
catch (IOException io)
{

System.out.println("Problems connecting " + io);
}

}

/* Read and display source contents of web page.
Uses BufferedReader fromWebSite, set up by constructor. */
public void print ()
{

String lineRead;

System.out.println(" – – – URL: " + webAddress);

try

{

// read from website, one line at a time

lineRead = fromWebSite.readLine();

while (lineRead ! = null)

{

System.out.println(lineRead);
lineRead = fromWebSite.readLine();

}

fromWebSite.close();

}

catch (IOException io)

{

System.out.println("Problems reading " + io);
}
System.out.println(" – – – End of URL: " + webAddress);

}
}

8 Unit 9 Internet programming

The class WebReader has a constructor and a public method print. The constructor
instantiates a URL object for the address supplied as a String argument. It then

accesses the input stream for this URL object and uses this to create a
BufferedReader for inputting character data from the resource.

Two possible exceptions could be generated in the constructor. A

MalformedURLException could occur when the URL object is constructed and an
IOException could arise when the stream is associated with the web resource. These

are handled by separate catch clauses – it is important that the

MalformedURLException clause occurs first.

The print method reads from the resource (in this case, a web page) one line at a time

and displays each line on System.out. The method terminates when there are no more

lines to read, indicated by the readLine method of the buffered reader returning a null

reference. Before the method terminates, it closes the stream fromWebSite.

The following class shows how we use a WebReader object:

public class TestWebReader
{

public static void main (String []args)
{

WebReader wr = new WebReader("http://www.open.ac.uk");
wr.print();

}
}

The main method creates a WebReader object for the Open University home page and

invokes the print method to display the source (that is, the HTML) for this page. You

can compare this output with the result you obtain when you visit this site using a
Activity 9.1 browser – select a browser menu option to display the web page source.
Testing the WebReader
class.

SAQ 1

(a) Why do the catch clauses in the constructor of the WebReader class need to be in
that specific order?

(b) What would happen if they were swapped around?

ANSWERS ...

(a)	 The MalformedURLException class is a subclass of the IOException class.
Recall from our discussion of exceptions in a previous unit that a catch clause for a
particular type of exception will catch all exceptions of that class and of any of its

subclasses. So the MalformedURLException clause must come first if we want to

separately identify (and handle) this type of exception.

(b) If the catch clause for the IOException came first, it would catch any

MalformedURLException objects as well as more general IOException
objects. The second catch clause (for MalformedURLException) would never
be used, and the compiler would flag an error due to unreachable code.

3 Distributed systems 9

Distributed systems 3

A distributed system is a collection of computers at different locations, connected by

communications links. The functions and data of the system are distributed across these

computers, which are known as hosts. The internet is an enormous distributed system –

most distributed systems are much smaller and typically serve the needs of one

company or department within an organization.

3.1 Advantages and disadvantages of
distributed systems

There are a number of reasons why computer systems are distributed and they are as

follows.

c	 Efficiency. By placing data close to a user, access to that data can be fast. For

example, an ecommerce system that keeps stock details of all the products sold by

a collection of department stores could keep data relating to each individual store

on the local computer found at a store, rather than in some central computer.

c	 Ease of upgrading. When demands on a system grow, more processing power and

storage are usually required. A distributed system can cope with this relatively easily

by having more and more computers added to it.

c	 Reliability. A distributed system can be developed in which some of the hosts in the

system can act as a backup to other hosts in case they malfunction, thus helping to

maintain a continuous service.

c	 Ability to support a number of platforms. A distributed system that communicates

via a set of standard protocols such as those found in the internet can be built up Protocols are discussed in

from a number of computers running a variety of platforms, for example Linux, Section 4.

Windows and Macintosh operating systems.

Hence there are a number of persuasive reasons for organizing a system in a distributed

fashion. There are however drawbacks, which are as follows.

c	 Performance. If not designed properly, distributed systems can suffer from poor

performance: the connections between hosts in a distributed system are a number

of orders of magnitude slower than the internal wiring speeds of a computer.

c	 Security. The internet is an open system. Consequently, security can be a major

problem: not only are the details of the various protocols used in the internet public,

but also the messages sent over the internet usually traverse publicly accessible

communication lines. It is also easier for viruses and other undesirable software to

spread across a distributed system.

3.2 Distributed system architectures

There are a number of different system architectures, or ways of structuring the

network of computers in a distributed system. For example, each computer in the

system may be defined as either a client or a server. A server is normally a powerful

computer that manages data, printers or network traffic. A client is normally a PC or

workstation on which users run application programs or user interface code. Clients

request services from servers, as shown in Figure 1, where a web client sends requests

10 Unit 9 Internet programming

to a web server using a special language defined by the HyperText Transfer Protocol

(HTTP). We shall explain HTTP in Section 4.

web
server

HTTP
response

HTTP
request

SQL
query data

A clientÐserver system
(2-tier system)

A 3-tier system,
showing database access

HTTP
response

HTTP
request

database
server

web
client

web
client

web
server

Figure 1 Examples of 2-tier and 3-tier system architectures

Client–server architectures are sometimes called 2-tier architectures. Architectures may

have three or more tiers, leading to the so-called n-tier architecture, where n is 2, 3, 4 or

more. Each of the tiers (or levels) of the system has its own responsibilities.

A particular computer may not always be fixed in the role of client or server. That is, a

computer may act as a server to a number of clients and yet act as a client to another

server. For example, a web server maintaining a number of web pages may act as a

server to clients running browsers. However, if the web server wants data from a

relational database in order to satisfy some client request (for example, a list of products

that are out of stock) then it acts as a client to a database server (see Figure 1). The

request to the database server is usually expressed in the standard database query

language SQL.

Another type of network architecture is known as a peer-to-peer (P2P) architecture

because each computer has similar capabilities and responsibilities – each can act as a

server as well as a client. Some P2P systems are hybrid in that they also have central

computers that act only as servers, as shown in Figure 2.

3 Distributed systems 11

the web

web client
and server

(possible)
central

server(s)

web client
and server

web client
and server

web client
and server

Figure 2 An example of a peer-to-peer architecture – hybrid P2P systems also use
central servers for some functions

The P2P approach is used in many of the popular but controversial music-sharing

systems. It is a robust approach in that it does not rely on one central server. It also

makes it harder for hostile organizations to close down the system than it would be with a

single-server system.

Both client–server and peer-to-peer architectures are widely used, and each has unique

advantages and disadvantages. A full discussion of distributed system architecture is

outside the scope of this course, so we will concentrate on client–server architectures.

SETI@home

runs

screen

An interesting example of a distributed system of a type that is gaining in popularity

is the SETI@home system. This is part of the Search for Extra-Terrestrial

Intelligence project, aimed at identifying life elsewhere in the universe by studying

radio signals received on earth.

Participants can download client software, which on their PC instead of a

saver. It thus uses otherwise 'unwanted' computer time to process radio

signal data sent from a central server. The results are automatically returned to the

server. In this way, the project can harness resources equivalent to a large

supercomputer at greatly reduced cost.

This approach has now been adopted for a number of other applications, such as

study of climate change, and for solving biological and genetic problems.

SAQ 2

What are the main potential difficulties with a distributed system such as the internet?

ANSWER ...

Performance – the communication links between distant computers are much slower

than the communication within a computer. It is very important to design a distributed

system carefully to ensure good performance.

Security – unlike a system that is all in one location, it is normally difficult to physically

secure all the components of a distributed system. Much communication typically takes

place over shared public telecommunications links and the protocols used are publicly

available.

You will find more details
of distributed architectures
in the course Developing
concurrent distributed
systems (M362).

12 Unit 9 Internet programming

3.3 Client–server computing on the internet

The internet contains a number of different kinds of servers. Some examples are as

follows.

c Web servers. These hold web pages that are requested by clients running

browsers.

c Mail servers. These store email messages that are intended for the users of the

server and forward messages on to other mail servers.

c FTP servers. An FTP server uses the File Transfer Protocol to send stored files to FTP

clients. When you download a music file from a website, or upload some web pages

to update the contents of a website, you will normally be using FTP.

c Print servers. These are usually cheap PCs that manage access to one or more

printers. They carry out the function of queuing requests for printing to the printers

and informing clients that a particular print request has been completed.

c Database servers. These are servers that store large databases, and respond to

queries about the data they hold.

SAQ 3

Give two examples of system architectures for distributed systems.

ANSWER ...

One general approach to classifying architectures is the idea of n-tier architecture,

where n can be 2, 3, 4 or more. Each tier has a particular responsibility.

Client–server systems are an example of a 2-tier architecture. Clients typically offer a

user interface and some processing; servers offer a service to clients, such as providing

web pages and perhaps also some processing.

A typical 3-tier architecture consists of a database server providing data from relational

database tables, and a web server that formats this data into web pages and sends it to

a client that provides the user interface for requesting and viewing data, typically using a

browser.

A different approach to this is the peer-to-peer (P2P) architecture, where each host is

more or less 'equal' and each can act as a server or a client.

4 Internet and web protocols 13

Internet and web protocols 4

Although it can be quite straightforward to program access to internet and web

resources in Java, it is useful to have some understanding of what is happening behind

the scenes. In this section, we take a look at what goes on when you communicate

across the internet – for example, to retrieve some information from a website.

4.1 Web servers

When you click on a web link to access a web page, you are actually sending a request

to a web server. A web server is a program that sends back web pages in response to a

request from a web client, typically a web browser program. More precisely, it sends the

files associated with a web page: for example, files containing HTML text and files

containing the graphics or other multimedia items for that web page.

