
Unit 2 Java
in the small

Putting Java to work

M257 Unit 2

Java in the small

2Unit
UNDERGRADUATE COMPUTING

course M257 Putting

courses

courses

course

Copyright ª

–

course

2.1

This publication forms part of an Open University

Java to work. Details of this and other Open University can be

obtained from the Student Registration and Enquiry Service, The Open

University, PO Box 197, Milton Keynes MK7 6BJ, United Kingdom:

tel. +44 (0)870 333 4340, email general-enquiries@open.ac.uk

Alternatively, you may visit the Open University website at

http://www.open.ac.uk where you can learn more about the wide range of

and packs offered at all levels by The Open University.

To purchase a selection of Open University materials visit

http://www.ouw.co.uk, or contact Open University Worldwide, Michael

Young Building, Walton Hall, Milton Keynes MK7 6AA, United Kingdom for

a brochure. tel. +44 (0)1908 858785; fax +44 (0)1908 858787;

email ouwenq@open.ac.uk

The Open University

Walton Hall, Milton Keynes

MK7 6AA

First published 2007. Second edition 2008.

2007, 2008 The Open University

All rights reserved. No part of this publication may be reproduced, stored

in a retrieval system, transmitted or utilised in any form or by any means,

electronic, mechanical, photocopying, recording or otherwise, without

written permission from the publisher or a licence from the Copyright

Licensing Agency Ltd. Details of such licences (for reprographic

reproduction) may be obtained from the Copyright Licensing Agency Ltd,

Saffron House, 6 10 Kirby Street, London EC1N 8TS;

website http://www.cla.co.uk/.

Open University course materials may also be made available in electronic

formats for use by students of the University. All rights, including copyright

and related rights and database rights, in electronic materials and

their contents are owned by or licensed to The Open University, or

otherwise used by The Open University as permitted by applicable law.

In using electronic course materials and their contents you agree that your

use will be solely for the purposes of following an Open University course

of study or otherwise as licensed by The Open University or its assigns.

Except as permitted above you undertake not to copy, store in any

medium (including electronic storage or use in a website), distribute,

transmit or retransmit, broadcast, modify or show in public such electronic

materials in whole or in part without the prior written consent of

The Open University or in accordance with the Copyright, Designs and

Patents Act 1988.

Edited, designed and typeset by The Open University.

Printed and bound in the United Kingdom by Martins the Printers, Berwick-

upon-Tweed.

ISBN 978 0 7492 6797 1

CONTENTS

5

5
2.1 5

2.2 6

2.3 Casting 9

12
3.1 12

3.2 13

16

20
5.1 The boolean type 20

5.2 20

5.3 The if statement 22

5.4 boolean and if statements 24

5.5 The statement 25

5.6 Nesting if statements 25

5.7 26

5.8 The statement 28

31
6.1 32

6.2 33

6.3 length 34

6.4 35

36
7.1 The while statement 36

7.2 The for statement 37

40
8.1 40

8.2 41

44
9.1 The StringBuffer type 44

9.2 new 45

9.3 46

48

Index 50

1 Introduction

2 Data types
Strong typing

Primitive data types

3 Statements, scope and operators
Statements and scope

Primitive operators

4 Strings

5 Conditional processing

Relational operators

Variables of type

if ... else

Logical operators

switch ... case

6 Arrays
Assigning values to individual elements

Accessing array data

The array instance variable

Mutability of strings and arrays

7 Repetitive processing

8 Developing some methods
Example 1: a bag

Example 2: a collection of computer names

9 Strings and arrays revisited

Array creation with

More examples of method invocation

10 Summary

M257 COURSE TEAM

M257 Putting Java to work was adapted from M254 Java everywhere.

M254 was produced by the following team.

Martin Smith, Course Team Chair and Author

Anton Dil, Author

Brendan Quinn, Author

Janet Van der Linden, Academic Editor

Barbara Poniatowska, Course Manager

Ralph Greenwell, Course Manager

Alkis Stavrinides, External Assessor, Coventry University

Critical readers
Pauline Curtis, Associate Lecturer

David Knowles, Associate Lecturer

Robin Walker, Associate Lecturer

Richard Walker, Associate Lecturer

The M257 adaptation was produced by:

Darrel Ince, Course Team Chair and Author

Richard Walker, Consultant Author and Critical Reader

Matthew Nelson, Critical Reader

Barbara Poniatowska, Course Manager

Ralph Greenwell, Course Manager

Alkis Stavrinides, External Assessor, Coventry University

Media development staff
Andrew Seddon, Media Project Manager

Ian Blackham, Editor

Anna Edgley-Smith, Editor

Jenny Brown, Freelance Editor

Andrew Whitehead, Designer and Graphic Artist

Glen Derby, Designer

Phillip Howe, Compositor

Lisa Hale, Compositor

Thanks are due to the Desktop Publishing Unit of the Faculty of Mathematics and
Computing.

1 Introduction 5

1 Introduction

We have called this unit 'Java in the small' after a term coined by DeRemer and Kron in a
1976 paper. This refers to the programming of the internal parts of programs, in
particular the contents of methods.

The previous unit introduced the idea of objects communicating through the invocation
of methods on objects. In this unit you will learn:

c how to write the internal parts of methods;

c the different types of data that the language provides;

c the facilities for altering the flow of program execution.

Our discussion is still within the framework that we adopted in the previous unit. The
code we show here is assumed to be embedded in methods that access, and
sometimes modify, instance variables. Methods are in turn contained in classes, which
we discuss in detail in Unit 3.

Our objective is to create code that will be easy to read (whether by the original writer or
somebody else), as well as easy to maintain. Of course, it must also be correct!

DeRemer, F. and
Kron, H. H. (1976)
'Programming-in-the-
Large versus
Programming-in-the-
Small', IEEE Transactions
on Software Engineering,
vol. 2, no. 2, pp. 80–6.

6 Unit 2 Java in the small

Reference variables are
discussed in detail in
Unit 3.

2

2.1

Data types

We begin our discussion of the main features of Java by talking about the various kinds
of data that you can create and manipulate in Java programs.

Strong typing
Data can be created and manipulated in Java programs using variables (in which we
can store and access data, as you saw in Unit 1) and expressions (for example, 2 + 3 is
an arithmetic expression). Java is a strongly typed language, which means that every
variable and expression has a type when the program is compiled and that you cannot
arbitrarily assign values of one type to another.

There are two categories of type in Java: primitive types and reference types. We can
create primitive variables and reference variables. Primitive variables store data values.
Reference variables do not themselves store data values, but are used to refer to
objects.

There are many kinds of primitive types and reference types. In fact, you can create your
own reference types, as we shall see in the next unit, meaning that there is no limit to the
number of these. There is a fixed set of primitive types; these are detailed next.

2.2 Primitive data types
Java (like most languages) has a number of primitive data types:

c numeric types to represent integers within various ranges;

c numeric types to represent non-integer numbers;

c a character type;

c a logical type.

Associated with every primitive type is a set of literal values. For example, the character
4 in a program is a literal value of the type known as int (a type used to store integers).
Literals have fixed values. The character 4 always means the same thing. In contrast, a
variable can contain different values at different times, so its meaning is not fixed.

One way of storing a value in a variable is by assigning a literal value to the variable. For
example, we could write:

int newVal = 4;

Declaration and initialization
In Unit 1 we discussed how we can reserve memory locations for storing values of any
primitive type. Those memory locations can then be made to contain values that are
legal for the particular type. This involves two steps.

1 Create a variable of the type you want to use. This step is called declaration or
declaring a variable.

2 When you first store something useful in a variable's memory location, we call it
initialization or initializing a variable.

2 Data types 7

Integral types
The integral types are called byte, short, int and long. All of these types are said to
be signed, meaning that they can hold positive or negative numbers. Each has a
different capacity. For example, a byte can store any number between -128 and 127,
whereas a short can store a number between -32768 and 32767.

In general, you should pick the type that occupies the least memory and meets your
needs for the range of numbers you wish to store. However, for convenience, we will use
int whenever we want to deal with integers.

Integer literals are of type int, and so are compatible with int type variables.

To declare two variables of type int and initialize them we write:

int myInt;
int myOtherInt;
myInt = 888;
myOtherInt = -2;

The last two statements store the value 888 in the memory reserved for myInt and the
value -2 in the memory reserved for myOtherInt.

We can change the value stored by writing another assignment statement, for example:

myInt = 777;

or we can assign one identifier to another as follows:

myInt = myOtherInt;

This will copy the contents of the memory location whose name is myOtherInt into the
memory location whose name is myInt.

The char type
Java has a character data type called char, which allows you to represent single
characters. Character literals are denoted by a value enclosed within single quotes:

char alpha;
char punc;
char num;
alpha = 'e';
punc = '?';
num = '1';

The above statements declare and initialize three character variables, alpha, punc and
num. The variable alpha has been initialized to contain the character 'e', punc has
been initialized to contain the character '?', while num has the value '1', which is not
the same as the integer value 1.

A character variable can be assigned any value in the Unicode character set, which is an
international set of characters (for example, Greek and French characters such as 'Δ' and
'é' are included). This means that we can write software for users around the world.

Escape sequences
The character literal '\u00A9' is an example of an escape sequence, which is a
sequence of characters standing in place of a single value. Escape sequences in Java
are marked by the use of the backslash character, which indicates that what follows is
not to be interpreted literally. The characters following the backslash indicate the nature
of the special information being represented. In this case, u00A9 indicated that this was
the Unicode character with value 00A9. Character literals allow us to specify non­
standard characters such as #.

Data type sizes in Java
are fixed to ensure
portability across
implementations of the
language.

Unicode characters may
not display correctly when
using console output.

8 Unit 2 Java in the small

The newline character is
not the same as the line
separator on various
platforms.

'\n' n
.

'\\' .

'\''

types.

s
08

08

float double e
float

:

cashValue a

t

double.

boolean

SAQ 1

(a) .

byte, short, int, long, float, double, and .

Some other examples of escape sequences relate to characters that are not printable;
for example, the 'tab' horizontal spacing character has no obvious literal representation.

The most commonly used escape sequence is the character , in which the
stands for 'newline', meaning the character that moves the screen cursor down one line

is the literal for the backslash character

The literal for the single quote character is , in which there are two single quotes
after the backslash, the second of which indicates the end of the literal.

Floating-point types
In order to represent numbers that may include fractional parts, we use floating-point

You will be familiar with this idea if you have come across scientific notation. In thi
notation, the speed of light in a vacuum is approximately 2.998 x 1 metres per second.
The two parts of the number are its digits, 2.998, and a multiplying factor, 1 , which tells
us about the magnitude.

The floating-point representation gives rise to the name of one of these types, which is
. The other floating-point type is called (which is short for 'doubl

precision'). The type has 32 bits of space and double has 64 bits.

Thus the statement

double cashValue = 23.8;

declares a double precision variable and initializes it to 23.8, which is
literal floating-point value.

Floating-point literals are denoted either by writing them as
integerpart.fractionalpar , as we did above, or by using scientific notation,
where the character e or E denotes the fact that the number is to be multiplied by the
power of ten of the integer following the e or E. So, if we wanted to write the value for the
speed of light we used above, we might have said:

double speedOfLight = 2.998e8;

The type of the floating-point literal we have shown is

There is just one primitive type left, the logical type , which is the simplest of the
primitive types! We shall discuss this type in Subsection 5.1. Before that, we shall look at
how we can make use of the types we have already discussed.

List the primitive types in Java

(b) Why is Unicode important for Java's portability?

ANSWERS ..

(a) They are boolean char

(b) Unicode provides an international character set, which allows us to write software
usable in various parts of the world.

2 Data types 9

SAQ 2

Which of the following attempts to create initialized variables would cause a compilation
error?

(a) int j = 1.2;

(b) int k = -200;

(c) int ok = 1;

(d) int boolean = 1;

(e) char myChar = '\n';

(f) char c = -10;

(g) char e = 'e';

(h) char d = '\';

ANSWERS ..

The following produce compilation errors:

(a) the literal 1.2 is not an integer;

(d) the variable name boolean is not allowed, because it is a keyword;

(f) the literal -10 is not a char;

(h) the literal '\' is badly formed; for a backslash it should be '\\';

2.3 Casting
Primitive variables can store values only of the type they are declared to be. However,
there are occasions where we want to be able to convert from one type to another.
Sometimes types can be converted automatically, but when we have to specify a type
conversion it is known as casting.

Casting involves writing the desired type of an expression in parentheses in front of the
expression; for example, we would write (int) in front of an expression if we wanted it
to be converted to an int.

The full rules of type conversion are lengthy and we do not want you to learn them. The A need to cast may be a

following discussion aims to give you only the general idea of how casting operates. The sign that your choice of
types is wrong.

most important thing to bear in mind is that casting primitive types can result in loss of
information and therefore you must think carefully before casting to decide if this is
acceptable.

Casting and information loss
Only variables of the floating-point types can store information about fractional parts of
numbers. The fractional parts are lost if casting to an integral type.

It is possible to convert one integral type to another or one floating-point type to another;
however, because variables of different types occupy different amounts of memory, this
can cause information loss.

.

10

Some examples are given below

Unit 2 Java in the small

Example 1

Bearing in mind that the value 35 is a literal of type int, the following shows
casting an int to a byte:

byte b = (byte) 35;

This results in b storing the value 35.

Example 2

This example shows casting of a double to an int:

double doubVal;

int intVal;

doubVal = 2.8;

intVal = (int) doubVal; // casting to an int

Here the value in doubVal is cast to an int type, and the converted value is
then assigned to intVal, so that intVal is given the value of the integer part
of doubVal.

After the conversion, intVal will contain the value 2. The fractional part of the
data has been lost. (The contents of the variable doubVal are unchanged by
this operation.)

Example 3

It is possible to convert integers to the char type, because the underlying type
of char is integral:

int a = 35, b = 12, d = 13;
char c;
c = (char) (a + b + d);

This results in c being assigned the value 60, which is the 61st character in the
Unicode set (the first being character zero). This turns out to be the character
'<'.

When is a cast required?
A cast is always required to convert a floating-point type to an integral type. In other
cases, a cast is required if the type you are assigning (on the right-hand side of an
equals sign) occupies a larger space in memory than the type you are assigning to (on
the left-hand side of an equals sign). When a cast is required, the resulting value is not
necessarily the same as the value the cast is applied to.

If you have not specified a cast in a case where a cast is required, the compiler will
produce a compilation error with the message that there is a 'possible loss of precision'.

What would happen if we were to assign an int variable to a double?

double doubVal;
int intVal;
intVal = 2;
doubVal = (double) intVal; // this is allowed
doubVal = intVal; // this is also allowed!

Although you can write a cast to convert an int to a double, Java does not require you
to do so. This is because an int occupies 32 bits, and a double occupies 64 bits.
There is no danger that we lose information in converting the int to a double.

Because this type conversion would not result in information loss, Java does not require
you to write a cast, and will perform the conversion automatically. This is known as
promotion. After each assignment above, doubVal would contain the value 2.0.

2 Data types 11

12 Unit 2 Java in the small

It is easy to forget to type
the closing curly bracket.
A good programming
discipline is to start with a
pair of brackets and then
fill in their contents. Your
IDE may do this for you.

Although in some cases it
is legal, you should avoid
declaring a variable
identifier both inside and
outside a code block.

3 operators

.

3.1

Statements, scope and

In this section we discuss in what parts of our code it is legal to use a declared variable,
which depends on what is known as the scope of a declaration. We also look at
operations we can perform on the data in our programs. To do this, we first need to
define what we mean by a line of code, or a statement

Statements and scope
A statement is a unit of executable code, usually terminated by a semicolon.

Statements can be written to occupy one line of code, but the physical layout of code is
not significant, and it is possible to have a single statement that extends over several
lines of code.

Groups of statements in Java can be treated as a code block by enclosing them in curly
brackets. For example, the code fragment:

{

int i;

int j = 24;

i = j;

}

is an example of a code block consisting of three statements. The statements in a block
are executed in order from top to bottom.

A code block enables a set of statements to be treated as a single statement.

Variables declared inside a code block are valid only inside the brackets. We say that
the variables' scope is the region enclosed by the brackets and we call them local
variables. For example, i and j above are local variables and are valid only within the
curly brackets.

You can nest code blocks, as shown below:

{

int k; // k valid from here

{

// k is valid, so this is okay

int j = k;

// j valid until next closing curly bracket

}

// j no longer valid, k still valid

}

Here variable k's scope includes the inner curly brackets.

3 Statements, scope and operators 13

3.2 Primitive operators
All the primitive data types that are provided in Java are associated with sets of
operators. For example, integers and floating-point types have addition and subtraction
operators. Operators can have single arguments, in which case they are known as unary
operators; they can also have two arguments, in which case they are known as binary
operators.

There are rules that determine the type of every expression and we can assign an
expression to a variable of the same type. In this way, we can save the result of
operations we have performed.

Operations involving variables will be meaningful only if the variables have been
properly initialized, so it is good practice to give any variables you declare an initial
value.