Web servers are quite complicated pieces of software that carry out a number of

functions. Some examples are as follows.

c They store web pages.

c They process requests for web pages, identify where they are stored and send them

back together with an indication of what has been sent back.

c They carry out server-side processing, which may involve executing embedded

Java code to dynamically update or construct web pages before they are sent to the

requesting client. This is explained further in Unit 10.

c They enforce security policies specified by a webmaster.

c They cache web pages: that is, they store frequently accessed pages in fast

memory so that they are dispensed quickly to clients.

c They generate log files that provide information about which clients requested which

web pages. Such information is useful to the webmaster for maximizing

performance and for marketing purposes.

4.2 Internet protocols

We have seen that the internet developed from research in the USA in the 1960s into

robust networks that could survive attack by nuclear weapons. This has had an

enormous influence on the way the internet works at a technical level – its distributed

structure and what are known as the communication protocols.

A protocol is a set of rules that defines the details of how computers or other devices

can communicate, so that both sides can understand the communication. The part of a

protocol that asks for information is known as a request; the part that returns data is

known as a response. A protocol can be thought of as a simple and restricted language

that ensures that there is no ambiguity in the communications for both the requester and

the respondent. We shall look at some specific examples of protocols later in this unit.

The early research led to two very important technologies that are still fundamental to the

internet today – packet switching and the set of protocols known as TCP/IP. We

discuss these technologies in more detail below.

14 Unit 9 Internet programming

The flexibility and resilience of the internet relies on packet switching – data is sent from

one computer to other computers as a series of separate units called packets. For

example, when you browse a web page the data that makes up that page is sent from

the web server to the computer that requested it (the web client) as a series of data

packets (see Figure 3).

request for
web page

returned web page data

web
client router

router

router

web
server

Figure 3 Packet switching – web server returning packets of data

A document or sizeable message to be sent across the internet is first split up into a

number of fixed-size packets of data. Internet data is not usually sent directly from the

sending computer to the receiving computer. Rather, it travels in a series of steps,

normally with many intermediate computers or routing devices. The packet switching

may involve sending packets by various different routes across the network to avoid any

faulty or very busy parts of the system. This approach enables packets to reach their

destination even if some communication lines are of poor quality or there are

malfunctioning computers in the network. Of course, it may mean that packets do not all

arrive in the same order that they were sent, so some reordering may need to happen at

the receiver's end. Eventually all the packets received are reassembled in the correct

order to produce the original document or message.

The fundamental set of protocols defining most communication across the internet is

known as TCP/IP. This is made up of two distinct protocols – Transmission Control

Protocol (TCP) and Internet Protocol (IP). These define details of the packets of data

sent and received, including their size in bits, the sequencing of packets and the

meaning of each bit within a packet. The structures of IP and TCP packets are shown in

Figure 4.

Figure 4 shows how each packet consists of some data together with a packet header,

which contains details to direct the packet to its destination. You can think of the header

information as the name and address on the envelope of a letter sent through the mail.

The contents of the letter would be the data, in this case.

4 Internet and web protocols 15

TCP
header

TCP data

structure of a TCP packet

structure of an IP packet

IP
header

IP packet showing TCP packet as its data

TCP
header

TCP data

IP dataIP
header

Figure 4 Structures of IP and TCP packets

Protocols in data communication are normally arranged in a series of protocol levels –

the higher-level protocols assume that the lower-level protocols handle the lower-level

details of the communication process. TCP is a higher-level protocol than IP – in fact, the

'data' in an IP packet is simply a TCP packet. IP is concerned with enabling individual

packets to get from their source to a destination. IP packet headers are very simple,

mainly containing the source and destination internet addresses.

TCP assumes that the IP protocol works most of the time but that some packets may get

lost or corrupted in transit. Hence the TCP packet header specifies additional details,

which ensure that any lost or erroneous packets are sent again and that packets can be

reassembled into the correct order at the receiving end.

We shall see later that there are alternative protocols to TCP. However, all internet

communication uses IP. TCP and IP are examples of system protocols, so called

because they relate to the operation of the internet system, transferring data from one

place to another, rather than to any particular use or application of the internet.

4.3 Application protocols

Internet applications make use of a large number of other protocols that operate at

higher levels than TCP/IP. These are sometimes known as application protocols

because they operate at the level of complete applications, like file transfer or web page

access. Three examples are as follows.

c HTTP (HyperText Transfer Protocol) is used for communication between a client

computer, using a browser, and a web server. It specifies, for example, which

particular web page is required by the browser and it is used to return status

information from the web server to indicate whether the page has been found.

c POP3 (Post Office Protocol version 3) is a simple protocol used for receipt of email

from a computer known as a mail server. Elements of the protocol can be used to

interrogate the server about how many email messages are currently being stored

on the server or to communicate the reader's identity to the server.

c FTP (File Transfer Protocol) is used for the transfer of files of any type from one

computer to another on the internet.

16 Unit 9 Internet programming

Activity 9.2
Sending an HTTP request.

HTTP (HyperText transfer protocol)

Web servers and browsers use HTTP to communicate with each other. Every request

issued by a client browser gives rise to a response from the server. HTTP requests take

the form of a command word, possibly followed by some additional information. The

following example shows the use of the GET command to request a file called index.
htm from a website:

GET /index.htm HTTP/1.0

The file extension htm indicates that it is an HTML file. The 1.0 indicates that version 1.0
of HTTP is being used. The response to this request, if it is successful, will typically start

as follows:

HTTP/1.1 200 OK

This indicates that the server is using version 1.1 of HTTP (although it also understands

version 1.0). The number 200 is a code to indicate (to a computer) that the request was

successfully carried out and the text OK tells a human reader the same thing. This

response is typically followed by other details, such as the date, time, details of the

server, number of bytes sent and type of content returned (normally text and HTML). All

these details are known as the header information. Finally, the contents of the requested

file are sent to the browser, which normally displays them on the screen.

If the file requested is not present, or something else goes wrong, then the response will

start with something different, such as:

HTTP/1.1 404 Not Found

In this case, code 404 indicates to the browser software that the file was not found. The text
Not Found is for users who may be directly reading the HTTP response.

Table 1 gives a summary of the most important HTTP commands and their functions. Full

details of how to use these commands are outside the scope of this course but are well

documented on the web.

Table 1 Some HTTP commands

FunctionHTTP command

GET retrieve data from a website (including header

information)

HEAD retrieve header information only from a website

OPTIONS request list of available HTTP commands at a website

POST send data to form a new document at a website

PUT send data to update existing document at a website

4 Internet and web protocols 17

SAQ 4

What is packet switching and why is it used for internet communication?

ANSWER ...

Internet data travels in a series of steps from its source to its destination, normally with

many intermediate computers or routing devices. With packet switching, the data is

broken up into a series of separate small units called packets, and each packet is sent

and received separately. Packets for a particular message may travel by different routes

across the network.

The internet was designed to be robust and flexible – even if some of the network is

faulty or missing, data should get through by an alternative route, if there are any such

routes available. Packet switching allows packets of data to be re-routed or sent again,

which is more efficient than resending an entire message.

4.4 Connections over the internet

There are two types of service that are provided on the internet. The first is a

connection-oriented service where two computers establish a connection with each

other before sending data – this is similar to establishing a voice telephone call before

you start speaking. The connection is established by exchanging special packets of

data in a process known as a handshake. When data is sent from one computer to

another it usually passes via other computers in the internet, which are unaware of the

fact that the sending and recipient computers have already established a connection.

The internet's connection-oriented service is mediated by TCP (Transmission Control

Protocol). This protocol attempts to ensure that data always arrives in the correct order

and in its entirety, even if some intervening computers are malfunctioning: it is a reliable

protocol. The TCP handshake is a three-step process, which computers go through

when negotiating a connection with one another. The first computer sends a special

packet, the second computer sends a packet in reply and the first computer then

acknowledges receipt of the reply. This establishes the connection.

The second type of service is known as a connectionless service. Here, there is no

handshake between the computers that send and receive data, and there is no dialogue

set up to ensure that all the data is received without errors. There are two consequences

of this: the first is that data is sent very quickly; the second is that at times of high traffic,

data may be lost or is likely to contain errors. For some applications, such as voice

communication, this degradation may be acceptable if the degradation is not too

severe. However, for applications where completely accurate data has to be received, a

connectionless service is not used.

The part of the Internet Protocol set that implements connectionless data transfer is

known as User Datagram Protocol (UDP), sometimes known as the Unreliable Data

Protocol. Figure 5 shows that UDP packets (known as datagrams) are an alternative to

TCP packets in forming the content of an IP packet. The UDP header is smaller and less

detailed than the TCP header, reflecting the less sophisticated nature of UDP.

18 Unit 9 Internet programming

IP
header

UDP
header

UDP data

IP packet showing UDP packet as its data

Figure 5 Structure of a UDP packet (or datagram)

SAQ 5

What is the difference between a system protocol and an application protocol on the

internet? How does this relate to the idea of levels of protocol?

ANSWER ...

Protocols are the rules that govern how communication between devices takes place.

System protocols are at a relatively low level and they control data transfer that is

applicable to many different uses of the internet – for example, most internet

communication uses the TCP and IP system protocols to determine the detailed format

and content of the packets sent.

Application protocols are those defined specifically to achieve a higher-level task such

as transferring a file (FTP) or accessing a web page (HTTP). These are at a higher level

of abstraction than system protocols. Application protocols make use of system

protocols in their detailed implementation. For example, HTTP assumes the use of TCP

to guarantee reliable transfer of data and TCP relies on IP for basic transfer of data

packets. Therefore, from highest to lowest level these protocols are HTTP, TCP and

then IP.

5 Addressing on the internet 19

Addressing on the internet 5

In order to send data to a computer over a network such as the internet you need to be

able to identify the computer uniquely by its address. There are two ways of identifying a

host on the internet, using a symbolic address or a numeric address.

5.1 Symbolic addressing

The most familiar form of addressing is symbolic. This is the sort of web address you see

on an advertisement, and which you typically enter into a browser to access a particular

site. It uses a form of hierarchical naming that identifies a decreasing collection of

computers at each level, finally ending up with a single computer. For example, consider

the following symbolic address for the main Open University web server:

www.open.ac.uk

To interpret this address you read it from right to left:

uk signifies a collection of computers associated with the United Kingdom;

ac identifies those computers associated with academic institutions such as

universities;

open refers to those computers associated with The Open University;

www is the name of a computer, the name usually given to a web server.

Thus the address can be read as:

The computer www belonging to The Open University, an academic institution

associated with the United Kingdom.

There are many other collections of computers within the internet – for example, the

collection com is associated with companies. So, for example, the address:

www.google.com

refers to the computer www associated with the company google, which is a
commercial company offering a well-known internet search engine.

5.2 IP addressing

Underlying the symbolic addressing that users find convenient and memorable, the

internet systems actually use numbers to identify each computer. A numeric address (or

IP address) typically uses a set of four numbers separated by dots. For example: Remember that IP means
Internet Protocol.

193.22.33.201

This form of address uniquely identifies a computer by these four numbers. Each

number fits into 8 bits (so that each number must be in the range 0 to 255) making 32

bits in total. It is often known as dotted quad notation or IP Version 4 (IPv4) addressing.

20 Unit 9 Internet programming

Activity 9.3
Ping-ing a website.

–

6 1038

6 1023

planet,

5.3

IP version 6 addressing

Owing to the huge number of people now using the internet, there are not enough

IPv4 addresses available to meet the expected future demand 32 bits allow 4.2

billion addresses, in theory, although less in practice because of the way addresses

are allocated in blocks to particular users. So a new version of IP addressing, IP

Version 6 (IPv6) is being introduced. IPv6 uses 128 bits in total, allowing 3

addresses. This works out at 6 addresses for every square metre on the

so it should be quite a while before these addresses are all allocated!

The Internet Domain Name Service

The part of the internet that keeps track of which computers are associated with which

symbolic addresses is known as the Internet Domain Name Service, usually

abbreviated to DNS.

Whenever access is made to the internet – for example, when sending an email to

someone whose mail server is located at a particular computer – the DNS is consulted

to find out the IP address corresponding to the symbolic name. Strictly speaking, it

finds the IP address corresponding to the domain name, the part of the symbolic

name associated with a particular organization, such as google.com or open.ac.uk.
The DNS is one of the most heavily used parts of the internet. It is actually provided by

a number of collaborating servers throughout the internet.

The DNS is a specific example of a type of service known as a name service. Such a

service maintains details of resources in a system and their symbolic names; with the

DNS, the resources are individual computers on the internet that are associated with

symbolic names. Other name services keep and maintain data on other resources such

as users, printers or security policies.

5.4 Ports and sockets

An important concept in the TCP and UDP protocols is that of a port. A port is a conduit

into a host on the internet. In this context, a port is a logical idea – it is not the same as a

parallel port or a USB port, which are actual pieces of hardware to which you can

connect wires.

TCP communication into and out of a computer is via numbered ports. Ports numbered

from 0 to 1023 are reserved for dedicated services. For example, port 80 is used for web

server communication, port 21 is used for FTP requests and port 110 for POP3 email

communication. This allows a client to request a particular kind of service and allows

servers to listen for particular kinds of requests on specific port numbers (see Figure 6).

5 Addressing on the internet 21

HTTP request

FTP request

web
client server

FTP
client

21

80

110

Figure 6 Using ports to distinguish the service required

If you are writing Java programs that use ports then you should avoid using ports in this

dedicated range, unless you intend to use one of these services. UDP communication

also uses numbered ports. The maximum port number for both TCP and UDP is 65534

(as this fits into the 16-bit slots reserved for port numbers in the packet header).

A socket is the software mechanism that allows programs to transfer data across the

internet using TCP/IP. A socket object in Java is associated with a port number and the

address of a host, specified either as an IP address or in symbolic form. For

client–server communication, we need a matching pair of sockets, one on the client and

the other on the server. We will show how we program this later in the unit.

SAQ 6

What does the DNS do and why is it needed?

ANSWER ...

DNS stands for Internet Domain Name Service. Computers on the internet are

individually identified by means of a numeric IP address (in IPv4, this is dotted quad

notation, for example, 198.23.200.16). This is hard for human users to remember, so

symbolic domain names, such as open.ac.uk, are used instead. The DNS is used to
find the IP address corresponding to a symbolic address entered by users. This allows

messages to be sent to the required destination.

5.5 Addressing resources on the web

Resources on the web are identified using unique addresses. This unique address is

known as a Uniform Resource Locator, usually abbreviated to URL. The first part of the

URL indicates the protocol to be used in accessing the resource and the second part

indicates the address where the resource can be found. An example of this is shown

below:

http://www.open.ac.uk/Computing/Staff/I_Newton.htm

Here, http specifies that the resource is a web page and so the protocol to use is HTTP.
The part after the first two slashes provides the name of the host computer, www.open.
ac.uk. The remainder of the URL is known as the path and it specifies the route to the

resource. In this case, it can be found in the folder Staff, a subfolder of Computing.
The name of the file is I_Newton.htm and the file extension htm indicates that it is an
HTML file.

22 Unit 9 Internet programming

All web resources are referenced using this convention. In this course, we shall

concentrate on web pages; however, you should be aware that there are other forms of

URL using different protocols, such as FTP for file transfer. For example:

ftp://www.open.ac.uk/Computing/downloads/stuff.doc

would indicate the location of a (mythical) file that could be downloaded from the Open

University website. A file located on the local computer system would have a URL with

the protocol part file. For example:

file://C:/Computing/Staff/I_Newton.htm

This indicates to the browser that it can locate the file simply by looking in the specified

folder on drive C: of the local system, and does not have to access it using a protocol

such as HTTP.

The URL class that we saw in Section 2 has a number of constructors that allow the

programmer to create URLs. The simple constructor that we saw earlier is the single

argument constructor that creates a URL from its string description. For example:

URL openUniversity = new URL("http://www.open.ac.uk”);

Alternatively, it is possible to set the various components of the URL individually:

URL openUniversity = new URL("http", "www.open.ac.uk", "");

Here the arguments represent the protocol, the host (that is, the computer name) and

the path. Where the path is left empty, as in this example, the URL refers to the home

page for this host.

It is also possible to specify the port to be used, as in the following example of invoking

the URL constructor:

URL open = new URL("ftp", "ftp.open.ac.uk", 25, "/staff.txt");

This creates the URL corresponding to ftp://ftp.open.ac.uk:25/staff.txt, which
can be used for FTP access to the file staff.txt on port 25 (if the FTP server is set up to
permit use of this non-standard port for FTP). Note that the port number must be specified

as an integer and that the path must start with a forward slash as shown.

Most of the methods within the URL class get or set the various components of the URL.

For example, they can return the protocol or the host parts of the URL:

String protocol = openUniversity.getProtocol();
String hostName = openUniversity.getHost();
if (protocol.equals("http"))
{

...

In general, the getter methods for the URL class are more useful than the setter methods.

Once a URL object has been constructed you will seldom want to change it, although

you may want to change the contents of the resource to which it refers.

5 Addressing on the internet 23

SAQ 7

(a)	 Explain the components of the following URL:

http://intra.mkt.edu/physics/energy/bubble.jpg

(b) Is the following URL correctly formed? If not, indicate how you would correct it.

ftp://www/englit/documents/

ANSWERS ..

(a)	 This URL can be broken down as follows. The path is
/physics/energy/bubble.jpg, the host is intra.mkt.edu and the protocol
part is http. This represents a file called bubble.jpg (presumably an image,

compressed in JPEG format) that is stored in the physics folder, subfolder energy
on the computer called intra, located in domain mkt.edu. (edu is commonly used

in the USA for educational institutions such as universities – the rest of the world is

normally more modest, but then the USA got there first.) The protocol component,

http, indicates that the resource can be accessed using HTTP, which defines
communication over the web.

(b) No, it is not a valid URL. It omits the domain name where presumably the computer

www is located. Note also that it specifies only a folder called documents, not the file
within that folder that is required – this is permissible in some URLs where there is a

default filename to access. The protocol ftp is correct – this indicates that the File
Transfer Protocol is to be used. So a correct, full URL might look like this:

ftp://www.open.ac.uk/englit/documents/A254.doc

URL

a

mean thing.

URI versus

In this text we have used the term URL, for Uniform Resource Locator, to indicate

the location on the web of various resources such as a web page, a video clip or an

FTP site.

You may also come across the term URI for Uniform Resource Identifier. This is a

related and more general term than URL, and some authors may use it in preference

to the term URL. A URI is intended to be a generic name for any of a class of ways of

identifying resources on the internet. Two types of URI that have been proposed are

URL (as we have seen) and URN (Uniform Resource Name). The idea of a URI is

that it is a unique name that is used to access the resource. It is not necessarily

specific file location (it may be a call to an application or a database, for example). If

it is a specific file location, then it is a URL.

At the time of writing, implementations of URNs are not widespread; only URLs are

in common use. So for most practical purposes at present, the terms URI and URL

the same

By definition, all URLs are URIs.

Not all URIs are URLs, but at present almost all URIs in use are URLs.

On the other hand, the UK
is the only country in the
world that does not have
to display its name on its
postage stamps –
because the UK got there
first.

24 Unit 9 Internet programming

Programming with sockets 6

Earlier we introduced the notion of a socket as a software mechanism that allows the

transfer of data between programs. A socket is a logical idea of a connection to a host

on the internet, and each socket is unique since it consists of an IP address and a port

number.