Arithmetic operators
Arithmetic operators are used with floating-point numbers and the various integral types.
All the standard arithmetic operations are available, as Table 1 shows.

Table 1 Arithmetic operators

Operator Name Example
expression

Meaning

* a * b a times b

/ a / b a b

% a % b a
by b

+ Addition a + b a plus b

- a - b a minus b

Multiplication

Division divided by

Remainder
(modulus)

the remainder after dividing

Subtraction

The type of an arithmetic expression depends on the type of its arguments. For example,

3.0/4.0 is 0.75, but the result of 3/4 is 0. In the second case, because the arguments

are integers, the operator does an integer division and discards the fractional part of the

result.

Similarly, 15/2 evaluates to 7, because the fractional part is discarded, but

15/2.0 evaluates to 7.5, because if either argument is a floating-point number, the

result is a floating-point number.

The modulus operator returns the value that is the remainder when its left argument is

divided by its right argument. For example, the value of 34%5 is 4, since this is the 34 % 5 may be read as '34

remainder when 34 is divided by 5. If either argument is a floating-point number, the mod 5'.

result is also a floating-point number. For example, the value of 3.5%2.1 is 1.4,

because 2.1 'goes into' 3.5 once, with a remainder of 1.4.

The negation operator
A unary operator ('unary' means it has only one argument) that you might wish to use at
some point is the negation operator. An example is as follows:

int a = 2;

int b = -a;

14 Unit 2 Java in the small

Each programming
language has its own
precedence rules.

This has the effect of setting b to the value -2. The single argument for the negation
operator appears to the right of the minus sign. We say that this is a prefix operator,
which simply means that it appears before the value it takes as an argument.

The compiler is able to distinguish the subtraction operator from the negation operator
by the number of arguments it has.

Precedence of arithmetic operators
So far we have seen only simple arithmetic expressions. What if we were to write
3 + 4 * 5? How does the compiler interpret this? Does it mean add three to four and
then multiply by five (to give 35)? Or does it mean multiply four by five, then add three
(to give 23)?

If an expression involves more than one operator, there is a clear order in which
operators are evaluated, determined by what is known as operator precedence.
The answer to the expression 3 + 4 * 5 is 23, not 35, because multiplication has a higher
precedence than addition, which means it is done first.

We are deliberately not stating the precedence rules. Instead, you should ensure a clear
order of evaluation of an expression, using parentheses. Java will evaluate expressions
in parentheses first.

If you write 3 + (4 * 5), this means first evaluate four times five and then add three.
Anyone reading your code can tell this without remembering the precedence of
operators.

If you write (3 + 4) * 5, it is equally clear you mean to add three and four before
multiplying by five.

Increment and decrement operators
Two operators you will find yourself using frequently in Java are the increment and
decrement operators, ++ and – –. These have two forms: postfix and prefix. The ++
operator increments the variable it is associated with by 1 and the – – operator
decrements the value of the variable it is associated with by 1. Suppose we have:

int myInt = 0;
myInt++; // postfix increment
++myInt; // prefix increment

After the first increment myInt has the value 1 and after the second it has the value 2. In
this context, there is no difference between the prefix and postfix operators.

However, the increment and decrement operations return values that can be used in any
context where their type is valid, and this is where these operators differ. The postfix
variant (in which the operator appears after the argument) returns the old value of the
variable to which it is applied whereas the prefix form returns the new value.

For example, consider:

int myInt = 10;
int x = myInt++; // postfix form

The second statement increments the value of the variable myInt and places this value
back into myInt. It then returns the old value of myInt and this is stored in x. After this
code, myInt would have the value 11 and x would have the value 10.

However, it would be different if we had written:

int myInt = 10;
int x = ++myInt; // prefix form

After this code, both x and myInt would have the value 11, since the prefix increment
operator returns the value of myInt after it is incremented.

The action of the – – operators is the same, except that subtraction rather than addition
occurs.

The properties of the ++ and – – operators are summarized in Table 2.

Table 2 Increment and decrement operators

153 Statements, scope and operators

Operator Name Meaning

++ x++ o x and

++ ++x o x and

– – x– – x and

– – – –x x and

Example expression

Postfix increment add 1 t

return the old value

Prefix increment add 1 t

return the new value

Postfix decrement take 1 from
return the old value

Prefix decrement take 1 from
return the new value

SAQ 3

(a)) (f) 2 % 3

(b) 3 (g) 5 / 2

(c) 6 % 2 (h) 5 / 0

(d) 2 (i) 0 / 5

(e) 5 % 0 (j)

(a) 7

(b) 9

(d) 5

(e)

(f)

(h)

(i) 0

(j)

Give the values of the following expressions or indicate if there is an error:

1 + (2 * 3

(1 + 2) *

17 % 1

5 / 2.0

ANSWERS ..

(c) 0 (2 goes into 6 three times, with no remainder).

This would cause a run-time error, due to division by zero. (Our compiler does not
catch this.)

2 (3 goes into 2 zero times and leaves a remainder of 2).

(g) 2 (the answer is truncated to an integer).

Run-time error, due to division by zero. (Our compiler does not catch this.)

2.5 (because at least one argument is floating-point, the result is floating-point).

Activity 2.1
Experimenting with data
types and operators.

16 Unit 2 Java in the small

4 Strings

In this section we begin our discussion of another commonly used type, the string.
A string is a sequence of characters. For example, a string could be used to store a
person's name. In Java, strings are represented using the reference type called
String.

String declaration
Strings and other reference types can be declared in the same way as primitive data
types such as int and char, by stating the type and then the names of the variables.
The code:

String name, address;

declares two variables of type String. No strings are created by such a declaration
and the reference values in these variables have not yet been initialized.

String creation
String literals are denoted by enclosing their characters in double quotation marks. The
text "David Jones" is an example of a String literal. Thus, the statements:

String name; // declare
name = "David Jones"; // initialize

declare the variable name, of type String, and initialize that variable to contain a
reference to the String object storing the characters "David Jones".

A special String literal is the string with no contents, called the empty string (written
""). We can write:

name = "";

Such an assignment does not (of itself) destroy the "David Jones" string or alter it;
rather it creates a new string and makes our name variable reference the new string. It is
possible that some other string variable could continue to reference "David Jones".
Any character can appear in a String, including the escape sequences. The double
quotation mark can be used as follows:

\"

This enables the programmer to write strings that contain double quotation marks, for
example the string "This is a double quotation mark \"".

Example 4

To illustrate these points, consider the following segments of code and the
related figures:

String name, name2; // Figure 1

name = "David Jones"; // Figure 2

name2 = name; // Figure 3

name = "Roderick"; // Figure 4

4 Strings 17

In Unit 1 we used a rectangle to depict a primitive variable's memory location.
Here, in Figure 1, we have used a circle to depict a reference variable. After the
first line of code, we have created two reference variables, with the given
names.

name2

name

Figure 1 Two uninitialized reference variables

After the second line of code, we have created a String object containing the
text "David Jones" and have made the name variable reference that string
(see Figure 2). We have shown the reference as an arrow linking a reference
variable to a memory location.

name2

name

Figure 2 The name variable referencing a String object

The effect of the next assignment is to copy the reference held in name to
name2. This results in name2 referencing the same memory location as name, as
shown in Figure 3.

name2

name

Figure 3 Two variables referencing the same object

By assignment of a new string literal, we can make name reference a new
memory location, as shown in Figure 4. The amount of memory set aside in each
case to store the actual string data depends on the length of the string.

18 Unit 2 Java in the small

The arithmetic + operator
is distinguished by the
type of its arguments.

name2

name

Figure 4 The name variable referencing a new object

The length method
You can invoke a length method on a String object in order to find out its length. For
example, the expression:

name.length()

evaluates to the number of characters in the string referenced by name. If this string
were "Roderick", the length method would return the value 8. The empty string has
length zero.

String concatenation
Because we often want to print strings on our computer screens, the operator that joins
(concatenates) strings is frequently used. This is the concatenation operator, written +.

If either of its arguments is a String, the + operator will automatically turn any
arguments into strings before carrying out a concatenation operation.

For example, we can write the following:

int occupants = 2;

String address = "Filby Lane";

String printout;

printout = address + " has " + occupants + " occupants";

The right-hand side of the assignment would convert occupants to a string and then
concatenate all the strings to create the single string "Filby Lane has 2 occupants".
By assignment, the printout variable would then be made to reference that string
object.

SAQ 4

8

.