6.1 Sockets on the client

The class Socket allows us to create sockets on the client system. The most common

Socket constructor has the form:

Socket(String, int)

This creates a Socket object that allows communication with the computer, which has

the address given by the first argument, using the port given by the second argument.

For example, consider the following code:

Socket sock = new Socket("catalogue.acme.co.uk", 4000);

This creates a Socket object to link to port 4000 on the catalogue computer

associated with the domain acme.co.uk. You can also use numeric IP addressing

(dotted quad notation) for this address, as follows:

Socket sock = new Socket("199.200.34.123", 4000);

Communication between clients and a server is achieved by input/output streams. Each

socket has an associated input stream and output stream – the methods

getInputStream and getOutputStream give access to these streams. For example:

Socket sock = new Socket("catalogue.acme.co.uk", 4000);
InputStream is = sock.getInputStream();
OutputStream os = sock.getOutputStream();
...

These streams can then be used to send and receive data, using a similar approach to

writing and reading files. In order to show how this happens, Section 7 gives a detailed

example.

6.2 Sockets on the server

On the server system we also need a socket for each connection to a client. However,

creation of sockets must be approached a little differently. This is because the server

does not normally initiate a connection – rather, it waits for a client to request a

connection. Hence it cannot create a socket until it knows the address of the client that

wants to establish a connection.

6 Programming with sockets 25

The key class for dealing with this is the ServerSocket class. This is used within a
server for setting up sockets that are to be associated with a client. The class has two

important constructors. The first has the form:

ServerSocket(int)

This sets up a ServerSocket object associated with a particular port specified by its
single argument. As you will see below, this object is then used to create the sockets that

are associated with clients communicating with the server via that port. For example, the

following code causes the server to 'listen' on port 80 (normally used for HTTP

requests).

ServerSocket ss = new ServerSocket(80);

In practice, this means that the server checks incoming TCP packets to see whether

they are addressed to port 80.

The second constructor is defined by:

ServerSocket(int, int)

The first argument is the port to be used, as before. The second argument is the

maximum number of clients allowed to wait for connections from the server. For

example, the code:

ServerSocket ss = new ServerSocket(3000, 30);

sets up the ServerSocket object referenced by ss, which is associated with port 3000
and with a client queue of maximum length 30. If, while processing a request from a

client, another client attempts to access the service via this port, then the new client

connection request will be placed in the queue and will be dealt with after the first

client’s connection has terminated. If the queue is full, any further client connections will

be refused.

Once a ServerSocket object is created, the server will wait for clients to request a
connection. When a connection is made, a socket linked to the client is created; this is

achieved via the accept method.

An example of its use is shown below:

// server code
ServerSocket ss = new ServerSocket(3000, 30);
...
// wait until connection request made by client
Socket sock = ss.accept();

When the accept method is first executed, it is blocked: it stops running until a client

attempts to create a socket on the port associated with the ServerSocket object. The
accept method creates a socket that links to the client requesting the service provided

on port 3000 by the server. This socket can then be used to access input and output Activity 9.4
Accessing a server using

streams in the same way as we saw above on the client (see Figure 7). Telnet.

26 Unit 9 Internet programming

OutputStream InputStream

OutputStreamInputStream

client
software

server
software

3000
www.open.ac.uk

3000
198.233.18.122

socket on client socket on server

client address
198.233.18.122

server address
www.open.ac.uk

Figure 7 Client–server link on port 3000 using TCP sockets

In programming servers and clients you should bear in mind that:

c a connection is a linked pair of sockets (see Figure 7);

c at the server end, the socket has the address of the client and a suitable port

number for the service required by the client;

c	 at the client end, the socket has the address of the server and the same port number

as the server for the particular service required;

c	 the InputStream entering the client receives data from the OutputStream
leaving the server and the InputStream entering the server receives data from the

OutputStream leaving the client.

– and

USER

RETR

QUIT

responds was

The FTP protocol

The FTP or file transfer protocol was defined early in the history of the internet, but is

still in widespread use. When you download a music file from a website, or upload

some web pages to update the contents of a website, you will normally be using FTP.

FTP uses two TCP connections so there are two separate ports at the server

two separate ports at the client. One connection is for handling control information

(normally port 21 at both the client and the server) and the other is for transferring

the data (normally port 20 at each end). So the illustration in Figure 6 is correct in

showing requests directed to port 21, but does not show the whole story.

Along the control connection (port 21), the FTP client sends special command words

in the form specified by FTP, such as:

supplies the user name (often 'anonymous' for free access)

PASS supplies the password, if needed, for access to the server

retrieves contents of a specified file

terminates the connections

The FTP server on port 21, indicating whether or not the request

successful.

In response to a successful RETR command, the server will send the file data on the

data connection (port 20). This is different from HTTP, which we saw earlier, in that

HTTP sends control information and data along the same connection (normally

port 80).

6 Programming with sockets 27

SAQ 8

Why does a ServerSocket have only an associated port number, whereas a Socket
has both a port number and an IP address?

ANSWER ...

When client software creates a socket using the Socket class, it must know both the

server computer with which it will be communicating and the port number to be used.

This ensures that data goes to and from the correct IP address and is directed to the

appropriate service.

The ServerSocket specifies only a port number on which a service is offered. This

service may be requested by any one or more of many different client computers, and

we normally do not know the addresses of these clients in advance. So it would not

make sense to specify an IP address for a particular client when the ServerSocket
object is created. When a particular client requests a connection to the server, the

accept method of the ServerSocket object is used to create a new Socket object on
the server. This Socket object has the client’s IP address as well as the port number

and so it can communicate with the corresponding socket on the client.

28 Unit 9 Internet programming

A simple client–server example7

To illustrate the ideas discussed in the previous section, we now consider a very simple

example of a client communicating with a server. In this case, the client connects to the

server and receives a single message, which it displays on screen. Both the client and

the server then terminate. The client does not send any messages to the server.

In a more realistic interaction, there would be a two-way communication: the client would

be able to send any number of messages containing requests to the server and the

server would respond appropriately to those requests. The server would keep running

until it was explicitly closed down. It would be useful if the server could deal with

requests from a number of different clients.

These more complex scenarios will be discussed in later sections. For now, we consider

only the case of one client receiving a single message from the server. We start by

looking at the code for the server.

7.1 Simple server

We define a class for the server called HelloServer. This has a number of instance

variables concerned with the sockets and streams needed for the client and server to

communicate. The first part of the class, including the constructor, is shown below. For

clarity, we will defer explanations of some of the instance variables at this stage – these

will be discussed when we look at the methods of this class later in this section.

public class HelloServer
{

private ServerSocket serverSocket;

private Socket socket; // socket to link to the client

// streams for communication to client

private OutputStream os;

private PrintWriter toClient;

// use a high numbered non-dedicated port

static final int PORT_NUMBER = 3000;

static final String MESSAGE_TO_CLIENT = "Hello Walrus";

// constructor

public HelloServer ()

{

try
{

// create a ServerSocket object to listen on the port
serverSocket = new ServerSocket(PORT_NUMBER);

}

7 A simple client–server example 29

catch (IOException e)

{

System.out.println("Trouble on port " +

PORT_NUMBER + ": " + e);

}

}// end constructor

...

The constructor does only one thing – it creates a ServerSocket object, which will
permit the server to listen on the specified port waiting for a client to attempt to make a

connection. In this case we use port 3000, but there is nothing special about this
number except that it is out of the range 0 –1023 dedicated to standard services. The

constructor for a ServerSocket object can generate an IOException, so we provide
code to catch and report this.

The main work of the server is carried out by the run method, as follows:

public void run ()

{

try

{

// wait for a connection request

socket = serverSocket.accept();

openStreams();

toClient.println(MESSAGE_TO_CLIENT);

closeStreams();

socket.close();

}

catch (IOException e)

{

System.out.println("Trouble with a connection " + e);

}

}

Here, the accept method of the ServerSocket object causes the server to wait until a
client attempts to make a connection. This attempt occurs when the client software

creates a socket on the client computer. When a client does attempt to make a

connection, a socket is created at the server and a reference to this new socket is stored

in the instance variable socket. Next, we must use the private method openStreams to
open the streams that allow the server to send a message to the client. This gives us the

situation of two linked sockets – one on the client and one on the server – as illustrated in

Figure 7 in Subsection 6.2.

We then send a message to the client using the PrintWriter object referenced by
toClient. Finally, we close the streams using the private method closeStreams and
also close the socket to terminate the connection to the client.

We can take a closer look at the private methods, starting with openStreams, as

follows:

// set up streams for communicating with the client

private void openStreams() throws IOException

{

final boolean AUTO_FLUSH = true;

os = socket.getOutputStream();

toClient = new PrintWriter(os, AUTO_FLUSH);

}

30 Unit 9 Internet programming

We use the getOutputStream method of the Socket object to obtain the
OutputStream that will enable us to send output to the client. We use the

OutputStream object referenced by the instance variable os to create a
PrintWriter object referenced by toClient. Essentially, the PrintWriter object
wraps around the OutputStream object, and offers a more convenient way to send

data using the println method. This PrintWriter object is defined to be
autoflushed: that is, the output will be sent immediately after execution of a println
method, rather than being held in a buffer.

When we have finished with these output streams, it is important to close them and this

is the role of the closeStreams method, whose code is as follows:

// close output streams to client
private void closeStreams () throws IOException
{

toClient.close();
os.close();

}

Both of these methods, openStreams and closeStreams, can give rise to an
IOException. Since they do not handle the exception within the method, it must be

declared in the method header. The exception will then be handled by the code in the

try-catch statement of the run method that invokes these two helper methods.

This completes the code for the simple server, except that in order to run the server we

must have a main method and this is located in a separate class, TestHelloServer,
as follows:

public class TestHelloServer
{

// create a server and have it greet the client
public static void main (String []args)
{

HelloServer server1 = new HelloServer();
server1.run();

}

}

The main method creates a HelloServer object and invokes its run method. Until we

have a client to interact with this server, this causes the server to wait when it reaches the

accept method invocation on the ServerSocket object. In Subsection 7.2, we shall
Activity 9.5 see how to write the code for the client that can rescue this server from its lonely wait.
Testing the simple server.

7.2 Simple client

We define a class, called HelloClient, for the client. As for the server, this has a
number of instance variables relating to the sockets and streams that are needed to

enable the client to communicate with the server. In this simple client we do not define a

constructor, as there is nothing for it to do. The main work of the class, as in the server, is

in a method called run.

7 A simple client–server example 31

The code for the first part of the class, including the run method, is as follows:

public class HelloClient
{

// streams used for communicating with server
private InputStream is;
private BufferedReader fromServer;
private Socket socket; // socket to server

// use local host address for server

static final String SERVER_ADDRESS = "127.0.0.1";

static final int SERVER_PORT_NUMBER = 3000;

public void run ()
{

// set up connection to the server
try
{

socket = new Socket(SERVER_ADDRESS, SERVER_PORT_NUMBER);
openStreams();

String messageFromServer = fromServer.readLine();
System.out.println("Server said: " + messageFromServer);

closeStreams();
socket.close();

}
catch (IOException e)
{

System.out.println("Trouble contacting the server " + e);
}

}

The code in the run method carries out all the functions of this simple client with the aid

of two helper methods, openStreams and closeStreams. First, it creates a Socket
object that connects to a specified port at a specified server address. In this example,

we use port 3000 again, as this is the port number expected by the simple server. The

above code uses the special IP address "127.0.0.1", known as the loopback
address or the local host because it indicates that we want to communicate with a

server on the same computer as the client. To communicate with any other computer you

can simply change the value of the constant called SERVER_ADDRESS to either the
symbolic name or the IP address of the other computer.

Once the socket has been created and the connection established (this is the job of the

accept method of the ServerSocket object in the server software above) we can go
on to open the streams that are needed for communicating with the server. If anything

goes wrong at this stage (for example, if the server software is not running) this will

normally give rise to an IOException, which will be caught and handled by the catch
block.

The openStreams method creates a BufferedReader object, referenced by the
fromServer instance variable, for text input from the server. We then use the

readLine method to obtain a line of message text from the server, and this message is

displayed on the screen. Finally, we close the streams using the private method

closeStreams and also close the socket, to terminate the connection to the server.

32 Unit 9 Internet programming

Activity 9.6
Putting the simple client
and server together.

As with the server, the private helper methods are quite straightforward. We start with

openStreams, as follows:

// open streams for communicating with the server
private void openStreams () throws IOException
{

is = socket.getInputStream();
fromServer = new BufferedReader(new InputStreamReader(is));

}

We use the getInputStream method of the Socket object to enable us to get input
from the server. We use the InputStream object referenced by the instance variable
is to create a BufferedReader object referenced by fromServer. Again, the reason
for this layering or wrapping of streams is that a BufferedReader has more convenient

ways to read data than the lower-level InputStream. For example, we can use the

readLine method to read text input.

When we have finished with these input streams, it is important to close them and this is

the role of the closeStreams method, whose code is as follows:

// close streams to server
private void closeStreams () throws IOException
{

fromServer.close();

is.close();

}

As with the corresponding methods in the server class both of these methods,

openStreams and closeStreams, can give rise to an IOException. This is declared
in the method header and is handled by the code in the run method.

The client code is run by a main method located in the separate class,

TestHelloClient, as follows:

public class TestHelloClient
{

public static void main (String []args)
{

HelloClient client1 = new HelloClient();

client1.run();

}

}

Before running the client, you need to start the corresponding server. Otherwise, an

exception will occur when the client tries to create a socket linked to the server. When

the client and server above run successfully, the client should produce the following

output:

Server said: Hello Walrus

After this, the client and server both close their respective ends of the connection and

terminate.

8 A name service 33

A name service8
In the previous section, we saw how to code a simple server and a simple client. We will

now show how we program a more complex client–server system that implements a

name service.

A name service provides information about a resource, given the symbolic name of that

resource. For example, a name service might keep information about printer names that

could then be used to obtain the characteristics of a printer, such as its type, its

manufacturer and its speed. The example that we describe here is a name service that

returns the email addresses of employees of a company when given their names. For

example, the user Egbert Dreistein would be associated with his email address E.
A.Dreistein@open.ac.uk.

The name server will run continuously, accepting a series of requests from one or more

clients. It can, however, deal with only one client at any given time – if the server is

connected to a client, then any other client requesting to connect will be queued until the

first client connection has been closed. The client has a graphical user interface (GUI) to

allow the user to input requests and view responses. One of the possible client requests

is a message to inform the server that the client is terminating the connection. This

allows the server to close the connection to this client and proceed to serve the next

client, if any.

First, we will develop the code for the server. In this example, the data is stored in a

HashMap object that maps user names to email addresses. In practice, some file-based

medium such as a relational database would normally be used.

8.1 The server code

The server is implemented by the class NameServer, which has a constructor and
several methods, only one of which is public. Most of the structure of the server is in the

public method, run, but first we look at the instance variable declarations and the
constructor. The start of the class definition is as follows:

public class NameServer
{

private HashMap nameDatabase;
private ServerSocket ss;
private Socket socket;

// streams for connections
private InputStream is;
private OutputStream os;

// writer and reader for communication

private PrintWriter toClient;

private BufferedReader fromClient;

// use a high numbered non-dedicated port

static final int PORT_NUMBER = 3000;

34 Unit 9 Internet programming

// protocol definitions

// sent by client:

static final String CLIENT_QUITTING = "Exit";

// sent by server

static final String USER_NOT_FOUND = "User not known";

// constructor

public NameServer ()

{

nameDatabase = setUpNameDatabase();

// establish a ServerSocket
try
{

ss = new ServerSocket(PORT_NUMBER);
}
catch (Exception e)
{

System.out.println("Trouble with ServerSocket,
port " + PORT_NUMBER + ": " + e);

}
}// end constructor
...

The instance variables are mostly similar to those we saw in the simple server in

Subsection 7.1. They include variables that reference ServerSocket and Socket
objects as well as variables that reference streams for communication with the client. In

this case, since the communication is two-way, we have streams for reading input from

the client as well as the streams for output that we saw in the previous server.

The constructor does two things only. It sets up the database of information that

associates users' names with their email addresses. It also creates a ServerSocket
object, to enable the server to listen on the specified port. As before, we have used port

3000, but this has no special significance apart from being outside the reserved range

for dedicated ports.

The name database is stored in a HashMap object which, as we saw in Unit 5, implements

a hash table to store key–value pairs. This will allow the server to quickly look up the email

address associated with a given user name. The HashMap object is created by a private
helper method, setUpNameDatabase, as follows:

// set up name database and add sample data

private HashMap <String, String> setUpNameDatabase ()

{

HashMap <String, String> db = new HashMap <String, String>();

db.put("Gareth Williams", "G.R.Williams@java2.co.uk");
db.put("Robert Thomas", "R.Thomas@java2.co.uk");
db.put("William Wilson", "W.Wilson@java2.co.uk");
db.put("Anne Land", "A.Land@java2.co.uk");
db.put("Dave Phillips", "D.Phillips@java2.co.uk");
db.put("Kirsten Davis", "K.L.Davis@java2.co.uk");

return db;

}

8 A name service 35

Most of the work for this server is carried out by the run method, with the help of a

number of private methods, as follows:

public void run ()

{

try

{

// loop endlessly waiting for client connections
while (true)
{

// wait for a connection request
socket = ss.accept();
openStreams();
processClientRequests();
closeStreams();
socket.close();

}
}
catch (IOException e)
{

System.out.println("Trouble with a connection " + e);
}

}

The basic structure of the server is a continuous loop containing code that causes the

server to wait for a client to connect and then to process any requests from that client.

When the client has no further requests, the connection is closed and the server returns

to wait for any further clients to connect.

When a client succeeds in connecting, the accept method returns a Socket object that
allows communication with the client. The helper method openStreams opens the
necessary streams for input from and output to the client, and then the method

processClientRequests repeatedly processes client requests. When the client

sends a message indicating that it wishes to terminate the connection, the streams are

closed by the helper method closeStreams and, finally, the connection to this client is
closed by invoking the close method of the Socket object. The server then returns to
the start of the loop to wait for another client to connect.

This structure is typical for servers, regardless of the precise service being offered. The

content of the helper method processClientRequests can be adjusted to suit the
particular service that is needed and the protocol for the communication.

Note also the try-catch construct, which handles any IOException objects thrown
by code in the run method or any of its helper methods.

We will now look at the code for each of the remaining helper methods, to see in more

detail how the server works.

36 Unit 9 Internet programming

The openStreams and closeStreams methods are similar to the corresponding

methods in the simple server in Subsection 7.1. The main difference is that we need to

deal with streams for text input from the client as well as the output streams we saw in

the previous server example. The code for openStreams is as follows:

// set up streams for communicating with the client

private void openStreams () throws IOException

{

final boolean AUTO_FLUSH = true;

is = socket.getInputStream();

fromClient = new BufferedReader(new InputStreamReader(is));

os = socket.getOutputStream();

toClient = new PrintWriter(os, AUTO_FLUSH);

}

All the variables used here to reference the various streams are instance variables. This

is because we will need to use them in a number of other methods of this class.