{
)

{

8

}
}

{
)

{
;

;
+

}
}

Complete the following class so that it produces the output "Juma P Jambo was
years old." The line System.out.println will display its string argument on your
computer

public class Concatenate

public static void main (String args []

// add some variables here
// age has value
// initial has value 'P'
// firstName references "Juma"
// lastName references "Jambo"
System.out.println(firstName + /* etc */);

ANSWER...

public class Concatenate

public static void main (String args []

int age = 8

char initial = 'P';
String firstName = "Juma";
String lastName = "Jambo"

System.out.println(firstName + " " + initial
" " + lastName + " was " + age + " years old.");

You could use other variable names, but they should be reflected in the println
statement. Notice that we had to add blank spaces so that the text is correctly spaced.

4 Strings 19

Activity 2.2
Experimenting with strings
and concatenation.

20 Unit 2 Java in the small

5 Conditional processing

Any useful program must be able to respond to changes in the data on which it
operates. For example:

c if a member of staff is a manager, his or her salary will be calculated using a
productivity bonus;

c if the stock of a particular product in a warehouse is empty, then the sales clerk will
be informed that the order cannot be met;

c if the satellite has not emitted a signal for over 30 minutes, the main controller will be
alerted.

The flow control structures determine the way in which a Java program is executed,
allowing different segments of code to be executed under different circumstances.

In this section we describe the control structures in Java that enable conditional
processing, and put them to use in small code fragments and in methods. First, we must
describe two other fundamental features of the language: the boolean type, and
relational operators.

5.1 The boolean type
We deferred discussion of this last remaining primitive type from Section 2.

Variables of the boolean type can hold either the literal value true or the literal value
false, which are keywords in the Java language. This allows us to express conditions
such as those suggested above and determine whether they are true or false. For
example, we can write:

boolean dog = true;
boolean doberman = false;

We will call an expression that evaluates to a boolean value a logical expression.

Java defines a number of relational operators for boolean types.

5.2 Relational operators
The relational operators tell you about relationships between values of the same type.
Their arguments can be integers, floating-point numbers, or characters. The 'equal to'
and 'not equal to' operators can also be used with the boolean type.

The operators are summarized in Table 3. Notice especially that the equality operator is
two equals signs, one after the other. It is easy to forget to type one of these signs, which
changes the meaning of the expression to an assignment.

215 Conditional processing

3 s

Operator Name Example
expression

Meaning

== true if x equals y
false

!= true if x y,
false

> x > y true if x y,
false

< x < y true if x y,
false

>=
to

true if x
y false

<= true if x
to y false

Table Relational operators and expression

Equal to x == y , otherwise

Not equal to x != y is not equal to
otherwise

Greater than is greater than
otherwise

Less than is less than
otherwise

Greater than or equal x >= y is greater than or
equal to , otherwise

Less than or equal to x <= y is less than or equal
, otherwise

a boolean value.

true:

1 < 2

false == false

a, b and c

c

false e true:

==

SAQ 5

(a) ;

(b)

(c) ;

0 .

TRUE boolean

(c)

An expression involving a relational operator is a logical expression, so has

The following expressions would all evaluate to

0.5 > 0.0
true != false

2 == 2
'a' < 'c'

Arguments of relational operators can also be expressions. For example, if the values of
the variables were 34, 56 and 3 respectively, then the value of:

(a + b) <

would be and the value of the expression below would b

(a + 81) ((b * 2) + c)

Which of the following combined declarations and initializations are incorrect, and why?

boolean bob = 0

boolean sue = TRUE;

boolean f = false

ANSWERS ..

(a) Incorrect, the literal is not boolean

(b) Incorrect, the literal is not , because Java is case-sensitive.

This is syntactically correct.

Take care when using
relational operators with
floating-point values: we
can only store such values
approximately, and this
can lead to surprising
results.

22 Unit 2 Java in the small

SAQ 6

Explain why each of the following expressions is syntactically incorrect, assuming the
following declarations have been made:

boolean g = false, h = false;
int a = 1, b = 1;

(a) a > g

(b) g == 0

(c) h == True

(d) g < h

ANSWERS ..

(a)	 a and g are of different types and no promotion can occur to make the types
compatible. (It is not legal to cast between the boolean type and any other types.)

(b)	 g and 0 are not the same type and no promotion can occur to make the types
compatible.

(c) True is not a boolean value (true is).

(d) The < operator is not defined for boolean arguments.

5.3 The if statement
We are now in a position to return to the subject of the Java flow control structures for
conditional processing, also known as selection statements. Selection statements give
us ways of specifying the conditions for changing the flow of control in a program. The
general form of our first conditional processing statement is shown below:

if (logical_expression)

{

statements;

}

Here, if the logical_expression within the parentheses evaluates to true, then any
statements in the following code block are executed. We often refer to the code block
as the body of the if statement.

If the logical_expression is false, then any statements in the body of the if
statement are not executed.

Two examples of simple if statements are shown below:

if (a == 12)
{

b = 23;
}
if (c > 123)
{

signal = true;
}

c The first statement sets the integer variable b to 23 if the current value of the integer
variable a is 12.

c The second statement sets the boolean variable signal to be true if the value of
the integer variable c is greater than 123.

5 Conditional processing 23

An if statement may cover several lines of code, but it is just one statement. As is usual
when a statement has a body in curly brackets, there is no semicolon at its end.

It is permitted, syntactically, to omit curly brackets when there is only one statement in
the body of the if statement. So we could also have written:

if (a == 12)

b = 23;

if (c > 123)

signal = true;

In this case, each semicolon above terminates a statement. However, it is better style to
use curly brackets, to demarcate clearly the body of the if statement.

We can have as many statements as we require in the body of an if statement, written
as a code block. For example:

if (a == b)
{

b = 23;

signal = true;

a = 0;

}

Here, the three variables b, signal and a are given values if the integer variable a has
the same value as the integer variable b.

We have adopted a style of writing Java programs that includes indentation to indicate
the structure of a program. Indentation aids readability of code, but does not affect the
way the compiler interprets it.

5.4 boolean and if
statements
Variables of type

A boolean variable is used when we want to store information about the truth or falsity
of some part of our program. As an example of this consider the following.

int fish;

boolean caughtFish;

fish = 10;

caughtFish = (fish > 0);

This would result in caughtFish being set to true. Thereafter we could use
caughtFish in code where we need to test this condition.

We can now write statements such as this:

if (caughtFish)

{

// do something

}

24 Unit 2 Java in the small

Suppose that we had to use this condition several times, and that we had repeatedly
written fish > 0; we would have to locate and change each of those lines if the condition
were changed to fish > 1. Storing the condition in a boolean variable has the
advantage that we would have to change its meaning in only one place: where we
assigned a value to caughtFish. That line would now change to:

caughtFish = (fish > 1);

No other changes to our code would be required.

SAQ 7

Write code to do the following, assuming the declarations below have been made:

int a, b;

(a) Set a to the value 1 if b is less than or equal to 2.

(b) Increment b by 1 if b is greater than 5.

ANSWERS ..

(a)

if (b <= 2)

{

a = 1;

}

(b)

if (b > 5)

{

b++;

}

5.5 The statement
if

false
true.

{

}
else
{

}

where statementsA n
statementsB

if ... else
There is a slightly more complicated form of the statement that allows you to specify
code to be processed when the logical condition is in addition to code to be
processed when it is

The general form of this statement is:

if (logical_expression)

statementsA;

statementsB;

are executed if the logical_expressio is true and
are executed if the expression is false.

Note that there is no
semicolon between the
code blocks here.

{

}
else
{

;
}

25

An example might be that if a user has indicated he is a novice we set our user interface
to its verbose mode; otherwise we set it to normal mode. We could write:

boolean novice, verbose;
// novice gets set to true or false
if (novice)

verbose = true;

verbose = false

5 Conditional processing

5.6 Nesting if statements
We can write if statements within if statements, which we call nesting. An example of Nesting can occur within

this is shown below: any of the Java conditional
constructs.

if (a == 34)
{

s = 23;
i++;
if (i < 23)
{

b++;
c++;

}
}

Here you can see the advantage of using an indentation style: the structure of the two if
statements is displayed and it becomes clear which statements are going to be
executed when either of the two logical expressions is true.

5.7 Logical operators
It is common to want to combine the results from several logical expressions. For
example, we may want to allow a user to log in only if the username is recognized and
the password is correct. Java provides logical operators, which roughly correspond to
the natural language words 'and', 'or' and 'not', as a way of combining logical
expressions.

The logical operators are summarized in Table 4. This shows the use of the arguments
a and b.

Table 4 Logical operators and expressions

Operator Name Meaning

&& Logical
AND

true a and b are
true false

|| Logical
OR

false a and b are
false true

! Logical
NOT

!a false if a is true
true if a is false

Example expression

a && b returns if both
, otherwise

a || b returns if both
, otherwise

returns ; returns

26 Unit 2 Java in the small

:

b = -33;

eitherPositive true a > 0 is true and
true b > 0 is false n

true true.

because a < 0 is false
b < 0 is true t

true.