The next helper method, processClientRequests, carries out the key work of the
server – reading client requests and responding to them. The structure is simple and

typical of servers: the server repeatedly reads a client request string using the

readLine method of the BufferedReader class. In this case, the request is simply the

name of a user, and the processing involves looking up this name in the hash table that

stores the name database. If the name is found, then the get method of the HashMap
object will return a string corresponding to the email address of the user; this string is

sent as the reply to the client. If there is no matching name in the database, the get
method will return a null reference and the server sends a suitable reply (in this case

'User not known') to the client. The method then waits for further requests from the client

and processes them repeatedly until the special request string is read, indicating that

the client is closing down. The method then terminates. The code is as follows:

private void processClientRequests () throws IOException
{

String userName; // name request from client

String userEmail;

String reply; // reply sent to client

// get request from client

userName = fromClient.readLine();

while (!(userName.equals(CLIENT_QUITTING)))

{

userEmail = (String) nameDatabase.get(userName);
if (userEmail == null)
{

reply = USER_NOT_FOUND;

}

else

{

reply = userEmail;

}
// send reply to client
toClient.println(reply);
// get next request
userName = fromClient.readLine();

}

}

8 A name service 37

Again, note that this method may generate an IOException: for example, if the

connection became faulty while trying to input or output messages. Such an exception

would be handled in the run method.

When all requests from a particular client have been processed, the closeStreams
method closes down the streams between the server and this particular client, as

follows:

private void closeStreams () throws IOException
{

toClient.close();
os.close();
fromClient.close();
is.close();

}

Execution in the main loop of the run method then returns to the accept method, as in

the following extract from the method code shown earlier:

...
// loop endlessly waiting for client connections
while (true)
{

// wait for a connection request
socket = ss.accept();

...

Again the server waits for a client to connect and then proceeds to open streams,

processes requests and eventually closes the connection for this client also. The server

continues to run like this indefinitely, as this server has no way of receiving a shutdown

command for the server itself. To stop this server you must close down the program,

using whatever facilities the environment provides to terminate the programs.

Finally, note the approach that is used for exception handling. Several of the helper

methods may generate an IOException; this is declared in the headers of these
methods and the exception is handled by a single try–catch construct in the run
method. An alternative approach would be to have a try–catch construct within each
of the helper methods and to deal with each exception locally within the method where it

occurs. This has some potential advantages if we want to take different recovery or

reporting actions for the various possible locations of the exception. However, in this

simple example we just want to report the exception and terminate the program, so the

same action is appropriate for all occurrences of the exception.

The only other thing required is a class containing a main method, which can be used to

create and run the NameServer object. A suitable class, called TestNameServer, is as
follows:

public class TestNameServer
{

// create a name server to respond to client requests
public static void main (String []args)
{

NameServer server1 = new NameServer();
server1.run();

}// end main

}

The main method creates a NameServer object and invokes its run method. This

causes the server to set up the name database and then to wait for a suitable client to

connect. Next, we shall discuss how we write just such a client.
Activity 9.7
Testing the name server.

38 Unit 9 Internet programming

8.2 The client code

This section describes the client code for the name service. The client user interface

consists of a single window, containing two labelled text fields and two buttons, as

shown in Figure 8.

Figure 8 The client user interface window

The Go button sends the employee’s user name in the first text field to the server. When

the server replies with the email address of the user, this is displayed in the second text

field. The Quit button disconnects the client from the server and closes the client.

The client class is declared as follows:

public class NameClient extends JFrame implements ActionListener
{

...

This means that the NameClient class is a kind of frame; it inherits from the JFrame
class provided by the Swing library of user interface classes. It also implements the

interface ActionListener – this ensures that the client window responds to events
such as clicking on one of the buttons.

The constructor is quite simple – it has three tasks, as shown below:

public NameClient (String title)
{

super(title);
setUpGUI();
connectToServer();

}

First, it invokes the constructor for its superclass (in this case, JFrame) – this sets the
window title. Using two private helper methods, it constructs the graphical interface (as

shown in Figure 8) and then connects to the name server, whose code we looked at in

Subsection 8.1. Once a client object has been created by executing this constructor, it

simply waits for the user to click on one of the buttons before responding. This is what

we defined as event-driven programming – the button click events drive the client

system.

8 A name service 39

The detailed code for setting up the GUI is as follows:

// set up client graphical user interface

private void setUpGUI ()

{

final int CLIENT_WINDOW_WIDTH = 260;

final int CLIENT_WINDOW_HEIGHT = 250;

final int TEXTFIELD_WIDTH = 20;

userName = new TextField(TEXTFIELD_WIDTH);

userEmailAddress = new TextField(TEXTFIELD_WIDTH);

goButton = new JButton("Go");

quitButton = new JButton("Quit");

Container content = getContentPane();

content.setLayout(new GridLayout(5, 1));

content.add(new Label("User name"));

content.add(userName);

content.add(new Label("Email address"));

content.add(userEmailAddress);

JPanel buttonPanel = new JPanel();

buttonPanel.add(goButton);

buttonPanel.add(quitButton);

content.add(buttonPanel);

// register button listeners

goButton.addActionListener(this);

quitButton.addActionListener(this);

setSize(CLIENT_WINDOW_WIDTH, CLIENT_WINDOW_HEIGHT);
setVisible(true);

}

This follows the standard pattern of creating a number of user interface objects – text

fields, buttons and labels – and adding these to the frame using a suitable layout. In this

case, the frame layout manager is a simple GridLayout, but other more complex

layouts would be possible. Finally, the client frame object is registered as a listener for

both the buttons. This means that the NameClient class must provide a method that

responds to any button clicks – more details of this are given later in this section.

The code for connecting to the server is in the helper method connectToServer. This
creates a socket and then opens the streams for communication with the server:

// set up connection to the server

private void connectToServer ()

{

try
{

socket = new Socket(SERVER_ADDRESS, SERVER_PORT_NUMBER);
openStreams();

}
catch (IOException e)
{

System.out.println("Trouble contacting the server " + e);
}

}

40 Unit 9 Internet programming

The socket that is created here and referenced by the instance variable socket is
associated with the address of the server as well as the port number, which must be the

same as the port number used in the server code. Either the IP address or the symbolic

form of the server address can be used. This method also invokes the openStreams
method, which is very similar to the corresponding methods we have seen previously.

Any exceptions that occur are handled within the connectToServer method. The code

for the method openStreams is as follows:

// open streams for input and output
private void openStreams () throws IOException
{

final boolean AUTO_FLUSH = true;
is = socket.getInputStream();
fromServer = new BufferedReader(new InputStreamReader(is));
os = socket.getOutputStream();
toServer = new PrintWriter(os, AUTO_FLUSH);

}

The client code so far has set up the client window and the connection to the server, but

we have not yet seen how anything happens. For this, we must look at the

actionPerformed method, which is required since the NameClient class
implements the ActionListener interface. When one of the buttons is clicked, the

actionPerformed method is invoked because the NameClient class is registered as
a listener:

// select an action depending on which button was pressed

public void actionPerformed (ActionEvent ae)

{

Object buttonClicked = ae.getSource();
try
{

if (buttonClicked.equals(goButton))
{

processGo(); // respond to GO button
}
else if (buttonClicked.equals(quitButton))
{

processQuit(); // respond to QUIT button
}

}
catch (IOException e)
{

System.out.println("Problem with the server " + e);
}

}

Here, the ActionEvent argument ae allows us to find which object is the source of the
event. In this case, the only relevant events are a click on one of the two buttons. If one of

the two buttons is clicked, the corresponding method will be invoked to process this.

8 A name service 41

When the Go button is clicked, the method processGo is invoked. Its code is as follows:

// respond to Go button – User has requested an email address
private void processGo () throws IOException
{

String usName;

String emailAddress;

// get the user name

usName = userName.getText();

// send it to the server

toServer.println(usName);

// receive reply

emailAddress = fromServer.readLine();

// display email address

userEmailAddress.setText(emailAddress);

}

Here, the client sends the contents of the userName text field to the server. It then waits
for the server to respond with the email address for that user and displays this in the

other text field. To keep this example simple, we ignore the possibility that the userName
text field may be blank. If this were the case, the server would simply reply with a

message that the name had not been found.

Returning to the actionPerformed method, if the Quit button was clicked then the
method processQuit would be invoked. The code is as follows:

// respond to Quit button

private void processQuit () throws IOException

{

toServer.println(CLIENT_QUITTING);
closeStreams(); // close streams to server
socket.close(); // close socket connection to server
System.exit(0); // close down client program

}

A special message is sent to the server to inform it that the client is terminating the

connection. In response to this, we have seen earlier that the server will close

the connection to the client. The client then closes the streams from its end using the

helper method closeStreams. This is similar to the corresponding method in

NameServer, with the code in the NameClient method as follows:

// close streams to and from the server

private void closeStreams () throws IOException

{

toServer.close();

os.close();

fromServer.close();

is.close();

}

42 Unit 9 Internet programming

Activity 9.8
Developing the full
client–server name
service.

The client code is run by a main method located in the separate class,

TestNameClient, as follows:

public class TestNameClient
{

public static void main (String []args)
{

NameClient client1 = new NameClient("Name Service Client");
}

}

In this case, we simply need to create a NameClient object in order to connect to the
server and to set up the GUI. Because the client is driven by events (button clicks) from

this point onward, there is no need to invoke any other methods and, in fact, the

NameClient class does not offer any public methods. This is different from the example

of a simple client in Section 7, where we invoked a run method to handle the interaction

with the server because there was no GUI.

Before running the client, we need to start the name server. Otherwise, an exception will

occur when the client tries to create a socket linked to the server. When the client and

server above run successfully, the client will keep running until we click the Quit button,
at which point it will close down. We can then start up another client, as the name server

should still be running, and continue to interact with the server. In this example, there is

no elegant way to close the server; we simply have to end the program by whatever

means the environment offers to terminate programs.