SAQ 8

;

(a) If a and b

a b b a a b.

(c) If a b b a; if b a a
of b.

a b and b b

(a)

== b)
{

}
else
{

}

The arguments for a logical operator must be logical expressions.

As we have just seen, one way of forming a logical expression is using relational
operators and variables with numeric types. It is possible for us to combine several
conditions into one statement using the logical operators. For example, consider the
code shown below

int a, b;
boolean eitherPositive, bothNegative;
a = 22;

eitherPositive = (a > 0) || (b > 0);
bothNegative = (a < 0) && (b < 0);

The variable is assigned the value , because
therefore the whole expression is (even though). Only one part of a
OR expression need be for the whole expression to be

The variable bothNegative is assigned the value false , and
therefore the whole expression is false. Even though , this is not sufficien
for the AND expression to be

Assuming the following declarations:

int a = 1, b = 2

write code to do the following:

are equal print the text "equal", otherwise print the text "not equal".

(b) If is greater than , assign the value of ; otherwise assign the value of

is greater than , assign the value of is greater than , assign the value

(d) If is greater than is less than zero, assign the value 1.

ANSWERS ..

We could have a statement like the following:

if (a

System.out.println("equal");

System.out.println("not equal");

(b) The following would achieve what we require:

if (a > b)
{

b = a;
}
else
{

a = b;
}

An alternative answer would be:

if (a <= b)
{

a = b;
}
else
{

b = a;
}

(c) We shall need something like the following:

if (a > b)
{

b = a;
}
else
{

if (b > a)
{

a = b;
}

}

Note that this is different from the previous answer, because a is not assigned the
value of b when a == b.

(d) We can use a single condition combining both requirements, using the logical AND
operator:

if ((a > b) && (b < 0))
{

b = 1;
}

This could also be achieved by a nested if.

275 Conditional processing

28 Unit 2 Java in the small

5.8 The statementswitch ... case
The if statement is used frequently, but can become unwieldy where a large number of
outcomes need to be tested. One case is where a variable takes on one of several
different values and different code must be executed depending on the value.

The switch statement makes this 'multiconditional branching' more readable. To use a
switch, all cases must depend in the same way on the argument (in terms of logical
equality).

The general format of the switch statement is:

A break statement switch (argument)
transfers control to the end
of its enclosing statement.
Its form is simply the word

{
case selector:

break followed by a statements;
semicolon. break;

case selector:
statements;
break;

case selector:
statements;
break;

// as many cases as required
case selector:

statements;
break;

default:
statements;
break;

}

The important points are:

c The argument is an expression of type int, char, short or byte (usually just the
name of a variable).

c Each selector is a constant value (usually a literal) compatible with the argument
type.

c A code block enclosing the statements in each case is optional but helps to
demarcate the code for each case.

c The statements are performed if the case selector is logically equal to the
argument ; in other words, if argument == selector.

c The keyword to cause the switch to terminate is the word break. When the word
break is encountered, control passes to the statement after the switch statement.

c A default case may be given to indicate processing to take place when no selector
is matched.

It is a common error to Failure to use a break statement results in control 'falling through' to the next case, so
forget that switch cases
fall through.

that other statements are also executed. It is unusual to require this form of processing,
so normal practice is to include a break statement at the end of every case. Many
people consider the switch statement to be poorly designed for this reason.

5 Conditional processing 29

An example of a switch statement whose argument is of type char is shown below:

char control;
// control is assigned a value
switch (control)
{

case 'a':

{

videoId = 3;
break;

}

case 'b':
{

videoId = 19;
soundId = 12;
break;

}

case 'c':
{

videoId = 11;
link++;
break;

}

}

// after a break, or if no cases match,

// execution resumes here

Here the character variable control determines which statements are to be executed.
If the value of this variable is the character 'a' then the integer variable videoId is set
to 3 and the break statement transfers control to the end of the switch statement,
effectively transferring control to the statement following. If the value of the control
variable is the character 'b', control is then passed to the three statements:

videoId = 19;
soundId = 12;
break;

After the first two statements have been executed, the break statement is invoked and,
again, control is passed to the statement following the switch statement. The final part
of the switch statement:

videoId = 11;
link++;
break;

is executed when the variable control contains the value 'c'. The break statement
again transfers control to the end of the switch statement.

If no cases are matched, control proceeds to the statement after the switch statement.

You may have deduced that the final break statement is strictly not necessary since, if it
were omitted, the processing would pass to the end of the switch statement anyway.
However, we regard it as good programming practice: you will often find that you will
need to modify a program after it has been tested, and one common modification is to
add new cases to a switch statement.

30 Unit 2 Java in the small

'x'

l break.

{

;
break;

break;

:

}

'c'

break

SAQ 9

(a) a switch if

float a switch .

(c) a break a case

a switch statement

(a)
.

a

(c)
switch

default

Suppose you added a new case to match value , following the last case, and had
not inserted a fina Your code would look like this (we have omitted the optional
curly brackets):

switch (control)

case 'a':
videoId = 3

case 'b':
videoId = 19;
soundId = 12;

case 'c':
videoId = 11;
link++;

case 'x'
// code for new case

When the processing for the case corresponding to the character has completed,
control will fall through to the new case that you have added, which is probably not what
you intended. This sort of error is very difficult to detect. Thus, even though the final

may be unnecessary, it is good practice to include it: you could save yourself a
large amount of development time.

When might you use statement in preference to an statement?

(b) Suggest why is not a legal type of argument in statement

What happens if you leave out statement at the end of statement's
code block?

(d) What keyword do you use to specify code to be performed in
when no cases match the argument?

ANSWERS ..

When you wish to test a variable (of a type compatible with switch) for equality with
several different values and execute different code in each case

(b) Floating-point types can only store numbers to a limited accuracy. This creates
issues with tests for equality, on which switch relies when choosing which case to
perform.

If that case is selected, the flow of control will proceed through its code block into
the code block for the next case (or to the end of the statement, if the
selected case is the last).

(d) You use the keyword to specify a case to be performed in the event of no
other cases matching.

Activity 2.3
Using if statements.

Activity 2.4
Understanding relational
and logical operators.

6 Arrays 31

6 Arrays

It is a common requirement when programming to have to process a collection of items
of the same type. For example, one may have to add up a collection of numbers or
check the due dates on a collection of library books.

It is convenient to be able to refer to such a collection as a group and to be able to
iterate over the collection (that is, to process the items in the collection one at a time, re­
using some code). Because this is such a common requirement, most languages
provide a data structure, the array, to support this.

In this section you will learn how to create and access array structures in Java, and in the
next section you will study the Java constructs for iteration.

Array indexing
An array is a collection of items of the same type. Figure 5 shows a simple array.

244352912

6543210

Figure 5 An array and its location indexes

As usual, we are depicting a primitive memory location as a rectangle. In showing these
items side by side, we are indicating that they are part of a collection. They can be
numbered as indicated above each box. We call this numbering an index.

This array contains seven values, all of which are integers. The first item in the array (at
location zero) is 12, the second (at location 1) is 9, and so on.

In Java, the index that identifies the first value in an array is zero and the last is
n – 1, where there are n items in the array.

Array declaration
In Java, array variables are references, not primitives. Because arrays are objects, they
have instance variables we can access and we can invoke methods on them.

Already we have seen that integers can be declared by means of a statement such as:

int intValue;

An array can be declared using a similar syntax. For example, an array of integers could
be declared as follows:

int []holder;

The type of the array in this case is written int []and the array can contain only
elements of the primitive type int. You can create an array of any primitive type; for
example, other types of arrays of primitives are boolean [], char [] and double [].

In some other languages,
array indexes start at 1.

In many languages, arrays
are a primitive type.

32 Unit 2 Java in the small

says more about 3Unit

arrays whose contents are
reference types.

An 'array initializer' is not a
literal. Its main use is in an
array initialization.

One may also write:

int holder [];

but this departs from the normal syntax of having the type appear at the beginning of the
declaration, so we prefer to adopt the previous style.

One may also have an array of a reference type; for example, we could have an array of
strings of type String [].

As with other reference types, declaration does not create an object of the type; it only
creates a reference, in this case to an array type object.

Array initializers
Java provides a quick way of creating and initializing an array by assigning a list of initial
values in curly brackets to an array type variable. For example, the declaration and
assignment:

int []holder = {1, 1, 1, 1, 1};

declares an integer array with five elements, with the initial value of these elements
being 1. The expression on the right of the assignment sign is called an array initializer.