SAQ 9

(a)	 What does it mean to specify the IP address "127.0.0.1" when creating a socket?

(b) Why is port number 3000 used in creating the socket in the client software in the
example above?

ANSWERS ..

(a)	 The address "127.0.0.1" is an IP address with a special meaning. It does not

correspond to any specific computer; it is known as the 'local host' or 'loopback'

address. It indicates that the socket will communicate with a server located on the

same computer as the client. This is often useful for testing on one machine before a

system is deployed across a network.

(b) Port numbers 0 to 1023 are reserved for standard internet services. For example,

HTTP requests use port 80. When you write your own client–server software to

operate across the internet, you should avoid reserved port numbers. Apart from

this, port numbers can be chosen at random up to the maximum allowed value of

65534, so port 3000 has no special meaning, in general.

9 Serving multiple clients 43

Serving multiple clients 9

The server implementation in the previous section has a potentially serious problem: it

deals with client connection requests one at a time.

In general, servers can have many clients requesting service at the same time. If a

second client makes a connection request when a first client is being processed, then

the second client will be queued and will be connected only when the first client has

terminated its processing with the server. If the user of the first client is making

infrequent service requests then it may be a long time before any other client is able to

connect. At its most serious, there may be many clients queued and the server may

reach its maximum queue size and disallow any more connections. In order to overcome

this problem the code for the server should use threads.

Each connection that is accepted by the server should be handled by a separate

thread. In this way, a number of threads could carry out the processing simultaneously.

The first part of the code for a threaded class that handles a connection is shown below:

public class ConnectionThread implements Runnable
{

private Socket socket;

private HashMap nameDatabase;

// streams for connections

private InputStream is;

private OutputStream os;

// writers and readers for communication

private PrintWriter toClient;

private BufferedReader fromClient;

// protocol definitions

static final String CLIENT_QUITTING = "Exit";

static final String USER_NOT_FOUND = "User not known";

public ConnectionThread (Socket s, HashMap nameData)

{

socket = s;
nameDatabase = nameData;

}

44 Unit 9 Internet programming

public void run ()

{

try

{

openStreams();

processClientRequests();

closeStreams();
socket.close();

}
catch (Exception e)
{

System.out.println("Trouble with a connection " + e);
}

}

The class ConnectionThread implements the Runnable interface; this means that it

can operate as a thread, as discussed in Unit 8.

The most important part of the code is the run method, which contains similar code to

that used in the run method of the server in the previous section. As before, this opens

the input and output streams for the socket, processes the requests from this client and

finally closes all the streams when the client has terminated.

The helper methods openStreams, processClientRequests and closeStreams
are exactly the same as before, except that they are now private methods of the

ConnectionThread class instead of being part of the NameServer class.

The main difference is that, since this is a threaded class, there may be a number of

instances of this class running, each managing the connection to a different client and

processing that client's requests.

Note also, the role of the constructor of the ConnectionThread class – it has two
parameters that provide references to the socket to be used and the name database to

which all threads must refer. These references are stored in instance variables by the

constructor. We will see below where these references come from.

We also define a class called ThreadedNameServer to carry out initialization of the
server and to control the creation of the ConnectionThread objects. The code for this
class is as follows:

public class ThreadedNameServer
{

private HashMap nameDatabase;
private Thread connection;

// use a high numbered non-dedicated port

static final int PORT_NUMBER = 3000;

// constructor
public ThreadedNameServer ()
{

System.out.println("... Name Server starting up");
nameDatabase = setUpNameDatabase();

}// end constructor

9 Serving multiple clients 45

// set up name database and add sample data
private HashMap <String, String> setUpNameDatabase ()
{

HashMap <String, String> db = new HashMap <String, String>();

db.put("Gareth Williams", "G.R.Williams@java2.co.uk");
db.put("Robert Thomas", "R.Thomas@java2.co.uk");
db.put("William Wilson", "W.Wilson@java2.co.uk");
db.put("Anne Land", "A.Land@java2.co.uk");
db.put("Dave Phillips", "D.Phillips@java2.co.uk");
db.put("Kirsten Davis", "K.L.Davis@java2.co.uk");

return db;

}

// loop endlessly waiting for client connections
public void run ()
{

// establish a ServerSocket
try
{

ServerSocket ss = new ServerSocket(PORT_NUMBER);
while (true)
{

// wait for a connection request
Socket socket = ss.accept();
connection = new Thread(new ConnectionThread

(socket, nameDatabase));
connection.start();

}
}
catch (Exception e)
{

System.out.println("Trouble with a connection " + e);
}

}// end method run
}// end class

The run method for the ThreadedServer class is similar in structure to the run
method for the NameServer class in the previous section. The main difference is that

client connections are not dealt with directly – a separate thread is created to handle the

connection and communication with each client. We have thus separated the task of

listening for new clients from the task of actually dealing with each client.

The main task of class ThreadedNameServer is now to do the listening, and to set up a
thread for each client. Each thread is created using the ConnectionThread class,
discussed earlier. The ConnectionThread constructor is passed two arguments: a

reference to the socket that links to the client, and a reference to the name database.

This ensures that the thread can communicate independently with this client, and can

access the same name database as any other threads.

46 Unit 9 Internet programming

Activity 9.9
Using a threaded server.

The start method of the thread object is invoked and it begins to execute

independently. As for all threaded classes in Java, starting the thread executes the run
method of the threaded object, in this case the run method of the ConnectionThread
object, which handles all the communication with a particular client. The main server

loop then returns to wait for another connection request.

Again, we also require a class containing a main method, which can be used to create

and run the ThreadedNameServer object. A suitable class, called
TestThreadedNameServer, is as follows:

public class TestThreadedNameServer
{

public static void main (String []args)
{

ThreadedNameServer server1 = new ThreadedNameServer();

server1.run();

}// end main

}

The main method creates a ThreadedNameServer object and invokes its run method.

This causes the server to set up the name database and then to wait for suitable clients

to connect. As each client connects, a new ConnectionThread object is created to
handle that client. In this way, the server can handle many clients at once, in a

responsive way. The number of clients is typically limited only by the resources of the

system such as the amount of memory required, or the fact that response time increases

with each new client, since the threads are sharing the system processor.

The case for threading has been presented using an extreme example: that of an

unthreaded server with clients that take a long time to complete their requests. Even

when the duration of a client connection is short there is a compelling requirement for

threading to ensure a responsive service to multiple clients. This means that virtually all

servers are threaded.

SAQ 10

Threaded servers are clearly very useful for enhancing responsiveness when there are

many clients.

(a)	 Can you think of any potential problems?

(b) Do these apply in the threaded server example above?

ANSWERS ..

(a)	 If the server threads servicing different clients have access to shared items of data,

this data must be protected against potential corruption. This could happen if a

thread updating this data was interrupted by another thread before its update was

complete. This protection can be provided using the idea of synchronization, as

explained in Unit 8.

(b) This problem does not arise in the example above. The only item of data shared

between the threads is the name database and this cannot be modified by any of

the clients.

10 Datagram communication 47

10 Datagram communication

Earlier in this unit, you met the concept of a connectionless transport service when the User

Datagram Protocol (UDP) was introduced. You will remember that such a mechanism can be

error prone but is fast. Java contains a number of facilities for datagram transport. The class

DatagramPacket defines objects that will contain the data to be sent using UDP. The class
DatagramSocket implements connectionless message sending: it is a mechanism for

launching datagram packets into the internet and for listening to incoming datagrams

addressed to a particular port number.

In order to show how these facilities work we will look at a simple client and a simple

server. The client just sends a number of messages to the server, which displays each

message on System.out.

One of the complications of datagram transport is that all communication is via fixed­

length byte buffers: what is sent by one entity is received exactly by another entity,

including any padding at the end of the buffer.

In the example below, we send a string and have allocated a fixed-size buffer to hold the

string. The data in the packet is simply the string, converted to byte format; the UDP

packet header contains, amongst other things, the length of the data. The server can

then extract enough information to enable it to retrieve the string from each packet it

receives.

10.1 The client code

The code for the client is shown below:

import java.net. *;

import java.io.*;

public class DatagramClient
{

// number of bytes in a UDP packet
static final int UDP_PACKET_SIZE = 512;

// port number of UDP service
static final int PORT_NUMBER = 4000;
private DatagramSocket datagramSocket;

48 Unit 9 Internet programming

// constructor

public DatagramClient ()

{

try
{

// create a socket

datagramSocket = new DatagramSocket();

}
catch (IOException e)
{

System.out.println("Trouble setting up
datagram socket" + e);

}

}

// send a datagram containing a message

public void sendDatagramPacket (String message)

{

DatagramPacket packet; // UDP packet

// convert string to bytes

byte []toBeSent = new byte [UDP_PACKET_SIZE];

toBeSent = message.getBytes();

try

{

/* UDP packet contains the data, total length of data,
destination IP address and destination port. */
packet = new DatagramPacket(toBeSent, toBeSent.length,

InetAddress.getLocalHost(), PORT_NUMBER);
datagramSocket.send(packet);

}
catch (IOException e)
{

System.out.println("Trouble sending
datagram packet" + e);

}
}

}

The DatagramClient has a simple constructor, which sets up a datagram socket to be

used for sending datagrams. Because UDP does not set up a connection (unlike TCP)

this socket does not require any details of the destination. Only the individual packets

contain the destination details, as we shall see later.

The client class has one method, sendDatagramPacket, which has a string
argument specifying the text of the message to be sent. The packet data is a string

containing the message text. The first part of the method formats the data

appropriately and stores the string in byte format in the buffer toBeSent. We then

create a datagram packet containing this data together with the packet header

information required by the UDP protocol. This header information includes the

destination IP address and port number as well as the number of bytes of data. The

packet is then sent via the datagram socket to the specified IP address and port

number. In this example, we are assuming the server is on the local host, as we specify

the destination address using the static method InetAddress.getLocalHost. This
is an alternative to specifying the loopback address "127.0.0.1".