In creating an array you reserve enough memory for the collection of values in the array
initializer.

This is obviously not a feasible way of creating very large arrays, because it relies on us
listing all the elements by hand.

This is shown in Figure 6.

holder 1 1 1 1 1

Figure 6 An array variable referencing an array

It would be illegal to write the following:

int []holder2 = {false, true}

because the array initializer in this case is of type boolean [], while holder2 is of type
int [], and these types are not compatible.

6.1 Assigning values to individual elements
Since each memory location can be referred to by the index, each can be initialized
individually. For example, to initialize (or change) the fourth element of the
firstLetters array containing 'a', 'b', 'c' and 'd' to the value 'c' (see Figure 7),
we can write:

firstLetters [3]= 'c';

bearing in mind that the first character is at index zero.

336 Arrays

holder 10

holder

firstLetters

1 10 1

'a' 'b' 'c' 'c'

1 1

To change the value stored in 's second location to , we could write:

holder [1]= 10;

Figure 7 Changing contents of arrays

Of course, if we had a large array, it would not make sense to write a statement like this
for each element in the array. Later we shall see another way in which you can initialize
elements in an array, using what we call iteration.

Just as we saw with strings (and it is true of all references), we can make an array
reference variable refer to a different object. If we write:

int []holder2 = {1, 2, 3};
holder = holder2;

then we will obtain the result as shown in Figure 8.

firstLetters

holder2

holder 1 10 1 1 1

1 2 3

'a' 'b' 'c' 'c'

Figure 8 Changing an array reference

The result is that a new array is created, and the old array is no longer referenced by the
variable holder.

6.2 Accessing array data
As before, we can refer to an item using the index enclosed in square brackets after the
name of the array. For example, the fragment of code shown below adds the second
and third items in the array holder and places the result in the int variable result.

int i = 1;

int result;

result = holder [i]+ holder [i + 1];

(After this, result holds the value 5, obtained by adding 2 + 3.)

9

34

We can also use the array data to update itself or another array:

holder [1] = holder [1] * holder [2]; // Figure

The meaning of this is that the array values at indexes 1 and 2 are accessed and

Unit 2 Java in the small

holder2

holder 1 6 3

multiplied, to give 6. This value is then stored at index 1. The result is shown in Figure 9.

6.3 lengthThe array instance variable

Note that a dot is used to
refer to the instance
variable.

Activity 2.5
Using arrays.

holder [holder.
length -1] refers to the
last element in the array.

length

h

fi .

holder
length

where name a String length

.

a

length

(a)

(b)

(c)

g to holder[1]

It is important that we do not accidentally attempt to access an array element beyond
the array's capacity, as this will give a run-time error. Arrays have an instance variable

, which gives the capacity of the array. The expression:

firstLetters.lengt

represents the number of locations in the array rstLetters

Pitfalls with using length
You will have seen the expression:

holder.length

which gives the number of elements in the array and you might have wondered
why it was different to the use of with strings, as in:

name.length();

references . The answer is that is an instance variable
associated with arrays, while length() is a method associated with strings. This is an
unfortunate inconsistency in the Java language

Don't worry if you can't remember which of string and array has length() method.
The compiler will remind you! What is more important is that you try to write code that will
continue to work even if your array or string variable references change.

It is also important to bear in mind that array will give the number of locations in
an array, not the number of initialized locations.

SAQ 10

What is wrong with each of the following array-initializing expressions?

int []f = {true, false};

char []chara = {"c", "d", "e"};

boolean b [] = {FALSE, TRUE, FALSE};

Figure 9 After assignin holder[1] * holder[2]

6 Arrays 35

ANSWERS ..

(a) The values true and false are not compatible with the integer type.

(b) The characters should be in single quotes:

char []chara = {'c', 'd', 'e'};

(c) The boolean literals are false and true, not FALSE and TRUE.

6.4 Mutability of strings and arrays
Arrays and strings are both fixed-length entities: they cannot be extended or even
shrunk.

We can write:

int []holder = {1, 1, 1, 1, 1 };
int []holder2 = {1, 2, 3 };
holder = holder2; // doesn't change first array

However, as we illustrated in Figure 8, the third line above does not change the length of
the original array referenced by holder (with all 1s in it). It makes holder reference a
different array of smaller length (which is also referenced by holder2). Any array length
is fixed at the point when the array is created. (The contents of the array can be
changed, provided we have a reference to the array.)

Similarly, we can write:

String s = "fish";
s = "wonderbread";

and this does not change the length of the original string, "fish". What changes is the
reference s, which at first points to a String object with value "fish", and then
subsequently points to a different String object with value "wonderbread".

Whereas contents of arrays can be changed, contents of strings cannot. Strings are said
to be immutable: they cannot be changed at all, once created.

There is a more flexible
type for manipulating
sequences of characters,
called StringBuffer.

36 Unit 2 Java in the small

7 Repetitive processing

7.1 The while statement
There is a variation called
do ... while, which we
do not consider here.

As usual, we indent the
code to increase
readability.

while and for

while

{

}

while

is true statements

while.

while

;
;

)
{

i++;
}

the while i vals
sum i

sum vals.

a while
once."

All programming languages allow sections of code to be executed repeatedly while
some condition is satisfied. This powerful facility is often called iteration. For example,
this enables the contents of an array of integers to be summed without writing out an
expression involving every element of the array. In this section we discuss two important
Java flow control structures for repetitive processing: the statements.

The first iteration facility that we will introduce is the statement. This has the
general form:

while (logical_expression)

statements;

The semantics of the statement are as follows.

While the logical_expression , the are executed. The
truth of the logical_expression is rechecked after each execution of the
body of the

A very simple example of the use of the statement is shown below:

int []vals = {10,20,30,40,50}

int i = 0, sum = 0

while (i < 3

sum = sum + vals [i];

This simple piece of code first creates an array and two integer variables. The body of
adds the th element of the array to the value stored in the variable

; after this it increments the variable used to index the array. The effect of the code
is to add to the first three elements of the array

SAQ 11

Is this statement true or false? "The code in the body of loop is executed at least

ANSWER...

False: it can be executed zero, one or more times.

7 Repetitive processing 37

7.2 The for statement
Another important statement to implement repetitive processing in Java is the for
statement. The general form of this statement is:

for (control_initializer; logical_expression;

control_adjustment)

{

statements;

}

The statements are executed repeatedly under the control of a variable, referred to as
the control variable. The semantics of the for statement are as follows.

The control variable is created and given its initial value in
control_initializer. Next, the logical_expression determines if the
loop body is executed. After each time the statements are executed,
control_adjustment defines the new value of the control variable, and the
logical_expression is checked again. The loop terminates when the
logical_expression becomes false .

The control_initializer is only executed once and is the first statement to be
executed by the for loop.

Comparing the general form of the for statement with that of the wh ile statement, it is
clear that they contain the same elements but that these are arranged differently.

Example 5

An example of the use of the for statement, which could be used to initialize or
change elements of an array, is shown below:

int [] a = {1,2,3 ,4,5,6,7 ,8,9, 10};
for (int i = 0 ; i < a .length ; i ++)
{

a [i] = 1 0;

}

Here the statement a [i] = 1 0; is repeatedly executed. To begin with, the value
of i is zero (in t i = 0 corresponds to control_initializer). Then the test i
< a .len gth is performed. As this is true, the loop body a [i] = 10 is executed,
in this case resulting in a [0] being assigned the value 10. Next, i is
incremented by one (i++ corresponds to control_adjustment).

Then logical_expression is evaluated again. Because it is true , we repeat
the execution of a [i] = 10 , in this case resulting in a [1] being assigned the
value 10, and increment i again. This process is repeated until i equals the
length of the array, when the condition 10 < a .len gth is false, meaning that
the statement a [i] = 10 is not executed, and the loop ends. (Remember that the
last element of this array will be a [9] , so each array location has been initialized
to 10 after this loop.)

Later in the course you will
meet another version of
the for statement, the
for-each statement.

The scope of i here is the
body of the for loop.

Example 6

The expressions used in each part of the for control structure can be more
complex, as in the following:

for (int i = 2 * start; i <= endValue; i = i + 2)
{

statements;
}

This loop executes statements as long as the condition i <= endValue is
true. Initially, the control variable i has the value 2 * start, and if the condition
is true we execute statements. Then the control variable is incremented by
two each time the loop body is executed. This continues until the value of i is
greater than the contents of the variable endValue.

A for statement can always be rewritten as a while statement, but sometimes
one or the other is more readable. A for statement is generally used when a
fixed number of iterations is required, as in our first example above. A while
loop is often preferred where the looping condition is complex.

38 Unit 2 Java in the small

h.

i a

.

a for loop.

(a)

'z' to 'a'
char e

(a)

{

}

SAQ 12

Explain why, in Example 5, the condition we used was i < a.length and not
i <= a.lengt

ANSWER...

This is because the first index of the array is zero, and the last is the array's capacity
minus one. Therefore we should not allow to reach 's capacity (which is a.length). If
we did, we would be indexing off the end of the array and a run-time error would occur

SAQ 13

Write fragments of code to do the following using

Print out the squares of the numbers 1 to 20 inclusive, in ascending order, with some
explanatory text.

(b) Print the characters of the English alphabet in reverse order from , with
some explanatory text. Hint: you can do arithmetic with variables, becaus
their underlying type is integral.

ANSWERS ..

There are variations possible on the following sample answers. In all cases, the control
variable name could be varied.

for (int j = 1; j <= 20; j++)

System.out.println(j + " squared = " + j * j);

7 Repetitive processing 39

(b)

System.out.println("The alphabet in reverse:");

for (char ch = 'z'; ch >= 'a'; ch– –)

{

System.out.println(ch);
} Activity 2.6

Experimenting with for

You can use the decrement operator on a char, because its underlying type is loops.

integral.

Activity 2.7
Using for loops with data
stored in arrays.

40 Unit 2 Java in the small

8

8.1

Developing some methods

In this section you will study two examples to give you more practice with writing
methods. The methods will use the Java flow control structures for iteration and
conditional processing and the array data structure.

Example 1: a bag
A bag, as shown in Figure 10, is a collection of data that keeps track of the number of
times an item is contained in it.

1

44

0 2

4

2

g containing
bers

A ba
seven num

Figure 10 A bag of numbers

This example shows the code for methods associated with a simple bag that keeps
track of the number of times the integers ranging from 0 to 9 are stored in it. We show
two methods:

c a method that adds an integer to a bag, addToBag;

c a method that returns the number of occurrences of a particular integer within a bag,
findNum.

We will assume that all the arguments passed to the methods will be in the range 0 to 9,
so that we do not have to check that these arguments are valid.

A natural way of storing the items in this bag would be an array that has 10 locations
corresponding to the 10 possible integers that it could contain. We will assume that this
instance variable will have the name bagVals:

int []bagVals = {0,0,0,0,0,0,0,0,0,0}

By initializing the array locations to zero we are indicating that the bag is empty: there
are no occurrences of any of the integers. In practice, a method to initialize the bagVals
array might be a useful thing, allowing us to start our bag from an empty state.

The code for the method addToBag is shown below. It takes one argument, which is the
integer to be added. (This integer must be in the range 0 to 9.)

public void addToBag (int toBeAdded)

{

++bagVals [toBeAdded];

}

n n

]
]

{
;

}

.

{
;

}

t lookedFor
].

int .

Bag class.

41

Thus, the th array location contains the number of times that the value has been
added to the bag. For example, if this method were called with the argument 1, then
bagVals [1 would be incremented from 0 to 1. If this were to happen a second time,
bagVals [1 would be incremented from 1 to 2. The following method would have the
same effect:

public void addToBag (int toBeAdded)

bagVals [toBeAdded]= bagVals [toBeAdded]+ 1

The code for the method that returns the number of occurrences of a particular integer
within a bag is shown below. It has one argument, the integer whose number of
occurrences we want to know

public int findNum (int lookedFor)

return bagVals [lookedFor]

For example, if the argumen is 1, then we return the value stored in
bagVals [1

Remember that the keyword public specifies that any other class can use this method
and the keyword indicates that an integer value is returned from the method Activity 2.8

Adding methods to the

8 Developing some methods

8.2
names
Example 2: a collection of computer

In this example, we develop a set of methods for an object that contains a collection of
computer names. Each name in the collection represents a computer currently
connected to a network.

There will be two instance variables associated with this object: computers, which is an
array of strings storing the names of computers, and numConnected, which is an
integer variable that contains the current number of computers connected together in
the network. We shall not worry about the declaration of these instance variables now,
but concentrate on the methods. We shall assume that four methods are required:

c a method that returns the number of computers in the network, getNumConnected;

c a method that adds a named computer to the network, addComputer;

c a method that returns the index at which a named computer is found in the collection
or -1 if the computer is not found in the collection, indexOf;

c a method that removes a named computer from the network, removeComputer.

In developing the code, we will make simplifying assumptions:

c we will not be adding a computer with a name that is the same as a computer
already in the network;

c we will always have enough room in the computers array to hold all the computers
we want to add to the network.

The first method returns the number of computers:

public int getNumConnected ()

{

return numConnected;

}

42 Unit 2 Java in the small

The method that adds a computer name to the collection of computers is shown below.
The instance variable numConnected is serving two purposes: it is the number of
computers in our collection and also marks the next unoccupied location in the
computers array (we fill the array from the lowest index upwards). We are assuming
that numConnected will be initialized to 0 to begin with, so that we fill the array correctly.

public void addComputer (String addedComputer)
{

computers [numConnected]= addedComputer;

numConnected++;

}

A sketch of the system after adding the computer named "fifi" to the collection by
invoking addComputer("fifi") is shown in Figure 11.

computers

numConnected 1

.. .

Figure 11 After adding "fifi" to the collection, the next place to be filled in the array is at
index 1

A method, indexOf, that returns the index of a named computer in the network, or -1 if
the computer is not found, is shown below.

This method makes use of a method of String objects that you have not yet seen,
called equals. The equals method returns true if two strings contain the same
characters, and otherwise it returns false.

So the expression wantedComputer.equals(computers [i])returns true if the string
referenced by computers [i] and the string referenced by wantedComputer contain
the same characters. If we had written computers [i].equals(wantedComputer)
the result would be the same. In the first case, the method would be invoked on the
object referenced by wantedComputer, and in the second on the object referenced by
computers [i], but the result returned is the same.

public int indexOf (String wantedComputer)
{

boolean found = false;

int i = 0;

while (!found && i < numConnected)

{

found = wantedComputer.equals(computers [i]);
i++;

}

if (found)

{

// i was incremented after the find
return i - 1;

}

else

{

return -1;

}

}

The final method, removeComputer, removes a computer from the network. This is
achieved by finding the point in the array where the computer name is stored and then
shifting down each name that lies after it.

public void removeComputer (String unwantedComputer)
{

// find the index of the computer
int i = indexOf(unwantedComputer);
// if it is not -1, the computer was found
if (i > -1)
{

/* Move the computers after this position to the left by one.
The body of this loop is not executed if the computer
is last in the collection. */

for (int j = i; j < numConnected – 1; j++)
{

computers [j] = computers [j + 1];
}
numConnected– –;

}
}

This method does not alter the value stored in the position last filled in the array, but
because numConnected is decremented, that value will not be considered part of the
collection. It will be overwritten if another computer is added to the collection.

The code for these methods can now be used in any program. For example, the
fragment of code below adds a computer called "Pentium200" to a collection of
computers referenced by localComputers, then removes the computer "Vroom486"
and finally places in the integer variable collCount the current number of computers in
the collection.

localComputers.addComputer("Pentium200");
localComputers.removeComputer("Vroom486");
int collCount = localComputers.getNumConnected();

Again, notice the format of the expressions, which all involve methods being invoked on
objects. Notice the lack of arguments in the third method, which does not require them.

Activity 2.9
Adding methods to the
computer collection class.

8 Developing some methods 43

44 Unit 2 Java in the small

9 Strings and arrays revisited

To conclude this unit we are returning to strings and arrays. We feel that before reading
the next unit it would be useful for you to see more examples of object methods being
invoked. Also, whilst strings and arrays are objects, we want to point out that we have
been creating them using shortcut mechanisms that are not generally available to
objects. This also will help to prepare you for the next unit, because other objects you
will encounter from now on cannot be created by assignment of a literal (as we did with
strings) or by using an initializer (as we did with arrays).

Remember that with reference types, there are several steps taken to create a useful
object, referenced by a variable:

c declaration of a reference variable of the appropriate type;

c creation (and initialization) of an object of the chosen type;

c making the reference variable refer to the created object.

For example, the declaration:

String fileName;

declares a string reference called fileName, but does not create an object. We saw
earlier that we can make a string reference refer to an initialized object by means of an
assignment. For example:

fileName = "Tdata.txt";

sets the reference fileName to refer to the string object containing the characters
"Tdata.txt". Most objects cannot be created by literals like this.

9.1 The StringBuffer type
A more typical class type in Java, in terms of object creation, is StringBuffer, which
can be used to handle sequences of characters. A StringBuffer object is mutable: it
can be changed once it has been created.