10 Datagram communication 49

We test this class using the main method of class TestDatagramClient, which is as
follows:

public class TestDatagramClient

{

public static void main (String []args)

{

// message to tell the server we are quitting
final String CLIENT_QUITTING = "Client quitting";

DatagramClient dc = new DatagramClient();

// create and send some packets
dc.sendDatagramPacket("Wish you were here");
dc.sendDatagramPacket("Weather is lovely");

// send a packet to tell the server we are quitting

dc.sendDatagramPacket(CLIENT_QUITTING);

}

}

This tests the class by creating a DatagramClient object and sending several
messages, terminating with the message CLIENT_QUITTING. This is a special
message to indicate to the server that the client has finished sending datagrams.

Because UDP is connectionless, there is no need to close anything before the client

program terminates – we just exit.

10.2 The server code

Of course, there is no point in running the client unless we have a server already waiting

to receive its messages. So next we must look at how to program a server for UDP

communication. All that the server does is to receive a datagram repeatedly, extract the

text message and display it on System.out. The code for the server is as follows:

import java.net. *;
import java.io.*;

public class DatagramServer
{

// number of bytes in a UDP packet
static final int UDP_PACKET_SIZE = 512;

// port number on which datagram is expected
static final int PORT_NUMBER = 4000;

// message which indicates that the client is quitting
static final String CLIENT_QUITTING = "Client quitting";
DatagramSocket datagramSocket; // the datagram socket

50 Unit 9 Internet programming

public DatagramServer ()
{

System.out.println("...Server starting");

try

{

// set up datagram socket on port
datagramSocket = new DatagramSocket(PORT_NUMBER);

}
catch (IOException e)
{

System.out.println("Problem setting up DatagramSocket:" + e);
}

}

public void receiveData ()
{

String message; // message from client
DatagramPacket packet; // the packet of data received
// buffer for receiving a fixed-size UDP packet,
byte []buffer = new byte [UDP_PACKET_SIZE];

try
{

// continue reading packets until exit message
boolean morePackets = true;
while (morePackets)
{

// create an empty packet to receive the data
packet = new DatagramPacket(buffer, buffer.length);

// receive a packet from the client
datagramSocket.receive(packet);

message = new String(packet.getData(), 0,
packet.getLength());

System.out.println("Message received is '" +
message + "'");

morePackets = (!message.equals(CLIENT_QUITTING));
}
System.out.println("...Server Terminating");

}
catch (IOException e)
{

System.out.println("Problem receiving packet:" + e);
}

}
}

The constructor for the DatagramServer class sets up a datagram socket on the same

port number used by the client when sending the datagrams. Note the need to specify a

port number in this case, unlike when setting up the datagram socket in the client code.

This is because the server needs to know on which port to listen for incoming packets.

10 Datagram communication 51

The main work of the server is carried out in the method receiveData. As long as it is
expecting more packets, it creates an empty datagram packet and waits for a datagram

to arrive on the specified port. It then stores that datagram in the empty packet and uses

the getData and getLength methods of the DatagramPacket object to extract the
message text from the datagram. It displays the message string on System.out before
returning to wait for the next message. The server terminates when it receives the

special message text from the client telling it that the client is terminating.

To run this class we use the main method of class TestDatagramServer, which is as
follows:

public class TestDatagramServer
{

public static void main (String []args)

{

DatagramServer server = new DatagramServer();

server.receiveData();

}

}

This simply creates a DatagramServer object to set up the socket and invokes its
receiveData method to enable it to accept datagram packets from the client. In this

case, as we have seen, the server program terminates if the client sends its termination

message. Alternatively, we could change the server code so that the server continues Activity 9.10
Communicating with

running in order to receive messages from other clients. datagrams: letter drops.

SAQ 11

What are the advantages and disadvantages of the UDP protocol for sending data

across the internet?

ANSWER ...

UDP (User Datagram Protocol) provides a raw packet-sending facility without any of the

more sophisticated facilities of TCP. First, there is no initial 'handshake' to establish a

connection between the two computers involved. If packets get lost or corrupted, they

are not automatically sent again. So, in a faulty or busy network, some packets making

up the communication may well not arrive or may contain incorrect data.

The potential advantage is that with fewer overheads for handshaking and data

correction, UDP data should travel more quickly. If correctness is not essential and

speed is important, such as in some digitized voice communications and other

streaming media, then UDP may be appropriate.

52 Unit 9 Internet programming

UDP?

–

domain name.

server

–

poorer

Who uses

We all do! We have seen that UDP is more appropriate for sending limited amounts

of data, where precisely correct receipt of that data is less important than speed of

transfer.

UDP is used by the internet DNS, which we met earlier in this unit this is the

Domain Name Service, which looks up the IP address corresponding to a symbolic

The amount of data exchanged in this process is typically small,

normally consisting of one UDP packet in each direction, with a relatively low

probability of an error occurring. Hence the handshaking overheads of setting up a

TCP connection would be excessive and UDP is appropriate.

Some programs use both UDP and TCP. For example, the RealAudio service, from

the RealNetworks company, allows the user to listen to an audio stream such as a

radio programme. TCP is used to initiate a download connection to a RealAudio

Player client. After the connection is established, the RealAudio sends the

audio data as a series of UDP packets. If a few data packets get corrupted or lost,

this can be ignored with little effect on the overall quality of service to the user. This is

preferable to pausing the audio stream while replacement packets are sent (as

would happen with TCP) such an interruption is likely to be perceived by users as a

service.

11 Summary 53

11 Summary

Before you can program internet applications, you need to know something about the

internet. In this unit, we have seen how the internet is structured, described the concept

of a client and a server and outlined how resources on the internet are accessed.

One of the features of Java is that its network API hides many of the technical details of

the internet. We illustrated this with a demonstration of how easy it is to access URL­

based resources from a Java program. We have considered how low-level internet

programming is carried out in Java. The unit describes how sockets are implemented on

both the client and the server, and how streams are used for communication of data

between clients and servers. A name service was used as a programming example.

Most servers are threaded to improve their performance and we have seen how a multi­

client server can be developed in this way. The unit concluded by looking at how

datagram communication is achieved in Java.

In general, in this unit we have looked at quite low-level programming approaches to

distributed system development. These approaches are used when speed and

efficiency are important. There are a number of other technologies in this area, such as

distributed object technologies. However, they are outside the scope of this course.

54 Unit 9 Internet programming

LEARNING OUTCOMES

When you have completed this unit, you should be able to:

c write programs to access data from websites;

c outline how the internet is structured;

c explain the concept of a protocol;

c explain the roles of clients and servers;

c describe how resources on the internet are addressed;

c program clients and servers using sockets;

c implement a threaded server to handle multiple clients;

c program connectionless communication using datagrams.

Concepts
The following concepts have been introduced in this unit:

addressing, application protocol, client, connection-oriented service, connectionless

service, datagram, distributed system, domain name, dotted quad notation, handshake,

host, HyperText Transfer Protocol (HTTP), Internet Domain Name Service (DNS), Internet

Protocol (IP), IP address, local host, loopback address, name service, numeric address,

packet, packet header, packet switching, peer-to-peer (P2P), port, protocol, protocol

levels, request, response, server, socket, symbolic address, system architecture,

system protocol, TCP/IP, Transmission Control Protocol (TCP), Uniform Resource

Locator(URL), User Datagram Protocol (UDP), web server.

C

Index 55

Index

A

accept method 25, 29, 31

addressing 19

dotted quad notation 19

IP 19, 24

numeric 19

symbolic 19

application protocols 15

architectures 9

client–server 10

n-tier 10

P2P 10

client queue 25

client–server 9–10, 24

architecture 10

exceptions 32, 37

multi-threaded server 43

multiple clients 33

programming 26

simple 28

connection-oriented service 17

connectionless service 17, 47

D

DatagramPacket 47

datagrams 18

DatagramSocket 47

distributed systems 9

DNS 20

Domain Name 20

dotted quad notation 19, 24

E

event-driven programming 38

exceptions 8, 32, 37

MalformedURLException 8

F

File Transfer Protocol 15

flushing 30

FTP 15, 26

H

handshake 17

hosts 9

HTTP 10, 15

HyperText Transfer Protocol 10

HyperText Transmission

Protocol. See HTTP

I

internet 13

Internet Domain Name Service 20

Internet Protocol 14

IP 14–15

addressing 19

IPv4 19

L

listening 20, 25, 29, 45

local host 31, 48

loopback address 31, 48

M

MalformedURLException 8

N

name service 20

numeric addresses 19

P

P2P 10

packet switching 13

packets 14

packet header, 14

peer-to-peer architecture.

See P2P

POP3 15

port 20

Post Office Protocol. See POP3

PrintWriter 29

protocols 13

application protocols 15

FTP 15, 26

HTTP 15

IP 14–15

POP3 15

protocol levels 15

reliable 17

request 13

response 13

TCP 13–15, 17, 20

UDP 20, 48, 52

R

request 13

response 13

routing 14

S

ServerSocket 25, 29

accept method 25, 29, 31

client queue 25

listening 25, 29

socket 21

input and output streams 24

Socket class 24

streams 24

symbolic addresses 19

system architectures 9

T

TCP 14–15, 17, 20

TCP/IP 13

threaded servers 43, 46

Transmission Control

Protocol. See TCP

try–catch statement 37

U

UDP 20, 47, 52

UDP packet 18

uniform resource locator 6

URI 23

URL 6, 21, 23

User Datagram Protocol 17

W

web pages 6

web servers 10, 13

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 400
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 400
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