However, to create a StringBuffer object we cannot simply write a string literal.The
following would be illegal:

StringBuffer userName;
userName = "Jones21"; // illegal!

The reason is that the expression on the right-hand side of this assignment is a String,
and we are trying to assign it to a reference variable of a different type, StringBuffer.

To make a StringBuffer object, we require a completely different syntax:

new StringBuffer("Jones21")

This uses the keyword new with the type of the object being created (StringBuffer)
and an argument ("Jones21", in this case) that allows initialization of the object. For the
time being, do not worry too much about this syntax. We shall return to discuss it in detail
in Unit 3.

9 Strings and arrays revisited 45

Normally you would write such an expression on the right-hand side of an assignment,
as follows:

StringBuffer userName;
userName = new StringBuffer("Jones21");

The first line here creates the reference variable, while the second makes the reference
refer to a StringBuffer object.

Why is there different syntax to create a String and a StringBuffer? The answer is
that creating strings is a common task and so Java provides the shortcut we have been
using. This is a special feature provided for strings!

However, a String is an object and all objects can be created in the manner used for
StringBuffer above: using the keyword new, the name of the type and some
initializing data. In this case, we can write:

String filename;
/* create string using new */
filename = new String("Tdata.txt");

9.2 newArray creation with
We hinted before that our method for creating arrays, using array initializers, was limited.
We used syntax like the following:

int []myArray = {1,2,1,2};

The above example creates an array of four integers, initialized to the values 1, 2, 1 and
2; the reference variable myArray is initialized to reference this array.

You would not want to create a large array this way, because you would have to list
values for all the elements in the array individually.

All array types in Java are reference types, not primitives. As such, array objects also
can be created using the new keyword. We could create an array with room for four int
values as follows:

new int [4]

This expression is similar to new StringBuffer("text") in that it uses the word new,
the type of the thing we want to create (int[]) and an argument (4). It is different in that it
uses square brackets instead of parentheses around the argument.

To make an array reference refer to an array object we now have an alternative syntax.
For example, we can write:

int []myArray = new int [4];

Unlike when we used an array initializer, we have not stated what the elements in this
array are. We have only stated that there should be room for four integers to be stored.
We can initialize these elements (they will default to the value 0) using assignment to
individual locations:

myArray [0]= 1;

myArray [1]= 2;

myArray [2]= 1;

myArray [3]= 2;

We do not advise you to
create strings in this way.

This is a special syntax
used just for arrays. All
other objects use the
parentheses syntax.

46 Unit 2 Java in the small

This is equivalent to the following:

int []myArray = {1,2,1,2};

The significance is that we now have syntax to create arrays of larger dimensions
simply:

int [] myArray = new int [400];

Using an array initializer in this case would be hard to read and write, at the very least.

We can still initialize elements of such an array, but we would be unlikely to do it by
writing one assignment for each location. Instead, we would use iteration.

9.3
d

5 Some

Method

More string methods
A list of some frequently use String methods is shown in Table 5.

Table String methods

Meaning Returns

true a boolean

length()
String

an int

int index i String;
a char

i
range.)

str
-

found

an int

int2)
int1
int2 – 1

a String

equals(str) returns if the passed
String str has the same
characters as the receiver
string object

returns the number of
characters in a

charAt(i) returns the character at the
in the

the index begins at zero
(It is an error if is out of

indexOf(str) returns the starting index of
the string within the
receiver object, or 1 if not

substring(int1, returns the substring of the
receiver string, starting at

and finishing at
(It is an error if the indexes
are out of range.)

length

(a)

(b)

(c) [-1];

(d)

(e)

(f)

Notice that the method does not require any arguments. All the examples
above return a value, but this is not a requirement of methods in general.

SAQ 14

What is wrong with each of the following statements?

char ch = new char [5];

Boolean []b = new boolean [3];

int []f = new int

int []byte = new int [10];

char []ch = char [5];

boolean b []= new boolean [];

A receiver object is the
object on which a method
is invoked. For example in
myString.equals
(str), myString is the
receiver string object.

9 Strings and arrays revisited 47

ANSWERS ..

(a)	 The type of the left-hand side of the assignment is not an array of characters. This
declaration is missing square brackets. It should read:

char []ch = new char [5];

(b)	 Boolean is not the same as boolean.

(c)	 The array size declared cannot be negative.

(d) The name byte is a keyword, so it cannot be the name of a variable.

(e)	 The declaration is missing the keyword new.

(f)	 The declaration has not specified the size of the boolean array.

48 Unit 2 Java in the small

10 Summary

In this unit you have been introduced to the main data types and control structures that
are used within Java and we have discussed small pieces of code.

We have distinguished between primitive types and reference types. Variables of a
primitive type contain values of their declared type, whilst reference variables are
'pointers' to objects.

We saw that we could convert between most primitive types by the process called
casting, although this would sometimes result in loss of some information. Casting
between reference and primitive types is not legal.

You have been introduced to the various operators that can be used with the primitive
types, and the logical operators for boolean types in order to create logical
expressions. Even though there are operator precedence rules, it was discussed that
bracketing provides a more understandable way of structuring your code.

You have been introduced to flow control structures in Java for conditional processing
and repetitive processing. The if and switch statements give us ways to select
whether or not a block of code will be executed, whereas for and while loops provide
a mechanism to repeatedly execute blocks of code.

We saw that an array allows you to create a collection of items of the same type, and
facilitates processing them as a collection, allowing us to write relatively compact code.
Arrays also have a shortcut initializer syntax. It was discussed that the for loop is
particularly suitable for iterating through an array.

We discussed strings as an example of a very commonly used reference type. Typically,
an object's state can be altered, but we saw that objects of type String are immutable,
and that the length of an array is fixed on creation.

The StringBuffer type provides us with a mutable form of string. The types String
and StringBuffer, as well as all arrays, are reference types in Java, meaning that we
create objects of their type and invoke methods on those objects in order to perform
processing. You saw examples of objects being created using syntax involving the
keyword new.

We have noted that there are some shortcut operators associated with strings: string
objects can be created using a string literal and we can concatenate strings (and types
converted to strings) using the + operator.

Unit 3 will describe the key ideas of an object-oriented programming language and their
implementation in Java. We have tried to prepare the ground by devoting some time in
this unit to the StringBuffer type.

10 Summary 49

SLEARNING OUTCOME

When you have completed this unit, you should be able to:

c write fragments of code that use the primitive types, arrays and string types in the
Java language;

c write code to change the flow of control in programs using if and switch
statements;

c write looping constructs using while and for loops.

Concepts
The following concepts have been introduced in this unit:

array, array initializer, bag, body, boolean, casting, code block, conditional processing,
data type, declaration, empty string, escape sequence, expression, floating-point type,
flow control structure, immutable, index, initialization, integral type, iterate, iteration,
literal, local variable, logical expression, operator, operator precedence, prefix, postfix,
primitive type, promotion, reference type, relational operator, scope, selection
statement, statement, string, strongly typed language, type, Unicode.

C

50 Unit 2 Java in the small

Index

A

arithmetic expression 6

arithmetic operators 13

arrays 31, 45

B

bag 40

body 22

boolean 8, 20

break 28

byte 7

case 28

casting 9

promotion 11

char 7, 10

code block 12

concatenation 18

control variable 29

converting types 9

D

declaration 6

default case 28

double 8

E

empty string 16

equals 42, 46

errors

compilation 9–10

run-time 15, 34

escape sequences 7, 16

expressions 6

arithmetic 13

logical 20, 25

F

floating-point types 8

flow control structures 20, 36

for 37–38

I

if, nesting 25

immutable 35

index 31

initialization 6, 21, 37

int 7

integral types 7

iteration 36

L

literals 6

boolean 20

char 7

floating-point 8

int 7

string 16, 44

local variables 12

logical expression 20

long 7

looping 38

M
mutability 35, 44

N

nesting 25

new 44

newline 8

O

operators 13

arithmetic 13

precedence 14

relational 20, 26

P

portability 7

postfix 14

precedence 14

prefix 14

primitive types 6, 9, 20

promotion 11

R

reference types 6

relational operators 20, 26

repetitive processing 36

for 37–38

while 36

run-time error 34

S
selection statements 22

short 7

statement 12

String 16

concatenation 18

StringBuffer 44

strong typing 6

switch 28

T

types 6

array 31

boolean 20

char 7

converting 9

floating-point 8

integral 7

primitive 6

promotion 11

reference 6

String 16

StringBuffer 44

strong typing 6

U
Unicode 7

V

variables, initialization 6, 37

W

while 36

